JP6544299B2 - Method of selecting elements in boride particles and method of producing boride particles - Google Patents

Method of selecting elements in boride particles and method of producing boride particles Download PDF

Info

Publication number
JP6544299B2
JP6544299B2 JP2016116581A JP2016116581A JP6544299B2 JP 6544299 B2 JP6544299 B2 JP 6544299B2 JP 2016116581 A JP2016116581 A JP 2016116581A JP 2016116581 A JP2016116581 A JP 2016116581A JP 6544299 B2 JP6544299 B2 JP 6544299B2
Authority
JP
Japan
Prior art keywords
transmittance
boride
visible light
particles
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016116581A
Other languages
Japanese (ja)
Other versions
JP2017218362A (en
Inventor
里司 吉尾
里司 吉尾
槙 孝一郎
孝一郎 槙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016116581A priority Critical patent/JP6544299B2/en
Publication of JP2017218362A publication Critical patent/JP2017218362A/en
Application granted granted Critical
Publication of JP6544299B2 publication Critical patent/JP6544299B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Filters (AREA)

Description

本発明は、ホウ化物粒子中の元素の選択方法、ホウ化物粒子の製造方法に関する。   The present invention relates to a method of selecting elements in boride particles, and a method of producing boride particles.

近年、自動車や建物開口部等に適用される窓材に熱線遮蔽機能を付与することにより、当該窓材から入射する太陽エネルギーを遮断して冷房負荷や人の熱暑感を軽減させる方法が検討されている。   In recent years, by giving a heat ray shielding function to a window material applied to a car or a building opening, etc., a method is considered to reduce the cooling load and the heat sensation of a person by blocking the solar energy incident from the window material. It is done.

窓材に熱線遮蔽機能を付与する方法として、例えば、赤外線吸収能を有する粒子を含有する塗布液を窓材等に塗布し、該塗布液を硬化させる方法が検討されている。   As a method of imparting a heat ray shielding function to a window material, for example, a method of applying a coating solution containing particles having infrared absorptivity to a window material or the like and curing the coating solution is studied.

例えば、本発明の発明者らは特許文献1で、平均粒径が100nm以下の酸化ルテニウム微粒子、窒化チタン微粒子、窒化タンタル微粒子、珪化チタン微粒子、珪化モリブテン微粒子、ホウ化ランタン微粒子、酸化鉄微粒子、酸化水酸化鉄(III)微粒子のうち少なくとも1種を分散したことを特徴とする選択透過膜用塗布液を開示している。   For example, the inventors of the present invention disclosed in Patent Document 1 ruthenium oxide particles, titanium nitride particles, tantalum nitride particles, titanium silicide particles, silicon silicide molybdenum particles, lanthanum boride particles, iron oxide particles, which have an average particle diameter of 100 nm or less. Disclosed is a coating liquid for a selective permeation membrane, characterized in that at least one of iron (III) oxide hydroxide fine particles is dispersed.

特許文献1で選択透過膜用塗布液に添加する微粒子としても挙げた、六ホウ化ランタンをはじめとするホウ化物粒子は、導電体粒子の局在表面プラズモン共鳴により近赤外領域の光に高い吸光係数を発揮し、可視光透過性も併せもっている。   The boride particles such as lanthanum hexaboride mentioned as fine particles to be added to the coating solution for selective transmission film in Patent Document 1 are high for light in the near infrared region by localized surface plasmon resonance of conductor particles. It exhibits an absorption coefficient and also has visible light transparency.

ホウ化物の中でも六ホウ化ランタンは、上述のように近赤外領域の光に高い吸光係数を有するため、非常に高い遮熱特性を有し、少ない使用量で良好な遮熱特性が得られる。さらに、耐候性、製造工程の容易さ、原料入手が容易であるといった優れた特性を有する。このため、六ホウ化ランタンは、工業的にも広く利用されている。   Among the borides, since lanthanum hexaboride has a high light absorption coefficient to light in the near infrared region as described above, it has very high heat shielding properties, and good heat shielding properties can be obtained with a small amount used. . Furthermore, it has excellent properties such as weather resistance, ease of production process, and easy availability of raw materials. For this reason, lanthanum hexaboride is widely used industrially.

ところで、赤外線吸収能を有する粒子について、可視領域の光の透過性がより高く、熱線遮蔽特性のより高い粒子が求められるようになってきており、この傾向は今後もより顕著になるものと考えられる。   By the way, regarding particles having infrared absorptivity, particles having higher light transmittance in the visible region and higher heat ray shielding properties have been required, and this tendency is considered to become more remarkable in the future. Be

これは、可視領域の光の透過性がより高く、熱線遮蔽特性のより高い材料を、例えば電気自動車の自動車窓に適用することで、エアコン負荷を低減でき、走行距離を延ばすことができるからである。また、係る材料を建築物の窓材に適用した場合、エアコン負荷を低減し、夏季の電力消費量を抑制することができるからである。   This is because, by applying a material having a higher light transmittance in the visible region and a higher heat ray shielding property to, for example, a car window of an electric car, the load on the air conditioner can be reduced and the traveling distance can be extended. is there. Moreover, when the material which concerns is applied to the window material of a building, it is because an air-conditioner load can be reduced and the power consumption of summer can be suppressed.

特開平11−181336号公報Unexamined-Japanese-Patent No. 11-181336

しかしながら、六ホウ化ランタンは、近赤外領域の光にピークを有する吸光曲線の裾が、一部可視光の長波長側にかかるため、可視領域の光の一部を吸収する。そのため、可視領域の光の透過性を改善する観点から、六ホウ化物粒子に代わる高い熱線遮蔽機能を有するホウ化物粒子が求められている。   However, lanthanum hexaboride absorbs a part of light in the visible region because the bottom of the absorption curve having a peak in light in the near infrared region partially extends on the long wavelength side of visible light. Therefore, from the viewpoint of improving the light transmittance in the visible region, boride particles having a high heat ray shielding function to replace hexaboride particles are required.

なお、有機化合物に属し、紫外から可視光、近赤外の領域に吸収をもつ色素化合物である、フタロシアニン化合物、シアニン化合物、ポルフィリン化合物、ナフタロシアニン化合物、インドリン化合物、キナクリドン化合物、ペリレン化合物、アゾ化合物等は、構造中の官能基を変化させ、金属錯体であればその中心金属元素等の構造を変化させることで吸収波長を操作することが可能である。   Phthalocyanine compounds, cyanine compounds, porphyrin compounds, naphthalocyanine compounds, indoline compounds, quinacridone compounds, perylene compounds, azo compounds belonging to organic compounds and having absorption in the ultraviolet to visible light and near infrared regions. Etc. can change the functional group in the structure, and if it is a metal complex, it is possible to manipulate the absorption wavelength by changing the structure of the central metal element etc.

ところが、ホウ化物粒子は、その結晶構造と構成元素に依存する電子構造を有し、電子構造に起因する物質固有の誘電関数が特定の光波長に対してプラズモン共鳴を起こすことで吸収をもたらす。このため、ホウ化物粒子は上述の色素化合物の場合とは異なり、物質自体の化学構造を変化させて吸収特性(吸収波長、吸収強度)を変化させることが困難であった。   However, the boride particle has an electronic structure dependent on its crystal structure and constituent elements, and the dielectric function inherent to the substance resulting from the electronic structure causes absorption by causing plasmon resonance to a specific light wavelength. For this reason, it was difficult to change the absorption characteristics (absorption wavelength, absorption intensity) by changing the chemical structure of the substance itself unlike the case of the above-mentioned pigment compound, as for the boride particle.

従って、上述の色素化合物の場合と同様に、可視領域の光の透過性が高く、かつ六ホウ化物粒子よりも高い熱線遮蔽機能を有するホウ化物粒子を得ることは困難であった。   Therefore, as in the case of the dye compound described above, it has been difficult to obtain boride particles having high light transmittance in the visible region and having a heat ray shielding function higher than that of the hexaboride particles.

そこで本発明の発明者らは、ホウ化物粒子中の元素を選択することで、ホウ化物粒子の可視光透過率特性を維持しつつ、近赤外領域の光の吸収のピークを最大化させることを検討した。   Therefore, the inventors of the present invention maximize the peak of light absorption in the near infrared region while maintaining the visible light transmittance characteristics of the boride particles by selecting the element in the boride particles. It was investigated.

なお、ホウ化物粒子の可視光透過率特性を維持しつつ、近赤外領域の光の吸収のピークを最大化できる元素を選択する方法は知られておらず、実験の効率化等の観点から、ホウ化物粒子の元素の選択方法が求められていた。   In addition, the method of selecting the element which can maximize the absorption peak of light in the near infrared region while maintaining the visible light transmittance characteristic of the boride particles is not known, and from the viewpoint of the efficiency of the experiment, etc. There has been a need for a method of selecting the elements of boride particles.

そこで、上記従来技術が有する問題に鑑み、本発明の一側面では、ホウ化物粒子の可視光透過率特性を維持しつつ、近赤外領域の光の吸収ピークを最大化できるホウ化物粒子中の元素の選択方法を提供することを目的とする。   Therefore, in view of the problems of the prior art, according to one aspect of the present invention, it is possible to maximize the absorption peak of light in the near infrared region while maintaining the visible light transmittance characteristics of the boride particles. The purpose is to provide a method of selecting an element.

上記課題を解決するため本発明の一態様によれば、一般式XBで表されるホウ化物粒子中のXで示される元素の選択方法であって、第一原理計算によりホウ化物粒子XBのエネルギーバンド構造を算出するエネルギーバンド構造算出工程と、算出したエネルギーバンド構造により、ホウ化物粒子XBの誘電関数を算出する誘電関数算出工程と、算出した誘電関数から、散乱理論により、ホウ化物粒子XBの透過率曲線を算出する透過率曲線算出工程と、ホウ化物粒子XBの可視光の透過率と近赤外光の透過率を算出する透過率算出工程と、可視光の透過率が96%以上であり、近赤外光の透過率が波長1400〜1700nmの範囲であり、かつ前記近赤外光の透過率を前記可視光の透過率で除した百分率が80.0%以下の条件を満たす場合に、前記Xで示される元素を合格とする判定工程と、を有するホウ化物粒子中の元素の選択方法、を提供することができる。 According to one aspect of the present invention for solving the above problems, the general formula XB a element selection method indicated by X boride in particles represented by m, boride particles XB m by first-principles calculation The energy band structure calculation step of calculating the energy band structure of the metal, the dielectric function calculation step of calculating the dielectric function of the boride particle XB m by the calculated energy band structure, and the boride by the scattering theory from the calculated dielectric function A transmittance curve calculating step for calculating a transmittance curve of the particle XB m, a transmittance calculating step for calculating a visible light transmittance and a near infrared light transmittance of the boride particle XB m , and a visible light transmittance Is 96% or more, the near infrared light transmittance is in a wavelength range of 1400 to 1700 nm, and the percentage of the near infrared light transmittance divided by the visible light transmittance is 80.0% or less of If it meets the matter, a method of selecting an element of the boride in the particles having, a determination step to pass the element represented by the X, can be provided.

本発明の一態様によれば、ホウ化物粒子の可視光透過率特性を維持しつつ、近赤外領域の光の吸収ピークを最大化できるホウ化物粒子中の元素の選択方法を提供することができる。   According to one aspect of the present invention, there is provided a method of selecting an element in boride particles capable of maximizing the absorption peak of light in the near infrared region while maintaining the visible light transmittance characteristics of the boride particles. it can.

実施例および従来例の透過率曲線を示す図である。It is a figure which shows the transmittance | permeability curve of an Example and a prior art example.

以下、本発明を実施するための形態について図面を参照して説明するが、本発明は、下記の実施形態に制限されることはなく、本発明の範囲を逸脱することなく、下記の実施形態に種々の変形および置換を加えることができる。
[ホウ化物粒子の元素Xの選択方法]
本実施の形態ではまず、ホウ化物粒子の元素Xの選択方法の一例について説明する。本発明のホウ化物粒子XBの元素Xの選択方法は、エネルギーバンド構造算出工程、誘電関数算出工程、透過率曲線算出工程、透過率算出工程、判定工程を含む。なお、ホウ化物粒子はXBで表され、上記工程の間は任意に選択した特定の値を用いる(例えば、5.2≦m≦6.5とすることができる)。
Hereinafter, although the form for carrying out the present invention is explained with reference to drawings, the present invention is not limited to the following embodiment, and does not deviate from the scope of the present invention. Various modifications and substitutions may be made.
[Method of selecting element X of boride particles]
In the present embodiment, first, an example of a method for selecting the element X of boride particles will be described. The method of selecting the element X of the boride particle XB m of the present invention includes an energy band structure calculating step, a dielectric function calculating step, a transmittance curve calculating step, a transmittance calculating step, and a determining step. In addition, the boride particle is represented by XB m , and a specific value arbitrarily selected is used during the above process (for example, 5.2 ≦ m ≦ 6.5 can be made).

エネルギーバンド構造算出工程では、計算に供する元素Xを含む一般式XBで表されるホウ化物粒子のエネルギーバンド構造を第一原理計算を用いて算出できる。なお、この第一原理計算では、screened exchange法、hybrid functional法、およびGW法より選択される1種類以上の平面波基底第一原理計算を用いるのが好ましい。このような平面波基底第一原理計算によれば、実測値を十分再現する程度に高精度なバンド構造が得られるためである。 In the energy band structure calculating step, the energy band structure of the boride particle represented by the general formula XB m containing the element X to be provided for calculation can be calculated using the first principle calculation. In this first principle calculation, it is preferable to use one or more kinds of plane wave basis first principle calculations selected from the screened exchange method, the hybrid functional method, and the GW method. According to such plane wave basis first principle calculation, a band structure with high accuracy can be obtained to an extent that the actual measurement value is sufficiently reproduced.

誘電関数算出工程では、算出したエネルギーバンド構造により、上述のホウ化物粒子XBの誘電関数を算出することができる。ホウ化物粒子XBの誘電関数はローレンツ項とドルーデ項を含む誘電関数を算出することが好ましい。 In the dielectric function calculation step, the dielectric function of the boride particle XB m described above can be calculated from the calculated energy band structure. The dielectric function of the boride particle XB m is preferably calculated as the dielectric function including the Lorentz term and the Drude term.

なお、第一原理計算で算出されたエネルギーバンド構造から誘電関数を算出する方法は、Lihua xiao et al. Applied Physics Letters 101, 041913 (2012)に記載された方法を参考とすることができる。具体的には、得られたエネルギーバンド構造におけるフェルミエネルギーよりも低エネルギーの価電子帯からフェルミエネルギーよりも高エネルギーの伝導帯への直接遷移を以下の(A)式より求めることで、誘電関数nの虚部εを算出できる。 In addition, the method described in Lihua xiao et al. Applied Physics Letters 101, 041913 (2012) can be referred to for the method of calculating the dielectric function from the energy band structure calculated by the first principle calculation. Specifically, the dielectric function is obtained from the following (A) formula by determining the direct transition from the valence band lower than Fermi energy to the conduction band higher than Fermi energy in the obtained energy band structure: The imaginary part ε 2 of n can be calculated.

また、得られたエネルギーバンド構造におけるフェルミエネルギーよりも低エネルギーの価電子帯からフェルミエネルギーよりも高エネルギーの伝導帯への直接遷移を、以下の(B)式に示すようにKramers-Kronig変換することで誘電関数の実部εを算出できる。 Also, the Kramers-Kronig conversion is performed as shown in the following equation (B), for the direct transition from the valence band lower than Fermi energy to the conduction band higher than Fermi energy in the obtained energy band structure. Thus, the real part ε 1 of the dielectric function can be calculated.

透過率曲線算出工程では、算出した誘電関数から、透過率曲線を算出し、上述のホウ化物粒子XBの吸収波長を算出することができる。ホウ化物粒子XBの吸収波長は、ミー散乱及びレイリー散乱より選択される一種類以上の散乱理論により算出することができる。透過率曲線は、波長300nmから2100nmまでを算出した。 In the transmittance curve calculation step, the transmittance curve can be calculated from the calculated dielectric function, and the absorption wavelength of the boride particle XB m can be calculated. The absorption wavelength of the boride particle XB m can be calculated by one or more kinds of scattering theory selected from Mie scattering and Rayleigh scattering. The transmittance curve was calculated from wavelengths 300 nm to 2100 nm.

なお、誘電関数から吸収波長を算出する方法は、K. Adachi, M. Miratsu, T.Asahi, J. Mater. Res., 25, 510(2010)に記載された方法を参考とすることができる。   As a method of calculating the absorption wavelength from the dielectric function, the method described in K. Adachi, M. Miratsu, T. Asahi, J. Mater. Res., 25, 510 (2010) can be referred to .

透過率算出工程では、ホウ化物粒子XBの可視光の透過率と近赤外光の透過率を算出する。可視光の透過率(以下、可視光透過率という)は、波長が380nm〜800nmの範囲の平均値として算出することができる。また、近赤外光の透過率(以下近赤外光透過率という)は、波長が1400nm〜1700nmの範囲の任意の波長での透過率を近赤外光の透過率とすることができる。例えば、波長が1600nmにおける透過率を近赤外光の透過率とすることができる。近赤外光の透過率を波長が1400nm〜1700nmの範囲の任意の波長における透過率としたのは、ホウ化物粒子がこの範囲の波長に吸収ピークを示す傾向があるからである。 In the transmittance calculation step, the transmittance of visible light of the boride particle XB m and the transmittance of near infrared light are calculated. The transmittance of visible light (hereinafter referred to as visible light transmittance) can be calculated as an average value in the wavelength range of 380 nm to 800 nm. Moreover, the transmittance | permeability of near-infrared light (henceforth a near-infrared light transmittance) can make the transmittance | permeability in the arbitrary wavelength of a wavelength range of 1400 nm-1700 nm the transmittance | permeability of near-infrared light. For example, the transmittance at a wavelength of 1600 nm can be the transmittance of near infrared light. The reason why the transmittance of near-infrared light is the transmittance at an arbitrary wavelength in the range of 1400 nm to 1700 nm is that the boride particle tends to show an absorption peak in the wavelength in this range.

判定工程では、可視光の透過率が96%以上であり、かつ近赤外光透過率を可視光透過率で除した百分率が80.0%以下の元素Xを合格とする。合格とは、可視光透過性に優れ、熱線遮蔽特性にも優れた材料であることを意味している。すなわち、可視光透過率(96%以上)をA、近赤外光透過率(1400〜1700nmの範囲内)をBとしたときに、下記式(C)を満たすように、ホウ化物粒子XB中の元素Xを選択する。
80≧B÷A×100 ・・・(C)
可視光透過率(380nm〜800nmの平均値)を96%以上としたのは、可視光透過率が96%以上の範囲では、可視光透明性が良好と判断できるからである。なお、可視光透過率が96%未満では、室内に取り込める明るさが暗くなるとともに、透明ではなく、色合いが異なって見える傾向がある。
In the determination step, an element X having a visible light transmittance of 96% or more and a percentage obtained by dividing the near infrared light transmittance by the visible light transmittance is 80.0% or less is regarded as a pass. The term "pass" means that the material is excellent in visible light transmittance and also excellent in heat ray shielding properties. That is, when the visible light transmittance (96% or more) is A and the near infrared light transmittance (within the range of 1400 to 1700 nm) is B, the boride particle XB m is satisfied so as to satisfy the following formula (C) Select the element X in
80 ≧ B ÷ A × 100 (C)
The reason for setting the visible light transmittance (average value of 380 nm to 800 nm) to 96% or more is that when the visible light transmittance is in the range of 96% or more, it can be judged that the visible light transparency is good. When the visible light transmittance is less than 96%, the brightness that can be taken into the room is dark, and it is not transparent, and the color tends to look different.

さらに、近赤外光透過率を可視光透過率で除した百分率(B÷A×100)を80.0%以下の範囲としたのは、この範囲で熱線遮蔽機能と可視光透明性とが両立することができるからである。なお、該百分率(B÷A×100)が80.0%を超えると、可視光に対して近赤外光の透過率が高いため、熱線の遮蔽率が低下する傾向がある。   Further, the percentage (B ÷ A × 100) obtained by dividing the near infrared light transmittance by the visible light transmittance is set to 80.0% or less in the range of the heat ray shielding function and the visible light transparency in this range. It is because it can be compatible. When the percentage (B ÷ A × 100) exceeds 80.0%, the transmittance of near infrared light to visible light is high, so the heat shield ratio tends to decrease.

また、元素Xに複数の候補がある場合、上述のエネルギーバンド構造算出工程から透過率算出工程までの各工程は、元素Xを変えて繰り返し実施して、最適な元素Xを選択してもよい(繰り返し工程)。
[ホウ化物粒子の製造方法]
また、ホウ化物粒子の製造方法は、選択工程と合成工程とを有する。
In addition, when there are a plurality of candidates for the element X, each step from the energy band structure calculation step to the transmittance calculation step described above may be repeatedly performed with the element X changed to select the optimum element X (Repetitive process).
[Method of producing boride particles]
In addition, the method of producing boride particles has a selection step and a synthesis step.

選択工程では、元素Xを選択する。元素Xの選択方法には、上述したホウ化物粒子XB中の元素Xを選択する選択方法を用いることが好ましい。 In the selection step, the element X is selected. It is preferable to use the selection method which selects the element X in the boride particle | grains XB m mentioned above for the selection method of the element X.

合成工程では、選択工程で選択された元素Xを用いてホウ化物粒子XBを合成する。合成方法は、選択した元素に応じて各種の製造方法を採用できる。 In the synthesis step, the boride particles XB m are synthesized using the element X selected in the selection step. As the synthesis method, various production methods can be adopted according to the selected element.

以下、実施例を参照しながら本発明をより具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be more specifically described with reference to examples. However, the present invention is not limited to the following examples.

ホウ化物粒子の可視光透過率特性を維持しつつ、近赤外領域の光の吸収ピークを最大化できるホウ化物粒子XBの元素Xを以下の手順により計算し、選択した。 The element X of the boride particle XB m capable of maximizing the absorption peak of light in the near infrared region while maintaining the visible light transmittance characteristics of the boride particle was calculated and selected according to the following procedure.

以下の図1にホウ化物粒子XBの透過率曲線を示し、表1にホウ化物粒子XBの近赤外光の透過率÷可視光の透過率の値を示す。
<実施例1>
元素XとしてAcを選び、元素Xを含む一般式AcBで表されるホウ化物粒子について評価した。具体的には、まずホウ化物粒子のエネルギーバンド構造をscreened exchange法に基づく第一原理計算により算出した(エネルギーバンド構造算出工程)。第一原理計算は、平面波基底第一計算ソフトVASP(Vienna Ab initio Simulation Package)を用いた。
The transmittance curve of the boride particle XB m is shown in FIG. 1 below, and the value of the transmittance of the near infrared light of the boride particle XB m to the transmittance of the visible light is shown in Table 1.
Example 1
Ac was selected as the element X, and evaluation was performed on boride particles represented by the general formula AcB 6 containing the element X. Specifically, first, the energy band structure of boride particles was calculated by the first principle calculation based on the screened exchange method (energy band structure calculation step). The first principle calculation used plane wave basis first calculation software VASP (Vienna Ab initio Simulation Package).

算出したエネルギーバンド構造により、ホウ化物粒子AcBの誘電関数を算出した(誘電関数算出工程)。算出した誘電関数から、ミーの散乱理論に基づいて透過率曲線を算出した(透過率曲線算出工程)。算出した透過率曲線から、ホウ化物粒子の可視光の透過率を380nm〜800nmの平均値として算出し、近赤外光の透過率として波長が1600nmにおける近赤外光の透過率を算出した(透過率算出工程)。 The dielectric function of the boride particles AcB 6 was calculated from the calculated energy band structure (dielectric function calculation step). From the calculated dielectric function, a transmittance curve was calculated based on Mie's scattering theory (transmittance curve calculation step). From the calculated transmittance curve, the transmittance of visible light of the boride particle was calculated as an average value of 380 nm to 800 nm, and the transmittance of near infrared light at a wavelength of 1600 nm was calculated as the transmittance of near infrared light ( Transmittance calculation step).

そして、AcBは、可視光の透過率(380nm〜800nmの平均値)が96%以上であり、かつ可視光透過率(96%以上)をA、近赤外光透過率(波長が1600nmの位置)をBとしたときに、80≧B÷A×100の条件を満たしていることが確認でき、合格とした(判定工程)。
<実施例2>
元素XとしてScを選び、実施例1と同様の方法により、この元素Xを含むScBで表されるホウ化物粒子について評価した。判定工程では、ScBは、不合格であることが確認できた。
<従来例>
従来用いられていたLaBについて、比較のため透過率算出工程までを、実施例1と同様に実施した。
And, AcB 6 has a visible light transmittance (average value of 380 nm to 800 nm) of 96% or more, a visible light transmittance (96% or more) of A, and a near infrared light transmittance (wavelength of 1600 nm) When position B is B, it can be confirmed that the condition of 80 ≧ B 位置 A × 100 is satisfied, and it is regarded as a pass (determination step).
Example 2
Sc was selected as the element X, and in the same manner as in Example 1, the boride particles represented by ScB 6 containing this element X were evaluated. In the determination step, it was confirmed that ScB 6 was a failure.
<Conventional example>
With respect to LaB 6 used conventionally, up to the transmittance calculation step was carried out in the same manner as in Example 1 for comparison.

実施例1、実施例2、従来例の結果を表1に示す。   The results of Example 1, Example 2, and Conventional Example are shown in Table 1.

まず従来例(LaB)では、近赤外光の波長1600nmにおける透過率が80%であった。また、可視光透過率(380nm〜800nm平均値)は99%であり、可視光透明性が高いことを示す透過率曲線が得られた。しかし、近赤外光(波長1600nm)の透過率B÷可視光透過率Aの百分率(B÷A×100)は、80.8%となった。 First, in the conventional example (LaB 6 ), the transmittance of near infrared light at a wavelength of 1600 nm was 80%. Moreover, the visible light transmittance | permeability (380 nm-800 nm average value) is 99%, and the transmittance | permeability curve which shows that visible light transparency is high was obtained. However, the percentage of the transmittance B of the near infrared light (wavelength 1600 nm) to the transmittance of the visible light A (B ÷ A × 100) was 80.8%.

これに対して、実施例1(AcB)では、近赤外光の波長1600nmにおける透過率が75%であり、近赤外光の吸収特性はLaBよりも優れていることが判った。また、可視光透過率(380nm〜800nmの平均値)が99%であり、LaBと同等に高い可視光透明性を示す透過率曲線が得られた。さらに、B÷A×100は、75.8%とLaBよりも低い値となり、優れた熱遮蔽機能を有する熱線遮蔽材料として適していることが確認された。 On the other hand, in Example 1 (AcB 6 ), the transmittance of near-infrared light at a wavelength of 1600 nm was 75%, and it was found that the absorption characteristics of near-infrared light were superior to LaB 6 . Also, a 99% visible light transmittance (mean value of 380 nm to 800 nm), the transmittance curve shows a comparably high visible light transparency and LaB 6 was obtained. Further, B ÷ A × 100 was a low value of 75.8%, which is lower than that of LaB 6 , and it was confirmed that it was suitable as a heat ray shielding material having an excellent heat shielding function.

また、実施例2(ScB)では、近赤外光の波長1600nmでの透過率が94%であり、近赤外光の吸収が弱く、可視光透過率(380nm〜800nm平均値)が98%であり、LaBと同等に高い可視光透明性を示す透過率曲線が得られた。近赤外光の透過率÷可視光透過率は、95.9%であり、適していないことを確認でき、判定工程で不合格とした。 In Example 2 (ScB 6 ), the near-infrared light transmittance at a wavelength of 1600 nm is 94%, the near-infrared light absorption is weak, and the visible light transmittance (average value of 380 nm to 800 nm) is 98. %, And a transmittance curve showing visible light transparency as high as that of LaB 6 was obtained. The transmittance of near infrared light / visible light transmittance was 95.9%, which confirmed that it was not suitable.

以上より、実施例1の六ホウ化物微粒子(AcB)を用いることで、従来から用いられているLaBよりも可視光透明性に優れた熱線遮蔽材料が得られることが確認できた。 As described above, by using the hexaboride fine particles of Example 1 (AcB 6), excellent heat ray shielding material to visible light transparency than LaB 6 which has been conventionally used that is obtained was confirmed.

Claims (2)

一般式XBで表されるホウ化物粒子中のXで示される元素の選択方法であって、
第一原理計算によりホウ化物粒子XBのエネルギーバンド構造を算出するエネルギーバンド構造算出工程と、
算出したエネルギーバンド構造により、ホウ化物粒子XBの誘電関数を算出する誘電関数算出工程と、
算出した誘電関数から、散乱理論により、ホウ化物粒子XBの透過率曲線を算出する透過率曲線算出工程と、
ホウ化物粒子XBの可視光の透過率と近赤外光の透過率を算出する透過率算出工程と、
可視光の透過率が96%以上であり、かつ近赤外光の透過率を前記可視光の透過率で除した百分率が80.0%以下の条件を満たす場合に、前記Xで示される元素を合格とする判定工程と、を有するホウ化物粒子中の元素の選択方法。
A method of selecting an element represented by X in a boride particle represented by the general formula XB m ,
An energy band structure calculating step of calculating an energy band structure of the boride particle XB m by the first principle calculation;
A dielectric function calculating step of calculating a dielectric function of the boride particle XB m from the calculated energy band structure;
A transmittance curve calculation step of calculating a transmittance curve of the boride particle XB m from the calculated dielectric function according to the scattering theory;
A transmittance calculation step of calculating transmittance of visible light and transmittance of near infrared light of the boride particle XB m ;
The element represented by X when the visible light transmittance is 96% or more and the percentage of the near infrared light transmittance divided by the visible light transmittance satisfies 80.0% or less And a determination step of passing the step of selecting the element in the boride particle.
請求項1に記載の選択方法により、前記Xで示される元素を選択する選択工程と、
選択された前記元素を用いてホウ化物粒子を合成する合成工程と、
を有するホウ化物粒子の製造方法。
Selecting the element represented by X according to the selection method according to claim 1;
Synthesizing a boride particle using the selected element;
A method of producing boride particles having
JP2016116581A 2016-06-10 2016-06-10 Method of selecting elements in boride particles and method of producing boride particles Active JP6544299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016116581A JP6544299B2 (en) 2016-06-10 2016-06-10 Method of selecting elements in boride particles and method of producing boride particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016116581A JP6544299B2 (en) 2016-06-10 2016-06-10 Method of selecting elements in boride particles and method of producing boride particles

Publications (2)

Publication Number Publication Date
JP2017218362A JP2017218362A (en) 2017-12-14
JP6544299B2 true JP6544299B2 (en) 2019-07-17

Family

ID=60657258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016116581A Active JP6544299B2 (en) 2016-06-10 2016-06-10 Method of selecting elements in boride particles and method of producing boride particles

Country Status (1)

Country Link
JP (1) JP6544299B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4096277B2 (en) * 1998-09-22 2008-06-04 住友金属鉱山株式会社 Solar shading material, coating liquid for solar shading film, and solar shading film
JP4096278B2 (en) * 1998-12-10 2008-06-04 住友金属鉱山株式会社 Solar shading film coating solution and solar shading film using the same
WO2008086210A2 (en) * 2007-01-04 2008-07-17 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Zirconium and hafnium boride alloy templates on silicon for nitride integration applications
JP6218367B2 (en) * 2012-10-23 2017-10-25 住友金属鉱山株式会社 Light absorber
KR20160001514A (en) * 2014-06-27 2016-01-06 삼성전자주식회사 Electrically conductive thin films

Also Published As

Publication number Publication date
JP2017218362A (en) 2017-12-14

Similar Documents

Publication Publication Date Title
JP4626284B2 (en) Method for producing tungsten oxide fine particles for forming solar shield, and tungsten oxide fine particles for forming solar shield
CN104245618B (en) Hot line shielding film, hot line cover interlayer transparent matrix material and install hot line masking interlayer transparent matrix material as the automobile of window material and use the hot line to cover interlayer transparent matrix material as the fabrication of window material
TWI402218B (en) Transparent heat shielding material, fabrication method thereof and transparent heat shielding structure
JP5070796B2 (en) Solar radiation shielding film forming coating solution, solar radiation shielding film, and substrate having solar radiation shielding function
JP5050470B2 (en) Solar radiation shielding dispersion, solar radiation shielding body, and manufacturing method thereof
JP2008044609A (en) Sunshine screen for vehicle window and vehicle window
CN109312208A (en) Near-infrared shielding particles of material dispersion, near-infrared shielding body and near-infrared shielding sandwich structural body and their manufacturing method
TW201802033A (en) Near-infrared shielding material microparticles, production method thereof, and near-infrared shielding material microparticle dispersion
JP2008044609A5 (en)
JP6265003B2 (en) Heat ray shielding resin sheet material, automobiles and buildings
CN107083179B (en) A kind of solar insulation coating, solar insulation film and solar insulation glass
Cho et al. Full-color solar-heat-resistant films based on nanometer optical coatings
JP6828514B2 (en) Heat ray shielding fine particles, heat ray shielding fine particle dispersion liquid, coating liquid for heat ray shielding film, and heat ray shielding film using these, heat ray shielding resin film, heat ray shielding fine particle dispersion
Moot et al. Designing Plasmon‐Enhanced Thermochromic Films Using a Vanadium Dioxide Nanoparticle Elastomeric Composite
JP2005226008A (en) Dispersion for forming solar radiation-shielding body, and solar radiation-shielding body and method for producing the same
Yuan et al. Photoprotective and multifunctional polymer film with excellent near-infrared and UV shielding properties
JP6848685B2 (en) Manufacturing method of near-infrared shielding ultrafine particle dispersion, near-infrared shielding interlayer film, near-infrared shielding laminated structure, and near-infrared shielding ultrafine particle dispersion
TWI586860B (en) Infrared photothermal conversion fiber and infrared photothermal conversion fiber manufacturing method
Gao et al. Optical property and thermal performance of hollow glass microsphere/BiOBr1-xIx composites as a novel colored near infrared reflective pigment
JP6544299B2 (en) Method of selecting elements in boride particles and method of producing boride particles
JP4826126B2 (en) Solar radiation shielding film forming coating solution, solar radiation shielding film, and substrate having solar radiation shielding function
JP2010075775A (en) Wavelength selective barrier film and wavelength selective barrier
Qian et al. Near-infrared-activated VO2 based nanothermochromic smart windows by incorporation of photothermal W18O49 nanorods
Zazueta-Raynaud et al. Utilization of down-shifting photoluminescent ZnO quantum dots on solar cells
JP5257381B2 (en) Near-infrared shielding polyester resin composition, molded article thereof, and laminate thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190603

R150 Certificate of patent or registration of utility model

Ref document number: 6544299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150