JP2008114413A - Particle laminated film laminate, method for producing the laminate, and optical member using the laminate - Google Patents

Particle laminated film laminate, method for producing the laminate, and optical member using the laminate Download PDF

Info

Publication number
JP2008114413A
JP2008114413A JP2006297728A JP2006297728A JP2008114413A JP 2008114413 A JP2008114413 A JP 2008114413A JP 2006297728 A JP2006297728 A JP 2006297728A JP 2006297728 A JP2006297728 A JP 2006297728A JP 2008114413 A JP2008114413 A JP 2008114413A
Authority
JP
Japan
Prior art keywords
fine particle
film
laminated film
group
particle laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006297728A
Other languages
Japanese (ja)
Inventor
Masato Nishimura
正人 西村
Nobuaki Takane
信明 高根
Tomomi Kawamura
智巳 川村
Toshishige Uehara
寿茂 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2006297728A priority Critical patent/JP2008114413A/en
Publication of JP2008114413A publication Critical patent/JP2008114413A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a particle laminated film laminate which is excellent in surface hardness and/or adhesion. <P>SOLUTION: In the particle laminated film laminate, particles having an average partiucle size of 1-23 nm and an electrolyte polymer are adsorbed alternately on the surface of a solid substrate having polar groups in the surface. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、微粒子積層膜積層体、その製造方法及びそれを用いた実用上有用な光学部材に関する。   The present invention relates to a fine particle laminated film laminate, a method for producing the same, and a practically useful optical member using the same.

ナノメータースケールの薄膜を溶液から形成する方法として、交互積層法が提案されている(非特許文献1参照)。シリカやチタニア、セリアといった微粒子を交互積層法で積層する方法も報告されている(非特許文献2参照)。この微粒子を積層した膜(微粒子積層膜)は、微粒子の光学特性が反映される。例えば、シリカ微粒子積層膜は低屈折率、チタニア微粒子積層膜は高屈折率を示す。   As a method for forming a nanometer-scale thin film from a solution, an alternate lamination method has been proposed (see Non-Patent Document 1). A method of laminating fine particles such as silica, titania and ceria by an alternate laminating method has also been reported (see Non-Patent Document 2). The film in which the fine particles are laminated (fine particle laminated film) reflects the optical characteristics of the fine particles. For example, the silica fine particle laminated film has a low refractive index, and the titania fine particle laminated film has a high refractive index.

しかし、微粒子積層膜を光学用途の部材の一部として用いる場合、実用的な密着性が要求される。ディスプレイ最表面に位置する反射防止膜ではさらに高い表面硬度が要求され、ディスプレイ内部の光学部材であっても組み立て時に傷が発生しない程度の表面硬度が要求される。特許文献1には、微粒子積層膜を透明封止材の塗布により封止し、硬化させることにより、強度を確保したり変形を防いだりすることが記載されている。特許文献2には、微粒子積層膜内の空隙に活性照射線反応性モノマーおよび重合開始剤を充填させ、これらを硬化させることにより微粒子積層膜の耐擦傷性を向上させることが記載されている。また、特許文献3には、微粒子積層膜からなる反射防止膜を形成した光電変換素子をトリメトキシメチルシラン溶液に浸漬し、アンモニア蒸気や塩酸蒸気によってトリメトキシメチルシランを縮合させることにより、反射防止膜の密着性を向上させることが記載されている。また、特許文献4や特許文献5には、極性基を有するグラフトポリマー鎖を表面グラフト重合法により基材上に導入することで、その基材を微粒子分散溶液に1回浸漬することで形成した微粒子単層膜や微粒子積層膜と基材との吸着が強固になると記載されている。特許文献6には、エステル結合、ウレタン結合、アミド結合、エーテル結合などがおきる官能基を透明基材表面と微粒子表面のそれぞれに導入し、化学的かつ不可逆的な結合を形成させることで微粒子の透明基材上への付着力を向上させると記載されている。   However, when the fine particle laminated film is used as a part of a member for optical use, practical adhesion is required. The antireflection film located on the outermost surface of the display is required to have a higher surface hardness, and even the optical member inside the display is required to have a surface hardness that does not cause scratches during assembly. Patent Document 1 describes that a fine particle laminated film is sealed by application of a transparent sealing material and cured to ensure strength and prevent deformation. Patent Document 2 describes that the scratches of the fine particle laminated film are improved by filling the voids in the fine particle laminated film with an actinic radiation reactive monomer and a polymerization initiator and curing them. Patent Document 3 discloses an antireflection method by immersing a photoelectric conversion element having an antireflection film made of a fine particle laminated film in a trimethoxymethylsilane solution and condensing trimethoxymethylsilane with ammonia vapor or hydrochloric acid vapor. It describes that the adhesion of the film is improved. In Patent Document 4 and Patent Document 5, a graft polymer chain having a polar group is introduced onto a substrate by a surface graft polymerization method, and the substrate is formed by immersing the substrate once in a fine particle dispersion solution. It is described that the adsorption between the fine particle single layer film or the fine particle laminated film and the base material becomes strong. In Patent Document 6, a functional group in which an ester bond, a urethane bond, an amide bond, an ether bond, or the like occurs is introduced into each of the transparent substrate surface and the fine particle surface to form a chemical and irreversible bond. It is described that adhesion on a transparent substrate is improved.

特開2002−361767号公報JP 2002-361767 A 特開2003−205568号公報JP 2003-205568 A 特開2003−332604号公報JP 2003-332604 A 特開2003−112379号公報JP 2003-112379 A 特開2004−114339号公報JP 2004-114339 A 特開2002−6108号公報Japanese Patent Laid-Open No. 2002-6108 Thin Solid Films, 210/211, p831(1992)Thin Solid Films, 210/211, p831 (1992) Langmuir、Vol.13、(1997)p6195−6203Langmuir, Vol. 13, (1997) p6195-6203

前記したことからも明らかなように、従来、微粒子積層膜を少なくとも一部に用いた光学用途などの実用面において、その微粒子積層膜は、表面硬度や基材への密着性が不十分である。そこで、本発明は、表面硬度及び/又は密着性が優れる微粒子積層膜積層体、その製造方法及びそれを用いた光学部材を提供することを目的とする。   As is clear from the foregoing, the fine particle laminated film is insufficient in surface hardness and adhesion to a substrate in practical use such as optical applications using the fine particle laminated film at least in part. . Then, an object of this invention is to provide the fine particle laminated film laminated body which is excellent in surface hardness and / or adhesiveness, its manufacturing method, and an optical member using the same.

本発明は、つぎのものに関する。
1. 表面に極性基を有する固体基材の表面に平均一次粒子径が1nm以上23nm以下である微粒子および電解質ポリマーを交互に吸着させてなる微粒子積層膜積層体。
2. 微粒子が、リチウム、ナトリウム、マグネシウム、アルミニウム、亜鉛、インジウム、シリコン、錫、チタン、ジルコニウム、イットリウム、ビスマス、ニオブ、セリウム、コバルト、銅、鉄、ホルミウム、マンガンの酸化物の微粒子のうちいずれかの微粒子を含む項1記載の微粒子積層膜積層体。
3. 表面に極性基を有する固体基材が、その表面に極性基を含む中間層が形成されたものである項1又は2に記載の微粒子積層膜積層体。
4. 極性基が、エポキシ基、スチリル基、メタクリロキシ基、アクリロキシ基、アミノ基、ウレイド基、クロロプロピル基、メルカプト基、スルフィド基、イソシアネート基、カルボキシル基、シラノール基、水酸基のうち少なくとも一種類以上の官能基である項1〜3のいずれかに記載の微粒子積層膜積層体。
5. 固体基材がハードコート層を含む項1〜4のいずれかに記載の微粒子積層膜積層体。
6. 微粒子積層膜の濁度が0.001%以上4%以下である項1〜5のいずれかに記載の微粒子積層膜積層体。
7. 微粒子積層膜中に、微粒子及びこの微粒子に対して0.1質量%以上40質量%以下の電解質ポリマーを含む項1〜6のいずれかに記載の微粒子積層膜積層体。
8. 微粒子が数珠状に連なった形状である項1〜7のいずれかに記載の微粒子積層膜積層体。
9. 微粒子積層膜における表面反射率の最小値が3%以下である項1〜8のいずれかに記載の微粒子積層膜積層体(反射防止膜)。
10. 微粒子積層膜における反射率が15%以上50%以下および透過率が50%以上85%以下である項1〜9のいずれかに記載の微粒子積層膜積層体(半透過半反射膜)。
11. 表面に極性基を有する固体基材をその表面の電荷と反対符号の電荷を有する微粒子の分散液または電解質ポリマー溶液に浸漬する工程と、その微粒子またはその電解質ポリマーと反対符号の電荷を有する微粒子の分散液または電解質ポリマーに浸漬する工程を含むことを特徴とする項1〜10のいずれかに記載の微粒子積層膜積層体の製造方法。
12. 項1〜10のいずれかに記載の微粒子積層膜積層体を含む光学部材。
13. 項9記載の微粒子積層膜積層体を含む反射防止機能を有する光学部材。
14. 項10記載の微粒子積層膜積層体を含む半透過半反射機能を有する光学部材。
The present invention relates to the following.
1. A fine particle laminated film laminate in which fine particles having an average primary particle size of 1 nm to 23 nm and an electrolyte polymer are alternately adsorbed on the surface of a solid substrate having a polar group on the surface.
2. The fine particles are any of fine particles of oxides of lithium, sodium, magnesium, aluminum, zinc, indium, silicon, tin, titanium, zirconium, yttrium, bismuth, niobium, cerium, cobalt, copper, iron, holmium, and manganese. Item 2. The fine particle laminated film laminate according to Item 1, comprising fine particles.
3. Item 3. The fine particle multilayer film laminate according to Item 1 or 2, wherein the solid substrate having a polar group on the surface has an intermediate layer containing the polar group formed on the surface.
4). The polar group is an epoxy group, a styryl group, a methacryloxy group, an acryloxy group, an amino group, a ureido group, a chloropropyl group, a mercapto group, a sulfide group, an isocyanate group, a carboxyl group, a silanol group, or a hydroxyl group. Item 4. The fine particle multilayer film laminate according to any one of Items 1 to 3, which is a group.
5. Item 5. The fine particle laminated film laminate according to any one of Items 1 to 4, wherein the solid substrate includes a hard coat layer.
6). Item 6. The fine particle laminate film laminate according to any one of Items 1 to 5, wherein the fine particle laminate film has a turbidity of 0.001% to 4%.
7). Item 7. The fine particle multilayer film laminate according to any one of Items 1 to 6, wherein the fine particle multilayer film contains fine particles and an electrolyte polymer of 0.1% by mass to 40% by mass with respect to the fine particles.
8). Item 8. The fine particle multilayer film laminate according to any one of Items 1 to 7, wherein the fine particles are in a bead-like shape.
9. Item 9. The fine particle multilayer film laminate (antireflection film) according to any one of Items 1 to 8, wherein the minimum value of the surface reflectance in the fine particle multilayer film is 3% or less.
10. Item 10. The fine particle multilayer film laminate (semi-transmissive semi-reflective film) according to any one of Items 1 to 9, wherein the fine particle multilayer film has a reflectance of 15% to 50% and a transmittance of 50% to 85%.
11. A step of immersing a solid substrate having a polar group on the surface in a dispersion or electrolyte polymer solution of fine particles having a charge opposite to the charge on the surface; and a fine particle having a charge opposite in sign to the fine particles or the electrolyte polymer Item 11. The method for producing a multilayer laminated film laminate according to any one of Items 1 to 10, comprising a step of immersing in a dispersion or an electrolyte polymer.
12 Item 11. An optical member comprising the particulate multilayer film laminate according to any one of Items 1 to 10.
13. Item 10. An optical member having an antireflection function, comprising the particulate multilayer film laminate according to Item 9.
14 Item 11. An optical member having a semi-transmissive / semi-reflective function, comprising the particulate laminated film laminate according to Item 10.

本発明に係る微粒子積層膜積層体において、その微粒子積層膜は、固体基材が表面に極性基を有することと、平均一次粒子径が1nm以上23nm以下の微粒子を用いることにより、優れた密着性を示し、実用性に優れている。   In the fine particle laminate film according to the present invention, the fine particle laminate film has excellent adhesion because the solid substrate has a polar group on the surface and fine particles having an average primary particle diameter of 1 nm to 23 nm. It is excellent in practicality.

微粒子の種類を金属酸化物の微粒子とすると、微粒子積層膜の表面硬度をより確実に得ることができる。さらに、金属酸化物の微粒子を用いることで、微粒子積層膜の屈折率を低い値から高い値まで変化させることができる。   When the type of fine particles is metal oxide fine particles, the surface hardness of the fine particle laminated film can be obtained more reliably. Furthermore, by using metal oxide fine particles, the refractive index of the fine particle multilayer film can be changed from a low value to a high value.

本発明に係る微粒子積層膜積層体において、その微粒子積層膜は、可視光を散乱しないものとすることができる。特に、微粒子の平均一次粒子径のサイズを光の波長より小さなサイズに規定することで、可視光を散乱しない微粒子積層膜をより確実に得ることができる。それにより、微粒子積層膜積層体を透明度が要求される光学部材により有用に用いることができる。   In the fine particle laminated film laminate according to the present invention, the fine particle laminated film may not scatter visible light. In particular, by defining the size of the average primary particle diameter of the fine particles to be smaller than the wavelength of light, a fine particle laminated film that does not scatter visible light can be obtained more reliably. Thereby, the fine particle multilayer film laminate can be usefully used for an optical member that requires transparency.

微粒子積層膜に含まれる微粒子に対し、微粒子積層膜に含まれる電解質ポリマーの質量比を規定することで、屈折率が低い微粒子積層膜をより確実に得ることができる。それにより、微粒子積層膜を含む光学部材は光学特性を向上でき、また、多層膜構造の積層数を減らすことができる。   By defining the mass ratio of the electrolyte polymer contained in the fine particle laminate film with respect to the fine particles contained in the fine particle laminate film, a fine particle laminate film having a low refractive index can be obtained more reliably. Accordingly, the optical member including the fine particle laminated film can improve the optical characteristics, and the number of laminated multilayer film structures can be reduced.

一次粒子同士が共有結合してなる数珠状粒子を用いることにより、微粒子が交互積層する際に立体障害が起き、屈折率の低い微粒子積層膜をより確実に得ることができる。それにより、微粒子積層膜を含む光学部材は光学特性を向上でき、また、多層膜構造の積層数を減らすことができる。   By using beaded particles in which primary particles are covalently bonded, steric hindrance occurs when fine particles are alternately laminated, and a fine particle laminated film having a low refractive index can be obtained more reliably. Accordingly, the optical member including the fine particle laminated film can improve the optical characteristics, and the number of laminated multilayer film structures can be reduced.

固体基材を透明な基材と規定することで、透過光を利用する用途に有用である。
微粒子積層膜の表面反射率の最小値を規定することで、高性能の反射防止機能を微粒子積層膜積層体に付与できる。また、微粒子積層膜の反射率と透過率を規定することで、高性能の半透過半反射膜機能を微粒子積層膜積層体に付与できる。
By defining the solid substrate as a transparent substrate, it is useful for applications utilizing transmitted light.
By defining the minimum value of the surface reflectance of the fine particle laminate film, a high performance antireflection function can be imparted to the fine particle laminate film laminate. Further, by defining the reflectance and transmittance of the fine particle laminated film, a high performance semi-transmissive semi-reflective film function can be imparted to the fine particle laminated film laminate.

本発明における微粒子積層膜積層体の製造法によれば、優れた密着性を示す微粒子積層膜を有する微粒子積層膜積層体を製造できる。また、このとき、微粒子積層膜は、膜厚均一性が高く、その製造法として常温かつ湿式プロセスが可能である。
本発明における微粒子積層膜積層体は、適宜光学部材として有用に使用できる。
According to the method for producing a fine particle laminated film laminate of the present invention, a fine particle laminated film laminate having a fine particle laminated film exhibiting excellent adhesion can be produced. Further, at this time, the fine particle laminated film has high film thickness uniformity, and a normal temperature and wet process is possible as a manufacturing method thereof.
The fine particle multilayer film laminate in the present invention can be usefully used as an optical member as appropriate.

本発明では、交互積層法を用いて形成することができる微粒子積層膜が、表面に極性基を有する固体基材上に積層されていることにより、さらに平均一次粒子径が1nm以上23nm以下の微粒子を用いることにより、微粒子積層膜が実用的な密着性を得ることができる。その結果、微粒子積層膜が積層された固体基材を密着性が要求される光学部材にも用いることができる。   In the present invention, the fine particle laminated film that can be formed by using the alternating lamination method is laminated on a solid substrate having a polar group on the surface, whereby fine particles having an average primary particle diameter of 1 nm to 23 nm. By using the fine particle laminated film, practical adhesion can be obtained. As a result, the solid substrate on which the fine particle laminated film is laminated can be used for an optical member that requires adhesion.

(1)固体基材
基材上に交互積層膜を形成するためには、基材がその表面に電荷を有することが好ましい。交互積層法を用いて形成した微粒子積層膜と固体基材が密着するためには、基材表面の電荷を極性基が有することが望ましい。極性基は分子内に電荷の偏り(分子内分極)を有するため、もしくは、解離によりイオンになるため、局所的にプラスまたはマイナスの電荷を有する。この極性基の電荷と反対の電荷を有する物質を吸着させる。極性基としては、ビニル基、エポキシ基、スチリル基、メタクリロキシ基、アクリロキシ基、アミノ基、ウレイド基、クロロプロピル基、メルカプト基、スルフィド基、スルホン酸基、リン酸基、イソシアネート基、カルボキシル基、エステル基、カルボニル基、水酸基、シラノール基等の官能基のうち一つまたは二つ以上であることが望ましい。
(1) Solid substrate In order to form an alternately laminated film on a substrate, the substrate preferably has a charge on its surface. In order for the fine particle laminated film formed using the alternating lamination method and the solid substrate to be in close contact with each other, it is desirable that the polar group has a charge on the surface of the substrate. Since the polar group has a charge bias (intramolecular polarization) in the molecule or becomes an ion by dissociation, it has a positive or negative charge locally. A substance having a charge opposite to that of the polar group is adsorbed. As the polar group, vinyl group, epoxy group, styryl group, methacryloxy group, acryloxy group, amino group, ureido group, chloropropyl group, mercapto group, sulfide group, sulfonic acid group, phosphoric acid group, isocyanate group, carboxyl group, It is desirable that it is one or more of functional groups such as an ester group, a carbonyl group, a hydroxyl group, and a silanol group.

固体基材が表面に極性基を有する結果、ゼータ電位の絶対値が1〜100mVであることが好ましく、5〜90mVであることがより好ましく、10〜80mVであることがさらに好ましい。また、極性基の濃度が固体基材中で0.1〜30モル%であることが好ましく、0.2〜20モル%であることがより好ましく、0.5〜15モル%であることがさらに好ましい。微粒子積層膜と固体基材が実用的な密着性を得るために、これらの条件を満たす程度に固体基材が極性基を有することが好ましい。   As a result of the solid substrate having a polar group on the surface, the absolute value of the zeta potential is preferably 1 to 100 mV, more preferably 5 to 90 mV, and even more preferably 10 to 80 mV. Moreover, it is preferable that the density | concentration of a polar group is 0.1-30 mol% in a solid base material, it is more preferable that it is 0.2-20 mol%, and it is 0.5-15 mol%. Further preferred. In order to obtain practical adhesion between the fine particle laminated film and the solid substrate, the solid substrate preferably has a polar group to the extent that these conditions are satisfied.

固体基材の材質としては樹脂、シリコンなどの半導体、金属、無機化合物等が挙げられる。また、その形状はフィルム、シート、板、曲面を有する形状など任意である。固体基材の一部もしくは全体が筒状、糸状、繊維、発泡体など浸漬して溶液が入り込むことができるものであれば微粒子積層膜がその表面に形成されるので使用することができる。また、固体基材の断面が凹凸形状を有していても、表面の構造に追従して微粒子積層膜を形成することができる。また、固体基材表面がナノメートルスケールやサブミクロンスケールの構造を有していても、その構造に追従して微粒子積層膜は形成することができる。   Examples of the material for the solid substrate include resins, semiconductors such as silicon, metals, and inorganic compounds. Moreover, the shape is arbitrary, such as a shape which has a film, a sheet | seat, a board, and a curved surface. If a part or the whole of the solid substrate can be immersed in a solution such as a cylinder, a thread, a fiber, or a foam, the fine particle laminated film is formed on the surface and can be used. Moreover, even if the cross section of the solid substrate has an uneven shape, the fine particle laminated film can be formed following the surface structure. Even if the surface of the solid substrate has a nanometer scale or submicron scale structure, the fine particle multilayer film can be formed following the structure.

上記金属としては、例えば、鉄、銅、白銅、ブリキ等があり、表面に電荷が存在するように酸化皮膜を形成させる等の処理を施したものである。上記無機化合物としては例えば、ガラス、セラミックス等があり、表面に極性基を有するものである。   Examples of the metal include iron, copper, white copper, tinplate, and the like, and are subjected to treatment such as forming an oxide film so that electric charges exist on the surface. Examples of the inorganic compound include glass and ceramics, and have a polar group on the surface.

上記の樹脂としてはポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステルであって水酸基又はカルボキシル基を有するもの、カルボキシル基又はアミノ基を有するポリアミド、ポリビニルアルコール、アクリル酸又はメタクリル酸の重合体又は共重合体等がある。   Examples of the resin include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, which have a hydroxyl group or a carboxyl group, a polyamide having a carboxyl group or an amino group, a polyvinyl alcohol, a polymer of acrylic acid or methacrylic acid, or There are copolymers and the like.

これらの基材表面をコロナ放電処理、グロー放電処理、プラズマ処理、紫外線照射、オゾン処理、アルカリや酸などによる化学的エッチング処理等して極性基を導入してもよい。このような処理により極性基を導入した樹脂を使用してもよい。このような樹脂としては、前記に例示した樹脂以外にポリエチレン、ポリプロピレン、ポリスチレン、トリアセチルセルロース、ジアセチルセルロース、アセテートブチレートセルロース、ポリエーテルサルフォン、ポリイミド、ポリメチルペンテン、ポリ塩化ビニル、ポリビニルアセタール、ポリメタクリル酸メチル、ポリカーボネート、ポリウレタン等を使用することもできる。   Polar surfaces may be introduced by subjecting these substrate surfaces to corona discharge treatment, glow discharge treatment, plasma treatment, ultraviolet irradiation, ozone treatment, chemical etching treatment with alkali, acid, or the like. You may use resin which introduce | transduced the polar group by such a process. Examples of such a resin include polyethylene, polypropylene, polystyrene, triacetyl cellulose, diacetyl cellulose, acetate butyrate cellulose, polyether sulfone, polyimide, polymethylpentene, polyvinyl chloride, polyvinyl acetal, in addition to the resins exemplified above. Polymethyl methacrylate, polycarbonate, polyurethane and the like can also be used.

本発明における固体基材としては、基材上に極性基を有する中間層を形成したものが好ましい。この場合、基材としては前記したように樹脂、シリコンなどの半導体、金属、無機化合物等を使用できるが、その表面に極性基を有する必要は必ずしもない。基材としての樹脂は、前記に例示したもの全てが利用できる。中間層を形成するものとしては、シランカップリング剤、樹脂その他がある。ここで、樹脂としては、当然に極性基を有するものが選択使用される。   As the solid substrate in the present invention, a substrate in which an intermediate layer having a polar group is formed on the substrate is preferable. In this case, as described above, a resin, a semiconductor such as silicon, a metal, an inorganic compound, or the like can be used as the base material, but the surface does not necessarily have a polar group. As the base material, all of those exemplified above can be used. Examples of forming the intermediate layer include silane coupling agents, resins, and the like. Here, as a resin, naturally, a resin having a polar group is selectively used.

微粒子積層膜積層体を光学部材として利用する場合、固体基材(又は基材)は透光性を有しても有しなくてもよい。ここで、透光性を有する状態とは光を透過する状態をいい、光を散乱するか否かにはよらない。透光性を有しない状態とは吸収や反射により光を透過しない状態をいい、光を散乱するか否かにはよらない。それ自身透光性を有する固体基材(又は基材)としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル、ポリエチレン、ポリプロピレン、ポリスチレン、トリアセチルセルロース、ジアセチルセルロース、アセテートブチレートセルロース、ポリエーテルサルフォン、ポリアミド、ポリイミド、ポリメチルペンテン、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルアセタール、ポリメタクリル酸メチル、ポリカーボネート、ポリウレタンなどの熱可塑性樹脂や、ガラス基板などが用いられる。それ自身透光性を有しない固体基材(又は基材)としては、シリコン系やガリウム系等の半導体ウェハ、または金属等を用いることができる。   When the fine particle multilayer film laminate is used as an optical member, the solid substrate (or substrate) may or may not have translucency. Here, the translucent state refers to a state of transmitting light, and does not depend on whether or not light is scattered. The state that does not transmit light means a state that does not transmit light by absorption or reflection, and does not depend on whether or not light is scattered. As a solid substrate (or substrate) having translucency itself, for example, polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyethylene, polypropylene, polystyrene, triacetyl cellulose, diacetyl cellulose, acetate butyrate A thermoplastic resin such as cellulose, polyethersulfone, polyamide, polyimide, polymethylpentene, polyvinyl chloride, polyvinyl alcohol, polyvinyl acetal, polymethyl methacrylate, polycarbonate, polyurethane, a glass substrate, or the like is used. As a solid base material (or base material) that does not itself transmit light, a silicon-based or gallium-based semiconductor wafer, a metal, or the like can be used.

微粒子積層膜の形成を望まない固体基材の表面部分には、粘着フィルム等を貼り付ける等の微粒子分散液と固体基材との接触防止を施すことで、微粒子積層膜の固体基材上への形成を防ぐことができる。   On the surface of a solid substrate where formation of a fine particle laminated film is not desired, the fine particle dispersion such as an adhesive film is adhered to the solid substrate to prevent contact with the solid substrate. Can be prevented.

本発明の固体基材には、基材上に樹脂膜、無機膜や有機材料と無機材料のどちらも含む膜が積層されているものも包含される。それら樹脂膜層、無機膜層や有機−無機膜は固体基材のどこに位置しても良く、固体基材の最表面に位置しない場合は極性基を有する必要はない。それら樹脂膜層、無機膜層や有機−無機膜は固体基材に光学機能や機械的特性向上する等の機能を付与しても良いし、付与しなくても良い。固体基材の機械的特性を向上させる層の例としてはハードコート層が挙げられる。   The solid substrate of the present invention includes those in which a resin film, an inorganic film, or a film containing both an organic material and an inorganic material is laminated on the substrate. These resin film layer, inorganic film layer, and organic-inorganic film may be located anywhere on the solid substrate, and need not have a polar group when not located on the outermost surface of the solid substrate. The resin film layer, the inorganic film layer, and the organic-inorganic film may or may not be provided with a function of improving the optical function and mechanical characteristics of the solid substrate. An example of a layer that improves the mechanical properties of the solid substrate is a hard coat layer.

光学機能を付与するための膜の例としては、反射防止膜、反射膜、半透過半反射膜、可視光反射赤外線透過膜、赤外線反射可視光透過膜、青色反射膜、緑色反射又は赤色反射膜、輝線カットフィルター、色調補正膜が1つ以上含まれる光学機能膜が挙げられる。これらの光学機能膜を有する固体基材上に微粒子積層膜を形成することで、さらに別の光学機能を付与することができる。   Examples of films for imparting optical functions include antireflection films, reflective films, semi-transmissive and semi-reflective films, visible light reflective infrared transmissive films, infrared reflective visible light transmissive films, blue reflective films, green reflective or red reflective films , An optical function film including at least one bright line cut filter and a color tone correction film. Further optical functions can be imparted by forming a fine particle laminate film on a solid substrate having these optical function films.

例えば、反射防止機能、輝線カットフィルター機能、近赤外カットフィルター機能、色調補正機能のうち一つ以上の機能を有する固体基材に、微粒子積層膜を形成すると、反射防止機能、輝線カットフィルター機能、近赤外カットフィルター機能、色調補正機能のうち、固体基材にない一つ以上の機能を付与することができ、プラズマディスプレイパネル、液晶表示装置等のディスプレイための光学フィルタなどに好適な光学部材が得られる。また、導光板、拡散フィルム、プリズムフィルム、輝度向上フィルム、偏光板等の光学フィルムを固体基材として用いて、微粒子積層膜を含む反射防止膜を形成して得られる光学フィルタは、光学フィルム界面での反射が抑制される。このため、このような光学フィルタを組み込んだ液晶表示装置は輝度も向上する。また、光拡散性フィルムを固体基材として用いて、その固体基材に微粒子積層膜を含む半透過半反射膜層を形成して得られる光学フィルタを組み込んだ半透過型液晶表示装置は外光反射による輝度が向上する。このように、フラットパネルディスプレイ等のディスプレイのためのフィルタ部材に微粒子積層膜を形成させることでそれら部材の高機能化が達成することができる。   For example, when a multilayer film is formed on a solid substrate having one or more of an antireflection function, a bright line cut filter function, a near infrared cut filter function, and a color tone correction function, the antireflection function and the bright line cut filter function Among the near-infrared cut filter function and the color tone correction function, one or more functions not provided in the solid base material can be given, and an optical suitable for an optical filter for a display such as a plasma display panel or a liquid crystal display device. A member is obtained. In addition, an optical filter obtained by forming an antireflection film including a fine particle laminated film using an optical film such as a light guide plate, a diffusion film, a prism film, a brightness enhancement film, and a polarizing plate as a solid substrate is an optical film interface. Reflection at is suppressed. For this reason, the brightness of a liquid crystal display device incorporating such an optical filter is improved. A transflective liquid crystal display device incorporating an optical filter obtained by using a light diffusing film as a solid substrate and forming a transflective film layer including a fine particle laminated film on the solid substrate Brightness due to reflection is improved. In this way, by forming a fine particle laminated film on a filter member for a display such as a flat panel display, it is possible to achieve high functionality of those members.

(2)ハードコート層
ハードコート膜が積層されている固体基材は、機械的特性に優れる。ハードコート膜となる材料には、アクリル系樹脂、ウレタン系樹脂、メラミン系樹脂等の重合性不飽和二重結合含有化合物の架橋体や、有機シリケート化合物、シリコーン系樹脂または金属酸化物などが挙げられる。重合性不飽和二重結合含有化合物としては、熱硬化性樹脂、放射線硬化型樹脂等の硬化性樹脂を用いることができるが、特に多官能重合性不飽和二重結合含有化合物を用いることが好ましい。
(2) Hard coat layer A solid substrate on which a hard coat film is laminated is excellent in mechanical properties. Examples of the material for the hard coat film include crosslinked bodies of polymerizable unsaturated double bond-containing compounds such as acrylic resins, urethane resins, and melamine resins, organic silicate compounds, silicone resins, and metal oxides. It is done. As the polymerizable unsaturated double bond-containing compound, a curable resin such as a thermosetting resin or a radiation curable resin can be used, and it is particularly preferable to use a polyfunctional polymerizable unsaturated double bond-containing compound. .

多官能重合性不飽和二重結合含有化合物としては、多価アルコールとメタクリル酸又はアクリル酸とのエステル(例、エチレングリコールジ−(メタ)アクリレート、1,4−ジクロヘキサンジアクリレート、ペンタエリスリトールテトラ−(メタ)アクリレート、ペンタエリスリトールトリ−(メタ)アクリレート、トリメチロールプロパントリ−(メタ)アクリレート、トリメチロールエタントリ−(メタ)アクリレート、ジペンタエリスリトールテトラ−(メタ)アクリレート、ジペンタエリスリトールペンタ−(メタ)アクリレート、ジペンタエリスリトールヘキサ−(メタ)アクリレート、1,3,5−シクロヘキサントリオールトリメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、ビニルベンゼンの誘導体(例、1,4−ジビニルベンゼン、4−ビニル安息香酸−2−アクリロイルエチルエステル、1,4−ジビニルシクロヘキサノン)、ビニルスルホン化合物(例、ジビニルスルホン)、アクリルアミド化合物(例、メチレンビスアクリルアミド)及びメタクリルアミド等が上げられるが、これに限定されるものではない。上記において(メタ)アクリレートは「メタクリレート又はアクリレート」を意味する。   Polyfunctional polymerizable unsaturated double bond-containing compounds include esters of polyhydric alcohols and methacrylic acid or acrylic acid (eg, ethylene glycol di- (meth) acrylate, 1,4-dichlorohexane diacrylate, pentaerythritol tetra -(Meth) acrylate, pentaerythritol tri- (meth) acrylate, trimethylolpropane tri- (meth) acrylate, trimethylolethane tri- (meth) acrylate, dipentaerythritol tetra- (meth) acrylate, dipentaerythritol penta- (Meth) acrylate, dipentaerythritol hexa- (meth) acrylate, 1,3,5-cyclohexanetriol trimethacrylate, polyurethane polyacrylate, polyester polyacrylate), vinyl base Zen derivatives (eg, 1,4-divinylbenzene, 4-vinylbenzoic acid-2-acryloylethyl ester, 1,4-divinylcyclohexanone), vinylsulfone compounds (eg, divinylsulfone), acrylamide compounds (eg, methylenebis) Acrylamide) and methacrylamide are examples, but not limited thereto. In the above, (meth) acrylate means "methacrylate or acrylate".

市販されている多官能重合性不飽和二重結合含有化合物の例としては、三菱レイヨン(株)製多官能アクリル系硬化塗料(ダイヤビームシリーズ等)、長瀬産業(株)製多官能アクリル系硬化塗料(デナコールシリーズ等)、新中村化学工業(株)製多官能アクリル系硬化塗料(NKエステルシリーズ等)、大日本インキ化学工業(株)製多官能アクリル系硬化塗料(UNIDICシリーズ等)、東亜合成化学工業(株)製多官能アクリル系硬化塗料(アロニックスシリーズ等)、日本油脂(株)製多官能アクリル系硬化塗料(ブレンマーシリーズ等)、日本化薬(株)製多官能アクリル系硬化塗料(KAYARADシリーズ等)、共栄社化学(株)製多官能アクリル系硬化塗料(ライトエステルシリーズ、ライトアクリレートシリーズ等)が挙げられる。   Examples of commercially available polyfunctional polymerizable unsaturated double bond-containing compounds include Mitsubishi Rayon Co., Ltd. polyfunctional acrylic cured paints (Diabeam series, etc.), Nagase Sangyo Co., Ltd. polyfunctional acrylic cured Paint (Denacol series, etc.), Shin-Nakamura Chemical Co., Ltd. polyfunctional acrylic cured paint (NK ester series, etc.), Dainippon Ink Chemical Industries, Ltd. polyfunctional acrylic cured paint (UNIDIC series, etc.), Multifunctional acrylic curable paint (Aronix series, etc.) manufactured by Toa Synthetic Chemical Industry Co., Ltd. Multifunctional acrylic curable paint (Blenmer series, etc.) manufactured by NOF Corporation, Multifunctional acrylic manufactured by Nippon Kayaku Co., Ltd. -Based cured paints (KAYARAD series, etc.), Kyoeisha Chemical Co., Ltd. polyfunctional acrylic cured paints (light ester series, light acrylate series, etc.) And the like.

これらの多官能重合性不飽和二重結合含有化合物の重合を効率よく開始させる目的で重合開始剤を添加することが特に有効であり、その重合開始剤としてはアセトフェノン類、ベンゾフェノン類、ミヒラーズベンゾイルベンゾエート、α−アミロキシムエステル、テトラメチルチウラムモノサルファイド及びチオキサントン類が好ましい。また重合を促進させる目的で重合開始剤に加えて増感剤を用いてもよい。さらに、レベリング剤、充填剤を添加しても良く、これら化合物中に必要に応じて添加剤を加えて塗工材料とする。   It is particularly effective to add a polymerization initiator for the purpose of efficiently initiating the polymerization of these polyfunctional polymerizable unsaturated double bond-containing compounds. As the polymerization initiator, acetophenones, benzophenones, Michler's benzoyl are used. Benzoates, α-amyloxime esters, tetramethylthiuram monosulfide and thioxanthones are preferred. In addition to a polymerization initiator, a sensitizer may be used for the purpose of promoting polymerization. Furthermore, a leveling agent and a filler may be added, and additives are added to these compounds as necessary to form a coating material.

この塗工材料を例えばバーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法などを用いて、コーティングして塗膜を形成させ、乾燥後、熱硬化型樹脂組成物を用いる場合には、加熱して該塗膜を硬化させることにより、また電離放射線硬化型樹脂組成物を用いる場合には、電離放射線を照射して該塗膜を硬化させることにより、ハードコート層を形成させても良い。電離放射線としては放射線、電子線、粒子線、ガンマー線、紫外線等が挙げられるが、特に紫外線が好ましく、その光源としては水銀灯による近紫外線からエキシマーレーザーによる真空紫外線までが使用できる。   The coating material is coated using, for example, a bar coating method, a knife coating method, a roll coating method, a blade coating method, a die coating method, a gravure coating method, etc. to form a coating film, and after drying, a thermosetting resin composition When using a product, the coating is cured by heating. When using an ionizing radiation curable resin composition, the coating is cured by irradiating with ionizing radiation. A layer may be formed. Examples of the ionizing radiation include radiation, electron beams, particle beams, gamma rays, ultraviolet rays, and the like, and ultraviolet rays are particularly preferable. The light source can be from near ultraviolet rays using a mercury lamp to vacuum ultraviolet rays using an excimer laser.

ハードコート膜が形成した固体基材の市販品を用いても良く、そのような市販品としては、きもと製ハードコートPET(KBフィルム)、東レ製ハードコートPET(タフトップN−TOP)、東洋包材製ハードコートフィルム、日新化成製ハードコートポリカーボネート(Lexan Margard、Lexan CTG AF)などが例として挙げられる。   A commercial product of a solid base material on which a hard coat film is formed may be used. As such a commercial product, Kimoto hard coat PET (KB film), Toray hard coat PET (Tough Top N-TOP), Toyo Examples thereof include a hard coat film made of packaging material, and a hard coat polycarbonate made by Nisshin Kasei (Lexan Margard, Lexan CTG AF).

(3)中間層
固体基材に極性基を確実に導入するために、基材に中間層を積層して固体基材とすることができる。この場合、中間層は固体基材の表面層とされる。中間層は固体基材と微粒子積層膜の間に設けられ、中間層が極性基を有することで固体基材と微粒子積層膜との密着性を向上させる。膜そのものの強度が実用上十分に高い微粒子積層膜が、中間層を介して固体基材と強固に接着するために、固体基材上の微粒子積層膜の表面硬度が向上すると考えられる。
(3) Intermediate layer In order to reliably introduce a polar group into a solid substrate, an intermediate layer can be laminated on the substrate to form a solid substrate. In this case, the intermediate layer is a surface layer of the solid substrate. The intermediate layer is provided between the solid base material and the fine particle multilayer film, and the intermediate layer has a polar group to improve the adhesion between the solid base material and the fine particle multilayer film. It is considered that the surface hardness of the fine particle laminated film on the solid substrate is improved because the fine particle laminated film having a sufficiently high strength of the film itself is firmly bonded to the solid substrate through the intermediate layer.

また、微粒子積層膜そのものの強度と膜と固体基材(中間層)との密着性の両方を向上させる方法として、例えば微粒子積層膜への樹脂の塗布や、反応性モノマーの微粒子積層膜への充填と硬化や、微粒子積層膜のシラン溶液への浸漬などの処理を行わなくても上記のように、中間層を介することにより固体基材上の微粒子積層膜は実用的に十分優れた密着性を得ることができる。   Further, as a method for improving both the strength of the fine particle laminated film itself and the adhesion between the film and the solid substrate (intermediate layer), for example, application of a resin to the fine particle laminated film or application of a reactive monomer to the fine particle laminated film As described above, the fine particle laminate film on the solid substrate is practically sufficiently excellent by interposing the intermediate layer without performing processing such as filling and curing, or immersion of the fine particle laminate film in the silane solution. Can be obtained.

中間層に含まれる極性基は、ビニル基、エポキシ基、スチリル基、メタクリロキシ基、アクリロキシ基、アミノ基、ウレイド基、クロロプロピル基、メルカプト基、スルフィド基、スルホン酸基、リン酸基、イソシアネート基、カルボキシル基、エステル基、カルボニル基、水酸基、シラノール基のうち一つまたは二つ以上の官能基であることが望ましい。中間層の材料としては、これらの基を有する樹脂、シランカップリング剤などを使用することができる。   The polar group contained in the intermediate layer is vinyl group, epoxy group, styryl group, methacryloxy group, acryloxy group, amino group, ureido group, chloropropyl group, mercapto group, sulfide group, sulfonic acid group, phosphoric acid group, isocyanate group. And one or more functional groups among a carboxyl group, an ester group, a carbonyl group, a hydroxyl group, and a silanol group are desirable. As the material for the intermediate layer, resins having these groups, silane coupling agents, and the like can be used.

中間層の材料としての樹脂としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステルであって水酸基又はカルボキシル基を有するもの、カルボキシル基又はアミノ基を有するポリアミド、ポリビニルアルコール、アクリル酸又はメタクリル酸の重合体又は共重合体等がある。   Examples of the resin as the material for the intermediate layer include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, which have a hydroxyl group or a carboxyl group, a polyamide having a carboxyl group or an amino group, polyvinyl alcohol, acrylic acid, or methacrylic acid. Examples include acid polymers or copolymers.

樹脂基材へのこの中間層の積層は、例えば、樹脂基材に極性基を有する樹脂を溶剤に溶解して塗布し乾燥する方法、耐熱性の樹脂基材に対して極性基を有する樹脂を溶融流延する方法、中間層の樹脂の原料となるモノマーやオリゴマー(この中には、極性基を有するモノマーやオリゴマーが含まれる)を樹脂基材に塗布し、反応硬化させる方法、中間層としての樹脂の原料モノマーやオリゴマーにシランカップリング剤を混ぜて塗布し、反応硬化させる方法等により行うことができる。   The intermediate layer is laminated on the resin base material by, for example, a method in which a resin having a polar group is dissolved in a solvent and applied and dried, and a resin having a polar group is applied to a heat resistant resin base material. As a method of melt casting, a method of applying a monomer or oligomer (including a monomer or oligomer having a polar group) as a raw material for a resin of an intermediate layer to a resin base material, reaction curing, and an intermediate layer A raw material monomer or oligomer of the resin can be mixed with a silane coupling agent, applied, and reacted and cured.

極性基が付与されたポリエステル系樹脂の塗布液を次のように製造しても良い。なお、以下、「部」とは特にことわりがない限り「重量部」を表す。
ジメチルテレフタレート117部、ジメチルイソフタレート117部、エチレングリコール103部、ジエチレングリコール58部、酢酸亜鉛0.08部、三酸化アンチモン0.08部を反応容器中で40〜220℃に昇温させて、3時間エステル交換反応させ、ポリエステル形成成分を得た。次いで5−ナトリウムスルホイソフタル酸9部を添加して220〜260℃1時間エステル化反応させ、更に減圧下(10〜0.2mmHg)で2時間重縮合反応を行ない、平均分子量18000、軟化点140℃のスルホン酸基を付与したポリエステル共重合体を得た。このスルホン酸基を付与したポリエステル共重合体300部とnブチルセロソルブ140部とを150〜170℃で3時間撹拌して均一な粘稠溶融液を得、この溶融液に水560部を徐々に添加してポリエステル系樹脂水分散液を得ることができる(特許2560754号公報参照)。
市販品であるスルホン酸が付与された水分散ポリエステル樹脂(例えば、バイロナールMD−1200、東洋紡積(株)製)を利用しても良い。
You may manufacture the coating liquid of the polyester-type resin to which the polar group was provided as follows. Hereinafter, “parts” means “parts by weight” unless otherwise specified.
117 parts of dimethyl terephthalate, 117 parts of dimethyl isophthalate, 103 parts of ethylene glycol, 58 parts of diethylene glycol, 0.08 part of zinc acetate and 0.08 part of antimony trioxide are heated to 40-220 ° C. in a reaction vessel, Transesterification was performed for a time to obtain a polyester-forming component. Subsequently, 9 parts of 5-sodiumsulfoisophthalic acid was added and subjected to esterification reaction at 220 to 260 ° C. for 1 hour, and further polycondensation reaction was performed under reduced pressure (10 to 0.2 mmHg) for 2 hours. The average molecular weight was 18000 and the softening point was 140. A polyester copolymer provided with a sulfonic acid group at 0 ° C. was obtained. 300 parts of the polyester copolymer provided with the sulfonic acid group and 140 parts of n-butyl cellosolve are stirred at 150 to 170 ° C. for 3 hours to obtain a uniform viscous melt, and 560 parts of water is gradually added to the melt. Thus, a polyester resin aqueous dispersion can be obtained (see Japanese Patent No. 2560754).
You may utilize the water-dispersed polyester resin (For example, Bironal MD-1200, the Toyobo Co., Ltd. product) to which the sulfonic acid which is a commercial item was provided.

前記手順において、5−ナトリウムスルホイソフタル酸の代わりに、スルホイソフタル酸、スルホテレフタル酸、4−スルホナフタレン−2,7−ジカルボン酸およびそれらのエステル形成性誘導体などの金属塩を用いても、スルホン酸基を付与したポリエステル共重合体を得ることができる。金属塩における金属の例としては、ナトリウム、リチウム、カリウム、マグネシウムなどが挙げられる。また、5−ナトリウムスルホイソフタル酸の代わりに、5−アミノイソフタル酸などを用いることで、アミノ基を付与したポリエステル共重合体を得ることができる。   In the above procedure, a metal salt such as sulfoisophthalic acid, sulfoterephthalic acid, 4-sulfonaphthalene-2,7-dicarboxylic acid and their ester-forming derivatives may be used instead of 5-sodium sulfoisophthalic acid. A polyester copolymer provided with an acid group can be obtained. Examples of the metal in the metal salt include sodium, lithium, potassium, magnesium and the like. Moreover, the polyester copolymer provided with the amino group can be obtained by using 5-aminoisophthalic acid or the like instead of 5-sodium sulfoisophthalic acid.

極性基が付与されたポリウレタン系樹脂を次のように製造しても良い。
アリルアルコールから出発したエチレンオキシドのポリエーテルをメタ重亜硫酸ナトリウムでスルホン化したスルホン酸ナトリウムを含むポリエーテル(SO3−含有量8.3重量%、ポリエチレンオキシド含有量83重量%)192部、ポリテトラメチレンアジペート1013部、ビスフェノールAで開始されたポリプロピレンオキシドポリエーテル248部を混合し、減圧下(10〜0.2mmHg)100℃で脱水してこの混合物を70℃としこれにイソホロンジイソシアネート178部とヘキサメチレン−1,6−ジイソシアネート244部との混合物を加え、次いで生成混合物をイソシアネート含有量が5.6重量%になるまで80℃から90℃の範囲で撹拌した。得られたプレポリマーを60℃に冷却し、ヘキサメチレジイソシアネート3モルと水1モルから得られるビウレットポリイソシアネート56部とイソホロンジアミンとアセトンから得られるビスケチミン173部とを順次加えた。次いでヒドラジン水和物の15部を溶解した50℃水溶液をこの混合物に激しく撹拌しながら加え、ポリウレタン系樹脂水分散液を得ることができる。
You may manufacture the polyurethane-type resin to which the polar group was provided as follows.
192 parts of a polyether containing sodium sulfonate obtained by sulfonating a polyether of ethylene oxide starting from allyl alcohol with sodium metabisulfite (SO3 content: 8.3% by weight, polyethylene oxide content: 83% by weight), polytetramethylene 1013 parts of adipate and 248 parts of polypropylene oxide polyether initiated with bisphenol A were mixed and dehydrated at 100 ° C. under reduced pressure (10 to 0.2 mmHg) to obtain 70 ° C., and 178 parts of isophorone diisocyanate and hexamethylene were added. A mixture with 244 parts of -1,6-diisocyanate was added and the resulting mixture was then stirred in the range of 80 ° C. to 90 ° C. until the isocyanate content was 5.6% by weight. The obtained prepolymer was cooled to 60 ° C., and 56 parts of biuret polyisocyanate obtained from 3 moles of hexamethylenediocyanate and 1 mole of water, and 173 parts of bisketimine obtained from isophoronediamine and acetone were sequentially added. Next, a 50 ° C. aqueous solution in which 15 parts of hydrazine hydrate is dissolved can be added to this mixture with vigorous stirring to obtain an aqueous polyurethane resin dispersion.

官能基が付与するように調製された樹脂としては、有機溶剤可溶型の非晶性ポリエステル樹脂が挙げられ、その市販品としては東洋紡績(株)製バイロン(103、200、220、226、240、245、270、280、290、296、300、500、516、530、550、560、600、630、650、660、670、885、GK110、GK130、GK140、GK150、GK180、GK190、GK250、GK330、GK360、GK590、GK640、GK680、GK780、GK810、GK880、GK890、BX1001)が挙げられ、また、水分散ポリエステル樹脂が挙げられ、その市販品としては東洋紡積(株)製バイロナール(MD−1100、MD−1200、MD−1220、MD−1245、MD−1250、MD−1335、MD−1400、MD−1480、MD−1500、MD−1930、MD−1985)が挙げられ、また、ポリエステルウレタン樹脂が挙げられ、その市販品としては東洋紡績(株)製バイロン(UR−1350、UR−1400、UR−2300、UR−3200、UR−3210、UR−3500、UR−4125、UR−5537、UR−8200、UR−8300、UR−8700、UR−9500)が挙げられる。   Examples of the resin prepared so that a functional group is imparted include organic solvent-soluble amorphous polyester resins, and commercially available products include Byron (103, 200, 220, 226, Toyobo Co., Ltd.). 240, 245, 270, 280, 290, 296, 300, 500, 516, 530, 550, 560, 600, 630, 650, 660, 670, 885, GK110, GK130, GK140, GK150, GK180, GK190, GK250, GK330, GK360, GK590, GK640, GK680, GK780, GK810, GK880, GK890, BX1001) and water-dispersed polyester resins are exemplified, and commercial products thereof are Bayonal (MD-1100) manufactured by Toyobo Co., Ltd. MD-1200, MD-122 MD-1245, MD-1250, MD-1335, MD-1400, MD-1480, MD-1500, MD-1930, MD-1985), and polyester urethane resins. By Toyobo Co., Ltd. byron (UR-1350, UR-1400, UR-2300, UR-3200, UR-3210, UR-3500, UR-4125, UR-5537, UR-8200, UR-8300, UR -8700, UR-9500).

本発明において、シランカップリング剤としては、次式(I)で表されるものがある。   In the present invention, silane coupling agents include those represented by the following formula (I).

Figure 2008114413
(ただし、式中、Rは非加水分解性基であって、ビニルアルキル基、エポキシアルキル基、スチリルアルキル基、メタクリロキシアルキル基、アクリロキシアルキル基、アミノアルキル基、ウレイドアルキル基、クロロプロピルアルキル基やスルフィドアルキル基等のハロゲンアルキル基、メルカプトアルキル基、イソシアネートアルキル基またはヒドロキシアルキル基である。Rは加水分解性基であって炭素数が1〜6のアルキル基、nは1〜3の整数を示し、Rが複数ある場合、各Rは互いに同一であっても異なっていてもよく、ORが複数ある場合、各ORは互いに同一であっても異なっていてもよい。)
Figure 2008114413
(In the formula, R 1 is a non-hydrolyzable group, which is a vinylalkyl group, an epoxyalkyl group, a styrylalkyl group, a methacryloxyalkyl group, an acryloxyalkyl group, an aminoalkyl group, a ureidoalkyl group, a chloropropyl group, A halogen alkyl group such as an alkyl group or a sulfide alkyl group, a mercaptoalkyl group, an isocyanate alkyl group or a hydroxyalkyl group, R 2 is a hydrolyzable group having 1 to 6 carbon atoms, and n is 1 to 1 3 of an integer, when R 1 are a plurality, each R 1 may be the being the same or different, when OR 2 is more, even if each OR 2 is not being the same or different Good.)

基材のシランカップリング剤処理の例としては、まず、シランカップリング剤を水性媒体中で、酸の存在下又は不存在下、アルコキシ基を加水分解してシラノール基とし、得られたシラン溶液に基材を接触させることで、基材表面に存在する水酸基にシラノール基を水素結合的に吸着させ、その後、基材を乾燥処理することにより行うことができ、これにより脱水縮合反応がおこり、非加水分解性基を基材表面に付与することができる。非加水分解性基やガラス基材と反応しなかったシラノール基が本発明における極性基として機能し、微粒子積層膜と相互作用することで、基材と微粒子積層膜の密着が得られる。詳細は明らかではないが、相互作用には、共有結合、分子間力、ファンデアワールス力のいずれかが一つ以上寄与していると考えられる。上記において、水性媒体中に添加するシランカップリング剤の濃度は、0.1〜3重量%が好ましく、また、存在させる酸としては、酢酸が特に好ましく、その濃度は、0.1〜3重量%が好ましい。   As an example of the silane coupling agent treatment of the substrate, first, the silane coupling agent is hydrolyzed into silanol groups by hydrolyzing alkoxy groups in an aqueous medium in the presence or absence of an acid, and the resulting silane solution By contacting the substrate with the hydroxyl group present on the substrate surface, the silanol group can be adsorbed in a hydrogen bond, and then the substrate can be dried by treatment, thereby causing a dehydration condensation reaction, Non-hydrolyzable groups can be imparted to the substrate surface. The silanol group that has not reacted with the non-hydrolyzable group or the glass substrate functions as a polar group in the present invention, and interacts with the fine particle multilayer film, whereby adhesion between the base material and the fine particle multilayer film is obtained. Although details are not clear, it is considered that one or more of covalent bonds, intermolecular forces, and van der Waals forces contribute to the interaction. In the above, the concentration of the silane coupling agent added to the aqueous medium is preferably 0.1 to 3% by weight, and the acid to be present is particularly preferably acetic acid, and the concentration is 0.1 to 3% by weight. % Is preferred.

シランカップリング剤としては、具体的には、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルフェニルトリメトキシシラン、ビニルトリス(2−メトキシエトキシ)シラン等のビニル基官能性シラン、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン等のアルキル基又はアリール基官能性シラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルメチルジイソプロペノキシシラン、メチルトリグリシドキシシラン、γ−グリシドキシプロピルトリエトキシシラン等のエポキシ基官能性シラン、p−スチリルトリメトキシシラン等のスチリル基官能性シラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン、メチルトリ(メタクリロキシエトキシ)シラン、γ−メタクリロキシプロピルメチルジエトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン等のメタクリロキシ基官能性シラン、γ−アクリロキシプロピルトリメトキシシラン等のアクリロキシ基官能性シラン、γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルメチルジエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルメチルジメトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルメチルジエトキシシラン、N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−アニリノプロピルトリメトキシシラン、γ−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)−プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン等のアミノ基官能性シラン、γ−ウレイドプロピルトリエトキシシラン等のウレイド基官能性シラン、γ−クロロプロピルトリメトキシシラン等のクロロプロピル基官能性シラン、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン等のメルカプト基官能性シラン、ビス(トリエトキシシリルプロピル)テトラスルフィド等のスルフィド基官能性シラン、γ−イソシアナートプロピルトリエトキシシラン、トリメチルシリルイソシアネート、ジメチルシリルイソシアネート、フェニルシリルトリイソシアネート、テトライソシアネートシラン、メチルシリルトリイソシアネート、ビニルシリルトリイソシアネート、エトキシシラントリイソシアネート等のイソシアネート基官能性シラン等がある。
これらのシランカップリング剤を用いて、微粒子の表面に官能基を付与しても良い。これにより、微粒子間や微粒子−基板間に共有結合、分子間力、ファンデアワールス力のいずれか一つ以上の引力を確実に与えることができる。
Specific examples of the silane coupling agent include vinyl trichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinylphenyltrimethoxysilane, vinyltris (2-methoxyethoxy) silane, and other vinyl group functional silanes, Alkyl group or aryl group functional silane such as methoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltri Epoxy functional groups such as methoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropylmethyldiisopropenoxysilane, methyltriglycidoxysilane, γ-glycidoxypropyltriethoxysilane Functional silane, styryl group functional silane such as p-styryltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, methyltri (methacryloxyethoxy) silane, γ-methacryloxypropylmethyldi Methacryloxy group functional silanes such as ethoxysilane, γ-methacryloxypropyltriethoxysilane, acryloxy group functional silanes such as γ-acryloxypropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane , Γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldiethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopro Rumethyldimethoxysilane, N-β- (aminoethyl) -γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropylmethyldiethoxysilane, N-β- (N-vinylbenzylamino) Ethyl) -γ-aminopropyltrimethoxysilane, γ-anilinopropyltrimethoxysilane, γ-triethoxysilyl-N- (1,3-dimethyl-butylidene) -propylamine, N-phenyl-3-aminopropyltri Amino group functional silane such as methoxysilane, ureido group functional silane such as γ-ureidopropyltriethoxysilane, chloropropyl group functional silane such as γ-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ -Mercaptopropyltriethoxysilane, γ-mercaptopropi Mercapto group functional silanes such as methyldimethoxysilane, sulfide group functional silanes such as bis (triethoxysilylpropyl) tetrasulfide, γ-isocyanatopropyltriethoxysilane, trimethylsilyl isocyanate, dimethylsilyl isocyanate, phenylsilyl triisocyanate, tetra There are isocyanate group functional silanes such as isocyanate silane, methylsilyl triisocyanate, vinylsilyl triisocyanate, ethoxysilane triisocyanate and the like.
These silane coupling agents may be used to impart functional groups to the surfaces of the fine particles. As a result, at least one of attractive forces among the covalent bonds, intermolecular forces, and van der Waals forces between the fine particles and between the fine particles and the substrate can be reliably applied.

シランカップリング剤の市販品としては、例えば、ビニル基を有するKA−1003、KBM−1003、KBE−1003、エポキシ基を有するKBM−303、KBM−403、KBE−402、KBE−403、スチリル基を有するKBM−1403、メタクリロキシ基を有するKBM−502、KBM−503、KBE−502、KBE−503、アクリロキシ基を有するKBM−5103、アミノ基を有するKBM−602、KBM−603、KBE−603、KBM−903、KBE−903、KBE−9103、KBM−573、KBM−575、KBM−6123、ウレイド基を有するKBE−585、クロロプロピル基を有するKBM−703、メルカプト基を有するKBM−802、KBM−803、スルフィド基を有するKBE−846、イソシアネート基を有するKBE−9007(信越化学工業(株)製)等が挙げられる。またはシランカップリング剤をすでに溶剤や水に希釈したプライマーを用いて中間層を形成しても良い。プライマーの市販品としては、例えば、アミノ基を有するシランカップリング剤を希釈したKBP−40、KBP−41、KBP−43、KBP−90、イソシアネート基を有するシランカップリング剤を希釈したKBP−44、メルカプト基を有するシランカップリング剤を希釈したX−12−414(信越化学工業(株)製)等が挙げられる。   Examples of commercially available silane coupling agents include KA-1003, KBM-1003, KBE-1003, KBM-303, KBM-403, KBE-402, KBE-403, and styryl groups having a vinyl group. KBM-1403 having a methacryloxy group, KBM-502, KBM-503, KBE-502, KBE-503, KBM-5103 having an acryloxy group, KBM-602 having an amino group, KBM-603, KBE-603, KBM-903, KBE-903, KBE-9103, KBM-573, KBM-575, KBM-6123, KBE-585 having a ureido group, KBM-703 having a chloropropyl group, KBM-802 having a mercapto group, KBM -803, with sulfide group That KBE-846, KBE-9007 having isocyanate groups (manufactured by Shin-Etsu Chemical Co.) and the like. Alternatively, the intermediate layer may be formed using a primer in which the silane coupling agent is already diluted in a solvent or water. Commercially available primers include, for example, KBP-40, KBP-41, KBP-43, KBP-90 diluted with an amino group-containing silane coupling agent, and KBP-44 diluted with an isocyanate group-containing silane coupling agent. And X-12-414 (manufactured by Shin-Etsu Chemical Co., Ltd.) diluted with a silane coupling agent having a mercapto group.

基材が樹脂である場合、中間層には極性基を有する樹脂を用いることが基材と中間層との密着を得るために好ましい。また、基材がガラスやアルミニウム等の無機材料基材である場合、中間層には、特に、シランカップリング剤が好ましい。   When the substrate is a resin, it is preferable to use a resin having a polar group for the intermediate layer in order to obtain adhesion between the substrate and the intermediate layer. In addition, when the substrate is an inorganic material substrate such as glass or aluminum, a silane coupling agent is particularly preferable for the intermediate layer.

シランカップリング剤や樹脂を中間層として基材上に形成する際に、採用できる塗布法としては、よく知られた方法により行うことができ、例えば、リバースロール・コート法、グラビア・コート法、キス・コート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーバーコート法、パイプドクター法およびカーテン・コート法、スピンコート法、ディップコート法、交互積層法などを採用することができる。これらの方法を単独であるいは組み合わせて行うことができる。   When forming a silane coupling agent or a resin as an intermediate layer on a substrate, a coating method that can be employed can be performed by a well-known method, for example, reverse roll coating method, gravure coating method, A kiss coating method, a roll brush method, a spray coating method, an air knife coating method, a wire barber coating method, a pipe doctor method and a curtain coating method, a spin coating method, a dip coating method, an alternating lamination method, and the like can be employed. These methods can be performed alone or in combination.

基材と中間層との密着をより確実にするために、中間層を形成する基材にコロナ放電処理、グロー放電処理、プラズマ処理、紫外線照射、オゾン処理、アルカリや酸などによる化学的エッチング処理を施しても良い。   Corona discharge treatment, glow discharge treatment, plasma treatment, ultraviolet irradiation, ozone treatment, chemical etching treatment with alkali or acid, etc. to make the adhesion between the substrate and the intermediate layer more reliable May be applied.

固体基材(中間層を含む)表面の電荷密度を均一にし、微粒子をムラなく吸着させることを目的として、強電解質ポリマー層を形成しても良い。強電解質ポリマーには、プラスの電荷を有するポリジアリルジメチルアンモニウムクロリド(PDDA)やポリエチレンイミン(PEI)もしくはマイナスの電荷を有するポリスチレンスルホン酸ナトリウム(PSS)が好ましい。交互積層法を用いて、荷電の符号の異なる2種類の強電解質ポリマーの交互積層膜を固体基材(中間層を含む)に形成しても良い〔アドバンスト マテリアル(Advanced Material)13巻52−54頁(2001年発行)参照〕。交互積層回数が10回以下の強電解質ポリマーの交互積層膜は、固体基材表面の極性基と微粒子積層膜の相互作用を妨げないため、強電解質ポリマーの交互積層膜は固体基材(中間層を含む)と必ずしも強く密着しなくとも良い。固体基材(中間層を含む)と微粒子積層膜の相互作用を妨げないために交互積層回数は5回がより好ましく、2回がさらに好ましい。   A strong electrolyte polymer layer may be formed for the purpose of making the charge density of the surface of the solid substrate (including the intermediate layer) uniform and adsorbing the fine particles uniformly. For the strong electrolyte polymer, polydiallyldimethylammonium chloride (PDDA) having a positive charge, polyethyleneimine (PEI), or sodium polystyrene sulfonate (PSS) having a negative charge is preferable. By using an alternate lamination method, an alternate lamination film of two types of strong electrolyte polymers having different charge signs may be formed on a solid substrate (including an intermediate layer) [Advanced Material 13 Vol. 52-54 Page (issued in 2001)]. Since the alternating laminated film of strong electrolyte polymer having an alternating lamination number of 10 or less does not disturb the interaction between the polar group on the surface of the solid substrate and the fine particle laminated film, the alternating laminated film of the strong electrolyte polymer is a solid substrate (intermediate layer) Including) is not necessarily strongly in close contact. In order not to prevent the interaction between the solid substrate (including the intermediate layer) and the fine particle laminated film, the number of alternating laminations is more preferably 5 times, and even more preferably 2 times.

これら強電解質ポリマー層を中間層として基材表面に形成する場合は、強電解質ポリマー層を基材と密着させることが望ましい。密着させる方法としては、基材や基材表面層がポリマーである場合、熱、光、電子線、γ線などの従来公知の方法によって、強電解質ポリマーなどを基材表面のポリマーに結合させる方法が挙げられる。また、この方法を用いて極性基を有するモノマーを基材にグラフトさせても良い。極性基を有するモノマーとしては、アクリル酸もしくはメタクリル酸又はそれらのアルカリ金属塩もしくはアミン塩、イタコン酸又はそのアルカリ金属塩もしくはアミン酸塩、アリルアミンもしくはそのハロゲン化水素酸塩、3−ビニルポロピオン酸又はそのアルカリ金属塩もしくはアミン塩、ビニルスルホン酸又はそのアルカリ金属塩もしくはアミン塩、ビニルスチレンスルホン酸又はそのアルカリ金属塩もしくはアミン塩、2−スルホエチレンアクリレート、2−スルホエチレンメタクリレート、3−スルホプロピレンアクリレート、3−スルホプロピレンメタクリレート又はそれらのアルカリ金属塩もしくはアミン塩、2−アクリルアミド−2−メチルプロパンスルホン酸又はそのアルカリ金属塩もしくはアミン塩、モノ(2−アクリロイルオキシエチル)アシッドホスフェート、モノ(2−メタクリロイルオキシエチル)アシッドホスフェート、アシッドホスホオキシポリエチレングリコールモノ(メタ)アクリレートなどのリン酸モノマー又はそのアルカリ金属塩もしくはアミン塩が挙げられる。   When these strong electrolyte polymer layers are formed on the substrate surface as an intermediate layer, it is desirable that the strong electrolyte polymer layer is in close contact with the substrate. As a method for adhesion, when the substrate or the substrate surface layer is a polymer, a method of bonding a strong electrolyte polymer or the like to the polymer on the substrate surface by a conventionally known method such as heat, light, electron beam, or γ-ray Is mentioned. Moreover, you may graft the monomer which has a polar group on a base material using this method. Examples of the monomer having a polar group include acrylic acid or methacrylic acid or an alkali metal salt or amine salt thereof, itaconic acid or an alkali metal salt or amine acid salt thereof, allylamine or a hydrogen halide acid salt thereof, or 3-vinyl propionic acid. Or alkali metal salt or amine salt thereof, vinyl sulfonic acid or alkali metal salt or amine salt thereof, vinyl styrene sulfonic acid or alkali metal salt or amine salt thereof, 2-sulfoethylene acrylate, 2-sulfoethylene methacrylate, 3-sulfopropylene Acrylate, 3-sulfopropylene methacrylate or alkali metal salt or amine salt thereof, 2-acrylamido-2-methylpropanesulfonic acid or alkali metal salt or amine salt thereof, mono (2-acrylic acid) Yl oxy-ethyl) acid phosphate, mono (2-methacryloyloxyethyl) acid phosphate, phosphoric acid monomer or an alkali metal salt or amine salt thereof, such as acidphosphoxyethyl polyethylene glycol mono (meth) acrylate and the like.

極性基を有する中間層がすでに形成された固体基材を市販品として入手することもできる。例えば、東洋紡績(株)製の易接着層付きPETフィルム(A4100、A4300、A7300、A7810、A6340、K1531、K1564)、帝人デュポンフィルム(株)製の易接着層付きPET(545、746、540、709、705、707、399、330、534)、帝人デュポンフィルム(株)製の易接着層付きPEN(Q51DW)、東レ(株)製の易接着層付きPET(U10、U12、T11、U426、U34、T83、U94、E22、E63)、三井化学(株)製の接着性ポリオレフィン(アドマー)とポリオレフィンが多層化された固体基材などが挙げられる。   A solid substrate on which an intermediate layer having a polar group has already been formed can also be obtained as a commercial product. For example, PET film with an easy adhesion layer (A4100, A4300, A7300, A7810, A6340, K1531, K1564) manufactured by Toyobo Co., Ltd., PET (545, 746, 540) manufactured by Teijin DuPont Films, Inc. 709, 705, 707, 399, 330, 534), PEN (Q51DW) with an easy-adhesion layer made by Teijin DuPont Films, and PET with an easy-adhesion layer made by Toray Industries, Inc. (U10, U12, T11, U426) U34, T83, U94, E22, E63), an adhesive polyolefin (Admer) manufactured by Mitsui Chemicals, Inc. and a solid base material in which a polyolefin is multilayered.

易接着層付きPETフィルムとしては、特許2560754号公報、特許3632044号公報、特開昭61−270153号公報、特開昭62−162540号公報、特開昭63−286346号公報、特開昭63−288750号公報、特開平1−139259号公報、特公平4−55215号公報、特公平5−54493号公報、特公平5−88190号公報、特開11−125926号公報、特開2005−97571号公報に開示のものが好ましい。   Examples of the PET film with an easy adhesion layer include Japanese Patent No. 2560754, Japanese Patent No. 3632044, Japanese Patent Application Laid-Open No. Sho 61-270153, Japanese Patent Application Laid-Open No. Sho 62-162540, Japanese Patent Application Laid-Open No. Sho 63-286346, and Japanese Patent Laid-Open No. Sho 63. JP-A-288750, JP-A-1-139259, JP-B-4-55215, JP-B-5-54493, JP-B-5-88190, JP-A-11-125926, JP-A-2005-97571. The one disclosed in the publication is preferred.

(4)微粒子積層膜の形成方法
固体基材を電解質ポリマー溶液に浸漬する工程と微粒子の分散液(分散溶液)に浸漬する工程とを交互に繰り返す方法(交互積層法)により、固体基材上に微粒子積層膜を形成することができる。繰り返す回数に特に制限はないが、その回数により、薄膜の膜厚を制御することができる(Langmuir,Vol.13,pp.6195−6203,(1997))。上記の交互積層法において、交互に繰り返す回数は、1回乃至数十回とすることが透明性を確保する上で好ましい。また、上記の交互積層法において、電解質ポリマー溶液に浸漬する工程で終わるよりも、微粒子分散溶液に浸漬する工程で終わることが好ましい。
各工程において吸着が進行して表面電荷が反転すると、さらなる静電吸着は起こらなくなるために、一回の浸漬により形成される膜の厚さは制御できる。また、余分に物理吸着した材料は、浸漬後に吸着面をリンスすることで除去できる。さらに、表面電荷が反転する限り、膜の形成を継続することができる。そのため、通常のディップコート法よりも、交互積層法で形成した薄膜の膜厚均一性は高く、かつ膜厚制御性も高い。
高い膜厚制御性は微粒子積層膜が所望の光学機能を発現するために重要である。また、高い膜厚均一性は外観ムラを生じさせないためだけでなく、異なる屈折率の薄膜を多層化させた多層膜構造においては、薄膜同士の界面を乱れさせない、すなわち薄膜干渉による光学機能発現を損なわないためにも重要である。
(4) Formation method of fine particle laminated film On a solid substrate by a method of alternately immersing a solid substrate in an electrolyte polymer solution and a step of immersing in a fine particle dispersion (dispersion solution) (alternate lamination method). A fine particle laminated film can be formed. Although there is no restriction | limiting in particular in the frequency | count of repeating, The film thickness of a thin film is controllable by the frequency | count (Langmuir, Vol.13, pp.6195-6203, (1997)). In the above alternating lamination method, the number of times of repeating alternately is preferably 1 to several tens of times in order to ensure transparency. Further, in the above alternate lamination method, it is preferable to end with the step of immersing in the fine particle dispersion solution rather than ending with the step of immersing in the electrolyte polymer solution.
When the adsorption progresses in each step and the surface charge is reversed, no further electrostatic adsorption occurs, so that the thickness of the film formed by one immersion can be controlled. Further, the material that has been physically adsorbed excessively can be removed by rinsing the adsorption surface after immersion. Furthermore, as long as the surface charge is reversed, the film formation can be continued. Therefore, the film thickness uniformity of the thin film formed by the alternating lamination method is higher and the film thickness controllability is higher than the normal dip coating method.
High film thickness controllability is important for the fine particle laminated film to exhibit a desired optical function. In addition, high film thickness uniformity not only does not cause uneven appearance, but in a multilayer film structure in which thin films having different refractive indexes are multilayered, the interface between the thin films is not disturbed, that is, the optical function is manifested by thin film interference. It is important not to damage.

微粒子積層膜の形成装置としては、固体基材を固定したアームが自動的に動き、プログラムに従って固体基材を微粒子分散液中に浸漬させるディッパーと呼ばれる装置(J.Appl.Phys.,Vol.79,pp.7501−7509,(1996)、特願2000−568599号)を用いても良い。また、ロール状に巻き取ってあるフィルムからフィルムを取り出し、そのまま微粒子分散液中に浸漬させ、乾燥させた後にロール状にフィルムを巻き取る連続膜形成プロセスを用いても良い。   As an apparatus for forming a fine particle laminated film, an arm called a dipper (J. Appl. Phys., Vol. 79) which automatically moves an arm to which a solid base material is fixed and immerses the solid base material in a fine particle dispersion according to a program. , Pp. 7501-7509, (1996), Japanese Patent Application No. 2000-568599). Moreover, you may use the continuous film formation process which takes out a film from the film currently wound up in roll shape, is immersed in fine particle dispersion as it is, is dried, and winds up a film in roll shape.

(5)微粒子分散液
本発明で用いる微粒子分散液は、上述した微粒子が、水、有機溶媒、又は、水と水溶性の有機溶媒のような混合溶媒である媒体(液)に分散されたものである。水溶性の有機溶媒としては、例えば、メタノール、エタノール、プロパノール、アセトン、ジメチルホルムアミド、アセトニトリルなどがあげられる。微粒子分散液中に占める微粒子の割合は、通常0.001〜30%(重量)程度が好ましく、微粒子の分散は公知の方法によって行うことができる。微粒子の分散性が低い場合は、分散性を改善するために、微粒子分散液を調製する際にいわゆる分散剤を用いることができる。このような分散剤としては、界面活性剤や電解質ポリマーあるいは非イオン性のポリマーなどを用いることができる。これらの分散剤の使用量は、用いる分散剤の種類によって異なるものであるが、一般に0.00001〜0.1%(重量)であることが好ましく、多すぎるとゲル化・分離を起こしたり、分散液中で微粒子が電気的に中性となり、微粒子積層膜が得られなくなる。
(5) Fine particle dispersion The fine particle dispersion used in the present invention is obtained by dispersing the above-described fine particles in a medium (liquid) that is a mixed solvent such as water, an organic solvent, or water and a water-soluble organic solvent. It is. Examples of the water-soluble organic solvent include methanol, ethanol, propanol, acetone, dimethylformamide, acetonitrile and the like. The proportion of fine particles in the fine particle dispersion is usually preferably about 0.001 to 30% (weight), and the fine particles can be dispersed by a known method. When the dispersibility of the fine particles is low, a so-called dispersant can be used when preparing the fine particle dispersion in order to improve the dispersibility. As such a dispersant, a surfactant, an electrolyte polymer, a nonionic polymer, or the like can be used. The amount of these dispersants to be used varies depending on the type of the dispersant to be used, but generally 0.00001 to 0.1% (weight) is preferable. If too much, gelation / separation occurs, The fine particles become electrically neutral in the dispersion, and the fine particle laminated film cannot be obtained.

また、微粒子分散液のpHは、水酸化ナトリウム、水酸化カリウムなどのアルカリ性水溶液または塩酸、硫酸などの酸性水溶液により1〜13の範囲で調整することができ、分散剤によってもpHの調整はできる。微粒子分散液のpHが等電位点からずれるほど、固体基材や電解質ポリマーとの静電的引力が強くなる傾向がある。なお、等電位点とは微粒子の表面電位が0となり、静電反発力がなくなるために粒子が凝集を起こすpH値であるが、等電位点は表面水酸基の数や結晶構造により異なるため、微粒子の材料によって異なる。   The pH of the fine particle dispersion can be adjusted in the range of 1 to 13 with an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide or an acidic aqueous solution such as hydrochloric acid or sulfuric acid, and the pH can also be adjusted with a dispersant. . As the pH of the fine particle dispersion deviates from the equipotential point, the electrostatic attractive force with the solid substrate or the electrolyte polymer tends to increase. The equipotential point is a pH value at which the surface potential of the fine particles becomes 0 and the electrostatic repulsion force disappears, so that the particles aggregate. However, the equipotential point varies depending on the number of surface hydroxyl groups and the crystal structure. It depends on the material.

(6)微粒子材料
本発明に用いる微粒子分散水溶液に分散されている微粒子の平均一次粒子径は1〜23nmである。また高硬度な微粒子積層膜を得るため、そして微粒子積層膜の光学機能の確保の観点から1〜20nmが好ましく、1〜15nmがさらに好ましく、1〜10nmが最も好ましい。平均一次粒子径が1nm未満の微粒子は形成が難しくなる。平均一次粒子径が23nmより大きくなると、高硬度な微粒子積層膜を得にくくなる。
微粒子の平均一次粒子径は1〜23nmである。これにより、微粒子積層膜の透明性が得られ、微粒子積層膜の光学機能が確保される。平均一次粒子径が100nmより大きくなると、可視光を散乱しやすくなり、微粒子積層膜の透明性を損ないやすくなる。
また、交互積層法で微粒子積層膜を形成する場合、交互積層回数1回あたりの微粒子積層膜の膜厚変化量は、通常は微粒子の平均一次粒子径と同程度である。そのため、平均一次粒子径が大きすぎると膜厚制御の精度が低くなり、光学機能発現に膜厚を精度良く得ることが困難になる。膜厚制御性を損なわなければ、微粒子は一次粒子であっても、一次粒子が凝集したタイプの二次粒子であっても、一次粒子が数珠状に連なって共有結合した数珠状粒子であっても良い。
(6) Fine particle material The average primary particle diameter of the fine particles dispersed in the fine particle dispersed aqueous solution used in the present invention is 1 to 23 nm. In addition, in order to obtain a high-hardness fine particle laminated film and from the viewpoint of securing the optical function of the fine particle laminated film, 1 to 20 nm is preferable, 1 to 15 nm is more preferable, and 1 to 10 nm is most preferable. Fine particles having an average primary particle diameter of less than 1 nm are difficult to form. When the average primary particle diameter is larger than 23 nm, it becomes difficult to obtain a high-hardness fine particle laminated film.
The average primary particle diameter of the fine particles is 1 to 23 nm. Thereby, the transparency of the fine particle laminate film is obtained, and the optical function of the fine particle laminate film is ensured. When the average primary particle diameter is larger than 100 nm, it becomes easy to scatter visible light, and the transparency of the fine particle multilayer film tends to be impaired.
In addition, when the fine particle laminated film is formed by the alternating lamination method, the amount of change in the film thickness of the fine particle laminated film per one alternate lamination is usually about the same as the average primary particle diameter of the fine particles. Therefore, if the average primary particle size is too large, the accuracy of film thickness control is lowered, and it is difficult to obtain a film thickness with high accuracy in terms of optical function expression. As long as the film thickness controllability is not impaired, the fine particles are primary particles or secondary particles of the type in which the primary particles are aggregated. Also good.

なお、微粒子積層膜の光学機能発現に必要な膜厚dは、次式(1) The film thickness d 1 required for the optical function expression of the fine particle laminated film is expressed by the following formula (1)

Figure 2008114413
(但し、式中、λは光学的機能を発現したい波長、nは膜の屈折率、xは通常2〜8である)で求められる(光学薄膜技術、日本オプトメカトロニクス協会、岡本幹夫著、pp.7−45、2002年1月15日発行、参照)。
Figure 2008114413
Where λ is the wavelength at which the optical function is desired, n is the refractive index of the film, and x is usually 2 to 8 (optical thin film technology, Japan Opto-Mechatronics Association, Mikio Okamoto, pp 7-45, issued January 15, 2002, see).

本発明において、微粒子の平均一次粒子径、平均二次粒子径、数珠状粒子の粒子径の測定は、公知の方法を用いて行うことができる。一次粒子が凝集せずに微粒子分散液中に分散している場合、平均一次粒子径を動的散乱法により測定することができる。ただし、一次粒子が凝集した二次粒子の場合や一次粒子が共有結合してなる数珠状粒子の場合は、動的散乱法により測定されるのは平均一次粒子ではなく、平均二次粒子径や数珠状粒子の粒子径である。二次粒子や数珠状粒子における平均一次粒子径はBET法や電子顕微鏡法によって測定できる。BET法では、窒素ガスのように占有面積の分かった分子を粒子表面に吸着させ、その吸着量と圧力の関係から比表面積を求め、この比表面積を換算表から粒子径に変換をすることで平均一次粒子径を求めることができる。   In the present invention, the average primary particle diameter, average secondary particle diameter, and bead-shaped particle diameter of fine particles can be measured using a known method. When primary particles are not aggregated but are dispersed in the fine particle dispersion, the average primary particle diameter can be measured by a dynamic scattering method. However, in the case of secondary particles in which primary particles are aggregated or beaded particles in which primary particles are covalently bonded, it is not the average primary particles that are measured by the dynamic scattering method. This is the particle size of the beaded particles. The average primary particle diameter in secondary particles or beaded particles can be measured by the BET method or electron microscopy. In the BET method, molecules with an occupied area such as nitrogen gas are adsorbed on the particle surface, the specific surface area is obtained from the relationship between the adsorbed amount and the pressure, and the specific surface area is converted from the conversion table into the particle diameter. The average primary particle size can be determined.

電子顕微鏡法では、まず厚さ数十nmのアモルファスカーボン膜が形成された銅製メッシュ上で微粒子を微粒子分散液からすくい取る、もしくはアモルファスカーボン膜上に微粒子を吸着させる。これらの微粒子を透過型電子顕微鏡により観察し、次いで、撮影画像中の全ての微粒子の長さを測定しその相加平均を平均一次粒子径として求める。なお、長さをはかる微粒子の数は100以上が望ましく、1つの撮影画像中の微粒子の数が100未満の場合は複数の撮影画像を用いて100以上となるようする。柱状粒子のように粒子の軸比が大きく異なる場合は、一般的に短軸の長さを測定し、その相加平均を平均一次粒子径とする。   In electron microscopy, first, fine particles are scooped from a fine particle dispersion on a copper mesh on which an amorphous carbon film having a thickness of several tens of nanometers is formed, or fine particles are adsorbed on the amorphous carbon film. These fine particles are observed with a transmission electron microscope, then the lengths of all the fine particles in the photographed image are measured, and the arithmetic average thereof is obtained as the average primary particle diameter. Note that the number of fine particles for measuring the length is desirably 100 or more, and when the number of fine particles in one photographed image is less than 100, it is set to 100 or more using a plurality of photographed images. When the axial ratios of the particles are greatly different as in the case of columnar particles, the length of the minor axis is generally measured, and the arithmetic average is taken as the average primary particle diameter.

また、前記の粒子径測定における微粒子は、微粒子積層膜を作製するための微粒子分散液から得るだけではなく、微粒子積層膜から得ても良い。微粒子積層膜から得る方法としては、スチールウール(日本スチールウール社製、#0000)やカッター等で固体基材上の微粒子積層膜を研磨することで粉末状の微粒子凝集体を剥離し、その微粒子凝集体を溶媒中で超音波をかける方法が挙げられる。これより、サイズの小さくなった微粒子凝集体や単分散の微粒子が得られる。前記溶媒には水、有機溶媒、又は、水と水溶性の有機溶媒のような混合溶媒を用いることができる。   Further, the fine particles in the above particle diameter measurement may be obtained not only from the fine particle dispersion for preparing the fine particle laminated film but also from the fine particle laminated film. As a method for obtaining from the fine particle laminated film, the fine particle aggregate on the solid substrate is polished by steel wool (manufactured by Nippon Steel Wool Co., Ltd., # 0000) or a cutter, and the fine particle aggregate is peeled off. An example is a method in which the aggregate is subjected to ultrasonic waves in a solvent. As a result, fine particle aggregates and monodispersed fine particles having a reduced size can be obtained. As the solvent, water, an organic solvent, or a mixed solvent such as water and a water-soluble organic solvent can be used.

電子顕微鏡法では、微粒子の粒子径と同時に形状も観察できる。粒子が球状であるか、数珠状であるかが区別できる。数珠状粒子は図1に示すように一次粒子が数珠状につながっており、それぞれの一次粒子は共有結合している。数珠状粒子を用いた微粒子膜では、数珠状の形状がもたらす立体的な障害により、他の数珠状粒子や反対電荷を有する電解質ポリマーが空間を密に占めることができず、その結果、球状粒子を用いた微粒子膜よりも空隙率が高く低屈折率となる。   In electron microscopy, the shape of the fine particles can be observed simultaneously with the particle size. It can be distinguished whether the particles are spherical or beaded. As shown in FIG. 1, the bead-like particles have primary particles connected in a bead shape, and each primary particle is covalently bonded. In the fine particle film using beaded particles, due to the steric hindrance caused by the beaded shape, other beaded particles and the electrolyte polymer having the opposite charge cannot occupy the space closely, resulting in spherical particles. It has a higher porosity and a lower refractive index than the fine particle film using.

本発明における微粒子としては、無機微粒子があるが、具体的は、リチウム、ナトリウム、マグネシウム、アルミニウム、亜鉛、インジウム、シリコン、錫、チタン、ジルコニウム、イットリウム、ビスマス、ニオブ、セリウム、コバルト、銅、鉄、ホルミウム、マンガン等のハロゲン化物や酸化物などが使用されるが、さらに具体的には、フッ化リチウム(LiF)、フッ化ナトリウム(NaF)、フッ化マグネシウム(MgF)、フッ化アルミニウム(AlF)、酸化アルミニウム(Al)、酸化亜鉛(ZnO)、インジウムスズ酸化物(ITO)、シリカ(SiO)、酸化スズ(SnO)、酸化チタン(TiO)、酸化ジルコニウム(ZrO)、酸化イットリウム(Y)、酸化ビスマス(Bi)、酸化ニオブ(Nb)、セリア(CeO)、酸化コバルト(CoO)、銅(CuO)、鉄(Fe)、ホルミウム(Ho)、マンガン(Mn)等が挙げられ、これらは単独で又は二種類以上を混合して使用することができる。微粒子は不定型であっても良いし、取り得る結晶型に特に制限はない。例えば、TiOは、ルチル型でもアナターゼ型でも良い。このような無機微粒子の市販品としては、例えば、多木化学(株)製のチタニア微粒子水分散液(タイノックM−6)、住友大阪セメント(株)製の酸化亜鉛微粒子水分散液(ZnO−350)、多木化学(株)製のセリア微粒子水分散液(ニードラールP10)、多木化学(株)製の酸化錫微粒子水分散液(セラメースS−8)、多木化学(株)製の酸化二オブ微粒子水分散液(バイラールNB−X10)、日産化学工業(株)製のアルミナ微粒子水分散液(アルミナゾル−5)、日産化学工業(株)製のシリカ微粒子水分散液(スノーテックス(ST)20)等が利用できる。 The fine particles in the present invention include inorganic fine particles. Specifically, lithium, sodium, magnesium, aluminum, zinc, indium, silicon, tin, titanium, zirconium, yttrium, bismuth, niobium, cerium, cobalt, copper, iron , Holmium, manganese and other halides and oxides are used. More specifically, lithium fluoride (LiF), sodium fluoride (NaF), magnesium fluoride (MgF 2 ), aluminum fluoride ( AlF 3 ), aluminum oxide (Al 2 O 3 ), zinc oxide (ZnO), indium tin oxide (ITO), silica (SiO 2 ), tin oxide (SnO 2 ), titanium oxide (TiO 2 ), zirconium oxide ( ZrO 2), yttrium oxide (Y 2 O 3), bismuth oxide (Bi O 3), niobium oxide (Nb 2 O 5), ceria (CeO 2), cobalt oxide (CoO), copper (CuO), iron (Fe 2 O 3), holmium (Ho 2 O 3), manganese (Mn 3 O 4), and the like. these may be used alone or in combination of two or more. The fine particles may be indefinite, and there is no particular limitation on the crystal form that can be taken. For example, TiO 2 may be rutile or anatase. Commercially available products of such inorganic fine particles include, for example, titania fine particle aqueous dispersion (Tainock M-6) manufactured by Taki Chemical Co., Ltd., and zinc oxide fine particle aqueous dispersion (ZnO-) manufactured by Sumitomo Osaka Cement Co., Ltd. 350), Ceria fine particle aqueous dispersion (Nydral P10) manufactured by Taki Chemical Co., Ltd., Tin oxide fine particle aqueous dispersion (Cerames S-8) manufactured by Taki Chemical Co., Ltd., manufactured by Taki Chemical Co., Ltd. Niobium oxide fine particle aqueous dispersion (Vilaral NB-X10), Alumina fine particle aqueous dispersion (Alumina sol-5) manufactured by Nissan Chemical Industries, Ltd., Silica fine particle aqueous dispersion (Snowtex (manufactured by Nissan Chemical Industries, Ltd.)) ST) 20) etc. can be used.

上記の無機微粒子の中でも反射防止膜に必要とされる低屈折率の薄膜が得られる点でシリカ(SiO)が好ましく、平均一次粒子径を1nmから23nmのように制御した水分散コロイダルシリカ(SiO)が最も好ましい。このような無機微粒子の市販品としては、例えば、スノーテックス(日産化学工業社製)等が挙げられる。より低い屈折率を得るためには、基本となる微粒子が、図1に示されるように数珠状に連なった粒子形状を含有するものがより好ましい。市販されているものとしては、スノーテックスUPないしスノーテックスOUPシリーズ(日産化学工業社製)や、ファインカタロイドF120(触媒化成工業社製)で、パールネックレス状シリカゾルがある。 Among the above inorganic fine particles, silica (SiO 2 ) is preferable in that a thin film having a low refractive index required for an antireflection film can be obtained, and water-dispersed colloidal silica (average primary particle diameter controlled from 1 nm to 23 nm) ( Most preferred is SiO 2 ). Examples of such commercially available inorganic fine particles include Snowtex (manufactured by Nissan Chemical Industries). In order to obtain a lower refractive index, it is more preferable that the basic fine particles contain a bead-shaped particle shape as shown in FIG. Examples of commercially available products include Snowtex UP or Snowtex OUP series (manufactured by Nissan Chemical Industries, Ltd.) and Fine Cataloid F120 (manufactured by Catalyst Chemical Industries, Ltd.), and pearl necklace-like silica sol.

本発明における微粒子として、ポリマー微粒子も用いることができ、例えば、ポリエチレン、ポリスチレン、アクリル系ポリマー、シリコンポリマー、フェノール樹脂、ポリアミド、天然高分子を挙げることができ、これらは単独で又は二種類以上を混合して使用することができる。それらは液相から溶液噴霧法、脱溶媒法、水溶液反応法、エマルション法、懸濁重合法、分散重合法、アルコキシド加水分解法(ゾル−ゲル法)、水熱反応法、化学還元法、液中パルスレーザーアブレーション法などの製造方法で合成される。ポリマー微粒子の市販品としては、例えば、ミストパール(荒川化学工業(株)製)等が挙げられる。   As the fine particles in the present invention, polymer fine particles can also be used. For example, polyethylene, polystyrene, acrylic polymer, silicon polymer, phenol resin, polyamide, natural polymer can be mentioned, and these can be used alone or in combination of two or more. Can be used as a mixture. From liquid phase to solution spray method, solvent removal method, aqueous solution reaction method, emulsion method, suspension polymerization method, dispersion polymerization method, alkoxide hydrolysis method (sol-gel method), hydrothermal reaction method, chemical reduction method, liquid It is synthesized by a manufacturing method such as medium pulse laser ablation. Examples of commercially available polymer fine particles include Mist Pearl (manufactured by Arakawa Chemical Industries, Ltd.).

また、微粒子間や微粒子−基板間に共有結合、分子間力、ファンデアワールス力のいずれか一つ以上の引力を与える目的で、これらの微粒子の表面にイオン性の官能基を付加しても良い。微粒子表面への官能基の付与は、前記化学式(I)で表されるシランカップリング剤を微粒子の水酸基などと縮合反応させることで行うことができる。微粒子表面へ付与する官能基としては、例えば、前述したビニル基、エポキシ基、スチリル基、メタクリロキシ基、アクリロキシ基、アミノ基、ウレイド基、クロロプロピル基、スルフィド基、メルカプト基、イソシアネート基を挙げることができる。シランカップリングの市販品としては、信越化学製のKBMシリーズやKBEシリーズが挙げられる。また、カルボキシル基、カルボニル基、フェノール基等を微粒子表面に付与しても良く、このような官能基が表面に付与された微粒子の市販品としては、例えば、ミストパール(荒川化学工業社製)等が挙げられる。   In addition, an ionic functional group may be added to the surface of these fine particles for the purpose of applying at least one of at least one of a covalent bond, an intermolecular force, and a van der Waals force between the fine particles and between the fine particles and the substrate. good. The functional group can be imparted to the surface of the fine particles by subjecting the silane coupling agent represented by the chemical formula (I) to a condensation reaction with the hydroxyl groups of the fine particles. Examples of the functional group imparted to the surface of the fine particles include the above-described vinyl group, epoxy group, styryl group, methacryloxy group, acryloxy group, amino group, ureido group, chloropropyl group, sulfide group, mercapto group, and isocyanate group. Can do. Examples of commercially available silane couplings include KBM series and KBE series manufactured by Shin-Etsu Chemical. In addition, a carboxyl group, a carbonyl group, a phenol group or the like may be imparted to the surface of the fine particles, and as a commercially available fine particle having such a functional group imparted to the surface, for example, Mist Pearl (manufactured by Arakawa Chemical Industries) Etc.

媒体中に分散している微粒子は、その表面極性基の解離やイオンの吸着によって拡散電気二重層が生じるために、電気的に負または正に帯電する。微粒子表面の拡散電気二重層の厚さ(1/κ)は、表面電荷と対イオン(電解質イオン)の間の引力と、熱運動による力がつりあう距離である。ここで、κはDebye−Huckelのパラメータと呼ばれ、次式のように表される(大島広行、「ナノ微粒子の分散安定性・凝集制御およびゼータ電位の測定評価」、技術情報協会)。   The fine particles dispersed in the medium are electrically negatively or positively charged because a diffusion electric double layer is generated due to dissociation of surface polar groups and adsorption of ions. The thickness (1 / κ) of the diffusion electric double layer on the surface of the fine particle is a distance where the attractive force between the surface charge and the counter ion (electrolyte ion) balances with the force due to thermal motion. Here, κ is called a Debye-Huckel parameter and expressed as the following equation (Hiroyuki Oshima, “Dispersion stability / aggregation control of nanoparticle and measurement evaluation of zeta potential”, Technical Information Association).

Figure 2008114413
(式中、kはBoltzmann定数、εは真空の誘電率、εは媒体(液)の比誘電率、Tは絶対温度、Zは価数、eは単位電荷、Nはアボガドロ数、Cは電解質濃度で単位はM(=mol/リットル)である。)
Figure 2008114413
(Wherein, k is Boltzmann constant, epsilon 0 is the vacuum dielectric constant, epsilon r is the relative dielectric constant of the medium (liquid), T is an absolute temperature, Z is valence, e is the unit charge, N A is Avogadro's number, C is the electrolyte concentration, and the unit is M (= mol / liter).)

微粒子の表面電位(φ)は、表面電荷密度(σ)による電場(σ/εε)と電気二重層(1/κ)との積であり、次式のように表される。 The surface potential (φ 0 ) of the fine particles is the product of the electric field (σ / ε r ε 0 ) and the electric double layer (1 / κ) due to the surface charge density (σ), and is represented by the following equation.

Figure 2008114413
この式から、微粒子の表面電位(φ)は、表面電荷密度(σ)や電解質濃度(C)により制御できることが分かる。
Figure 2008114413
From this equation, it can be seen that the surface potential (φ 0 ) of the fine particles can be controlled by the surface charge density (σ) and the electrolyte concentration (C).

電解質濃度を上げるために加える電解質としては、水または水、アルコール混合溶媒などに溶解するものであれば限定されるものではないが、アルカリ金属およびアルカリ土類金属、四級アンモニウムイオンなどとハロゲン元素との塩、LiCl、KCl、NaCl、MgCl、CaClなどが用いられる。表面電荷密度(σ)は、pHによって制御できる。なぜなら、粒子表面にある解離基の解離(イオン化)度はpHによって影響を受けるからである。例えば微粒子表面にカルボキシル基(−COOH)や表面水酸基(−OH)がある場合は、pHを上げるとイオン化してカルボキシレート陰イオン(−COO)または水酸化物イオン(−O)となるため、電荷密度σは上がる。一方、アミノ基(−NH)がある場合はpHを下げるとアンモニウムイオン(−NH )となり電荷密度が上がる。すなわち、高いpH領域、及び低いpH領域で電荷密度の上昇がある。 The electrolyte added to increase the electrolyte concentration is not limited as long as it dissolves in water or water, an alcohol mixed solvent, etc., but alkali metals and alkaline earth metals, quaternary ammonium ions, and halogen elements And salts such as LiCl, KCl, NaCl, MgCl 2 and CaCl 2 are used. The surface charge density (σ) can be controlled by pH. This is because the degree of dissociation (ionization) of the dissociating group on the particle surface is affected by pH. For example, when there are carboxyl groups (—COOH) or surface hydroxyl groups (—OH) on the surface of the fine particles, ionization occurs as carboxylate anions (—COO ) or hydroxide ions (—O ) when the pH is raised. Therefore, the charge density σ increases. On the other hand, when there is an amino group (—NH 2 ), when the pH is lowered, ammonium ions (—NH 3 + ) are formed and the charge density is increased. That is, there is an increase in charge density in the high pH region and the low pH region.

溶液中に分散している微粒子は、その表面極性基の解離やイオンの吸着によって電気的に負または正に帯電する。この表面電位が同じ符号である微粒子は互いに反発し、凝集することなく安定に媒質中に分散する。ゼータ電位は微粒子の表面電荷を反映し、微粒子の分散安定性の指標として用いられている(北原文雄、古澤邦夫、尾崎正孝、大島広行、「Zeta Potentialゼータ電位:微粒子界面の物理化学」、サイエンティスト社、1995年1月発行)。ゼータ電位の絶対値が増加すれば微粒子間の反発力が強くなり粒子の安定性は高くなり、逆にゼータ電位がゼロに近づくと微粒子は凝集しやすくなる。
このゼータ電位は、例えば、電気泳動光散乱測定法(別名レーザードップラー法)により測定することができる。外部電場(E)によって泳動する微粒子に波長(λ)のレーザー光を照射し、散乱角(θ)で散乱する光の周波数変化(ドップラーシフト量Δν)を測定し、次式によって微粒子の泳動速度(V)を求める。
The fine particles dispersed in the solution are electrically negatively or positively charged due to dissociation of surface polar groups and adsorption of ions. The fine particles having the same sign on the surface potential repel each other and stably disperse in the medium without aggregation. The zeta potential reflects the surface charge of the fine particles and is used as an indicator of the dispersion stability of the fine particles (Fumio Kitahara, Kunio Furusawa, Masataka Ozaki, Hiroyuki Oshima, “Zeta Potential Zeta Potential: Physical Chemistry of Fine Particle Interface”, Scientist Issued in January 1995). If the absolute value of the zeta potential increases, the repulsive force between the fine particles becomes strong and the stability of the particles becomes high. Conversely, when the zeta potential approaches zero, the fine particles tend to aggregate.
This zeta potential can be measured, for example, by an electrophoretic light scattering measurement method (also called a laser Doppler method). Irradiate fine particles migrating with an external electric field (E) with laser light of wavelength (λ), measure the frequency change (Doppler shift amount Δν) of the light scattered at the scattering angle (θ), (V) is obtained.

Figure 2008114413
ただし、nは媒体(液)の屈折率である。ここで得られた泳動速度(V)と外部電場(E)から電気移動度(U)が次式より求められる。
Figure 2008114413
Here, n is the refractive index of the medium (liquid). From the migration velocity (V) and the external electric field (E) obtained here, the electric mobility (U) is obtained from the following equation.

Figure 2008114413
電気移動度(U)からゼータ電位(ζ)は、次式のSmoluchowskiの式を用いて求められる。
Figure 2008114413
From the electric mobility (U), the zeta potential (ζ) is obtained using the following Smoluchowski equation.

Figure 2008114413
ただし、ηは媒体(液)の粘度、εは媒体(液)の誘電率である(北原文雄、古澤邦夫、尾崎正孝、大島広行、「Zeta Potentialゼータ電位:微粒子界面の物理化学」、サイエンティスト社、1995年1月発行)。
無機酸化物の粒子では分散溶液のpHが変わるとゼータ電位が大きく変化する。例えば、チタニア粒子(日本アエロジル社製)が分散する溶液のpHを3、7.5、11と変化させると、ゼータ電位は+40mV、0mV、−20mVと変化し、粒子径は400nm、1600nm、900nmと変化する。すなわちゼータ電位が0mVになると粒子は凝集することがわかる(大塚電子(株)、アプリケーションノート、ゼータ電位「無機物のゼータ電位測定」、p.LS−N002−6、2002年9月1日発行)。このことから、溶液中の微粒子を安定に分散させるために、微粒子のゼータ電位の絶対値を数mV〜数十mVの範囲に制御することが望ましい。
Figure 2008114413
Where η is the viscosity of the medium (liquid), and ε is the dielectric constant of the medium (liquid) (Fumio Kitahara, Kunio Furusawa, Masataka Ozaki, Hiroyuki Oshima, “Zeta Potential Zeta Potential: Physical Chemistry of Fine Particle Interface”, Scientist Issued in January 1995).
In inorganic oxide particles, the zeta potential changes greatly when the pH of the dispersion changes. For example, when the pH of the solution in which titania particles (Nippon Aerosil Co., Ltd.) are dispersed is changed to 3, 7.5, and 11, the zeta potential changes to +40 mV, 0 mV, and −20 mV, and the particle sizes are 400 nm, 1600 nm, and 900 nm. And change. That is, it can be seen that the particles aggregate when the zeta potential becomes 0 mV (Otsuka Electronics Co., Ltd., application note, zeta potential “measurement of zeta potential of inorganic substances”, p. LS-N002-6, issued on September 1, 2002). . Therefore, in order to stably disperse the fine particles in the solution, it is desirable to control the absolute value of the zeta potential of the fine particles in the range of several mV to several tens of mV.

1重量%に調整した日産化学製のシリカ微粒子水分散液(スノーテックス(ST)20)はpHが10であり、シリカ微粒子のゼータ電位は−48mVであった。このシリカ微粒子分散液のpHを9に調整したところ、シリカ微粒子のゼータ電位は−45mVとなった。また、pHが10のシリカ微粒子水分散液に塩化ナトリウムを添加し、塩化ナトリウム濃度が0.25モル/リットルのシリカ微粒子水分散液を調整したところ、シリカ微粒子のゼータ電位は−40mVとなった。
シリカ微粒子水分散液と、ポリジアリルジメチルアンモニウムクロライド(PDDA)の0.3重量%水溶液を用いて、交互積層法により作製したシリカ微粒子積層膜では、ゼータ電位が−48mVの時にシリカ微粒子積層膜の屈折率が1.31となるのに対して、ゼータ電位が−45mVと−40mVの時には屈折率が1.29となった。この1.31の屈折率から微粒子体積率を求めると60%、1.29の屈折率から微粒子体積率を求めると56%となる。このことから、屈折率の低下は、微粒子のゼータ電位低下により、空隙率が低下したためと考えられる。このように微粒子のゼータ電位の制御により、微粒子積層膜の屈折率を制御することができる。
The silica fine particle aqueous dispersion (Snowtex (ST) 20) manufactured by Nissan Chemical Co., Ltd. adjusted to 1% by weight had a pH of 10, and the zeta potential of the fine silica particles was −48 mV. When the pH of the silica fine particle dispersion was adjusted to 9, the zeta potential of the silica fine particles became −45 mV. Further, when sodium chloride was added to the silica fine particle aqueous dispersion having a pH of 10 to adjust the silica fine particle aqueous dispersion having a sodium chloride concentration of 0.25 mol / liter, the zeta potential of the silica fine particles became −40 mV. .
In a silica fine particle laminated film produced by an alternate lamination method using a silica fine particle aqueous dispersion and a 0.3% by weight aqueous solution of polydiallyldimethylammonium chloride (PDDA), when the zeta potential is −48 mV, While the refractive index was 1.31, the refractive index was 1.29 when the zeta potential was −45 mV and −40 mV. When the fine particle volume ratio is obtained from the refractive index of 1.31, 60% is obtained, and when the fine particle volume ratio is obtained from the refractive index of 1.29, it is 56%. From this, the decrease in the refractive index is considered to be due to the decrease in the porosity due to the decrease in the zeta potential of the fine particles. In this way, the refractive index of the fine particle multilayer film can be controlled by controlling the zeta potential of the fine particles.

微粒子積層膜に含まれる微粒子の種類は一種類に限らない。例えば、微粒子分散溶液の一回の浸漬において吸着される微粒子は二種類以上でも良く、また、微粒子分散溶液の浸漬毎に微粒子の種類が異なっていても良い。
なお、酸化チタン、酸化セリウム、酸化ニオブ、酸化錫、酸化アルミニウム、酸化ケイ素の微粒子が、微粒子積層膜の表面硬度を高める点で好ましい。
The kind of fine particles contained in the fine particle laminated film is not limited to one. For example, two or more kinds of fine particles adsorbed in one immersion of the fine particle dispersion solution may be used, and the kind of fine particles may be different for each immersion of the fine particle dispersion solution.
Note that fine particles of titanium oxide, cerium oxide, niobium oxide, tin oxide, aluminum oxide, and silicon oxide are preferable in terms of increasing the surface hardness of the fine particle laminated film.

(7)電解質ポリマー溶液
電解質ポリマー溶液は、交互積層法を用いて微粒子積層膜を作製する際に必要となる。この電解質ポリマー溶液は、微粒子の表面電荷と反対または同じ符号の電荷の電解質ポリマーを、水、有機溶媒または水溶性の有機溶媒と水の混合溶媒に溶解したものである。使用できる水溶性の有機溶媒としては、例えば、メタノール、エタノール、プロパノール、アセトン、ジメチルホルムアミド、アセトニトリルなどがあげられる。この電解質ポリマー溶液は微粒子積層膜の形成に用いられる。
(7) Electrolyte polymer solution The electrolyte polymer solution is required when the fine particle laminated film is produced using the alternating lamination method. This electrolyte polymer solution is obtained by dissolving an electrolyte polymer having a charge opposite to or having the same sign as the surface charge of fine particles in water, an organic solvent or a mixed solvent of water-soluble organic solvent and water. Examples of water-soluble organic solvents that can be used include methanol, ethanol, propanol, acetone, dimethylformamide, and acetonitrile. This electrolyte polymer solution is used to form a fine particle laminated film.

電解質ポリマーとしては、荷電を有する官能基を主鎖または側鎖に持つ高分子を用いることができる。この場合、ポリアニオンとしては、一般的に、スルホン酸、硫酸、カルボン酸など負電荷を帯びることのできる官能基を有するものであり、例えば、ポリスチレンスルホン酸(PSS)、ポリビニル硫酸(PVS)、デキストラン硫酸、コンドロイチン硫酸、ポリアクリル酸(PAA)、ポリメタクリル酸(PMA)、ポリマレイン酸、ポリフマル酸およびそれらを少なくとも1種以上を含む共重合体などを用いることができる。また、ポリカチオンとしては、一般に、4級アンモニウム基、アミノ基などの正荷電を帯びることのできる官能基を有するもの、例えば、ポリエチレンイミン(PEI)、ポリアリルアミン塩酸塩(PAH)、ポリジアリルジメチルアンモニウムクロリド(PDDA)、ポリビニルピリジン(PVP)、ポリリジン、ポリアクリルアミドおよびそれらを少なくとも1種以上を含む共重合体などを用いることができる。これらの電解質ポリマーは、いずれも水溶性あるいは水と有機溶媒との混合液に可溶なものであり、電解質ポリマーの重量平均分子量(ゲルパーミエーションクロマトグラフィーにより、標準ポリスチレンの検量線を用いて測定した値)としては、用いる電解質ポリマーの種類により一概には定めることができないが、一般に、400〜300,000程度のものが好ましい。なお、溶液中の電解質ポリマーの濃度は、一般に、0.0001〜30%(重量)程度が好ましい。また、電解質ポリマー溶液のpHは、特に限定されない。   As the electrolyte polymer, a polymer having a charged functional group in the main chain or side chain can be used. In this case, the polyanion generally has a negatively charged functional group such as sulfonic acid, sulfuric acid, and carboxylic acid. For example, polystyrene sulfonic acid (PSS), polyvinyl sulfate (PVS), dextran, and the like. Sulfuric acid, chondroitin sulfate, polyacrylic acid (PAA), polymethacrylic acid (PMA), polymaleic acid, polyfumaric acid, and a copolymer containing at least one of them can be used. The polycation generally has a positively charged functional group such as quaternary ammonium group or amino group, such as polyethyleneimine (PEI), polyallylamine hydrochloride (PAH), polydiallyldimethyl. Ammonium chloride (PDDA), polyvinyl pyridine (PVP), polylysine, polyacrylamide, and a copolymer containing at least one of them can be used. These electrolyte polymers are both water-soluble or soluble in a mixture of water and an organic solvent, and the weight average molecular weight of the electrolyte polymer (measured using a standard polystyrene calibration curve by gel permeation chromatography). However, it is generally preferred to have a value of about 400 to 300,000, depending on the type of electrolyte polymer used. In general, the concentration of the electrolyte polymer in the solution is preferably about 0.0001 to 30% (weight). Further, the pH of the electrolyte polymer solution is not particularly limited.

ポリカチオンであるポリジアリルジメチルアンモニウムクロリド(PDDA)と、ポリアニオンであるポリスチレンスルホン酸(PSS)を用いて、交互積層法により(PDDA/PSS)多層膜を作製できる。シリコンウエハ上に交互積層回数45回で形成した(PDDA/PSS)45層構造膜の厚さは60nmであり、交互積層回数1回あたりのPDDA/PSS膜の厚さは約1.3nmと概算できる。このことから、PDDA層とPSS層は、分子オーダーの薄さで形成されることがわかる。なお、PDDAとPSSの単分子層はその分子構造から数Åと考えられる。   By using polydiallyldimethylammonium chloride (PDDA), which is a polycation, and polystyrene sulfonic acid (PSS), which is a polyanion, a (PDDA / PSS) multilayer film can be produced by an alternate lamination method. The thickness of the 45-layer structure film (PDDA / PSS) formed on the silicon wafer with 45 times of alternate lamination is 60 nm, and the thickness of the PDDA / PSS film per alternate lamination is about 1.3 nm. it can. From this, it can be seen that the PDDA layer and the PSS layer are formed with a molecular order thinness. In addition, the monomolecular layer of PDDA and PSS is considered to be several tens from the molecular structure.

(8)微粒子積層膜
微粒子材料の選択により微粒子積層膜の屈折率が制御できる。微粒子積層膜の屈折率は、エリプソメトリーで測定した偏光特性からの解析、または分光光度計で測定した反射スペクトルや透過スペクトルからの解析により求めることができる。これらの手法の優れている点は微粒子積層膜の膜厚を同時に評価できることである。その他に微粒子積層膜の膜厚を求める方法には、SEM(走査型電子顕微鏡)、TEM(透過型電子顕微鏡)やAFM(原子間力顕微鏡)などの膜を観察する方法もある。また、水晶振動子上に膜を形成し、周波数変化量と膜材料の密度から膜厚を求めることもできる。
微粒子と荷電の異なる電解質ポリマーとしてポリジアリルジメチルアンモニウムクロリド(PDDA)を用いる場合、前述のように、PDDA層は1.3nm未満という分子オーダーの薄さである。従って、PDDA層は中間層表面や微粒子表面を、その平面形状や球面形状を追従しながら覆っていると考えられる。そして、その薄さで、中間層と微粒子、微粒子と微粒子の静電的な結合材として機能している。
(8) Fine particle laminated film The refractive index of the fine particle laminated film can be controlled by selecting the fine particle material. The refractive index of the fine particle laminated film can be obtained by analysis from polarization characteristics measured by ellipsometry, or analysis from reflection spectrum or transmission spectrum measured by a spectrophotometer. The advantage of these methods is that the film thickness of the fine particle laminated film can be evaluated simultaneously. Other methods for determining the film thickness of the fine particle laminated film include a method of observing a film such as SEM (scanning electron microscope), TEM (transmission electron microscope), or AFM (atomic force microscope). It is also possible to form a film on the quartz resonator and obtain the film thickness from the frequency change amount and the density of the film material.
When polydiallyldimethylammonium chloride (PDDA) is used as the electrolyte polymer having a different charge from that of the fine particles, as described above, the PDDA layer has a molecular order thinness of less than 1.3 nm. Therefore, it is considered that the PDDA layer covers the intermediate layer surface and the fine particle surface while following the planar shape and the spherical shape. The thin layer functions as an electrostatic bonding material between the intermediate layer and the fine particles and between the fine particles and the fine particles.

微粒子積層膜の屈折率は微粒子材料のバルクより低く、それは微粒子積層膜中の微粒子の間に隙間ができるからである。本発明の微粒子積層膜では微粒子の間の隙間はほとんど空気であり、微粒子積層膜の屈折率nは次式から求めることができる。 The refractive index of the fine particle laminated film is lower than the bulk of the fine particle material because a gap is formed between the fine particles in the fine particle laminated film. In particle laminated film of the present invention the gap between the particles is almost air, the refractive index n c of the particle laminated film can be determined from the following equation.

Figure 2008114413
(ただし、式中、ρは微粒子積層膜中の微粒子の体積密度、nは微粒子を構成する物質の屈折率、nは空気の屈折率=1.0を示す。)(薄膜・光デバイス、吉田貞史、矢嶋弘義著、東京大学出版会、pp.34−37、1994年9月20日発行、参照)。例えば、バルクの屈折率nが2.3のチタニア微粒子を用いた微粒子積層膜の屈折率nは1.8となり、バルクの屈折率nが1.48のシリカ微粒子を用いた微粒子積層膜の屈折率nは1.3となる。このように、微粒子積層膜は微粒子材料のバルクより低い屈折率を示すため、光学的な設計において屈折率の選択範囲を広げる。
Figure 2008114413
(Wherein ρ p represents the volume density of the fine particles in the fine particle laminated film, n P represents the refractive index of the substance constituting the fine particles, and n 0 represents the refractive index of air = 1.0) (Thin Film / Light Device, Sadayoshi Yoshida, Hiroyoshi Yajima, The University of Tokyo Press, pp. 34-37, published September 20, 1994). For example, the refractive index n c is 1.8 next to the particle laminated film in which the refractive index n P of the bulk is used titania fine particles of 2.3, particle laminated with silica particles having a refractive index n P of the bulk 1.48 refractive index n c of the film becomes 1.3. Thus, the fine particle laminated film exhibits a refractive index lower than that of the bulk of the fine particle material, and thus widens the selection range of the refractive index in optical design.

本発明の微粒子積層膜では微粒子の間の隙間はほとんど空気であるため、次式より微粒子積層膜の屈折率から微粒子の体積密度ρを求めることもできる。 In the fine particle laminated film of the present invention, since the gap between the fine particles is almost air, the volume density ρ P of the fine particles can also be obtained from the refractive index of the fine particle laminated film from the following equation.

Figure 2008114413
例えば、屈折率nが1.8のチタニア微粒子積層膜中のチタニア微粒子の体積密度ρは52%となり、屈折率nが1.3のシリカ微粒子積層膜中のシリカ微粒子の体積密度ρは58%となる。
Figure 2008114413
For example, the volume density [rho P titania fine titania particle laminated film having a refractive index n c is 1.8 becomes 52%, the volume density of the silica particles of the silica fine particles laminated film having a refractive index n c is 1.3 [rho P is 58%.

一方、微粒子積層膜の空隙を完全に埋めるように屈折率nの樹脂を充填した場合の微粒子積層膜の屈折率n’は次式で表される。 On the other hand, the refractive index n c ′ of the fine particle laminate film when filled with a resin having a refractive index n r so as to completely fill the voids of the fine particle laminate film is expressed by the following equation.

Figure 2008114413
同じ微粒子の体積密度の場合、空隙を樹脂で完全に充填した微粒子積層膜の屈折率n’よりも、空隙を有する微粒子積層膜の屈折率nのほうが屈折率は低くなる。そのため、空隙を樹脂で完全に充填した微粒子積層膜よりも空隙を有する微粒子積層膜のほうがバルクより低い屈折率を示し、光学的な設計において屈折率の選択範囲を広げる。
Figure 2008114413
If the volume density of the same particles, than the refractive index n c 'of particle laminated film was completely filled with resin voids, the refractive index towards the refractive index n c of the particle laminated film having pores is low. Therefore, the fine particle laminate film having voids has a lower refractive index than the bulk than the fine particle laminate film in which the voids are completely filled with resin, and widens the selection range of the refractive index in optical design.

微粒子積層膜は光学機能を発現するために微粒子積層膜の濁度が小さいことが望ましい。固体基材がガラスのように透光性を有する場合は、微粒子積層膜が形成された透光性固体基材のヘイズ値(JIS K 7361−1−1997)から透光性を有する固体基材のヘイズを差し引いた値を微粒子積層膜の濁度とした。ここで、透光性を有する状態とは光を透過する状態をいい、光を散乱するか否かにはよらない。一方、固体基材がシリコンウェハのように透光性を有しない場合は、微粒子積層膜が形成された透光性を有しない固体基材の反射濁度から透光性を有しない固体基材の反射濁度を差し引いた値を微粒子積層膜の濁度とした。ここで、透光性を有しない状態とは吸収や反射により光を透過しない状態をいい、光を散乱するか否かにはよらない。なお、反射濁度とは拡散反射率を総反射率で除した値である。拡散反射率とは拡散反射率は、総反射率から鏡面反射した光を測定した鏡面反射率を差し引いた値である。総反射率は全方位に反射する光を測定した反射率である。 The fine particle laminated film desirably has a small turbidity in order to exhibit an optical function. When the solid substrate has translucency like glass, the solid substrate having translucency from the haze value (JIS K 7361-1-1997) of the translucent solid substrate on which the fine particle laminated film is formed. The value obtained by subtracting the haze was defined as the turbidity of the fine particle laminated film. Here, the translucent state refers to a state of transmitting light, and does not depend on whether or not light is scattered. On the other hand, when the solid substrate does not have translucency like a silicon wafer, the solid substrate does not have translucency from the reflection turbidity of the non-translucent solid substrate on which the fine particle laminated film is formed. The value obtained by subtracting the reflection turbidity of was used as the turbidity of the fine particle laminated film. Here, the state having no translucency means a state where light is not transmitted by absorption or reflection, and does not depend on whether light is scattered. The reflection turbidity is a value obtained by dividing the diffuse reflectance by the total reflectance. The diffuse reflectance is a value obtained by subtracting the specular reflectance obtained by measuring the specularly reflected light from the total reflectance. The total reflectance is a reflectance obtained by measuring light reflected in all directions.

微粒子積層膜の濁度が小さいことが望ましいという観点から、微粒子積層膜の濁度は0.001%〜4%が好ましく、0.001%〜2%がより好ましく、0.001%〜1%が最も好ましい。可視光が散乱しないことを構造的にいえば、微粒子積層膜内部の空隙部分や微粒子が100nmを超えない大きさであることをいう。前述のヘイズ値増加や拡散反射率増加を4%以下にするためには、空隙部分や微粒子の大きさが100nm以内であることが望ましい。   From the viewpoint that it is desirable that the turbidity of the fine particle laminated film is small, the turbidity of the fine particle laminated film is preferably 0.001% to 4%, more preferably 0.001% to 2%, and 0.001% to 1%. Is most preferred. Speaking structurally that no visible light is scattered, it means that the voids and fine particles inside the fine particle laminated film have a size not exceeding 100 nm. In order to reduce the increase in the haze value and the increase in diffuse reflectance described above to 4% or less, it is desirable that the size of the voids and fine particles be within 100 nm.

本発明の微粒子積層膜では微粒子の粒子径を小さくすると屈折率が増加する傾向、すなわち微粒子積層膜中の微粒子体積率が増加する傾向にある。これは、粒子径減少により微粒子の凝集力が増したために、微粒子積層膜が緻密化したためである。微粒子積層膜の緻密化は、微粒子積層膜中において隣接する微粒子の数を増大させるために、微粒子間結合ができる微粒子の数を増加させる。そのため、この結合できる微粒子の数の増大が、微粒子積層膜の緻密化による微粒子積層膜の硬度向上の要因の一つといえる。   In the fine particle laminated film of the present invention, when the particle diameter of the fine particles is reduced, the refractive index tends to increase, that is, the fine particle volume fraction in the fine particle laminated film tends to increase. This is because the fine particle laminate film is densified because the cohesive force of the fine particles is increased by the reduction of the particle diameter. Densification of the fine particle laminated film increases the number of fine particles capable of bonding between fine particles in order to increase the number of adjacent fine particles in the fine particle laminated film. Therefore, it can be said that the increase in the number of fine particles that can be combined is one of the factors for improving the hardness of the fine particle laminated film by densification of the fine particle laminated film.

粒子形状を数珠状にすると立体障害により微粒子積層膜の屈折率が低下するが、これは緻密化が阻害されて微粒子積層膜中の微粒子の体積率が減少することを示す。一方、数珠状粒子は一次粒子が共有結合した状態であるため、数珠状粒子自身は強固である。そのため、数珠状粒子を用いて作製した微粒子積層膜は、球状粒子を用いて作製した微粒子積層膜よりも緻密化が阻害されながらも、膜の強度は同程度に高くなると考えられる。   When the particle shape is beaded, the refractive index of the fine particle laminated film is reduced due to steric hindrance, which indicates that the densification is inhibited and the volume fraction of fine particles in the fine particle laminated film is reduced. On the other hand, since the bead-like particles are in a state where the primary particles are covalently bonded, the bead-like particles themselves are strong. Therefore, it is considered that the fine particle laminated film produced using bead-like particles has a higher strength than the fine particle laminated film produced using spherical particles, although the densification is inhibited.

本発明では、固体基材が表面に極性基を有することにより、その上に形成された微粒子積層膜が実用的な密着性を得ることができる。   In the present invention, since the solid substrate has a polar group on the surface, the fine particle laminated film formed thereon can obtain practical adhesion.

固体基材上の膜の表面硬度を評価する方法としては鉛筆硬度試験が挙げられる。固体基材の硬度に依存せずに薄膜そのものの硬度を評価する装置にはナノインデンターが挙げられる。また、密着性を評価する方法にはテープ剥離試験が挙げられる。本発明では、膜の表面硬度を評価する方法として鉛筆硬度試験を用いた。実用的な膜の表面硬度としては6B以上の濃度記号の鉛筆硬度が好ましく、HB以上の濃度記号の鉛筆硬度がより好ましく、H以上の濃度記号の鉛筆硬度がさらに好ましく、3H以上の濃度記号の鉛筆硬度が最も好ましい。   An example of a method for evaluating the surface hardness of a film on a solid substrate is a pencil hardness test. An apparatus that evaluates the hardness of the thin film itself without depending on the hardness of the solid substrate includes a nanoindenter. Moreover, a tape peeling test is mentioned as a method of evaluating adhesiveness. In the present invention, a pencil hardness test is used as a method for evaluating the surface hardness of the film. Practical surface hardness of the film is preferably a pencil hardness of a density symbol of 6B or more, more preferably a pencil hardness of a density symbol of HB or more, more preferably a pencil hardness of a density symbol of H or more, and a density symbol of 3H or more. Pencil hardness is most preferred.

本発明では、実際上の膜の密着性を評価する方法としてはテープ剥離試験を用いた。ただし、試験に用いる粘着テープは必ずしもJIS Z 1522に規定するような2.94N/10mm以上の粘着力を有する必要は無く、より粘着力の低い粘着テープを用いて試験しても良い。前記の粘着力の低い粘着テープには、例えば保護フィルムのように、反射防止性能や光拡散性能のような光学性能を有する各種の光学フィルムや光学部材の加工・輸送・組立て・保管時に表面保護、汚染防止や固定のために用いられる粘着テープが挙げられる。実用的な膜の密着性は、前記の粘着テープを用いたテープ剥離試験の結果として膜が損傷せずに残存することが好ましい。なお、本発明の微粒子積層膜は、ある粘着力の粘着テープを用いたテープ剥離試験で膜が損傷せずに残存する場合、その粘着力以下の粘着テープを用いても膜が損傷せずに残存することがわかっている。例えば、粘着力が3.11N/10mmの粘着テープ(日東電工社製、31B)を用いたテープ剥離試験で膜が損傷せずに残存したガラス上のチタニア微粒子積層膜は、粘着力が0.72N/10mmの粘着テープ(三井化学社製イクロステープSB−135S−BN)を用いても膜が損傷せずに残存し、粘着力が0.16N/10mmの粘着テープ(日立化成社製ヒタレックスP−3010)を用いても膜が損傷せずに残存した。   In the present invention, a tape peeling test was used as a method for evaluating the adhesion of an actual film. However, the adhesive tape used for the test does not necessarily have an adhesive strength of 2.94 N / 10 mm or more as defined in JIS Z 1522, and may be tested using an adhesive tape having a lower adhesive strength. The above adhesive tape with low adhesive strength has a surface protection during processing, transportation, assembly and storage of various optical films and optical members having optical performance such as antireflection performance and light diffusion performance, such as protective film. Adhesive tape used for contamination prevention and fixing can be mentioned. Practical film adhesion is preferably such that the film remains intact as a result of the tape peel test using the adhesive tape. In addition, when the fine particle laminated film of the present invention remains without being damaged in a tape peeling test using an adhesive tape having a certain adhesive strength, the film is not damaged even when an adhesive tape having an adhesive strength lower than that is used. It is known that it remains. For example, the titania fine particle laminated film on the glass remaining without damage in the tape peeling test using an adhesive tape (31B, manufactured by Nitto Denko Corporation) having an adhesive strength of 3.11 N / 10 mm has an adhesive strength of 0.1. Even if 72N / 10mm adhesive tape (Mitsui Chemicals' cross tape SB-135S-BN) is used, the film remains intact and adhesive strength is 0.16N / 10mm adhesive tape (Hitalex manufactured by Hitachi Chemical Co., Ltd.). Even when P-3010) was used, the film remained without being damaged.

テープ剥離試験後に固体基材が剥き出しになることは、剥き出しの部分が固体基材と同程度の反射率となることから判断できる。しかし、固体基材が剥き出しにならない場合は、粘着テープにより膜が凝集破壊し、膜の残渣があるために必ずしも反射率が固体基材とは同程度にはならない。そこで、膜の損傷の有無を表面反射スペクトルから次のように評価した。テープ剥離試験を行なう試験面とは反対面をスチールウール(日本スチールウール社製、#0000)で固体基材面が露出するまで研磨し、積層された膜を除去した。露出した固体基材面に黒い粘着テープ(ニチバン(株)製、VT−196)を気泡が残らないように貼り付け、微粒子積層膜が形成された片面の表面反射率のスペクトルを可視紫外分光光度計(日本分光(株)製、V−570)にて測定した。反射率が固体基材よりも低い場合は波長400〜800nmで表面反射率が極小値をとる波長をλminとし、反射率が固体基材よりも高い場合は波長400〜800nmで表面反射率が極大値をとる波長をλmaxとした。膜が損傷する場合はλminまたはλmaxが減少する(短波長側へ波長シフト)。そのため、粘着テープ剥離後にλminまたはλmaxが30nm以上減少した場合(短波長側へ30nm以上波長シフトした場合)に膜が損傷したと定義した。 The fact that the solid substrate is exposed after the tape peeling test can be judged from the fact that the exposed portion has the same reflectance as the solid substrate. However, when the solid substrate is not exposed, the film is coherently broken by the adhesive tape, and there is a residue of the film, so that the reflectance is not necessarily the same as that of the solid substrate. Therefore, the presence or absence of damage to the film was evaluated from the surface reflection spectrum as follows. The surface opposite to the test surface on which the tape peeling test was performed was polished with steel wool (manufactured by Nippon Steel Wool Co., Ltd., # 0000) until the solid substrate surface was exposed, and the laminated film was removed. A black adhesive tape (VT-196, manufactured by Nichiban Co., Ltd.) was attached to the exposed solid substrate surface so that no bubbles remained, and the surface reflectance spectrum of one side on which the fine particle multilayer film was formed was measured with visible ultraviolet spectrophotometry. It was measured with a meter (manufactured by JASCO Corporation, V-570). When the reflectance is lower than that of the solid substrate, the wavelength at which the surface reflectance takes a minimum value at a wavelength of 400 to 800 nm is λ min, and when the reflectance is higher than that of the solid substrate, the surface reflectance is at a wavelength of 400 to 800 nm. The wavelength at which the maximum value was obtained was defined as λ max . When the film is damaged, λ min or λ max decreases (wavelength shift toward the short wavelength side). Therefore, it was defined that the film was damaged when λ min or λ max decreased by 30 nm or more after peeling of the adhesive tape (when the wavelength shifted by 30 nm or more to the short wavelength side).

(9)光学部材
本発明における微粒子積層膜は、交互積層法により得られるために膜厚均一性が高く、それゆえ、その微粒子積層膜は光学部材に好適に用いることができる。微粒子積層膜は、例えば反射防止膜、反射膜、半透過半反射膜、可視光反射赤外線透過膜、赤外線反射可視光透過膜、青色反射膜、緑色反射膜、赤色反射膜、輝線カットフィルター膜、色調補正膜が二つ以上加わった構成の膜として機能させることができる。
そのため、微粒子積層膜を形成した固体基材は、例えば反射防止膜付き基材、反射膜付き基材(ミラー)、半透過半反射膜付き基材(ハーフミラー)、可視光反射赤外線透過膜付き基材(コールドミラー)、赤外線反射可視光透過膜付き基材(ホットミラー)、青色反射膜付き基材、緑色反射膜付き基材又は赤色反射膜付き基材(ダイクロックミラー)、輝線カットフィルター膜付き基材、色調補正膜付き基材として用いることができる。
(9) Optical Member Since the fine particle laminated film in the present invention is obtained by an alternating lamination method, the film thickness uniformity is high, and therefore the fine particle laminated film can be suitably used for an optical member. The fine particle laminated film is, for example, an antireflection film, a reflection film, a semi-transmission semi-reflection film, a visible light reflection infrared transmission film, an infrared reflection visible light transmission film, a blue reflection film, a green reflection film, a red reflection film, a bright line cut filter film, It can function as a film having a structure in which two or more color correction films are added.
Therefore, the solid base material on which the fine particle laminated film is formed includes, for example, a base material with an antireflection film, a base material with a reflection film (mirror), a base material with a semi-transmissive semi-reflective film (half mirror), and a visible light reflecting infrared transmissive film Base material (cold mirror), base material with infrared reflective visible light transmission film (hot mirror), base material with blue reflective film, base material with green reflective film or base material with red reflective film (dichroic mirror), bright line cut filter It can be used as a substrate with a film or a substrate with a color tone correction film.

上記の機能は、微粒子の選択により、また、微粒子積層膜の屈折率等の調整などにより、作り分けることが出来る。上記の機能は、多くの場合、固体基材の上に低屈折率膜と高屈折率膜を膜厚制御しながら積層して形成した多層構造膜からなる微粒子積層膜によって発現される。
光学的機能発現に必要な屈折率の範囲は、低屈折率膜としては1.3〜1.5、高屈折率膜としては1.6〜2.4が一般的であるが、多くの場合、低屈折率は低いほど良く、高屈折率は高いほど良い。なお、光学機能発現に必要な膜厚は、前記式(1)により求めることができる。屈折率の調整は、前記したように微粒子の選択により、行うことが出来る。
The above functions can be created separately by selecting fine particles and adjusting the refractive index of the fine particle laminated film. In many cases, the above-described function is expressed by a fine particle laminated film composed of a multilayer structure film formed by laminating a low refractive index film and a high refractive index film on a solid substrate while controlling the film thickness.
The range of refractive index required for optical function expression is generally 1.3 to 1.5 for a low refractive index film and 1.6 to 2.4 for a high refractive index film. The lower the refractive index, the better. The higher the refractive index, the better. In addition, the film thickness required for optical function expression can be calculated | required by said Formula (1). The refractive index can be adjusted by selecting fine particles as described above.

反射防止膜の多層構造の一例には、固体基材上に高屈折率膜と低屈折率膜を順に2層積層した構造があり、膜厚はそれぞれ次式で示す厚さdに近いことが望まれる。 An example of a multi-layer structure of the antireflection film has a high refractive index film and a low refractive index film was sequentially 2-layer structure on a solid substrate, it respectively the thickness close to the thickness d 2 shown by the following formula Is desired.

Figure 2008114413
(ただし、式中、λは波長、nは膜の屈折率を示す。)
Figure 2008114413
(In the formula, λ is the wavelength, and n is the refractive index of the film.)

高屈折率膜の屈折率の二乗が、低屈折率膜の屈折率の二乗と固体基材の屈折率との積に等しければ、波長λでの表面反射率を0%にすることができる。そのため、高屈折率膜の屈折率を1.85まで高くできれば、低屈折率膜の屈折率が1.50でも表面反射率を0%に近づけることができる。なお、単層構造の反射防止膜の場合、単層膜の膜厚が(5)式を満たし、膜の屈折率は固体基材の屈折率の二乗根に等しければ、波長λでの表面反射率を0%にすることができる。実際上の反射防止膜に利用する観点から、可視光の波長領域で微粒子積層膜の表面反射率の最小値が3%以下であることが好ましく、2%以下であることがより好ましく、1%以下であることがさらに好ましく、0.5%以下であることが最も好ましい。   If the square of the refractive index of the high refractive index film is equal to the product of the square of the refractive index of the low refractive index film and the refractive index of the solid substrate, the surface reflectance at the wavelength λ can be reduced to 0%. Therefore, if the refractive index of the high refractive index film can be increased to 1.85, the surface reflectance can be brought close to 0% even if the refractive index of the low refractive index film is 1.50. In the case of an antireflection film having a single layer structure, if the film thickness of the single layer film satisfies the formula (5) and the refractive index of the film is equal to the square root of the refractive index of the solid substrate, surface reflection at the wavelength λ The rate can be 0%. From the viewpoint of use in an actual antireflection film, the minimum value of the surface reflectance of the fine particle multilayer film in the visible light wavelength region is preferably 3% or less, more preferably 2% or less, and more preferably 1%. Or less, and most preferably 0.5% or less.

半透過半反射膜の基本的な多層構造は、固体基材上に高屈折率膜と低屈折率膜の2層を順に積層し、2回繰り返した4層構造が一般的である。高屈折率膜と低屈折率膜の各層の厚さは厚さdに近づけることが基本であるが、反射スペクトルや透過スペクトルを目的とする波長領域で平坦にするため、すなわち、反射率や透過率の波長依存性を小さくするために、若干増減させても良い。なお、高屈折率膜の単層膜でも、膜厚をdに近づけることで、波長λを中心とした波長領域で半透過半反射機能を示す。実際上の半透過半反射膜に利用する観点から、微粒子積層膜の可視光の波長領域での反射率の平均値が15%以上50%以下および透過率の平均値が50%以上85%以下であることが好ましく、反射率の平均値が15%以上40%以下および透過率の平均値が60%以上85%以下であることがより好ましく、反射率の平均値が15%以上30%以下および透過率の平均値が70%以上85%以下であることが最も好ましい。 The basic multilayer structure of the semi-transmissive / semi-reflective film is generally a four-layer structure in which two layers of a high refractive index film and a low refractive index film are sequentially laminated on a solid substrate and repeated twice. The thickness of each layer of the high refractive index film and the low refractive index film is basically close to the thickness d 2. In order to reduce the wavelength dependency of the transmittance, it may be slightly increased or decreased. Note that even a single layer film of a high refractive index film exhibits a semi-transmissive / semi-reflective function in a wavelength region centered on the wavelength λ by making the film thickness close to d 2 . From the viewpoint of use in an actual semi-transmissive / semi-reflective film, the average value of the reflectance in the visible light wavelength region of the fine particle laminated film is 15% to 50% and the average value of the transmittance is 50% to 85%. More preferably, the average value of the reflectance is 15% to 40% and the average value of the transmittance is 60% to 85%, and the average value of the reflectance is 15% to 30%. The average transmittance is most preferably 70% or more and 85% or less.

反射膜の基本的な多層構造は、固体基材上に高屈折率膜と低屈折率膜の2層を順に積層した二層構造を繰り返し積層したものであり、高屈折率膜と低屈折率膜の交互積層構造であるが、固体基材側最下層と最表面層は高屈折率膜である。膜厚は基本的にそれぞれ上記式(5)のdで決定される。高屈折率膜と低屈折率膜の二層構造の繰り返し数が多いほど高い反射率が得られる。また、低屈折率膜と高屈折率膜の屈折率差が大きいほど、二層構造の繰り返し数が同じでも反射率が高くなる。そのため、低屈折率膜と高屈折率膜の屈折率差を大きくすることで、高い反射率を得るために必要な二層構造の繰り返し数を少なくすることができる。 The basic multilayer structure of the reflective film is a two-layer structure in which two layers of a high refractive index film and a low refractive index film are sequentially laminated on a solid substrate. Although the film has an alternately laminated structure, the lowermost layer on the solid substrate side and the outermost surface layer are high refractive index films. The film thickness is determined by d 2 of essentially each of the above formula (5). The higher the number of repetitions of the two-layer structure of the high refractive index film and the low refractive index film, the higher the reflectance. Further, the greater the difference in refractive index between the low refractive index film and the high refractive index film, the higher the reflectance even if the number of repetitions of the two-layer structure is the same. Therefore, by increasing the difference in refractive index between the low refractive index film and the high refractive index film, the number of repetitions of the two-layer structure necessary for obtaining a high reflectance can be reduced.

可視光反射赤外線透過膜、赤外線反射可視光透過膜、青色反射膜、緑色反射膜、赤色反射膜、輝線カットフィルター膜、色調補正膜は、ある特定の波長で反射率が高いことが特徴であるため、基本的な膜構造は反射膜のような多層構造である。   A visible light reflecting infrared transmission film, an infrared reflection visible light transmission film, a blue reflection film, a green reflection film, a red reflection film, a bright line cut filter film, and a color tone correction film are characterized by high reflectivity at a specific wavelength. Therefore, the basic film structure is a multilayer structure such as a reflective film.

式(2)よりわかるように、微粒子材料の変更や微粒子体積密度の制御により微粒子積層膜の屈折率を制御することができ、高屈折率や低屈折率の微粒子積層膜を得ることができる。例えば、バルクの屈折率が2.3の酸化チタン、2.2のセリア、1.9の酸化錫の微粒子を用いて、微粒子の体積密度を60%に制御すれば、屈折率1.89のチタニア微粒子積層膜、屈折率1.82のセリア微粒子積層膜や屈折率1.60の酸化錫微粒子積層膜等の高屈折率膜が得られる。一方、バルクの屈折率が1.6の酸化アルミニウム、1.48のシリカの微粒子を用いて、微粒子の体積密度を50%に制御すれば、屈折率1.33の酸化アルミニウム微粒子積層膜や屈折率1.26のシリカ微粒子積層膜等の低屈折率膜が得られる。微粒子体積密度は微粒子のゼータ電位により制御できると考えられる。   As can be seen from the equation (2), the refractive index of the fine particle laminated film can be controlled by changing the fine particle material or controlling the fine particle volume density, and a fine refractive index laminated film having a high refractive index or a low refractive index can be obtained. For example, if the volume density of fine particles is controlled to 60% by using fine particles of titanium oxide having a bulk refractive index of 2.3, ceria of 2.2, and tin oxide of 1.9, a refractive index of 1.89. A high refractive index film such as a titania fine particle laminated film, a ceria fine particle laminated film having a refractive index of 1.82 or a tin oxide fine particle laminated film having a refractive index of 1.60 is obtained. On the other hand, if the volume density of the fine particles is controlled to 50% using aluminum oxide having a bulk refractive index of 1.6 and silica fine particles of 1.48, a refractive index of 1.33 is obtained. A low refractive index film such as a silica fine particle laminated film having a rate of 1.26 is obtained. It is considered that the fine particle volume density can be controlled by the zeta potential of the fine particles.

(10)乾燥処理
上記のようにして固体基材表面に形成した微粒子積層膜を加熱することで乾燥処理を行っても良い。乾燥処理により微粒子積層膜中に含有される水が除去されるとともに、微粒子間のファンデアワールス力、分子間力、クーロン引力及び共有結合がより多く生じ、膜硬度の向上が図られる。加熱温度は、基材の融点、ガラス転移温度、軟化温度等より低い温度が良く、プラスチック基材を固体基材に用いる場合は固体基材の透明性や無着色といった光学機能が保たれる温度が良い。なお、加熱温度は、微粒子積層膜中の電解質ポリマーの融点や沸点を越えても良い。本発明における微粒子積層膜中の電解質ポリマーは極微量であるため、加熱によって蒸発し、微粒子積層膜中から除去されても光学機能や機械特性は保たれる。また、微粒子積層膜の形成のためには電解質ポリマーは静電的な結合材として必要であるが、微粒子積層膜の形成後では微粒子積層膜は微粒子間引力により保持されるために電解質ポリマーは存在しても良いし、存在しなくても良い。
加熱時間は1分〜1時間程度であることが好ましい。もちろん、加熱温度と加熱時間との関係は、相対的なものであり、処理温度を低くした場合には、その分長い時間にわたって処理を続けることで目的を達成できることはいうまでもない。また、加熱処理の雰囲気に制限はなく、空気中のような酸化性の雰囲気、窒素中のような不活性な雰囲気、あるいは水素などを含む還元性雰囲気であっても差し支えない。加熱方法にも制限はなく、オーブン、誘導加熱装置、赤外線ヒータのような加熱手段ないしは加熱装置を用いて行うことができる。
(10) Drying treatment The drying treatment may be performed by heating the fine particle laminated film formed on the surface of the solid substrate as described above. The water contained in the fine particle laminated film is removed by the drying treatment, and more van der Waals force, intermolecular force, coulomb attractive force and covalent bond between the fine particles are generated, and the film hardness is improved. The heating temperature should be lower than the melting point, glass transition temperature, softening temperature, etc. of the base material. When a plastic base material is used for the solid base material, the temperature at which the optical function such as transparency and no coloring of the solid base material is maintained. Is good. The heating temperature may exceed the melting point or boiling point of the electrolyte polymer in the fine particle laminated film. Since the electrolyte polymer in the fine particle laminated film in the present invention is extremely small, even if it is evaporated by heating and removed from the fine particle laminated film, the optical function and mechanical properties are maintained. In addition, the electrolyte polymer is necessary as an electrostatic binder for the formation of the fine particle laminate film, but after the fine particle laminate film is formed, the electrolyte polymer exists because the fine particle laminate film is retained by the attractive force between fine particles. May or may not exist.
The heating time is preferably about 1 minute to 1 hour. Of course, the relationship between the heating temperature and the heating time is relative, and when the processing temperature is lowered, it goes without saying that the object can be achieved by continuing the processing for a longer time. The atmosphere for the heat treatment is not limited, and may be an oxidizing atmosphere such as air, an inert atmosphere such as nitrogen, or a reducing atmosphere including hydrogen. There is no restriction | limiting also in the heating method, It can carry out using heating means thru | or a heating apparatus like an oven, an induction heating apparatus, and an infrared heater.

(11)封止材・オーバーコート材
本発明における微粒子積層膜積層体を含む光学部材がディスプレイ最表面に位置する場合、その防汚性や非常に高い表面硬度が要求されるが、防汚性の付与又は表面硬度の向上のために微粒子積層膜を封止、または、オーバーコートしても良い。
(11) Sealing material / overcoat material When the optical member containing the fine particle laminated film laminate of the present invention is located on the outermost surface of the display, its antifouling property and very high surface hardness are required. The fine particle laminated film may be sealed or overcoated in order to impart or improve surface hardness.

本発明で得られる微粒子積層膜の中には、微細な空隙が多数存在する。そのため、微粒子積層膜を樹脂に浸漬し、空隙を樹脂で埋め、その後硬化させることで、膜強度はさらに向上する。そのような樹脂材料は、例えば電離放射線硬化樹脂、熱硬化型樹脂、熱可塑性樹脂、反応性シリコーンオイルなどの樹脂組成物があげられる。また、金属アルコキシド溶液に浸漬したのち、乾燥して金属酸化物の硬化物で空隙を埋める方法やポリシラザンの溶液にディップして、転化させたシリカで空隙を埋めることもできる。また、これらの樹脂組成物や金属酸化物が微粒子積層膜上をコートしても良く、このオーバーコートは膜強度をさらに向上させる。なお、樹脂組成物や金属酸化物が微粒子積層膜中の空隙を埋めずに、オーバーコートされるだけでも良い。   Many fine voids exist in the fine particle laminated film obtained by the present invention. Therefore, the film strength is further improved by immersing the fine particle laminated film in the resin, filling the voids with the resin, and then curing. Examples of such resin materials include resin compositions such as ionizing radiation curable resins, thermosetting resins, thermoplastic resins, and reactive silicone oils. Alternatively, after immersing in a metal alkoxide solution, the voids can be filled with a converted silica by dipping into a solution of polysilazane by drying and filling the voids with a cured metal oxide. Further, these resin compositions and metal oxides may coat the fine particle laminated film, and this overcoat further improves the film strength. The resin composition or metal oxide may be overcoated without filling the voids in the fine particle laminated film.

微粒子積層膜の表面に、水や油脂成分などの汚れを防止するための防汚剤のコーティングを施してもよい。防汚剤としては、代表的には、シラン化合物、アルコキシ基を持ったパーフルオロシラン化合物(フッ素系シランカップリング剤)、フッ素化合物などの表面コーティング剤がある。シラン化合物はゾルゲル反応と同じく、加水分解により脱水や脱アルコールによる重縮合が起きてネットワーク化する。微粒子に金属酸化物を用いた場合は表面に水酸基が存在するので、シラン化合物を直接コートしても分子間結合をする。これらは最初にアルコキシ基が表面の水酸基と反応して脱アルコールして固定化され、さらにその後空気中の水分などによって加水分解が進み、縮合によって三次元的に結合したシロキサン結合ができて強固さが増し、表面の摩擦や磨耗等による機械的な消耗・劣化に対する耐久性に優れた特性を持つようになる。シラン化合物としてはペルヒドロポリシラザン等が挙げられる。このペルヒドロポリシラザンの有機溶媒溶液を塗布し、大気中で焼成することにより、水分や酸素と反応し、450℃程度で緻密な高純度シリカ(アモルファスSiO)膜が得られる。
また、フッ素含む上記表面コーティング剤は、表面にフッ素を主成分とする疎水基が存在するため高い撥水性を示すため好ましい。パーフルオロ樹脂等のフッ素樹脂をメチルノナフルオロイソブチルエーテルやメチルノナフルオロブチルエーテル等のフッ素系溶媒で希釈した溶液を塗布し、50〜130℃程度で熱処理することで、フッ素樹脂層が得られる。このようなコーティング剤の代表的なものとして、オプツールDSX(ダイキン社製)、デュラサーフDS5000(ハーベス社製)、ノベックEGC−1720(住友スリーエム社製)などがある。
An antifouling agent coating may be applied to the surface of the fine particle laminated film to prevent dirt such as water and oil and fat components. As the antifouling agent, there are typically surface coating agents such as a silane compound, a perfluorosilane compound having an alkoxy group (fluorine silane coupling agent), and a fluorine compound. As in the sol-gel reaction, the silane compound is networked by hydrolysis and polycondensation due to dehydration and dealcoholization. When a metal oxide is used for the fine particles, a hydroxyl group exists on the surface, so intermolecular bonding occurs even when the silane compound is directly coated. First, the alkoxy group reacts with the hydroxyl group on the surface to dealcoholize and immobilize, and then the hydrolysis proceeds with moisture in the air, resulting in the formation of a three-dimensionally bonded siloxane bond by condensation. As a result, it has excellent durability against mechanical wear and deterioration due to surface friction and wear. Examples of the silane compound include perhydropolysilazane. By applying this organic solvent solution of perhydropolysilazane and baking in the air, it reacts with moisture and oxygen, and a dense high-purity silica (amorphous SiO 2 ) film is obtained at about 450 ° C.
Further, the surface coating agent containing fluorine is preferable because it exhibits high water repellency because of the presence of a hydrophobic group mainly composed of fluorine on the surface. A fluororesin layer can be obtained by applying a solution obtained by diluting a fluororesin such as perfluororesin with a fluorine-based solvent such as methylnonafluoroisobutyl ether or methylnonafluorobutyl ether, and performing a heat treatment at about 50 to 130 ° C. Representative examples of such a coating agent include OPTOOL DSX (manufactured by Daikin), Durasurf DS5000 (manufactured by Harves), Novec EGC-1720 (manufactured by Sumitomo 3M), and the like.

フッ素系シランカップリング剤により形成された単分子層や、厚さが20nm程度までのオーバーコートであれば、固体基材上に微粒子積層膜が形成されてなる微粒子積層膜積層体の光学的機能に影響はない。なお、フッ素系シランカップリング剤は、化学式(I)における非加水分解性基がフルオロアルキル基や、パーフルオロポリエーテル基であるシランカップリング剤である。しかし、20nmを超えるオーバーコートを施す場合は、微粒子積層膜を形成した固体基材が、光学用途の部材として光学的機能を発現するためには、このオーバーコートの膜厚は制御されなくてはならない。光学機能発現に必要な膜厚は前記dで決定される。このような範囲で膜厚制御ができるオーバーコート膜の形成方法は、公知の任意の方法を用いることができる。例えば、ロールコート法やスピンコート法、ディップコート法、グラビアコート法、交互積層法などのウエットプロセスや、蒸着法、スパッタ法などのドライプロセス、またそれらを組み合わせた方法が挙げられる。 Optical function of a multilayer laminated film structure in which a particulate multilayer film is formed on a solid substrate if it is a monomolecular layer formed with a fluorine-based silane coupling agent or an overcoat with a thickness of up to about 20 nm There is no effect. The fluorine-based silane coupling agent is a silane coupling agent in which the non-hydrolyzable group in the chemical formula (I) is a fluoroalkyl group or a perfluoropolyether group. However, when an overcoat exceeding 20 nm is applied, the film thickness of this overcoat must be controlled in order for the solid substrate on which the fine particle laminated film is formed to exhibit an optical function as a member for optical applications. Don't be. Film thickness required in the optical function expression is determined in the d 1. As a method for forming an overcoat film that can control the film thickness within such a range, any known method can be used. For example, a wet process such as a roll coating method, a spin coating method, a dip coating method, a gravure coating method, and an alternating lamination method, a dry process such as a vapor deposition method and a sputtering method, and a method in which these are combined.

オーバーコートと微粒子積層膜の多層膜による光学部材の例としては、固体基材上に高屈折率nの微粒子積層膜を、光の波長λに対して、厚さ(d)が As an example of an optical member using a multilayer film of an overcoat and a fine particle laminate film, a fine particle laminate film having a high refractive index n H is formed on a solid substrate with a thickness (d 3 ) with respect to the wavelength λ of light.

Figure 2008114413
になるように形成し、その上に微粒子積層膜よりも低い屈折率nのオーバーコート膜を光の波長λに対して、厚さ(d)が
Figure 2008114413
An overcoat film having a refractive index n L lower than that of the fine particle laminated film is formed thereon with a thickness (d 4 ) with respect to the light wavelength λ.

Figure 2008114413
になるように形成した反射防止膜付き基材が挙げられ、波長λで基材よりも反射率が低減する。
Figure 2008114413
And a substrate with an antireflection film formed so that the reflectance is lower than that of the substrate at the wavelength λ.

(12)水晶振動子を用いた質量測定
水晶振動子は極めて微量の質量変化を計測する質量センサーとして利用されている。水晶振動子の電極表面に物質が付着すると、水晶振動子全体の質量が増加するため、水晶振動子の共振周波数は減少する。(表面技術、瀬尾眞浩著、「水晶振動微量天秤法」、Vol.45、No.10、pp.1003−1008、1994年、参照)この水晶振動子の質量増加量(Δm)は付着物質の質量に等しく、水晶振動子の共振周波数の減少分(ΔF)と次式に示すSauerbreyの式で関係付けられる。
(12) Mass measurement using a crystal resonator A crystal resonator is used as a mass sensor for measuring a very small amount of mass change. When a substance adheres to the electrode surface of the crystal resonator, the mass of the entire crystal resonator increases, and the resonance frequency of the crystal resonator decreases. (See Surface Technology, Akihiro Seo, “Crystal Microvibration Microbalance”, Vol. 45, No. 10, pp. 1003-1008, 1994) The mass increase (Δm) of this crystal resonator is an attached substance. And is related to the decrease (ΔF) in the resonance frequency of the crystal resonator by the Sauerbrey equation shown below.

Figure 2008114413
ただし、Aは電極面積、μは水晶のせん断応力(2.947×1010kg・m・s)、pは水晶の比重(2648kg/m)、Fはセンサーの共振基本周波数である。(Z.Phys.,G.Sauerbrey著,Vol.155,p.206,1959年)
Figure 2008114413
Where A is the electrode area, μ is the shear stress of the crystal (2.947 × 10 10 kg · m · s), p is the specific gravity of the crystal (2648 kg / m 3 ), and F 0 is the resonance fundamental frequency of the sensor. (Z. Phys., G. Sauerbrey, Vol. 155, p. 206, 1959)

交互積層法による微粒子積層膜の形成において、この水晶振動子を微粒子分散液に浸漬し、水晶振動子上に微粒子を吸着させることで、基材上に吸着する微粒子の質量を評価することができる。また、同じ水晶振動子を電解質ポリマー溶液に浸漬し、水晶振動子上に電解質ポリマーを吸着させることで、基板上に吸着する電解質ポリマーの質量を評価することができる。
交互積層法により形成した微粒子積層膜は、ほとんど微粒子から構成されており、電解質ポリマーの構成比は少ない。水晶振動子を用いた質量評価により、微粒子積層膜中の微粒子に対する電解質ポリマーの質量比を評価することができる。
微粒子と電解質ポリマーが同じ水晶振動子の電極面に吸着する場合、微粒子の質量(Δm)に対する電解質ポリマーの質量(Δm)の比(Δm/Δm)は、式(A)から次式のように導かれる。
In the formation of the fine particle laminated film by the alternating lamination method, the mass of the fine particles adsorbed on the substrate can be evaluated by immersing the quartz crystal in the fine particle dispersion and adsorbing the fine particles on the quartz crystal resonator. . Moreover, the mass of the electrolyte polymer adsorbed on the substrate can be evaluated by immersing the same crystal oscillator in an electrolyte polymer solution and adsorbing the electrolyte polymer on the crystal oscillator.
The fine particle laminated film formed by the alternating lamination method is almost composed of fine particles, and the composition ratio of the electrolyte polymer is small. By mass evaluation using a crystal resonator, the mass ratio of the electrolyte polymer to the fine particles in the fine particle laminated film can be evaluated.
If fine particles and the electrolyte polymer is adsorbed on the electrode surface of the same crystal oscillator, the ratio of the mass of the electrolyte polymer to the mass of particulates (Δm p) (Δm e) (Δm e / Δm p) , the following formulas (A) Guided by the formula.

Figure 2008114413
Figure 2008114413

ただし、ΔFは電解質ポリマーの吸着による共振周波数の減少分であり、ΔFは微粒子の吸着による共振周波数の減少分である。すなわち、微粒子に対する電解質ポリマーの質量比(Δm/Δm)は、微粒子に対する電解質ポリマーの吸着による共振周波数の減少分の比(ΔF/ΔF)として求めることができる。 However, ΔF e is a decrease in the resonance frequency due to adsorption of the electrolyte polymer, and ΔF p is a decrease in the resonance frequency due to adsorption of the fine particles. That is, the mass ratio (Δm e / Δm p ) of the electrolyte polymer to the fine particles can be obtained as the ratio (ΔF e / ΔF p ) of the decrease in the resonance frequency due to the adsorption of the electrolyte polymer to the fine particles.

本発明における微粒子積層膜を形成するために、固体基材を電解質ポリマー溶液に浸漬し、次いでリンス用の超純水に浸漬する工程(A)と、微粒子分散液に浸漬し、次いでリンス用の超純水に浸漬する工程(B)をこの順に施す。この工程(A)1回と工程(B)1回を順に行う工程を微粒子積層膜製膜工程の1サイクルとし、微粒子積層膜が光学機能を発現する厚さとなるサイクル数(Nmax)まで繰り返す。基材とともに水晶振動子を電解質ポリマー溶液、超純水、微粒子分散液、超純水の順に浸漬すると、電解質ポリマーの吸着とリンス、微粒子の吸着とリンスに伴う共振周波数の変化が図2のように測定できる。ここでは、微粒子分散液としてシリカ微粒子の水分散液(スノーテックス(ST)20)を、電解質ポリマー溶液としてPDDAを用いた。 In order to form the fine particle laminated film in the present invention, the step (A) of immersing the solid substrate in an electrolyte polymer solution and then immersing in ultrapure water for rinsing, immersing in a fine particle dispersion, and then rinsing The step (B) of immersing in ultrapure water is performed in this order. The step of sequentially performing the step (A) once and the step (B) once is defined as one cycle of the fine particle laminated film forming step, and is repeated up to the number of cycles (N max ) at which the fine particle laminated film has a thickness that exhibits the optical function. . When the quartz crystal unit is immersed together with the base material in the order of electrolyte polymer solution, ultrapure water, fine particle dispersion, and ultrapure water, the adsorption and rinsing of the electrolyte polymer, and the change in resonance frequency accompanying the adsorption and rinsing of the fine particles are as shown in FIG. Can be measured. Here, an aqueous dispersion of silica fine particles (Snowtex (ST) 20) was used as the fine particle dispersion, and PDDA was used as the electrolyte polymer solution.

周波数減少分(ΔF)は電解質ポリマーの吸着とリンスを経て水晶振動子および固体基材の上に残る電解質ポリマーの質量による周波数減少分である。このΔFを微粒子積層膜製膜工程が1回目からNmax回目までの間に測定し、それらの平均値をΔF avとする。また、周波数減少分(ΔF)は微粒子の吸着とリンスを経て水晶振動子および基材の上に残る微粒子の質量による周波数減少分である。このΔFを微粒子積層膜製膜工程が1からNmaxの間に測定し、それらの平均値をΔF avとする。これらを用いて、微粒子積層膜中の微粒子に対する電解質ポリマーの質量比(me/P)を次式のように求めることができる。 The frequency decrease (ΔF e ) is a frequency decrease due to the mass of the electrolyte polymer remaining on the quartz resonator and the solid substrate through the adsorption and rinsing of the electrolyte polymer. This ΔF e is measured between the first to N max times in the fine particle laminated film forming step, and the average value thereof is taken as ΔF e av . The frequency decrease (ΔF P ) is a frequency decrease due to the mass of the fine particles remaining on the quartz vibrator and the base material after the adsorption and rinsing of the fine particles. The [Delta] F P a particle laminated film forming step is measured between 1 and N max, and the average value and [Delta] F P av. Using these, the mass ratio (me / P ) of the electrolyte polymer with respect to the fine particles in the fine particle laminated film can be obtained by the following equation.

Figure 2008114413
Figure 2008114413

本発明で形成する微粒子積層膜では、微粒子に対する電解質ポリマーの質量比(me/p)は、普通、0.1%〜40%と小さい。微粒子の体積率が同じ場合、空隙を樹脂で完全に充填した微粒子積層膜の屈折率n’(式(4)参照)よりも空隙を有する微粒子積層膜の屈折率n(式(3)参照)のほうが低い。このことから、微粒子積層膜に含まれる微粒子に対する電解質ポリマーの体積率が小さいほど、すなわち微粒子積層膜に含まれる微粒子に対する電解質ポリマーの質量比(me/P)が小さいほど、微粒子積層膜の屈折率は低くなることがわかる。同じ微粒子の体積密度(充填率)において、樹脂中に微粒子が分散した膜に比べて、微粒子に対する電解質ポリマーの質量比(me/P)が0.1%〜40%と小さい微粒子積層膜の屈折率は低くなる。すなわち、微粒子積層膜の屈折率を下げるためには、電解質ポリマーの質量比(me/P)が0.1%〜40%が好ましく、0.1%〜20%がより好ましく、0.1%〜5%が最も好ましい。 In the fine particle laminated film formed in the present invention, the mass ratio ( me / p ) of the electrolyte polymer to the fine particles is usually as small as 0.1% to 40%. When the volume ratio of the fine particles are the same, the refractive index of the particle laminated film that completely fills the voids in the resin n c '(formula (4) see) the particle laminated film having pores than the refractive index n c (formula (3) See) is lower. From this, the smaller the volume ratio of the electrolyte polymer to the fine particles contained in the fine particle laminated film, that is, the smaller the mass ratio ( me / P ) of the electrolyte polymer to the fine particles contained in the fine particle laminated film, the more the refractive index of the fine particle laminated film. It can be seen that the rate is low. In the same fine particle volume density (filling rate), the mass ratio (me / P ) of the electrolyte polymer to the fine particles is 0.1% to 40%, which is smaller than that of the film in which the fine particles are dispersed in the resin. The refractive index is lowered. That is, in order to lower the refractive index of the fine particle multilayer film, the electrolyte polymer mass ratio ( me / P ) is preferably 0.1% to 40%, more preferably 0.1% to 20%, % To 5% is most preferred.

このようなバルクとは異なる屈折率は光学的な設計において屈折率の選択範囲を広げるため、微粒子積層膜が光学機能性を発現させる上で有用である。例えば、反射防止膜、反射膜、半透過半反射膜、可視光反射赤外線透過膜、赤外線反射可視光透過膜、青色反射膜、緑色反射膜、赤色反射膜、輝線カットフィルター膜、色調補正膜に微粒子積層膜を低屈折率膜として含む場合、微粒子積層膜の屈折率が低いほど、光学特性が向上させることや、多層構造膜の層数を減らすことが可能になる。   Such a refractive index different from that of the bulk broadens the selection range of the refractive index in the optical design, so that the fine particle laminated film is useful for developing optical functionality. For example, antireflection film, reflection film, semi-transmission semi-reflection film, visible light reflection infrared transmission film, infrared reflection visible light transmission film, blue reflection film, green reflection film, red reflection film, bright line cut filter film, color tone correction film When the fine particle laminated film is included as a low refractive index film, the lower the refractive index of the fine particle laminated film, the more the optical characteristics can be improved and the number of layers of the multilayer structure film can be reduced.

本発明における微粒子積層膜積層体は、低屈折率薄膜と高屈折率薄膜のいずれかもしくは両方を有する光学部材、例えば、反射防止膜付き基材、反射膜付き基材(ミラー)、半透過半反射膜付き基材(ハーフミラー)、可視光反射赤外線透過膜付き基材(コールドミラー)、赤外線反射可視光透過膜付き基材(ホットミラー)、青色反射膜付き基材と緑色反射膜付き基材と赤色反射膜付き基材(ダイクロックミラー)等として有用であり、レンズやガラス基板等を基材(又は固体基材)に用いればレーザー用光学素子に、フィルム等を基材(又は固体基材)に用いればプラズマディスプレイパネル、液晶表示装置等のディスプレイ用の反射防止フィルムや近赤外線カットフィルムに、偏光板や拡散シート、レンズシート等を基材(又は固体基材)に用いれば液晶表示装置用光学部材に好適に用いることができる。   The fine particle multilayer film laminate in the present invention is an optical member having either or both of a low refractive index thin film and a high refractive index thin film, for example, a substrate with an antireflection film, a substrate with a reflection film (mirror), a semi-transmissive semi-transparent Base material with reflective film (half mirror), Base material with visible light reflecting infrared transmissive film (cold mirror), Base material with infrared reflective visible light transmissive film (hot mirror), Base material with blue reflective film and base with green reflective film It is useful as a material and a base material (dichroic mirror) with a red reflecting film. If a lens, a glass substrate, or the like is used as a base material (or a solid base material), a film or the like is used as a base material (or a solid material). When used as a base material), a polarizing plate, a diffusion sheet, a lens sheet, etc. are used as a base material (or a solid substrate) for an antireflection film or a near-infrared cut film for displays such as plasma display panels and liquid crystal display devices. By using the) it can be suitably used for an optical member for liquid crystal display device.

1.基材
基材として両面に易接着層とよばれる極性基を付与された樹脂層があるPETフィルム(A4300、東洋紡績(株)製、屈折率1.65、100mm×100mm×125μm厚)、BK−5ガラス基板(マツナミ社製、25mm×75mm×0.7mm厚)、ポリカーボネート基板(ポリカエースEC100C、筒中社製、屈折率1.59、100mm×100mm×0.5mm厚)を用いた。
2.微粒子積層膜の形成(微粒子積層膜の製膜工程)
BET法で測定した平均一次粒子径が15nmのシリカ微粒子が分散したシリカ水分散液(スノーテックス(ST)20、日産化学工業(株)製、シリカゾル)を微粒子分散液として用い、PDDAを電解質ポリマーとして用いた。
溶液としては0.3重量%のPDDA水溶液と1.0重量%の微粒子分散液を調製した。微粒子分散液のpHは未調整で9.5であり、PDDA水溶液のpHは9に調製した。上記の固体基材と水晶振動子を、PDDA水溶液に1分間浸漬し、リンス用の超純水に3分間浸漬する工程(ア)、微粒子分散液に1分間浸漬した後、リンス用の超純水に3分間浸漬する工程(イ)をこの順に施した。この工程(ア)1回と工程(イ)1回を順に行うのを1サイクルとし、このサイクルを11回(微粒子交互積層回数)行い、固体基材表面及び水晶振動子上に微粒子積層膜を形成した。工程(ア)における水晶振動子の共振周波数をモニタすることで、水晶振動子上および固体基材上に残る電解質ポリマーの質量による周波数減少分(ΔF)を評価することができる。このΔFの評価をサイクル11回の間繰り返し、平均化することで、電解質ポリマーの質量による周波数減少分の平均値(ΔF av)を求めることができる。工程(イ)における水晶振動子の共振周波数をモニタすることで、水晶振動子上および固体基材上に残る微粒子の質量による周波数減少分(ΔF)を評価することができる。このΔFの評価をサイクル11回の間繰り返し、平均化することで、微粒子の質量による周波数減少分の平均値(ΔF av)を求めることができる。ΔF avとΔF avの比として、微粒子積層膜中の微粒子に対する電解質ポリマーの質量比(me/p)を求めることができる(式(8)参照)。
微粒子積層膜が積層された固体基材(微粒子積層膜積層体)を、厚さ0.5mmのステンレスからなるスライド立て(150mm×82mm×22mm)に立て、乾燥機(ヤマト科学製)により110℃で1時間の熱処理を行い、シリカ微粒子積層膜を有する光学部材を得た。
1. Base material PET film with a resin layer provided with polar groups called easy-adhesion layers on both sides as a base material (A4300, manufactured by Toyobo Co., Ltd., refractive index 1.65, 100 mm × 100 mm × 125 μm thickness), BK A −5 glass substrate (manufactured by Matsunami, 25 mm × 75 mm × 0.7 mm thick) and a polycarbonate substrate (Polycaace EC100C, manufactured by Tsutsuchusha, refractive index 1.59, 100 mm × 100 mm × 0.5 mm thick) were used.
2. Formation of fine particle laminated film (Film fine particle film forming process)
A silica aqueous dispersion (Snowtex (ST) 20, manufactured by Nissan Chemical Industries, Ltd., silica sol) in which silica fine particles having an average primary particle size of 15 nm measured by the BET method are dispersed is used as the fine particle dispersion, and PDDA is used as an electrolyte polymer. Used as.
As a solution, a 0.3 wt% PDDA aqueous solution and a 1.0 wt% fine particle dispersion were prepared. The pH of the fine particle dispersion was unadjusted to 9.5, and the pH of the PDDA aqueous solution was adjusted to 9. Step (a) of immersing the solid substrate and the crystal resonator in a PDDA aqueous solution for 1 minute and immersing in ultra pure water for rinsing for 3 minutes, immersing in a fine particle dispersion for 1 minute, and then rinsing ultra pure The step (a) of immersing in water for 3 minutes was performed in this order. This step (a) once and step (b) once are sequentially performed as one cycle, and this cycle is repeated 11 times (the number of times of fine particle alternate lamination), and the fine particle laminated film is formed on the surface of the solid substrate and the crystal resonator. Formed. By monitoring the resonance frequency of the crystal resonator in the step (a), the frequency decrease (ΔF e ) due to the mass of the electrolyte polymer remaining on the crystal resonator and the solid substrate can be evaluated. By repeating this evaluation of ΔF e for 11 cycles and averaging, an average value (ΔF e av ) of frequency decrease due to the mass of the electrolyte polymer can be obtained. By monitoring the resonance frequency of the crystal unit in the step (A), it is possible to evaluate the amount of frequency decrease (ΔF p ) due to the mass of the fine particles remaining on the crystal unit and the solid substrate. By repeating this evaluation of ΔF p for 11 cycles and averaging, the average value (ΔF p av ) of the frequency decrease due to the mass of the fine particles can be obtained. As a ratio of ΔF e av and ΔF p av , the mass ratio (me / p ) of the electrolyte polymer to the fine particles in the fine particle laminated film can be obtained (see formula (8)).
A solid substrate (fine particle laminated film laminated body) on which a fine particle laminated film is laminated is placed on a slide stand (150 mm × 82 mm × 22 mm) made of stainless steel having a thickness of 0.5 mm, and 110 ° C. by a dryer (manufactured by Yamato Kagaku). Was subjected to a heat treatment for 1 hour to obtain an optical member having a silica fine particle laminated film.

(ヘイズ値の測定)
前記で得た微粒子積層膜が両面に形成されたBK−5ガラス基板のヘイズ値を、濁度計(日本電色工業社製)にてJIS K 7361−1−1997に準拠して測定した結果、0.4%であった。BK−5ガラス基板のみのヘイズ値を同様に測定した結果、0.1%であった。微粒子積層膜が両面に形成された固体基材のヘイズ値から、固体基材のみのヘイズ値を差し引くことで微粒子積層膜の濁度を求めた。その結果、微粒子積層膜の濁度は0.3%であり、微粒子積層膜の透明性が非常に高いことがわかった。
(透過率と表面反射率の測定)
この微粒子積層膜積層体(シリカ微粒子積層膜が両面に形成されたBK−5ガラス基板)の透過スペクトルを可視紫外分光光度計(日本分光(株)製、V−570)にて測定したところ、波長400〜800nmでの最大の透過率は98%であった。また、シリカ微粒子積層膜が形成されたBK−5ガラス基板の片面を、スチールウール(日本スチールウール社製、#0000)でガラス面が露出するまで研磨して積層された膜を除去した。露出したガラス面に黒い粘着テープ(ニチバン(株)製、VT−196)を気泡が残らないように貼り付け、微粒子積層膜が形成された片面の表面反射率のスペクトルを可視紫外分光光度計(日本分光(株)製、V−570)にて測定した。シリカ微粒子積層膜が形成されたBK−5ガラス基板の波長400〜800nmでの最小の表面反射率は0.5%であった。
BK−5ガラス基板の透過率は91%、表面反射率は4.5%であることから、優れた特性の反射防止膜が形成され、透過率向上にも寄与したことがわかった。
水晶振動子の共振周波数変化から評価した微粒子積層膜中の微粒子に対する電解質ポリマーの質量比(me/p)は3%であった。これより、微粒子積層膜はほとんど微粒子のみから構成されていることがわかる。
(Measurement of haze value)
The result of having measured the haze value of the BK-5 glass substrate in which the fine particle laminated film obtained above was formed on both surfaces in accordance with JIS K 7361-1-1997 with a turbidimeter (manufactured by Nippon Denshoku Industries Co., Ltd.). 0.4%. The haze value of only the BK-5 glass substrate was measured in the same manner, and as a result, it was 0.1%. The turbidity of the fine particle laminate film was determined by subtracting the haze value of only the solid substrate from the haze value of the solid substrate on which the fine particle laminate film was formed on both surfaces. As a result, the turbidity of the fine particle laminate film was 0.3%, and it was found that the transparency of the fine particle laminate film was very high.
(Measurement of transmittance and surface reflectance)
When the transmission spectrum of this fine particle laminate film (BK-5 glass substrate having a silica fine particle laminate film formed on both surfaces) was measured with a visible ultraviolet spectrophotometer (manufactured by JASCO Corporation, V-570), The maximum transmittance at a wavelength of 400 to 800 nm was 98%. Further, one side of the BK-5 glass substrate on which the silica fine particle laminated film was formed was polished with steel wool (manufactured by Nippon Steel Wool Co., Ltd., # 0000) until the glass surface was exposed to remove the laminated film. A black adhesive tape (VT-196, manufactured by Nichiban Co., Ltd.) was attached to the exposed glass surface so that no bubbles remained, and the surface reflectance spectrum of one surface on which the fine particle multilayer film was formed was measured with a visible ultraviolet spectrophotometer ( It was measured by JASCO Corporation V-570). The minimum surface reflectance at a wavelength of 400 to 800 nm of the BK-5 glass substrate on which the silica fine particle laminated film was formed was 0.5%.
Since the transmittance of the BK-5 glass substrate was 91% and the surface reflectance was 4.5%, it was found that an antireflection film having excellent characteristics was formed and contributed to the improvement of the transmittance.
The mass ratio (me / p ) of the electrolyte polymer to the fine particles in the fine particle laminated film evaluated from the change in the resonance frequency of the crystal resonator was 3%. From this, it is understood that the fine particle laminated film is composed of almost only fine particles.

(微粒子積層膜の密着性の評価)
BK−5ガラス基板上の粒子積層膜とポリカーボネート基板上の粒子積層膜の密着性を次のようにテープ剥離試験を行なって評価した。粘着テープに粘着力39cN/25mm、幅25mmの粘着テープ(日立化成社製ヒタレックスP−3010)を使用した。ロールラミネータ(ラミーコーポレーション社製LMP−350EX)を用いて、ロール荷重0.3MPa、送り速度0.3m/min、温度20℃の条件で粘着テープを微粒子積層膜へ貼り付けた。テープを密着させてから1分後に、テープの一方の端を基材面に直角に持ち上げ、瞬間的に引き剥がした。微粒子積層膜が損傷せずに残存するか否かを表面反射スペクトルから判断した。微粒子積層膜が形成した固体基材の表面反射率の波長400〜800nmでの極小値をλminとし、粘着テープを貼る前と剥離した後のλminの減少量が30nmより大きい場合に微粒子積層膜が損傷したと定義した。BK−5ガラス基板上の微粒子積層膜は損傷せずに残存し、ポリカーボネート基板上の微粒子積層膜も損傷せずに残存した(表1に膜残存と記載)。
(Evaluation of adhesion of fine particle laminated film)
The adhesion between the particle laminate film on the BK-5 glass substrate and the particle laminate film on the polycarbonate substrate was evaluated by performing a tape peeling test as follows. An adhesive tape (Hitalex P-3010 manufactured by Hitachi Chemical Co., Ltd.) having an adhesive strength of 39 cN / 25 mm and a width of 25 mm was used as the adhesive tape. Using a roll laminator (LMP-350EX manufactured by Lamy Corporation), an adhesive tape was attached to the fine particle laminate film under the conditions of a roll load of 0.3 MPa, a feed rate of 0.3 m / min, and a temperature of 20 ° C. One minute after the tape was brought into close contact, one end of the tape was lifted at a right angle to the substrate surface and peeled off instantaneously. It was judged from the surface reflection spectrum whether the fine particle laminated film remained without being damaged. When the minimum value of the surface reflectance of the solid base material formed with the fine particle laminate film at a wavelength of 400 to 800 nm is λ min, and the decrease amount of λ min before and after the adhesive tape is applied is greater than 30 nm, the fine particle laminate The membrane was defined as damaged. The fine particle laminated film on the BK-5 glass substrate remained without being damaged, and the fine particle laminated film on the polycarbonate substrate was also left without being damaged (described as film remaining in Table 1).

(微粒子積層膜の鉛筆硬度の測定)
易接着層があるPETフィルム上の粒子積層膜の鉛筆硬度を、JIS K 5400−1990に準拠して次のように評価した。
電子天秤(研精工業(株)製)の上に光学用X軸可動ステージを固定し、このX軸可動ステージの上に厚さ3mmのステンレス板を置き、このステンレス板上に微粒子積層膜が形成された固体基材を固定した。この電子天秤をラボジャッキ上に固定した。5cm程度に切ったプラスチックホースに鉛筆を挿入し、この鉛筆が挿入されたプラスチックホースをランプクランプ等で挟み、このランプクランプ等をムッフ等によりスタンドに固定した。微粒子積層膜が形成された固体基材を、鉛筆に押し付けるようにラボジャッキを伸ばし、電子天秤の重さが1.00±0.05kg増加するようにラボジャッキを伸ばした。この時、鉛筆の芯の先端は平坦で角が鋭くなるように400番の研磨紙によって研がれており、鉛筆は微粒子積層膜が形成された固体基材面に対して45度の角度を保つように固定されている。鉛筆の芯の向きと反対に固体基材が移動するように、X軸可動ステージを動かした。この時、X軸可動ステージを動かす速度は約1cm/s、距離は約1cmである。引っかかれた後に微粒子積層膜表面に残った鉛筆の粉を、エアーブローで吹き飛ばした後、残った鉛筆の粉の塊にプラスチック消しゴム(トンボ鉛筆製、PE01)を擦らないように押し付けて鉛筆の粉をできるだけ取り除いた。鉛筆を1回引っかく毎に、鉛筆は400番の研磨紙で研いだ。
引っかいた方向に対して直角に、固体基材面に45度の角度から微粒子積層膜に光を照射し、45度の角度で反射する光(鏡面反射光)を目視によって観察し、膜表面にわずかに食い込むような傷が見えたときにすり傷が付いたと判別した。5回の試験で2回以上膜にすり傷が認められないときは、上位の濃度記号の鉛筆に取り替えて同様に試験を行い、膜のすり傷が2回以上になる鉛筆を見つけ、その鉛筆の濃度記号より一段階下位の濃度記号をすり傷評価による鉛筆硬度とした。易接着層付きPETフィルム上に形成された微粒子積層膜の鉛筆硬度はHであった。
(Measurement of pencil hardness of fine particle laminated film)
The pencil hardness of the particle laminated film on the PET film having the easy adhesion layer was evaluated as follows based on JIS K 5400-1990.
An optical X-axis movable stage is fixed on an electronic balance (manufactured by Kensei Kogyo Co., Ltd.), a stainless steel plate having a thickness of 3 mm is placed on the X-axis movable stage, and a fine particle laminated film is placed on the stainless steel plate. The formed solid substrate was fixed. This electronic balance was fixed on a lab jack. A pencil was inserted into a plastic hose cut to about 5 cm, the plastic hose into which the pencil was inserted was sandwiched with a lamp clamp or the like, and the lamp clamp or the like was fixed to a stand with a muff or the like. The lab jack was extended so that the solid substrate on which the fine particle laminated film was formed was pressed against a pencil, and the lab jack was extended so that the weight of the electronic balance was increased by 1.00 ± 0.05 kg. At this time, the tip of the pencil core is sharpened by polishing paper No. 400 so that the corner is flat and sharp, and the pencil makes an angle of 45 degrees with respect to the solid substrate surface on which the fine particle laminated film is formed. It is fixed to keep. The X-axis movable stage was moved so that the solid substrate moved in the direction opposite to the direction of the pencil lead. At this time, the moving speed of the X-axis movable stage is about 1 cm / s, and the distance is about 1 cm. The pencil powder remaining on the surface of the fine particle laminate film after being pulled is blown off with an air blow, and then the pencil powder is pressed against the lump of the remaining pencil powder without rubbing a plastic eraser (made by dragonfly pencil, PE01). Was removed as much as possible. Each time I scratched the pencil, the pencil was sharpened with # 400 abrasive paper.
Light is applied to the layered particulate film from a 45 degree angle to the solid substrate surface at a right angle to the scratched direction, and the light reflected from the 45 degree angle (specular reflection light) is visually observed. When a slight bite was seen, it was determined that there was a scratch. If there is no scratch on the membrane more than once in 5 tests, replace the pencil with the higher density symbol and perform the same test to find a pencil with more than 2 scratches on the membrane. The density symbol that is one step lower than the density symbol of No. was defined as pencil hardness by scratch evaluation. The pencil hardness of the fine particle multilayer film formed on the PET film with an easy adhesion layer was H.

BET法で測定した平均一次粒子径が15nmのシリカ微粒子が分散したシリカ水分散液(スノーテックス(ST)O、日産化学工業(株)製、シリカゾル)を微粒子分散液として用いたこと、微粒子交互積層回数を3回としたこと以外は実施例1に準じて微粒子積層膜積層体を作製した。
この微粒子積層膜積層体(シリカ微粒子積層膜が両面に形成されたBK−5ガラス基板)の透過スペクトルを実施例1と同様に測定したところ、波長400〜800nmでの最大の透過率は98%であった。実施例1と同様に微粒子膜が形成された片面の表面反射スペクトルを測定したところ、波長400〜800nmでの最小の表面反射率は0.5%であった。
実施例1と同様に評価した微粒子積層膜の濁度は0.3%であった。
実施例1と同様に密着性を評価した結果、BK−5ガラス基板上の微粒子積層膜は損傷せずに残存し、ポリカーボネート基板上の微粒子積層膜も損傷せずに残存した。
Silica aqueous dispersion (Snowtex (ST) O, manufactured by Nissan Chemical Industries, Ltd., silica sol) in which silica fine particles having an average primary particle diameter of 15 nm measured by the BET method are dispersed is used as the fine particle dispersion, alternating fine particles A fine-particle laminated film laminate was produced according to Example 1 except that the number of laminations was three.
When the transmission spectrum of this fine particle laminate film laminate (BK-5 glass substrate having a silica fine particle laminate film formed on both sides) was measured in the same manner as in Example 1, the maximum transmittance at a wavelength of 400 to 800 nm was 98%. Met. When the surface reflection spectrum of one surface on which the fine particle film was formed was measured in the same manner as in Example 1, the minimum surface reflectance at a wavelength of 400 to 800 nm was 0.5%.
The turbidity of the fine particle laminated film evaluated in the same manner as in Example 1 was 0.3%.
As a result of evaluating the adhesiveness in the same manner as in Example 1, the fine particle laminated film on the BK-5 glass substrate remained without being damaged, and the fine particle laminated film on the polycarbonate substrate remained without being damaged.

BET法で測定した平均一次粒子径が15nmのシリカ微粒子が分散したシリカ水分散液(スノーテックス(ST)N、日産化学工業(株)製、シリカゾル)を微粒子分散液として用いたこと、微粒子交互積層回数を12回としたこと、微粒子積層膜積層体の110℃で1時間の熱処理を行なわなかったこと以外は実施例1に準じて微粒子積層膜積層体を作製した。この微粒子積層膜積層体(シリカ微粒子積層膜が両面に形成されたBK−5ガラス基板)の透過スペクトルを実施例1と同様に測定したところ、波長400〜800nmでの最大の透過率は98%であった。実施例1と同様に微粒子膜が形成された片面の表面反射スペクトルを測定したところ、波長400〜800nmでの最小の表面反射率は0.8%であった。
実施例1と同様に評価した微粒子積層膜の濁度は0.3%であった。実施例1と同様に密着性を評価した結果、BK−5ガラス基板上の微粒子積層膜は損傷せずに残存し、ポリカーボネート基板上の微粒子積層膜も損傷せずに残存した。
Silica aqueous dispersion (Snowtex (ST) N, manufactured by Nissan Chemical Industries, Ltd., silica sol) in which silica fine particles having an average primary particle diameter of 15 nm measured by the BET method are dispersed is used as the fine particle dispersion, alternating fine particles A fine particle laminated film laminate was produced in the same manner as in Example 1 except that the number of times of lamination was 12 and the fine particle laminated film laminate was not heat-treated at 110 ° C. for 1 hour. When the transmission spectrum of this fine particle laminate film laminate (BK-5 glass substrate having a silica fine particle laminate film formed on both sides) was measured in the same manner as in Example 1, the maximum transmittance at a wavelength of 400 to 800 nm was 98%. Met. When the surface reflection spectrum of one surface on which the fine particle film was formed was measured in the same manner as in Example 1, the minimum surface reflectance at a wavelength of 400 to 800 nm was 0.8%.
The turbidity of the fine particle laminated film evaluated in the same manner as in Example 1 was 0.3%. As a result of evaluating the adhesiveness in the same manner as in Example 1, the fine particle laminated film on the BK-5 glass substrate remained without being damaged, and the fine particle laminated film on the polycarbonate substrate remained without being damaged.

BET法で測定した平均一次粒子径が10nmのシリカ微粒子が分散したシリカ水分散液(スノーテックス(ST)S、日産化学工業(株)製、シリカゾル)を微粒子分散液として用いたこと、微粒子交互積層回数を18回としたこと、微粒子積層膜積層体の110℃で1時間の熱処理を行なわなかったこと以外は実施例1に準じて微粒子積層膜積層体を作製した。この微粒子積層膜積層体(シリカ微粒子積層膜が両面に形成されたBK−5ガラス基板)の透過スペクトルを実施例1と同様に測定したところ、波長400〜800nmでの最大の透過率は97%であった。実施例1と同様に微粒子膜が形成された片面の表面反射スペクトルを測定したところ、波長400〜800nmでの最小の表面反射率は1.1%であった。
実施例1と同様に評価した微粒子積層膜の濁度は0.3%であった。実施例1と同様に密着性を評価した結果、BK−5ガラス基板上の微粒子積層膜は損傷せずに残存し、ポリカーボネート基板上の微粒子積層膜も損傷せずに残存した。
Silica aqueous dispersion (Snowtex (ST) S, manufactured by Nissan Chemical Industries, Ltd., silica sol) in which silica fine particles having an average primary particle diameter of 10 nm measured by the BET method are dispersed is used as the fine particle dispersion. A fine particle laminated film laminate was produced in the same manner as in Example 1 except that the number of times of lamination was 18 and the fine particle laminated film laminated body was not heat-treated at 110 ° C. for 1 hour. When the transmission spectrum of this fine particle laminated film laminate (BK-5 glass substrate having a silica fine particle laminated film formed on both surfaces) was measured in the same manner as in Example 1, the maximum transmittance at a wavelength of 400 to 800 nm was 97%. Met. When the surface reflection spectrum of one surface on which the fine particle film was formed was measured in the same manner as in Example 1, the minimum surface reflectance at a wavelength of 400 to 800 nm was 1.1%.
The turbidity of the fine particle laminated film evaluated in the same manner as in Example 1 was 0.3%. As a result of evaluating the adhesiveness in the same manner as in Example 1, the fine particle laminated film on the BK-5 glass substrate remained without being damaged, and the fine particle laminated film on the polycarbonate substrate remained without being damaged.

BET法で測定した平均一次粒子径が10nmのシリカ微粒子が分散したシリカ水分散液(スノーテックス(ST)OS、日産化学工業(株)製、シリカゾル)を微粒子分散液として用いたこと、微粒子交互積層回数を3回としたこと以外は実施例1に準じて微粒子積層膜積層体を作製した。この微粒子積層膜積層体(シリカ微粒子積層膜が両面に形成されたBK−5ガラス基板)の透過スペクトルを実施例1と同様に測定したところ、波長400〜800nmでの最大の透過率は98%であった。実施例1と同様に微粒子膜が形成された片面の表面反射スペクトルを測定したところ、波長400〜800nmでの最小の表面反射率は0.7%であった。
実施例1と同様に評価した微粒子積層膜の濁度は0.3%であった。実施例1と同様に密着性を評価した結果、BK−5ガラス基板上の微粒子積層膜は損傷せずに残存し、ポリカーボネート基板上の微粒子積層膜も損傷せずに残存した。
Silica aqueous dispersion (Snowtex (ST) OS, manufactured by Nissan Chemical Industries, Ltd., silica sol) in which silica fine particles having an average primary particle diameter of 10 nm measured by the BET method are dispersed is used as the fine particle dispersion, alternating fine particles A fine-particle laminated film laminate was produced according to Example 1 except that the number of laminations was three. When the transmission spectrum of this fine particle laminate film laminate (BK-5 glass substrate having a silica fine particle laminate film formed on both sides) was measured in the same manner as in Example 1, the maximum transmittance at a wavelength of 400 to 800 nm was 98%. Met. When the surface reflection spectrum of one surface on which the fine particle film was formed was measured in the same manner as in Example 1, the minimum surface reflectance at a wavelength of 400 to 800 nm was 0.7%.
The turbidity of the fine particle laminated film evaluated in the same manner as in Example 1 was 0.3%. As a result of evaluating the adhesiveness in the same manner as in Example 1, the fine particle laminated film on the BK-5 glass substrate remained without being damaged, and the fine particle laminated film on the polycarbonate substrate remained without being damaged.

BET法で測定した平均一次粒子径が10nmのシリカ微粒子が分散したシリカ水分散液(スノーテックス(ST)NS、日産化学工業(株)製、シリカゾル)を微粒子分散液として用いたこと、微粒子交互積層回数を16回としたこと、微粒子積層膜積層体の110℃で1時間の熱処理を行なわなかったこと以外は実施例1に準じて微粒子積層膜積層体を作製した。この微粒子積層膜積層体(シリカ微粒子積層膜が両面に形成されたBK−5ガラス基板)の透過スペクトルを実施例1と同様に測定したところ、波長400〜800nmでの最大の透過率は97%であった。実施例1と同様に微粒子膜が形成された片面の表面反射スペクトルを測定したところ、波長400〜800nmでの最小の表面反射率は1.2%であった。
実施例1と同様に評価した微粒子積層膜の濁度は0.3%であった。実施例1と同様に密着性を評価した結果、BK−5ガラス基板上の微粒子積層膜は損傷せずに残存し、ポリカーボネート基板上の微粒子積層膜も損傷せずに残存した。
A silica aqueous dispersion (Snowtex (ST) NS, manufactured by Nissan Chemical Industries, Ltd., silica sol) in which silica fine particles having an average primary particle diameter of 10 nm measured by the BET method are dispersed is used as the fine particle dispersion. A fine particle laminated film laminate was produced in the same manner as in Example 1 except that the number of times of lamination was 16 and the fine particle laminated film laminate was not heat-treated at 110 ° C. for 1 hour. When the transmission spectrum of this fine particle laminated film laminate (BK-5 glass substrate having a silica fine particle laminated film formed on both surfaces) was measured in the same manner as in Example 1, the maximum transmittance at a wavelength of 400 to 800 nm was 97%. Met. When the surface reflection spectrum of one surface on which the fine particle film was formed was measured in the same manner as in Example 1, the minimum surface reflectance at a wavelength of 400 to 800 nm was 1.2%.
The turbidity of the fine particle laminated film evaluated in the same manner as in Example 1 was 0.3%. As a result of evaluating the adhesiveness in the same manner as in Example 1, the fine particle laminated film on the BK-5 glass substrate remained without being damaged, and the fine particle laminated film on the polycarbonate substrate remained without being damaged.

シアーズ法で測定した平均一次粒子径が5nmのシリカ微粒子が分散したシリカ水分散液(スノーテックス(ST)XS、日産化学工業(株)製、シリカゾル)を微粒子分散液として用いたこと、微粒子交互積層回数を22回としたこと、微粒子積層膜積層体の110℃で1時間の熱処理を行なわなかったこと以外は実施例1に準じて微粒子積層膜積層体を作製した。この微粒子積層膜積層体(シリカ微粒子積層膜が両面に形成されたBK−5ガラス基板)の透過スペクトルを実施例1と同様に測定したところ、波長400〜800nmでの最大の透過率は97%であった。実施例1と同様に微粒子膜が形成された片面の表面反射スペクトルを測定したところ、波長400〜800nmでの最小の表面反射率は1.3%であった。
実施例1と同様に評価した微粒子積層膜の濁度は0.3%であった。粘着テープに粘着力180cN/25mm、幅25mmの粘着テープ(三井化学社製イクロステープSB−135S−BN)を使用したこと以外は実施例1と同様に密着性を評価した。その結果、BK−5ガラス基板上の微粒子積層膜は損傷せずに残存し、ポリカーボネート基板上の微粒子積層膜も損傷せずに残存した。
Silica aqueous dispersion (Snowtex (ST) XS, manufactured by Nissan Chemical Industries, Ltd., silica sol) in which silica fine particles having an average primary particle diameter of 5 nm measured by the Sears method are dispersed are used as the fine particle dispersion. A fine particle laminated film laminate was produced in the same manner as in Example 1 except that the number of laminations was 22 and the fine particle laminated film laminated body was not heat-treated at 110 ° C. for 1 hour. When the transmission spectrum of this fine particle laminated film laminate (BK-5 glass substrate having a silica fine particle laminated film formed on both surfaces) was measured in the same manner as in Example 1, the maximum transmittance at a wavelength of 400 to 800 nm was 97%. Met. When the surface reflection spectrum of one surface on which the fine particle film was formed was measured in the same manner as in Example 1, the minimum surface reflectance at a wavelength of 400 to 800 nm was 1.3%.
The turbidity of the fine particle laminated film evaluated in the same manner as in Example 1 was 0.3%. Adhesiveness was evaluated in the same manner as in Example 1 except that an adhesive tape having an adhesive strength of 180 cN / 25 mm and a width of 25 mm was used as the adhesive tape (Icross Tape SB-135S-BN manufactured by Mitsui Chemicals, Inc.). As a result, the fine particle laminated film on the BK-5 glass substrate remained without being damaged, and the fine particle laminated film on the polycarbonate substrate remained without being damaged.

シアーズ法で測定した平均一次粒子径が5nmのシリカ微粒子が分散したシリカ水分散液(スノーテックス(ST)OXS、日産化学工業(株)製、シリカゾル)を微粒子分散液として用いたこと、微粒子交互積層回数を5回としたこと、微粒子積層膜積層体の110℃で1時間の熱処理を行なわなかったこと以外は実施例1に準じて微粒子積層膜積層体を作製した。この微粒子積層膜積層体(シリカ微粒子積層膜が両面に形成されたBK−5ガラス基板)の透過スペクトルを実施例1と同様に測定したところ、波長400〜800nmでの最大の透過率は98%であった。実施例1と同様に微粒子膜が形成された片面の表面反射スペクトルを測定したところ、波長400〜800nmでの最小の表面反射率は0.9%であった。
実施例1と同様に評価した微粒子積層膜の濁度は0.3%であった。
実施例7と同様に密着性を評価した結果、BK−5ガラス基板上の微粒子積層膜は損傷せずに残存し、ポリカーボネート基板上の微粒子積層膜も損傷せずに残存した。
Silica aqueous dispersion (Snowtex (ST) OXS, manufactured by Nissan Chemical Industries, Ltd., silica sol) in which silica fine particles having an average primary particle diameter of 5 nm measured by the Sears method are dispersed are used as the fine particle dispersion. A fine particle laminated film laminate was produced in the same manner as in Example 1 except that the number of laminations was five and that the heat treatment of the fine particle laminated film laminate was not performed at 110 ° C. for 1 hour. When the transmission spectrum of this fine particle laminate film laminate (BK-5 glass substrate having a silica fine particle laminate film formed on both sides) was measured in the same manner as in Example 1, the maximum transmittance at a wavelength of 400 to 800 nm was 98%. Met. When the surface reflection spectrum of one surface on which the fine particle film was formed was measured in the same manner as in Example 1, the minimum surface reflectance at a wavelength of 400 to 800 nm was 0.9%.
The turbidity of the fine particle laminated film evaluated in the same manner as in Example 1 was 0.3%.
As a result of evaluating the adhesiveness in the same manner as in Example 7, the fine particle laminated film on the BK-5 glass substrate remained without being damaged, and the fine particle laminated film on the polycarbonate substrate remained without being damaged.

シアーズ法で測定した平均一次粒子径が5nmのシリカ微粒子が分散したシリカ水分散液(スノーテックス(ST)NXS、日産化学工業(株)製、シリカゾル)を微粒子分散液として用いたこと、微粒子交互積層回数を18回としたこと、微粒子積層膜積層体の110℃で1時間の熱処理を行なわなかったこと以外は実施例1に準じて微粒子積層膜積層体を作製した。この微粒子積層膜積層体(シリカ微粒子積層膜が両面に形成されたBK−5ガラス基板)の透過スペクトルを実施例1と同様に測定したところ、波長400〜800nmでの最大の透過率は96%であった。実施例1と同様に微粒子膜が形成された片面の表面反射スペクトルを測定したところ、波長400〜800nmでの最小の表面反射率は1.9%であった。
実施例1と同様に評価した微粒子積層膜の濁度は0.3%であった。
実施例7と同様に密着性を評価した結果、BK−5ガラス基板上の微粒子積層膜は損傷せずに残存し、ポリカーボネート基板上の微粒子積層膜も損傷せずに残存した。
A silica aqueous dispersion (Snowtex (ST) NXS, manufactured by Nissan Chemical Industries, Ltd., silica sol) in which silica fine particles having an average primary particle diameter of 5 nm measured by the Sears method are dispersed is used as the fine particle dispersion, and the alternating fine particles A fine particle laminated film laminate was produced in the same manner as in Example 1 except that the number of laminations was 18 and the fine particle laminated film laminated body was not heat-treated at 110 ° C. for 1 hour. When the transmission spectrum of this fine particle laminate film (BK-5 glass substrate having a silica fine particle laminate film formed on both sides) was measured in the same manner as in Example 1, the maximum transmittance at a wavelength of 400 to 800 nm was 96%. Met. When the surface reflection spectrum of one surface on which the fine particle film was formed was measured in the same manner as in Example 1, the minimum surface reflectance at a wavelength of 400 to 800 nm was 1.9%.
The turbidity of the fine particle laminated film evaluated in the same manner as in Example 1 was 0.3%.
As a result of evaluating the adhesiveness in the same manner as in Example 7, the fine particle laminated film on the BK-5 glass substrate remained without being damaged, and the fine particle laminated film on the polycarbonate substrate remained without being damaged.

BET法で測定した平均一次粒子径が14nmの数珠状シリカ微粒子が分散したシリカ水分散液(スノーテックス(ST)PSS、日産化学工業(株)製、シリカゾル)を微粒子分散液として用いたこと、微粒子交互積層回数を9回としたこと、微粒子積層膜積層体の130℃で2時間の熱処理を行なったこと以外は実施例1に準じて微粒子積層膜積層体を作製した。この微粒子積層膜積層体(シリカ微粒子積層膜が両面に形成されたBK−5ガラス基板)の透過スペクトルを実施例1と同様に測定したところ、波長400〜800nmでの最大の透過率は99%であった。実施例1と同様に微粒子膜が形成された片面の表面反射スペクトルを測定したところ、波長400〜800nmでの最小の表面反射率は0.2%であった。
実施例1と同様に評価した微粒子積層膜の濁度は0.3%であった。
実施例1と同様に密着性を評価した結果、BK−5ガラス基板上の微粒子積層膜は損傷せずに残存し、ポリカーボネート基板上の微粒子積層膜も損傷せずに残存した。
A silica aqueous dispersion (Snowtex (ST) PSS, manufactured by Nissan Chemical Industries, Ltd., silica sol) in which bead-like silica fine particles having an average primary particle size of 14 nm measured by the BET method are dispersed is used as the fine particle dispersion. A fine particle laminated film laminate was produced in the same manner as in Example 1 except that the number of fine particle alternating laminations was nine and that the fine particle laminated film laminate was heat-treated at 130 ° C. for 2 hours. When the transmission spectrum of this fine particle laminate film laminate (BK-5 glass substrate having a silica fine particle laminate film formed on both sides) was measured in the same manner as in Example 1, the maximum transmittance at a wavelength of 400 to 800 nm was 99%. Met. When the surface reflection spectrum of one surface on which the fine particle film was formed was measured in the same manner as in Example 1, the minimum surface reflectance at a wavelength of 400 to 800 nm was 0.2%.
The turbidity of the fine particle laminated film evaluated in the same manner as in Example 1 was 0.3%.
As a result of evaluating the adhesiveness in the same manner as in Example 1, the fine particle laminated film on the BK-5 glass substrate remained without being damaged, and the fine particle laminated film on the polycarbonate substrate remained without being damaged.

BET法で測定した平均一次粒子径が14nmの数珠状シリカ微粒子が分散したシリカ水分散液(スノーテックス(ST)PSSO、日産化学工業(株)製、シリカゾル)を微粒子分散液として用いたこと、微粒子交互積層回数を3回としたこと、微粒子積層膜積層体の130℃で2時間の熱処理を行なったこと以外は実施例1に準じて微粒子積層膜積層体を作製した。この微粒子積層膜積層体(シリカ微粒子積層膜が両面に形成されたBK−5ガラス基板)の透過スペクトルを実施例1と同様に測定したところ、波長400〜800nmでの最大の透過率は96%であった。実施例1と同様に微粒子膜が形成された片面の表面反射スペクトルを測定したところ、波長400〜800nmでの最小の表面反射率は0.7%であった。
実施例1と同様に評価した微粒子積層膜の濁度は1.9%であった。
実施例1と同様に密着性を評価した結果、BK−5ガラス基板上の微粒子積層膜は損傷せずに残存し、ポリカーボネート基板上の微粒子積層膜も損傷せずに残存した。
A silica aqueous dispersion (Snowtex (ST) PSSO, manufactured by Nissan Chemical Industries, Ltd., silica sol) in which bead-like silica fine particles having an average primary particle size of 14 nm measured by the BET method are dispersed is used as the fine particle dispersion. A fine particle laminated film laminate was produced in the same manner as in Example 1 except that the number of fine particle alternating laminations was set to 3 and the fine particle laminated film laminate was heat-treated at 130 ° C. for 2 hours. When the transmission spectrum of this fine particle laminate film (BK-5 glass substrate having a silica fine particle laminate film formed on both sides) was measured in the same manner as in Example 1, the maximum transmittance at a wavelength of 400 to 800 nm was 96%. Met. When the surface reflection spectrum of one surface on which the fine particle film was formed was measured in the same manner as in Example 1, the minimum surface reflectance at a wavelength of 400 to 800 nm was 0.7%.
The turbidity of the fine particle laminated film evaluated in the same manner as in Example 1 was 1.9%.
As a result of evaluating the adhesiveness in the same manner as in Example 1, the fine particle laminated film on the BK-5 glass substrate remained without being damaged, and the fine particle laminated film on the polycarbonate substrate remained without being damaged.

BET法で測定した平均一次粒子径が8nmの数珠状シリカ微粒子が分散したシリカ水分散液(スノーテックス(ST)UP、日産化学工業(株)製、シリカゾル)を微粒子分散液として用いたこと、微粒子交互積層回数を11回としたこと、微粒子積層膜積層体の130℃で2時間の熱処理を行なったこと以外は実施例1に準じて微粒子積層膜積層体を作製した。この微粒子積層膜積層体(シリカ微粒子積層膜が両面に形成されたBK−5ガラス基板)の透過スペクトルを実施例1と同様に測定したところ、波長400〜800nmでの最大の透過率は99%であった。実施例1と同様に微粒子膜が形成された片面の表面反射スペクトルを測定したところ、波長400〜800nmでの最小の表面反射率は0.3%であった。
実施例1と同様に評価した微粒子積層膜の濁度は0.3%であった。
実施例1と同様に密着性を評価した結果、BK−5ガラス基板上の微粒子積層膜は損傷せずに残存し、ポリカーボネート基板上の微粒子積層膜も損傷せずに残存した。
A silica aqueous dispersion (Snowtex (ST) UP, manufactured by Nissan Chemical Industries, Ltd., silica sol) in which bead-like silica fine particles having an average primary particle diameter of 8 nm measured by the BET method are dispersed is used as the fine particle dispersion. A fine particle laminated film laminate was produced in the same manner as in Example 1 except that the number of alternating fine particle lamination was set to 11 and that the fine particle laminated film laminated body was heat-treated at 130 ° C. for 2 hours. When the transmission spectrum of this fine particle laminate film laminate (BK-5 glass substrate having a silica fine particle laminate film formed on both sides) was measured in the same manner as in Example 1, the maximum transmittance at a wavelength of 400 to 800 nm was 99%. Met. When the surface reflection spectrum of one surface on which the fine particle film was formed was measured in the same manner as in Example 1, the minimum surface reflectance at a wavelength of 400 to 800 nm was 0.3%.
The turbidity of the fine particle laminated film evaluated in the same manner as in Example 1 was 0.3%.
As a result of evaluating the adhesiveness in the same manner as in Example 1, the fine particle laminated film on the BK-5 glass substrate remained without being damaged, and the fine particle laminated film on the polycarbonate substrate remained without being damaged.

BET法で測定した平均一次粒子径が8nmの数珠状シリカ微粒子が分散したシリカ水分散液(スノーテックス(ST)OUP、日産化学工業(株)製、シリカゾル)を微粒子分散液として用いたこと、微粒子交互積層回数を3回としたこと以外は実施例1に準じて微粒子積層膜積層体を作製した。この微粒子積層膜積層体(シリカ微粒子積層膜が両面に形成されたBK−5ガラス基板)の透過スペクトルを実施例1と同様に測定したところ、波長400〜800nmでの最大の透過率は99%であった。実施例1と同様に微粒子膜が形成された片面の表面反射スペクトルを測定したところ、波長400〜800nmでの最小の表面反射率は0.05%であった。
実施例1と同様に評価した微粒子積層膜の濁度は0.3%であった。
実施例1と同様に密着性を評価した結果、BK−5ガラス基板上の微粒子積層膜は損傷せずに残存し、ポリカーボネート基板上の微粒子積層膜も損傷せずに残存した。
A silica aqueous dispersion (Snowtex (ST) OUP, manufactured by Nissan Chemical Industries, Ltd., silica sol) in which bead-like silica fine particles having an average primary particle size of 8 nm measured by the BET method are dispersed was used as a fine particle dispersion. A fine particle laminated film laminate was produced in accordance with Example 1 except that the number of fine particle alternating laminations was three. When the transmission spectrum of this fine particle laminate film laminate (BK-5 glass substrate having a silica fine particle laminate film formed on both sides) was measured in the same manner as in Example 1, the maximum transmittance at a wavelength of 400 to 800 nm was 99%. Met. When the surface reflection spectrum of one surface on which the fine particle film was formed was measured in the same manner as in Example 1, the minimum surface reflectance at a wavelength of 400 to 800 nm was 0.05%.
The turbidity of the fine particle laminated film evaluated in the same manner as in Example 1 was 0.3%.
As a result of evaluating the adhesiveness in the same manner as in Example 1, the fine particle laminated film on the BK-5 glass substrate remained without being damaged, and the fine particle laminated film on the polycarbonate substrate remained without being damaged.

(比較例1)
BET法で測定した平均一次粒子径が25nmのシリカ微粒子が分散したシリカ水分散液(スノーテックス(ST)50、日産化学工業(株)製、シリカゾル)を微粒子分散液として用いたこと、微粒子交互積層回数を7回としたこと以外は実施例1に準じて微粒子積層膜積層体を作製した。この微粒子積層膜積層体(シリカ微粒子積層膜が両面に形成されたBK−5ガラス基板)の透過スペクトルを実施例1と同様に測定したところ、波長400〜800nmでの最大の透過率は99%であった。実施例1と同様に微粒子膜が形成された片面の表面反射スペクトルを測定したところ、波長400〜800nmでの最小の表面反射率は0.05%であった。
実施例1と同様に評価した微粒子積層膜の濁度は0.3%であった。
実施例1と同様に密着性を評価した結果、BK−5ガラス基板上の微粒子積層膜は剥離し、ポリカーボネート基板上の微粒子積層膜も剥離した(表1に膜剥離と記載)。
(Comparative Example 1)
Silica aqueous dispersion (Snowtex (ST) 50, manufactured by Nissan Chemical Industries, Ltd., silica sol) in which silica fine particles having an average primary particle size of 25 nm measured by the BET method are dispersed is used as the fine particle dispersion. A fine-particle multilayer film laminate was produced in accordance with Example 1 except that the number of laminations was seven. When the transmission spectrum of this fine particle laminate film laminate (BK-5 glass substrate having a silica fine particle laminate film formed on both sides) was measured in the same manner as in Example 1, the maximum transmittance at a wavelength of 400 to 800 nm was 99%. Met. When the surface reflection spectrum of one surface on which the fine particle film was formed was measured in the same manner as in Example 1, the minimum surface reflectance at a wavelength of 400 to 800 nm was 0.05%.
The turbidity of the fine particle laminated film evaluated in the same manner as in Example 1 was 0.3%.
As a result of evaluating adhesion in the same manner as in Example 1, the fine particle laminated film on the BK-5 glass substrate was peeled off, and the fine particle laminated film on the polycarbonate substrate was also peeled off (described as film peeling in Table 1).

(比較例2)
BET法で測定した平均一次粒子径が45nmのシリカ微粒子が分散したシリカ水分散液(スノーテックス(ST)20L、日産化学工業(株)製、シリカゾル)を微粒子分散液として用いたこと、微粒子交互積層回数を7回としたこと以外は実施例1に準じて微粒子積層膜積層体を作製した。この微粒子積層膜積層体(シリカ微粒子積層膜が両面に形成されたBK−5ガラス基板)の透過スペクトルを実施例1と同様に測定したところ、波長400〜800nmでの最大の透過率は99%であった。実施例1と同様に微粒子膜が形成された片面の表面反射スペクトルを測定したところ、波長400〜800nmでの最小の表面反射率は0.05%であった。
実施例1と同様に評価した微粒子積層膜の濁度は0.5%であった。
実施例1と同様に密着性を評価した結果、BK−5ガラス基板上の微粒子積層膜は剥離し、ポリカーボネート基板上の微粒子積層膜も剥離した。
(Comparative Example 2)
A silica aqueous dispersion (Snowtex (ST) 20L, manufactured by Nissan Chemical Industries, Ltd., silica sol) in which silica fine particles having an average primary particle diameter of 45 nm measured by the BET method are dispersed is used as the fine particle dispersion. A fine-particle multilayer film laminate was produced in accordance with Example 1 except that the number of laminations was seven. When the transmission spectrum of this fine particle laminate film laminate (BK-5 glass substrate having a silica fine particle laminate film formed on both sides) was measured in the same manner as in Example 1, the maximum transmittance at a wavelength of 400 to 800 nm was 99%. Met. When the surface reflection spectrum of one surface on which the fine particle film was formed was measured in the same manner as in Example 1, the minimum surface reflectance at a wavelength of 400 to 800 nm was 0.05%.
The turbidity of the fine particle laminated film evaluated in the same manner as in Example 1 was 0.5%.
As a result of evaluating adhesion in the same manner as in Example 1, the fine particle laminated film on the BK-5 glass substrate was peeled off, and the fine particle laminated film on the polycarbonate substrate was also peeled off.

(比較例3)
BET法で測定した平均一次粒子径が50nmのシリカ微粒子が分散したシリカ水分散液(スノーテックス(ST)XL、日産化学工業(株)製、シリカゾル)を微粒子分散液として用いたこと、微粒子交互積層回数を6回としたこと以外は実施例1に準じて微粒子積層膜積層体を作製した。この微粒子積層膜積層体(シリカ微粒子積層膜が両面に形成されたBK−5ガラス基板)の透過スペクトルを実施例1と同様に測定したところ、波長400〜800nmでの最大の透過率は99%であった。実施例1と同様に微粒子膜が形成された片面の表面反射スペクトルを測定したところ、波長400〜800nmでの最小の表面反射率は0.05%であった。
実施例1と同様に評価した微粒子積層膜の濁度は0.7%であった。
実施例1と同様に密着性を評価した結果、BK−5ガラス基板上の微粒子積層膜は剥離し、ポリカーボネート基板上の微粒子積層膜も剥離した。
(Comparative Example 3)
A silica aqueous dispersion (Snowtex (ST) XL, manufactured by Nissan Chemical Industries, Ltd., silica sol) in which silica fine particles having an average primary particle diameter of 50 nm measured by the BET method are dispersed is used as the fine particle dispersion. A fine particle laminated film laminate was produced in the same manner as in Example 1 except that the number of laminations was six. When the transmission spectrum of this fine particle laminate film laminate (BK-5 glass substrate having a silica fine particle laminate film formed on both sides) was measured in the same manner as in Example 1, the maximum transmittance at a wavelength of 400 to 800 nm was 99%. Met. When the surface reflection spectrum of one surface on which the fine particle film was formed was measured in the same manner as in Example 1, the minimum surface reflectance at a wavelength of 400 to 800 nm was 0.05%.
The turbidity of the fine particle laminated film evaluated in the same manner as in Example 1 was 0.7%.
As a result of evaluating adhesion in the same manner as in Example 1, the fine particle laminated film on the BK-5 glass substrate was peeled off, and the fine particle laminated film on the polycarbonate substrate was also peeled off.

(比較例4)
BET法で測定した平均一次粒子径が65nmのシリカ微粒子が分散したシリカ水分散液(スノーテックス(ST)YL、日産化学工業(株)製、シリカゾル)を微粒子分散液として用いたこと、微粒子交互積層回数を5回としたこと以外は実施例1に準じて微粒子積層膜積層体を作製した。この微粒子積層膜積層体(シリカ微粒子積層膜が両面に形成されたBK−5ガラス基板)の透過スペクトルを実施例1と同様に測定したところ、波長400〜800nmでの最大の透過率は99%であった。実施例1と同様に微粒子膜が形成された片面の表面反射スペクトルを測定したところ、波長400〜800nmでの最小の表面反射率は0.1%であった。
実施例1と同様に評価した微粒子積層膜の濁度は1.0%であった。
実施例1と同様に密着性を評価した結果、BK−5ガラス基板上の微粒子積層膜は剥離し、ポリカーボネート基板上の微粒子積層膜も剥離した。
(Comparative Example 4)
Silica aqueous dispersion (Snowtex (ST) YL, manufactured by Nissan Chemical Industries, Ltd., silica sol) in which silica fine particles having an average primary particle diameter of 65 nm measured by the BET method are dispersed is used as the fine particle dispersion, alternating fine particles A fine particle laminated film laminate was produced in the same manner as in Example 1 except that the number of laminations was 5. When the transmission spectrum of this fine particle laminate film laminate (BK-5 glass substrate having a silica fine particle laminate film formed on both sides) was measured in the same manner as in Example 1, the maximum transmittance at a wavelength of 400 to 800 nm was 99%. Met. When the surface reflection spectrum of one surface on which the fine particle film was formed was measured in the same manner as in Example 1, the minimum surface reflectance at a wavelength of 400 to 800 nm was 0.1%.
The turbidity of the fine particle laminated film evaluated in the same manner as in Example 1 was 1.0%.
As a result of evaluating adhesion in the same manner as in Example 1, the fine particle laminated film on the BK-5 glass substrate was peeled off, and the fine particle laminated film on the polycarbonate substrate was also peeled off.

(比較例5)
BET法で測定した平均一次粒子径が85nmのシリカ微粒子が分散したシリカ水分散液(スノーテックス(ST)ZL、日産化学工業(株)製、シリカゾル)を微粒子分散液として用いたこと、微粒子交互積層回数を4回としたこと以外は実施例1に準じて微粒子積層膜積層体を作製した。この微粒子積層膜積層体(シリカ微粒子積層膜が両面に形成されたBK−5ガラス基板)の透過スペクトルを実施例1と同様に測定したところ、波長400〜800nmでの最大の透過率は99%であった。実施例1と同様に微粒子膜が形成された片面の表面反射スペクトルを測定したところ、波長400〜800nmでの最小の表面反射率は0.3%であった。
実施例1と同様に評価した微粒子積層膜の濁度は2.2%であった。
実施例1と同様に密着性を評価した結果、BK−5ガラス基板上の微粒子積層膜は剥離し、ポリカーボネート基板上の微粒子積層膜も剥離した。
(Comparative Example 5)
A silica aqueous dispersion (Snowtex (ST) ZL, manufactured by Nissan Chemical Industries, Ltd., silica sol) in which silica fine particles having an average primary particle diameter of 85 nm measured by the BET method are dispersed is used as the fine particle dispersion. A fine-particle laminated film laminate was produced according to Example 1 except that the number of laminations was four. When the transmission spectrum of this fine particle laminate film laminate (BK-5 glass substrate having a silica fine particle laminate film formed on both sides) was measured in the same manner as in Example 1, the maximum transmittance at a wavelength of 400 to 800 nm was 99%. Met. When the surface reflection spectrum of one surface on which the fine particle film was formed was measured in the same manner as in Example 1, the minimum surface reflectance at a wavelength of 400 to 800 nm was 0.3%.
The turbidity of the fine particle laminated film evaluated in the same manner as in Example 1 was 2.2%.
As a result of evaluating adhesion in the same manner as in Example 1, the fine particle laminated film on the BK-5 glass substrate was peeled off, and the fine particle laminated film on the polycarbonate substrate was also peeled off.

(比較例6)
BET法で測定した平均一次粒子径が24nmの数珠状シリカ微粒子が分散したシリカ水分散液(スノーテックス(ST)PSM、日産化学工業(株)製、シリカゾル)を微粒子分散液として用いたこと、微粒子交互積層回数を9回としたこと以外は実施例1に準じて微粒子積層膜積層体を作製した。この微粒子積層膜積層体(シリカ微粒子積層膜が両面に形成されたBK−5ガラス基板)の透過スペクトルを実施例1と同様に測定したところ、波長400〜800nmでの最大の透過率は99%であった。実施例1と同様に微粒子膜が形成された片面の表面反射スペクトルを測定したところ、波長400〜800nmでの最小の表面反射率は0.1%であった。
実施例1と同様に評価した微粒子積層膜の濁度は0.8%であった。
実施例1と同様に密着性を評価した結果、BK−5ガラス基板上の微粒子積層膜は剥離し、ポリカーボネート基板上の微粒子積層膜も剥離した。
(Comparative Example 6)
A silica aqueous dispersion (Snowtex (ST) PSM, manufactured by Nissan Chemical Industries, Ltd., silica sol) in which beaded silica fine particles having an average primary particle size of 24 nm measured by the BET method are dispersed is used as the fine particle dispersion. A fine particle laminated film laminate was produced in accordance with Example 1 except that the number of fine particle alternating laminations was nine. When the transmission spectrum of this fine particle laminate film laminate (BK-5 glass substrate having a silica fine particle laminate film formed on both sides) was measured in the same manner as in Example 1, the maximum transmittance at a wavelength of 400 to 800 nm was 99%. Met. When the surface reflection spectrum of one surface on which the fine particle film was formed was measured in the same manner as in Example 1, the minimum surface reflectance at a wavelength of 400 to 800 nm was 0.1%.
The turbidity of the fine particle laminated film evaluated in the same manner as in Example 1 was 0.8%.
As a result of evaluating adhesion in the same manner as in Example 1, the fine particle laminated film on the BK-5 glass substrate was peeled off, and the fine particle laminated film on the polycarbonate substrate was also peeled off.

(比較例7)
BET法で測定した平均一次粒子径が24nmの数珠状シリカ微粒子が分散したシリカ水分散液(スノーテックス(ST)PSMO、日産化学工業(株)製、シリカゾル)を微粒子分散液として用いたこと、微粒子交互積層回数を3回としたこと以外は実施例1に準じて微粒子積層膜積層体を作製した。この微粒子積層膜積層体(シリカ微粒子積層膜が両面に形成されたBK−5ガラス基板)の透過スペクトルを実施例1と同様に測定したところ、波長400〜800nmでの最大の透過率は96%であった。実施例1と同様に微粒子膜が形成された片面の表面反射スペクトルを測定したところ、波長400〜800nmでの最小の表面反射率は0.8%であった。
実施例1と同様に評価した微粒子積層膜の濁度は2.5%であった。
実施例1と同様に密着性を評価した結果、BK−5ガラス基板上の微粒子積層膜は剥離し、ポリカーボネート基板上の微粒子積層膜も剥離した。
(Comparative Example 7)
A silica aqueous dispersion (Snowtex (ST) PSMO, manufactured by Nissan Chemical Industries, Ltd., silica sol) in which bead-like silica fine particles having an average primary particle size of 24 nm measured by the BET method are dispersed was used as a fine particle dispersion. A fine particle laminated film laminate was produced in accordance with Example 1 except that the number of fine particle alternating laminations was three. When the transmission spectrum of this fine particle laminate film (BK-5 glass substrate having a silica fine particle laminate film formed on both sides) was measured in the same manner as in Example 1, the maximum transmittance at a wavelength of 400 to 800 nm was 96%. Met. When the surface reflection spectrum of one surface on which the fine particle film was formed was measured in the same manner as in Example 1, the minimum surface reflectance at a wavelength of 400 to 800 nm was 0.8%.
The turbidity of the fine particle laminated film evaluated in the same manner as in Example 1 was 2.5%.
As a result of evaluating adhesion in the same manner as in Example 1, the fine particle laminated film on the BK-5 glass substrate was peeled off, and the fine particle laminated film on the polycarbonate substrate was also peeled off.

実施例1〜13および比較例1〜7におけるシリカ微粒子の粒子径、形状と微粒子膜の特性をまとめて表1示す。   Table 1 summarizes the particle diameters and shapes of the silica fine particles in Examples 1 to 13 and Comparative Examples 1 to 7 and the characteristics of the fine particle film.

Figure 2008114413
Figure 2008114413

基材として片面に易接着層とよばれる極性基を付与された樹脂層があるPETフィルム(A4100、東洋紡績(株)製、屈折率1.58、100mm×100mm×125μm厚)を用いた。
上記基材を、水分散ポリエステル樹脂(バイロナールMD−1245、東洋紡積製)を超純水で10倍に希釈したポリエステル樹脂水分散液に1分間浸漬し、その後室温で乾燥し、基材上にポリエステル樹脂層を中間層として形成して固体基材(中間層付き基材)を調整した。この中間層付き基材を、厚さ0.5mmのステンレスからなるスライド立て(150mm×82mm×22mm)に立て、乾燥機(ヤマト科学製)により110℃で10分間の熱処理を行った。
上記のこの中間層付き基材を用いて、実施例1に準じて微粒子積層膜の形成を行い、微粒子積層膜積層体を作製した。
実施例1と同様に微粒子積層膜の鉛筆硬度試験を行った結果、鉛筆硬度はHであった。
A PET film (A4100, manufactured by Toyobo Co., Ltd., refractive index 1.58, 100 mm × 100 mm × 125 μm thickness) having a resin layer provided with a polar group called an easy adhesion layer on one side was used as a substrate.
The substrate is immersed for 1 minute in an aqueous polyester resin dispersion in which water-dispersed polyester resin (Vylonal MD-1245, manufactured by Toyobo Co., Ltd.) is diluted 10 times with ultrapure water, and then dried at room temperature. A polyester resin layer was formed as an intermediate layer to prepare a solid substrate (substrate with an intermediate layer). This base material with an intermediate layer was placed on a slide stand (150 mm × 82 mm × 22 mm) made of stainless steel having a thickness of 0.5 mm, and heat-treated at 110 ° C. for 10 minutes with a dryer (manufactured by Yamato Kagaku).
Using this substrate with an intermediate layer, a fine particle laminated film was formed according to Example 1 to produce a fine particle laminated film laminate.
As a result of conducting the pencil hardness test of the fine particle laminated film in the same manner as in Example 1, the pencil hardness was H.

基材としてハードコートPETフィルム(KBフィルムG01H、(株)きもと製、100mm×100mm×125μm厚、ハードコート面をUVオゾン処理して使用)を用いたこと以外は、実施例14に準じて行微粒子積層膜積層体を作製した。実施例1と同様に行った微粒子積層膜の鉛筆硬度試験の結果、鉛筆硬度は3Hであった。   Except that a hard coat PET film (KB film G01H, manufactured by Kimoto Co., Ltd., 100 mm × 100 mm × 125 μm thickness, hard coat surface used by UV ozone treatment) was used as the base material, the same procedure as in Example 14 was performed. A fine particle laminated film laminate was prepared. As a result of the pencil hardness test of the fine particle multilayer film performed in the same manner as in Example 1, the pencil hardness was 3H.

基材として両面に易接着層とよばれる極性基を付与された樹脂層があるPETフィルム(A4300、東洋紡績(株)製、屈折率1.65、100mm×100mm×125μm厚)とBK−5ガラス基板(マツナミ社製、25mm×75mm×0.7mm厚)を用いたこと、BET法で測定した平均一次粒子径が15nmのアルミナ微粒子が分散したアルミナ水分散液(アルミナゾル−520、日産化学工業(株)製、酸化アルミニウムナゾル)を微粒子分散液として用いたこと、微粒子分散液の微粒子濃度を1重量%に調整したこと、微粒子交互積層回数を40回としたこと、微粒子積層膜積層体の110℃で1時間の熱処理を行なわなかったこと以外は実施例1に準じて微粒子積層膜積層体を作製した。この微粒子積層膜積層体(シリカ微粒子積層膜が両面に形成されたBK−5ガラス基板)の透過スペクトルを実施例1と同様に測定したところ、波長400〜800nmでの最小の透過率は91%であった。このシリカ微粒子積層膜が両面に形成されたBK−5ガラス基板の反射スペクトルを可視紫外分光光度計(日本分光(株)製、V−570)にて測定したところ、波長400〜800nmでの最大の反射率は8%であった。実施例1と同様に微粒子膜が形成された片面の表面反射スペクトルを測定したところ、波長400〜800nmでの最大の表面反射率は4.0%であった。
実施例1と同様に評価した微粒子積層膜の濁度は0.3%であった。
粘着テープに776cN/25mm、幅30mmの粘着テープ(日東電工社製、No31B)を使用したこと以外は実施例1と同様に密着性を評価した結果、微粒子積層膜が損傷せずに残ったマス目は、BK−5ガラス基板上の微粒子積層膜は損傷せずに残存した。
PET film (A4300, manufactured by Toyobo Co., Ltd., refractive index 1.65, 100 mm × 100 mm × 125 μm thickness) and BK-5 having a resin layer to which a polar group called an easy-adhesion layer is provided on both sides as a base material A glass substrate (manufactured by Matsunami Co., Ltd., 25 mm × 75 mm × 0.7 mm thickness) was used, and an alumina aqueous dispersion (alumina sol-520, Nissan Chemical Industries, Ltd.) in which alumina fine particles having an average primary particle diameter of 15 nm measured by the BET method were dispersed. Co., Ltd., aluminum oxide sol) was used as the fine particle dispersion, the fine particle concentration of the fine particle dispersion was adjusted to 1% by weight, the number of fine particle alternating laminations was set to 40 times, and the fine particle laminated film laminate. A fine particle laminated film laminate was prepared according to Example 1 except that the heat treatment at 110 ° C. for 1 hour was not performed. When the transmission spectrum of this fine particle laminated film laminate (BK-5 glass substrate having a silica fine particle laminated film formed on both sides) was measured in the same manner as in Example 1, the minimum transmittance at a wavelength of 400 to 800 nm was 91%. Met. When the reflection spectrum of the BK-5 glass substrate having the silica fine particle laminated film formed on both sides was measured with a visible ultraviolet spectrophotometer (manufactured by JASCO Corporation, V-570), the maximum at a wavelength of 400 to 800 nm was obtained. The reflectance of was 8%. When the surface reflection spectrum of one surface on which the fine particle film was formed was measured in the same manner as in Example 1, the maximum surface reflectance at a wavelength of 400 to 800 nm was 4.0%.
The turbidity of the fine particle laminated film evaluated in the same manner as in Example 1 was 0.3%.
As a result of evaluating the adhesiveness in the same manner as in Example 1 except that an adhesive tape having a width of 776 cN / 25 mm and a width of 30 mm (No. 31B, manufactured by Nitto Denko Corporation) was used for the adhesive tape, As for eyes, the fine particle laminated film on the BK-5 glass substrate remained without being damaged.

動的散乱法で測定した平均一次粒子径が6nmのチタニア微粒子が分散したチタニア水分散液(タイノックM−6、多木化学(株)製、酸化チタンゾル)を微粒子分散液として用いたこと、微粒子分散液の微粒子濃度を0.3重量%に調整したこと、微粒子交互積層回数を12回としたこと以外は実施例16に準じて微粒子積層膜積層体を作製した。この微粒子積層膜積層体(シリカ微粒子積層膜が両面に形成されたBK−5ガラス基板)の透過スペクトルを実施例1と同様に測定したところ、波長400〜800nmでの最小の透過率は71%であった。このシリカ微粒子積層膜が両面に形成されたBK−5ガラス基板の反射スペクトルを可視紫外分光光度計(日本分光(株)製、V−570)にて測定したところ、波長400〜800nmでの最大の反射率は28%であった。実施例1と同様に微粒子膜が形成された片面の表面反射スペクトルを測定したところ、波長400〜800nmでの最大の表面反射率は14.3%であった。BK−5ガラス基板の透過率は91%、表面反射率は4.5%であることから、半透過半反射膜が形成され、ハーフミラー機能を付与したことがわかった。
実施例1と同様に評価した微粒子積層膜の濁度は0.3%であった。
実施例16と同様に密着性を評価した結果、BK−5ガラス基板上の微粒子積層膜は損傷せずに残存した。
A titania aqueous dispersion (Tynoch M-6, manufactured by Taki Chemical Co., Ltd., titanium oxide sol) in which titania fine particles having an average primary particle diameter of 6 nm measured by a dynamic scattering method are dispersed is used as the fine particle dispersion. A fine particle laminated film laminate was produced in the same manner as in Example 16 except that the fine particle concentration of the dispersion was adjusted to 0.3% by weight and the fine particle alternate lamination number was 12 times. When the transmission spectrum of this fine particle laminated film laminate (BK-5 glass substrate on which both surfaces of the silica fine particle laminated film were formed) was measured in the same manner as in Example 1, the minimum transmittance at a wavelength of 400 to 800 nm was 71%. Met. When the reflection spectrum of the BK-5 glass substrate having the silica fine particle laminated film formed on both surfaces was measured with a visible ultraviolet spectrophotometer (manufactured by JASCO Corporation, V-570), the maximum at a wavelength of 400 to 800 nm was obtained. The reflectance of was 28%. When the surface reflection spectrum of one surface on which the fine particle film was formed was measured in the same manner as in Example 1, the maximum surface reflectance at a wavelength of 400 to 800 nm was 14.3%. Since the transmittance of the BK-5 glass substrate was 91% and the surface reflectance was 4.5%, it was found that a semi-transmissive semi-reflective film was formed and a half mirror function was imparted.
The turbidity of the fine particle laminated film evaluated in the same manner as in Example 1 was 0.3%.
As a result of evaluating the adhesiveness in the same manner as in Example 16, the fine particle laminated film on the BK-5 glass substrate remained without being damaged.

動的散乱法で測定した平均一次粒子径が20nmのチタニア微粒子が分散したチタニア水分散液(タイノックAM−15、多木化学(株)製、酸化チタンゾル)を微粒子分散液として用いたこと、微粒子分散液の微粒子濃度を0.3重量%に調整したこと、微粒子交互積層回数を10回としたこと以外は実施例1に準じて微粒子積層膜積層体を作製した。
この微粒子積層膜積層体(シリカ微粒子積層膜が両面に形成されたBK−5ガラス基板)の透過スペクトルを実施例1と同様に測定したところ、波長400〜800nmでの最小の透過率は70%であった。このシリカ微粒子積層膜が両面に形成されたBK−5ガラス基板の反射スペクトルを可視紫外分光光度計(日本分光(株)製、V−570)にて測定したところ、波長400〜800nmでの最大の反射率は29%であった。実施例1と同様に微粒子膜が形成された片面の表面反射スペクトルを測定したところ、波長400〜800nmでの最大の表面反射率は14.6%であった。
実施例1と同様に評価した微粒子積層膜の濁度は0.3%であった。
実施例16と同様に密着性を評価した結果、BK−5ガラス基板上の微粒子積層膜は損傷せずに残存した。
A titania aqueous dispersion (Tynoc AM-15, manufactured by Taki Chemical Co., Ltd., titanium oxide sol) in which titania fine particles having an average primary particle diameter of 20 nm measured by a dynamic scattering method are dispersed is used as the fine particle dispersion. A fine particle laminated film laminate was produced in the same manner as in Example 1 except that the fine particle concentration of the dispersion was adjusted to 0.3% by weight and the number of fine particle alternating laminations was set to 10.
The transmission spectrum of this fine particle laminate film (BK-5 glass substrate having a silica fine particle laminate film formed on both sides) was measured in the same manner as in Example 1. As a result, the minimum transmittance at a wavelength of 400 to 800 nm was 70%. Met. When the reflection spectrum of the BK-5 glass substrate having the silica fine particle laminated film formed on both surfaces was measured with a visible ultraviolet spectrophotometer (manufactured by JASCO Corporation, V-570), the maximum at a wavelength of 400 to 800 nm was obtained. The reflectance was 29%. When the surface reflection spectrum of one surface on which the fine particle film was formed was measured in the same manner as in Example 1, the maximum surface reflectance at a wavelength of 400 to 800 nm was 14.6%.
The turbidity of the fine particle laminated film evaluated in the same manner as in Example 1 was 0.3%.
As a result of evaluating the adhesiveness in the same manner as in Example 16, the fine particle laminated film on the BK-5 glass substrate remained without being damaged.

動的散乱法で測定した平均一次粒子径が8nmのセリア微粒子が分散したセリア水分散液(ニードラールP10、多木化学(株)製、酸化セリウムゾル)を微粒子分散液として用いたこと、微粒子分散液の微粒子濃度を0.2重量%に調整したこと、微粒子交互積層回数を20回としたこと以外は実施例1に準じて微粒子積層膜積層体を作製した。この微粒子積層膜積層体(シリカ微粒子積層膜が両面に形成されたBK−5ガラス基板)の透過スペクトルを実施例1と同様に測定したところ、波長400〜800nmでの最小の透過率は73%であった。このシリカ微粒子積層膜が両面に形成されたBK−5ガラス基板の反射スペクトルを可視紫外分光光度計(日本分光(株)製、V−570)にて測定したところ、波長400〜800nmでの最大の反射率は26%であった。実施例1と同様に微粒子膜が形成された片面の表面反射スペクトルを測定したところ、波長400〜800nmでの最大の表面反射率は13.0%であった。
実施例1と同様に評価した微粒子積層膜の濁度は0.3%であった。
実施例16と同様に密着性を評価した結果、BK−5ガラス基板上の微粒子積層膜は損傷せずに残存した。
The use of a ceria aqueous dispersion (Nydral P10, manufactured by Taki Chemical Co., Ltd., cerium oxide sol) in which ceria fine particles having an average primary particle diameter of 8 nm measured by a dynamic scattering method are dispersed, as the fine particle dispersion A fine particle laminated film laminate was produced in the same manner as in Example 1 except that the fine particle concentration was adjusted to 0.2% by weight and the number of fine particle alternate laminations was 20 times. The transmission spectrum of this fine particle laminate film (BK-5 glass substrate having a silica fine particle laminate film formed on both surfaces) was measured in the same manner as in Example 1. As a result, the minimum transmittance at a wavelength of 400 to 800 nm was 73%. Met. When the reflection spectrum of the BK-5 glass substrate on which the silica fine particle laminated film was formed on both sides was measured with a visible ultraviolet spectrophotometer (manufactured by JASCO Corporation, V-570), the maximum at a wavelength of 400 to 800 nm was obtained. The reflectance of was 26%. When the surface reflection spectrum of one surface on which the fine particle film was formed was measured as in Example 1, the maximum surface reflectance at a wavelength of 400 to 800 nm was 13.0%.
The turbidity of the fine particle laminated film evaluated in the same manner as in Example 1 was 0.3%.
As a result of evaluating the adhesiveness in the same manner as in Example 16, the fine particle laminated film on the BK-5 glass substrate remained without being damaged.

動的散乱法で測定した平均一次粒子径が5nmの酸化ニオブ微粒子が分散した酸化ニオブ水分散液(バイラールNB−X10、多木化学(株)製、酸化二オブゾル)を微粒子分散液として用いたこと、微粒子分散液の微粒子濃度を0.2重量%に調整したこと、微粒子交互積層回数を40回としたこと以外は実施例1に準じて微粒子積層膜積層体を作製した。この微粒子積層膜積層体(シリカ微粒子積層膜が両面に形成されたBK−5ガラス基板)の透過スペクトルを実施例1と同様に測定したところ、波長400〜800nmでの最小の透過率は81%であった。このシリカ微粒子積層膜が両面に形成されたBK−5ガラス基板の反射スペクトルを可視紫外分光光度計(日本分光(株)製、V−570)にて測定したところ、波長400〜800nmでの最大の反射率は18%であった。実施例1と同様に微粒子膜が形成された片面の表面反射スペクトルを測定したところ、波長400〜800nmでの最大の表面反射率は8.8%であった。
実施例1と同様に評価した微粒子積層膜の濁度は0.3%であった。
実施例16と同様に密着性を評価した結果、BK−5ガラス基板上の微粒子積層膜は損傷せずに残存した。
A niobium oxide aqueous dispersion (Biral NB-X10, manufactured by Taki Chemical Co., Ltd., niobium oxide sol) in which niobium oxide fine particles having an average primary particle diameter of 5 nm measured by a dynamic scattering method are dispersed was used as a fine particle dispersion. In addition, a fine particle laminated film laminate was produced in accordance with Example 1 except that the fine particle concentration of the fine particle dispersion was adjusted to 0.2% by weight and the number of fine particle alternate laminations was 40 times. When the transmission spectrum of this fine particle multilayer film laminate (BK-5 glass substrate having a silica fine particle multilayer film formed on both surfaces) was measured in the same manner as in Example 1, the minimum transmittance at a wavelength of 400 to 800 nm was 81%. Met. When the reflection spectrum of the BK-5 glass substrate having the silica fine particle laminated film formed on both surfaces was measured with a visible ultraviolet spectrophotometer (manufactured by JASCO Corporation, V-570), the maximum at a wavelength of 400 to 800 nm was obtained. The reflectance of was 18%. When the surface reflection spectrum of one surface on which the fine particle film was formed was measured in the same manner as in Example 1, the maximum surface reflectance at a wavelength of 400 to 800 nm was 8.8%.
The turbidity of the fine particle laminated film evaluated in the same manner as in Example 1 was 0.3%.
As a result of evaluating the adhesiveness in the same manner as in Example 16, the fine particle laminated film on the BK-5 glass substrate remained without being damaged.

動的散乱法で測定した平均一次粒子径が2nmの酸化錫微粒子が分散した酸化錫水分散液(セラメースS−8、多木化学(株)製、酸化錫ゾル)を微粒子分散液として用いたこと、微粒子分散液の微粒子濃度を0.2重量%に調整したこと、微粒子交互積層回数を15回としたこと以外は実施例1に準じて微粒子積層膜積層体を作製した。この微粒子積層膜積層体(シリカ微粒子積層膜が両面に形成されたBK−5ガラス基板)の透過スペクトルを実施例1と同様に測定したところ、波長400〜800nmでの最小の透過率は86%であった。このシリカ微粒子積層膜が両面に形成されたBK−5ガラス基板の反射スペクトルを可視紫外分光光度計(日本分光(株)製、V−570)にて測定したところ、波長400〜800nmでの最大の反射率は13%であった。実施例1と同様に微粒子膜が形成された片面の表面反射スペクトルを測定したところ、波長400〜800nmでの最大の表面反射率は6.6%であった。
実施例1と同様に評価した微粒子積層膜の濁度は0.3%であった。
実施例16と同様に密着性を評価した結果、BK−5ガラス基板上の微粒子積層膜は損傷せずに残存した。
An aqueous tin oxide dispersion (Cerames S-8, manufactured by Taki Chemical Co., Ltd., tin oxide sol) in which tin oxide fine particles having an average primary particle diameter of 2 nm measured by a dynamic scattering method were dispersed was used as the fine particle dispersion. In addition, a fine particle laminated film laminate was prepared in accordance with Example 1 except that the fine particle concentration of the fine particle dispersion was adjusted to 0.2% by weight and the number of fine particle alternate laminations was set to 15. When the transmission spectrum of this fine particle laminate film (BK-5 glass substrate having a silica fine particle laminate film formed on both surfaces) was measured in the same manner as in Example 1, the minimum transmittance at a wavelength of 400 to 800 nm was 86%. Met. When the reflection spectrum of the BK-5 glass substrate having the silica fine particle laminated film formed on both surfaces was measured with a visible ultraviolet spectrophotometer (manufactured by JASCO Corporation, V-570), the maximum at a wavelength of 400 to 800 nm was obtained. The reflectance of was 13%. When the surface reflection spectrum of one surface on which the fine particle film was formed was measured in the same manner as in Example 1, the maximum surface reflectance at a wavelength of 400 to 800 nm was 6.6%.
The turbidity of the fine particle laminated film evaluated in the same manner as in Example 1 was 0.3%.
As a result of evaluating the adhesiveness in the same manner as in Example 16, the fine particle laminated film on the BK-5 glass substrate remained without being damaged.

実施例16〜21における金属酸化物微粒子の粒子径、形状と微粒子膜の特性をまとめて表2示す。   Table 2 summarizes the particle diameter and shape of the metal oxide fine particles and the characteristics of the fine particle film in Examples 16 to 21.

Figure 2008114413
Figure 2008114413

(ガラス基板の表面反射率の測定と屈折率の評価)
BK−5ガラス基板(マツナミ社製、25mm×75mm×0.7mm厚)からの反射を無視できるように裏面に黒い粘着テープ(ニチバン(株)製)を気泡が残らないように貼り付け、可視紫外分光光度計(日本分光製、V−570)にて5°入射に対する表面の反射スペクトルを測定した。ただし、標準ミラーとしてはシリコンウエハを用いた。測定した波長λにおけるガラス(サンプル)の表面反射スペクトルRobs(λ)に、波長λにおけるシリコンウエハの表面反射率RSiを掛けることで、波長λにおけるガラス(サンプル)の表面反射率Rsub(λ)を求めた。RSiは波長400〜800nmでは55〜37%であり、波長λにおけるRSi(λ)は次式から求めた。
(Measurement of surface reflectance of glass substrate and evaluation of refractive index)
A black adhesive tape (manufactured by Nichiban Co., Ltd.) is attached to the back so that no bubbles remain so that reflection from the BK-5 glass substrate (Matsunami, 25 mm x 75 mm x 0.7 mm thickness) can be ignored. The reflection spectrum of the surface with respect to 5 ° incidence was measured with an ultraviolet spectrophotometer (manufactured by JASCO Corporation, V-570). However, a silicon wafer was used as the standard mirror. By multiplying the measured surface reflectance spectrum R obs (λ) of the glass (sample) at the wavelength λ by the surface reflectance R Si of the silicon wafer at the wavelength λ, the surface reflectance R sub of the glass (sample) at the wavelength λ ( λ) was determined. R Si was 55 to 37% at a wavelength of 400 to 800 nm, and R Si (λ) at a wavelength λ was obtained from the following equation.

Figure 2008114413
(ただし、式中、nSi(λ)は波長λにおけるシリコンウエハの屈折率、k(λ)は波長λにおけるシリコンウエハの消衰係数を示す。)(薄膜・光デバイス、吉田貞史、矢嶋弘義著、東京大学出版会、pp.8−14、1994年9月20日発行、参照)
Figure 2008114413
(Where n Si (λ) represents the refractive index of the silicon wafer at the wavelength λ, and k S (λ) i represents the extinction coefficient of the silicon wafer at the wavelength λ.) (Thin Film / Optical Device, Sadashi Yoshida (See Hiroyoshi Yajima, University of Tokyo Press, pp. 8-14, published on September 20, 1994)

なお、上記の計算において、nSi(λ)及びkSi(λ)は文献値(D.E.Aspnes and J.B.Theeten, J.Electrochem.Soc. Vol.127, p1359 (1980))を用いた。
ガラス基板の表面反射率Rsubからガラス基板の屈折率nsubを次式から求めた。
In the above calculation, n Si (λ) and k Si (λ) are literature values (D. Aspens and JB Theeten, J. Electrochem. Soc. Vol. 127, p1359 (1980)). Using.
The refractive index n sub of the glass substrate was determined from the following equation from the surface reflectance R sub of the glass substrate.

Figure 2008114413
(ただし、式中、nsub(λ)は、波長λにおけるガラス基板の屈折率を示す。)(薄膜・光デバイス、吉田貞史、矢嶋弘義著、東京大学出版会、pp.8−14、1994年9月20日発行、参照)
Figure 2008114413
(In the formula, n sub (λ) represents the refractive index of the glass substrate at the wavelength λ.) (Thin Film / Optical Device, Sadashi Yoshida, Hiroyoshi Yajima, University of Tokyo Press, pp. 8-14, (See September 20, 1994)

BK−5ガラス基板の屈折率(nsub)は波長400〜800nmでは1.55〜1.52であった。 The refractive index (n sub ) of the BK-5 glass substrate was 1.55 to 1.52 at a wavelength of 400 to 800 nm.

(微粒子積層膜付きガラス基板の表面反射率の測定)
実施例1に記述したように、得られた微粒子積層膜を有する光学部材(固体基材はBK−5ガラス基板)の片面をスチールウール(日本スチールウール社製、#0000)でガラス面が露出するまで研磨して積層された膜を除去した。露出したガラス面に黒い粘着テープ(ニチバン(株)製、VT−196)を気泡が残らないように貼り付け、微粒子積層膜が形成された面の表面反射率のスペクトルを上記と同様に測定した。波長400〜800nmでの表面反射率の最小値は実施例8記載のシリカ微粒子積層膜が0.9%、実施例5記載のシリカ微粒子積層膜が0.7%、実施例13記載のシリカ微粒子積層膜が0.05%であった。波長400〜800nmでの表面反射率の最大値は、前記チタニア微粒子積層膜が14.3%、前記セリア微粒子積層膜が13.0%、前記酸化ニオブ微粒子積層膜が8.8%、前記酸化錫微粒子積層膜が6.6%であった。
(Measurement of surface reflectance of glass substrate with fine particle laminate film)
As described in Example 1, the glass surface is exposed with steel wool (# 0000, manufactured by Nippon Steel Wool Co., Ltd.) on one side of the obtained optical member (solid substrate is BK-5 glass substrate) having the fine particle laminated film. The laminated film was removed by polishing. A black adhesive tape (manufactured by Nichiban Co., Ltd., VT-196) was attached to the exposed glass surface so that no bubbles remained, and the surface reflectance spectrum of the surface on which the fine particle multilayer film was formed was measured in the same manner as described above. . The minimum value of the surface reflectance at a wavelength of 400 to 800 nm is 0.9% for the silica fine particle laminated film described in Example 8, 0.7% for the silica fine particle laminated film described in Example 5, and the silica fine particle described in Example 13. The laminated film was 0.05%. The maximum value of the surface reflectance at a wavelength of 400 to 800 nm is 14.3% for the titania fine particle laminated film, 13.0% for the ceria fine particle laminated film, 8.8% for the niobium oxide fine particle laminated film, and the oxidation. The tin fine particle laminated film was 6.6%.

(微粒子積層膜の屈折率の決定)
反射率が固体基材(ガラス基板)よりも低い場合、波長400〜800nmでの表面反射率の極小値をRminとし、Rminの波長λminでの微粒子積層膜の屈折率nを次式から求めた。
(Determination of refractive index of fine particle laminate film)
If the reflectivity is lower than the solid substrate (glass substrate), the minimum value of the surface reflectance at a wavelength 400~800nm and R min, following the refractive index n c of the particle laminated film at a wavelength lambda min of R min Obtained from the formula.

Figure 2008114413
Figure 2008114413

また、反射率が固体基材(ガラス基板)よりも高い場合、波長400〜800nmでの表面反射率の極大値をRmaxとし、Rmaxの波長λmaxでの微粒子積層膜の屈折率nを次式から求める。 Also, if the reflectance is higher than a solid substrate (glass substrate), the maximum value of the surface reflectance at a wavelength 400~800nm and R max, the refractive index n c of the particle laminated film at a wavelength of R max lambda max Is obtained from the following equation.

Figure 2008114413
Figure 2008114413

以上より、屈折率は実施例8記載のシリカ微粒子積層膜が1.36、実施例5記載のシリカ微粒子積層膜が1.34、実施例13記載のシリカ微粒子積層膜が1.26、前記チタニア微粒子積層膜が1.85、前記セリア微粒子積層膜が1.81、前記酸化ニオブ微粒子積層膜が1.68、前記酸化錫微粒子積層膜が1.61であることがわかった。   As described above, the refractive index of the silica fine particle laminated film described in Example 8 is 1.36, the silica fine particle laminated film described in Example 5 is 1.34, the silica fine particle laminated film described in Example 13 is 1.26, and the titania. It was found that the fine particle laminated film was 1.85, the ceria fine particle laminated film was 1.81, the niobium oxide fine particle laminated film was 1.68, and the tin oxide fine particle laminated film was 1.61.

(微粒子積層膜の微粒子体積率の決定)
本発明の微粒子積層膜では微粒子の間の隙間はほとんど空気であるため、次式より微粒子積層膜の屈折率から微粒子の体積密度ρを求めることもできる。
(Determination of fine particle volume ratio of fine particle laminated film)
In the fine particle laminated film of the present invention, since the gap between the fine particles is almost air, the volume density ρ P of the fine particles can also be obtained from the refractive index of the fine particle laminated film from the following equation.

Figure 2008114413
Figure 2008114413

これより、シリカ微粒子の体積密度ρは実施例8記載のシリカ微粒子積層膜が72%、実施例5記載のシリカ微粒子積層膜が67%、実施例13記載のシリカ微粒子積層膜が49%であることがわかった。 From this, the volume density ρ P of the silica fine particles is 72% for the silica fine particle laminated film described in Example 8, 67% for the silica fine particle laminated film described in Example 5, and 49% for the silica fine particle laminated film described in Example 13. I found out.

(微粒子積層膜の膜厚)
反射率が固体基材よりも低い場合、微粒子積層膜の膜厚dは次式から求めた。
(Thickness of fine particle laminated film)
If the reflectivity is lower than the solid substrate, the film thickness d c of the particle laminated film was determined from the following equation.

Figure 2008114413
Figure 2008114413

ただし、波長400〜800nmで表面反射率の極小値が1つのみで、極大値が長波長側にない場合は上式のmを0としてdを求めた。
また、反射率が固体基材よりも高い場合、微粒子積層膜の膜厚dは次式から求めた。
However, the minimum value of the surface reflectance only one at a wavelength of 400 to 800 nm, when the maximum value is not the long wavelength side sought d c a m of the above equation as 0.
The reflectance is higher than the solid substrate, the film thickness d c of the particle laminated film was determined from the following equation.

Figure 2008114413
Figure 2008114413

ただし、波長400〜800nmで表面反射率の極大値が1つのみで、極小値が長波長側にない場合は上式のmを0としてdを求めた。また、波長400〜800nmで表面反射率の極大値が1つのみで、極小値が長波長側にある場合は上式のmを1としてdを求めた。これより、膜厚は実施例8記載のシリカ微粒子積層膜が100nm、実施例5記載のシリカ微粒子積層膜が100nm、実施例13記載のシリカ微粒子積層膜が110nm、前記チタニア微粒子積層膜が72nm、前記セリア微粒子積層膜が79nm、前記酸化ニオブ微粒子積層膜が101nm、前記酸化錫微粒子積層膜が90nmであることがわかった。 However, the maximum value of the surface reflectance at a wavelength of 400~800nm is only one, if there is no local minimum long wavelength side was determined d c a m of the above equation as 0. Further, the maximum value of the surface reflectance only one at a wavelength of 400 to 800 nm, if the minimum value is on the longer wavelength side was determined d c a m of the above equation as 1. Thus, the film thickness of the silica fine particle laminated film described in Example 8 is 100 nm, the silica fine particle laminated film described in Example 5 is 100 nm, the silica fine particle laminated film described in Example 13 is 110 nm, the titania fine particle laminated film is 72 nm, It was found that the ceria fine particle laminated film was 79 nm, the niobium oxide fine particle laminated film was 101 nm, and the tin oxide fine particle laminated film was 90 nm.

数珠状に連なった微粒子の状態と、一次粒子の粒子径を示す模式図である。It is a schematic diagram which shows the state of the microparticles which continued in the shape of a bead, and the particle diameter of a primary particle. 水晶振動子上に電解質ポリマーが吸着し、リンスされ、次いで微粒子が吸着し、リンスされる時の水晶振動子の共振周波数の変化を示すグラフである。It is a graph which shows the change of the resonance frequency of a crystal oscillator when electrolyte polymer adsorb | sucks on a crystal oscillator, and it is rinsed, and then microparticles | fine-particles adsorb | suck and rinse.

Claims (14)

表面に極性基を有する固体基材の表面に平均一次粒子径が1nm以上23nm以下である微粒子および電解質ポリマーを交互に吸着させてなる微粒子積層膜積層体。   A fine particle laminated film laminate in which fine particles having an average primary particle diameter of 1 nm to 23 nm and an electrolyte polymer are alternately adsorbed on the surface of a solid substrate having a polar group on the surface. 微粒子が、リチウム、ナトリウム、マグネシウム、アルミニウム、亜鉛、インジウム、シリコン、錫、チタン、ジルコニウム、イットリウム、ビスマス、ニオブ、セリウム、コバルト、銅、鉄、ホルミウム、マンガンの酸化物の微粒子のうちいずれかの微粒子を含む請求項1記載の微粒子積層膜積層体。   The fine particles are any of fine particles of oxides of lithium, sodium, magnesium, aluminum, zinc, indium, silicon, tin, titanium, zirconium, yttrium, bismuth, niobium, cerium, cobalt, copper, iron, holmium, and manganese. 2. The fine particle laminated film laminate according to claim 1, comprising fine particles. 表面に極性基を有する固体基材が、その表面に極性基を含む中間層が形成されたものである請求項1又は2に記載の微粒子積層膜積層体。   The fine particle laminated film laminate according to claim 1 or 2, wherein the solid base material having a polar group on the surface thereof has an intermediate layer containing the polar group formed on the surface thereof. 極性基が、エポキシ基、スチリル基、メタクリロキシ基、アクリロキシ基、アミノ基、ウレイド基、クロロプロピル基、メルカプト基、スルフィド基、イソシアネート基、カルボキシル基、シラノール基、水酸基のうち少なくとも一種類以上の官能基である請求項1〜3のいずれかに記載の微粒子積層膜積層体。   The polar group is an epoxy group, a styryl group, a methacryloxy group, an acryloxy group, an amino group, a ureido group, a chloropropyl group, a mercapto group, a sulfide group, an isocyanate group, a carboxyl group, a silanol group, or a hydroxyl group. The fine particle laminated film laminate according to any one of claims 1 to 3, which is a group. 固体基材がハードコート層を含む請求項1〜4のいずれかに記載の微粒子積層膜積層体。   The fine particle laminated film laminate according to any one of claims 1 to 4, wherein the solid substrate includes a hard coat layer. 微粒子積層膜の濁度が0.001%以上4%以下である請求項1〜5のいずれかに記載の微粒子積層膜積層体。   The fine particle multilayer film laminate according to any one of claims 1 to 5, wherein the turbidity of the fine particle multilayer film is 0.001% or more and 4% or less. 微粒子積層膜中に、微粒子及びこの微粒子に対して0.1質量%以上40質量%以下の電解質ポリマーを含む請求項1〜6のいずれかに記載の微粒子積層膜積層体。   The fine particle laminate film according to any one of claims 1 to 6, wherein the fine particle laminate film contains fine particles and an electrolyte polymer of 0.1 mass% or more and 40 mass% or less with respect to the fine particles. 微粒子が数珠状に連なった形状である請求項1〜7のいずれかに記載の微粒子積層膜積層体。   The fine particle multilayer film laminate according to any one of claims 1 to 7, which has a shape in which the fine particles are arranged in a bead shape. 微粒子積層膜における表面反射率の最小値が3%以下である請求項1〜8のいずれかに記載の微粒子積層膜積層体。   The minimum value of the surface reflectance in a fine particle laminated film is 3% or less, The fine particle laminated film laminated body in any one of Claims 1-8. 微粒子積層膜における反射率が15%以上50%以下および透過率が50%以上85%以下である請求項1〜9のいずれかに記載の微粒子積層膜積層体。   The fine particle multilayer film laminate according to any one of claims 1 to 9, wherein the fine particle multilayer film has a reflectance of 15% to 50% and a transmittance of 50% to 85%. 表面に極性基を有する固体基材をその表面の電荷と反対符号の電荷を有する微粒子の分散液または電解質ポリマー溶液に浸漬する工程と、その微粒子またはその電解質ポリマーと反対符号の電荷を有する微粒子の分散液または電解質ポリマーに浸漬する工程を含むことを特徴とする請求項1〜10のいずれかに記載の微粒子積層膜積層体の製造方法。   A step of immersing a solid substrate having a polar group on the surface in a dispersion of fine particles having a charge opposite to the charge on the surface or an electrolyte polymer solution, and a fine particle having a charge opposite in sign to the fine particles or the electrolyte polymer. The method for producing a multilayer laminated film laminate according to any one of claims 1 to 10, further comprising a step of immersing in a dispersion or an electrolyte polymer. 請求項1〜10のいずれかに記載の微粒子積層膜積層体を含む光学部材。   The optical member containing the fine particle laminated film laminated body in any one of Claims 1-10. 請求項9記載の微粒子積層膜積層体を含む反射防止機能を有する光学部材。   An optical member having an antireflection function, comprising the fine particle multilayer film laminate according to claim 9. 請求項10記載の微粒子積層膜積層体を含む半透過半反射機能を有する光学部材。   An optical member having a semi-transmissive and semi-reflective function, comprising the fine particle laminated film laminate according to claim 10.
JP2006297728A 2006-11-01 2006-11-01 Particle laminated film laminate, method for producing the laminate, and optical member using the laminate Pending JP2008114413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006297728A JP2008114413A (en) 2006-11-01 2006-11-01 Particle laminated film laminate, method for producing the laminate, and optical member using the laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006297728A JP2008114413A (en) 2006-11-01 2006-11-01 Particle laminated film laminate, method for producing the laminate, and optical member using the laminate

Publications (1)

Publication Number Publication Date
JP2008114413A true JP2008114413A (en) 2008-05-22

Family

ID=39500790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006297728A Pending JP2008114413A (en) 2006-11-01 2006-11-01 Particle laminated film laminate, method for producing the laminate, and optical member using the laminate

Country Status (1)

Country Link
JP (1) JP2008114413A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010012642A (en) * 2008-07-02 2010-01-21 Central Glass Co Ltd Low reflective member and manufacturing process
WO2010044402A1 (en) * 2008-10-17 2010-04-22 日立化成工業株式会社 Film having low refractive index and method for producing the same, anti-reflection film and method for producing the same, coating liquid set for film having low refractive index, substrate having microparticle-laminated thin film, and method for producing the same, and optical member
JP2010120182A (en) * 2008-10-23 2010-06-03 Dainippon Printing Co Ltd Curable resin composition for hard coat layer and hard coat film
JP2012066223A (en) * 2010-09-27 2012-04-05 Mitsubishi Electric Corp Method for forming antifouling coating film, and antifouling component
WO2019182100A1 (en) * 2018-03-22 2019-09-26 日東電工株式会社 Optical member and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361767A (en) * 2001-04-06 2002-12-18 Dainippon Printing Co Ltd Fine particle layer laminated film and optically functional material using the same
JP2003112379A (en) * 2001-06-27 2003-04-15 Fuji Photo Film Co Ltd Surface-functional member
JP2003238947A (en) * 2002-02-15 2003-08-27 Tokiaki Shiratori Ultra water-repellent film and method for manufacturing the same
JP2006035498A (en) * 2004-07-23 2006-02-09 National Institute For Materials Science Noble metal-containing titanate nanotube multilayered film and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002361767A (en) * 2001-04-06 2002-12-18 Dainippon Printing Co Ltd Fine particle layer laminated film and optically functional material using the same
JP2003112379A (en) * 2001-06-27 2003-04-15 Fuji Photo Film Co Ltd Surface-functional member
JP2003238947A (en) * 2002-02-15 2003-08-27 Tokiaki Shiratori Ultra water-repellent film and method for manufacturing the same
JP2006035498A (en) * 2004-07-23 2006-02-09 National Institute For Materials Science Noble metal-containing titanate nanotube multilayered film and its manufacturing method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010012642A (en) * 2008-07-02 2010-01-21 Central Glass Co Ltd Low reflective member and manufacturing process
US9188708B2 (en) 2008-10-17 2015-11-17 Hitachi Chemical Company, Ltd. Film having low refractive index film and method for producing the same, anti-reflection film and method for producing the same, coating liquid set for low refractive index film, substrate having microparticle-laminated thin film and method for producing the same, and optical member
WO2010044402A1 (en) * 2008-10-17 2010-04-22 日立化成工業株式会社 Film having low refractive index and method for producing the same, anti-reflection film and method for producing the same, coating liquid set for film having low refractive index, substrate having microparticle-laminated thin film, and method for producing the same, and optical member
TWI476254B (en) * 2008-10-17 2015-03-11 Hitachi Chemical Co Ltd Low refractive index film and fabricating method thereof, anti-reflection film and fabricating method thereof, coating liquid film set, substrate with particle laminated film and fabricating method thereof, and optical part
JP2015064607A (en) * 2008-10-17 2015-04-09 日立化成株式会社 Low refractive index film, low refractive index film manufacturing method, antireflection film and antireflection film manufacturing method, low refractive index film coating liquid set, base material with fine particle laminate thin film and method of manufacturing base material with fine particle laminate thin film, and optical member
JP5720247B2 (en) * 2008-10-17 2015-05-20 日立化成株式会社 Low refractive index film and method for producing the same, antireflection film and method for producing the same, coating liquid set for low refractive index film, substrate with fine particle laminated thin film and method for producing the same, and optical member
JP2010120182A (en) * 2008-10-23 2010-06-03 Dainippon Printing Co Ltd Curable resin composition for hard coat layer and hard coat film
JP2012066223A (en) * 2010-09-27 2012-04-05 Mitsubishi Electric Corp Method for forming antifouling coating film, and antifouling component
WO2019182100A1 (en) * 2018-03-22 2019-09-26 日東電工株式会社 Optical member and method for producing same
CN111919151A (en) * 2018-03-22 2020-11-10 日东电工株式会社 Optical component and method for manufacturing the same
JPWO2019182100A1 (en) * 2018-03-22 2021-04-15 日東電工株式会社 Optical member and its manufacturing method
US11249238B2 (en) 2018-03-22 2022-02-15 Nitto Denko Corporation Optical member and method for producing same
US11391880B2 (en) 2018-03-22 2022-07-19 Nitto Denko Corporation Optical member and method for producing same
JP7474694B2 (en) 2018-03-22 2024-04-25 日東電工株式会社 Optical member and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2007199702A (en) Laminated body of fine particle-layered film, method for manufacturing same, and optical member using same
JP5720247B2 (en) Low refractive index film and method for producing the same, antireflection film and method for producing the same, coating liquid set for low refractive index film, substrate with fine particle laminated thin film and method for producing the same, and optical member
JP5504605B2 (en) Curable resin composition for hard coat layer and hard coat film
JP5145938B2 (en) Antistatic antiglare film
JP5032785B2 (en) Antireflection laminate and method for producing the same
JP5397220B2 (en) Anti-glare film
JP5011653B2 (en) Low refractive index thin film and manufacturing method thereof
US20060204655A1 (en) Method for producing article having been subjected to low reflection treatment, solution for forming low reflection layer and article having been subjected to low reflection treatment
JP6307830B2 (en) Low refractive index film and manufacturing method thereof, antireflection film and manufacturing method thereof, and coating liquid set for low refractive index film
JP4991332B2 (en) Optical film, polarizing plate, and image display device
KR20110033254A (en) Flexible high refractive index antireflective film
JP2009086360A (en) Antireflection film
JP2007140282A (en) Transparent electro-conductive hard coat film, polarizing plate and image display apparatus using the same
JP5019151B2 (en) Anti-reflection laminate
JP5509571B2 (en) Substrate with fine particle laminated thin film, method for producing the same, and optical member using the same
KR20140015443A (en) Antireflective film comprising large particle size fumed silica
JP4747653B2 (en) Low refractive index thin film and manufacturing method thereof
JP5286632B2 (en) Porous membrane and method for producing the same
JP2008114413A (en) Particle laminated film laminate, method for producing the laminate, and optical member using the laminate
JP2009258602A (en) Optical film, polarizing plate and image display device
JP2006301126A (en) Low refractive index film
JP2009175671A (en) Antireflection film for microstructure and method for manufacturing the film
JP5230079B2 (en) Anti-reflective material
JP5082201B2 (en) Low refractive index thin film and manufacturing method thereof
JP2009175673A (en) Coating liquid set for low refractive index film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111104