WO2019208483A1 - Low refractive index member, transfer sheet, coating composition, and multilayer body using low refractive index member - Google Patents

Low refractive index member, transfer sheet, coating composition, and multilayer body using low refractive index member Download PDF

Info

Publication number
WO2019208483A1
WO2019208483A1 PCT/JP2019/016982 JP2019016982W WO2019208483A1 WO 2019208483 A1 WO2019208483 A1 WO 2019208483A1 JP 2019016982 W JP2019016982 W JP 2019016982W WO 2019208483 A1 WO2019208483 A1 WO 2019208483A1
Authority
WO
WIPO (PCT)
Prior art keywords
low refractive
refractive index
index layer
hollow particles
layer
Prior art date
Application number
PCT/JP2019/016982
Other languages
French (fr)
Japanese (ja)
Inventor
淳司 鷲尾
圭太 塚本
修 清家
智洋 小川
洋幸 森兼
隆伸 唯木
芳成 松田
篠原 誠司
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2019208483A1 publication Critical patent/WO2019208483A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials

Definitions

  • the present invention relates to a low refractive member, a transfer sheet, a coating composition, and a laminate using the low refractive member.
  • a low-refractive member may be disposed on the surface of various articles such as an image display device such as a liquid crystal display device and a showcase in order to suppress reflection of external light.
  • the low refractive index member is provided with a layer having a low refractive index (low refractive index layer) on its surface, so that light reflected from the surface of the low refractive index layer is further reduced while lowering reflection at the surface of the low refractive index layer itself. And the light reflected by the surface of the lower layer of the low refractive index layer are designed to reduce the reflectance. For this reason, the thickness of the low refractive index layer of the low refractive member is designed to be about 1/4 (around 100 nm) of the wavelength range of visible light (for example, Patent Document 1).
  • JP 2016-177186 A (paragraph 0045)
  • the low refractive index layer is a thin film of about 100 nm as in Patent Document 1, even when the low refractive index layer is slightly damaged by rubbing, the low refractive index layer partially disappears completely, and the antireflection effect is partially There is a problem of being lost.
  • the scratch resistance of the low refractive index layer tends to be lowered, and thus the above problem tends to become remarkable.
  • a means for forming the low refractive index layer by a dry process such as a sputtering method or a vacuum deposition method.
  • the dry process requires a large amount of equipment, and there is a problem that the cost increases significantly.
  • a means for increasing the cross-linking density of the low refractive index layer by using an ionizing radiation curable resin composition as a binder resin for the low refractive index layer formed by a wet method may be considered.
  • the present inventors set the thickness of the low refractive index layer in the wavelength range of visible light so that the antireflective property can be maintained even if the low refractive index layer is slightly scraped by abrasion. It was considered to make the thickness significantly larger than 1/4. However, when the thickness of the low refractive index layer is simply increased, haze is increased and the low refractive index layer is whitened to deteriorate visibility. There were frequent cases where cracks occurred in the refractive index layer. Therefore, the present inventors have further studied diligently, and despite being thick in the low refractive index layer, whitening is suppressed, visibility is good, cracks are suppressed, and antireflection properties are maintained. This has led to the completion of a low refractive member that can be used.
  • a transfer sheet comprising hollow particles and a binder resin, the hollow particles having an average particle diameter of 60 to 140 nm, and containing a cured product of a composition containing a silicone compound as the binder resin.
  • a coating composition for forming a low refractive index layer comprising hollow particles having an average particle diameter of 60 to 140 nm and a silicone compound as a binder resin component.
  • a laminate comprising a deposited film on the low refractive index layer of the low refractive member according to [1].
  • the present invention it is possible to provide a low-refractive member, a transfer sheet, and a coating composition that can suppress whitening and have good visibility and maintain antireflection properties despite the fact that the film thickness is large. it can. Moreover, according to this invention, the laminated body using this low refractive member can be provided.
  • the low refractive index member of the present invention has a low refractive index layer on a substrate, and the low refractive index layer has a thickness of 0.5 to 5.0 ⁇ m and contains hollow particles and a binder resin.
  • the hollow particles have an average particle diameter of 60 to 140 nm and contain a cured product of a composition containing a silicone compound as the binder resin.
  • a base material becomes a support body at the time of forming a low refractive index layer.
  • the base material is preferably light transmissive, and specifically, the total light transmittance according to JIS K7361-1: 1997 is preferably 50% or more, more preferably 80% or more. Preferably, it is 90% or more.
  • Examples of the substrate include plastic and glass. Glass is preferable because it is harder than plastic and easily improves the scratch resistance of the low refractive index layer.
  • Plastic base materials include polyolefin resins such as polyethylene and polypropylene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, vinyl resins such as ethylene / vinyl acetate copolymer, ethylene / vinyl alcohol copolymer, polyethylene terephthalate, polyethylene Polyester resins such as naphthalate and polybutylene terephthalate, acrylic resins such as poly (meth) methyl acrylate and poly (meth) ethyl acrylate, styrene resins such as polystyrene, and polyamide resins such as nylon 6 or nylon 66 , A cellulose resin such as triacetyl cellulose, a resin such as polycarbonate, or a polyimide resin.
  • the glass include alkali-free glass, nitride glass, soda-lime glass, borosilicate glass, and lead glass.
  • the thickness of the substrate is not particularly limited, but in the case of a plastic substrate, it is preferably 10 to 500 ⁇ m, more preferably 20 to 400 ⁇ m, and even more preferably 50 to 300 ⁇ m from the viewpoint of handleability. .
  • the plastic substrate may be a plate having a thickness exceeding 500 ⁇ m.
  • it is preferably 0.03 to 5.0 mm, more preferably 0.1 to 3.0 mm, from the viewpoint of handleability, strength, and weight reduction, and 0.3 to 2. More preferably, it is 0 mm.
  • the base material is not limited to a flat plate shape, and may be a three-dimensional shape having a curved surface. Further, the substrate is not limited to colorless, and may be colored.
  • the low refractive index layer is formed on at least one surface of the substrate. Moreover, it is preferable that a low refractive index layer is located in the outermost surface on the opposite side to the base material of a low refractive member.
  • the low refractive index member of the present invention requires that the low refractive index layer has a thickness of 0.5 to 5.0 ⁇ m.
  • the thickness of the low refractive index layer is less than 0.5 ⁇ m, even if the low refractive index layer is slightly damaged by rubbing, the antireflective property of the rubbing portion disappears and visibility cannot be improved.
  • the thickness of the low refractive index layer exceeds 5.0 ⁇ m, the absolute amount of the hollow particles increases, so that the low refractive index layer is whitened by internal diffusion, and the visibility cannot be improved.
  • cracks occur in the low refractive index layer.
  • the low refractive index member of the present invention requires that the low refractive index layer contains hollow particles and a binder resin, and the hollow particles have an average particle diameter of 60 to 140 nm.
  • the average particle diameter of the hollow particles is less than 60 nm, the ratio of air having a low refractive index is decreased, so that the refractive index of the low refractive index layer cannot be sufficiently lowered, and the antireflection property is lowered.
  • the average particle diameter of a hollow particle exceeds 140 nm, the spreading
  • the low refractive member of this invention needs to contain the hardened
  • the cured product of the composition containing a silicone compound is not included as the binder resin, the refractive index of the low refractive index layer cannot be sufficiently lowered, and the antireflection property is lowered.
  • the low refractive member of the present invention has a low refractive index layer thickness of 0.5 to 5.0 ⁇ m, an average particle diameter of hollow particles of 60 to 140 nm, and a silicone compound as a binder resin.
  • a hollow particle refers to a particle having an outer shell layer, the inside of the particle surrounded by the outer shell layer being a cavity, and containing air inside the particle.
  • the outer shell layer of the hollow particles may be an inorganic substance or an organic substance, and examples thereof include those made of metal, metal oxide, resin, silica and the like.
  • hollow silica particles whose outer shell layer is silica are preferable.
  • the silica When the outer shell layer is silica, the silica may be in a crystalline state, a sol state, or a gel state.
  • the shape of the hollow particles may be any of a spherical shape, a chain shape, a needle shape, a plate shape, a piece shape, a rod shape, a fiber shape, etc., such as a spherical shape, a spheroid shape, and a polyhedral shape that can approximate a sphere.
  • a true spherical shape and a substantially spherical shape are preferable, and a spheroid shape or a true spherical shape is more preferable.
  • the hollow particles are required to have an average particle diameter of 60 to 140 nm.
  • the average particle diameter of the hollow particles is preferably 65 to 130 nm, more preferably 67 to 120 nm, further preferably 70 to 110 nm, and still more preferably 70 to 100 nm.
  • the average particle diameter of the hollow particles of the low refractive index layer of the low refractive index member can be calculated by the following operations (1) to (4).
  • (1) In order to observe the particles of the low refractive index layer of the low refractive index member with a transmission electron microscope (TEM), the low refractive index member layer is sliced with FIB (focused ion beam). The thickness of the flakes is preferably in the range of 100 nm to 200 nm.
  • FIB transmission electron microscope
  • the thin piece of the low refractive index member layer of the low refractive member is imaged with a transmission electron microscope (TEM).
  • the accelerating voltage of a transmission electron microscope (TEM) is preferably 100 kv to 200 kV, and the F.O.V (Field Of View) is preferably 365 nm square to 1825 nm square.
  • Image analysis is performed from the observed image according to the following procedure.
  • Arbitrary 10 particles are extracted from the observation image, and the particle portion is filled with image analysis software (paint or the like) along the outer diameter of the particle.
  • image analysis software paint or the like
  • the above-described painting operation is performed by dividing the aggregated particles into individual particles instead of considering the aggregated particles as one particle.
  • the area (px ⁇ 2) of the filled portion is calculated by image analysis software (ImageJ or the like).
  • the equivalent circle diameter (px) is calculated from the area. 4).
  • the length per pixel is calculated from the scale bar of the TEM image. 5.
  • the equivalent circle diameter (px) calculated in “3.” is converted to nm. 6.
  • An average value of 10 equivalent circle diameters is obtained, and the obtained value is defined as “average particle diameter before correction (d)”.
  • the hollow particles are preferably surface-treated.
  • a surface treatment using a silane coupling agent is more preferable, and among these, a surface treatment using a silane coupling agent having a (meth) acryloyl group or an epoxy group is preferably performed.
  • a silane coupling agent having a (meth) acryloyl group or an epoxy group is preferably performed.
  • the general-purpose low-refractive index layer having a thickness of about 100 nm is thin, the aggregated hollow particles are not easily taken into the low-refractive index layer.
  • the low refractive index member of the present invention since the low refractive index layer is thick, aggregated hollow particles are also taken into the low refractive index layer. For this reason, suppressing the aggregation of the hollow particles in the low refractive member of the present invention is more technically significant than a general-purpose low refractive index layer. In order to suppress the aggregation of the hollow particles, it is more preferable that the hollow particles satisfy the condition of the zeta potential described later.
  • Silane coupling agents include 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltri Methoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3 -Glycidoxypropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyl Limethoxysilane,
  • the content of the hollow particles is preferably 100 to 300 parts by mass, more preferably 150 to 250 parts by mass, and further preferably 180 to 220 parts by mass with respect to 100 parts by mass of the binder resin.
  • the content of the hollow particles is preferably 100 to 300 parts by mass, more preferably 150 to 250 parts by mass, and further preferably 180 to 220 parts by mass with respect to 100 parts by mass of the binder resin.
  • the low refractive member of the present invention needs to contain a cured product of a composition containing a silicone compound as a binder resin for the low refractive index layer.
  • a silicone compound is a compound having a siloxane bond (Si—O—Si) in the molecule.
  • the binder resin may contain a resin other than the cured product of the composition containing the silicone compound, but the ratio of the cured product of the composition containing the silicone compound to the total amount of the binder resin is 50% by mass or more. Is preferably 70% by mass or more, more preferably 90% by mass or more, and still more preferably 100% by mass.
  • the silicone compound can be cured by, for example, a crosslinking reaction of a reactive functional group described later, a dealcohol condensation reaction of an alkoxy group, a dehydration condensation of a silanol group, or the like.
  • the silicone compound is preferably one in which a substituted hydrocarbon group having a reactive functional group as a substituent is directly connected to a silicon atom.
  • the reactive functional group include an epoxy group, a mercapto group, a (meth) acryloyl group, an amino group, a vinyl group, and an isocyanate group.
  • a silicone compound in which a substituted hydrocarbon group having a reactive functional group as a substituent is directly bonded to a silicon atom may be referred to as a “reactive functional group-containing silicone compound”.
  • the internal haze is reduced by using a reactive functional group-containing silicone compound, and whitening is suppressed even though the low refractive index layer is thick.
  • the visibility can be easily improved.
  • the reactive functional group side of the silicone compound (the organic component-rich side) is the reactive functional group of the silane coupling agent attached to the hollow particles. This is considered to be because the difference in refractive index is reduced by being easily directed to the base.
  • the reactive group of the reactive functional group-containing silicone compound is a cationic reactive reactive group with small polymerization shrinkage from the viewpoint of suppressing interfacial peeling between the hollow particles and the binder resin and suppressing surface irregularities of the low refractive index layer. It is preferable that it is an epoxy group excellent in adhesiveness with glass or silica. Suppressing the surface unevenness of the low refractive index layer leads to suppression of whitening of the low refractive index layer and improvement of scratch resistance of the low refractive index layer, and a uniform deposition film is formed on the low refractive index layer. It is preferable in that it can be easily made.
  • the reactive functional group-containing silicone compound preferably has a reactive functional group equivalent of 200 to 900 g / mol, more preferably 220 to 600 g / mol, and still more preferably 250 to 400 g / mol.
  • a reactive functional group equivalent of 200 to 900 g / mol, more preferably 220 to 600 g / mol, and still more preferably 250 to 400 g / mol.
  • the reactive functional group-containing silicone compound includes one or more hydrolysates of an organosilicon compound represented by the following general formula (1) and one or more hydrolysates of an organosilicon compound represented by the following general formula (1).
  • At least one hydrolyzed polycondensate of an organosilicon compound represented by the following general formula (1) and at least one organosilicon compound represented by the following general formula (1) and the following general formula (The hydrolyzed polycondensate with one or more of the organosilicon compounds represented by 2) is preferable because it is difficult to volatilize even with heat during the formation of the vapor deposition film, and thus it is easy to improve the adhesion with the vapor deposition film.
  • one or more hydrolyzed polycondensates of an organosilicon compound may be referred to as an “oligomer-type silicone compound”.
  • R n —SiX 4-n (1)
  • n is an integer of 1 to 3.
  • R is a substituted hydrocarbon group having 1 to 10 carbon atoms having a reactive functional group as a substituent. When n is 2 to 3, R is the same or different from each other. May be.
  • X is an alkoxy group having 1 to 4 carbon atoms, silanol group, halogen or hydrogen, and when n is 1 to 2, X may be the same or different from each other.
  • R 2 n -SiX 4-n (2) [In the formula (2), n is an integer of 1 to 3.
  • R 2 is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms having no reactive functional group.
  • n is 2 to 3
  • R 2 is the same as each other.
  • X is an alkoxy group having 1 to 4 carbon atoms, silanol group, halogen or hydrogen, and when n is 1 or 2, X may be the same or different from each other.
  • organosilicon compound represented by the general formula (1) examples include ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxymethyltrimethoxysilane, and ⁇ -glycidoxymethyltriexisilane.
  • organosilicon compound represented by the general formula (2) examples include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, and diphenyldimethoxysilane.
  • one or more hydrolyzed polycondensates of the organosilicon compound represented by the general formula (2) are also preferable.
  • One or more hydrolyzed polycondensates of the organosilicon compound represented by the general formula (2) can suppress unevenness of the surface of the low refractive index layer due to curing shrinkage, and further, when forming a deposited film Since it is difficult to volatilize even with heat, it is preferable in terms of easy adhesion to the deposited film.
  • the silicone compound preferably has an alkoxy group.
  • the alkoxy group is preferably directly bonded to a silicon atom.
  • the adhesion between the substrate and the low refractive index layer can be improved, and the scratch resistance can be further improved.
  • the adhesion of the low refractive index layer and the vapor deposition film is good when the structure of the laminate described later (the composition having the vapor deposition film on the low refractive index layer) is used. Can be.
  • the amount of the alkoxy group in the silicone compound having an alkoxy group is preferably 5 to 60% by mass, more preferably 10 to 50% by mass, and further preferably 15 to 45% by mass.
  • the amount of the alkoxy group is preferably 5 to 60% by mass, more preferably 10 to 50% by mass, and further preferably 15 to 45% by mass.
  • the composition containing a silicone compound may contain a curing catalyst as necessary.
  • the reactive functional group of the reactive functional group-containing silicone compound is an epoxy group
  • the composition containing the silicone compound includes at least one selected from an amine catalyst, an acidic catalyst, and a basic catalyst as a curing catalyst. It is preferable to contain.
  • the composition containing a silicone type compound is 1 or more types of catalysts chosen from an acidic catalyst, a basic catalyst, and an amine catalyst It is preferable to contain.
  • the low refractive index member of the present invention requires that the low refractive index layer has a thickness of 0.5 to 5.0 ⁇ m.
  • the thickness of the low refractive index layer is preferably 0.7 to 4.0 ⁇ m, more preferably 0.8 to 3.5 ⁇ m, and further preferably 1.0 to 3.0 ⁇ m.
  • the thickness of the low refractive index layer can be calculated as an average value of 10 measured values.
  • the thickness variation is preferably within ⁇ 15% of the average thickness, more preferably within ⁇ 10%, further preferably within ⁇ 7%, and more preferably within ⁇ 5%. It is even more preferable.
  • the thickness of the low refractive index layer can be measured by, for example, a microspectrophotometer.
  • the refractive index of the low refractive index layer is preferably 1.30 or less, and more preferably 1.27 or less. By setting the refractive index of the low refractive index layer to 1.30 or less, it is possible to suppress an increase in the reflectance of the surface of the low refractive index layer and to improve the visibility.
  • the lower limit of the refractive index of the low refractive index layer is about 1.10.
  • the refractive index refers to a refractive index at a wavelength of 589.3 nm.
  • the refractive index of the low refractive index layer can be calculated, for example, with a microspectrophotometer.
  • the low refractive index layer may contain additives such as an antistatic agent, an antioxidant, a surfactant, a dispersant, and an ultraviolet absorber.
  • the low refractive index layer is formed by applying a low refractive index layer-forming coating composition containing each component constituting the low refractive index layer on the substrate, drying, and curing the wet method, and a wet method on the substrate. It can be formed by a transfer method or the like that transfers the low refractive index layer.
  • the low refractive member of the present invention may have other layers between the base material and the low refractive index layer.
  • examples of other layers include a hard coat layer for improving the scratch resistance of the low refractive index layer, an adhesive layer for improving the adhesion between the substrate and the low refractive index layer, and an antistatic layer. Can be mentioned.
  • Low refractive member of the present invention is preferably diffuse light reflectance R SCE measured from the low refractive index layer side is in the range below.
  • the RSCE measures the reflected light other than the reflected light passing through the light trap, which is measured by applying light from all directions to the sample surface using an integrating sphere and opening the light trap corresponding to the regular reflection direction. It is the reflectance calculated from the measured value.
  • the surface of the low refractive index layer is almost smooth, and the ratio of diffusely reflected light is smaller than that of regular reflected light. For this reason, RSCE obtained by removing regular reflection light from total reflection light represents diffuse reflection light that is a very small component, and is a parameter suitable for indicating the amount of diffuse reflection inside the low refractive index layer.
  • Measuring device of a typical R SCE is, JIS Z8722: has a configuration conforming to the geometric-condition c 2009. More specifically, a typical RSCE measuring apparatus uses D65 as the light source of the integrating sphere spectrophotometer, the position of the light receiver is +8 degrees with respect to the normal of the sample, and the position of the light trap is It is ⁇ 8 degrees with respect to the normal of the sample, and the viewing angle is 2 degrees or 10 degrees.
  • a measurement apparatus of R SCE include the trade name CM-2600d manufactured by Konica Minolta Co., Ltd.. In this specification, the viewing angle is 2 degrees.
  • the diffuse light reflectivity RSCE is preferably 1.5% or less, more preferably 1.0% or less, and further preferably 0.5% or less. By setting RSCE to 1.5% or less, the amount of diffuse reflection inside the low refractive index layer is reduced, and whitening can be suppressed.
  • the lower limit of R SCE is about 0.01%.
  • the surface of the low refractive member opposite to the surface having the low refractive index layer is black.
  • the sample black adhesive layer preferably has a total light transmittance of 1% or less.
  • the difference ( ⁇ n) between the refractive index of the surface of the low refractive member opposite to the surface having the low refractive index layer (for example, the refractive index of the substrate) and the refractive index of the binder resin of the black adhesive layer is preferably within 0.10.
  • R SCE haze, total light transmittance, and luminous reflectance Y value are average values of measured values at 10 locations.
  • the low refractive member of the present invention preferably has a haze according to JIS K7136: 2000 of 1.0% or less, more preferably 0.5% or less, and further preferably 0.2% or less. preferable.
  • a haze according to JIS K7136 2000 of 1.0% or less, more preferably 0.5% or less, and further preferably 0.2% or less.
  • whitening of the low refractive index layer can be suppressed and visibility can be easily improved.
  • the low refractive member of the present invention preferably has a total light transmittance of JIS K7361-1: 1997 of 50.0% or more, more preferably 80% or more, and even more preferably 90% or more. .
  • the luminous reflectance Y value measured at a light incident angle of 5 degrees from the side having the low refractive index layer is preferably 3.0% or less, and is 2.0% or less. Is more preferable.
  • the luminous reflectance Y value refers to the luminous reflectance Y value of the CIE 1931 standard color system.
  • the luminous reflectance Y value can be calculated using a spectrophotometer (for example, trade name “UV-3600 plus” manufactured by Shimadzu Corporation).
  • the low refractive member may be in the form of a single sheet cut into a predetermined size, or may be in the form of a roll obtained by winding a long sheet into a roll.
  • the size of the sheet is not particularly limited, but the maximum diameter is about 2 to 500 inches.
  • the “maximum diameter” refers to the maximum length when any two points of the low refractive member are connected. For example, when the low refractive member is rectangular, the diagonal of the region is the maximum diameter. When the low refractive member is circular, the diameter is the maximum diameter.
  • the width and length of the roll are not particularly limited, but generally the width is about 500 to 3000 mm and the length is about 500 to 5000 m.
  • the roll-shaped low-refractive member can be used by cutting into a single sheet according to the size of the image display device or the like. When cutting, it is preferable to exclude a roll end portion whose physical properties are not stable. Further, the shape of the single wafer is not particularly limited, and may be, for example, a polygon (triangle, quadrangle, pentagon, etc.), a circle, or a random irregular shape.
  • the transfer sheet of the present invention has a transfer layer on a substrate, the substrate side of the transfer layer is a low refractive index layer, and the low refractive index layer has a thickness of 0.5 to 5.
  • the hollow particles have an average particle diameter of 60 to 140 nm, and the binder resin contains a cured product of a composition containing a silicone compound as the binder resin. It is a waste.
  • the base material of the transfer sheet is preferably a plastic film from the viewpoint of workability during transfer sheet production and transfer.
  • the plastic film as the substrate of the transfer sheet the same plastic film as exemplified as the substrate of the low refractive member can be used.
  • the thickness of the plastic film is preferably 10 to 500 ⁇ m, more preferably 20 to 400 ⁇ m, and even more preferably 50 to 300 ⁇ m from the viewpoint of handleability.
  • the substrate surface of the transfer sheet may be subjected to a release treatment in order to make it easy to peel the transfer layer from the substrate.
  • Ra, Rz, and Rp are preferably in the following ranges on the surface of the substrate on which the low refractive index layer is formed in order to suppress surface irregularities of the low refractive index layer exposed on the surface of the transfer layer after transfer. Details of Ra, Rz and Rp (measurement method and the like) will be described later. Ra: 2.5 nm or less Rz: 25 nm or less Rp: 12 nm or less
  • Ra is more preferably 2.0 nm or less, further preferably 1.5 nm or less, and still more preferably 1.2 nm or less.
  • the lower limit of Ra is about 0.3 nm.
  • Rz is more preferably 20 nm or less, further preferably 15 nm or less, and still more preferably 10 nm or less.
  • the lower limit of Rz is about 3 nm.
  • Rp is more preferably 10 nm or less, further preferably 8 nm or less, and further preferably 6 m or less.
  • the lower limit of Rp is about 2 nm.
  • the transfer layer has at least a low refractive index layer. Further, the substrate side of the transfer layer is composed of a low refractive index layer.
  • the low refractive index layer constituting the transfer layer has a thickness of 0.5 to 5.0 ⁇ m and contains hollow particles and a binder resin, and the hollow particles have an average particle diameter of 60 to 140 nm.
  • a cured product of a composition containing a silicone compound As a cured product of a composition containing a silicone compound.
  • Embodiments and preferred embodiments of the low refractive index layer constituting the transfer layer, the hollow particles contained in the low refractive index layer and the binder resin, and the preferred embodiments are the low refractive index layer and the low refractive index of the low refractive member of the present invention described above.
  • the surface shape of the low refractive index layer of the low refractive index member of the present invention described above is the base of the low refractive index layer in the transfer sheet of the present invention. This corresponds to the shape of the surface on the material side (the shape of the surface exposed after transfer).
  • the transfer layer may have other layers on the side opposite to the substrate with the low refractive index layer as a reference.
  • other layers include a hard coat layer for improving the scratch resistance of the low refractive index layer, an adhesive layer for improving the adhesion between the adherend and the transfer layer, and an antistatic layer. It is done.
  • the transfer layer preferably has an adhesive layer on the surface opposite to the substrate.
  • the transfer layer can have a laminated structure such as the following (1) to (3).
  • a resin having adhesiveness may be included as a binder resin for the low refractive index layer.
  • a heat-sensitive or pressure-sensitive resin suitable for the material of the adherend For the adhesive layer of the transfer layer, it is preferable to use a heat-sensitive or pressure-sensitive resin suitable for the material of the adherend.
  • the material of the adherend is an acrylic resin
  • the material of the adherend is polyphenylene oxide / polystyrene resin, polycarbonate resin, or styrene resin, use an acrylic resin, polystyrene resin, polyamide resin, or the like that is compatible with these resins. Is preferred.
  • the material of the adherend is a polypropylene resin
  • a chlorinated polyolefin resin a chlorinated ethylene-vinyl acetate copolymer resin, a cyclized rubber, or a coumarone indene resin
  • the material of the adherend is glass
  • an ethylene-vinyl acetate copolymer resin and a polyethylene resin it is preferable to use an ethylene-vinyl acetate copolymer resin and a polyethylene resin.
  • adhesion with various adhesives can be improved by using glass surface-treated with a silane coupling agent.
  • the adhesive layer may be a so-called transparent optical adhesive layer (OCA).
  • the transparent optical adhesive layer is made of an acrylic resin from the viewpoints of optical properties, light resistance, weather resistance, heat resistance, and transparency.
  • the thickness of the adhesive layer is preferably 0.1 to 50 ⁇ m, and more preferably 0.5 to 30 ⁇ m.
  • the hard coat layer of the transfer layer preferably contains a cured product of a curable resin composition such as a thermosetting resin composition or an ionizing radiation curable resin composition, and from the viewpoint of improving scratch resistance, ionizing radiation. More preferably, it contains a cured product of the curable resin composition.
  • a curable resin composition such as a thermosetting resin composition or an ionizing radiation curable resin composition
  • the thermosetting resin composition is a composition containing at least a thermosetting resin, and is a resin composition that is cured by heating.
  • the thermosetting resin include acrylic resin, urethane resin, phenol resin, urea melamine resin, epoxy resin, unsaturated polyester resin, and silicone resin.
  • a curing agent is added to these curable resins as necessary.
  • the ionizing radiation curable resin composition is a composition containing a compound having an ionizing radiation curable functional group (hereinafter also referred to as “ionizing radiation curable compound”).
  • ionizing radiation curable compound examples include an ethylenically unsaturated bond group such as a (meth) acryloyl group, a vinyl group, and an allyl group, an epoxy group, and an oxetanyl group.
  • a compound having an ethylenically unsaturated bond group is preferable, a compound having two or more ethylenic unsaturated bond groups is more preferable, and among them, having two or more ethylenically unsaturated bond groups, Polyfunctional (meth) acrylate compounds are more preferred.
  • the polyfunctional (meth) acrylate compound any of a monomer and an oligomer can be used.
  • the ionizing radiation means an electromagnetic wave or a charged particle beam having an energy quantum capable of polymerizing or cross-linking molecules, and usually ultraviolet (UV) or electron beam (EB) is used.
  • Electromagnetic waves such as X-rays and ⁇ -rays, and charged particle beams such as ⁇ -rays and ion beams can also be used.
  • (meth) acrylate means acrylate or methacrylate
  • (meth) acrylic acid means acrylic acid or methacrylic acid
  • (meth) acryloyl group means acryloyl group or methacryloyl group. means.
  • the thickness of the hard coat layer is preferably 0.1 to 100 ⁇ m, more preferably 0.5 to 50 ⁇ m, and further preferably 1 to 30 ⁇ m. By setting the thickness of the hard coat layer in the above range, it is possible to easily suppress the occurrence of cracks in the transfer layer during transfer while improving the scratch resistance. When high hardness is required as in the case of glass replacement, the thickness of the hard coat layer is preferably 10 to 30 ⁇ m.
  • a release layer may be provided between the substrate and the transfer layer.
  • the release layer can be formed from a general-purpose release agent such as a silicone release agent or a fluorine release agent.
  • the substrate side of the transfer layer is composed of a low refractive index layer.
  • the surface shape on the base material side of the low refractive index layer is the arithmetic average roughness Ra, the maximum height Rz, and the maximum height Rp of the roughness curve. It is preferable that one or more selected from the following range is satisfied, two or more satisfy the following range, and it is more preferable that all three satisfy the following range.
  • a low refractive index layer is located on the surface of the laminate obtained by transferring the transfer layer onto the adherend.
  • Ra, Rz, and Rp satisfy the following ranges, when the surface of the laminate (the surface of the low refractive index layer) is rubbed with a nail or the like, the nail or the like may be scratched by unevenness, thereby causing scratches. It can be suppressed and the scratch resistance can be easily improved. Moreover, when Ra, Rz, and Rp satisfy the following ranges, when the surface of the laminate (the surface of the low refractive index layer) is touched with a finger or the like, the refractive index changes due to sebum entering the irregularities. And it can suppress that anti-reflective property falls.
  • Rz 25 nm or less
  • Rp 12 nm or less
  • Ra is more preferably 2.0 nm or less, further preferably 1.5 nm or less, and still more preferably 1.2 nm or less. In addition, Ra is preferably 0.3 nm or more in order to suppress the recognition of very small scratches.
  • Rz is more preferably 20 nm or less, further preferably 15 nm or less, and still more preferably 10 nm or less. In addition, Rz is preferably 3 nm or more in order to suppress the observation of very small scratches.
  • Rp is more preferably 10 nm or less, further preferably 8 nm or less, and further preferably 6 m or less. Note that Rp is preferably 2 nm or more in order to suppress the observation of very small scratches.
  • Ra, Rz, and Rp shall be defined in accordance with JIS B0601: 2001.
  • Ra, Rz, and Rp are calculated as follows using an atomic force microscope (trade name “WET-9100”, manufactured by Shimadzu Corporation). Specifically, first, a plurality of flat circular metal plates are prepared, and a carbon double-sided tape manufactured by Nissin EM Co., Ltd. is attached to each metal plate, and the metal plate and the deposition are attached via the tape. A measurement sample in which a laminate formed by transferring a transfer layer onto a body is bonded to the adherend side is prepared. Then, in order to ensure the adhesion of the metal plate, the tape and the laminate, the measurement sample is left overnight in a desiccator.
  • the sample for measurement is fixed with a magnet on the measurement table of an atomic force microscope (trade name “WET-9400”, manufactured by Shimadzu Corporation), and the measurement area is 5 ⁇ m square in the tapping mode. Observe the surface shape with a force microscope. Then, Ra, Rz, and Rp are calculated from the observed data using surface analysis software built in the atomic force microscope. Note that the vertical scale during the surface analysis is 20 nm. The observation atmosphere is 23 ° C. ⁇ 5 ° C. and a humidity of 40 to 65%, and NCHR-20 manufactured by NanoWorld is used as the cantilever. For observation, 10 locations are selected at random from locations free from foreign matter or scratches for one sample, and the surface shapes at 10 locations are observed. Then, Ra, Rz, Rp are calculated using the surface analysis software built in the atomic force microscope, and the arithmetic average values of the 10 points are calculated as Ra, Rz, Rp for each sample. And
  • Ra is used to see the average value of the heights of the peaks and valleys existing on the surface of the low refractive index layer
  • Rz is the maximum value of the peak height and the valley depth of the surface of the low refractive index layer. It is used to see the sum of the maximum values, and Rp is used to see the maximum value of the peak height of the surface of the low refractive index layer.
  • Ra is looking at the average value of the heights of the peaks and valleys present on the surface of the low refractive index layer, although the surface shape of the rough low refractive index layer can be understood, there are large peaks and valleys.
  • the surface of the low refractive index layer on the base material side has a region where substantially no hollow particles are present.
  • the surface of the low refractive index layer on the substrate side has a region where only the binder resin is substantially present. Since the specific gravity of hollow particles is light, the hollow particles emerge on the surface of the coating film by applying a coating composition containing hollow particles and a binder resin component on the substrate of the transfer sheet to form a low refractive index layer. Moreover, it is possible to easily form a region where the hollow particles are sparse and the binder resin is dense on the surface of the low refractive index layer on the substrate side.
  • the region where only the binder is substantially present on the substrate side surface of the low refractive layer can be calculated by the following operations (I) to (IV).
  • (I) In order to observe the binder existing between the particles of the low refractive index layer of the transfer sheet and the base material layer with TEM or STEM, the transfer sheet is cut perpendicular to the sheet and sliced with a microtome. The thickness of the flakes is preferably in the range of 50 nm to 200 nm.
  • a microtome for example, an ultramicrotome manufactured by Leica Microsystems
  • the trimmed cut surface was extracted as a thin piece having a thickness of about 80 nm using a diamond knife.
  • the transfer sheet is imaged with a TEM or STEM.
  • the acceleration voltage of TEM or STEM is preferably 30 kV or more, and F.O.V (Field Of View) is preferably 365 nm square to 1825 nm square.
  • Equipment used Hitachi High-Technologies scanning electron microscope S-4800 Type I Acceleration voltage: 30 kV Observation mode: STEM Observation magnification: ⁇ 200k F.O.V (Field Of View): 630 nm square
  • the region where only the binder resin is substantially present on the surface of the base material side of the low refractive index layer is preferably 1 nm or more, more preferably 2 nm or more from the surface of the low refractive index layer. From the viewpoint of maintaining antireflection properties, the region is preferably 20 nm or less, and more preferably 15 nm or less.
  • the region where only the binder resin is substantially present is a binder on the surface of the low refractive index layer on the substrate side at 500 nm in the width direction of the low refractive index layer of the photograph obtained by photographing the vertical cross section of the transfer sheet with STEM. It shall mean the area where only resin is present.
  • the region where only the binder resin is substantially present is preferably 60% or more, more preferably 70% or more, and 80% or more. More preferably, it is more preferably 90% or more.
  • the material of the adherend to which the transfer layer is transferred is not particularly limited, and examples thereof include glass, ceramics, metal and wood in addition to various plastics.
  • the thickness of the adherend is not particularly limited, and it may be as thin as a micron level or as thick as a plate.
  • the shape of the adherend is not particularly limited, and may be a planar shape or a three-dimensional shape.
  • the coating composition of the present invention is a coating composition for forming a low refractive index layer comprising hollow particles having an average particle size of 60 to 140 nm and a silicone compound as a binder resin component.
  • the coating composition of the present invention is useful as the above-described coating composition for forming the low refractive index layer of the low refractive member of the present invention or the above-described coating composition for forming the low refractive index layer of the transfer sheet of the present invention. It is.
  • Embodiments and preferred embodiments of the hollow particles and the binder resin component contained in the coating composition are the hollow particles and the binder resin component contained in the low refractive index layer of the low refractive member of the present invention described above unless otherwise specified. This is the same as the embodiment and the preferred embodiment.
  • the average particle diameter of the hollow particles of the coating composition can be calculated by the following operations (1) to (3).
  • (1) In order to observe the hollow particles of the coating composition with a transmission electron microscope (TEM), the coating composition is diluted about 100 times with a main solvent, and this is applied to a collodion membrane applied mesh and dried for a TEM observation sample. Is made.
  • TEM transmission electron microscope
  • the material for TEM observation of the coating composition is imaged with a transmission electron microscope (TEM).
  • the accelerating voltage of a transmission electron microscope (TEM) is preferably 100 kv to 200 kV, and the F.O.V (Field Of View) is preferably 365 nm square to 1825 nm square.
  • Equipment used Transmission electron microscope manufactured by FEI Tecnai G2 Spirit Acceleration voltage: 120 kV Observation mode: TEM Observation magnification: x30k F.O.V (Field Of View): 680 nm square
  • Image analysis is performed from the observed image according to the following procedure.
  • Arbitrary 10 particles are extracted from the observation image, and the particle portion is filled with image analysis software (paint or the like) along the outer diameter of the particle.
  • image analysis software paint or the like
  • the above-described painting operation is performed by dividing the aggregated particles into individual particles instead of considering the aggregated particles as one particle.
  • the area (px ⁇ 2) of the filled portion is calculated by image analysis software (ImageJ or the like).
  • the equivalent circle diameter (px) is calculated from the area. 4).
  • the length per pixel is calculated from the scale bar of the TEM image. 5.
  • the equivalent circle diameter (px) calculated in “3.” is converted to nm. 6.
  • An average value of 10 equivalent circle diameters is obtained, and the obtained value is defined as “average particle diameter (D)”.
  • the coating composition preferably contains a solvent.
  • the solvent include ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.), ethers (dioxane, tetrahydrofuran, etc.), aliphatic hydrocarbons (hexane, etc.), alicyclic hydrocarbons (cyclohexane, etc.), Aromatic hydrocarbons (toluene, xylene, etc.), halogenated carbons (dichloromethane, dichloroethane, etc.), esters (methyl acetate, ethyl acetate, butyl acetate, etc.), alcohols (butanol, cyclohexanol, etc.), cellosolves ( Examples thereof include methyl cellosolve, ethyl cellosolve, etc.), cellosolve acetates, sulfoxides (dimethyl sulfoxide
  • the content of the solvent in the coating composition is preferably 60 to 95% by mass and more preferably 70 to 90% by mass with respect to the total amount of the coating composition.
  • the coating composition contains a solvent, and when the absolute value of the zeta potential of the hollow particles in the coating composition when 95% by mass or more of the solvent is propylene glycol monomethyl ether acetate is defined as A (mV), It is preferable to satisfy the formula (i). 10.0 mV ⁇ A (i)
  • A absolute value of zeta potential
  • A the absolute value of the zeta potential
  • the density of the hollow particles means “apparent density”. The apparent density can be measured by the Le Chatelier specific gravity bottle method.
  • the coating composition is useful as a coating composition for a low refractive index layer having a thickness of 0.5 to 5.0 ⁇ m. As described above, in the case of a thick low refractive index layer having a thickness of 0.5 ⁇ m or more, aggregated hollow particles are taken into the low refractive index layer. For this reason, it is technically significant that the coating composition satisfies the above formula (i) to easily suppress the aggregation of the hollow particles.
  • 95% by mass or more of the total solvent of the coating composition is propylene glycol monomethyl ether acetate.
  • the proportion of propylene glycol monomethyl ether acetate in the total solvent of the coating composition is preferably 97% by mass or more, more preferably 99% by mass or more, and further preferably 100% by mass.
  • the composition contains a solvent other than propylene glycol monomethyl ether acetate in a proportion exceeding 5% by mass, the hollow particles are obtained after replacing the solvent so that 95% by mass or more of the total solvent becomes propylene glycol monomethyl ether acetate. What is necessary is just to measure the zeta potential.
  • the solid content concentration of the coating composition is adjusted to 20 ⁇ 1 mass%.
  • the absolute value of the zeta potential tends to increase by reducing the difference between the density of the hollow particles (apparent density) and the density of the solvent.
  • the zeta potential of the hollow particles is the average value of 10 measurements. Moreover, in this specification, it shall measure with the electroacoustic method (ESA method).
  • the ESA method can be measured by, for example, “ZetaProbe Analyzer TM” manufactured by Colloidal Dynamics, LLC (Ponte Vedra Beach, Florida, USA).
  • the ESA method is a method in which an alternating voltage is applied to a colloidal solution and a zeta potential is measured from an ultrasonic ESA signal generated by vibration of particles.
  • the ESA signal is represented by the following formula (ii).
  • the magnitude of the ESA signal correlates with the concentration ( ⁇ ) of particles with dynamic mobility ( ⁇ ).
  • the particle size is analyzed from the phase delay of the generated ultrasonic wave due to the difference in the moment of inertia of the particles when an AC voltage is applied, and the obtained particle size is used for the zeta potential analysis.
  • the zeta potential ( ⁇ ) reflecting the particle diameter is calculated by measuring at a plurality of frequencies (the following formula (iii)).
  • the zeta potential value can be negative or positive depending on the polarity of the charge on the particle.
  • the “magnitude” of the zeta potential is expressed as an absolute value (for example, a zeta potential value of ⁇ 35 mV has a higher magnitude than a zeta potential value of ⁇ 20 mV).
  • the magnitude of the zeta potential reflects the degree of electrostatic repulsion between identically charged particles in the dispersion. The higher the magnitude of the zeta potential, the more stable the particles in the dispersion.
  • the coating composition may contain additives such as a surfactant, a dispersant, an antistatic agent, an antioxidant, and an ultraviolet absorber.
  • additives such as a surfactant, a dispersant, an antistatic agent, an antioxidant, and an ultraviolet absorber.
  • the coating composition can be formed into a low refractive index layer by, for example, coating on a substrate, prebaking (drying), and further heat curing.
  • the temperature is preferably 60 to 150 ° C., more preferably 80 to 120 ° C., and the time is preferably 40 to 200 seconds, more preferably 50 to 150 seconds.
  • the temperature is preferably 150 to 260 ° C., more preferably 170 to 250 ° C., and the time is preferably 5 to 45 minutes, more preferably 15 to 35 minutes.
  • drying conditions and thermal curing conditions of the coating composition are set within the above ranges, rapid drying of the coating composition and / or rapid curing of the binder resin is suppressed, and the surface of the low refractive index layer becomes uneven. This can be easily suppressed.
  • the laminate of the present invention comprises a vapor deposition film on the low refractive index layer of the low refractive member of the present invention described above.
  • the deposited film is silicon (Si), boron (B), aluminum (Al), magnesium (Mg), calcium (Ca), potassium (K), tin (Sn), sodium (Na), boron (B), titanium.
  • Vacuum deposition using one or more of inorganic materials such as (Ti), lead (Pb), zirconium (Zr), yttrium (Y), indium (In), antimony (Sb), these oxides, and these nitrides as raw materials Further, it can be formed by a physical vapor deposition (PVD) method such as sputtering or ion plating, a chemical vapor deposition (CVD) method such as plasma chemical vapor deposition, thermal chemical vapor deposition, or photochemical vapor deposition.
  • the thickness of the deposited film is usually about 5 to 500 nm.
  • the surface shape of the low refractive index layer located in the lower layer of the deposited film is preferably less uneven. By reducing the unevenness of the surface shape of the low refractive index layer, it is possible to easily form a deposited film cleanly without unevenness. In order to reduce the unevenness of the surface shape of the low refractive index layer, it is preferable to use a component with little shrinkage as the binder resin of the low refractive index layer or to form the low refractive index layer by transfer.
  • the low refractive index layer located in the lower layer of a vapor deposition film contains the hardened
  • the refractive index of the low-refractive index layer was calculated using a low-refractive-index member having a refractive index of 10 cm square, using a microspectrophotometer (trade name “OPTM-A1” manufactured by Otsuka Electronics Co., Ltd.). Those having a refractive index of 1.30 or less have good antireflection properties and are acceptable.
  • Low Refractive Index Layer Thickness Using a 10 cm square low refractive member, the thickness ( ⁇ m) of the low refractive index layer was calculated by a microspectrophotometer (Otsuka Electronics Co., Ltd., trade name “OPTM-A1”). After confirming that there was no defect, the thickness at 10 locations was measured, and the average value at 10 locations was taken as the thickness of the low refractive index layer of each Example and Comparative Example.
  • the coating film is partially or completely peeled along the edge of the cut, and / or various parts of the eye are partially or completely peeled off.
  • the cross-cut portion is clearly affected by more than 15% but not more than 35%.
  • 4 The coating film is partially or completely peeled along the edge of the cut, and / or some eyes are partially or completely peeled off.
  • the cross-cut portion is clearly not affected by more than 65%.
  • 5 Any of the degree of peeling that cannot be classified even with classification 4.
  • Total light transmittance The total light transmittance (%) of the low refractive member was measured according to JIS K7361-1: 1997. The light incident surface was the substrate side. A 10 cm square low refractive member is used, and 10 points are selected at random from places where there are no scratches or defects on the sample, and the arithmetic average value of 10 points is calculated as the total light transmittance (%) of the low refractive member of each example and comparative example. ).
  • Diffuse light reflectance R SCE The release film of the trade name “Kikkiri Mieru” manufactured by Yodogawa Seisakusho is peeled off, and the exposed black pressure-sensitive adhesive layer is bonded to the surface of the glass substrate side of the 10 cm square low-refractive member of Examples and Comparative Examples.
  • Integrating sphere spectrophotometer Konica Minolta Co., Ltd., trade name: CM-2600d
  • measured from the surface of the low refractive index layer side of the sample diffuse light reflectance of the sample (R SCE) (%) did.
  • Ten locations were selected at random from locations having no scratches or defects on the sample, and the arithmetic average value at the 10 locations was defined as the diffused light reflectance R SCE (%) of the low refractive member of each Example and Comparative Example.
  • the light source of the integrating sphere spectrophotometer is D65
  • the position of the light receiver is +8 degrees with respect to the normal line of the sample
  • the position of the light trap is ⁇ 8 degrees with respect to the normal line of the sample
  • the viewing angle is Twice.
  • Zeta potential The zeta potential was measured using a ZetaProbe Analyzer TM from Colloidal Dynamics, LLC (Ponte Vedra Beach, Florida, USA) under the following conditions. Table 1 shows the absolute value (mV) of the obtained zeta potential. In addition, the density (apparent density) of the hollow particles in Examples and Examples was measured by the Le Chatelier specific gravity bottle method. ⁇ Preparation of calibration and measurement samples> First, calibration was performed using KSiW calibration solution (0.5 mS / cm) supplied from Colloidal Dynamics.
  • a sample (the coating composition for forming a low refractive index layer of Examples and Comparative Examples) was placed in a 30 mL Teflon cup equipped with a stirring rod and sufficiently stirred at a stirring speed of 250 rpm.
  • a sample for measuring potential was used.
  • the zeta potential was measured at a sample temperature (about 20 ⁇ 2 ° C.) using a dipping probe and a 10-point test in a one-point mode.
  • the data was analyzed using ZP version 2.14c Polar TM software provided by Colloidal Dynamics.
  • Example 1 On a 10 cm square, 0.7 mm thick glass substrate (non-alkali glass manufactured by Corning, trade name “EAGLE XG”), a coating composition for forming a low refractive index layer having the following formulation is applied by a spin coater (MS-B150 ( Micasa Co., Ltd.) and pre-baked (dried) for 120 seconds at 100 ° C. to obtain a coated film, which was heated in an oven at 200 ° C. for 20 minutes to prepare a composition containing a silicone compound. Curing was performed to form a low-refractive index layer having a thickness of 1.0 ⁇ m to obtain a low-refractive member of Example 1.
  • a spin coater MS-B150 ( Micasa Co., Ltd.)
  • pre-baked (dried) for 120 seconds at 100 ° C. to obtain a coated film, which was heated in an oven at 200 ° C. for 20 minutes to prepare a composition containing a silicone compound.
  • Curing was performed
  • Example 2 A low refractive member of Example 2 was obtained in the same manner as Example 1 except that the thickness of the low refractive index layer was changed to 3.0 ⁇ m.
  • Example 3 A low refractive member of Example 3 was obtained in the same manner as in Example 1 except that the content of the hollow particles in the coating composition for forming a low refractive index layer was changed to 10 parts by mass.
  • Example 4 Except for changing the hollow particles of the coating composition for forming a low refractive index layer to hollow silica particles having an average particle diameter of 60 nm obtained by surface treatment with a silane coupling agent having a methacryloyl group, in the same manner as in Example 1, A low refractive member of Example 4 was obtained.
  • Example 5 Except for changing the hollow particles of the coating composition for forming a low refractive index layer to hollow silica particles having an average particle diameter of 100 nm obtained by surface treatment with a silane coupling agent having a methacryloyl group, in the same manner as in Example 1, A low refractive member of Example 5 was obtained.
  • Comparative Example 1 A low refractive index member of Comparative Example 1 was obtained in the same manner as in Example 1 except that the thickness of the low refractive index layer was changed to 0.2 ⁇ m.
  • Comparative Example 2 A low refractive member of Comparative Example 2 was obtained in the same manner as in Example 1 except that the thickness of the low refractive index layer was changed to 5.5 ⁇ m.
  • Comparative Example 5 Except for changing the binder resin component of the coating composition for forming a low refractive index layer to a non-silicone epoxy resin (product number “EHPE3150” manufactured by Daicel Corporation, solid content: 100%), the same as in Example 1, A low refractive member of Comparative Example 5 was obtained.
  • Example 6 The hollow particles of the coating composition for forming a low refractive index layer are changed to hollow silica particles having an average particle diameter of 50 nm obtained by surface treatment with a silane coupling agent having a methacryloyl group, and further the coating composition for forming a low refractive index layer A low refractive member of Comparative Example 6 was obtained in the same manner as in Example 1 except that the content of the hollow particles of the product was changed to 40 parts by mass.
  • the low refractive member of Examples 1-5 despite the thickness of the low refractive index layer is thick, haze and R SCE is small, whitening is suppressed good visibility It can be confirmed that In addition, it can be confirmed that the low refractive members of Examples 1 to 5 can suppress cracks because the low refractive index layer is not too thick. In addition, it can be confirmed that the low refractive members of Examples 1 to 5 have a refractive index of the low refractive index layer of 1.30 or less, suppress surface reflection, and have antireflection properties. Furthermore, it can be confirmed that the low refractive members of Examples 1 to 5 cannot be distinguished in the antireflection property between the scratched portion and the non-rubbed portion, and are excellent in the antireflection performance after scratching.
  • Example 6 As a release sheet, an A4 size polyimide film having a thickness of 50 ⁇ m was prepared. A low refractive index layer having a thickness of 1.0 ⁇ m was formed on one surface of the polyimide film in the same manner as in Example 1. Next, a hard coat layer is formed on the low refractive index layer by coating, drying, and irradiating with ultraviolet rays (irradiation amount 50 mJ / cm 2 ) so that the thickness after drying the following hard coat coating solution becomes 5 ⁇ m. did. Next, an anchor coat layer was formed on the hard coat layer by applying and drying the following coating solution for anchor coat layer so that the thickness after drying was 2 ⁇ m. Next, on the anchor coat layer, the following adhesive layer coating solution was applied and dried so that the thickness after drying was 2 ⁇ m to form a heat-sensitive adhesive layer. Transfer of Example 6 A sheet was obtained.
  • ⁇ Coating liquid for hard coat layer Composition containing ultraviolet curable acrylic acrylate, silica particles and photopolymerization initiator (DNP Fine Chemical Co., Ltd., trade name: KYK coating agent (82L)): 100 parts by mass.
  • Hexanemethylene diisocyanate manufactured by Nippon Polyurethane Industry Co., Ltd., Product name: Coronate 2203
  • 2 parts by mass / diluent solvent methyl ethyl ketone, methyl isobutyl ketone
  • the release sheet (polyimide film) was peeled off to form a transfer layer on the adherend.
  • ultraviolet rays were irradiated (irradiation amount 800 mJ / cm 2 ) to accelerate the curing of the hard coat layer to obtain a low refractive member.
  • the low refractive member obtained using the transfer sheet of Example 6 was suppressed in whiteness and had good visibility despite the large thickness of the low refractive index layer. Moreover, the low refractive member obtained using the transfer sheet of Example 6 was able to suppress cracks because the low refractive index layer was not too thick. In addition, the low refractive member obtained using the transfer sheet of Example 6 was a material having a sufficient antireflection property because surface reflection was suppressed. Further, the low refractive member obtained by using the transfer sheet of Example 6 had a soft adhesive layer between the adherend (transparent acrylic plate) and the low refractive index layer. It was excellent in scratch resistance to such an extent that the antireflection property from the non-rubbed portion could not be distinguished.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention provides a low refractive index member which suppresses cracks, while achieving good visibility by suppressing whitening in spite of thick film thickness of a low refractive index layer, and which is capable of maintaining anti-reflection properties. A low refractive index member which comprises a low refractive index layer on a base material, and which is configured such that: the low refractive index layer has a thickness of from 0.5 μm to 5.0 μm, while containing hollow particles and a binder resin; the hollow particles have an average particle diameter of from 60 nm to 140 nm; and a cured product of a composition that contains silicone compound is contained as the binder resin.

Description

低屈折部材、転写シート、コーティング組成物、及び低屈折部材を用いた積層体Low refractive member, transfer sheet, coating composition, and laminate using low refractive member
 本発明は、低屈折部材、転写シート、コーティング組成物、及び低屈折部材を用いた積層体に関する。 The present invention relates to a low refractive member, a transfer sheet, a coating composition, and a laminate using the low refractive member.
 液晶表示装置等の画像表示装置、ショーケース等の各種物品の表面には、外光の反射を抑制するために低屈折部材が配置される場合がある。 A low-refractive member may be disposed on the surface of various articles such as an image display device such as a liquid crystal display device and a showcase in order to suppress reflection of external light.
 低屈折部材は、屈折率の低い層(低屈折率層)を表面に備えることで、低屈折率層の表面自体での反射を低くしつつ、さらに、低屈折率層の表面で反射する光と、低屈折率層の下層の表面で反射する光との干渉により、反射率を低くするように設計されている。
 このため、低屈折部材の低屈折率層の厚みは、可視光線の波長域の1/4程度(100nm前後)に設計されている(例えば特許文献1)。
The low refractive index member is provided with a layer having a low refractive index (low refractive index layer) on its surface, so that light reflected from the surface of the low refractive index layer is further reduced while lowering reflection at the surface of the low refractive index layer itself. And the light reflected by the surface of the lower layer of the low refractive index layer are designed to reduce the reflectance.
For this reason, the thickness of the low refractive index layer of the low refractive member is designed to be about 1/4 (around 100 nm) of the wavelength range of visible light (for example, Patent Document 1).
特開2016-177186号公報(段落0045)JP 2016-177186 A (paragraph 0045)
 特許文献1のように低屈折率層は100nm前後の薄膜であるため、低屈折率層が擦過により僅かに傷ついた場合でも低屈折率層が部分的に完全に消失し、反射防止効果が部分的に失われるという問題がある。特に、低屈折率層の屈折率を下げるために中空粒子を用いた場合、低屈折率層の耐擦傷性が低下しやすくなるため、前記問題が顕著になりやすい。 Since the low refractive index layer is a thin film of about 100 nm as in Patent Document 1, even when the low refractive index layer is slightly damaged by rubbing, the low refractive index layer partially disappears completely, and the antireflection effect is partially There is a problem of being lost. In particular, when hollow particles are used to lower the refractive index of the low refractive index layer, the scratch resistance of the low refractive index layer tends to be lowered, and thus the above problem tends to become remarkable.
 前記問題を解消するために、低屈折率層を、スパッタリング法や真空蒸着法等のドライプロセスにより形成する手段が考えられる。しかし、ドライプロセスは設備が大掛かりとなり、コストが大幅に上昇するという問題がある。
 また、前記問題を解消するために、ウェット法で形成する低屈折率層のバインダー樹脂として電離放射線硬化性樹脂組成物を用い、低屈折率層の架橋密度を高くする手段も考えられる。しかし、電離放射線硬化性樹脂組成物を用いて低屈折率層の架橋密度を高くした場合、低屈折部材にカールを生じる場合があり、さらには、架橋時の低屈折率層の体積収縮により、低屈折率層の表面の平滑性が失われ、表面拡散による白化を生じる場合がある。
In order to solve the above problem, there can be considered a means for forming the low refractive index layer by a dry process such as a sputtering method or a vacuum deposition method. However, the dry process requires a large amount of equipment, and there is a problem that the cost increases significantly.
In order to solve the above problem, a means for increasing the cross-linking density of the low refractive index layer by using an ionizing radiation curable resin composition as a binder resin for the low refractive index layer formed by a wet method may be considered. However, when the crosslink density of the low refractive index layer is increased using the ionizing radiation curable resin composition, curling may occur in the low refractive index member, and further, due to volume shrinkage of the low refractive index layer during crosslinking, The smoothness of the surface of the low refractive index layer is lost, and whitening due to surface diffusion may occur.
 上記課題を解決すべく、本発明者らは、低屈折率層が擦過により僅かに削られたとしても反射防止性を維持し得るように、低屈折率層の厚みを可視光線の波長域の1/4よりも大幅に厚くすることを検討した。しかし、低屈折率層の厚みを単純に厚くした場合、ヘイズが上昇して低屈折率層が白化して視認性が悪化したり、低屈折率層の形成過程や低屈折部材の取り扱い時に低屈折率層にクラックが発生するケースが頻発した。
 そこで、本発明者らはさらに鋭意検討し、低屈折率層の膜厚が厚いにも関わらず、白化を抑制して視認性が良好であるとともにクラックを抑制し、さらには反射防止性を維持し得る低屈折部材を完成するに至った。
In order to solve the above problems, the present inventors set the thickness of the low refractive index layer in the wavelength range of visible light so that the antireflective property can be maintained even if the low refractive index layer is slightly scraped by abrasion. It was considered to make the thickness significantly larger than 1/4. However, when the thickness of the low refractive index layer is simply increased, haze is increased and the low refractive index layer is whitened to deteriorate visibility. There were frequent cases where cracks occurred in the refractive index layer.
Therefore, the present inventors have further studied diligently, and despite being thick in the low refractive index layer, whitening is suppressed, visibility is good, cracks are suppressed, and antireflection properties are maintained. This has led to the completion of a low refractive member that can be used.
 本発明は、以下の[1]~[4]を提供する。
[1]基材上に低屈折率層を有する低屈折部材であって、前記低屈折率層は、厚みが0.5~5.0μmであり、かつ、中空粒子及びバインダー樹脂を含み、前記中空粒子は平均粒子径が60~140nmであり、前記バインダー樹脂として、シリコーン系化合物を含む組成物の硬化物を含む、低屈折部材。
[2]基材上に転写層を有する転写シートであって、前記転写層の前記基材側は低屈折率層であり、前記低屈折率層は、厚みが0.5~5.0μmであり、かつ、中空粒子及びバインダー樹脂を含み、前記中空粒子は平均粒子径が60~140nmであり、前記バインダー樹脂として、シリコーン系化合物を含む組成物の硬化物を含む、転写シート。
[3]平均粒子径が60~140nmの中空粒子と、バインダー樹脂成分としてのシリコーン系化合物とを含む、低屈折率層形成用のコーティング組成物。
[4]上記[1]に記載の低屈折部材の低屈折率層上に蒸着膜を有してなる、積層体。
The present invention provides the following [1] to [4].
[1] A low-refractive-index member having a low-refractive index layer on a substrate, the low-refractive index layer has a thickness of 0.5 to 5.0 μm, includes hollow particles and a binder resin, The hollow particles have an average particle diameter of 60 to 140 nm, and include a cured product of a composition containing a silicone compound as the binder resin.
[2] A transfer sheet having a transfer layer on a substrate, wherein the substrate side of the transfer layer is a low refractive index layer, and the low refractive index layer has a thickness of 0.5 to 5.0 μm. A transfer sheet comprising hollow particles and a binder resin, the hollow particles having an average particle diameter of 60 to 140 nm, and containing a cured product of a composition containing a silicone compound as the binder resin.
[3] A coating composition for forming a low refractive index layer, comprising hollow particles having an average particle diameter of 60 to 140 nm and a silicone compound as a binder resin component.
[4] A laminate comprising a deposited film on the low refractive index layer of the low refractive member according to [1].
 本発明によれば、膜厚が厚いにも関わらず、白化を抑制して視認性が良好であり、かつ反射防止性を維持し得る低屈折部材、転写シート及びコーティング組成物を提供することができる。また、本発明によれば、該低屈折部材を用いた積層体を提供することができる。 According to the present invention, it is possible to provide a low-refractive member, a transfer sheet, and a coating composition that can suppress whitening and have good visibility and maintain antireflection properties despite the fact that the film thickness is large. it can. Moreover, according to this invention, the laminated body using this low refractive member can be provided.
[低屈折部材]
 本発明の低屈折部材は、基材上に低屈折率層を有してなり、前記低屈折率層は、厚みが0.5~5.0μmであり、かつ、中空粒子及びバインダー樹脂を含み、前記中空粒子は平均粒子径が60~140nmであり、前記バインダー樹脂として、シリコーン系化合物を含む組成物の硬化物を含むものである。
[Low refractive member]
The low refractive index member of the present invention has a low refractive index layer on a substrate, and the low refractive index layer has a thickness of 0.5 to 5.0 μm and contains hollow particles and a binder resin. The hollow particles have an average particle diameter of 60 to 140 nm and contain a cured product of a composition containing a silicone compound as the binder resin.
<基材>
 基材は、低屈折率層を形成する際の支持体となるものである。
 基材は光透過性を有するものが好適であり、具体的には、JIS K7361-1:1997に準拠する全光線透過率が50%以上であるものが好ましく、80%以上であるものがより好ましく、90%以上であるものがさらに好ましい。
<Base material>
A base material becomes a support body at the time of forming a low refractive index layer.
The base material is preferably light transmissive, and specifically, the total light transmittance according to JIS K7361-1: 1997 is preferably 50% or more, more preferably 80% or more. Preferably, it is 90% or more.
 基材は、プラスチック及びガラス等が挙げられる。
 ガラスはプラスチックよりも硬く、低屈折率層の耐擦傷性を良好にしやすい点で好ましい。
Examples of the substrate include plastic and glass.
Glass is preferable because it is harder than plastic and easily improves the scratch resistance of the low refractive index layer.
 プラスチック基材は、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、エチレン・酢酸ビニル共重合体、エチレン・ビニルアルコール共重合体等のビニル系樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル等のアクリル系樹脂、ポリスチレン等のスチレン系樹脂、ナイロン6又はナイロン66等のポリアミド系樹脂、トリアセチルセルロース等のセルロース系樹脂、ポリカーボネート等の樹脂、ポリイミド系樹脂の1種又は2種以上から形成することができる。
 ガラスは、無アルカリガラス、窒化ガラス、ソーダ石灰ガラス、ホウ珪酸塩ガラス及び鉛ガラス等が挙げられる。
Plastic base materials include polyolefin resins such as polyethylene and polypropylene, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, vinyl resins such as ethylene / vinyl acetate copolymer, ethylene / vinyl alcohol copolymer, polyethylene terephthalate, polyethylene Polyester resins such as naphthalate and polybutylene terephthalate, acrylic resins such as poly (meth) methyl acrylate and poly (meth) ethyl acrylate, styrene resins such as polystyrene, and polyamide resins such as nylon 6 or nylon 66 , A cellulose resin such as triacetyl cellulose, a resin such as polycarbonate, or a polyimide resin.
Examples of the glass include alkali-free glass, nitride glass, soda-lime glass, borosilicate glass, and lead glass.
 基材の厚みは特に限定されないが、プラスチック基材の場合、取り扱い性の観点から、10~500μmであることが好ましく、20~400μmであることがより好ましく、50~300μmであることがさらに好ましい。なお、プラスチック基材は厚み500μmを超える板状のものであってもよい。
 また、ガラスの場合、取り扱い性、強度及び軽量化の観点から、0.03~5.0mmであることが好ましく、0.1~3.0mmであることがより好ましく、0.3~2.0mmであることがさらに好ましい。
The thickness of the substrate is not particularly limited, but in the case of a plastic substrate, it is preferably 10 to 500 μm, more preferably 20 to 400 μm, and even more preferably 50 to 300 μm from the viewpoint of handleability. . The plastic substrate may be a plate having a thickness exceeding 500 μm.
In the case of glass, it is preferably 0.03 to 5.0 mm, more preferably 0.1 to 3.0 mm, from the viewpoint of handleability, strength, and weight reduction, and 0.3 to 2. More preferably, it is 0 mm.
 なお、基材は、平板状のものに限られず、曲面等を有する三次元形状であってもよい。また、基材は無色に限られず、有色のものでもよい。 The base material is not limited to a flat plate shape, and may be a three-dimensional shape having a curved surface. Further, the substrate is not limited to colorless, and may be colored.
<低屈折率層>
 低屈折率層は、基材の少なくとも一方の面に形成される。また、低屈折率層は低屈折部材の基材とは反対側の最表面に位置することが好ましい。
<Low refractive index layer>
The low refractive index layer is formed on at least one surface of the substrate. Moreover, it is preferable that a low refractive index layer is located in the outermost surface on the opposite side to the base material of a low refractive member.
 本発明の低屈折部材は、低屈折率層は厚みが0.5~5.0μmであることを要する。低屈折率層の厚みが0.5μm未満の場合、低屈折率層が擦過により僅かに傷ついた場合でも、擦過箇所の反射防止性が消失してしまい、視認性を良好にすることができない。また、低屈折率層の厚みが5.0μmを超える場合、中空粒子の絶対量が増加するため、内部拡散により低屈折率層が白化し、視認性を良好にすることができず、さらには、低屈折率層の形成過程(硬化収縮)や、低屈折部材の取り扱い時に低屈折率層にクラックが生じてしまう。 The low refractive index member of the present invention requires that the low refractive index layer has a thickness of 0.5 to 5.0 μm. When the thickness of the low refractive index layer is less than 0.5 μm, even if the low refractive index layer is slightly damaged by rubbing, the antireflective property of the rubbing portion disappears and visibility cannot be improved. Further, when the thickness of the low refractive index layer exceeds 5.0 μm, the absolute amount of the hollow particles increases, so that the low refractive index layer is whitened by internal diffusion, and the visibility cannot be improved. In the process of forming the low refractive index layer (curing shrinkage) and handling of the low refractive index member, cracks occur in the low refractive index layer.
 さらに、本発明の低屈折部材は、低屈折率層が中空粒子及びバインダー樹脂を含み、中空粒子は平均粒子径が60~140nmであることを要する。
 中空粒子の平均粒子径が60nm未満の場合、屈折率の低い空気の割合が減少するため低屈折率層の屈折率を十分に下げることができず、反射防止性が低下してしまう。また、中空粒子の平均粒子径が140nmを超える場合、中空粒子の拡散が強くなり、低屈折率層が白化し、視認性を良好にすることができない。
Furthermore, the low refractive index member of the present invention requires that the low refractive index layer contains hollow particles and a binder resin, and the hollow particles have an average particle diameter of 60 to 140 nm.
When the average particle diameter of the hollow particles is less than 60 nm, the ratio of air having a low refractive index is decreased, so that the refractive index of the low refractive index layer cannot be sufficiently lowered, and the antireflection property is lowered. Moreover, when the average particle diameter of a hollow particle exceeds 140 nm, the spreading | diffusion of a hollow particle becomes strong, a low refractive index layer whitens and visibility cannot be made favorable.
 さらに、本発明の低屈折部材は、低屈折率層のバインダー樹脂として、シリコーン系化合物を含む組成物の硬化物を含むことを要する。
 バインダー樹脂として、シリコーン系化合物を含む組成物の硬化物を含まない場合、低屈折率層の屈折率を十分に下げることができず、反射防止性が低下してしまう。
Furthermore, the low refractive member of this invention needs to contain the hardened | cured material of the composition containing a silicone type compound as binder resin of a low refractive index layer.
When the cured product of the composition containing a silicone compound is not included as the binder resin, the refractive index of the low refractive index layer cannot be sufficiently lowered, and the antireflection property is lowered.
 以上のように、本発明の低屈折部材は、低屈折率層の厚みを0.5~5.0μm、中空粒子の平均粒子径を60~140nmとして、かつ、バインダー樹脂として、シリコーン系化合物を含む組成物の硬化物を含むことによって、膜厚が厚いにも関わらず、白化を抑制して視認性が良好であり、かつ反射防止性を維持することを可能としている。 As described above, the low refractive member of the present invention has a low refractive index layer thickness of 0.5 to 5.0 μm, an average particle diameter of hollow particles of 60 to 140 nm, and a silicone compound as a binder resin. By including the hardened | cured material of the composition to contain, although the film thickness is thick, whitening is suppressed, visibility is favorable and it is possible to maintain antireflection property.
<<中空粒子>>
 中空粒子とは、外殻層を有し、当該外殻層に囲まれた粒子内部が空洞であり、粒子内部に空気を含む粒子をいう。
 中空粒子の外殻層は、無機物であっても有機物であってもよく、例えば、金属、金属酸化物、樹脂、シリカ等からなるものが挙げられる。なかでも外殻層がシリカである中空シリカ粒子であることが好ましい。中空粒子として中空シリカ粒子を用いることにより、シリコーン系化合物を含む組成物の硬化物を含むバインダー樹脂と、中空粒子の外殻との親和性が高くなり、かつ屈折率差が小さくなることで、内部ヘイズを低くしやすくできる。
 外殻層がシリカである場合、当該シリカは結晶性、ゾル状、ゲル状のいずれの状態であってもよい。
 中空粒子の形状は、真球状、回転楕円体状及び球体に近似できる多面体形状等の略球状、鎖状、針状、板状、片状、棒状、繊維状等のいずれであってもよい。なかでも、真球状及び略球状であることが好ましく、回転楕円体状又は真球状であることがより好ましい。
<< Hollow particles >>
A hollow particle refers to a particle having an outer shell layer, the inside of the particle surrounded by the outer shell layer being a cavity, and containing air inside the particle.
The outer shell layer of the hollow particles may be an inorganic substance or an organic substance, and examples thereof include those made of metal, metal oxide, resin, silica and the like. Among these, hollow silica particles whose outer shell layer is silica are preferable. By using hollow silica particles as the hollow particles, the affinity between the binder resin containing the cured product of the composition containing the silicone compound and the outer shell of the hollow particles is increased, and the difference in refractive index is reduced. The internal haze can be easily lowered.
When the outer shell layer is silica, the silica may be in a crystalline state, a sol state, or a gel state.
The shape of the hollow particles may be any of a spherical shape, a chain shape, a needle shape, a plate shape, a piece shape, a rod shape, a fiber shape, etc., such as a spherical shape, a spheroid shape, and a polyhedral shape that can approximate a sphere. Among these, a true spherical shape and a substantially spherical shape are preferable, and a spheroid shape or a true spherical shape is more preferable.
 中空粒子は、上述したように、平均粒子径が60~140nmであることを要する。中空粒子の平均粒子径は、65~130nmであることが好ましく、67~120nmであることがより好ましく、70~110nmであることがさらに好ましく、70~100nmであることがよりさらに好ましい。 As described above, the hollow particles are required to have an average particle diameter of 60 to 140 nm. The average particle diameter of the hollow particles is preferably 65 to 130 nm, more preferably 67 to 120 nm, further preferably 70 to 110 nm, and still more preferably 70 to 100 nm.
 低屈折率部材の低屈折率層の中空粒子の平均粒子径は、以下の(1)~(4)の作業により算出できる。
(1)低屈折率部材の低屈折率層の粒子を透過電子顕微鏡(TEM)で観察するため、FIB(集束イオンビーム)で低屈折率部材層を薄片化する。薄片の厚みは、100nm~200nmの範囲が好ましい。
<(1)の実施例>
 低屈折率部材を膜と水平にFIBで約100nm厚の薄片として抽出。
The average particle diameter of the hollow particles of the low refractive index layer of the low refractive index member can be calculated by the following operations (1) to (4).
(1) In order to observe the particles of the low refractive index layer of the low refractive index member with a transmission electron microscope (TEM), the low refractive index member layer is sliced with FIB (focused ion beam). The thickness of the flakes is preferably in the range of 100 nm to 200 nm.
<Example of (1)>
The low refractive index member is extracted as a thin piece of about 100 nm thickness by FIB horizontally with the film.
(2)低屈折部材の低屈折率部材層の薄片を透過電子顕微鏡(TEM)で撮像する。透過電子顕微鏡(TEM)の加速電圧は100kv~200kV、F.O.V(Field Of View)は365nm角~1825nm角とすることが好ましい。
<(2)の実施例>
使用装置: 日本電子製透過電子顕微鏡 ARM200F
加速電圧:200kV
観察モード:HAADF-STEM
観察倍率:×500k
F.O.V(Field Of View):365nm角
(2) The thin piece of the low refractive index member layer of the low refractive member is imaged with a transmission electron microscope (TEM). The accelerating voltage of a transmission electron microscope (TEM) is preferably 100 kv to 200 kV, and the F.O.V (Field Of View) is preferably 365 nm square to 1825 nm square.
<Example of (2)>
Equipment used: JEOL transmission electron microscope ARM200F
Accelerating voltage: 200kV
Observation mode: HAADF-STEM
Observation magnification: × 500k
F.O.V (Field Of View): 365 nm square
(3)観察画像から、以下手順にて画像解析を行う。
1.観察画像から、任意の10個の粒子を抽出し、粒子部分を粒子の外径に沿って画像解析ソフト(ペイント等)で塗りつぶす。なお、粒子が凝集している場合、凝集粒子を1個の粒子とみなすのではなく、個々の粒子に分けて前述の塗りつぶし作業を行う。
2.塗りつぶした部分の面積(px^2)を画像解析ソフト(ImageJ等)で計算する。
3.面積より円相当径(px)を計算する。
4.TEM画像のスケールバーより、1画素あたりの長さを計算する。
5.「4.」の係数を用いて「3.」で算出した円相当径(px)をnmに変換する。
6.10個の円相当径の平均値を求め、得られた値を「補正前平均粒子径(d)」とする。
(3) Image analysis is performed from the observed image according to the following procedure.
1. Arbitrary 10 particles are extracted from the observation image, and the particle portion is filled with image analysis software (paint or the like) along the outer diameter of the particle. When the particles are aggregated, the above-described painting operation is performed by dividing the aggregated particles into individual particles instead of considering the aggregated particles as one particle.
2. The area (px ^ 2) of the filled portion is calculated by image analysis software (ImageJ or the like).
3. The equivalent circle diameter (px) is calculated from the area.
4). The length per pixel is calculated from the scale bar of the TEM image.
5. Using the coefficient “4.”, the equivalent circle diameter (px) calculated in “3.” is converted to nm.
6. An average value of 10 equivalent circle diameters is obtained, and the obtained value is defined as “average particle diameter before correction (d)”.
(4)前記(3)で得られた「d」に「1.25」を乗じて得られた値を平均粒子径(D)とする。
 平均粒子径(D)=1.25×d
(4) The value obtained by multiplying “d” obtained in (3) above by “1.25” is defined as the average particle diameter (D).
Average particle diameter (D) = 1.25 × d
 なお、上記(4)の「1.25」は、「上記(1)~(3)で観察する粒子の断面は粒子の中心からずれたものが殆どであること」、及び「上記(1)~(3)で得られる「補正前平均粒子径(d)」が、粒子の製造会社の公称値の約80%の値となること」に基づくものである。 In addition, “1.25” in the above (4) means that “the cross section of the particle observed in the above (1) to (3) is mostly shifted from the center of the particle” and “(1) above”. Based on “the average particle diameter (d) before correction is about 80% of the nominal value of the particle manufacturing company” obtained in (3).
 中空粒子は表面処理されたものが好ましい。
 中空粒子の表面処理としては、シランカップリング剤を用いた表面処理がより好ましく、この中で、(メタ)アクリロイル基又はエポキシ基を有するシランカップリング剤を用いた表面処理を行うことが好ましい。
 中空粒子にシランカップリング剤による表面処理を施すことにより、中空粒子とバインダー樹脂との親和性が向上し、中空粒子の分散が均一となり、中空粒子の凝集が生じにくくなるため、低屈折率層の透明性の低下を抑制しやすくできる。なお、汎用の膜厚100nm前後の低屈折率層は、膜厚が薄いため、凝集した中空粒子は低屈折率層内に取り込まれにくい。一方、本発明の低屈折部材は、低屈折率層の膜厚が厚いため、凝集した中空粒子も低屈折率層内に取り込まれてしまう。このため、本発明の低屈折部材において中空粒子の凝集を抑制することは、汎用の低屈折率層よりも技術的な意義が大きい。中空粒子の凝集を抑制するためには、中空粒子が後述するゼータ電位の条件を満たすことがより好ましい。
The hollow particles are preferably surface-treated.
As the surface treatment of the hollow particles, a surface treatment using a silane coupling agent is more preferable, and among these, a surface treatment using a silane coupling agent having a (meth) acryloyl group or an epoxy group is preferably performed.
By subjecting the hollow particles to a surface treatment with a silane coupling agent, the affinity between the hollow particles and the binder resin is improved, the dispersion of the hollow particles becomes uniform, and aggregation of the hollow particles is less likely to occur. It is possible to easily suppress a decrease in transparency. In addition, since the general-purpose low-refractive index layer having a thickness of about 100 nm is thin, the aggregated hollow particles are not easily taken into the low-refractive index layer. On the other hand, in the low refractive index member of the present invention, since the low refractive index layer is thick, aggregated hollow particles are also taken into the low refractive index layer. For this reason, suppressing the aggregation of the hollow particles in the low refractive member of the present invention is more technically significant than a general-purpose low refractive index layer. In order to suppress the aggregation of the hollow particles, it is more preferable that the hollow particles satisfy the condition of the zeta potential described later.
 シランカップリング剤としては、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、1,6-ビス(トリメトキシシリル)ヘキサン、トリフルオロプロピルトリメトキシシラン、ビニルトリメトキシシラン及びビニルトリエトキシシラン等が挙げられる。 Silane coupling agents include 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltri Methoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3 -Glycidoxypropyltriethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3-aminopropyl Limethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, tris- (trimethoxysilyl) Propyl) isocyanurate, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldi Ethoxysilane, phenyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, hexyltrimethoxysilane, hexyltriethoxysilane, octyl Silane, decyl trimethoxy silane, 1,6-bis (trimethoxysilyl) hexane, trifluoropropyl trimethoxy silane and vinyl trimethoxy silane and vinyl triethoxy silane and the like.
 中空粒子の含有量は、バインダー樹脂100質量部に対して100~300質量部であることが好ましく、150~250質量部であることがより好ましく、180~220質量部であることがさらに好ましい。
 中空粒子の含有量を100質量部以上とすることにより、低屈折率層の屈折率を十分に下げ、反射防止性を良好にしやすくできる。また、中空粒子の含有量を300質量部以下とすることにより、耐擦傷性を維持しつつ、内部拡散の上昇によって低屈折率層が白化することを抑制し、視認性の低下を抑制しやすくできる。
The content of the hollow particles is preferably 100 to 300 parts by mass, more preferably 150 to 250 parts by mass, and further preferably 180 to 220 parts by mass with respect to 100 parts by mass of the binder resin.
By setting the content of the hollow particles to 100 parts by mass or more, the refractive index of the low refractive index layer can be sufficiently lowered and the antireflection property can be easily improved. Further, by setting the content of the hollow particles to 300 parts by mass or less, while maintaining the scratch resistance, it is possible to suppress whitening of the low refractive index layer due to an increase in internal diffusion and to easily suppress a decrease in visibility. it can.
<<バインダー樹脂>>
 本発明の低屈折部材は、上述したように、低屈折率層のバインダー樹脂として、シリコーン系化合物を含む組成物の硬化物を含むことを要する。シリコーン系化合物は、分子内にシロキサン結合(Si-O-Si)を有する化合物である。
 バインダー樹脂は、シリコーン系化合物を含む組成物の硬化物以外の樹脂を含有してもよいが、バインダー樹脂の全量に対するシリコーン系化合物を含む組成物の硬化物の割合が50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることがさらに好ましく、100質量%であることがよりさらに好ましい。
 シリコーン系化合物は、例えば、後述する反応性官能基の架橋反応、アルコキシ基の脱アルコール縮合反応、シラノール基の脱水縮合等により硬化させることができる。
<< Binder resin >>
As described above, the low refractive member of the present invention needs to contain a cured product of a composition containing a silicone compound as a binder resin for the low refractive index layer. A silicone compound is a compound having a siloxane bond (Si—O—Si) in the molecule.
The binder resin may contain a resin other than the cured product of the composition containing the silicone compound, but the ratio of the cured product of the composition containing the silicone compound to the total amount of the binder resin is 50% by mass or more. Is preferably 70% by mass or more, more preferably 90% by mass or more, and still more preferably 100% by mass.
The silicone compound can be cured by, for example, a crosslinking reaction of a reactive functional group described later, a dealcohol condensation reaction of an alkoxy group, a dehydration condensation of a silanol group, or the like.
 シリコーン系化合物は、置換基として反応性官能基を有する置換炭化水素基がケイ素原子に直結してなるものが好ましい。該反応性官能基としては、エポキシ基、メルカプト基、(メタ)アクリロイル基、アミノ基、ビニル基及びイソシアネート基が挙げられる。
 以下、置換基として反応性官能基を有する置換炭化水素基がケイ素原子に直結してなるシリコーン系化合物のことを「反応性官能基含有シリコーン化合物」と称する場合がある。
The silicone compound is preferably one in which a substituted hydrocarbon group having a reactive functional group as a substituent is directly connected to a silicon atom. Examples of the reactive functional group include an epoxy group, a mercapto group, a (meth) acryloyl group, an amino group, a vinyl group, and an isocyanate group.
Hereinafter, a silicone compound in which a substituted hydrocarbon group having a reactive functional group as a substituent is directly bonded to a silicon atom may be referred to as a “reactive functional group-containing silicone compound”.
 中空粒子がシランカップリング剤で表面処理されたものである場合、反応性官能基含有シリコーン化合物を用いることで、内部ヘイズを下げ、低屈折率層の膜厚が厚いにも関わらず白化を抑制して視認性を良好にしやすくできる。この理由は、反応性官能基含有シリコーン化合物を用いることで、シリコーン系化合物の反応性官能基を有する側(有機成分がリッチな側)が、中空粒子に付着したシランカップリング剤の反応性官能基に向きやすくなることで、屈折率差が減少するためと考えられる。
 反応性官能基含有シリコーン化合物の反応性基は、中空粒子とバインダー樹脂との界面剥離の抑制、低屈折率層の表面凹凸を抑制する観点から、重合収縮の小さいカチオン反応性の反応性基であることが好ましく、ガラスやシリカとの接着性に優れるエポキシ基であることがより好ましい。低屈折率層の表面凹凸を抑制することは、低屈折率層の白化の抑制及び低屈折率の耐擦傷性の向上につながるとともに、低屈折率層上に蒸着膜をムラなくきれに形成しやすくし得る点で好ましい。
When hollow particles are surface-treated with a silane coupling agent, the internal haze is reduced by using a reactive functional group-containing silicone compound, and whitening is suppressed even though the low refractive index layer is thick. Thus, the visibility can be easily improved. The reason for this is that by using a reactive functional group-containing silicone compound, the reactive functional group side of the silicone compound (the organic component-rich side) is the reactive functional group of the silane coupling agent attached to the hollow particles. This is considered to be because the difference in refractive index is reduced by being easily directed to the base.
The reactive group of the reactive functional group-containing silicone compound is a cationic reactive reactive group with small polymerization shrinkage from the viewpoint of suppressing interfacial peeling between the hollow particles and the binder resin and suppressing surface irregularities of the low refractive index layer. It is preferable that it is an epoxy group excellent in adhesiveness with glass or silica. Suppressing the surface unevenness of the low refractive index layer leads to suppression of whitening of the low refractive index layer and improvement of scratch resistance of the low refractive index layer, and a uniform deposition film is formed on the low refractive index layer. It is preferable in that it can be easily made.
 反応性官能基含有シリコーン化合物は、反応性官能基当量が200~900g/molであることが好ましく、220~600g/molであることがより好ましく、250~400g/molであることがさらに好ましい。
 反応性官能基当量を900g/mol以下とすることにより、反応性官能基の量が十分なものとなり、上記効果(良好な視認性)を得やすくできる。また、反応性官能基当量を200g/mol以上とすることにより、反応性官能基の自己架橋による収縮を抑制し、中空粒子とバインダー樹脂との界面剥離及び低屈折率層の表面の凹凸化を抑制しやすくできる。
The reactive functional group-containing silicone compound preferably has a reactive functional group equivalent of 200 to 900 g / mol, more preferably 220 to 600 g / mol, and still more preferably 250 to 400 g / mol.
By setting the reactive functional group equivalent to 900 g / mol or less, the amount of the reactive functional group becomes sufficient, and the above effect (good visibility) can be easily obtained. In addition, by setting the reactive functional group equivalent to 200 g / mol or more, the shrinkage due to the self-crosslinking of the reactive functional group is suppressed, and the interfacial peeling between the hollow particles and the binder resin and the uneven surface of the low refractive index layer are made. Can be easily suppressed.
 反応性官能基含有シリコーン化合物は、下記一般式(1)で表される有機ケイ素化合物の1種以上の加水分解物、下記一般式(1)で表される有機ケイ素化合物の1種以上の加水分解重縮合物、下記一般式(1)で表される有機ケイ素化合物の1種以上と下記一般式(2)で表される有機ケイ素化合物の1種以上との加水分解重縮合物等が挙げられる。これらの中でも、下記一般式(1)で表される有機ケイ素化合物の1種以上の加水分解重縮合物及び下記一般式(1)で表される有機ケイ素化合物の1種以上と下記一般式(2)で表される有機ケイ素化合物の1種以上との加水分解重縮合物は、蒸着膜形成時の熱でも揮発しにくいため、蒸着膜との密着性を良好にしやすい点で好ましい。以下、本明細書において、有機ケイ素化合物の1種以上の加水分解重縮合物のことを「オリゴマー型シリコーン系化合物」と称する場合がある。 The reactive functional group-containing silicone compound includes one or more hydrolysates of an organosilicon compound represented by the following general formula (1) and one or more hydrolysates of an organosilicon compound represented by the following general formula (1). Decomposed polycondensates, hydrolyzed polycondensates of one or more organosilicon compounds represented by the following general formula (1) and one or more organosilicon compounds represented by the following general formula (2) It is done. Among these, at least one hydrolyzed polycondensate of an organosilicon compound represented by the following general formula (1) and at least one organosilicon compound represented by the following general formula (1) and the following general formula ( The hydrolyzed polycondensate with one or more of the organosilicon compounds represented by 2) is preferable because it is difficult to volatilize even with heat during the formation of the vapor deposition film, and thus it is easy to improve the adhesion with the vapor deposition film. Hereinafter, in the present specification, one or more hydrolyzed polycondensates of an organosilicon compound may be referred to as an “oligomer-type silicone compound”.
 R-SiX4-n (1)
[式(1)中、nは1~3の整数である。また、式(1)中、Rは置換基として反応性官能基を有する炭素数1~10の置換炭化水素基であり、nが2~3の時、Rは互いに同一であっても異なっていてもよい。また、式(1)中、Xは炭素数1~4のアルコキシ基、シラノール基、ハロゲン又は水素であり、nが1~2の時、Xは互いに同一であっても異なっていてもよい。]
 R -SiX4-n (2)
[式(2)中、nは1~3の整数である。また、式(2)中、Rは反応性官能基を有さない炭素数1~10の非置換又は置換炭化水素基であり、nが2~3の時、Rは互いに同一であっても異なっていてもよい。また、式(2)中、Xは炭素数1~4のアルコキシ基、シラノール基、ハロゲン又は水素であり、nが1~2の時、Xは互いに同一であっても異なっていてもよい。]
R n —SiX 4-n (1)
[In the formula (1), n is an integer of 1 to 3. In the formula (1), R is a substituted hydrocarbon group having 1 to 10 carbon atoms having a reactive functional group as a substituent. When n is 2 to 3, R is the same or different from each other. May be. In the formula (1), X is an alkoxy group having 1 to 4 carbon atoms, silanol group, halogen or hydrogen, and when n is 1 to 2, X may be the same or different from each other. ]
R 2 n -SiX 4-n (2)
[In the formula (2), n is an integer of 1 to 3. In the formula (2), R 2 is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms having no reactive functional group. When n is 2 to 3, R 2 is the same as each other. Or different. In the formula (2), X is an alkoxy group having 1 to 4 carbon atoms, silanol group, halogen or hydrogen, and when n is 1 or 2, X may be the same or different from each other. ]
 上記一般式(1)で表される有機ケイ素化合物としては、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシメチルトリメトキシシラン、γ-グリシドキシメチルトリエキシシラン、γ-グリシドキシエチルトリメトキシシラン、γ-グリシドキシエチルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-(β-グリシドキシエトキシ)プロピルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリメトキシシラン、γ-(メタ)アクリロオキシメチルトリエキシシラン、γ-(メタ)アクリロオキシエチルトリメトキシシラン、γ-(メタ)アクリロオキシエチルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリメトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、γ-(メタ)アクリロオキシプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン及びN-β(アミノエチル)γ-アミノプロピルトリメトキシシラン等が挙げられる。
 上記一般式(2)で表される有機ケイ素化合物としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシシラン、テトラブトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、イソブチルトリメトキシシラン、ブチルトリメトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラオクチルトリエトキシシラン、デシルトリエトキシシラン、ブチルトリエトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、デシルトリエトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、メチル-3,3,3-トリフルオロプロピルジメトキシシラン、パーフルオロオクチルエチルトリメトキシシラン及びパーフルオロオクチルエチルトリエトキシシラン等が挙げられる。
Examples of the organosilicon compound represented by the general formula (1) include β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxymethyltrimethoxysilane, and γ-glycidoxymethyltriexisilane. Γ-glycidoxyethyltrimethoxysilane, γ-glycidoxyethyltriethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane , Γ-glycidoxypropyltriethoxysilane, γ- (β-glycidoxyethoxy) propyltrimethoxysilane, γ- (meth) acrylooxymethyltrimethoxysilane, γ- (meth) acrylooxymethyltrioxy Silane, γ- (meth) acrylooxyethyltrimethoxysilane, γ- (Meth) acrylooxyethyltriethoxysilane, γ- (meth) acryloxypropyltrimethoxysilane, γ- (meth) acryloxypropyltrimethoxysilane, γ- (meth) acryloxypropyltriethoxysilane, γ -(Meth) acryloxypropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, etc. Is mentioned.
Examples of the organosilicon compound represented by the general formula (2) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, and diphenyldimethoxysilane. , Methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, diphenyldiethoxysilane, isobutyltrimethoxysilane, butyltrimethoxysilane, isobutyltriethoxysilane, hexyltriethoxysilaoctyltriethoxysilane, decyltriethoxysilane, Butyltriethoxysilane, isobutyltriethoxysilane, hexyltriethoxysilane, octyltriethoxysilane, decyltriethoxysilane, 3, , 3-trifluoropropyl trimethoxy silane, methyl-3,3,3-trifluoropropyl dimethoxysilane, perfluorooctyl ethyl trimethoxysilane and perfluorooctyl triethoxysilane and the like.
 また、シリコーン系化合物としては、上記一般式(2)で表される有機ケイ素化合物の1種以上の加水分解重縮合物も好ましい。上記一般式(2)で表される有機ケイ素化合物の1種以上の加水分解重縮合物は、硬化収縮による低屈折率層表面の凹凸化を抑制することができ、さらには、蒸着膜形成時の熱でも揮発しにくいため、蒸着膜との密着性を良好にしやすい点で好ましい。 Further, as the silicone compound, one or more hydrolyzed polycondensates of the organosilicon compound represented by the general formula (2) are also preferable. One or more hydrolyzed polycondensates of the organosilicon compound represented by the general formula (2) can suppress unevenness of the surface of the low refractive index layer due to curing shrinkage, and further, when forming a deposited film Since it is difficult to volatilize even with heat, it is preferable in terms of easy adhesion to the deposited film.
 また、シリコーン系化合物は、アルコキシ基を有するものが好ましい。また、該アルコキシ基はケイ素原子に直結してなるものが好ましい。
 アルコキシ基を有するシリコーン系化合物を用いることで、基材がガラスの場合に、基材と低屈折率層との接着性を良好にすることができ、耐擦傷性をより良好にすることができる。また、アルコキシ基を有するシリコーン系化合物を用いることで、後述する積層体の構成(低屈折率層上に蒸着膜を有する構成)とした際に、低屈折率層と蒸着膜と接着性を良好にすることができる。
The silicone compound preferably has an alkoxy group. In addition, the alkoxy group is preferably directly bonded to a silicon atom.
By using a silicone-based compound having an alkoxy group, when the substrate is glass, the adhesion between the substrate and the low refractive index layer can be improved, and the scratch resistance can be further improved. . In addition, by using a silicone-based compound having an alkoxy group, the adhesion of the low refractive index layer and the vapor deposition film is good when the structure of the laminate described later (the composition having the vapor deposition film on the low refractive index layer) is used. Can be.
 アルコキシ基を有するシリコーン系化合物中のアルコキシ基の量は、5~60質量%であることが好ましく、10~50質量%であることがより好ましく、15~45質量%であることがさらに好ましい。
 アルコキシ基の量を5質量%以上とすることにより、無機物(例えば、基材としてのガラス、あるいは、低屈折率層上に形成する蒸着膜)との接着性を良好にしやすくすることができ、アルコキシ基の量を60質量%以下とすることにより、アルコキシ基の脱アルコール反応による低屈折率層の収縮を抑制し、中空粒子とバインダー樹脂との界面剥離及び低屈折率層の表面の凹凸化を抑制しやすくできる。
The amount of the alkoxy group in the silicone compound having an alkoxy group is preferably 5 to 60% by mass, more preferably 10 to 50% by mass, and further preferably 15 to 45% by mass.
By setting the amount of the alkoxy group to 5% by mass or more, it is possible to easily improve the adhesion with an inorganic substance (for example, glass as a base material, or a deposited film formed on a low refractive index layer), By controlling the amount of the alkoxy group to 60% by mass or less, the shrinkage of the low refractive index layer due to the dealcoholization reaction of the alkoxy group is suppressed. Can be easily suppressed.
 シリコーン系化合物を含む組成物は、必要に応じて硬化触媒を含有していてもよい。
 例えば、反応性官能基含有シリコーン化合物の反応性官能基がエポキシ基の場合、シリコーン系化合物を含む組成物中には、硬化触媒としてアミン系触媒、酸性触媒及び塩基性触媒から選ばれる1種以上を含むことが好ましい。
 また、シリコーン化合物系化合物のアルコキシ基と、ガラス等の無機物との反応を促進するため、シリコーン系化合物を含む組成物は、酸性触媒、塩基性触媒及びアミン系触媒から選ばれる1種以上の触媒を含むことが好ましい。
The composition containing a silicone compound may contain a curing catalyst as necessary.
For example, when the reactive functional group of the reactive functional group-containing silicone compound is an epoxy group, the composition containing the silicone compound includes at least one selected from an amine catalyst, an acidic catalyst, and a basic catalyst as a curing catalyst. It is preferable to contain.
Moreover, in order to accelerate | stimulate reaction with the alkoxy group of a silicone compound type compound, and inorganic substances, such as glass, the composition containing a silicone type compound is 1 or more types of catalysts chosen from an acidic catalyst, a basic catalyst, and an amine catalyst It is preferable to contain.
<<厚み>>
 本発明の低屈折部材は、上述したように、低屈折率層の厚みが0.5~5.0μmであることを要する。
 低屈折率層の厚みは、0.7~4.0μmであることが好ましく、0.8~3.5μmであることがより好ましく、1.0~3.0μmであることがさらに好ましい。
 本明細書において、低屈折率層の厚みは10箇所の測定値の平均値として算出できる。なお、厚みのバラツキは、平均厚みに対して±15%以内であることが好ましく、±10%以内であることがより好ましく、±7%以内であることがさらに好ましく、±5%以内であることがよりさらに好ましい。
 低屈折率層の厚みは、例えば、顕微分光膜厚計により測定することができる。
<< Thickness >>
As described above, the low refractive index member of the present invention requires that the low refractive index layer has a thickness of 0.5 to 5.0 μm.
The thickness of the low refractive index layer is preferably 0.7 to 4.0 μm, more preferably 0.8 to 3.5 μm, and further preferably 1.0 to 3.0 μm.
In the present specification, the thickness of the low refractive index layer can be calculated as an average value of 10 measured values. The thickness variation is preferably within ± 15% of the average thickness, more preferably within ± 10%, further preferably within ± 7%, and more preferably within ± 5%. It is even more preferable.
The thickness of the low refractive index layer can be measured by, for example, a microspectrophotometer.
<<屈折率>>
 低屈折率層の屈折率は1.30以下であることが好ましく、1.27以下であることがより好ましい。低屈折率層の屈折率を1.30以下とすることにより、低屈折率層表面の反射率が高くなることを抑制し、視認性を良好にしやすくできる。低屈折率層の屈折率の下限は1.10程度である。
 なお、本明細書において、屈折率は、波長589.3nmにおける屈折率をいうものとする。
 低屈折率層の屈折率は、例えば、顕微分光膜厚計により算出することができる。
<< refractive index >>
The refractive index of the low refractive index layer is preferably 1.30 or less, and more preferably 1.27 or less. By setting the refractive index of the low refractive index layer to 1.30 or less, it is possible to suppress an increase in the reflectance of the surface of the low refractive index layer and to improve the visibility. The lower limit of the refractive index of the low refractive index layer is about 1.10.
In this specification, the refractive index refers to a refractive index at a wavelength of 589.3 nm.
The refractive index of the low refractive index layer can be calculated, for example, with a microspectrophotometer.
 低屈折率層は、帯電防止剤、酸化防止剤、界面活性剤、分散剤及び紫外線吸収剤等の添加剤を含有してもよい。 The low refractive index layer may contain additives such as an antistatic agent, an antioxidant, a surfactant, a dispersant, and an ultraviolet absorber.
 低屈折率層は、例えば、低屈折率層を構成する各成分を含む低屈折率層形成用コーティング組成物を基材上に塗布、乾燥、硬化するウェット法、及び、ウェット法により基材上に形成した低屈折率層を転写する転写法等により形成することができる。 For example, the low refractive index layer is formed by applying a low refractive index layer-forming coating composition containing each component constituting the low refractive index layer on the substrate, drying, and curing the wet method, and a wet method on the substrate. It can be formed by a transfer method or the like that transfers the low refractive index layer.
<その他の層>
 本発明の低屈折部材は、基材と低屈折率層との間にその他の層を有していてもよい。
 その他の層としては、例えば、低屈折率層の耐擦傷性を向上するためのハードコート層、基材と低屈折率層との接着性を向上するための接着剤層、帯電防止層等が挙げられる。
<Other layers>
The low refractive member of the present invention may have other layers between the base material and the low refractive index layer.
Examples of other layers include a hard coat layer for improving the scratch resistance of the low refractive index layer, an adhesive layer for improving the adhesion between the substrate and the low refractive index layer, and an antistatic layer. Can be mentioned.
<光学特性>
 本発明の低屈折部材は、低屈折率層側から測定した拡散光線反射率RSCEが下記の範囲であることが好ましい。
 RSCEは、積分球を用いてサンプル表面にあらゆる方向から光を与え、正反射方向に相当するライトトラップを開放して測定される、ライトトラップから抜ける反射光以外の反射光を測定し、該測定値から算出される反射率である。低屈折率層は表面が平滑に近く、正反射光に比べて拡散反射光の割合は小さい。このため、全反射光から正反射光を除いたRSCEは、ごく少ない成分である拡散反射光を表し、かつ、低屈折率層内部の拡散反射の量を示すのに適したパラメータであるといえる。
 代表的なRSCEの測定装置は、JIS Z8722:2009の幾何条件cに準拠した構成となっている。より具体的には、代表的なRSCEの測定装置は、積分球分光光度計の光源としてD65を用い、受光器の位置はサンプルの法線に対して+8度であり、ライトトラップの位置はサンプルの法線に対して-8度であり、視野角は2度又は10度である。RSCEの測定装置としては、コニカミノルタ株式会社製の商品名CM-2600dが挙げられる。本明細書では、視野角を2度としている。
<Optical characteristics>
Low refractive member of the present invention is preferably diffuse light reflectance R SCE measured from the low refractive index layer side is in the range below.
The RSCE measures the reflected light other than the reflected light passing through the light trap, which is measured by applying light from all directions to the sample surface using an integrating sphere and opening the light trap corresponding to the regular reflection direction. It is the reflectance calculated from the measured value. The surface of the low refractive index layer is almost smooth, and the ratio of diffusely reflected light is smaller than that of regular reflected light. For this reason, RSCE obtained by removing regular reflection light from total reflection light represents diffuse reflection light that is a very small component, and is a parameter suitable for indicating the amount of diffuse reflection inside the low refractive index layer. I can say that.
Measuring device of a typical R SCE is, JIS Z8722: has a configuration conforming to the geometric-condition c 2009. More specifically, a typical RSCE measuring apparatus uses D65 as the light source of the integrating sphere spectrophotometer, the position of the light receiver is +8 degrees with respect to the normal of the sample, and the position of the light trap is It is −8 degrees with respect to the normal of the sample, and the viewing angle is 2 degrees or 10 degrees. As a measurement apparatus of R SCE include the trade name CM-2600d manufactured by Konica Minolta Co., Ltd.. In this specification, the viewing angle is 2 degrees.
 拡散光線反射率RSCEは1.5%以下であることが好ましく、1.0%以下であることがより好ましく、0.5%以下であることがさらに好ましい。
 RSCEを1.5%以下とすることにより、低屈折率層内部の拡散反射の量が減少し、白化を抑制することができる。なお、RSCEの下限は0.01%程度である。
The diffuse light reflectivity RSCE is preferably 1.5% or less, more preferably 1.0% or less, and further preferably 0.5% or less.
By setting RSCE to 1.5% or less, the amount of diffuse reflection inside the low refractive index layer is reduced, and whitening can be suppressed. The lower limit of R SCE is about 0.01%.
 なお、低屈折部材が全体として光透過性を有する場合、低屈折部材の背面反射の影響を排除するため、低屈折部材の低屈折率層を有する側の面とは反対側の面に、黒色着剤層及び背面フィルムを積層したサンプルを作成し、該サンプルの低屈折率層側からRSCEを測定することが好ましい。後述する視感反射率Y値の測定も同様である。
 サンプルの黒色粘着剤層は、全光線透過率が1%以下のものが好ましい。また、低屈折部材の低屈折率層を有する側の面とは反対側の面の屈折率(例えば基材の屈折率)と、黒色粘着剤層のバインダー樹脂の屈折率との差(Δn)は、0.10以内とすることが好ましい。
In addition, when the low refractive member has light transmittance as a whole, in order to eliminate the influence of the back reflection of the low refractive member, the surface of the low refractive member opposite to the surface having the low refractive index layer is black. create a sample obtained by laminating Chakuzaiso and back films, it is preferable to measure the R SCE a low refractive index layer side of the sample. The same applies to the measurement of luminous reflectance Y value described later.
The sample black adhesive layer preferably has a total light transmittance of 1% or less. Further, the difference (Δn) between the refractive index of the surface of the low refractive member opposite to the surface having the low refractive index layer (for example, the refractive index of the substrate) and the refractive index of the binder resin of the black adhesive layer Is preferably within 0.10.
 本明細書においてRSCE、ヘイズ、全光線透過率及び視感反射率Y値は、10箇所の測定値の平均値とする。 In this specification, R SCE , haze, total light transmittance, and luminous reflectance Y value are average values of measured values at 10 locations.
 本発明の低屈折部材は、JIS K7136:2000に準拠するヘイズが1.0%以下であることが好ましく、0.5%以下であることがより好ましく、0.2%以下であることがさらに好ましい。ヘイズを1.0%以下とすることにより、低屈折率層の白化を抑制し、視認性を良好にしやすくできる。 The low refractive member of the present invention preferably has a haze according to JIS K7136: 2000 of 1.0% or less, more preferably 0.5% or less, and further preferably 0.2% or less. preferable. By setting the haze to 1.0% or less, whitening of the low refractive index layer can be suppressed and visibility can be easily improved.
 本発明の低屈折部材は、JIS K7361-1:1997の全光線透過率が50.0%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることがさらに好ましい。 The low refractive member of the present invention preferably has a total light transmittance of JIS K7361-1: 1997 of 50.0% or more, more preferably 80% or more, and even more preferably 90% or more. .
 本発明の低屈折部材は、低屈折率層を有する側から光入射角5度で測定した視感反射率Y値が3.0%以下であることが好ましく、2.0%以下であることがより好ましい。本明細書において、視感反射率Y値とは、CIE1931標準表色系の視感反射率Y値のことをいう。視感反射率Y値は、分光光度計(例えば、島津製作所社製、商品名「UV-3600plus」)を用いて算出することができる。 In the low refractive member of the present invention, the luminous reflectance Y value measured at a light incident angle of 5 degrees from the side having the low refractive index layer is preferably 3.0% or less, and is 2.0% or less. Is more preferable. In this specification, the luminous reflectance Y value refers to the luminous reflectance Y value of the CIE 1931 standard color system. The luminous reflectance Y value can be calculated using a spectrophotometer (for example, trade name “UV-3600 plus” manufactured by Shimadzu Corporation).
<大きさ、形状等>
 低屈折部材は、所定の大きさにカットした枚葉状の形態でもよいし、長尺シートをロール状に巻き取ったロール状の形態であってもよい。また、枚葉の大きさは特に限定されないが、最大径が2~500インチ程度である。「最大径」とは、低屈折部材の任意の2点を結んだ際の最大長さをいうものとする。例えば、低屈折部材が長方形の場合は、該領域の対角線が最大径となる。また、低屈折部材が円形の場合は、直径が最大径となる。
 ロール状の幅及び長さは特に限定されないが、一般的には、幅は500~3000mm、長さは500~5000m程度である。ロール状の形態の低屈折部材は、画像表示装置等の大きさに合わせて、枚葉状にカットして用いることができる。カットする際、物性が安定しないロール端部は除外することが好ましい。
 また、枚葉の形状も特に限定されず、例えば、多角形(三角形、四角形、五角形等)や円形であってもよいし、ランダムな不定形であってもよい。
<Size, shape, etc.>
The low refractive member may be in the form of a single sheet cut into a predetermined size, or may be in the form of a roll obtained by winding a long sheet into a roll. The size of the sheet is not particularly limited, but the maximum diameter is about 2 to 500 inches. The “maximum diameter” refers to the maximum length when any two points of the low refractive member are connected. For example, when the low refractive member is rectangular, the diagonal of the region is the maximum diameter. When the low refractive member is circular, the diameter is the maximum diameter.
The width and length of the roll are not particularly limited, but generally the width is about 500 to 3000 mm and the length is about 500 to 5000 m. The roll-shaped low-refractive member can be used by cutting into a single sheet according to the size of the image display device or the like. When cutting, it is preferable to exclude a roll end portion whose physical properties are not stable.
Further, the shape of the single wafer is not particularly limited, and may be, for example, a polygon (triangle, quadrangle, pentagon, etc.), a circle, or a random irregular shape.
[転写シート]
 本発明の転写シートは、基材上に転写層を有してなり、前記転写層の前記基材側は低屈折率層であり、前記低屈折率層は、厚みが0.5~5.0μmであり、かつ、中空粒子及びバインダー樹脂を含み、前記中空粒子は平均粒子径が60~140nmであり、前記バインダー樹脂として、前記バインダー樹脂として、シリコーン系化合物を含む組成物の硬化物を含むものである。
[Transfer sheet]
The transfer sheet of the present invention has a transfer layer on a substrate, the substrate side of the transfer layer is a low refractive index layer, and the low refractive index layer has a thickness of 0.5 to 5. The hollow particles have an average particle diameter of 60 to 140 nm, and the binder resin contains a cured product of a composition containing a silicone compound as the binder resin. It is a waste.
<基材>
 転写シートの基材は、転写シートの製造時及び転写時の作業性等の観点から、プラスチックフィルムが好ましい。
 転写シートの基材としてのプラスチックフィルムは、低屈折部材の基材として例示したプラスチックフィルムと同様のものを用いることができる。プラスチックフィルムの厚みは、取り扱い性の観点から、10~500μmであることが好ましく、20~400μmであることがより好ましく、50~300μmであることがさらに好ましい。
 転写シートの基材表面は、基材から転写層を剥離しやすくするために、離型処理されたものであってもよい。
<Base material>
The base material of the transfer sheet is preferably a plastic film from the viewpoint of workability during transfer sheet production and transfer.
As the plastic film as the substrate of the transfer sheet, the same plastic film as exemplified as the substrate of the low refractive member can be used. The thickness of the plastic film is preferably 10 to 500 μm, more preferably 20 to 400 μm, and even more preferably 50 to 300 μm from the viewpoint of handleability.
The substrate surface of the transfer sheet may be subjected to a release treatment in order to make it easy to peel the transfer layer from the substrate.
 基材の低屈折率層を形成する側の面は、転写後に転写層の表面に露出した低屈折率層の表面凹凸を抑制するため、Ra、Rz及びRpが下記範囲であることが好ましい。Ra、Rz及びRpの詳細(測定方法等)に関しては後述する。
 Ra:2.5nm以下
 Rz:25nm以下
 Rp:12nm以下
Ra, Rz, and Rp are preferably in the following ranges on the surface of the substrate on which the low refractive index layer is formed in order to suppress surface irregularities of the low refractive index layer exposed on the surface of the transfer layer after transfer. Details of Ra, Rz and Rp (measurement method and the like) will be described later.
Ra: 2.5 nm or less Rz: 25 nm or less Rp: 12 nm or less
 Raは2.0nm以下であることがより好ましく、1.5nm以下であることがさらに好ましく、1.2nm以下であることがよりさらに好ましい。なお、Raの下限は0.3nm程度である。
 Rzは20nm以下であることがより好ましく、15nm以下であることがさらに好ましく、10nm以下であることがよりさらに好ましい。なお、Rzの下限は3nm程度である。
 Rpは10nm以下であることがより好ましく、8nm以下であることがさらに好ましく、6m以下であることがよりさらに好ましい。なお、Rpの下限は2nm程度である。
Ra is more preferably 2.0 nm or less, further preferably 1.5 nm or less, and still more preferably 1.2 nm or less. The lower limit of Ra is about 0.3 nm.
Rz is more preferably 20 nm or less, further preferably 15 nm or less, and still more preferably 10 nm or less. The lower limit of Rz is about 3 nm.
Rp is more preferably 10 nm or less, further preferably 8 nm or less, and further preferably 6 m or less. The lower limit of Rp is about 2 nm.
<転写層>
 転写層は少なくとも低屈折率層を有する。また、転写層の基材側は低屈折率層から構成されるものとする。
 転写層を構成する低屈折率層は、厚みが0.5~5.0μmであり、かつ、中空粒子及びバインダー樹脂を含み、前記中空粒子は平均粒子径が60~140nmであり、前記バインダー樹脂として、シリコーン系化合物を含む組成物の硬化物を含むものである。
 転写層を構成する低屈折率層及び該低屈折率層に含まれる中空粒子及びバインダー樹脂の実施形態及び好適な実施形態は、上述した本発明の低屈折部材の低屈折率層及び該低屈折率層に含まれる中空粒子及びバインダー樹脂の実施形態及び好適な実施形態と同様である。但し、上述した本発明の低屈折部材の低屈折率層の表面形状(低屈折率層の基材とは反対側の表面形状)は、本発明の転写シートにおいては、低屈折率層の基材側の面の形状(転写後に露出する面の形状)に相当する。
<Transfer layer>
The transfer layer has at least a low refractive index layer. Further, the substrate side of the transfer layer is composed of a low refractive index layer.
The low refractive index layer constituting the transfer layer has a thickness of 0.5 to 5.0 μm and contains hollow particles and a binder resin, and the hollow particles have an average particle diameter of 60 to 140 nm. As a cured product of a composition containing a silicone compound.
Embodiments and preferred embodiments of the low refractive index layer constituting the transfer layer, the hollow particles contained in the low refractive index layer and the binder resin, and the preferred embodiments are the low refractive index layer and the low refractive index of the low refractive member of the present invention described above. This is the same as the embodiment and preferred embodiment of the hollow particles and binder resin contained in the rate layer. However, the surface shape of the low refractive index layer of the low refractive index member of the present invention described above (the surface shape opposite to the substrate of the low refractive index layer) is the base of the low refractive index layer in the transfer sheet of the present invention. This corresponds to the shape of the surface on the material side (the shape of the surface exposed after transfer).
 転写層は、低屈折率層を基準として基材とは反対側にその他の層を有していてもよい。その他の層としては、例えば、低屈折率層の耐擦傷性を向上するためのハードコート層、被着体と転写層との接着性を向上するための接着剤層、帯電防止層等が挙げられる。特に、被着体との接着性を良好にするため、転写層は、基材とは反対側の表面に接着剤層を有することが好ましい。
 転写層は、例えば、下記(1)~(3)のような積層構成をとることができる。下記(3)の場合、低屈折率層のバインダー樹脂として、接着性を有する樹脂を含むようにすればよい。なお、下記(1)~(3)において、左側に位置する層ほど基材に近いことを意味し、「/」は層の界面を意味する。
(1)低屈折率層/接着剤層
(2)低屈折率層/ハードコート層/接着剤層
(3)低屈折率層
The transfer layer may have other layers on the side opposite to the substrate with the low refractive index layer as a reference. Examples of other layers include a hard coat layer for improving the scratch resistance of the low refractive index layer, an adhesive layer for improving the adhesion between the adherend and the transfer layer, and an antistatic layer. It is done. In particular, in order to improve the adhesion to the adherend, the transfer layer preferably has an adhesive layer on the surface opposite to the substrate.
The transfer layer can have a laminated structure such as the following (1) to (3). In the case of the following (3), a resin having adhesiveness may be included as a binder resin for the low refractive index layer. In the following (1) to (3), it means that the layer located on the left side is closer to the substrate, and “/” means the interface of the layers.
(1) Low refractive index layer / adhesive layer (2) Low refractive index layer / hard coat layer / adhesive layer (3) Low refractive index layer
 転写層の接着剤層は、被着体の素材に適した感熱性又は感圧性の樹脂を使用することが好ましい。例えば、被着体の材質がアクリル系樹脂の場合は、アクリル系樹脂を用いることが好ましい。また、被着体の材質がポリフェニレンオキサイド・ポリスチレン系樹脂、ポリカーボネート系樹脂、スチレン系樹脂の場合は、これらの樹脂と親和性のあるアクリル系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂などを使用することが好ましい。さらに、被着体の材質がポリプロピレン樹脂の場合は、塩素化ポリオレフィン樹脂、塩素化エチレン-酢酸ビニル共重合体樹脂、環化ゴム、クマロンインデン樹脂を使用することが好ましい。さらに、被着体の材質がガラスの場合は、エチレン-酢酸ビニル共重合体樹脂及びポリエチレン系樹脂を使用することが好ましい。また、被着体の材質がガラスの場合は、シランカップリング剤で表面処理されたガラスを用いれば、様々な接着剤との接着性を良好にすることができる。
 また、接着剤層は、いわゆる透明光学粘着層(OCA)であってもよい。透明光学粘着層は、光学特性、耐光性、耐候性、耐熱性及び透明性の観点からアクリル系樹脂が用いられる。
 接着剤層の厚みは、0.1~50μmであることが好ましく、0.5~30μmであることがより好ましい。
For the adhesive layer of the transfer layer, it is preferable to use a heat-sensitive or pressure-sensitive resin suitable for the material of the adherend. For example, when the material of the adherend is an acrylic resin, it is preferable to use an acrylic resin. If the material of the adherend is polyphenylene oxide / polystyrene resin, polycarbonate resin, or styrene resin, use an acrylic resin, polystyrene resin, polyamide resin, or the like that is compatible with these resins. Is preferred. Further, when the material of the adherend is a polypropylene resin, it is preferable to use a chlorinated polyolefin resin, a chlorinated ethylene-vinyl acetate copolymer resin, a cyclized rubber, or a coumarone indene resin. Further, when the material of the adherend is glass, it is preferable to use an ethylene-vinyl acetate copolymer resin and a polyethylene resin. Moreover, when the material of the adherend is glass, adhesion with various adhesives can be improved by using glass surface-treated with a silane coupling agent.
The adhesive layer may be a so-called transparent optical adhesive layer (OCA). The transparent optical adhesive layer is made of an acrylic resin from the viewpoints of optical properties, light resistance, weather resistance, heat resistance, and transparency.
The thickness of the adhesive layer is preferably 0.1 to 50 μm, and more preferably 0.5 to 30 μm.
 転写層のハードコート層は、熱硬化性樹脂組成物又は電離放射線硬化性樹脂組成物等の硬化性樹脂組成物の硬化物を含むことが好ましく、耐擦傷性をより良くする観点から、電離放射線硬化性樹脂組成物の硬化物を含むことがより好ましい。 The hard coat layer of the transfer layer preferably contains a cured product of a curable resin composition such as a thermosetting resin composition or an ionizing radiation curable resin composition, and from the viewpoint of improving scratch resistance, ionizing radiation. More preferably, it contains a cured product of the curable resin composition.
 熱硬化性樹脂組成物は、少なくとも熱硬化性樹脂を含む組成物であり、加熱により、硬化する樹脂組成物である。熱硬化性樹脂としては、アクリル樹脂、ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等が挙げられる。熱硬化性樹脂組成物には、これら硬化性樹脂に、必要に応じて硬化剤が添加される。 The thermosetting resin composition is a composition containing at least a thermosetting resin, and is a resin composition that is cured by heating. Examples of the thermosetting resin include acrylic resin, urethane resin, phenol resin, urea melamine resin, epoxy resin, unsaturated polyester resin, and silicone resin. In the thermosetting resin composition, a curing agent is added to these curable resins as necessary.
 電離放射線硬化性樹脂組成物は、電離放射線硬化性官能基を有する化合物(以下、「電離放射線硬化性化合物」ともいう)を含む組成物である。電離放射線硬化性官能基としては、(メタ)アクリロイル基、ビニル基、アリル基等のエチレン性不飽和結合基、及びエポキシ基、オキセタニル基等が挙げられる。電離放射線硬化性化合物としては、エチレン性不飽和結合基を有する化合物が好ましく、エチレン性不飽和結合基を2つ以上有する化合物がより好ましく、中でも、エチレン性不飽和結合基を2つ以上有する、多官能性(メタ)アクリレート系化合物が更に好ましい。多官能性(メタ)アクリレート系化合物としては、モノマー及びオリゴマーのいずれも用いることができる。
 なお、電離放射線とは、電磁波又は荷電粒子線のうち、分子を重合あるいは架橋し得るエネルギー量子を有するものを意味し、通常、紫外線(UV)又は電子線(EB)が用いられるが、その他、X線、γ線などの電磁波、α線、イオン線などの荷電粒子線も使用可能である。
 本明細書において、(メタ)アクリレートとは、アクリレート又はメタクリレートを意味し、(メタ)アクリル酸とは、アクリル酸又はメタクリル酸を意味し、(メタ)アクリロイル基とは、アクリロイル基又はメタクリロイル基を意味する。
The ionizing radiation curable resin composition is a composition containing a compound having an ionizing radiation curable functional group (hereinafter also referred to as “ionizing radiation curable compound”). Examples of the ionizing radiation curable functional group include an ethylenically unsaturated bond group such as a (meth) acryloyl group, a vinyl group, and an allyl group, an epoxy group, and an oxetanyl group. As the ionizing radiation curable compound, a compound having an ethylenically unsaturated bond group is preferable, a compound having two or more ethylenic unsaturated bond groups is more preferable, and among them, having two or more ethylenically unsaturated bond groups, Polyfunctional (meth) acrylate compounds are more preferred. As the polyfunctional (meth) acrylate compound, any of a monomer and an oligomer can be used.
The ionizing radiation means an electromagnetic wave or a charged particle beam having an energy quantum capable of polymerizing or cross-linking molecules, and usually ultraviolet (UV) or electron beam (EB) is used. Electromagnetic waves such as X-rays and γ-rays, and charged particle beams such as α-rays and ion beams can also be used.
In this specification, (meth) acrylate means acrylate or methacrylate, (meth) acrylic acid means acrylic acid or methacrylic acid, and (meth) acryloyl group means acryloyl group or methacryloyl group. means.
 ハードコート層の厚みは、0.1~100μmであることが好ましく、0.5~50μmであることがより好ましく、1~30μmであることがさらに好ましい。ハードコート層の厚みが上記範囲とすることにより、耐擦傷性を良好にしつつ、転写時に転写層にクラックが発生することを抑制しやすくできる。なお、ガラス代替のような高硬度が必要な場合には、ハードコート層の厚みは、10~30μmが好ましい。 The thickness of the hard coat layer is preferably 0.1 to 100 μm, more preferably 0.5 to 50 μm, and further preferably 1 to 30 μm. By setting the thickness of the hard coat layer in the above range, it is possible to easily suppress the occurrence of cracks in the transfer layer during transfer while improving the scratch resistance. When high hardness is required as in the case of glass replacement, the thickness of the hard coat layer is preferably 10 to 30 μm.
 基材と転写層との間には、転写層の剥離性を良好にするため、離型層を有していてもよい。離型層は、例えば、シリコーン系離型剤、フッ素系離型剤等の汎用の離型剤から形成することができる。 In order to improve the peelability of the transfer layer, a release layer may be provided between the substrate and the transfer layer. The release layer can be formed from a general-purpose release agent such as a silicone release agent or a fluorine release agent.
<<転写層を構成する低屈折率層の基材側の表面形状>>
 上述したように、転写層の基材側は低屈折率層から構成される。そして、低屈折率層の基材側の表面形状(低屈折率層の基材とは反対側の表面形状)は、算術平均粗さRa、最大高さRz及び粗さ曲線の最大高さRpから選ばれる一以上が下記範囲を満たすことが好ましく、二以上が下記範囲を満たすことがより好ましく、三つ全てが下記範囲を満たすことがさらに好ましい。
 被着体上に転写層を転写してなる積層体の表面には低屈折率層が位置する。したがって、Ra、Rz及びRpが下記範囲を満たすことにより、該積層体の表面(低屈折率層の表面)を爪等で擦過した際に、爪等が凹凸にひっかかることにより傷が生じることを抑制でき、耐擦傷性を良好にしやすくできる。また、Ra、Rz及びRpが下記範囲を満たすことにより、該積層体の表面(低屈折率層の表面)を指等で触れた際に、皮脂等が凹凸内に入り込むことによって屈折率が変化し、反射防止性が低下することを抑制できる。
 Ra:2.5nm以下
 Rz:25nm以下
 Rp:12nm以下
<<< Surface shape of substrate side of low refractive index layer constituting transfer layer >>>
As described above, the substrate side of the transfer layer is composed of a low refractive index layer. The surface shape on the base material side of the low refractive index layer (surface shape on the side opposite to the base material of the low refractive index layer) is the arithmetic average roughness Ra, the maximum height Rz, and the maximum height Rp of the roughness curve. It is preferable that one or more selected from the following range is satisfied, two or more satisfy the following range, and it is more preferable that all three satisfy the following range.
A low refractive index layer is located on the surface of the laminate obtained by transferring the transfer layer onto the adherend. Therefore, when Ra, Rz, and Rp satisfy the following ranges, when the surface of the laminate (the surface of the low refractive index layer) is rubbed with a nail or the like, the nail or the like may be scratched by unevenness, thereby causing scratches. It can be suppressed and the scratch resistance can be easily improved. Moreover, when Ra, Rz, and Rp satisfy the following ranges, when the surface of the laminate (the surface of the low refractive index layer) is touched with a finger or the like, the refractive index changes due to sebum entering the irregularities. And it can suppress that anti-reflective property falls.
Ra: 2.5 nm or less Rz: 25 nm or less Rp: 12 nm or less
 Raは2.0nm以下であることがより好ましく、1.5nm以下であることがさらに好ましく、1.2nm以下であることがよりさらに好ましい。なお、Raは、ごく小さな傷が視認されることを抑制するため、0.3nm以上であることが好ましい。
 Rzは20nm以下であることがより好ましく、15nm以下であることがさらに好ましく、10nm以下であることがよりさらに好ましい。なお、Rzは、ごく小さな傷が視認されることを抑制するため、3nm以上であることが好ましい。
 Rpは10nm以下であることがより好ましく、8nm以下であることがさらに好ましく、6m以下であることがよりさらに好ましい。なお、Rpは、ごく小さな傷が視認されることを抑制するため、2nm以上であることが好ましい。
Ra is more preferably 2.0 nm or less, further preferably 1.5 nm or less, and still more preferably 1.2 nm or less. In addition, Ra is preferably 0.3 nm or more in order to suppress the recognition of very small scratches.
Rz is more preferably 20 nm or less, further preferably 15 nm or less, and still more preferably 10 nm or less. In addition, Rz is preferably 3 nm or more in order to suppress the observation of very small scratches.
Rp is more preferably 10 nm or less, further preferably 8 nm or less, and further preferably 6 m or less. Note that Rp is preferably 2 nm or more in order to suppress the observation of very small scratches.
 Ra、RzおよびRpの定義はJIS B0601:2001に従うものとする。Ra、Rz及びRpは、原子間力顕微鏡(商品名「WET-9100」、島津製作所製)を用いて、以下のように算出するものとする。具体的には、まず、平坦な円形の金属板を複数用意し、それぞれの金属板に、日新EM株式会社製のカーボン両面テープを貼り付け、該テープを介して、金属板と、被着体上に転写層を転写してなる積層体の被着体側とを貼り合わせた測定用サンプルを作製する。そして、金属板、テープ及び該積層体の接着を確実なものとするために、測定用サンプルをデシケーターの中で一晩放置する。一晩放置後、測定用サンプルを原子間力顕微鏡(商品名「WET-9400」、島津製作所製)の測定台の上に磁石で固定し、タッピングモードにて、測定エリア5μm角で、原子間力顕微鏡により表面形状を観察する。そして、観察したデータから原子間力顕微鏡に内蔵されている面解析ソフトを用いて、Ra、Rz、Rpを算出する。なお、面解析時における縦のスケールは20nmとする。観察時の雰囲気は、温度23℃±5℃、湿度40~65%で行い、カンチレバーとしてはNanoWorld社製のNCHR-20を使用する。また、観察に際しては、1つのサンプルに対して、異物や傷のない箇所からランダムに10箇所を選び、10箇所の表面形状を観察する。そして、得られた10点のデータ全てにおいて、原子間力顕微鏡に内蔵の面解析ソフトを用いてRa、Rz、Rpを算出し、10点の算術平均値をそれぞれのサンプルのRa、Rz、Rpとする。 Ra, Rz, and Rp shall be defined in accordance with JIS B0601: 2001. Ra, Rz, and Rp are calculated as follows using an atomic force microscope (trade name “WET-9100”, manufactured by Shimadzu Corporation). Specifically, first, a plurality of flat circular metal plates are prepared, and a carbon double-sided tape manufactured by Nissin EM Co., Ltd. is attached to each metal plate, and the metal plate and the deposition are attached via the tape. A measurement sample in which a laminate formed by transferring a transfer layer onto a body is bonded to the adherend side is prepared. Then, in order to ensure the adhesion of the metal plate, the tape and the laminate, the measurement sample is left overnight in a desiccator. After standing overnight, the sample for measurement is fixed with a magnet on the measurement table of an atomic force microscope (trade name “WET-9400”, manufactured by Shimadzu Corporation), and the measurement area is 5 μm square in the tapping mode. Observe the surface shape with a force microscope. Then, Ra, Rz, and Rp are calculated from the observed data using surface analysis software built in the atomic force microscope. Note that the vertical scale during the surface analysis is 20 nm. The observation atmosphere is 23 ° C. ± 5 ° C. and a humidity of 40 to 65%, and NCHR-20 manufactured by NanoWorld is used as the cantilever. For observation, 10 locations are selected at random from locations free from foreign matter or scratches for one sample, and the surface shapes at 10 locations are observed. Then, Ra, Rz, Rp are calculated using the surface analysis software built in the atomic force microscope, and the arithmetic average values of the 10 points are calculated as Ra, Rz, Rp for each sample. And
 また、Ra、Rz、Rpを用いて低屈折率層の基材側の表面形状を規定したのは、以下の理由からである。
 Raは、低屈折率層の表面に存在する山と谷の高さの平均値を見るために用いられており、Rzは、低屈折率層の表面の山高さの最大値と谷深さの最大値の和を見るために用いられており、Rpは、低屈折率層の表面の山高さの最大値を見るために用いられている。ここで、Raは低屈折率層の表面に存在する山と谷の高さの平均値を見ているため、大まかな低屈折率層の表面形状は分かるものの、大きな山や谷があったとしても平均化されてしまい、その存在を見落としてしまう可能性がある。また、Rpは、低屈折率層の表面の山高さの最大値を見ているため、RaとRpの2つのパラメータを用いた場合には、大きな谷があったとしても、その存在を見落としてしまう可能性があり、さらにRzは、低屈折率層の表面の山高さの最大値と谷深さの最大値の和を見ていため、RaとRzの2つのパラメータを用いた場合には、山が高いのか谷が深いのか把握できない可能性がある。このため、均一かつ平坦な面形状を有するか否かをより正確に判断するためには、Raの1つのパラメータ、RaとRpの2つのパラメータ、またはRaとRzの2つのパラメータでは足らず、Ra、RzおよびRpの3つのパラメータが必要とする。このため、本発明においては、低屈折率層の表面形状をRa、RzおよびRpの3つのパラメータを用いて規定している。
The reason why the surface shape of the low refractive index layer on the substrate side is defined using Ra, Rz, and Rp is as follows.
Ra is used to see the average value of the heights of the peaks and valleys existing on the surface of the low refractive index layer, and Rz is the maximum value of the peak height and the valley depth of the surface of the low refractive index layer. It is used to see the sum of the maximum values, and Rp is used to see the maximum value of the peak height of the surface of the low refractive index layer. Here, since Ra is looking at the average value of the heights of the peaks and valleys present on the surface of the low refractive index layer, although the surface shape of the rough low refractive index layer can be understood, there are large peaks and valleys. May be averaged out and overlook their existence. In addition, since Rp looks at the maximum peak height of the surface of the low refractive index layer, when two parameters Ra and Rp are used, even if there is a large valley, the existence is overlooked. Furthermore, since Rz looks at the sum of the maximum peak height and the maximum valley depth of the surface of the low refractive index layer, when two parameters Ra and Rz are used, It may not be possible to know whether the mountain is high or the valley is deep. Therefore, in order to more accurately determine whether or not the surface has a uniform and flat surface shape, one parameter of Ra, two parameters of Ra and Rp, or two parameters of Ra and Rz are not sufficient. , Rz and Rp are required. For this reason, in the present invention, the surface shape of the low refractive index layer is defined using three parameters Ra, Rz and Rp.
 Ra、RzおよびRpを上記範囲とするためには、低屈折率層の基材側の表面には、実質的に中空粒子が存在しない領域を有することが好ましい。言い換えると、低屈折率層の基材側の表面には、実質的にバインダー樹脂のみが存在する領域を有することが好ましい。
 中空粒子は比重が軽いため、中空粒子及びバインダー樹脂成分を含むコーティング組成物を転写シートの基材上に塗布し、低屈折率層を形成することにより、塗膜の表面に中空粒子が浮かび上がり、低屈折率層の基材側の表面に、中空粒子が疎でバインダー樹脂が密の領域を形成しやすくできる。
 低屈折率層の基材側の表面に、実質的にバインダー樹脂のみが存在する領域を有することにより、被着体上に転写層を転写してなる積層体の表面凹凸が減少し、耐擦傷性を良好にすることができるとともに、凹凸内に汚れが入り込みに難くなるため、防汚性も良好にし得る。
In order to make Ra, Rz, and Rp within the above ranges, it is preferable that the surface of the low refractive index layer on the base material side has a region where substantially no hollow particles are present. In other words, it is preferable that the surface of the low refractive index layer on the substrate side has a region where only the binder resin is substantially present.
Since the specific gravity of hollow particles is light, the hollow particles emerge on the surface of the coating film by applying a coating composition containing hollow particles and a binder resin component on the substrate of the transfer sheet to form a low refractive index layer. Moreover, it is possible to easily form a region where the hollow particles are sparse and the binder resin is dense on the surface of the low refractive index layer on the substrate side.
By having a region where only the binder resin is present on the surface of the base material side of the low refractive index layer, the surface unevenness of the laminate formed by transferring the transfer layer onto the adherend is reduced, and scratch resistance In addition, it is possible to improve the anti-fouling property since the dirt can hardly enter the irregularities.
 低屈折層の基材側の表面に実質的にバインダーのみが存在する領域は、以下の(I)~(IV)の作業により算出できる。
(I)転写シートの低屈折率層の粒子と基材層との間に存在するバインダーをTEMまたはSTEMで観察するため、転写シートをシートとは垂直に切断し、ミクロトームで薄片化する。薄片の厚みは、50nm~200nmの範囲が好ましい。
<(I)の実施例>
 まず、試料を5mm角片に切断し、樹脂包埋した。次に、断面が得られるように、ガラスナイフでトリミング加工した。この際、ミクロトーム(例えばライカマイクロシステムズ社製のウルトラミクロトーム)を使用した。次に、トリミング加工を行った切断面をダイヤモンドナイフ用いて、約80nm厚の薄片として抽出した。
The region where only the binder is substantially present on the substrate side surface of the low refractive layer can be calculated by the following operations (I) to (IV).
(I) In order to observe the binder existing between the particles of the low refractive index layer of the transfer sheet and the base material layer with TEM or STEM, the transfer sheet is cut perpendicular to the sheet and sliced with a microtome. The thickness of the flakes is preferably in the range of 50 nm to 200 nm.
<Example of (I)>
First, the sample was cut into 5 mm square pieces and embedded in resin. Next, it trimmed with the glass knife so that a cross section might be obtained. At this time, a microtome (for example, an ultramicrotome manufactured by Leica Microsystems) was used. Next, the trimmed cut surface was extracted as a thin piece having a thickness of about 80 nm using a diamond knife.
(II)転写シートの薄片をTEM又はSTEMで撮像する。TEM又はSTEMの加速電圧は30kV以上、F.O.V(Field Of View)は365nm角~1825nm角とすることが好ましい。
<(II)の実施例>
使用装置: 日立ハイテクノロジーズ社製走査型電子顕微鏡 S‐4800 TypeI
加速電圧:30kV
観察モード:STEM
観察倍率:×200k
F.O.V(Field Of View):630nm角
(II) The transfer sheet is imaged with a TEM or STEM. The acceleration voltage of TEM or STEM is preferably 30 kV or more, and F.O.V (Field Of View) is preferably 365 nm square to 1825 nm square.
<Example of (II)>
Equipment used: Hitachi High-Technologies scanning electron microscope S-4800 Type I
Acceleration voltage: 30 kV
Observation mode: STEM
Observation magnification: × 200k
F.O.V (Field Of View): 630 nm square
(III)観察画像から、基材側に近い任意の10個の粒子を抽出し、個々の粒子の最も基材に近い点から、基材までの直線距離を算出する。
(IV)同じサンプルの別画面の観察画像において同様の作業を5回行って、合計50個分の数平均から得られる値を低屈折層の基材側の表面に実質的にバインダーのみが存在する領域とする。
(III) Extract 10 arbitrary particles close to the base material from the observation image, and calculate the linear distance from the point closest to the base material of each particle to the base material.
(IV) The same operation is performed 5 times on the observation image of another screen of the same sample, and the value obtained from the total number of 50 total is substantially only the binder on the substrate side surface of the low refractive layer The area to be used.
 低屈折率層の基材側の表面の実質的にバインダー樹脂のみが存在する領域は、低屈折率層の表面から1nm以上であることが好ましく、2nm以上であることがより好ましい。該領域は反射防止性の維持の観点から、20nm以下であることが好ましく、15nm以下であることがより好ましい。
 なお、実質的にバインダー樹脂のみが存在する領域とは、転写シートの垂直断面をSTEMにより撮像した写真の低屈折率層の幅方向の500nmにおいて、低屈折率層の基材側の表面にバインダー樹脂のみが存在する領域をいうものとする。
 また、低屈折率層の基材側の全表面のうち、実質的にバインダー樹脂のみが存在する領域は60%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることがさらに好ましく、90%以上であることがよりさらに好ましい。
The region where only the binder resin is substantially present on the surface of the base material side of the low refractive index layer is preferably 1 nm or more, more preferably 2 nm or more from the surface of the low refractive index layer. From the viewpoint of maintaining antireflection properties, the region is preferably 20 nm or less, and more preferably 15 nm or less.
In addition, the region where only the binder resin is substantially present is a binder on the surface of the low refractive index layer on the substrate side at 500 nm in the width direction of the low refractive index layer of the photograph obtained by photographing the vertical cross section of the transfer sheet with STEM. It shall mean the area where only resin is present.
Further, of the entire surface on the base material side of the low refractive index layer, the region where only the binder resin is substantially present is preferably 60% or more, more preferably 70% or more, and 80% or more. More preferably, it is more preferably 90% or more.
<被着体>
 転写層を転写する被着体の材質は特に限定されず、各種プラスチックの他、ガラス、陶磁器、金属及び木材等が挙げられる。また、被着体の厚みも特に限定されず、ミクロンレベル等の薄いものでも、板状等の厚いものでも構わない。また、被着体の形状も特に限定されず、平面状のものであってもよいし、立体形状であってもよい。
<Adherent>
The material of the adherend to which the transfer layer is transferred is not particularly limited, and examples thereof include glass, ceramics, metal and wood in addition to various plastics. Also, the thickness of the adherend is not particularly limited, and it may be as thin as a micron level or as thick as a plate. Further, the shape of the adherend is not particularly limited, and may be a planar shape or a three-dimensional shape.
[コーティング組成物]
 本発明のコーティング組成物は、平均粒子径が60~140nmの中空粒子と、バインダー樹脂成分としてのシリコーン系化合物とを含む、低屈折率層形成用のコーティング組成物である。
 本発明のコーティング組成物は、上述した本発明の低屈折部材の低屈折率層形成用のコーティング組成物、あるいは、上述した本発明の転写シートの低屈折率層形成用のコーティング組成物として有用である。
[Coating composition]
The coating composition of the present invention is a coating composition for forming a low refractive index layer comprising hollow particles having an average particle size of 60 to 140 nm and a silicone compound as a binder resin component.
The coating composition of the present invention is useful as the above-described coating composition for forming the low refractive index layer of the low refractive member of the present invention or the above-described coating composition for forming the low refractive index layer of the transfer sheet of the present invention. It is.
 コーティング組成物に含まれる中空粒子及びバインダー樹脂成分の実施形態及び好適な実施形態は、特に断りのない限り、上述した本発明の低屈折部材の低屈折率層に含まれる中空粒子及びバインダー樹脂成分の実施形態及び好適な実施形態と同様である。 Embodiments and preferred embodiments of the hollow particles and the binder resin component contained in the coating composition are the hollow particles and the binder resin component contained in the low refractive index layer of the low refractive member of the present invention described above unless otherwise specified. This is the same as the embodiment and the preferred embodiment.
 コーティング組成物の中空粒子の平均粒子径は、以下の(1)~(3)の作業により算出できる。
(1)コーティング組成物の中空粒子を透過電子顕微鏡(TEM)で観察するため、コーティング組成物を主溶剤で約100倍に希釈し、これをコロジオン膜貼付メッシュに塗布、乾燥したTEM観察用試料を作製する。
The average particle diameter of the hollow particles of the coating composition can be calculated by the following operations (1) to (3).
(1) In order to observe the hollow particles of the coating composition with a transmission electron microscope (TEM), the coating composition is diluted about 100 times with a main solvent, and this is applied to a collodion membrane applied mesh and dried for a TEM observation sample. Is made.
(2)コーティング組成物のTEM観察用資料を透過電子顕微鏡(TEM)で撮像する。透過電子顕微鏡(TEM)の加速電圧は100kv~200kV、F.O.V(Field Of View)は365nm角~1825nm角とすることが好ましい。
<(2)の実施例>
使用装置:FEI製透過型電子顕微鏡  Tecnai G2 Spirit
加速電圧:120kV
観察モード:TEM
観察倍率:×30k
F.O.V(Field Of View):680nm角
(2) The material for TEM observation of the coating composition is imaged with a transmission electron microscope (TEM). The accelerating voltage of a transmission electron microscope (TEM) is preferably 100 kv to 200 kV, and the F.O.V (Field Of View) is preferably 365 nm square to 1825 nm square.
<Example of (2)>
Equipment used: Transmission electron microscope manufactured by FEI Tecnai G2 Spirit
Acceleration voltage: 120 kV
Observation mode: TEM
Observation magnification: x30k
F.O.V (Field Of View): 680 nm square
(3)観察画像から、以下手順にて画像解析を行う。
1.観察画像から、任意の10個の粒子を抽出し、粒子部分を粒子の外径に沿って画像解析ソフト(ペイント等)で塗りつぶす。なお、粒子が凝集している場合、凝集粒子を1個の粒子とみなすのではなく、個々の粒子に分けて前述の塗りつぶし作業を行う。
2.塗りつぶした部分の面積(px^2)を画像解析ソフト(ImageJ等)で計算する。
3.面積より円相当径(px)を計算する。
4.TEM画像のスケールバーより、1画素あたりの長さを計算する。
5.「4.」の係数を用いて「3.」で算出した円相当径(px)をnmに変換する。
6.10個の円相当径の平均値を求め、得られた値を「平均粒子径(D)」とする。
(3) Image analysis is performed from the observed image according to the following procedure.
1. Arbitrary 10 particles are extracted from the observation image, and the particle portion is filled with image analysis software (paint or the like) along the outer diameter of the particle. When the particles are aggregated, the above-described painting operation is performed by dividing the aggregated particles into individual particles instead of considering the aggregated particles as one particle.
2. The area (px ^ 2) of the filled portion is calculated by image analysis software (ImageJ or the like).
3. The equivalent circle diameter (px) is calculated from the area.
4). The length per pixel is calculated from the scale bar of the TEM image.
5. Using the coefficient “4.”, the equivalent circle diameter (px) calculated in “3.” is converted to nm.
6. An average value of 10 equivalent circle diameters is obtained, and the obtained value is defined as “average particle diameter (D)”.
 コーティング組成物は、溶剤を含むことが好ましい。
 溶剤は、例えば、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等)、エーテル類(ジオキサン、テトラヒドロフラン等)、脂肪族炭化水素類(ヘキサン等)、脂環式炭化水素類(シクロヘキサン等)、芳香族炭化水素類(トルエン、キシレン等)、ハロゲン化炭素類(ジクロロメタン、ジクロロエタン等)、エステル類(酢酸メチル、酢酸エチル、酢酸ブチル等)、アルコール類(ブタノール、シクロヘキサノール等)、セロソルブ類(メチルセロソルブ、エチルセロソルブ等)、セロソルブアセテート類、スルホキシド類(ジメチルスルホキシド等)、アミド類(ジメチルホルムアミド、ジメチルアセトアミド等)等が例示でき、これらの混合物であってもよい。
 コーティング組成物中の溶剤の含有量は、コーティング組成物の全量に対して、60~95質量%であることが好ましく、70~90質量%であることがより好ましい。溶剤の含有量を60質量%以上とすることにより、コーティング組成物の高粘度化を抑制して塗工時の作業性を良好にしやすくでき、95質量%以下とすることにより、乾燥ムラを抑制しやすくできる。
The coating composition preferably contains a solvent.
Examples of the solvent include ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.), ethers (dioxane, tetrahydrofuran, etc.), aliphatic hydrocarbons (hexane, etc.), alicyclic hydrocarbons (cyclohexane, etc.), Aromatic hydrocarbons (toluene, xylene, etc.), halogenated carbons (dichloromethane, dichloroethane, etc.), esters (methyl acetate, ethyl acetate, butyl acetate, etc.), alcohols (butanol, cyclohexanol, etc.), cellosolves ( Examples thereof include methyl cellosolve, ethyl cellosolve, etc.), cellosolve acetates, sulfoxides (dimethyl sulfoxide, etc.), amides (dimethylformamide, dimethylacetamide, etc.), etc., and mixtures thereof may be used.
The content of the solvent in the coating composition is preferably 60 to 95% by mass and more preferably 70 to 90% by mass with respect to the total amount of the coating composition. By making the content of the solvent 60% by mass or more, it is possible to easily improve the workability during coating by suppressing the increase in viscosity of the coating composition, and by controlling the content to 95% by mass or less, drying unevenness is suppressed. It can be done easily.
 コーティング組成物は、溶剤を含み、溶剤の95質量%以上がプロピレングリコールモノメチルエーテルアセテートとした際のコーティング組成物中の中空粒子のゼータ電位の絶対値をA(mV)と定義した際に、下記式(i)を満たすことが好ましい。
 10.0mV≦A (i)
The coating composition contains a solvent, and when the absolute value of the zeta potential of the hollow particles in the coating composition when 95% by mass or more of the solvent is propylene glycol monomethyl ether acetate is defined as A (mV), It is preferable to satisfy the formula (i).
10.0 mV ≦ A (i)
 A(ゼータ電位の絶対値)を10.0mV以上とすることにより、コーティング組成物中の中空粒子の凝集を抑制し、コーティング組成物から形成される低屈折率層の白化を抑制しやすくできる。
 式(i)において、A(ゼータ電位の絶対値)は12.0mV以上であることがより好ましく、13.0mV以上であることがさらに好ましく、15.0mV以上であることがよりさらに好ましい。
 なお、本明細書において、中空粒子の密度は、「見かけ密度」を意味する。見かけ密度は、ルシャテリエ比重瓶法により測定できる。
By setting A (absolute value of zeta potential) to 10.0 mV or more, aggregation of the hollow particles in the coating composition can be suppressed, and whitening of the low refractive index layer formed from the coating composition can be easily suppressed.
In formula (i), A (the absolute value of the zeta potential) is more preferably 12.0 mV or more, further preferably 13.0 mV or more, and further preferably 15.0 mV or more.
In the present specification, the density of the hollow particles means “apparent density”. The apparent density can be measured by the Le Chatelier specific gravity bottle method.
 コーティング組成物は、膜厚が0.5~5.0μmの低屈折率層用のコーティング組成物として有用である。上述したように、膜厚が0.5μm以上の厚膜の低屈折率層の場合、凝集した中空粒子が低屈折率層内に取り込まれてしまう。このため、コーティング組成物が上記式(i)を満たして中空粒子の凝集を抑制しやすくすることは、技術的な意義が大きい。 The coating composition is useful as a coating composition for a low refractive index layer having a thickness of 0.5 to 5.0 μm. As described above, in the case of a thick low refractive index layer having a thickness of 0.5 μm or more, aggregated hollow particles are taken into the low refractive index layer. For this reason, it is technically significant that the coating composition satisfies the above formula (i) to easily suppress the aggregation of the hollow particles.
 式(i)においてゼータ電位を測定する際は、コーティング組成物の全溶剤の95質量%以上をプロピレングリコールモノメチルエーテルアセテートとする。コーティング組成物の全溶剤に占めるプロピレングリコールモノメチルエーテルアセテートの割合は97質量%以上であることが好ましく、99質量%以上であることがより好ましく、100質量%であることがさらに好ましい。
 なお、組成物がプロピレングリコールモノメチルエーテルアセテート以外の溶剤を5質量%を超える割合で含む場合には、全溶剤の95質量%以上がプロピレングリコールモノメチルエーテルアセテートとなるように溶剤を置換した後に中空粒子のゼータ電位を測定すればよい。
 さらに、式(i)においてゼータ電位を測定する際は、コーティング組成物の固形分濃度を20±1質量%に調整するものとする。
 ゼータ電位の絶対値は、中空粒子の密度(見かけ密度)と、溶剤の密度差を小さくすることにより大きくなる傾向がある。
When measuring the zeta potential in the formula (i), 95% by mass or more of the total solvent of the coating composition is propylene glycol monomethyl ether acetate. The proportion of propylene glycol monomethyl ether acetate in the total solvent of the coating composition is preferably 97% by mass or more, more preferably 99% by mass or more, and further preferably 100% by mass.
When the composition contains a solvent other than propylene glycol monomethyl ether acetate in a proportion exceeding 5% by mass, the hollow particles are obtained after replacing the solvent so that 95% by mass or more of the total solvent becomes propylene glycol monomethyl ether acetate. What is necessary is just to measure the zeta potential.
Furthermore, when measuring the zeta potential in the formula (i), the solid content concentration of the coating composition is adjusted to 20 ± 1 mass%.
The absolute value of the zeta potential tends to increase by reducing the difference between the density of the hollow particles (apparent density) and the density of the solvent.
 本明細書において、中空粒子のゼータ電位は10回の測定値の平均値とする。また、本明細書において、電気音響法(ESA法)により測定したものとする。ESA法は、例えば、Colloidal Dynamics,LLC(Ponte Vedra Beach、フロリダ州、米国)製の「ZetaProbe Analyzer(商標)」で測定することができる。
 ESA法は、コロイド溶液に交流電圧を印加し、粒子の振動により発生する超音波のESAシグナルからゼータ電位を測定する手法である。ESAシグナルは下記式(ii)で表されるものである。ESAシグナルの大きさは、動的移動度(μ)をもった粒子の濃度(φ)に相関する。また、交流電圧を印加したときの粒子の慣性モーメントの違いにより、発生する超音波の位相遅れから粒子サイズを解析し、得られた粒子サイズをゼータ電位の解析に用いる。複数の周波数で測定し、粒子径を反映したゼータ電位(ζ)が算出される(下記式(iii))。
 ゼータ電位値は、粒子上の電荷の極性に応じて、負または正であることができる。ゼータ電位の「大きさ」は、絶対値で表される(例えば、-35mVのゼータ電位値は、-20mVのゼータ電位値よりもより高い大きさを有している)。ゼータ電位の大きさは、分散液中の同じに荷電した粒子間の静電的反発の度合いを反映する。ゼータ電位の大きさが高ければ高いほど、分散液中の粒子はより安定である。
In this specification, the zeta potential of the hollow particles is the average value of 10 measurements. Moreover, in this specification, it shall measure with the electroacoustic method (ESA method). The ESA method can be measured by, for example, “ZetaProbe Analyzer ™” manufactured by Colloidal Dynamics, LLC (Ponte Vedra Beach, Florida, USA).
The ESA method is a method in which an alternating voltage is applied to a colloidal solution and a zeta potential is measured from an ultrasonic ESA signal generated by vibration of particles. The ESA signal is represented by the following formula (ii). The magnitude of the ESA signal correlates with the concentration (φ) of particles with dynamic mobility (μ). Further, the particle size is analyzed from the phase delay of the generated ultrasonic wave due to the difference in the moment of inertia of the particles when an AC voltage is applied, and the obtained particle size is used for the zeta potential analysis. The zeta potential (ζ) reflecting the particle diameter is calculated by measuring at a plurality of frequencies (the following formula (iii)).
The zeta potential value can be negative or positive depending on the polarity of the charge on the particle. The “magnitude” of the zeta potential is expressed as an absolute value (for example, a zeta potential value of −35 mV has a higher magnitude than a zeta potential value of −20 mV). The magnitude of the zeta potential reflects the degree of electrostatic repulsion between identically charged particles in the dispersion. The higher the magnitude of the zeta potential, the more stable the particles in the dispersion.
Figure JPOXMLDOC01-appb-M000001

A:定数
Z:音響インピーダンス(音速と密度の積)
φ:粒子体積濃度
Δρ:粒子と溶媒の密度差
ρ:溶媒の密度
μ:動的移動度
Figure JPOXMLDOC01-appb-M000001

A: Constant Z: Acoustic impedance (product of sound speed and density)
φ: Particle volume concentration Δρ: Particle-solvent density difference ρ: Solvent density μ: Dynamic mobility
Figure JPOXMLDOC01-appb-M000002

ζ:ゼータ電位
G:関数
f:周波数
a:粒子半径
Figure JPOXMLDOC01-appb-M000002

ζ: zeta potential G: function f: frequency a: particle radius
 また、コーティング組成物は、界面活性剤、分散剤、帯電防止剤、酸化防止剤及び紫外線吸収剤等の添加剤を含有してもよい。 The coating composition may contain additives such as a surfactant, a dispersant, an antistatic agent, an antioxidant, and an ultraviolet absorber.
 コーティング組成物は、例えば、基材上に塗布し、プリベイク(乾燥)し、さらに熱硬化することにより、低屈折率層とすることができる。
 プリベイク(乾燥)の際は、温度は60~150℃が好ましく、より好ましくは80~120℃であり、時間は40~200秒が好ましく、より好ましくは50~150秒である。
 熱硬化の際は、温度は150~260℃が好ましく、より好ましくは170~250℃であり、時間は5~45分が好ましく、より好ましくは15~35分である。
 コーティング組成物の乾燥条件及び熱硬化条件を上記範囲とすることにより、コーティング組成物の急速な乾燥、及び/又は、バインダー樹脂の急速な硬化を抑制し、低屈折率層の表面が凹凸化することを抑制しやすくできる。
The coating composition can be formed into a low refractive index layer by, for example, coating on a substrate, prebaking (drying), and further heat curing.
In the pre-baking (drying), the temperature is preferably 60 to 150 ° C., more preferably 80 to 120 ° C., and the time is preferably 40 to 200 seconds, more preferably 50 to 150 seconds.
In thermosetting, the temperature is preferably 150 to 260 ° C., more preferably 170 to 250 ° C., and the time is preferably 5 to 45 minutes, more preferably 15 to 35 minutes.
By setting the drying conditions and thermal curing conditions of the coating composition within the above ranges, rapid drying of the coating composition and / or rapid curing of the binder resin is suppressed, and the surface of the low refractive index layer becomes uneven. This can be easily suppressed.
[積層体]
 本発明の積層体は、上述した本発明の低屈折部材の低屈折率層上に蒸着膜を有してなるものである。
[Laminate]
The laminate of the present invention comprises a vapor deposition film on the low refractive index layer of the low refractive member of the present invention described above.
 蒸着膜は、ケイ素(Si)、ホウ素(B)、アルミニウム(Al)、マグネシウム(Mg)、カルシウム(Ca)、カリウム(K)、スズ(Sn)、ナトリウム(Na)、ホウ素(B)、チタン(Ti)、鉛(Pb)、ジルコニウム(Zr)、イットリウム(Y)、インジウム(In)、アンチモン(Sb)等の無機物、これらの酸化物、これらの窒化物の一種以上を原料として、真空蒸着やスパッタリング、イオンプレーティング等の物理蒸着(PVD)法、プラズマ化学気相成長や熱化学気相成長、光化学気相成長等の化学蒸着(CVD)法等により形成することができる。
 蒸着膜の厚みは通常5~500nm程度である。
The deposited film is silicon (Si), boron (B), aluminum (Al), magnesium (Mg), calcium (Ca), potassium (K), tin (Sn), sodium (Na), boron (B), titanium. Vacuum deposition using one or more of inorganic materials such as (Ti), lead (Pb), zirconium (Zr), yttrium (Y), indium (In), antimony (Sb), these oxides, and these nitrides as raw materials Further, it can be formed by a physical vapor deposition (PVD) method such as sputtering or ion plating, a chemical vapor deposition (CVD) method such as plasma chemical vapor deposition, thermal chemical vapor deposition, or photochemical vapor deposition.
The thickness of the deposited film is usually about 5 to 500 nm.
 蒸着膜の下層に位置する低屈折率層の表面形状は、凹凸が少ないことが好ましい。低屈折率層の表面形状の凹凸を少なくすることにより、蒸着膜をムラなくきれいに形成しやすくできる。低屈折層の表面形状の凹凸を少なくするためには、低屈折率層のバインダー樹脂として収縮の少ない成分を用いたり、低屈折率層を転写で形成したりすることが好ましい。 The surface shape of the low refractive index layer located in the lower layer of the deposited film is preferably less uneven. By reducing the unevenness of the surface shape of the low refractive index layer, it is possible to easily form a deposited film cleanly without unevenness. In order to reduce the unevenness of the surface shape of the low refractive index layer, it is preferable to use a component with little shrinkage as the binder resin of the low refractive index layer or to form the low refractive index layer by transfer.
 また、蒸着膜の下層に位置する低屈折率層は、シリコーン系化合物を含む組成物の硬化物として、アルコキシ基を有するシリコーン系化合物を含む組成物の硬化物を含むことが好ましい。当該構成とすることで、低屈折率層と蒸着膜との密着性を良好にしやすくできる。 Moreover, it is preferable that the low refractive index layer located in the lower layer of a vapor deposition film contains the hardened | cured material of the composition containing the silicone type compound which has an alkoxy group as a hardened | cured material of the composition containing a silicone type compound. By setting it as the said structure, it can be made easy to make favorable the adhesiveness of a low-refractive-index layer and a vapor deposition film.
 以下、実施例及び比較例を挙げて本発明を具体的に説明する。なお、本発明は、実施例に記載の形態に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. In addition, this invention is not limited to the form as described in an Example.
1.評価、測定
 実施例及び比較例で得られた低屈折部材について以下の測定及び評価を行った。結果を表1に示す。なお、以下の測定及び評価で使用した低屈折部材及びサンプル等の大きさは一例であり、これに何ら限定されない。例えば、下記1-1の耐擦傷性の測定では、低屈折部材は10cm角のものを使用しているが、これよりサイズを小さくしてもよい。
 各測定及び評価時の雰囲気は、温度は23℃±5℃、湿度40~65%とした。また、各測定及び評価の開始前に、前記雰囲気に低屈折部材、低屈折部材から作製したサンプル又は低屈折率層形成用コーティング組成物を30分以上晒した。
1. Evaluation and Measurement The following measurements and evaluations were performed on the low refractive members obtained in Examples and Comparative Examples. The results are shown in Table 1. Note that the sizes of the low-refractive members and samples used in the following measurements and evaluations are examples, and are not limited to these. For example, in the measurement of scratch resistance described in 1-1 below, a low-refractive member having a 10 cm square is used, but the size may be made smaller than this.
The atmosphere during each measurement and evaluation was a temperature of 23 ° C. ± 5 ° C. and a humidity of 40 to 65%. Further, before the start of each measurement and evaluation, the sample prepared from the low refractive member, the low refractive member or the coating composition for forming a low refractive index layer was exposed to the atmosphere for 30 minutes or more.
1-1.耐擦傷性
 10cm角の低屈折部材を使用し、低屈折率層の表面を、#0000のスチールウールを押し当て、荷重50g/cmで10往復擦った後、サンプルの裏面に黒色板を配置し、蛍光灯の照明下で、反射防止性を目視で評価した。擦過箇所と非擦過箇所との反射防止性が区別できないものを「A」、擦過箇所と非擦過箇所との反射防止性が区別できたものを「C」とした。
1-1. Using a low refractive member of scratch resistance 10cm square, place the surface of the low refractive index layer, pressing a steel wool # 0000, after rubbing back and forth 10 times under a load 50 g / cm 2, a black plate on the back surface of the sample The antireflection property was visually evaluated under the illumination of a fluorescent lamp. “A” indicates that the anti-reflective property between the rubbing site and the non-rubbed site cannot be distinguished, and “C” indicates that the anti-reflective property between the rubbing site and the non-rubbed site can be distinguished.
1-2.クラック
 10cm角の低屈折部材を使用し、低屈折部材の背面に黒色板を配置し、蛍光灯の照明下で、低屈折率層にクラックが生じているか否かを目視で評価した。クラックが確認できないものを「A」、微細なクラックが確認できたものを「C」とした。
1-2. Crack A 10 cm square low-refractive member was used, a black plate was placed on the back of the low-refractive member, and whether or not a crack occurred in the low-refractive index layer was visually evaluated under illumination of a fluorescent lamp. “A” indicates that no crack was confirmed, and “C” indicates that a fine crack was confirmed.
1-3.屈折率
 10cm角の低屈折部材を用い、顕微分光膜厚計(大塚電子社製、商品名「OPTM-A1」)により、低屈折率層の屈折率を算出した。屈折率1.30以下のものは反射防止性が良好であり、合格レベルである。
1-3. The refractive index of the low-refractive index layer was calculated using a low-refractive-index member having a refractive index of 10 cm square, using a microspectrophotometer (trade name “OPTM-A1” manufactured by Otsuka Electronics Co., Ltd.). Those having a refractive index of 1.30 or less have good antireflection properties and are acceptable.
1-4.低屈折率層の厚み
 10cm角の低屈折部材を使用し、顕微分光膜厚計(大塚電子社製、商品名「OPTM-A1」)により、低屈折率層の厚み(μm)を算出した。欠陥のないことを確認した上で10箇所の厚みを測定し、10箇所の平均値を各実施例及び比較例の低屈折率層の厚みとした。
1-4. Low Refractive Index Layer Thickness Using a 10 cm square low refractive member, the thickness (μm) of the low refractive index layer was calculated by a microspectrophotometer (Otsuka Electronics Co., Ltd., trade name “OPTM-A1”). After confirming that there was no defect, the thickness at 10 locations was measured, and the average value at 10 locations was taken as the thickness of the low refractive index layer of each Example and Comparative Example.
1-5.接着性
 10cm角の低屈折部材を使用し、基材(ガラス)と低屈折率層との接着力を、JIS K5600-5-6:1999のクロスカット法による付着性試験により評価した。接着力の分類番号を表1に示す。なお、分類番号は下記の0~5の6種類である。
<分類番号>
0:カットの縁が完全に滑らかで、どの格子の目にもはがれがない。
1:カットの交差点における塗膜の小さなはがれ。クロスカット部分で影響を受けるのは、明確に5%を上回ることはない。
2:塗膜がカットの縁に沿って、及び/又は交差点においてはがれている。クロスカット部分で影響を受けるのは明確に5%を超えるが15%を上回ることはない。
3:塗膜がカットの縁に沿って、部分的又は全面的に大はがれを生じており、及び/又は目のいろいろな部分が、部分的又は全面的にはがれている。クロスカット部分で影響を受けるのは、明確に15%を超えるが35%を上回ることはない。
4:塗膜がカットの縁に沿って、部分的又は全面的に大はがれを生じており、及び/又は数か所の目が部分的又は全面的にはがれている。クロスカット部分で影響を受けるのは、明確に65%を上回ることはない。
5:分類4でも分類できないはがれ程度のいずれか。
1-5. Adhesiveness Using a 10 cm square low refractive member, the adhesive strength between the substrate (glass) and the low refractive index layer was evaluated by an adhesion test by the cross-cut method of JIS K5600-5-6: 1999. The adhesive force classification numbers are shown in Table 1. There are six types of classification numbers 0 to 5 below.
<Classification number>
0: The edge of the cut is completely smooth and there is no peeling to the eyes of any lattice.
1: Small peeling of the coating film at the intersection of cuts. It is clearly not more than 5% that the crosscut is affected.
2: The coating film is peeled along the edge of the cut and / or at the intersection. The cross-cut part is clearly affected by more than 5% but not more than 15%.
3: The coating film is partially or completely peeled along the edge of the cut, and / or various parts of the eye are partially or completely peeled off. The cross-cut portion is clearly affected by more than 15% but not more than 35%.
4: The coating film is partially or completely peeled along the edge of the cut, and / or some eyes are partially or completely peeled off. The cross-cut portion is clearly not affected by more than 65%.
5: Any of the degree of peeling that cannot be classified even with classification 4.
1-6.ヘイズ
 JIS K7136:2000に準拠して、低屈折部材のヘイズ(%)を測定した。光入射面は基材側とした。10cm角の低屈折部材を使用し、サンプルの傷や欠陥のない箇所からランダムで10箇所選び、10箇所の算術平均値を、各実施例及び比較例の低屈折部材のヘイズ(%)とした。
1-6. Haze The haze (%) of the low refractive member was measured according to JIS K7136: 2000. The light incident surface was the substrate side. Using 10 cm square low-refractive members, 10 locations were selected randomly from locations without scratches or defects in the sample, and the arithmetic average value of 10 locations was defined as the haze (%) of the low-refractive members of each Example and Comparative Example. .
1-7.全光線透過率
 JIS K7361-1:1997に準拠して、低屈折部材の全光線透過率(%)を測定した。光入射面は基材側とした。10cm角の低屈折部材を使用し、サンプルの傷や欠陥のない箇所からランダムで10箇所選び、10箇所の算術平均値を、各実施例及び比較例の低屈折部材の全光線透過率(%)とした。
1-7. Total light transmittance The total light transmittance (%) of the low refractive member was measured according to JIS K7361-1: 1997. The light incident surface was the substrate side. A 10 cm square low refractive member is used, and 10 points are selected at random from places where there are no scratches or defects on the sample, and the arithmetic average value of 10 points is calculated as the total light transmittance (%) of the low refractive member of each example and comparative example. ).
1-8.拡散光線反射率RSCE
 巴川製作所製の商品名「くっきりミエール」の離型フィルムを剥がし、露出した黒色粘着剤層を実施例及び比較例の10cm角の低屈折部材のガラス基材側の面に貼り合わせ、低屈折部材のガラス基材側の面に、黒色粘着剤層(全光線透過率1%以下)及びプラスチックフィルムが積層されたサンプルを作製した。
 積分球分光光度計(コニカミノルタ株式会社製、商品名:CM-2600d)を用い、該サンプルの低屈折率層側の面から、該サンプルの拡散光線反射率(RSCE)(%)を測定した。サンプルの傷や欠陥のない箇所からランダムで10箇所選び、10箇所の算術平均値を、各実施例及び比較例の低屈折部材の拡散光線反射率RSCE(%)とした。
 なお、積分球分光光度計の光源はD65、受光器の位置はサンプルの法線に対して+8度であり、ライトトラップの位置はサンプルの法線に対して-8度であり、視野角は2度とした。
1-8. Diffuse light reflectance R SCE
The release film of the trade name “Kikkiri Mieru” manufactured by Yodogawa Seisakusho is peeled off, and the exposed black pressure-sensitive adhesive layer is bonded to the surface of the glass substrate side of the 10 cm square low-refractive member of Examples and Comparative Examples. A sample in which a black pressure-sensitive adhesive layer (total light transmittance of 1% or less) and a plastic film were laminated on the surface of the glass substrate was prepared.
Integrating sphere spectrophotometer (Konica Minolta Co., Ltd., trade name: CM-2600d) used, measured from the surface of the low refractive index layer side of the sample, diffuse light reflectance of the sample (R SCE) (%) did. Ten locations were selected at random from locations having no scratches or defects on the sample, and the arithmetic average value at the 10 locations was defined as the diffused light reflectance R SCE (%) of the low refractive member of each Example and Comparative Example.
The light source of the integrating sphere spectrophotometer is D65, the position of the light receiver is +8 degrees with respect to the normal line of the sample, the position of the light trap is −8 degrees with respect to the normal line of the sample, and the viewing angle is Twice.
1-9.ゼータ電位
 ゼータ電位は、Colloidal Dynamics,LLC(Ponte Vedra Beach、フロリダ州、米国)のZetaProbe Analyzer(商標)を用いて下記の条件で測定した。得られたゼータ電位の絶対値(mV)を表1に示す。なお、実施例及びの中空粒子の密度(見かけ密度)はルシャテリエ比重瓶法で測定した。
<校正、測定用試料の調製>
 先ずColloidal Dynamicsから供給されたKSiW校正液(0.5mS/cm)を用いて校正した。次いで、30gの試料(実施例及び比較例の低屈折率層形成用コーティング組成物)を、攪拌棒を備えた30mLのテフロンカップ中に容れ、250rpmの攪拌速度で十分に攪拌したものを、ゼータ電位の測定用試料とした。
<測定及び解析条件>
 ゼータ電位の測定は、試料温度(約20±2℃)で、浸漬プローブを用いて、一点モードで、10点の試験を実施した。データは、Colloidal Dynamicsから提供されたZP version 2.14c Polar(商標)ソフトウエアを用いて解析を行った。
1-9. Zeta potential The zeta potential was measured using a ZetaProbe Analyzer ™ from Colloidal Dynamics, LLC (Ponte Vedra Beach, Florida, USA) under the following conditions. Table 1 shows the absolute value (mV) of the obtained zeta potential. In addition, the density (apparent density) of the hollow particles in Examples and Examples was measured by the Le Chatelier specific gravity bottle method.
<Preparation of calibration and measurement samples>
First, calibration was performed using KSiW calibration solution (0.5 mS / cm) supplied from Colloidal Dynamics. Next, 30 g of a sample (the coating composition for forming a low refractive index layer of Examples and Comparative Examples) was placed in a 30 mL Teflon cup equipped with a stirring rod and sufficiently stirred at a stirring speed of 250 rpm. A sample for measuring potential was used.
<Measurement and analysis conditions>
The zeta potential was measured at a sample temperature (about 20 ± 2 ° C.) using a dipping probe and a 10-point test in a one-point mode. The data was analyzed using ZP version 2.14c Polar ™ software provided by Colloidal Dynamics.
2.低屈折部材の作製
[実施例1]
 10cm角、厚み0.7mmのガラス基材(コーニング社製の無アルカリガラス、商品名「EAGLE XG」)上に、下記処方の低屈折率層形成用コーティング組成物をスピンコーター(MS-B150(ミカサ(株)製)で塗布し、100℃で120秒間プリベーク(乾燥)し、塗布膜を得た。この塗布膜をオーブン中で200℃で20分間加熱し、シリコーン系化合物を含む組成物を硬化させ、厚み1.0μmの低屈折率層を形成し、実施例1の低屈折部材を得た。なお、上記ガラス基材を、JISK7136:2000に準拠して、測定実施したところ、ヘイズ0.1%であった。また、拡散光線反射率(RSCE)は、0.04%であった。
<低屈折率層形成用コーティング組成物>
・中空粒子:20質量部
(メタクリロイル基を有するシランカップリング剤で表面処理してなる平均粒子径75nmの中空シリカ粒子)
・バインダー樹脂成分:10質量部
(置換基としてエポキシ基を有する置換炭化水素基、及びアルコキシ基がケイ素原子に直結してなるオリゴマー型シリコーン系化合物、エポキシ当量:350g/mol、アルコキシ基量:42質量%、信越化学工業社製の品番「X-41-1059A」、有効成分100%)
・界面活性剤:0.21質量部
(DIC社製の商品名「F-554」、有効成分100%)
・プロピレングリコールモノメチルエーテルアセテート:120部
2. Production of low refractive member [Example 1]
On a 10 cm square, 0.7 mm thick glass substrate (non-alkali glass manufactured by Corning, trade name “EAGLE XG”), a coating composition for forming a low refractive index layer having the following formulation is applied by a spin coater (MS-B150 ( Micasa Co., Ltd.) and pre-baked (dried) for 120 seconds at 100 ° C. to obtain a coated film, which was heated in an oven at 200 ° C. for 20 minutes to prepare a composition containing a silicone compound. Curing was performed to form a low-refractive index layer having a thickness of 1.0 μm to obtain a low-refractive member of Example 1. When the glass substrate was measured according to JIS K7136: 2000, a haze of 0 was obtained. The diffuse light reflectivity ( RSCE ) was 0.04%.
<Coating composition for forming low refractive index layer>
Hollow particles: 20 parts by mass (hollow silica particles having an average particle diameter of 75 nm formed by surface treatment with a silane coupling agent having a methacryloyl group)
Binder resin component: 10 parts by mass (a substituted hydrocarbon group having an epoxy group as a substituent, and an oligomer type silicone compound in which an alkoxy group is directly bonded to a silicon atom, epoxy equivalent: 350 g / mol, alkoxy group amount: 42 (% By mass, product number “X-41-1059A” manufactured by Shin-Etsu Chemical Co., Ltd., active ingredient 100%)
Surfactant: 0.21 part by mass (trade name “F-554” manufactured by DIC, 100% active ingredient)
Propylene glycol monomethyl ether acetate: 120 parts
[実施例2]
 低屈折率層の厚みを3.0μmに変更した以外は、実施例1と同様にして、実施例2の低屈折部材を得た。
[Example 2]
A low refractive member of Example 2 was obtained in the same manner as Example 1 except that the thickness of the low refractive index layer was changed to 3.0 μm.
[実施例3]
 低屈折率層形成用コーティング組成物の中空粒子の含有量を10質量部に変更した以外は、実施例1と同様にして、実施例3の低屈折部材を得た。
[Example 3]
A low refractive member of Example 3 was obtained in the same manner as in Example 1 except that the content of the hollow particles in the coating composition for forming a low refractive index layer was changed to 10 parts by mass.
[実施例4]
 低屈折率層形成用コーティング組成物の中空粒子を、メタクリロイル基を有するシランカップリング剤で表面処理してなる平均粒子径60nmの中空シリカ粒子に変更した以外は、実施例1と同様にして、実施例4の低屈折部材を得た。
[Example 4]
Except for changing the hollow particles of the coating composition for forming a low refractive index layer to hollow silica particles having an average particle diameter of 60 nm obtained by surface treatment with a silane coupling agent having a methacryloyl group, in the same manner as in Example 1, A low refractive member of Example 4 was obtained.
[実施例5]
 低屈折率層形成用コーティング組成物の中空粒子を、メタクリロイル基を有するシランカップリング剤で表面処理してなる平均粒子径100nmの中空シリカ粒子に変更した以外は、実施例1と同様にして、実施例5の低屈折部材を得た。
[Example 5]
Except for changing the hollow particles of the coating composition for forming a low refractive index layer to hollow silica particles having an average particle diameter of 100 nm obtained by surface treatment with a silane coupling agent having a methacryloyl group, in the same manner as in Example 1, A low refractive member of Example 5 was obtained.
[比較例1]
 低屈折率層の厚みを0.2μmに変更した以外は、実施例1と同様にして、比較例1の低屈折部材を得た。
[Comparative Example 1]
A low refractive index member of Comparative Example 1 was obtained in the same manner as in Example 1 except that the thickness of the low refractive index layer was changed to 0.2 μm.
[比較例2]
 低屈折率層の厚みを5.5μmに変更した以外は、実施例1と同様にして、比較例2の低屈折部材を得た。
[Comparative Example 2]
A low refractive member of Comparative Example 2 was obtained in the same manner as in Example 1 except that the thickness of the low refractive index layer was changed to 5.5 μm.
[比較例3]
 低屈折率層形成用コーティング組成物の中空粒子を、メタクリロイル基を有するシランカップリング剤で表面処理してなる平均粒子径50nmの中空シリカ粒子に変更した以外は、実施例1と同様にして、比較例3の低屈折部材を得た。
[Comparative Example 3]
Except for changing the hollow particles of the coating composition for forming a low refractive index layer to hollow silica particles having an average particle diameter of 50 nm obtained by surface treatment with a silane coupling agent having a methacryloyl group, in the same manner as in Example 1, The low refractive member of Comparative Example 3 was obtained.
[比較例4]
 低屈折率層形成用コーティング組成物の中空粒子を、メタクリロイル基を有するシランカップリング剤で表面処理してなる平均粒子径150nmの中空シリカ粒子に変更した以外は、実施例1と同様にして、比較例4の低屈折部材を得た。
[Comparative Example 4]
Except for changing the hollow particles of the coating composition for forming a low refractive index layer to hollow silica particles having an average particle diameter of 150 nm obtained by surface treatment with a silane coupling agent having a methacryloyl group, in the same manner as in Example 1, The low refractive member of Comparative Example 4 was obtained.
[比較例5]
 低屈折率層形成用コーティング組成物のバインダー樹脂成分を、非シリコーン系のエポキシ樹脂(ダイセル社製の品番「EHPE3150」、固形分100%)に変更した以外は、実施例1と同様にして、比較例5の低屈折部材を得た。
[Comparative Example 5]
Except for changing the binder resin component of the coating composition for forming a low refractive index layer to a non-silicone epoxy resin (product number “EHPE3150” manufactured by Daicel Corporation, solid content: 100%), the same as in Example 1, A low refractive member of Comparative Example 5 was obtained.
[比較例6]
 低屈折率層形成用コーティング組成物の中空粒子を、メタクリロイル基を有するシランカップリング剤で表面処理してなる平均粒子径50nmの中空シリカ粒子に変更し、さらに、低屈折率層形成用コーティング組成物の中空粒子の含有量を40質量部に変更した以外は、実施例1と同様にして、比較例6の低屈折部材を得た。
[Comparative Example 6]
The hollow particles of the coating composition for forming a low refractive index layer are changed to hollow silica particles having an average particle diameter of 50 nm obtained by surface treatment with a silane coupling agent having a methacryloyl group, and further the coating composition for forming a low refractive index layer A low refractive member of Comparative Example 6 was obtained in the same manner as in Example 1 except that the content of the hollow particles of the product was changed to 40 parts by mass.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1の結果から明らかなように、実施例1~5の低屈折部材は、低屈折率層の膜厚が厚いにも関わらず、ヘイズ及びRSCEが小さく、白化が抑制され視認性が良好であることが確認できる。また、実施例1~5の低屈折部材は、低屈折率層の厚みが厚すぎないことからクラックを抑制し得るものであることが確認できる。また、実施例1~5の低屈折部材は、低屈折率層の屈折率が1.30以下であり、表面反射が抑制され、反射防止性を有するものであることが確認できる。さらに、実施例1~5の低屈折部材は、擦過箇所と非擦過箇所との反射防止性が区別できず、擦過後の反射防止性能に優れることが確認できる。 As apparent from the results in Table 1, the low refractive member of Examples 1-5, despite the thickness of the low refractive index layer is thick, haze and R SCE is small, whitening is suppressed good visibility It can be confirmed that In addition, it can be confirmed that the low refractive members of Examples 1 to 5 can suppress cracks because the low refractive index layer is not too thick. In addition, it can be confirmed that the low refractive members of Examples 1 to 5 have a refractive index of the low refractive index layer of 1.30 or less, suppress surface reflection, and have antireflection properties. Furthermore, it can be confirmed that the low refractive members of Examples 1 to 5 cannot be distinguished in the antireflection property between the scratched portion and the non-rubbed portion, and are excellent in the antireflection performance after scratching.
3.転写シートの作製
[実施例6]
 離型シートとして、A4サイズ、厚さ50μmのポリイミドフィルムを準備した。該ポリイミドフィルムの一方の面に、実施例1と同様にして厚み1.0μmの低屈折率層を形成した。
 次いで、低屈折率層上に、下記のハードコート用塗布液を乾燥後の厚みが5μmとなるように、塗布、乾燥、紫外線照射(照射量50mJ/cm)して、ハードコート層を形成した。次いで、ハードコート層上に、下記のアンカーコート層用塗布液を乾燥後の厚みが2μmとなるように、塗布、乾燥して、アンカーコート層を形成した。次いで、アンカーコート層上に、下記の接着剤層用塗布液を乾燥後の厚みが2μmとなるように、塗布、乾燥して、感熱性を有する接着剤層を形成し、実施例6の転写シートを得た。
3. Preparation of transfer sheet [Example 6]
As a release sheet, an A4 size polyimide film having a thickness of 50 μm was prepared. A low refractive index layer having a thickness of 1.0 μm was formed on one surface of the polyimide film in the same manner as in Example 1.
Next, a hard coat layer is formed on the low refractive index layer by coating, drying, and irradiating with ultraviolet rays (irradiation amount 50 mJ / cm 2 ) so that the thickness after drying the following hard coat coating solution becomes 5 μm. did. Next, an anchor coat layer was formed on the hard coat layer by applying and drying the following coating solution for anchor coat layer so that the thickness after drying was 2 μm. Next, on the anchor coat layer, the following adhesive layer coating solution was applied and dried so that the thickness after drying was 2 μm to form a heat-sensitive adhesive layer. Transfer of Example 6 A sheet was obtained.
<ハードコート層用塗布液>
・紫外線硬化型アクリルアクリレート、シリカ粒子及び光重合開始剤を含有する組成物(DNPファインケミカル社製、商品名:KYKコート剤(82L)):100質量部
・ヘキサンメチレンジイソシアネート(日本ポリウレタン工業社製、商品名:コロネート2203):2質量部
・希釈溶剤(メチルエチルケトン、メチルイソブチルケトン):適量
<Coating liquid for hard coat layer>
Composition containing ultraviolet curable acrylic acrylate, silica particles and photopolymerization initiator (DNP Fine Chemical Co., Ltd., trade name: KYK coating agent (82L)): 100 parts by mass. Hexanemethylene diisocyanate (manufactured by Nippon Polyurethane Industry Co., Ltd., Product name: Coronate 2203): 2 parts by mass / diluent solvent (methyl ethyl ketone, methyl isobutyl ketone): appropriate amount
<アンカーコート層用塗布液>
・アクリルポリオール(大成ファインケミカル(株)製、商品名:アクリット6RH084T):100質量部
・ヘキサンメチレンジイソシアネート(日本ポリウレタン工業社製、商品名:コロネート2203):10質量部
・希釈溶剤(メチルエチルケトン、トルエン):適量
<Coating solution for anchor coat layer>
・ Acrylic polyol (manufactured by Taisei Fine Chemical Co., Ltd., trade name: ACRYT 6RH084T): 100 parts by mass : Appropriate amount
<接着剤層用塗布液>
・塩化ビニル酢酸ビニル共重合体(商品名「ST-P Aワニス」、DNPファインケミカル社製、固形分30%):100質量部
・希釈溶剤(メチルエチルケトン、トルエン):適量
<Coating liquid for adhesive layer>
・ Vinyl chloride vinyl acetate copolymer (trade name “ST-P A Varnish”, manufactured by DNP Fine Chemical Co., Ltd., 30% solids): 100 parts by mass ・ Diluting solvent (methyl ethyl ketone, toluene): appropriate amount
4.被着体への樹脂層の転写
 被着体として、10cm角、厚み2.0mmの透明アクリル板(クラレ社製、商品名「パラグラスP 001 クリア」)を準備した。
 被着体上に、感熱性を有する接着剤層側が被着体側を向くようにして、実施例6の転写シートを、15cm角程度にカットして、前記透明アクリル板の全面が覆われるように配置し、転写シートのロール転写開始側の片側1片をテープで固定した後、ロール式ホットスタンプ機(ナビタス社製、商品名「RH-300」)を用いて、ロール温度220~240℃、ロール速度20mm/sの条件で被着体と転写層とを密着させた。次いで、離型シート(ポリイミドフィルム)を剥離し、被着体上に転写層を形成した。
 次いで、紫外線照射(照射量800mJ/cm)して、ハードコート層の硬化を促進させ、低屈折部材を得た。
4). Transfer of resin layer to adherend As a adherend, a 10 cm square, 2.0 mm thick transparent acrylic plate (manufactured by Kuraray Co., Ltd., trade name “Paragrass P001 Clear”) was prepared.
The transfer sheet of Example 6 is cut to about 15 cm square so that the heat-sensitive adhesive layer side faces the adherend side on the adherend so that the entire surface of the transparent acrylic plate is covered. After placing and fixing one piece on the roll transfer start side of the transfer sheet with tape, using a roll-type hot stamping machine (trade name “RH-300” manufactured by Navitas), the roll temperature is 220 to 240 ° C., The adherend and the transfer layer were brought into close contact with each other under a roll speed of 20 mm / s. Next, the release sheet (polyimide film) was peeled off to form a transfer layer on the adherend.
Subsequently, ultraviolet rays were irradiated (irradiation amount 800 mJ / cm 2 ) to accelerate the curing of the hard coat layer to obtain a low refractive member.
 実施例6の転写シートを用いて得られた低屈折部材は、低屈折率層の膜厚が厚いにも関わらず、白化が抑制され視認性が良好なものであった。また、実施例6の転写シートを用いて得られた低屈折部材は、低屈折率層の厚みが厚すぎないことからクラックを抑制し得るものであった。また、実施例6の転写シートを用いて得られた低屈折部材は、表面反射が抑制され、十分な反射防止性を有する物であった。さらに、実施例6の転写シートを用いて得られた低屈折部材は、被着体(透明アクリル板)と低屈折率層との間に柔らかい接着剤層を有するにも関わらず、擦過箇所と非擦過箇所との反射防止性が区別できない程度に耐擦傷性に優れるものであった。 The low refractive member obtained using the transfer sheet of Example 6 was suppressed in whiteness and had good visibility despite the large thickness of the low refractive index layer. Moreover, the low refractive member obtained using the transfer sheet of Example 6 was able to suppress cracks because the low refractive index layer was not too thick. In addition, the low refractive member obtained using the transfer sheet of Example 6 was a material having a sufficient antireflection property because surface reflection was suppressed. Further, the low refractive member obtained by using the transfer sheet of Example 6 had a soft adhesive layer between the adherend (transparent acrylic plate) and the low refractive index layer. It was excellent in scratch resistance to such an extent that the antireflection property from the non-rubbed portion could not be distinguished.

Claims (10)

  1.  基材上に低屈折率層を有する低屈折部材であって、前記低屈折率層は、厚みが0.5~5.0μmであり、かつ、中空粒子及びバインダー樹脂を含み、前記中空粒子は平均粒子径が60~140nmであり、前記バインダー樹脂として、シリコーン系化合物を含む組成物の硬化物を含む、低屈折部材。 A low refractive index member having a low refractive index layer on a substrate, wherein the low refractive index layer has a thickness of 0.5 to 5.0 μm, and includes hollow particles and a binder resin. A low refractive member having an average particle diameter of 60 to 140 nm and containing a cured product of a composition containing a silicone compound as the binder resin.
  2.  前記バインダー樹脂100質量部に対して前記中空粒子を100~300質量部含む、請求項1に記載の低屈折部材。 The low refractive member according to claim 1, comprising 100 to 300 parts by mass of the hollow particles with respect to 100 parts by mass of the binder resin.
  3.  前記シリコーン系化合物が、置換基として反応性官能基を有する置換炭化水素基がケイ素原子に直結してなるものである、請求項1又は2に記載の低屈折部材。 The low-refractive member according to claim 1 or 2, wherein the silicone compound is formed by directly connecting a substituted hydrocarbon group having a reactive functional group as a substituent to a silicon atom.
  4.  前記低屈折部材の低屈折率層側から測定した拡散光線反射率RSCEが1.5%以下である、請求項1~3の何れか1項に記載の低屈折部材。 The diffusion light reflectance R SCE measured from the low refractive index layer side of the low refractive member is not more than 1.5%, the low refractive member according to any one of claims 1-3.
  5.  JISK7136:2000に準拠するヘイズが1.0%以下である、請求項1~4の何れか1項に記載の低屈折部材。 The low refractive member according to any one of claims 1 to 4, wherein the haze according to JISK7136: 2000 is 1.0% or less.
  6.  前記低屈折率層の屈折率が1.30以下である、請求項1~5の何れか1項に記載の低屈折部材。 The low refractive index member according to any one of claims 1 to 5, wherein a refractive index of the low refractive index layer is 1.30 or less.
  7.  基材上に転写層を有する転写シートであって、前記転写層の前記基材側は低屈折率層であり、前記低屈折率層は、厚みが0.5~5.0μmであり、かつ、中空粒子及びバインダー樹脂を含み、前記中空粒子は平均粒子径が60~140nmであり、前記バインダー樹脂として、シリコーン系化合物を含む組成物の硬化物を含む、転写シート。 A transfer sheet having a transfer layer on a substrate, wherein the substrate side of the transfer layer is a low refractive index layer, and the low refractive index layer has a thickness of 0.5 to 5.0 μm; and A transfer sheet comprising hollow particles and a binder resin, the hollow particles having an average particle diameter of 60 to 140 nm, and containing a cured product of a composition containing a silicone compound as the binder resin.
  8.  平均粒子径が60~140nmの中空粒子と、バインダー樹脂成分としてのシリコーン系化合物とを含む、低屈折率層形成用のコーティング組成物。 A coating composition for forming a low refractive index layer, comprising hollow particles having an average particle diameter of 60 to 140 nm and a silicone compound as a binder resin component.
  9.  前記コーティング組成物が溶剤を含み、前記溶剤の95質量%以上がプロピレングリコールモノメチルエーテルアセテートとした際の前記コーティング組成物中の前記中空粒子のゼータ電位の絶対値をA(mV)と定義した際に、下記式(i)を満たす、請求項8に記載のコーティング組成物。
     10.0mV≦A (i)
    When the absolute value of the zeta potential of the hollow particles in the coating composition when the coating composition contains a solvent and 95% by mass or more of the solvent is propylene glycol monomethyl ether acetate is defined as A (mV) The coating composition according to claim 8, which satisfies the following formula (i):
    10.0 mV ≦ A (i)
  10.  請求項1~6の何れか1項に記載の低屈折部材の低屈折率層上に蒸着膜を有してなる、積層体。 A laminate comprising a deposited film on the low refractive index layer of the low refractive member according to any one of claims 1 to 6.
PCT/JP2019/016982 2018-04-23 2019-04-22 Low refractive index member, transfer sheet, coating composition, and multilayer body using low refractive index member WO2019208483A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018082453A JP2021165765A (en) 2018-04-23 2018-04-23 Low refractive index member, transfer sheet, coating composition used for the same, and laminate using low refractive index member
JP2018-082453 2018-04-23

Publications (1)

Publication Number Publication Date
WO2019208483A1 true WO2019208483A1 (en) 2019-10-31

Family

ID=68294807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016982 WO2019208483A1 (en) 2018-04-23 2019-04-22 Low refractive index member, transfer sheet, coating composition, and multilayer body using low refractive index member

Country Status (2)

Country Link
JP (1) JP2021165765A (en)
WO (1) WO2019208483A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023285739A1 (en) * 2021-07-13 2023-01-19 Optitune Oy Thick film low refractive index polysiloxane claddings
CN116694142A (en) * 2023-08-07 2023-09-05 晋江厚德印花有限公司 Pigment with good coloring effect for printing transfer printing film and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005316101A (en) * 2004-04-28 2005-11-10 Nippon Zeon Co Ltd Protection film for polarizing plate, polarizing plate with reflection preventing function and optical product
JP2006184835A (en) * 2004-12-25 2006-07-13 Matsushita Electric Works Ltd Reflection-type or transflection-type liquid crystal display device
JP2009056674A (en) * 2007-08-31 2009-03-19 Kaneka Corp Transfer antireflection film
WO2010044402A1 (en) * 2008-10-17 2010-04-22 日立化成工業株式会社 Film having low refractive index and method for producing the same, anti-reflection film and method for producing the same, coating liquid set for film having low refractive index, substrate having microparticle-laminated thin film, and method for producing the same, and optical member
JP2016164674A (en) * 2011-12-28 2016-09-08 富士フイルム株式会社 Optical member set and solid-state imaging element using the same
WO2017043496A1 (en) * 2015-09-07 2017-03-16 日東電工株式会社 Low-refractive-index layer, laminated film, method for producing low-refractive-index layer, method for producing laminated film, optical member, and image display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005316101A (en) * 2004-04-28 2005-11-10 Nippon Zeon Co Ltd Protection film for polarizing plate, polarizing plate with reflection preventing function and optical product
JP2006184835A (en) * 2004-12-25 2006-07-13 Matsushita Electric Works Ltd Reflection-type or transflection-type liquid crystal display device
JP2009056674A (en) * 2007-08-31 2009-03-19 Kaneka Corp Transfer antireflection film
WO2010044402A1 (en) * 2008-10-17 2010-04-22 日立化成工業株式会社 Film having low refractive index and method for producing the same, anti-reflection film and method for producing the same, coating liquid set for film having low refractive index, substrate having microparticle-laminated thin film, and method for producing the same, and optical member
JP2016164674A (en) * 2011-12-28 2016-09-08 富士フイルム株式会社 Optical member set and solid-state imaging element using the same
WO2017043496A1 (en) * 2015-09-07 2017-03-16 日東電工株式会社 Low-refractive-index layer, laminated film, method for producing low-refractive-index layer, method for producing laminated film, optical member, and image display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023285739A1 (en) * 2021-07-13 2023-01-19 Optitune Oy Thick film low refractive index polysiloxane claddings
CN116694142A (en) * 2023-08-07 2023-09-05 晋江厚德印花有限公司 Pigment with good coloring effect for printing transfer printing film and preparation method thereof

Also Published As

Publication number Publication date
JP2021165765A (en) 2021-10-14

Similar Documents

Publication Publication Date Title
KR101970093B1 (en) Anti-glare hard coat laminated film
US20060204655A1 (en) Method for producing article having been subjected to low reflection treatment, solution for forming low reflection layer and article having been subjected to low reflection treatment
JP6986339B2 (en) Antireflection film forming composition, antireflection film and its forming method
JP5378771B2 (en) Base material with antireflection film and coating liquid for forming antireflection film
JP2016071369A (en) Anti-reflection film, display device, method of selecting anti-reflection film for display device
JP2020166236A (en) Antireflection member, and polarizer, image display device and antireflection article including antireflection member
US20220184937A1 (en) Transfer sheet and manufacturing method for same, method for manufacturing molded body using said transfer sheet and molded body, and front plate using said molded body and image display device
JP5914288B2 (en) LAMINATED FILM, OPTICAL LAMINATED FILM, AND DISPLAY DEVICE
JP2005248173A (en) Coating material, preparation of optical film, optical film, polarizing plate and image display device
JP5509571B2 (en) Substrate with fine particle laminated thin film, method for producing the same, and optical member using the same
WO2019208483A1 (en) Low refractive index member, transfer sheet, coating composition, and multilayer body using low refractive index member
WO2017022348A1 (en) Heat-ray reflecting material, window, and method for manufacturing heat-ray reflecting material
JP6307830B2 (en) Low refractive index film and manufacturing method thereof, antireflection film and manufacturing method thereof, and coating liquid set for low refractive index film
JP3953829B2 (en) Anti-reflection layer, anti-reflection material, and anti-reflection body with enhanced surface
WO2015129312A1 (en) Aqueous composition, hard coat film, laminated film, transparent conductive film, and touch panel
JP2022107833A (en) Releasable laminate, and transfer sheet, sheet for process and article using the same
JP2009160755A (en) Transparently coated base material
JP2008114413A (en) Particle laminated film laminate, method for producing the laminate, and optical member using the laminate
JP2022115605A (en) Particle containing antibacterial metal component and having cavity inside silicon-containing outer shell, and substrate with transparent film containing the particle
JP2014114432A (en) Composition for forming hard coat layer, and hard coat layer
JP6907436B2 (en) An antireflection film, a display device using the antireflection film, and a method for selecting an antireflection film.
TWI851218B (en) Transfer sheet and method for producing the same, method for producing a molded body using the transfer sheet and the molded body, and front panel and image display device using the molded body
JP2005234311A (en) Optical element and method of manufacturing optical element
US20230417967A1 (en) Optical filter, imaging apparatus, and optical filter manufacturing method
WO2021107000A1 (en) Multilayer body, method for producing multilayer body, film for lamination, and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP