JP2008044609A - Sunshine screen for vehicle window and vehicle window - Google Patents

Sunshine screen for vehicle window and vehicle window Download PDF

Info

Publication number
JP2008044609A
JP2008044609A JP2007217613A JP2007217613A JP2008044609A JP 2008044609 A JP2008044609 A JP 2008044609A JP 2007217613 A JP2007217613 A JP 2007217613A JP 2007217613 A JP2007217613 A JP 2007217613A JP 2008044609 A JP2008044609 A JP 2008044609A
Authority
JP
Japan
Prior art keywords
solar radiation
fine particles
visible light
radiation shielding
transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007217613A
Other languages
Japanese (ja)
Other versions
JP2008044609A5 (en
Inventor
Kenichi Fujita
賢一 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2007217613A priority Critical patent/JP2008044609A/en
Publication of JP2008044609A publication Critical patent/JP2008044609A/en
Publication of JP2008044609A5 publication Critical patent/JP2008044609A5/ja
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sunshine screen for vehicle windows reduced in visible light transmittance, adopting a hue of color such as dark blue, gray, bronze (reddish brown), and dark green which are highly requested, reduced in sunshine transmittance/visible light transmittance which is used for the standard of sunshine shielding properties, and manufacturable at low cost and a vehicle window. <P>SOLUTION: This sunshine screen for vehicle windows contains particles with a heat ray shielding function used for the windows of vehicles. The particles having the heat ray shielding function are formed by mixing at least one or more particles selected from lanthane hexaboride, titanium nitride, and tungstic oxide with at least one or more particles selected from antimony-doped tin oxide, tin-doped indium oxide, and composite tungstic oxide indicated by the general formula M<SB>Y</SB>WO<SB>Z</SB>(0.001≤Y≤1.0, 2.2≤Z≤3.0). The visible light transmittance of the sunshine screen is within the range of 5 to 40%. The sunshine transmittance and the visible light transmittance of the sunshine screen meet the requirements of the following Formula 1. The transmission color of the sunshine screen meets the requirements of the following Formula 12. Formula 1 is sunshine transmittance/visible light transmittance <1. Formula 2 is -14<a<SP>*</SP><2, and -8<b<SP>*</SP><2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車、電車、重機などのサンルーフ、パノラマルーフ、バックウィンドウ、リアサイドウィンドウ、フロントウィンドウ用として用いられる車窓用日射遮蔽体に関するものである。  The present invention relates to a solar shading for vehicle windows used for sunroofs, panoramic roofs, back windows, rear side windows, and front windows of automobiles, trains, heavy machinery and the like.

従来、自動車用などの安全ガラスとして、2枚の板ガラス間に日射遮蔽膜を挟み込んで合わせガラスを構成し、当該合わせガラスにより入射する太陽エネルギーを遮断して冷房負荷や人の熱暑感の軽減を目的としたものが提案されている。
例えば、特許文献1〜3には、透明樹脂フィルムに金属、金属酸化物を蒸着してなる熱線反射フィルムを、ガラス、アクリル板、ポリカーボネート板等の透明成形体に接着した熱線遮蔽板が提案されている。
しかし、この熱線反射フィルム自体が非常に高価でかつ接着工程等の煩雑な工程を要するため高コストとなる。また透明成形体と反射フィルムの接着性が良くないので、経時変化によりフィルムの剥離が生じるといった欠点を有している。
Conventionally, as a safety glass for automobiles, a laminated glass is constructed by sandwiching a solar radiation shielding film between two sheet glasses, and the solar energy incident on the laminated glass is cut off to reduce the cooling load and the heat of human heat. The one for the purpose is proposed.
For example, Patent Documents 1 to 3 propose a heat ray shielding plate in which a heat ray reflective film obtained by vapor-depositing a metal or metal oxide on a transparent resin film is bonded to a transparent molded body such as glass, an acrylic plate, or a polycarbonate plate. ing.
However, this heat ray reflective film itself is very expensive and requires a complicated process such as an adhesion process, resulting in high costs. Moreover, since the adhesiveness of a transparent molded object and a reflective film is not good, there exists a fault that peeling of a film arises by a time-dependent change.

また、透明成形体表面に、金属若しくは金属酸化物を直接蒸着してなる熱線遮蔽板も数多く提案されているが、この熱線遮蔽板の製造に際しては高真空で精度の高い雰囲気制御を要する装置が必要となるため、量産性が悪く、汎用性に乏しいという問題を有している。  In addition, many heat ray shielding plates have been proposed in which a metal or metal oxide is directly deposited on the surface of the transparent molded body. However, when manufacturing this heat ray shielding plate, there is an apparatus that requires high vacuum and high-precision atmosphere control. Since it is necessary, it has a problem that mass productivity is poor and versatility is poor.

その他にも、例えば特許文献4、5には、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリエチレン樹脂、ポリスチレン樹脂等の熱可塑性透明樹脂にフタロシアニン系化合物、アントラキノン系化合物に代表される有機近赤外線吸収剤を練り込んだ熱線遮蔽板およびフィルムが提案されている。
しかし、十分に熱線を遮蔽するためには多量の近赤外線吸収剤を配合しなければならず、多量に配合すると可視光線透過能が低下してしまうという課題が残る。また、有機化合物を使用しているため、直射日光に常時曝される建築物や自動車の窓材等への適用は耐侯性に難があり、必ずしも適当であるとはいえない。
In addition, for example, Patent Documents 4 and 5 disclose organic near infrared absorption represented by phthalocyanine compounds and anthraquinone compounds in thermoplastic transparent resins such as polyethylene terephthalate resin, polycarbonate resin, acrylic resin, polyethylene resin, and polystyrene resin. Heat ray shielding plates and films in which agents are kneaded have been proposed.
However, in order to sufficiently shield the heat rays, a large amount of near-infrared absorber must be blended, and if it is blended in a large amount, the problem that the visible light transmission ability is lowered remains. In addition, since organic compounds are used, application to buildings and automobile window materials that are constantly exposed to direct sunlight has difficulty in weather resistance and is not necessarily appropriate.

また、合わせガラスとして、特許文献6には、一対の板ガラス間に0.1μm以下の微細な粒径の酸化錫あるいは酸化インジウムから成る熱線遮蔽性金属酸化物を含有した軟質樹脂層を介在させた合わせガラスが開示されている。  In addition, as a laminated glass, in Patent Document 6, a soft resin layer containing a heat ray shielding metal oxide made of tin oxide or indium oxide having a fine particle size of 0.1 μm or less is interposed between a pair of glass plates. Laminated glass is disclosed.

また、特許文献7には、少なくとも2枚の板ガラスの間に、Sn、Ti、Si、Zn、Zr、Fe、Al、Cr、Co、Ce、In、Ni、Ag、Cu、Pt、Mn、Ta、W、V、Moの金属、この酸化物、窒化物、硫化物あるいはSbやFのドープ物またはこれらの複合物を分散した中間層を設けて構成した合わせガラスが開示されている。  In Patent Document 7, Sn, Ti, Si, Zn, Zr, Fe, Al, Cr, Co, Ce, In, Ni, Ag, Cu, Pt, Mn, and Ta are provided between at least two plate glasses. , W, V, Mo metal, oxides, nitrides, sulfides thereof, Sb and F dopes, or laminated glass in which an intermediate layer in which these composites are dispersed is disclosed.

また、特許文献8にはTiO、ZrO、SnO、Inから成る微粒子と有機ケイ素あるいは有機ケイ素化合物から成るガラス成分とを透明板状部材の間に介在させた自動車用窓ガラスが開示されている。Patent Document 8 discloses an automotive window glass in which fine particles made of TiO 2 , ZrO 2 , SnO 2 , and In 2 O 3 and a glass component made of organic silicon or an organic silicon compound are interposed between transparent plate members. Is disclosed.

さらに、特許文献9には、少なくとも2枚の透明ガラス板状体の間に3層から成る中間層を設け、中間層のうち第2層の中間層にはSn、Ti、Si、Zn、Zr、Fe、Al、Cr、Co、In、Ni、Ag、Cu、Pt、Mn、Ta、W、V、Moの金属、酸化物、窒化物、硫化物あるいはSbやFのドープ物またはこれらの複合物を分散し、また第1層と第3層の中間層を樹脂層とした合わせガラスが提案されている。  Further, in Patent Document 9, an intermediate layer composed of three layers is provided between at least two transparent glass plates, and the intermediate layer of the second layer among the intermediate layers is Sn, Ti, Si, Zn, Zr. , Fe, Al, Cr, Co, In, Ni, Ag, Cu, Pt, Mn, Ta, W, V, Mo metal, oxide, nitride, sulfide, Sb or F dope, or a composite thereof A laminated glass in which a product is dispersed and an intermediate layer between the first layer and the third layer is used as a resin layer has been proposed.

また本出願人は、日射遮蔽機能を有する中間層を2枚の板ガラス間に介在させて成り、この中間層が、6ホウ化物微粒子単独若しくは6ホウ化物微粒子とITO微粒子および/またはATO微粒子とビニル系樹脂を含有する中間膜により構成された日射遮蔽用合わせガラス、あるいは、上記中間層が、少なくとも一方の板ガラスの内側に位置する面に形成された上記微粒子が含まれる日射遮蔽膜と、上記2枚の板ガラス間に介在されるビニル系樹脂を含有する中間膜とで構成された日射遮蔽用合わせガラスを特許文献10として提案している。
また、特許文献10には、6ホウ化物微粒子単独若しくは6ホウ化物微粒子とITO微粒子および/またはATO微粒子が適用された日射遮蔽用合わせガラスの光学特性は、可視光領域に透過率の極大を持つと共に近赤外領域に強い吸収を発現して透過率の極小を持つことから、特許文献4〜7に記載された従来の合わせガラスに比べて可視光透過率70%以上で日射透過率が50%台まで改善されていることが開示されている。
Further, the present applicant has an intermediate layer having a solar radiation shielding function interposed between two plate glasses, and this intermediate layer is composed of hexaboride fine particles alone or hexaboride fine particles and ITO fine particles and / or ATO fine particles and vinyl. A solar radiation-shielding laminated glass composed of an intermediate film containing a resin, or the solar radiation-shielding film containing the fine particles formed on the surface of which the intermediate layer is located on the inner side of at least one plate glass; Patent Document 10 proposes a laminated glass for solar radiation shielding composed of an intermediate film containing a vinyl-based resin interposed between a plurality of sheet glasses.
Patent Document 10 discloses that the optical properties of solar shading laminated glass to which hexaboride fine particles alone or 6 boride fine particles and ITO fine particles and / or ATO fine particles are applied have a maximum transmittance in the visible light region. In addition, since it exhibits strong absorption in the near-infrared region and has a minimum transmittance, it has a visible light transmittance of 70% or more and a solar transmittance of 50 compared to the conventional laminated glass described in Patent Documents 4-7. It is disclosed that it is improved to the% level.

これらの日射遮蔽性の窓は、なるべく明るく、かつ、日射遮蔽性を高めようとするものであるが、自動車のサンルーフ、パノラマルーフ、バックウィンドウ、リアサイドウィンドウ、フロントウィンドウ、重機のサンルーフなどでは、明るさよりもむしろ、如何に経済的に太陽光線の熱を遮るかに重点が置かれた設計が必要となっている。
このような車両用窓の部位で実用的な合わせガラスとするには、可視光透過率を低下させ、色調を濃青、灰色、ブロンズ(赤茶色)、濃緑色としたものが提案されているが、上記条件を満たそうとすると、日射遮蔽性の目安となる日射透過率/可視光透過率を1よりも小さくすることができず、日射遮蔽性に劣るものしかなく、未だ改善の余地を有していた。
特開昭61−277437号公報 特開平10−146919号公報 特開2001−179887号公報 特開平6−256541号公報 特開平6−264050号公報 特開平8−217500号公報 特開平8−259279号公報 特開平4−160041号公報 特開平10−297945号公報 特開2001−89202号公報
These solar shading windows are as bright as possible and are intended to enhance the sun shading, but they are bright on the sunroofs of automobiles, panoramic roofs, back windows, rear side windows, front windows, sunroofs of heavy machinery Rather, there is a need for a design that focuses on how to economically block the heat of sunlight.
In order to make a practical laminated glass in such a vehicle window part, a glass having a reduced visible light transmittance and a color tone of dark blue, gray, bronze (red brown), or dark green has been proposed. However, if the above conditions are satisfied, the solar radiation transmittance / visible light transmittance, which is a measure of the solar radiation shielding property, cannot be made smaller than 1, the solar radiation shielding property is inferior, and there is still room for improvement. Had.
JP-A 61-277437 Japanese Patent Laid-Open No. 10-146919 Japanese Patent Laid-Open No. 2001-179887 JP-A-6-256541 JP-A-6-264050 JP-A-8-217500 JP-A-8-259279 Japanese Patent Laid-Open No. 4-160041 Japanese Patent Laid-Open No. 10-297945 JP 2001-89202 A

本発明は、上記の様な問題点に着目してなされたもので、その課題とするところは、可視光透過率を低下させ、色調も要求の高い濃青、灰色、ブロンズ(赤茶色)、濃緑色として、かつ、日射遮蔽性の目安となる日射透過率/可視光透過率をよりも小さくした、生産コストの安価な車窓用日射遮蔽体及び車両用窓を提供することにある。  The present invention has been made paying attention to the problems as described above, and the problem is that dark blue, gray, bronze (red brown), which has a low visible light transmittance and high color tone, are required. An object of the present invention is to provide a vehicle window solar radiation shielding body and a vehicle window which are dark green and have a lower solar radiation transmittance / visible light transmittance, which is a measure of solar radiation shielding properties, and which are inexpensive to produce.

即ち、本発明の第1の発明は、車両の窓に使用される熱線遮蔽機能を有する微粒子を含む車窓用日射遮蔽体であって、前記熱線遮蔽機能を有する微粒子が、6ホウ化ランタン、窒化チタン、酸化タングステンから選択される少なくとも1種以上の微粒子と、アンチモンドープ酸化錫、錫ドープ酸化インジウム、一般式MWO(0.001≦Y≦1.0、2.2≦Z≦3.0)で示される複合タングステン酸化物から選択される少なくとも1種以上の微粒子とを混合してなり、且つ、前記日射遮蔽体の可視光透過率が5%以上40%以下の範囲にあり、前記日射遮蔽体の日射透過率と可視光透過率が下記(式1)を満たし、更に前記日射遮蔽体の透過色が下記(式2)を満たすことを特徴とする車窓用日射遮蔽体である。
(式1)日射透過率/可視光透過率<1
(式2)−14<a<2、−8<b<2
That is, the first invention of the present invention is a vehicle window solar radiation shield containing fine particles having a heat ray shielding function used for a vehicle window, wherein the fine particles having the heat ray shielding function are lanthanum hexaboride, nitriding At least one fine particle selected from titanium and tungsten oxide, antimony-doped tin oxide, tin-doped indium oxide, general formula M Y WO Z (0.001 ≦ Y ≦ 1.0, 2.2 ≦ Z ≦ 3) 0.0) mixed with at least one fine particle selected from the composite tungsten oxide, and the solar light shielding material has a visible light transmittance in the range of 5% to 40%, The solar radiation shielding body for vehicle windows, characterized in that the solar radiation transmittance and visible light transmittance of the solar radiation shielding body satisfy the following (Equation 1), and further the transmission color of the solar radiation shielding body satisfies the following (Equation 2). .
(Expression 1) Solar transmittance / visible light transmittance <1
(Formula 2) -14 <a * <2, -8 <b * <2

本発明の第2の発明は、車両の窓に使用される熱線遮蔽機能を有する微粒子を含む車窓用日射遮蔽体であって、前記熱線遮蔽機能を有する微粒子が、6ホウ化ランタン、窒化チタン、酸化タングステンから選択される少なくとも1種以上の微粒子と、アンチモンドープ酸化錫、錫ドープ酸化インジウム、一般式MWO(0.001≦Y≦1.0、2.2≦Z≦3.0)で示される複合タングステン酸化物から選択される少なくとも1種以上の微粒子と、酸化鉄微粒子とを混合してなり、且つ、前記日射遮蔽体の可視光透過率が5%以上40%以下の範囲であり、前記日射遮蔽体の日射透過率と可視光透過率が下記(式3)を満たし、更に前記日射遮蔽体の透過色が下記(式4)を満たすことを特徴とする車窓用日射遮蔽体である。
(式3)日射透過率/可視光透過率<1
(式4)−2<a<14、2<b<12
A second aspect of the present invention is a vehicle window solar radiation shield containing fine particles having a heat ray shielding function used for a vehicle window, wherein the fine particles having the heat ray shielding function are lanthanum hexaboride, titanium nitride, At least one kind of fine particles selected from tungsten oxide, antimony-doped tin oxide, tin-doped indium oxide, general formula M Y WO Z (0.001 ≦ Y ≦ 1.0, 2.2 ≦ Z ≦ 3.0) ) And at least one kind of fine particles selected from the composite tungsten oxide and iron oxide fine particles are mixed, and the visible light transmittance of the solar radiation shield is in the range of 5% to 40%. The solar radiation shielding for vehicle windows, wherein the solar radiation transmittance and visible light transmittance of the solar radiation shielding body satisfy the following (Equation 3), and further, the transmission color of the solar radiation shielding body satisfies the following (Equation 4): Is the body.
(Expression 3) Solar radiation transmittance / visible light transmittance <1
(Formula 4) -2 <a * <14, 2 <b * <12

本発明の第3の発明は、酸化タングステンがWO、或いは、W1849であることを特徴とする第1、2の発明記載の車窓用日射遮蔽体である。The third invention of the present invention is the vehicle window solar radiation shield according to the first or second invention, wherein the tungsten oxide is WO 2 or W 18 O 49 .

本発明の第4の発明は、酸化タングステンがWO、或いは、W1849であることを特徴とする第1、2の発明記載の車窓用日射遮蔽体である。A fourth invention of the present invention is the vehicle window solar radiation shield according to the first or second invention, wherein the tungsten oxide is WO 2 or W 18 O 49 .

本発明の第5の発明は、前記熱線遮蔽機能を有する微粒子の直径が、300nm以下であることを特徴とする第1〜4の発明記載の車窓用日射遮蔽体である。  According to a fifth aspect of the present invention, there is provided the solar radiation shielding body for vehicle windows according to the first to fourth aspects, wherein a diameter of the fine particles having a heat ray shielding function is 300 nm or less.

本発明の第6の発明は、前記熱線遮蔽機能を有する微粒子が、シラン化合物、チタン化合物、ジルコニア化合物から選択される少なくとも1種によって表面処理されていることを特徴とする第1〜5の発明記載の車窓用日射遮蔽体である。  According to a sixth aspect of the present invention, in the first to fifth aspects, the fine particles having a heat ray shielding function are surface-treated with at least one selected from a silane compound, a titanium compound, and a zirconia compound. It is a solar radiation shielding body for vehicle windows as described.

本発明の第7の発明は、更に、酸化亜鉛微粒子、酸化セリウム微粒子、酸化チタン微粒子から選択される少なくとも1種を含有することを特徴とする第1〜6の発明記載の車窓用日射遮蔽体である。  The seventh invention of the present invention further includes at least one selected from zinc oxide fine particles, cerium oxide fine particles, and titanium oxide fine particles, and the solar radiation shielding body for vehicle windows according to the first to sixth inventions, It is.

本発明の第8の発明は、前記熱線遮蔽機能を有する微粒子が、ポリカーボネート樹脂成形体に含まれていることを特徴とする第1〜7の発明記載の車窓用日射遮蔽体である。  According to an eighth aspect of the present invention, there is provided the solar radiation shielding body for vehicle windows according to the first to seventh aspects of the present invention, wherein the fine particles having a heat ray shielding function are contained in a polycarbonate resin molded body.

本発明の第9の発明は、第8の発明記載のポリカーボネート樹脂成形体の少なくとも一表面に、耐擦傷性ハードコート層が形成されていることを特徴とする車窓用日射遮蔽体である。  According to a ninth aspect of the present invention, there is provided a solar radiation shielding body for a vehicle window, wherein a scratch-resistant hard coat layer is formed on at least one surface of the polycarbonate resin molded body according to the eighth aspect.

本発明の第10の発明は、第8又は9の発明記載の日射遮蔽体を他の樹脂成形体に積層することにより得られることを特徴とする車窓用日射遮蔽体である。  According to a tenth aspect of the present invention, there is provided a solar shading body for a vehicle window obtained by laminating the solar radiation shielding body according to the eighth or ninth aspect of the invention on another resin molded body.

本発明の第11の発明は、第1〜7の発明記載の熱線遮蔽機能を有する微粒子がポリビニルブチラール樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂から選択される一種に含まれていることを特徴とする車窓用日射遮蔽体である。  The eleventh invention of the present invention is characterized in that the fine particles having a heat ray shielding function described in the first to seventh inventions are contained in one kind selected from polyvinyl butyral resin, polyvinyl acetate resin, and polyvinyl alcohol resin. It is a solar radiation shield for vehicle windows.

本発明の第12の発明は、第11の発明記載の日射遮蔽体を2枚の合わせ板間に中間膜として介在させてなる合わせ構造体であって、該合わせ板が無機板ガラス、ポリカーボネート樹脂成形体、ポリエチレンテレフタレート樹脂成形体から選択される少なくとも一種であることを特徴とする車窓用日射遮蔽体である。  A twelfth aspect of the present invention is a laminated structure in which the solar radiation shield according to the eleventh aspect of the present invention is interposed between two laminated plates as an intermediate film, the laminated plate comprising an inorganic plate glass and a polycarbonate resin molded product. A solar radiation shielding body for a vehicle window, wherein the solar radiation shielding body is at least one selected from a body and a polyethylene terephthalate resin molding.

本発明の第13の発明は、第12の発明記載の合わせ板の少なくとも一方が、第8〜10の発明の日射遮蔽体であることを特徴とする車窓用日射遮蔽体である。  A thirteenth aspect of the present invention is a vehicle window solar radiation shielding body, wherein at least one of the laminated plates according to the twelfth invention is the solar radiation shielding body according to the eighth to tenth inventions.

本発明の第14の発明は、前記車窓用日射遮蔽体の形状が、厚さ2.5mm〜30mm、かつ最大投影面積が400〜60000cmであることを特徴とする第1〜13の発明記載の車窓用日射遮蔽体である。A fourteenth aspect of the present invention is the first to thirteenth aspects of the invention, wherein the solar radiation shielding body for vehicle windows has a thickness of 2.5 mm to 30 mm and a maximum projected area of 400 to 60000 cm 2. It is a solar radiation shield for car windows.

本発明の第15の発明は、第1〜14の発明記載の車窓用日射遮蔽体が使用されていることを特徴とする車両用窓である。  According to a fifteenth aspect of the present invention, there is provided a vehicle window characterized by using the vehicle window solar shading member described in the first to fourteenth aspects.

本発明に係る車窓用日射遮蔽体及び車両用窓によれば、従来得られていなかった、可視光透過率を低下させ、色調も要求の高い濃青、灰色、ブロンズ(赤茶色)、濃緑色として、かつ、日射遮蔽性の目安となる日射透過率/可視光透過率を1より小さくした、生産コストの安価な車窓用日射遮蔽体及び車両用窓を提供することが可能となり、自動車のサンルーフ、パノラマルーフ、バックウィンドウ、リアサイドウィンドウ、フロントウィンドウ、重機のサンルーフなどに適用でき、その用途は広く、工業的に有用である。  According to the solar radiation shield for vehicle windows and the vehicle window according to the present invention, dark blue, gray, bronze (red brown), and dark green, which have not been obtained in the past, have low visible light transmittance and high color tone requirements. In addition, it is possible to provide a low-cost solar radiation shield for vehicle windows and a vehicle window in which the solar radiation transmittance / visible light transmittance, which is a measure of solar radiation shielding properties, is less than 1, and the sunroof for automobiles. It can be applied to panoramic roofs, back windows, rear side windows, front windows, sunroofs for heavy machinery, etc., and its uses are wide and industrially useful.

以下、本発明について詳細に説明する。
1.熱線遮蔽機能を有する微粒子
1)6ホウ化ランタン、窒化チタン、酸化タングステンから選択される少なくとも1種以上の微粒子
6ホウ化ランタン、窒化チタン、酸化タングステンからなる群は、可視光から近赤外線に吸収を持ち、特に780nmから1200nmの近赤外線を選択的に吸収する光学特性を有する。また、単位面積あたりの添加量に対する可視光線、近赤外線の吸収力が非常に強く、少量添加で効果的に基材に熱線遮蔽機能を付与することが出来る。ただし、1200nm以上赤外線吸収能力が乏しく、太陽光に含まれる長波長領域のエネルギーを遮蔽することが出来ない欠点があった。
Hereinafter, the present invention will be described in detail.
1. Fine particles having a heat ray shielding function 1) At least one kind of fine particles selected from lanthanum hexaboride, titanium nitride, and tungsten oxide The group consisting of lanthanum hexaboride, titanium nitride, and tungsten oxide absorbs from visible light to near infrared rays In particular, it has an optical characteristic of selectively absorbing near infrared rays of 780 nm to 1200 nm. Moreover, the visible light and near-infrared absorptivity with respect to the addition amount per unit area are very strong, and a heat ray shielding function can be effectively provided to a base material by addition of a small amount. However, there is a drawback that the infrared absorption ability of 1200 nm or more is poor and the energy in the long wavelength region contained in sunlight cannot be shielded.

a)6ホウ化ランタン
本発明に使用される6ホウ化ランタンとしては、その表面が酸化していないことが好ましいが、通常は僅かに酸化していることが多く、また微粒子の分散工程で表面の酸化が起こることはある程度避けられない。しかし、その場合でも熱線遮蔽効果を発現する有効性に変わりはない。
また、6ホウ化ランタン微粒子は、結晶としての完全性が高いほど大きい熱線遮蔽効果が得られるが、結晶性が低くX線回折でブロードな回折ピークを生じるようなものであっても、微粒子内部の基本的な結合が各金属とホウ素の結合から成り立っているものであるならば熱線遮蔽効果を発現する。
6ホウ化ランタンは灰黒色、茶黒色、緑黒色などに着色した粉末であるが、粒径を可視光波長に比べて十分小さくして熱線遮蔽透明樹脂基材に分散した状態においては、熱線遮蔽透明樹脂基材に可視光透過性が生じる。しかし赤外光遮蔽能は十分強く保持できる。この理由は詳細には理解されていないが、これら微粒子中の自由電子の量が多く、微粒子内部及び表面の自由電子によるバンド間間接遷移の吸収エネルギーが丁度可視〜近赤外の付近にあるために、この波長領域の熱線が選択的に反射・吸収されると考えられる。
6ホウランタンの単位重量あたりの熱線遮蔽能力は非常に高く、ITOやATOと比較して、40分の1以下の使用量でその効果を発揮する。よって、全微粒子の使用量を大幅に削減できるので、熱線遮蔽透明樹脂基材に熱線遮蔽粒子を多量に配合すると、基材である透明樹脂の物性、殊に耐衝撃強度や靭性が低下するという強度面からの問題が起こらない。
6ホウランタンは使用量を増すと可視光領域に吸収があるために、その添加量を制御することで可視光領域の吸収を自由に制御でき、明るさ調製や、プライバシー保護等への応用もできる。
また、6ホウ化ランタンの代わりに他の6ホウ化物を使用することも可能であり、6ホウ化セリウム(CeB)、6ホウ化プラセオジム(PrB)、6ホウ化ネオジム(NdB)、6ホウ化ガドリニウム(GdB)、6ホウ化テルビウム(TbB)、6ホウ化ディスプロシウム(DyB)、6ホウ化ホルミウム(HoB)、6ホウ化イットリウム(YB)、6ホウ化サマリウム(SmB)、6ホウ化ユーロピウム(EuB)、6ホウ化エルビウム(ErB)、6ホウ化ツリウム(TmB)、6ホウ化イッテルビウム(YbB)、6ホウ化ルテチウム(LuB)、6ホウ化ランタンセリウム((La,Ce)B)、6ホウ化ストロンチウム(SrB)、6ホウ化カルシウム(CaB)などが、その代表的なものとして挙げられる。
a) Lanthanum hexaboride The surface of the lanthanum hexaboride used in the present invention is preferably not oxidized, but is usually slightly oxidized, and the surface is often used in the fine particle dispersion step. It is inevitable that oxidation occurs. However, even in that case, the effectiveness of developing the heat ray shielding effect remains unchanged.
In addition, lanthanum hexaboride fine particles have a higher heat ray shielding effect as the crystal completeness increases. However, even if the crystallinity is low and a broad diffraction peak is generated by X-ray diffraction, If the basic bond is composed of a bond between each metal and boron, a heat ray shielding effect is exhibited.
Lanthanum hexaboride is a powder colored grey-black, brown-black, green-black, etc., but in a state where the particle size is sufficiently smaller than the visible light wavelength and dispersed in a heat-ray-shielding transparent resin substrate, heat-ray shielding Visible light permeability occurs in the transparent resin substrate. However, the infrared light shielding ability can be kept strong enough. The reason for this is not understood in detail, but the amount of free electrons in these particles is large, and the absorption energy of the indirect interband transition due to free electrons inside and on the surface of the particles is just in the vicinity of visible to near infrared. In addition, it is considered that heat rays in this wavelength region are selectively reflected and absorbed.
The heat ray shielding ability per unit weight of 6-borane is very high, and the effect is exhibited with the use amount of 1/40 or less compared with ITO and ATO. Therefore, since the amount of all fine particles used can be greatly reduced, if a large amount of heat ray shielding particles are blended with the heat ray shielding transparent resin base material, the physical properties, particularly impact strength and toughness of the transparent resin as the base material are reduced. There is no problem in terms of strength.
As the amount of 6-H-lanthanum increases in the visible light region, the absorption of visible light region can be controlled freely by controlling the amount added, and it can be used for brightness adjustment and privacy protection. it can.
It is also possible to use another hexaboride instead of lanthanum hexaboride, such as cerium hexaboride (CeB 6 ), praseodymium hexaboride (PrB 6 ), neodymium hexaboride (NdB 6 ), hexaboride gadolinium (GdB 6), 6 terbium boride (TbB 6), hexaboride dysprosium (DYB 6), 6 holmium boride (HoB 6), 6 yttrium boride (YB 6), hexaboride Samarium (SmB 6 ), europium hexaboride (EuB 6 ), erbium hexaboride (ErB 6 ), thulium hexaboride (TmB 6 ), ytterbium hexaboride (YbB 6 ), lutetium hexaboride (LuB 6 ) , lanthanum hexaboride, cerium ((La, Ce) B 6 ), 6 strontium boride (SrB 6), 6 calcium boride (CaB 6 ) Etc. are listed as typical examples.

b)窒化チタン
本発明に使用されるTiNとしては、その表面が酸化していないことが好ましいが、通常は僅かに酸化していることが多く、また微粒子の分散工程で表面の酸化が起こることはある程度避けられない。しかしその場合でも熱線遮蔽効果を発現する有効性に変わりはない。またこれらの窒化物微粒子は、結晶としての完全性が高いほど大きい熱線遮蔽効果が得られるが、結晶性が低くX線回折でブロードな回折ピークを生じるようなものであっても、微粒子内部の基本的な結合がチタンと窒素の結合から成り立っているものであるならば熱線遮蔽効果を発現する。
TiNは茶黒色、青黒色などに着色した粉末であるが、粒径が可視光波長に比べて十分小さくポリカーボネート樹脂中に分散した状態においては、膜に可視光透過性が生じる。しかし赤外光遮蔽能は十分強く保持できる。この理由は詳細には理解されていないが、これら微粒子中の自由電子の量が多く、微粒子内部及び表面の自由電子によるバンド間間接遷移の吸収エネルギーが丁度可視〜近赤外の付近にあるために、この波長領域の熱線が選択的に反射・吸収されると考えられる。
また、TiNの代わりに他の窒化物を使用することも可能であり、窒化ジルコニウム(ZrN)、窒化ハフニウム(HfN)、窒化バナジウム(VN)、窒化ニオブ(NbN)、窒化タンタル(TaN)などの微粒子を、その代表的なものとして挙げられる。
b) Titanium Nitride The surface of TiN used in the present invention is preferably not oxidized, but is usually slightly oxidized, and surface oxidation occurs during the fine particle dispersion process. Is inevitable to some extent. However, even in that case, the effectiveness of developing the heat ray shielding effect remains unchanged. Further, these nitride fine particles have a higher heat ray shielding effect as the crystal completeness is higher, but even if the crystallinity is low and a broad diffraction peak is generated by X-ray diffraction, If the basic bond is composed of a bond between titanium and nitrogen, a heat ray shielding effect is exhibited.
TiN is a powder colored brown black, blue black or the like, but when the particle size is sufficiently smaller than the visible light wavelength and dispersed in the polycarbonate resin, visible light permeability is generated in the film. However, the infrared light shielding ability can be kept strong enough. The reason for this is not understood in detail, but the amount of free electrons in these particles is large, and the absorption energy of the indirect interband transition due to free electrons inside and on the surface of the particles is just in the vicinity of visible to near infrared. In addition, it is considered that heat rays in this wavelength region are selectively reflected and absorbed.
It is also possible to use other nitrides instead of TiN, such as zirconium nitride (ZrN), hafnium nitride (HfN), vanadium nitride (VN), niobium nitride (NbN), tantalum nitride (TaN), etc. A typical example is fine particles.

c)酸化タングステン
本発明に使用される酸化タングステンは、一般式WO、或いはW1849の一般式で示されるものであることが好ましい。特に1000nm付近の光を大きく吸収するため、その透過色調はブルー系の色調となるものが多い。
c) tungsten oxide used in the tungsten oxide present invention have the general formula WO 2, or it is preferable that the general formula of W 18 O 49. In particular, since light around 1000 nm is largely absorbed, the transmitted color tone often has a blue color tone.

2)アンチモンドープ酸化錫、錫ドープ酸化インジウム、一般式MWO(0.001≦Y≦1.0、2.2≦Z≦3.0)で示される複合タングステン酸化物から選択される少なくとも1種以上の微粒子
1000nm以上の中赤外線に選択的に吸収する光学特性を有する。ただし、単位面積あたりの添加量に対する赤外線の吸収力が弱く、基材に熱線遮蔽特性を付与するためには多量の添加が必要となり、基材自体の機械特性の低下や材料コストが高くなるなどの問題があった。
2) Selected from antimony-doped tin oxide, tin-doped indium oxide, and composite tungsten oxide represented by the general formula M Y WO Z (0.001 ≦ Y ≦ 1.0, 2.2 ≦ Z ≦ 3.0) At least one kind of fine particles It has an optical characteristic of selectively absorbing in the middle infrared ray of 1000 nm or more. However, the absorption capacity of infrared rays per unit area is weak, and a large amount of addition is required to impart heat ray shielding properties to the substrate, resulting in a decrease in mechanical properties of the substrate itself and an increase in material costs. There was a problem.

a)アンチモンドープ酸化錫、錫ドープ酸化インジウム
本発明に使用されるアンチモンドープ酸化錫、錫ドープ酸化インジウムは、金属酸化物特有の光触媒活性を抑制するために、アルコキシル基と有機官能基を持つシランカップリング剤、チタンカップリング剤、アルミニウムカップリング剤、ジルコニウムカップリング剤から選択される少なくとも一種の表面処理剤で表面処理を施されることが好ましい。これらの表面処理剤としては、アンチモンドープ酸化錫の表面と親和性をもち、結合を形成するアルコキシル基と透明熱可塑性樹脂と親和性をもつ有機官能基を有するものが使用される。前記アルコキシル基としては、メトキシ基、エトキシ基、イソプロポキシル基などを挙げることが出来るが、加水分解を受け、アンチモンドープ酸化錫の表面と結合を形成しうるものであれば特に限定されない。前記有機官能基としては、アルキル基、ビニル基、γ−(2−アミノエチル)アミノプロピル基、γ−グリシドキシプロピル基、γ−アニリノプロピル基、γ−メルカプトプロピル基、γ−メタクリロキシ基などを挙げることが出来るが、透明熱可塑性樹脂と親和性を有するものであれば特に限定されない。
a) Antimony-doped tin oxide and tin-doped indium oxide Antimony-doped tin oxide and tin-doped indium oxide used in the present invention are silanes having an alkoxyl group and an organic functional group in order to suppress the photocatalytic activity peculiar to metal oxides. The surface treatment is preferably performed with at least one surface treatment agent selected from a coupling agent, a titanium coupling agent, an aluminum coupling agent, and a zirconium coupling agent. As these surface treatment agents, those having an organic functional group having an affinity for the surface of antimony-doped tin oxide and having an affinity for an alkoxyl group forming a bond and a transparent thermoplastic resin are used. Examples of the alkoxyl group include a methoxy group, an ethoxy group, and an isopropoxyl group, but are not particularly limited as long as they can undergo hydrolysis and form a bond with the surface of the antimony-doped tin oxide. Examples of the organic functional group include alkyl groups, vinyl groups, γ- (2-aminoethyl) aminopropyl groups, γ-glycidoxypropyl groups, γ-anilinopropyl groups, γ-mercaptopropyl groups, and γ-methacryloxy groups. However, it is not particularly limited as long as it has an affinity for a transparent thermoplastic resin.

b)複合タングステン酸化物
本発明に使用される複合タングステン酸化物は、一般式MWO(0.001≦Y≦1.0、2.2≦Z≦3.0)で示され、且つ六方晶の結晶構造を持つ。近赤外線領域、特に1000nm付近の光を大きく吸収するため、その透過色調はブル−系の色調となるものが多い。
上記一般式MWO(0.001≦Y≦1.0、2.2≦Z≦3.0)で示され、且つ六方晶の結晶構造を持つ複合タングステン酸化物微粒子としては、例えばM元素が、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Sn、Al、Cuのうちの1種類以上を含むような複合タングステン酸化物微粒子が挙げられる。
添加元素Mの添加量は、0.1以上0.5以下が好ましく、更に好ましくは0.33付近が好ましい。これは六方晶の結晶構造から理論的に算出される値が0.33であり、この前後の添加量で好ましい光学特性が得られるからである。また、Zの範囲については、2.2≦z≦3.0が好ましい。これは、zの値が2.45以上であれば、当該赤外線遮蔽材料中に目的外であるWOの結晶相が現れるのを完全に回避することが出来ると共に、材料の化学的安定性を得ることが出来る。一方、Xの値が2.999以下であれば、十分な量の自由電子が生成され効率よい赤外線遮蔽材料となるが、2.95以下であれば赤外線遮蔽材料として更に好ましい。また、z≦3.0においても、上述した元素Mの添加による自由電子の供給があるためである。尤も、光学特性の観点から、より好ましくは、2.2≦z≦2.99、さらに好ましくは、2.45≦z≦2.99である。
ここで、当該複合タングステン酸化物材料の典型的な例としては、Cs0.33WO、Rb0.33WO、K0.33WO、Ba0.33WOなどを挙げることができるが、Y、Zが上記の範囲に収まるものであれば、有用な熱線遮蔽特性を得ることができる。
b) Composite tungsten oxide The composite tungsten oxide used in the present invention is represented by the general formula M Y WO Z (0.001 ≦ Y ≦ 1.0, 2.2 ≦ Z ≦ 3.0), and Has a hexagonal crystal structure. In the near-infrared region, particularly in the vicinity of 1000 nm, the transmitted color tone is often a bluish color tone.
Examples of the composite tungsten oxide fine particles represented by the above general formula M Y WO Z (0.001 ≦ Y ≦ 1.0, 2.2 ≦ Z ≦ 3.0) and having a hexagonal crystal structure include, for example, M Examples thereof include composite tungsten oxide fine particles in which the element contains one or more of Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, Sn, Al, and Cu.
The amount of additive element M added is preferably 0.1 or more and 0.5 or less, and more preferably around 0.33. This is because the value theoretically calculated from the hexagonal crystal structure is 0.33, and preferable optical characteristics can be obtained with the addition amount before and after this. Moreover, about the range of Z, 2.2 <= z <= 3.0 is preferable. This is because if the value of z is 2.45 or more, it is possible to completely avoid the appearance of a crystal phase of WO 2 that is not intended in the infrared shielding material, and to improve the chemical stability of the material. Can be obtained. On the other hand, if the value of X is 2.999 or less, a sufficient amount of free electrons are generated and an efficient infrared shielding material is obtained, but if it is 2.95 or less, it is more preferable as an infrared shielding material. Further, even when z ≦ 3.0, there is supply of free electrons due to the addition of the element M described above. However, from the viewpoint of optical properties, 2.2 ≦ z ≦ 2.99 is more preferable, and 2.45 ≦ z ≦ 2.99 is more preferable.
Here, typical examples of the composite tungsten oxide material include Cs 0.33 WO 3 , Rb 0.33 WO 3 , K 0.33 WO 3 , Ba 0.33 WO 3 and the like. However, if Y and Z are within the above ranges, useful heat ray shielding characteristics can be obtained.

3)酸化鉄微粒子
をプラス側に持っていける。ブロンズカラーにできるという特徴を有している。
そこで、本発明者は、上記1)と2)の2つの群の微粒子を混合することにより、2つの群に属する材料が持つ欠点をお互いに補い合うことで、得られる日射遮蔽体の可視光透過率が5%以上40%以下の範囲にあり、かつ下記式1を満たし、さらに、該日射遮蔽体の透過色が式2を満たすことができるようになる。
(式1)日射透過率/可視光透過率<1
(式2)−14<a<2、−8<b<2
また、上記1)と2)と3)の3つの群の微粒子を混合することにより、3つの群に属する材料が持つ欠点をお互いに補い合うことで、特に、酸化鉄微粒子を加えることで、aをプラス側に持っていき、ブロンズカラー側に色調を調整できるという特徴を有している。
これにより、比較的低透過率の自動車用パノラマルーフ、バックウィンドウ、リアサイドウィンドウに使用できるのである。
3) Bring iron oxide fine particles a * b * to the plus side. It has the feature that it can be made into bronze color.
Therefore, the inventor of the present invention mixes the two groups of fine particles of 1) and 2) to compensate for the defects of the materials belonging to the two groups, thereby allowing visible light transmission of the solar radiation shield obtained. The rate is in the range of 5% or more and 40% or less, and the following formula 1 is satisfied. Further, the transmitted color of the solar radiation shielding body can satisfy the formula 2.
(Expression 1) Solar transmittance / visible light transmittance <1
(Formula 2) -14 <a * <2, -8 <b * <2
Also, by mixing the three groups of fine particles of 1), 2) and 3) above, the disadvantages of the materials belonging to the three groups are compensated for each other. * B * is brought to the plus side, and the color tone can be adjusted to the bronze color side.
Thereby, it can be used for a panoramic roof, a back window, and a rear side window for automobiles having a relatively low transmittance.

前記日射遮蔽体の可視光透過率が5%以上40%以下であることを要するのは、5%未満では、窓としての透過率が低すぎて外界の視認性が著しく落ちるため好ましくなく、また、40%を超えると、可視光を含めた日射熱の室内側への流入が大きくなって、特に真夏の日射を遮るには不十分となり、また室内温度を下げるための冷房負荷が大きくなるため好ましくないからである。  It is necessary that the visible light transmittance of the solar shading body be 5% or more and 40% or less, and if it is less than 5%, the transmittance as a window is too low and the visibility of the outside world is significantly reduced. If it exceeds 40%, inflow of solar heat including visible light into the room will increase, and it will be insufficient to block solar radiation especially in midsummer, and will increase the cooling load to lower the room temperature. It is because it is not preferable.

前記第1の発明において、前記日射遮蔽体の透過色が、上記可視光透過率の範囲で、−14<a<2、−8<b<2の範囲に属することが好ましいのは、a≦−14では緑成分が強すぎ、2≦aでは赤成分が強すぎ、更に、b≦−8では青味が強すぎ、また2≦bでは黄色味が強すぎるために、これらの範囲以外では、一般使用者に好まれるニュートラルからダークブルー・ダークグリーンといった色合いから逸脱するため、好ましくないからである。In the first aspect of the invention, it is preferable that the transmission color of the solar shading member belongs to a range of −14 <a * <2, -8 <b * <2 in the range of the visible light transmittance. The green component is too strong when a * ≦ −14, the red component is too strong when 2 ≦ a * , the bluish color is too strong when b * ≦ −8, and the yellow color is too strong when 2 ≦ b *. Outside of these ranges, it is not preferable because it deviates from the neutral to dark blue / dark green colors preferred by general users.

前記第2の発明において、前記日射遮蔽体の透過色が、−2<a<14、2<b<12の範囲に属することが好ましいのは、a≦−2では緑成分が強すぎ、また、14≦aでは赤成分が強すぎ更に、b≦2では青成分が強すぎ、また、12≦bでは黄色成分が強すぎて、これらの範囲外では、一般使用者に好まれるブロンズ色の色合いから逸脱するため好ましくないからである。In the second aspect of the present invention, it is preferable that the transmitted color of the solar shading member be in the range of −2 <a * <14, 2 <b * <12. The green component is strong when a * ≦ −2. In addition, the red component is too strong at 14 ≦ a * , the blue component is too strong at b * ≦ 2, and the yellow component is too strong at 12 ≦ b *. This is because it deviates from the bronze tint preferred by the present invention.

前記熱線遮蔽機能を有する微粒子の直径は、300nm以下であることが望ましい。300nmを超えると、可視光領域の光の散乱が発生し、日射遮蔽体が曇ってしまい、好ましくない。  The diameter of the fine particles having a heat ray shielding function is desirably 300 nm or less. If it exceeds 300 nm, light scattering in the visible light region occurs, and the solar radiation shield becomes cloudy, which is not preferable.

また、前記熱線遮蔽機能を有する微粒子は、シラン化合物、チタン化合物、ジルコニア化合物、アルミニウム化合物から選択される少なくとも1種によって表面処理されていることが望ましい。上記材料で微粒子表面を被覆することにより耐候性が向上する。また、アンチモンドープ酸化錫、錫ドープ酸化インジウムは、金属酸化物特有の光触媒活性をもち、それを抑制し、ポリカーボネート樹脂の劣化を防止する観点からも好ましい。  The fine particles having a heat ray shielding function are desirably surface-treated with at least one selected from a silane compound, a titanium compound, a zirconia compound, and an aluminum compound. The weather resistance is improved by coating the surface of the fine particles with the above material. Antimony-doped tin oxide and tin-doped indium oxide have a photocatalytic activity unique to metal oxides, and are preferable from the viewpoint of suppressing the deterioration and preventing deterioration of the polycarbonate resin.

本発明の熱線遮蔽微粒子の1mあたりの添加量は、下記式5を満たしていることが望ましい。式5において、各熱線遮蔽微粒子に掛けられている係数は、各熱線遮蔽微粒子の単位重量あたりの可視光線吸収能力により決定されている。たとえば、熱線遮蔽機能を有するポリカーボネートシートの可視光透過率を同じ値にする場合、酸化チタンの1mあたりの必要添加量は、鈴ドープ酸化インジウムの1/160であることが実験的に分かっている。
窒化チタンの添加量(g/m)×160+6ホウ化ランタンの添加量(g/m)×40+酸化タングステン(g/m)×40+複合タングステン酸化物(g/m)×4+アンチモンドープ酸化錫(g/m)+錫ドープ酸化インジウム(g/m
の値が5以下である場合、可視光線吸収能力が不十分となり、プライバシー保護を目的とした自動車用パノラマルーフ、バックウィンドウ、リアサイドウィンドウとして不適切である。また、十分な熱線遮蔽能も得られない。逆に50以上である場合、十分な熱線遮蔽能は得られるが、可視光線の吸収が強くなりすぎて車外からの光をほとんど取り入れることが出来なくなってしまう。
(式5)
5(g/m)<窒化チタンの添加量(g/m)×160+6ホウ化ランタンの添加量(g/m)×40+酸化タングステン(g/m)×40+複合タングステン酸化物(g/m)×4+アンチモンドープ酸化錫(g/m)+錫ドープ酸化インジウム(g/m)<50(g/m
また、前記微粒子の1mあたりの全添加量が20g/m以下であることが望ましい。1mあたりの全添加量が20g/mより多くなると、ポリカーボネートシートの厚さにも依存するが、ポリカーボネート樹脂自体の機械特性(耐衝撃性、表面硬度、曲げ強度)を損なう恐れがある。また、材料コストも高くなってしまう。
The addition amount per 1 m 2 of the heat ray shielding fine particles of the present invention desirably satisfies the following formula 5. In Equation 5, the coefficient applied to each heat ray shielding fine particle is determined by the visible light absorbing ability per unit weight of each heat ray shielding fine particle. For example, when the visible light transmittance of a polycarbonate sheet having a heat ray shielding function is set to the same value, it is experimentally found that the necessary addition amount per 1 m 2 of titanium oxide is 1/160 of that of bell-doped indium oxide. Yes.
Addition amount of titanium nitride (g / m 2 ) × 160 + 6 Addition amount of lanthanum boride (g / m 2 ) × 40 + tungsten oxide (g / m 2 ) × 40 + composite tungsten oxide (g / m 2 ) × 4 + antimony Doped tin oxide (g / m 2 ) + tin-doped indium oxide (g / m 2 )
When the value of 5 is 5 or less, the visible light absorption ability is insufficient, and it is not suitable as a panoramic roof for automobiles, a back window, or a rear side window for the purpose of privacy protection. Further, sufficient heat ray shielding ability cannot be obtained. On the other hand, when it is 50 or more, sufficient heat ray shielding ability can be obtained, but absorption of visible light becomes so strong that light from outside the vehicle can hardly be taken in.
(Formula 5)
5 (g / m 2 ) <addition amount of titanium nitride (g / m 2 ) × 160 + 6 addition amount of lanthanum boride (g / m 2 ) × 40 + tungsten oxide (g / m 2 ) × 40 + composite tungsten oxide ( g / m 2 ) × 4 + antimony-doped tin oxide (g / m 2 ) + tin-doped indium oxide (g / m 2 ) <50 (g / m 2 )
Moreover, it is desirable that the total amount of the fine particles added per 1 m 2 is 20 g / m 2 or less. When total addition amount per 1 m 2 is more than 20 g / m 2, but also on the thickness of the polycarbonate sheet, may impair the mechanical properties of the polycarbonate resin itself (impact resistance, surface hardness, flexural strength) of. Moreover, material cost will also become high.

本発明の熱線遮蔽機能を有する微粒子を含む車窓用日射遮蔽体の光学特性は、日射透過率/可視光透過率<1である。つまり、可視光透過率よりも日射透過率の値が小さいことが望ましい。日射透過率/可視光透過率>1である場合、外部から車内に入ってくる太陽エネルギー十分に軽減するためには、車内が暗くなりすぎてしまう。ポリカーボネートシートに着色顔料や着色染料を多量に添加し、可視光透過率を極端に低くすれば日射透過率も低くなるが、日射透過率/可視光透過率<1を満たすことは従来困難であった。  The optical characteristic of the solar radiation shielding body for vehicle windows containing fine particles having a heat ray shielding function of the present invention is solar radiation transmittance / visible light transmittance <1. That is, it is desirable that the value of the solar radiation transmittance is smaller than the visible light transmittance. When the solar radiation transmittance / visible light transmittance> 1, the interior of the vehicle becomes too dark in order to sufficiently reduce the solar energy entering the vehicle from the outside. If a large amount of colored pigment or coloring dye is added to the polycarbonate sheet to reduce the visible light transmittance extremely, the solar transmittance is lowered. However, it has been difficult to satisfy the solar transmittance / visible light transmittance <1. It was.

また、本発明に使用される熱線遮蔽微粒子は、粒径が小さければ小さいほど好ましく、赤外線吸収能力、使用する樹脂の透明性を考慮すると、その平均粒径は300nm以下、より好ましくは100nm以下である。ここで、平均粒径は、透過電子顕微鏡で熱線遮蔽微粒子の粉体を観察し、この粉体の粒径の平均値である。  In addition, the heat ray shielding fine particles used in the present invention are preferably as small as possible, and considering the infrared absorption ability and the transparency of the resin used, the average particle size is 300 nm or less, more preferably 100 nm or less. is there. Here, the average particle diameter is an average value of the particle diameters of the heat ray shielding fine particles observed with a transmission electron microscope.

本発明の熱線遮蔽機能を有する微粒子とともに、更に、紫外線吸収剤として、酸化亜鉛微粒子、酸化セリウム微粒子、酸化チタン微粒子から選択される少なくとも1種を含有することも可能である。使用する樹脂の透明性を考慮すると、その平均粒径は300nm以下、より好ましくは100nm以下であることが好ましい。ここで、平均粒径は、透過電子顕微鏡で熱線遮蔽微粒子の粉体を観察し、この粉体の粒径の平均値である。
また、紫外線吸収剤の光触媒活性を抑制し、透明熱可塑性樹脂中への分散性を向上するために、シランカップリング剤、チタンカップリング剤、アルミニウムカップリング剤、ジルコニウムカップリング剤から選択される少なくとも一種の表面処理剤で表面処理を施されていることが好ましい。これらの表面処理剤としては、紫外線吸収剤の表面と親和性をもち、結合を形成するアルコキシル基と透明熱可塑性樹脂と親和性をもつ有機官能基を有するものが使用される。前記アルコキシル基としては、メトキシ基、エトキシ基、イソプロポキシル基などを挙げることが出来るが、加水分解を受け、無機紫外線吸収剤の表面と結合を形成しうるものであれば特に限定されない。前記有機官能基としては、アルキル基、ビニル基、γ−(2−アミノエチル)アミノプロピル基、γ−グリシドキシプロピル基、γ−アニリノプロピル基、γ−メルカプトプロピル基、γ−メタクリロキシ基などを挙げることが出来るが、透明熱可塑性樹脂と親和性を有するものであれば特に必ずしもこれらに限定されない。
また、無機紫外線吸収剤の熱可塑性樹脂中への分散性を向上させる目的で、有機高分子分散剤を上記カップリング剤と併用して使用することも可能である。
In addition to the fine particles having a heat ray shielding function of the present invention, it is possible to further contain at least one selected from zinc oxide fine particles, cerium oxide fine particles, and titanium oxide fine particles as an ultraviolet absorber. Considering the transparency of the resin used, the average particle size is preferably 300 nm or less, more preferably 100 nm or less. Here, the average particle diameter is an average value of the particle diameters of the heat ray shielding fine particles observed with a transmission electron microscope.
Further, in order to suppress the photocatalytic activity of the ultraviolet absorber and improve the dispersibility in the transparent thermoplastic resin, the silane coupling agent is selected from a titanium coupling agent, an aluminum coupling agent, and a zirconium coupling agent. The surface treatment is preferably performed with at least one surface treatment agent. As these surface treatment agents, those having an organic functional group having affinity for the surface of the ultraviolet absorber and having an alkoxyl group for forming a bond and an affinity for the transparent thermoplastic resin are used. Examples of the alkoxyl group include a methoxy group, an ethoxy group, and an isopropoxyl group, but are not particularly limited as long as they can undergo hydrolysis and form a bond with the surface of the inorganic ultraviolet absorber. Examples of the organic functional group include alkyl groups, vinyl groups, γ- (2-aminoethyl) aminopropyl groups, γ-glycidoxypropyl groups, γ-anilinopropyl groups, γ-mercaptopropyl groups, and γ-methacryloxy groups. However, it is not necessarily limited to these as long as it has an affinity for the transparent thermoplastic resin.
Further, for the purpose of improving the dispersibility of the inorganic ultraviolet absorber in the thermoplastic resin, an organic polymer dispersant can be used in combination with the above coupling agent.

2.車窓用日射遮蔽体の構造
本発明の車窓用日射遮蔽体の構造の1形態として、第1、2の発明の、熱線遮蔽機能を有する微粒子が、ポリカーボネート樹脂成形体に含まれている車窓用日射遮蔽体がある。
2. Structure of solar shading for vehicle windows As one form of the structure of solar shading for vehicle windows of the present invention, solar radiation for vehicle windows in which the fine particles having a heat ray shielding function of the first and second inventions are contained in a polycarbonate resin molded body. There is a shield.

上記熱線遮蔽機能を有する微粒子を含むポリカーボネートシートの少なくとも一つのシート表面に、耐擦傷性ハードコート層を形成しても良い。例えば、上記シートに、シリケート系、アクリル系などの耐擦傷性ハードコート層を形成することができる。このハードコート層の形成により、成形体の耐擦傷性を向上させることが可能であり、当該熱線遮蔽機能を有する微粒子を含むポリカーボネートシートを自動車用パノラマルーフ、バックウィンドウ、リアサイドウィンドウに使用することが出来る。  A scratch-resistant hard coat layer may be formed on at least one sheet surface of the polycarbonate sheet containing fine particles having a heat ray shielding function. For example, a silicate-based or acrylic-based scratch-resistant hard coat layer can be formed on the sheet. By forming the hard coat layer, it is possible to improve the scratch resistance of the molded body, and the polycarbonate sheet containing fine particles having the heat ray shielding function can be used for an automobile panoramic roof, a back window, and a rear side window. I can do it.

本発明に使用されるポリカーボネート樹脂としては、芳香族ポリカーボネートが好ましい。芳香族ポリカーボネートとしては、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジブロモ−4−ヒドロキシフェニル)プロパンに代表される二価のフェノール系化合物の一種以上と、ホスゲンまたはジフェニルカーボネート等で代表されるカーボネート前駆体とから、界面重合、溶融重合または固相重合等の公知の方法によって得られる重合体が挙げられる。  The polycarbonate resin used in the present invention is preferably an aromatic polycarbonate. As the aromatic polycarbonate, one or more divalent phenolic compounds represented by 2,2-bis (4-hydroxyphenyl) propane and 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane And a polymer obtained by a known method such as interfacial polymerization, melt polymerization, or solid phase polymerization from a carbonate precursor typified by phosgene or diphenyl carbonate.

次に、熱線遮蔽微粒子のポリカーボネート樹脂への分散方法は、微粒子が均一に樹脂に分散する方法であれば任意に選択できる。例としては、ビーズミル、ボールミル、サンドミル、超音波分散などの方法を用い、上記微粒子を任意の溶剤に分散した熱線遮蔽微粒子分散液を調製し、その分散液とポリカーボネート樹脂の粉粒体またはペレット、および必要に応じて他の添加剤をリボンブレンダー、タンブラー、ナウターミキサー、ヘンシェルミキサー、スーパーミキサー、プラネタリーミキサー等の混合機、およびバンバリーミキサー、ニーダー、ロール、ニーダールーダー、一軸押出機、二軸押出機等の混練機を使用して溶剤を除去しながら均一に溶融混合する方法を用いて、ポリカーボネート樹脂に微粒子を均一に分散した混合物を調製することができる。更に、熱線遮蔽微粒子分散液の溶剤を公知の方法で除去し、得られた粉末とポリカーボネート樹脂の粉粒体またはペレット、および必要に応じて他の添加剤を均一に溶融混合する方法を用いてポリカーボネート樹脂に微粒子を均一に分散した混合物を調整することもできる。そのほか、分散処理をしていない熱線遮蔽微粒子の粉末と耐熱性分散剤をポリカーボネート樹脂に直接添加し、均一に溶融混合する方法を用いることもでき、ポリカーボネート樹脂に熱線遮蔽微粒子が均一に分散されていればよく、これ等の方法に限定されない。  Next, the method for dispersing the heat ray shielding fine particles in the polycarbonate resin can be arbitrarily selected as long as the fine particles are uniformly dispersed in the resin. As an example, using a method such as a bead mill, ball mill, sand mill, ultrasonic dispersion, etc., a heat ray shielding fine particle dispersion in which the fine particles are dispersed in an arbitrary solvent is prepared, and the dispersion and polycarbonate resin granules or pellets, If necessary, add other additives such as ribbon blender, tumbler, nauter mixer, Henschel mixer, super mixer, planetary mixer, etc., and Banbury mixer, kneader, roll, kneader ruder, single screw extruder, twin screw A mixture in which fine particles are uniformly dispersed in a polycarbonate resin can be prepared by using a kneading machine such as an extruder and uniformly melting and mixing the solvent while removing the solvent. Further, the solvent of the heat ray shielding fine particle dispersion is removed by a known method, and the obtained powder and the granular material or pellet of the polycarbonate resin and, if necessary, other additives are melt-mixed uniformly. It is also possible to prepare a mixture in which fine particles are uniformly dispersed in a polycarbonate resin. In addition, it is also possible to use a method in which heat-shielding fine particles powder and a heat-resistant dispersant that are not dispersed are directly added to the polycarbonate resin and uniformly melt-mixed. The heat-shielding fine particles are uniformly dispersed in the polycarbonate resin. The method is not limited to these methods.

当該熱線遮蔽機能を有する微粒子を含むポリカーボネートシートの成形方法としては、射出成形、押出成形、圧縮成形または回転成形等の任意の方法を挙げることができる。特に、射出成形により成形品を得る方法が好適に採用される。射出成形品は、自動車のパノラマルーフ、バックウィンドウ、リアサイドウィンドウに好適に使用される。  Examples of a method for forming a polycarbonate sheet containing fine particles having a heat ray shielding function include arbitrary methods such as injection molding, extrusion molding, compression molding, and rotational molding. In particular, a method of obtaining a molded product by injection molding is preferably employed. The injection molded product is preferably used for a panoramic roof, a back window, and a rear side window of an automobile.

上記熱線遮蔽機能を有する微粒子を含むポリカーボネートシートは、それ自体のみを、自動車のパノラマルーフ、バックウィンドウ、リアサイドウィンドウに使用することができるほか、無機ガラス、樹脂ガラス、樹脂フィルムなどの他の透明成形体に任意の方法で積層し、一体化した熱線遮蔽透明積層体として、構造材に使用することもできる。例えば、予めシート状に成形した熱線遮蔽機能を有する微粒子を含むポリカーボネートシートを無機ガラスに熱ラミネート法により積層一体化することで、熱線遮蔽機能、飛散防止機能を有する熱線遮蔽能を有する透明積層体を得ることができる。  The polycarbonate sheet containing fine particles having the heat ray shielding function can be used only for automobile panorama roof, back window, rear side window, and other transparent molding such as inorganic glass, resin glass, resin film, etc. It can also be used as a structural material as a heat-shielding transparent laminate that is laminated on the body by any method and integrated. For example, a transparent laminated body having a heat ray shielding function and a heat ray shielding function having a heat ray shielding function and a scattering prevention function by integrating and integrating a polycarbonate sheet containing fine particles having a heat ray shielding function previously formed into a sheet shape on an inorganic glass by a heat lamination method Can be obtained.

また、熱ラミネート法、共押出法、プレス成形法、射出成形法等により、熱線遮蔽機能を有する微粒子を含むポリカーボネートシートの成形と同時に他の透明成形体に積層一体化することで、熱線遮蔽能を有する透明積層体を得ることも可能である。上記熱線遮蔽能を有する透明積層体は、相互の成形体の持つ利点を有効に発揮させつつ、相互の欠点を補完することで、より有用な自動車窓材として使用することができる。  In addition, heat ray shielding ability is achieved by laminating and integrating with other transparent molded bodies simultaneously with the molding of polycarbonate sheets containing fine particles with heat ray shielding function by heat lamination method, coextrusion method, press molding method, injection molding method, etc. It is also possible to obtain a transparent laminate having The transparent laminate having the above-mentioned heat ray shielding ability can be used as a more useful automobile window material by complementing each other's drawbacks while effectively exhibiting the advantages of the mutual molded bodies.

更に、本発明に係る熱線遮蔽機能を有する微粒子を含むポリカーボネートシートは、一般的な添加剤を配合することも可能である。例えば、必要に応じて任意の色調を与えるため、アゾ系染料、シアニン系染料、キノリン系、ペリレン系染料、カーボンブラック等、一般的に熱可塑性樹脂の着色に利用されている染料、顔料の他、ヒンダードフェノール系、リン系等の安定剤、離型剤、ヒドロキシベンゾフェノン系、サリチル酸系、HALS系、トリアゾール系、トリアジン系等の紫外線吸収剤、カップリング剤、界面活性剤、帯電防止剤等を、これ等の有効発現量配合したものを添加剤として使用することができる。  Furthermore, the polycarbonate sheet containing fine particles having a heat ray shielding function according to the present invention can be blended with general additives. For example, azo dyes, cyanine dyes, quinoline dyes, perylene dyes, carbon black, and other dyes and pigments that are generally used for coloring thermoplastic resins in order to give any color tone as necessary. , Hindered phenol and phosphorus stabilizers, mold release agents, hydroxybenzophenone, salicylic acid, HALS, triazole and triazine UV absorbers, coupling agents, surfactants, antistatic agents, etc. Can be used as additives.

また、本発明の車窓用日射遮蔽体の構造の1形態として、第1、2の発明の、熱線遮蔽機能を有する微粒子が、ポリビニルブチラール樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂から選択される一種に含まれて、中間膜として用いられることも好ましい。
日射遮蔽体を2枚の合わせ板間に上記車窓用日射遮蔽体を中間膜として介在させてなる合わせ構造体であって、該合わせ板が無機板ガラス、ポリカーボネート樹脂成形体、ポリエチレンテレフタレート樹脂成形体から選択される少なくとも一種である車窓用日射遮蔽体が得られる。
上記合わせ板の少なくとも一方が、前記の熱線遮蔽機能を有する微粒子が、ポリカーボネート樹脂成形体に含まれている車窓用日射遮蔽体である車窓用日射遮蔽体とすることもできる。
Moreover, as one form of the structure of the solar radiation shielding body for vehicle windows of the present invention, the fine particles having a heat ray shielding function according to the first and second inventions are selected from polyvinyl butyral resin, polyvinyl acetate resin, and polyvinyl alcohol resin. It is also preferable to be used as an intermediate film.
A laminated structure in which the solar radiation shielding body is interposed between two laminated plates with the vehicle window solar radiation shielding film as an intermediate film, and the laminated board is made of an inorganic sheet glass, a polycarbonate resin molded body, and a polyethylene terephthalate resin molded body. A solar window solar shading body which is at least one kind selected is obtained.
At least one of the laminated plates may be a vehicle window solar radiation shield that is a vehicle window solar radiation shield in which the fine particles having a heat ray shielding function are contained in a polycarbonate resin molded body.

上記した前記車窓用日射遮蔽体の形状は、厚さ2.5mm〜30mm、かつ最大投影面積が400〜60000cmであることが好ましい。
現状の射出成形技術で製造可能な最大の大きさが60000cmであり、それより大きくなると製造が困難になる。しかし、今後の製造装置、射出成形方法の革新により、より大きな日射遮蔽体の製造が可能になる場合がある。また、400cm以下になると、車窓用としては小さすぎて不適当である。厚さについても現状の射出成形技術で製造可能な最大の厚みが30mmであり、それより厚くなると製造が困難になる。また、2.5mmより薄くなると、車両に搭載したときに車両自体の剛性が十分に得られない可能性がある。
It is preferable that the above-mentioned solar radiation shielding body for vehicle windows has a thickness of 2.5 mm to 30 mm and a maximum projected area of 400 to 60000 cm 2 .
The maximum size that can be manufactured by the current injection molding technology is 60000 cm 2 , and if it is larger, manufacturing becomes difficult. However, there may be cases where it is possible to manufacture a larger solar shading body due to innovations in future manufacturing apparatuses and injection molding methods. Moreover, when it becomes 400 cm < 2 > or less, it is too small for a vehicle window and is unsuitable. Regarding the thickness, the maximum thickness that can be manufactured by the current injection molding technology is 30 mm, and if it becomes thicker, manufacturing becomes difficult. On the other hand, if the thickness is less than 2.5 mm, the vehicle itself may not have sufficient rigidity when mounted on the vehicle.

上記した多くの形態を有する本発明の車窓用日射遮蔽体は、車両用窓、特に、明るさよりもむしろ、如何に経済的に太陽光線の熱を遮るかに重点が置かれた設計が必要となっている自動車のサンルーフ、パノラマルーフ、バックウィンドウ、リアサイドウィンドウ、フロントウィンドウ、重機のサンルーフなどに適用できる。  The solar window solar shading body of the present invention having the above-described many forms requires a design that emphasizes how to economically block the heat of solar rays rather than a vehicle window, in particular, brightness. It can be applied to sunroofs, panoramic roofs, back windows, rear side windows, front windows and heavy equipment sunroofs.

以下に、本発明の実施例を比較例とともに具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。尚、各実施例において、各種微粒子の分散粒径は、動的光散乱法を原理とした大塚電子(株)社製ELS−8000によって測定した。
車窓用日射遮蔽体の可視光透過率並びに日射透過率は、日立製作所(株)製の分光光度計U−4000を用いて測定した。
Examples of the present invention will be specifically described below together with comparative examples. However, the present invention is not limited to the following examples. In each example, the dispersed particle size of various fine particles was measured by ELS-8000 manufactured by Otsuka Electronics Co., Ltd. based on the principle of dynamic light scattering.
Visible light transmittance and solar light transmittance of the solar radiation shield for vehicle windows were measured using a spectrophotometer U-4000 manufactured by Hitachi, Ltd.

TiN微粒子10重量%、分散剤10重量%、トルエン80重量%を秤量し、0.3mmφZrOビ−ズを入れたペイントシェ−カ−で6時間粉砕・分散処理することによってTiN微粒子分散液(A液)調製した。ここで、TiN微粒子分散液(A液)内におけるTiN酸化物微粒子の分散粒子径を測定したところ、80nmであった。
更に、上記A液に分散剤を添加し、分散剤とTiN微粒子の重量比が分散剤/TiN微粒子=3となるように調整し、スプレードライヤーを用いてトルエンを除去し、TiN微粒子分散粉を得た(以下、A粉と略称する)。
A TiN fine particle dispersion (by weighting 10% by weight of TiN fine particles, 10% by weight of a dispersant, 80% by weight of toluene, and pulverizing and dispersing with a paint shaker containing 0.3 mmφZrO 2 beads for 6 hours ( Liquid A) was prepared. Here, when the dispersed particle diameter of the TiN oxide fine particles in the TiN fine particle dispersion (liquid A) was measured, it was 80 nm.
Further, a dispersant is added to the liquid A, the weight ratio of the dispersant to the TiN fine particles is adjusted to be dispersant / TiN fine particles = 3, toluene is removed using a spray dryer, and the TiN fine particle dispersed powder is obtained. Obtained (hereinafter abbreviated as A powder).

次に、得られたA粉を熱可塑性樹脂であるポリカーボ−ネート樹脂ペレットにTiN濃度が2.0重量%となるように添加し、ブレンダーで均一に混合した後、二軸押出機で熔融混練し、押出されたストランドをペレット状にカットし、TiN微粒子含有ポリカーボネートマスターバッチを得た(以下、マスターバッチAと略称する)。  Next, the obtained A powder is added to a polycarbonate resin pellet which is a thermoplastic resin so that the TiN concentration becomes 2.0% by weight, mixed uniformly with a blender, and then melt kneaded with a twin screw extruder. The extruded strand was cut into pellets to obtain a polycarbonate masterbatch containing TiN fine particles (hereinafter abbreviated as masterbatch A).

ATO微粒子10重量%、分散剤10重量%、トルエン80重量%を秤量し、0.3mmφZrOビーズを入れたペイントシェ−カ−で6時間粉砕・分散処理することによってATO微粒子分散液(B液)調製した。ここで、ATO微粒子分散液(B液)内におけるATO酸化物微粒子の分散粒子径を測定したところ、63nmであった。
更に、上記B液に分散剤を添加し、分散剤とATO微粒子の重量比が分散剤/ATO微粒子=3となるように調整し、スプレードライヤーを用いてトルエンを除去し、ATO微粒子分散粉を得た(以下、B粉と略称する)。
ATO fine particle dispersion (liquid B) was weighed with 10% by weight of ATO fine particles, 10% by weight of dispersant and 80% by weight of toluene, and pulverized and dispersed for 6 hours with a paint shaker containing 0.3 mmφZrO 2 beads. ) Prepared. Here, when the dispersed particle diameter of the ATO oxide fine particles in the ATO fine particle dispersion (liquid B) was measured, it was 63 nm.
Further, a dispersant is added to the above-mentioned liquid B, and the weight ratio of the dispersant to the ATO fine particles is adjusted to be dispersant / ATO fine particles = 3. Toluene is removed using a spray dryer, and the ATO fine particle dispersed powder is obtained. Obtained (hereinafter abbreviated as B powder).

次に、得られたB粉を熱可塑性樹脂であるポリカーボ−ネート樹脂ペレットにATO濃度が2.0重量%となるように添加し、ブレンダーで均一に混合した後、二軸押出機で熔融混練し、押出されたストランドをペレット状にカットし、ATO微粒子含有ポリカーボネートマスターバッチを得た(以下、マスターバッチBと略称する)。  Next, the obtained B powder is added to a polycarbonate resin pellet which is a thermoplastic resin so that the ATO concentration becomes 2.0% by weight, and is uniformly mixed with a blender, and then melt kneaded with a twin screw extruder. The extruded strand was cut into pellets to obtain an ATO fine particle-containing polycarbonate masterbatch (hereinafter abbreviated as masterbatch B).

次に、マスターバッチAとマスターバッチBをポリカーボ−ネート樹脂ペレットで希釈し、タンブラーで均一に混合した後、Tダイを用いて厚さ2.0mmに押出成形し、TiN添加量が0.06g/m、ATO添加量が9.6g/mとなるように調整し、TiN微粒子とATO微粒子が樹脂全体に均一に分散した実施例1に係る日射遮蔽体1を得た。また、日射遮蔽体の微粒子の分散粒子径は、75nmであった。
表1に示すように、可視光透過率31.7%のときの日射透過率は19.1%であった。
Next, after master batch A and master batch B were diluted with polycarbonate resin pellets and uniformly mixed with a tumbler, they were extruded to a thickness of 2.0 mm using a T-die, and the amount of TiN added was 0.06 g. / M 2 , ATO addition amount was adjusted to be 9.6 g / m 2 to obtain a solar shading body 1 according to Example 1 in which TiN fine particles and ATO fine particles were uniformly dispersed throughout the resin. Moreover, the dispersion particle diameter of the fine particles of the solar radiation shielding body was 75 nm.
As shown in Table 1, the solar radiation transmittance was 19.1% when the visible light transmittance was 31.7%.

TiN添加量が0.09g/m、ATO添加量が14.4g/mとなるように調整した以外は、実施例1と同様の方法で実施例2に係る日射遮蔽体2を得た。また、日射遮蔽体の微粒子の分散粒子径は、78nmであった。
表1に示すように、可視光透過率22.1%のときの日射透過率は15.9%であった。
The solar radiation shielding body 2 according to Example 2 was obtained in the same manner as in Example 1 except that the addition amount of TiN was 0.09 g / m 2 and that the ATO addition amount was 14.4 g / m 2 . . The dispersion particle size of the solar radiation shielding particles was 78 nm.
As shown in Table 1, the solar radiation transmittance was 15.9% when the visible light transmittance was 22.1%.

TiN添加量が0.11g/m、ATO添加量が1.92g/mとなるように調整した以外は、実施例1と同様の方法で実施例3に係る日射遮蔽体3を得た。また、日射遮蔽体の微粒子の分散粒子径は、73nmであった。
表1に示すように、可視光透過率31.9%のときの日射透過率は25.2%であった。
The solar shading body 3 according to Example 3 was obtained in the same manner as in Example 1 except that the addition amount was 0.11 g / m 2 and the ATO addition amount was 1.92 g / m 2 . . Moreover, the dispersion particle diameter of the fine particles of the sunscreen was 73 nm.
As shown in Table 1, the solar radiation transmittance was 25.2% when the visible light transmittance was 31.9%.

ZnO微粒子10重量%、分散剤10重量%、トルエン80重量%を秤量し、0.3mmφZrOビ−ズを入れたペイントシェ−カ−で3時間粉砕・分散処理することによってZnO微粒子分散液を調製した。更に、上記ZnO微粒子分散液に分散剤を添加し、分散剤とZnO微粒子の重量比が分散剤/WO微粒子=3となるように調整し、スプレードライヤーを用いてトルエンを除去し、ZnO微粒子分散粉を得た。A ZnO fine particle dispersion was obtained by weighing 10% by weight of ZnO fine particles, 10% by weight of a dispersant, and 80% by weight of toluene, and then pulverizing and dispersing with a paint shaker containing 0.3 mmφZrO 2 beads for 3 hours. Prepared. Further, a dispersant is added to the ZnO fine particle dispersion, and the weight ratio of the dispersant to the ZnO fine particles is adjusted to be dispersant / WO 2 fine particles = 3. Toluene is removed using a spray dryer, and the ZnO fine particles are removed. Dispersed powder was obtained.

次に、得られたZnO微粒子分散粉を、熱可塑性樹脂であるポリカーボ−ネート樹脂ペレットにZnO微粒子分散粉を濃度が2.0重量%となるように添加し、ブレンダーで均一に混合した後、二軸押出機で熔融混練し、押出されたストランドをペレット状にカットし、ZnO微粒子含有ポリカーボネートマスターバッチを得た。  Next, the obtained ZnO fine particle dispersed powder was added to a polycarbonate resin pellet which is a thermoplastic resin so that the concentration of the ZnO fine particle dispersed powder becomes 2.0% by weight, and mixed uniformly with a blender. It melt-kneaded with the twin-screw extruder, the extruded strand was cut into the pellet form, and the ZnO fine particle containing polycarbonate masterbatch was obtained.

次に、上記ZnO微粒子含有ポリカーボネートマスターバッチを10wt%添加した以外は、実施例3と同様の方法で実施例4に係る日射遮蔽体4を得た。また、日射遮蔽体の微粒子の分散粒子径は、70nmであった。
表1に示すように、可視光透過率30.0%のときの日射透過率は24.2%であった。
Next, the solar radiation shielding body 4 which concerns on Example 4 was obtained by the method similar to Example 3 except having added 10 wt% of the said ZnO fine particle containing polycarbonate masterbatch. Moreover, the dispersion particle diameter of the fine particles of the solar radiation shielding body was 70 nm.
As shown in Table 1, the solar radiation transmittance was 24.2% when the visible light transmittance was 30.0%.

WO微粒子10重量%、分散剤10重量%、トルエン80重量%を秤量し、0.3mmφZrOビ−ズを入れたペイントシェ−カ−で6時間粉砕・分散処理することによってWO微粒子分散液(C液)調製した。ここで、WO微粒子分散液(C液)内におけるWO微粒子の分散粒子径を測定したところ、55nmであった。WO 2 fine particles 10% by weight, dispersing agent 10% by weight, were weighed 80 weight% toluene, 0.3MmfaiZrO 2 bi - Paint put's shell - Ca - In WO 2 fine particle dispersion by grinding and dispersion treatment for 6 hours A liquid (C liquid) was prepared. Here, the measured dispersed particle size of the WO 2 fine particles in the WO 2 fine particle dispersion (C solution) in was 55 nm.

更に、上記C液に分散剤を添加し、分散剤とWO微粒子の重量比が分散剤/WO微粒子=3となるように調整し、スプレードライヤーを用いてトルエンを除去し、WO微粒子分散粉を得た(以下、C粉と略称する)。Furthermore, adding a dispersing agent to the solution C, the weight ratio of the dispersant and WO 2 fine particles was adjusted to be dispersants / WO 2 fine particles = 3, using a spray dryer to remove toluene, WO 2 fine particles Dispersed powder was obtained (hereinafter abbreviated as C powder).

次に、得られたC粉を、熱可塑性樹脂であるポリカーボ−ネート樹脂ペレットにWO濃度が2.0重量%となるように添加し、ブレンダーで均一に混合した後、二軸押出機で熔融混練し、押出されたストランドをペレット状にカットし、WO微粒子含有ポリカーボネートマスターバッチを得た(以下、マスターバッチCと略称する)。Next, the obtained C powder was added to polycarbonate resin pellets, which are thermoplastic resins, so that the WO 2 concentration was 2.0% by weight, mixed uniformly with a blender, and then mixed with a twin screw extruder. The melt-kneaded and extruded strand was cut into pellets to obtain a polycarbonate master batch containing WO 2 fine particles (hereinafter abbreviated as “master batch C”).

次に、マスターバッチBとマスターバッチCをポリカーボ−ネート樹脂ペレットで希釈し、タンブラーで均一に混合した後、Tダイを用いて厚さ2.0mmに押出成形し、WO添加量が0.44g/m、ATO添加量が1.93g/mとなるように調整し、WO微粒子とATOが樹脂全体に均一に分散した実施例5に係る日射遮蔽体5を得た。また、日射遮蔽体の微粒子の分散粒子径は、80nmであった。
表1に示すように、可視光透過率30.5%のときの日射透過率は28.7%であった。
Next, after master batch B and master batch C were diluted with polycarbonate resin pellets and uniformly mixed with a tumbler, they were extruded to a thickness of 2.0 mm using a T-die, and the amount of WO 2 added was 0.00. 44 g / m 2, ATO additive amount was adjusted to be 1.93 g / m 2, to obtain a solar radiation-shielding body 5 according to example 5 of WO 2 fine particles and the ATO were uniformly dispersed in the entire resin. The dispersion particle diameter of the solar radiation shielding particles was 80 nm.
As shown in Table 1, the solar radiation transmittance was 28.7% when the visible light transmittance was 30.5%.

ITO微粒子10重量%、分散剤10重量%、トルエン80重量%を秤量し、0.3mmφZrOビ−ズを入れたペイントシェ−カ−で6時間粉砕・分散処理することによってITO微粒子分散液(D液)調製した。ここで、ITO微粒子分散液(D液)内におけるITO微粒子の分散粒子径を測定したところ、75nmであった。10% by weight of ITO fine particles, 10% by weight of dispersant and 80% by weight of toluene were weighed, and then ground and dispersed for 6 hours with a paint shaker containing 0.3 mmφZrO 2 beads. D liquid). Here, when the dispersed particle diameter of the ITO fine particles in the ITO fine particle dispersion (D liquid) was measured, it was 75 nm.

更に、上記D液に分散剤を添加し、分散剤とITO微粒子の重量比が分散剤/ITO微粒子=3となるように調整し、スプレードライヤーを用いてトルエンを除去し、ITO微粒子分散粉を得た(以下、D粉と略称する)。  Furthermore, a dispersant is added to the liquid D, and the weight ratio of the dispersant to the ITO fine particles is adjusted to be dispersant / ITO fine particles = 3. Toluene is removed using a spray dryer, and the ITO fine particle dispersed powder is obtained. Obtained (hereinafter abbreviated as D powder).

次に、得られたD粉を熱可塑性樹脂であるポリカーボ−ネート樹脂ペレットにITO濃度が2.0重量%となるように添加し、ブレンダーで均一に混合した後、二軸押出機で熔融混練し、押出されたストランドをペレット状にカットし、ITO微粒子含有ポリカーボネートマスターバッチを得た(以下、マスターバッチDと略称する)。  Next, the obtained D powder is added to a polycarbonate resin pellet which is a thermoplastic resin so that the ITO concentration becomes 2.0% by weight, and is mixed uniformly with a blender, and then melt kneaded with a twin screw extruder. The extruded strand was cut into pellets to obtain an ITO fine particle-containing polycarbonate masterbatch (hereinafter abbreviated as masterbatch D).

次に、マスターバッチCとマスターバッチDをポリカーボ−ネート樹脂ペレットで希釈し、タンブラーで均一に混合した後、Tダイを用いて厚さ2.0mmに押出成形し、WO添加量が0.44g/m、ITO添加量が1.95g/mとなるように調整し、WO微粒子とITOが樹脂全体に均一に分散した実施例6に係る日射遮蔽体6を得た。また、日射遮蔽体の微粒子の分散粒子径は、77nmであった。
表1に示すように、可視光透過率30.9%のときの日射透過率は23.1%であった。
Next, after master batch C and master batch D were diluted with polycarbonate resin pellets and uniformly mixed with a tumbler, they were extruded to a thickness of 2.0 mm using a T-die, and the WO 2 addition amount was 0.00. 44 g / m 2, ITO addition amount was adjusted to be 1.95 g / m 2, to obtain a solar radiation-shielding body 6 according to example 6 of WO 2 fine particles and the ITO were uniformly dispersed in the entire resin. The dispersion particle diameter of the solar radiation shielding particles was 77 nm.
As shown in Table 1, the solar radiation transmittance was 23.1% when the visible light transmittance was 30.9%.

LaB微粒子10重量%、分散剤10重量%、トルエン80重量%を秤量し、0.3mmφZrOビ−ズを入れたペイントシェ−カ−で6時間粉砕・分散処理することによってLaB微粒子分散液(E液)調製した。ここで、LaB微粒子分散液(E液)内におけるLaB微粒子の分散粒子径を測定したところ、68nmであった。
更に、上記E液に分散剤を添加し、分散剤とTiN微粒子の重量比が分散剤/ITO微粒子=3となるように調整し、スプレードライヤーを用いてトルエンを除去し、ITO微粒子分散粉を得た(以下、E粉と略称する)。
LaB 6 fine particles 10% by weight, dispersing agent 10% by weight, were weighed 80 weight% toluene, 0.3MmfaiZrO 2 bi - Paint put's shell - Ca - in LaB 6 fine particle dispersion by grinding and dispersion treatment for 6 hours A liquid (E liquid) was prepared. Here, the measured dispersed particle size of the LaB 6 fine particles in the LaB 6 fine particle dispersion in (E solution) was 68 nm.
Further, a dispersant is added to the E solution, and the weight ratio of the dispersant to the TiN fine particles is adjusted to be dispersant / ITO fine particles = 3. Toluene is removed using a spray dryer, and the ITO fine particle dispersed powder is obtained. Obtained (hereinafter abbreviated as E powder).

次に、得られたE粉を熱可塑性樹脂であるポリカーボ−ネート樹脂ペレットにLaB濃度が2.0重量%となるように添加し、ブレンダーで均一に混合した後、二軸押出機で熔融混練し、押出されたストランドをペレット状にカットし、LaB微粒子含有ポリカーボネートマスターバッチを得た(以下、マスターバッチEと略称する)。Next, the obtained E powder is added to a polycarbonate resin pellet which is a thermoplastic resin so that the LaB 6 concentration is 2.0% by weight, mixed uniformly with a blender, and then melted with a twin screw extruder. kneaded, and the extruded strand was cut into pellets to yield the LaB 6 fine particle-containing polycarbonate master batch (hereinafter abbreviated to master batch E).

次に、マスターバッチAとマスターバッチBとマスターバッチEをポリカーボ−ネート樹脂ペレットで希釈し、タンブラーで均一に混合した後、Tダイを用いて厚さ2.0mmに押出成形し、LaB添加量が0.06g/m、TiN添加量が0.06g/m、ATO添加量が1.94g/m、となるように調整し、LaB微粒子とTiN微粒子とATO微粒子が樹脂全体に均一に分散した実施例7に係る日射遮蔽体7を得た。また、日射遮蔽体の微粒子の分散粒子径は、85nmであった。
表1に示すように、可視光透過率37.8%のときの日射透過率は27.4%であった。
Next, master batch A, master batch B, and master batch E are diluted with polycarbonate resin pellets, mixed uniformly with a tumbler, extruded to a thickness of 2.0 mm using a T-die, and LaB 6 added. the amount is adjusted to 0.06 g / m 2, TiN addition amount 0.06 g / m 2, ATO additive amount is 1.94g / m 2,, whole LaB 6 fine particles and TiN particles and the ATO fine particles are resin The solar shading body 7 according to Example 7 that was uniformly dispersed was obtained. Moreover, the dispersion particle diameter of the fine particles of the solar shield was 85 nm.
As shown in Table 1, the solar radiation transmittance was 27.4% when the visible light transmittance was 37.8%.

1849微粒子10重量%、分散剤10重量%、トルエン80重量%を秤量し、0.3mmφZrOビ−ズを入れたペイントシェ−カ−で6時間粉砕・分散処理することによってW1849微粒子分散液(F液)調製した。ここで、W1849微粒子分散液(F液)内におけるW1849微粒子の分散粒子径を測定したところ、69nmであった。W 18 O 49 fine particles 10% by weight, dispersing agent 10% by weight, were weighed 80 weight% toluene, 0.3MmfaiZrO 2 bi - Paint put's shell - Ca - in W 18 by pulverization and dispersion treatment for 6 hours An O 49 fine particle dispersion (liquid F) was prepared. Here, the measured dispersed particle size of the W 18 O 49 fine particles in the W 18 O 49 fine particle dispersion (F solution) in was 69 nm.

更に、上記F液に分散剤を添加し、分散剤とW1849微粒子の重量比が分散剤/W1849微粒子=3となるように調整し、スプレードライヤーを用いてトルエンを除去し、W1849微粒子分散粉を得た(以下、F粉と略称する)。Furthermore, by adding a dispersant to said solution F, the weight ratio of the dispersant and W 18 O 49 fine particles are adjusted so that the dispersant / W 18 O 49 fine particles = 3, the toluene was removed using a spray dryer W 18 O 49 fine particle dispersed powder was obtained (hereinafter abbreviated as F powder).

次に、得られたF粉を熱可塑性樹脂であるポリカーボ−ネート樹脂ペレットにW1849濃度が2.0重量%となるように添加し、ブレンダーで均一に混合した後、二軸押出機で熔融混練し、押出されたストランドをペレット状にカットし、W1849微粒子含有ポリカーボネートマスターバッチを得た(以下、マスターバッチFと略称する)。Next, the obtained F powder was added to polycarbonate resin pellets, which are thermoplastic resins, so that the W 18 O 49 concentration was 2.0% by weight and mixed uniformly with a blender. Then, the extruded strand was cut into pellets to obtain a polycarbonate master batch containing W 18 O 49 fine particles (hereinafter abbreviated as “master batch F”).

次に、マスターバッチBとマスターバッチFをポリカーボ−ネート樹脂ペレットで希釈し、タンブラーで均一に混合した後、Tダイを用いて厚さ2.0mmに押出成形し、W1849添加量が0.43g/m、ATO添加量が2.01g/mとなるように調整し、W1849微粒子とATOが樹脂全体に均一に分散した実施例8に係る日射遮蔽体8を得た。また、日射遮蔽体の微粒子の分散粒子径は、61nmであった。
表1に示すように、可視光透過率31.8%のときの日射透過率は28.1%であった。
Next, after masterbatch B and masterbatch F were diluted with polycarbonate resin pellets and uniformly mixed with a tumbler, they were extruded to a thickness of 2.0 mm using a T-die, and the amount of W 18 O 49 added was The solar radiation shielding body 8 according to Example 8 was obtained by adjusting 0.43 g / m 2 and adding ATO to 2.01 g / m 2 to uniformly disperse W 18 O 49 fine particles and ATO throughout the resin. It was. Moreover, the dispersion particle diameter of the fine particles of the solar radiation shielding body was 61 nm.
As shown in Table 1, the solar radiation transmittance was 28.1% when the visible light transmittance was 31.8%.

0.33WO微粒子10重量%、分散剤10重量%、トルエン80重量%を秤量し、0.3mmφZrOビ−ズを入れたペイントシェ−カ−で6時間粉砕・分散処理する
ことによってC0.33WO微粒子分散液(G液)調製した。ここで、C0.33WO微粒子分散液(G液)内におけるC0.33WO微粒子の分散粒子径を測定したところ、77nmであった。
C 0.33 WO 3 10% by weight of fine particles, 10% by weight of dispersant and 80% by weight of toluene were weighed and pulverized and dispersed for 6 hours with a paint shaker containing 0.3 mmφZrO 2 beads. C 0.33 WO 3 fine particle dispersion (liquid G) was prepared. Here, the measured dispersed particle size of the C 0.33 WO 3 fine particles in the C 0.33 WO 3 fine particle dispersion (G liquid) in was 77 nm.

更に、上記G液に分散剤を添加し、分散剤とC0.33WO微粒子の重量比が分散剤/C0.33WO微粒子=3となるように調整し、スプレードライヤーを用いてトルエンを除去し、C0.33WO微粒子分散粉を得た(以下、G粉と略称する)。Furthermore, adding a dispersing agent to the solution G, the weight ratio of the dispersant and the C 0.33 WO 3 fine particles was adjusted to be dispersants / C 0.33 WO 3 fine particles = 3, using a spray dryer Toluene was removed to obtain a C 0.33 WO 3 fine particle dispersed powder (hereinafter abbreviated as G powder).

次に、得られたG粉を熱可塑性樹脂であるポリカーボ−ネート樹脂ペレットにC0.33WO濃度が2.0重量%となるように添加し、ブレンダーで均一に混合した後、二軸押出機で熔融混練し、押出されたストランドをペレット状にカットし、C0.33WO微粒子含有ポリカーボネートマスターバッチを得た(以下、マスターバッチGと略称する)。Next, the obtained G powder was added to a polycarbonate resin pellet as a thermoplastic resin so that the C 0.33 WO 3 concentration was 2.0% by weight, and mixed uniformly with a blender. The extruded strand was melt-kneaded with an extruder, and the extruded strand was cut into pellets to obtain a polycarbonate master batch containing C 0.33 WO 3 fine particles (hereinafter abbreviated as “master batch G”).

次に、マスターバッチAとマスターバッチGをポリカーボ−ネート樹脂ペレットで希釈し、タンブラーで均一に混合した後、Tダイを用いて厚さ2.0mmに押出成形し、TiN添加量が0.06g/m、C0.33WO添加量が2.4g/mとなるように調整し、TiN微粒子とC0.33WOが樹脂全体に均一に分散した実施例9に係る日射遮蔽体9を得た。また、日射遮蔽体の微粒子の分散粒子径は、79nmであった。
表1に示すように、可視光透過率31.7%のときの日射透過率は15.7%であった。
Next, after master batch A and master batch G were diluted with polycarbonate resin pellets and uniformly mixed with a tumbler, they were extruded to a thickness of 2.0 mm using a T die, and the amount of TiN added was 0.06 g. / M 2 , C 0.33 WO 3 was added so that the amount added was 2.4 g / m 2, and the solar radiation shielding according to Example 9 was obtained in which TiN fine particles and C 0.33 WO 3 were uniformly dispersed throughout the resin. Body 9 was obtained. The dispersion particle diameter of the solar radiation shielding particles was 79 nm.
As shown in Table 1, the solar radiation transmittance was 15.7% when the visible light transmittance was 31.7%.

TiN添加量が0.15g/m、C0.33WO添加量が6.0g/mとなるように調整した以外は、実施例10と同様の方法で実施例10に係る日射遮蔽体10を得た。また、日射遮蔽体の微粒子の分散粒子径は、66nmであった。
表1に示すように、可視光透過率10.1%のときの日射透過率は7.1%であった。
Solar radiation shielding according to Example 10 in the same manner as in Example 10 except that the amount of TiN added was adjusted to 0.15 g / m 2 and the amount of C 0.33 WO 3 added was adjusted to 6.0 g / m 2. Body 10 was obtained. The dispersion particle diameter of the solar radiation shielding particles was 66 nm.
As shown in Table 1, the solar radiation transmittance was 7.1% when the visible light transmittance was 10.1%.

Fe微粒子10重量%、分散剤10重量%、トルエン80重量%を秤量し、0.3mmφZrOビ−ズを入れたペイントシェ−カ−で6時間粉砕・分散処理することによってFe微粒子分散液(H液)調製した。ここで、Fe微粒子分散液(H液)内におけるFe微粒子の分散粒子径を測定したところ、50nmであった。
更に、上記H液に分散剤を添加し、分散剤とFe微粒子の重量比が分散剤/Fe微粒子=3となるように調整し、スプレードライヤーを用いてトルエンを除去し、Fe微粒子分散粉を得た(以下、H粉と略称する)。
Fe 2 O 3 fine particles 10% by weight, dispersant 10% by weight and toluene 80% by weight are weighed, and then ground by a paint shaker containing 0.3 mmφZrO 2 beads for 6 hours to disperse Fe 2. An O 3 fine particle dispersion (liquid H) was prepared. Here, the measured dispersed particle size of the Fe 2 O 3 fine particles in the Fe 2 O 3 fine particle dispersion (H solution) in was 50nm.
Furthermore, adding a dispersing agent to the H solution, the weight ratio of the dispersant and Fe 2 O 3 fine particles was adjusted to be dispersants / Fe 2 O 3 fine particles = 3, the toluene was removed using a spray dryer , Fe 2 O 3 fine particle dispersed powder was obtained (hereinafter abbreviated as H powder).

次に、得られたH粉を熱可塑性樹脂であるポリカーボ−ネート樹脂ペレットにFe濃度が2.0重量%となるように添加し、ブレンダーで均一に混合した後、二軸押出機で熔融混練し、押出されたストランドをペレット状にカットし、Fe微粒子含有ポリカーボネートマスターバッチを得た(以下、マスターバッチHと略称する)。Next, the obtained H powder was added to polycarbonate resin pellets, which are thermoplastic resins, so that the Fe 2 O 3 concentration was 2.0% by weight, and mixed uniformly with a blender. The extruded strand was cut into pellets to obtain a polycarbonate master batch containing Fe 2 O 3 fine particles (hereinafter abbreviated as “master batch H”).

次に、マスターバッチAとマスターバッチGとマスターバッチHをポリカーボ−ネート樹脂ペレットで希釈し、タンブラーで均一に混合した後、Tダイを用いて厚さ2.0mmに押出成形し、TiN添加量が0.06g/m、C0.33WO添加量が2.4g/m、Fe添加量が0.6g/mとなるように調整し、TiN微粒子とC0.33WOとFe微粒子が樹脂全体に均一に分散した実施例11に係る日射遮蔽体11を得た。また、日射遮蔽体のFeの微粒子の分散粒子径は、81nmであった。
表1に示すように、可視光透過率26.6%のときの日射透過率は25.0%であった。
Next, master batch A, master batch G, and master batch H are diluted with polycarbonate resin pellets, mixed uniformly with a tumbler, and then extruded to a thickness of 2.0 mm using a T-die. Is adjusted to 0.06 g / m 2 , C 0.33 WO 3 addition amount is 2.4 g / m 2 , and Fe 2 O 3 addition amount is 0.6 g / m 2, and TiN fine particles and C 0. A solar shading body 11 according to Example 11 in which 33 WO 3 and Fe 2 O 3 fine particles were uniformly dispersed throughout the resin was obtained. The dispersion particle diameter of the Fe 2 O 3 fine particles of the solar radiation shielding body was 81 nm.
As shown in Table 1, the solar radiation transmittance was 25.0% when the visible light transmittance was 26.6%.

TiN微粒子3重量%、イソプロピルアルコール97重量%を秤量し、0.3mmφZrOビ−ズを入れたペイントシェ−カ−で6時間粉砕・分散処理した後、メチルトリメトキシシランを添加し、メカニカルスターラーで1時間攪拌し混合した後、スプレードライヤーを用いてトルエンを除去し、シラン化合物にて表面処理を施したTiN微粒子を得た。
ATO微粒子3重量%、イソプロピルアルコール97重量%を秤量し、0.3mmφZrOビ−ズを入れたペイントシェ−カ−で6時間粉砕・分散処理した後、メチルトリメトキシシランを添加し、メカニカルスターラーで1時間攪拌し混合した後、スプレードライヤーを用いてトルエンを除去し、シラン化合物にて表面処理を施したATO微粒子を得た。
3% by weight of TiN fine particles and 97% by weight of isopropyl alcohol were weighed and pulverized and dispersed with a paint shaker containing 0.3 mmφZrO 2 beads for 6 hours. Then, methyltrimethoxysilane was added and a mechanical stirrer was added. After stirring for 1 hour and mixing, toluene was removed using a spray dryer, and TiN fine particles subjected to surface treatment with a silane compound were obtained.
3% by weight of ATO fine particles and 97% by weight of isopropyl alcohol were weighed, pulverized and dispersed for 6 hours with a paint shaker containing 0.3 mmφZrO 2 beads, methyltrimethoxysilane was added, and a mechanical stirrer was added. After stirring for 1 hour and mixing, toluene was removed using a spray dryer, and ATO fine particles surface-treated with a silane compound were obtained.

シラン化合物にて表面処理を施したTiN微粒子、シラン化合物にて表面処理を施したATO微粒子を使用した以外は、実施例1と同様にして実施例12に係る日射遮蔽体12を得た。
また、日射遮蔽体の微粒子の分散粒子径は、83nmであった。
表1に示すように、可視光透過率31.5%のときの日射透過率は19.2%であった。
A solar radiation shield 12 according to Example 12 was obtained in the same manner as in Example 1 except that TiN fine particles surface-treated with a silane compound and ATO fine particles surface-treated with a silane compound were used.
Moreover, the dispersion particle diameter of the fine particles of the solar radiation shielding body was 83 nm.
As shown in Table 1, the solar radiation transmittance was 19.2% when the visible light transmittance was 31.5%.

東亞合成製アロニックスM−400を50重量%、チバスペシャリティ製イルガキュア651を5重量%、トルエン45重量%を混合し、耐擦傷性ハードコート液を調整した。実施例1と同様の方法で作製した日射遮蔽体1の表面に上記耐擦傷性ハードコート液をバーコーター♯20を使用して塗布し、70℃で1分間乾燥した後、高圧水銀ランプで140mW/cmのUV光を照射し、耐擦傷性ハードコート層を形成し、日射遮蔽対13を得た。
表1に示すように、可視光透過率31.2%のときの日射透過率は18.9%であった。
鉛筆硬度を測定したところ、耐擦傷性ハードコート層を形成することで、日射遮蔽体13の鉛筆硬度が2Hに向上していることが確認された。実施例1で作製した日射遮蔽体1は、鉛筆硬度Fであった。
50% by weight of Aronix M-400 manufactured by Toagosei Co., Ltd., 5% by weight of Irgacure 651 manufactured by Ciba Specialty, and 45% by weight of toluene were mixed to prepare a scratch-resistant hard coat solution. The scratch-resistant hard coat solution was applied to the surface of the solar radiation shield 1 produced in the same manner as in Example 1 using a bar coater # 20, dried at 70 ° C. for 1 minute, and then 140 mW with a high-pressure mercury lamp. / Cm 2 of UV light was irradiated to form a scratch-resistant hard coat layer, and a solar radiation shielding pair 13 was obtained.
As shown in Table 1, the solar radiation transmittance was 18.9% when the visible light transmittance was 31.2%.
When the pencil hardness was measured, it was confirmed that the pencil hardness of the solar shading body 13 was improved to 2H by forming the scratch-resistant hard coat layer. The solar shield 1 produced in Example 1 had a pencil hardness F.

日射遮蔽体の表面に耐擦傷性ハードコート層を形成することで、日射遮蔽体の耐擦傷性を向上させることが可能であり、当該日射遮蔽体を車両、自動車の窓などに使用することが出来る。  By forming a scratch-resistant hard coat layer on the surface of the solar shield, it is possible to improve the scratch resistance of the solar shield, and the solar shield can be used for vehicles, automobile windows, etc. I can do it.

TiN微粒子分散液(A液)、可塑剤トリエチレングリコール−ジ−2−エチルブチレート50重量%を秤量し、攪拌方真空乾燥機でトルエンを除去し、TiN可塑剤分散液(A可塑剤液)を作製した。
同様にATO微粒子分散液(B液)、可塑剤トリエチレングリコール−ジ−2−エチルブチレート50重量%を秤量し、攪拌方真空乾燥機でトルエンを除去し、ATO可塑剤分散液(B可塑剤液)を作製した。
TiN fine particle dispersion (liquid A) and plasticizer triethylene glycol-di-2-ethylbutyrate 50% by weight are weighed, toluene is removed with a stirring vacuum dryer, TiN plasticizer dispersion (A plasticizer liquid) ) Was produced.
Similarly, ATO fine particle dispersion (liquid B) and plasticizer triethylene glycol-di-2-ethylbutyrate 50% by weight are weighed, and toluene is removed with a stirring vacuum drier, and ATO plasticizer dispersion (B plastic) Preparation).

A可塑剤液とB可塑剤液をポリビニルブチラール樹脂に添加し、可塑剤としてトリエチレングリコール−ジ−2−エチルブチレートを加え、この混合物をロールで混練し、0.5mm厚のシート状に形成し、TiN添加量が0.06g/m、ATO添加量が9.60g/mとなるように調整し、TiN微粒子とATOが樹脂全体に均一に分散した中間膜(中間膜A)を得た。A plasticizer liquid and B plasticizer liquid are added to polyvinyl butyral resin, triethylene glycol-di-2-ethylbutyrate is added as a plasticizer, and the mixture is kneaded with a roll to form a 0.5 mm thick sheet. formed was adjusted so that the amount is 0.06 g / m 2, ATO added TiN additive amount is 9.60 g / m 2, an intermediate layer of TiN fine particles and the ATO were uniformly dispersed in the entire resin (intermediate film a) Got.

更にこの中間膜Aを、厚さ2mmのフロートガラス2枚の間に挟み、通常の合わせガラス製造法に従って加熱・圧着して、日射遮蔽体14を得た。日射遮蔽体の微粒子の分散粒子径は、69nmであった。
また、表1に示すように、可視光透過率30.8%のときの日射透過率は19.0%であった。
Furthermore, this interlayer film A was sandwiched between two float glass sheets having a thickness of 2 mm, and was heated and pressure-bonded according to a normal laminated glass manufacturing method to obtain a solar shading body 14. The dispersion particle diameter of the fine particles of the solar radiation shielding body was 69 nm.
Moreover, as shown in Table 1, the solar radiation transmittance was 19.0% when the visible light transmittance was 30.8%.

TiN添加量が0.09g/m、ATO添加量が14.4g/mとなるように調整した以外は、実施例13と同様の方法で実施例15に係る日射遮蔽体15を得た。また、日射遮蔽体の微粒子の分散粒子径は、78nmであった。
表1に示すように、可視光透過率21.1%のときの日射透過率は15.7%であった。
The solar radiation shielding body 15 according to Example 15 was obtained in the same manner as in Example 13 except that the TiN addition amount was 0.09 g / m 2 and the ATO addition amount was adjusted to 14.4 g / m 2 . . The dispersion particle size of the solar radiation shielding particles was 78 nm.
As shown in Table 1, the solar radiation transmittance was 15.7% when the visible light transmittance was 21.1%.

TiN添加量が0.11g/m、ATO添加量が1.92g/mとなるように調整した以外は、実施例1と同様の方法で実施例16に係る日射遮蔽体16を得た。また、日射遮蔽体の微粒子の分散粒子径は、73nmであった。
表1に示すように、可視光透過率30.9%のときの日射透過率は25.0%であった。
The solar radiation shielding body 16 according to Example 16 was obtained in the same manner as in Example 1 except that the addition amount was 0.11 g / m 2 and the ATO addition amount was 1.92 g / m 2 . . Moreover, the dispersion particle diameter of the fine particles of the sunscreen was 73 nm.
As shown in Table 1, the solar radiation transmittance was 25.0% when the visible light transmittance was 30.9%.

WO微粒子分散液(C液)、可塑剤トリエチレングリコール−ジ−2−エチルブチレート50重量%を秤量し、攪拌方真空乾燥機でトルエンを除去し、WO可塑剤分散液(C可塑剤液)を作製した。
A可塑剤液とC可塑剤液をポリビニルブチラール樹脂に添加し、可塑剤としてトリエチレングリコール−ジ−2−エチルブチレートを加え、この混合物をロールで混練し、0.5mm厚のシート状に形成し、WO添加量が0.44g/m、ATO添加量が1.93g/mとなるように調整し、WO微粒子とATOが樹脂全体に均一に分散した中間膜(中間膜D)を得た。
WO 2 fine particle dispersion (liquid C) and plasticizer triethylene glycol-di-2-ethylbutyrate 50% by weight were weighed, and toluene was removed with a stirring vacuum drier. WO 2 plasticizer dispersion (C plastic) Preparation).
A plasticizer liquid and C plasticizer liquid are added to polyvinyl butyral resin, triethylene glycol-di-2-ethylbutyrate is added as a plasticizer, and the mixture is kneaded with a roll to form a 0.5 mm thick sheet. formed, adjusted to WO 2 addition amount 0.44 g / m 2, ATO additive amount is 1.93 g / m 2, an intermediate layer (intermediate film WO 2 fine particles and the ATO were uniformly dispersed in the entire resin D) was obtained.

更にこの中間膜Dを、厚さ2mmのフロートガラス2枚の間に挟み、通常の合わせガラス製造法に従って加熱・圧着して、日射遮蔽体17を得た。また、日射遮蔽体の微粒子の分散粒子径は、77nmであった。
表1に示すように、可視光透過率30.5%のときの日射透過率は28.4%であった。
Furthermore, this interlayer film D was sandwiched between two float glass sheets having a thickness of 2 mm, and was heated and pressure-bonded according to a normal laminated glass manufacturing method to obtain a solar radiation shielding body 17. The dispersion particle diameter of the solar radiation shielding particles was 77 nm.
As shown in Table 1, the solar radiation transmittance was 28.4% when the visible light transmittance was 30.5%.

ITO微粒子分散液(D液)、可塑剤トリエチレングリコール−ジ−2−エチルブチレート50重量%を秤量し、攪拌方真空乾燥機でトルエンを除去し、ITO可塑剤分散液(D可塑剤液)を作製した。  ITO fine particle dispersion (Liquid D) and plasticizer triethylene glycol-di-2-ethylbutyrate 50% by weight are weighed, toluene is removed with a vacuum drier, and an ITO plasticizer dispersion (D plasticizer liquid). ) Was produced.

C可塑剤液とD可塑剤液をポリビニルブチラール樹脂に添加し、可塑剤としてトリエチレングリコール−ジ−2−エチルブチレートを加え、この混合物をロールで混練し、0.5mm厚のシート状に形成し、WO添加量が0.44g/m、ITO添加量が1.95g/mとなるように調整し、WO微粒子とITOが樹脂全体に均一に分散した中間膜(中間膜E)を得た。C plasticizer liquid and D plasticizer liquid are added to polyvinyl butyral resin, triethylene glycol-di-2-ethylbutyrate is added as a plasticizer, and the mixture is kneaded with a roll to form a 0.5 mm thick sheet. formed, WO 2 addition amount is 0.44 g / m 2, ITO addition amount was adjusted to be 1.95 g / m 2, an intermediate layer (intermediate film WO 2 fine particles and the ITO were uniformly dispersed in the entire resin E) was obtained.

更にこの中間膜Eを、厚さ2mmのフロートガラス2枚の間に挟み、通常の合わせガラス製造法に従って加熱・圧着して、日射遮蔽体18を得た。また、日射遮蔽体の微粒子の分散粒子径は、81nmであった。
表1に示すように、可視光透過率30.1%のときの日射透過率は22.4%であった。
Furthermore, this intermediate film E was sandwiched between two float glass sheets having a thickness of 2 mm, and was heated and pressed in accordance with a normal laminated glass manufacturing method, whereby a solar shading body 18 was obtained. Moreover, the dispersion particle diameter of the fine particles of the solar radiation shielding body was 81 nm.
As shown in Table 1, the solar radiation transmittance was 22.4% when the visible light transmittance was 30.1%.

LaB微粒子分散液(E液)、可塑剤トリエチレングリコール−ジ−2−エチルブチレート50重量%を秤量し、攪拌方真空乾燥機でトルエンを除去し、LaB可塑剤分散液(E可塑剤液)を作製した。A LaB 6 fine particle dispersion (E liquid) and a plasticizer triethylene glycol-di-2-ethylbutyrate 50% by weight were weighed, and toluene was removed with a vacuum drier to stir the LaB 6 plasticizer dispersion (E plastic). Preparation).

A液可塑剤とB可塑剤液とE可塑剤液をポリビニルブチラール樹脂に添加し、可塑剤としてトリエチレングリコール−ジ−2−エチルブチレートを加え、この混合物をロールで混練し、0.5mm厚のシート状に形成し、LaB添加量が0.06g/m、TiN添加量が0.06g/m、ATO添加量が1.94g/m、となるように調整し、LaB微粒子とTiN微粒子とATOが樹脂全体に均一に分散した中間膜(中間膜F)を得た。Add A liquid plasticizer, B plasticizer liquid and E plasticizer liquid to polyvinyl butyral resin, add triethylene glycol-di-2-ethylbutyrate as plasticizer, knead this mixture with a roll, 0.5 mm the thickness of the formed into a sheet, was adjusted to LaB 6 addition amount is 0.06 g / m 2, TiN addition amount is 0.06 g / m 2, ATO addition amount 1.94 g / m 2, and, LaB An intermediate film (intermediate film F) in which 6 fine particles, TiN fine particles, and ATO were uniformly dispersed throughout the resin was obtained.

更にこの中間膜Fを、厚さ2mmのフロートガラス2枚の間に挟み、通常の合わせガラス製造法に従って加熱・圧着して、日射遮蔽体19を得た。また、日射遮蔽体の微粒子の分散粒子径は、79nmであった。
表1に示すように、可視光透過率37.5%のときの日射透過率は27.3%であった。
Furthermore, this interlayer film F was sandwiched between two float glass sheets having a thickness of 2 mm, and was heated and pressure-bonded according to a normal laminated glass manufacturing method to obtain a solar radiation shield 19. The dispersion particle diameter of the solar radiation shielding particles was 79 nm.
As shown in Table 1, the solar radiation transmittance was 27.3% when the visible light transmittance was 37.5%.

1849微粒子分散液(F液)、可塑剤トリエチレングリコール−ジ−2−エチルブチレート50重量%を秤量し、攪拌方真空乾燥機でトルエンを除去し、W1849可塑剤分散液(F可塑剤液)を作製した。
B液可塑剤とF可塑剤液をポリビニルブチラール樹脂に添加し、可塑剤としてトリエチレングリコール−ジ−2−エチルブチレートを加え、この混合物をロールで混練し、0.5mm厚のシート状に形成し、W1849添加量が0.43g/m、ATO添加量が2.01g/m、となるように調整し、W1849微粒子とATO微粒子が樹脂全体に均一に分散した中間膜(中間膜G)を得た。
更にこの中間膜Gを、厚さ2mmのフロートガラス2枚の間に挟み、通常の合わせガラス製造法に従って加熱・圧着して、日射遮蔽体20を得た。また、日射遮蔽体の微粒子の分散粒子径は、79nmであった。
表1に示すように、可視光透過率31.4%のときの日射透過率は29.1%であった。
W 18 O 49 fine particle dispersion (liquid F) and plasticizer triethylene glycol-di-2-ethylbutyrate 50% by weight are weighed, and toluene is removed with a vacuum dryer while stirring to disperse W 18 O 49 plasticizer. A liquid (F plasticizer liquid) was prepared.
B liquid plasticizer and F plasticizer liquid are added to polyvinyl butyral resin, triethylene glycol-di-2-ethylbutyrate is added as a plasticizer, and the mixture is kneaded with a roll to form a 0.5 mm thick sheet. Formed and adjusted so that W 18 O 49 addition amount is 0.43 g / m 2 and ATO addition amount is 2.01 g / m 2 , and W 18 O 49 fine particles and ATO fine particles are uniformly dispersed throughout the resin. An intermediate film (intermediate film G) was obtained.
Further, this interlayer film G was sandwiched between two float glass sheets having a thickness of 2 mm, and heated and pressed in accordance with a normal laminated glass manufacturing method, so that a solar shading body 20 was obtained. The dispersion particle diameter of the solar radiation shielding particles was 79 nm.
As shown in Table 1, the solar radiation transmittance was 29.1% when the visible light transmittance was 31.4%.

Cs0.33WO微粒子分散液(G液)、可塑剤トリエチレングリコール−ジ−2−エチルブチレート50重量%を秤量し、攪拌方真空乾燥機でトルエンを除去し、Cs0.33WO可塑剤分散液(G可塑剤液)を作製した。Cs 0.33 WO 3 fine particle dispersion (liquid G), plasticizer triethylene glycol-di-2-ethylbutyrate 50% by weight is weighed, and toluene is removed with a vacuum dryer with stirring. Cs 0.33 WO Three plasticizer dispersion liquid (G plasticizer liquid) was produced.

A液可塑剤とG可塑剤液をポリビニルブチラール樹脂に添加し、可塑剤としてトリエチレングリコール−ジ−2−エチルブチレートを加え、この混合物をロールで混練し、0.5mm厚のシート状に形成し、TiN添加量が0.06g/m、Cs0.33WO添加量が2.4g/m、となるように調整し、TiN微粒子とCs0.33WO微粒子が樹脂全体に均一に分散した中間膜(中間膜H)を得た。Add the A liquid plasticizer and G plasticizer liquid to the polyvinyl butyral resin, add triethylene glycol-di-2-ethylbutyrate as the plasticizer, knead this mixture with a roll, and form a 0.5 mm thick sheet. The TiN fine particles and the Cs 0.33 WO 3 fine particles are added to the entire resin by adjusting the TiN added amount to 0.06 g / m 2 and the Cs 0.33 WO 3 added amount to 2.4 g / m 2 . An intermediate film (intermediate film H) uniformly dispersed was obtained.

更にこの中間膜Hを、厚さ2mmのフロートガラス2枚の間に挟み、通常の合わせガラス製造法に従って加熱・圧着して、日射遮蔽体21を得た。また、日射遮蔽体の微粒子の分散粒子径は、75nmであった。
表1に示すように、可視光透過率31.3%のときの日射透過率は15.6%であった。
Further, this interlayer film H was sandwiched between two float glass sheets having a thickness of 2 mm, and was heated and pressure-bonded in accordance with a normal laminated glass manufacturing method to obtain a solar shading body 21. Moreover, the dispersion particle diameter of the fine particles of the solar radiation shielding body was 75 nm.
As shown in Table 1, the solar radiation transmittance was 15.6% when the visible light transmittance was 31.3%.

TiN添加量が0.15g/m、Cs0.33WO添加量が6.00g/mとなるように調整した以外は、実施例20と同様の方法で実施例22に係る日射遮蔽体22を得た。また、日射遮蔽体の微粒子の分散粒子径は、72nmであった。
表1に示すように、可視光透過率10.1%のときの日射透過率は7.0%であった。
Solar radiation shielding according to Example 22 in the same manner as in Example 20, except that the amount of TiN added was adjusted to 0.15 g / m 2 and the amount of Cs 0.33 WO 3 added was adjusted to 6.00 g / m 2. Body 22 was obtained. The dispersion particle size of the solar radiation shielding particles was 72 nm.
As shown in Table 1, the solar radiation transmittance was 7.0% when the visible light transmittance was 10.1%.

Fe微粒子分散液(H液)、可塑剤トリエチレングリコール−ジ−2−エチルブチレート50重量%を秤量し、攪拌方真空乾燥機でトルエンを除去し、Fe可塑剤分散液(H可塑剤液)を作製した。Fe 2 O 3 fine particle dispersion (H liquid), plasticizer triethylene glycol-di-2-ethylbutyrate 50% by weight is weighed, toluene is removed with a vacuum drier, and Fe 2 O 3 plasticizer is dispersed. A liquid (H plasticizer liquid) was prepared.

A液可塑剤とG可塑剤液とH可塑剤液をポリビニルブチラール樹脂に添加し、可塑剤としてトリエチレングリコール−ジ−2−エチルブチレートを加え、この混合物をロールで混練し、0.5mm厚のシート状に形成し、TiN添加量が0.06g/m、Cs0.33WO添加量が2.4g/m、Fe添加量が0.6g/m、となるように調整し、TiN微粒子とCs0.33WO微粒子とFeが樹脂全体に均一に分散した中間膜(中間膜J)を得た。A liquid plasticizer, G plasticizer liquid and H plasticizer liquid are added to polyvinyl butyral resin, triethylene glycol-di-2-ethylbutyrate is added as a plasticizer, and this mixture is kneaded with a roll, 0.5 mm Formed into a thick sheet, TiN addition amount is 0.06 g / m 2 , Cs 0.33 WO 3 addition amount is 2.4 g / m 2 , Fe 2 O 3 addition amount is 0.6 g / m 2 , Thus, an intermediate film (intermediate film J) in which TiN fine particles, Cs 0.33 WO 3 fine particles, and Fe 2 O 3 were uniformly dispersed throughout the resin was obtained.

更にこの中間膜Jを、厚さ2mmのフロートガラス2枚の間に挟み、通常の合わせガラス製造法に従って加熱・圧着して、日射遮蔽体23を得た。また、日射遮蔽体の微粒子の分散粒子径は、67nmであった。
表1に示すように、可視光透過率26.5%のときの日射透過率は24.8%であった。
Further, this interlayer film J was sandwiched between two float glass sheets having a thickness of 2 mm, and was heated and pressure-bonded according to a normal laminated glass manufacturing method to obtain a solar radiation shield 23. The dispersion particle diameter of the solar radiation shielding particles was 67 nm.
As shown in Table 1, the solar radiation transmittance was 24.8% when the visible light transmittance was 26.5%.

中間膜Hを、厚さ2mmのフロートガラスと日射遮蔽体6の間に挟み、通常の合わせガラス製造法に従って加熱・圧着して、日射遮蔽体24を得た。
表1に示すように、可視光透過率17.9%のときの日射透過率は11.6%であった。
The interlayer film H was sandwiched between a float glass having a thickness of 2 mm and the solar radiation shield 6 and heated and pressure-bonded according to a normal laminated glass manufacturing method to obtain a solar radiation shield 24.
As shown in Table 1, the solar radiation transmittance was 11.6% when the visible light transmittance was 17.9%.

中間膜Hを、厚さ2mmのフロートガラスと厚さ0.5mmのポリエチレンテレフタレートフィルムの間に挟み、通常の合わせガラス製造法に従って加熱・圧着して、日射遮蔽体25を得た。
表1に示すように、可視光透過率31.9%のときの日射透過率は16.2%であった。
The intermediate film H was sandwiched between a float glass having a thickness of 2 mm and a polyethylene terephthalate film having a thickness of 0.5 mm, and was heated and pressure-bonded according to a normal laminated glass manufacturing method to obtain a solar radiation shield 25.
As shown in Table 1, the solar radiation transmittance was 16.2% when the visible light transmittance was 31.9%.

[比較例1]
マスターバッチBと青色系着色染料(アントラキノン系青色染料(商品名:クライアント社製ポリシンスBlue RLS))をポリカーボ−ネート樹脂ペレットで希釈し、タンブラーで均一に混合した後、Tダイを用いて厚さ2.0mmに押出成形し、ATO添加量が1.96g/mとなるように調整し、ATO微粒子が樹脂全体に均一に分散し、青色系着色染料を添加した比較例1に係る日射遮蔽体26を得た。また、日射遮蔽体のATO微粒子の分散粒子径は、84nmであった。
表1に示すように、可視光透過率31.7%のときの日射透過率は39.6%であった。
日射透過率/可視光透過率=1.25となり、日射透過率/可視光透過率<1を満たすことが出来ない。
ATOと青色系着色染料を使用して、可視光透過率を低くすることは可能であるが、日射透過率を十分に下げることが出来ず、車窓用に使用するには、車内温度上昇を軽減する効果が少なく不適当である。
[Comparative Example 1]
Master batch B and blue colored dye (anthraquinone blue dye (trade name: Polythins Blue RLS manufactured by Client)) are diluted with polycarbonate resin pellets, mixed uniformly with a tumbler, and then thickened using a T-die. Extruded to 2.0 mm, adjusted so that the amount of ATO added is 1.96 g / m 2 , ATO fine particles are uniformly dispersed throughout the resin, and the solar shading according to Comparative Example 1 is added with a blue coloring dye Body 26 was obtained. Moreover, the dispersion particle diameter of the ATO fine particles of the solar shield was 84 nm.
As shown in Table 1, the solar radiation transmittance was 39.6% when the visible light transmittance was 31.7%.
The solar radiation transmittance / visible light transmittance = 1.25, and the solar radiation transmittance / visible light transmittance <1 cannot be satisfied.
It is possible to reduce the visible light transmittance by using ATO and blue coloring dye, but the solar radiation transmittance cannot be lowered sufficiently, and to increase the temperature inside the car to use it for the car window. This is unsuitable because it is less effective.

[比較例2]
マスターバッチAとマスターバッチDをポリカーボ−ネート樹脂ペレットで希釈し、タンブラーで均一に混合した後、Tダイを用いて厚さ2.0mmに押出成形し、TiN添加量が0.016g/m、ITO添加量が2.40g/m、となるように調整し、TiN微粒子とITO微粒子が樹脂全体に均一に分散した比較例2に係る日射遮蔽体27を得た。また、日射遮蔽体の微粒子の分散粒子径は、69nmであった。
表1に示すように、可視光透過率65.2%のときの日射透過率は40.5%であった。
0.016g/m(TiNの添加量)×160+2.4g/m(ITOの添加量)=4.96となり、各熱線遮蔽微粒子の添加量が本文中に示した下記(式5)を満たしていないため、可視光透過率を十分に低くすることが出来ず、プライバシー保護を目的とした車窓用に使用するには、不適当である。
(式5)
5(g/m)<窒化チタンの添加量(g/m)×160+6ホウ化ランタンの添加量(g/m)×40+酸化タングステン(g/m)×40+複合タングステン酸化物(g/m)×4+アンチモンドープ酸化錫(g/m)+錫ドープ酸化インジウム(g/m)<50(g/m
[Comparative Example 2]
Master batch A and master batch D are diluted with polycarbonate resin pellets, mixed uniformly with a tumbler, and then extruded to a thickness of 2.0 mm using a T-die. The amount of TiN added is 0.016 g / m 2. Then, the amount of ITO added was adjusted to 2.40 g / m 2 to obtain a solar shading body 27 according to Comparative Example 2 in which TiN fine particles and ITO fine particles were uniformly dispersed throughout the resin. The dispersion particle diameter of the solar radiation shielding particles was 69 nm.
As shown in Table 1, the solar radiation transmittance was 40.5% when the visible light transmittance was 65.2%.
0.016 g / m 2 (addition amount of TiN) × 160 + 2.4g / m 2 ( addition amount of ITO) = 4.96, and the following addition amount of the heat ray shielding fine particles are shown in the text (Formula 5) Since it does not satisfy, the visible light transmittance cannot be made sufficiently low, and it is unsuitable for use for a car window for the purpose of privacy protection.
(Formula 5)
5 (g / m 2 ) <addition amount of titanium nitride (g / m 2 ) × 160 + 6 addition amount of lanthanum boride (g / m 2 ) × 40 + tungsten oxide (g / m 2 ) × 40 + composite tungsten oxide ( g / m 2 ) × 4 + antimony-doped tin oxide (g / m 2 ) + tin-doped indium oxide (g / m 2 ) <50 (g / m 2 )

[比較例3]
マスターバッチAとマスターバッチBをポリカーボ−ネート樹脂ペレットで希釈し、タンブラーで均一に混合した後、Tダイを用いて厚さ2.0mmに押出成形し、TiN添加量が0.19g/m、ATO添加量が19.9g/m、となるように調整し、TiN微粒子とATO微粒子が樹脂全体に均一に分散した比較例3に係る日射遮蔽体28を得た。また、日射遮蔽体の微粒子の分散粒子径は、76nmであった。
表1に示すように、可視光透過率3.4%のときの日射透過率は3.3%であった。
0.19g/m(TiNの添加量)×160+2.4g/m(ATOの添加量)=50.3となり、各熱線遮蔽微粒子の添加量が本文中に示した(式5)を満たしていないため、可視光透過率が低すぎて、車窓用に使用するには不適当である。
[Comparative Example 3]
Master batch A and master batch B are diluted with polycarbonate resin pellets, mixed uniformly with a tumbler, and then extruded to a thickness of 2.0 mm using a T-die. The amount of TiN added is 0.19 g / m 2. Then, the amount of ATO added was adjusted to 19.9 g / m 2 to obtain a solar radiation shield 28 according to Comparative Example 3 in which TiN fine particles and ATO fine particles were uniformly dispersed throughout the resin. The dispersion particle diameter of the solar radiation shielding particles was 76 nm.
As shown in Table 1, the solar radiation transmittance was 3.3% when the visible light transmittance was 3.4%.
0.19 g / m 2 (addition amount of TiN) × 160 + 2.4 g / m 2 (addition amount of ATO) = 50.3, and the addition amount of each heat ray shielding fine particle satisfies the formula 5 shown in the text. Therefore, the visible light transmittance is too low to be suitable for use in a car window.

また、熱線遮蔽記微粒子の1mあたりの全添加量が20.1g/mとなり、本文中に示した20g/m以下より多くなっているため、日射遮蔽体耐の表面強度が著しく低下し、爪でこすると簡単に傷が付いてしまい、車窓用に使用するには不適当である。また、材料コストも高くなってしまう。The total addition amount per 1 m 2 of the heat ray shielding Symbol particles 20.1 g / m 2, and the order which is more than 20 g / m 2 or less as shown in the text, is significantly reduced surface strength of the solar radiation-shielding body resistance However, rubbing with nails can easily cause scratches and is unsuitable for use in car windows. Moreover, material cost will also become high.

[比較例4]
マスターバッチCをポリカーボ−ネート樹脂ペレットで希釈し、タンブラーで均一に混合した後、Tダイを用いて厚さ2.0mmに押出成形し、WO添加量が0.44g/mとなるように調整し、WO微粒子が樹脂全体に均一に分散した比較例4に係る日射遮蔽体29を得た。また、日射遮蔽体の微粒子の分散粒子径は、76nmであった。
表1に示すように、可視光透過率35.9%のときの日射透過率は45.7%であった。
日射透過率/可視光透過率=1.27となり、日射透過率/可視光透過率<1を満たすことが出来なかった。WOを単独で使用したため、1000nm以上の赤外線の吸収が不十分となり、日射透過率を十分に下げることが出来ず、車窓用に使用するには、車内温度上昇を軽減する効果が少なく不適当である。
[Comparative Example 4]
After diluting the master batch C with polycarbonate resin pellets and uniformly mixing with a tumbler, the master batch C is extruded to a thickness of 2.0 mm using a T-die so that the WO 2 addition amount is 0.44 g / m 2. The solar shading body 29 according to Comparative Example 4 in which the WO 2 fine particles were uniformly dispersed throughout the resin was obtained. The dispersion particle diameter of the solar radiation shielding particles was 76 nm.
As shown in Table 1, the solar radiation transmittance was 45.7% when the visible light transmittance was 35.9%.
The solar radiation transmittance / visible light transmittance = 1.27, and the solar radiation transmittance / visible light transmittance <1 could not be satisfied. Since WO 2 is used alone, the absorption of infrared rays of 1000 nm or more is insufficient, and the solar radiation transmittance cannot be lowered sufficiently. It is.

Figure 2008044609
Figure 2008044609

Claims (15)

車両の窓に使用される熱線遮蔽機能を有する微粒子を含む車窓用日射遮蔽体であって、前記熱線遮蔽機能を有する微粒子が、6ホウ化ランタン、窒化チタン、酸化タングステンから選択される少なくとも1種以上の微粒子と、アンチモンドープ酸化錫、錫ドープ酸化インジウム、一般式MWO(0.001≦Y≦1.0、2.2≦Z≦3.0)で示される複合タングステン酸化物から選択される少なくとも1種以上の微粒子とを混合してなり、且つ、前記日射遮蔽体の可視光透過率が5%以上40%以下の範囲にあり、前記日射遮蔽体の日射透過率と可視光透過率が下記(式1)を満たし、更に前記日射遮蔽体の透過色が下記(式2)を満たすことを特徴とする車窓用日射遮蔽体。
(式1)日射透過率/可視光透過率<1
(式2)−14<a<2、−8<b<2
A solar radiation shielding body for vehicle windows containing fine particles having a heat ray shielding function used for a vehicle window, wherein the fine particles having the heat ray shielding function are selected from lanthanum hexaboride, titanium nitride, and tungsten oxide. From the above fine particles, and antimony-doped tin oxide, tin-doped indium oxide, a composite tungsten oxide represented by the general formula M Y WO Z (0.001 ≦ Y ≦ 1.0, 2.2 ≦ Z ≦ 3.0) The solar radiation shielding body has a visible light transmittance of 5% or more and 40% or less, and is mixed with at least one or more selected fine particles. The solar radiation shielding body for a vehicle window, characterized in that the transmittance satisfies the following (Formula 1), and the transmitted color of the solar radiation shielding body satisfies the following (Formula 2).
(Expression 1) Solar transmittance / visible light transmittance <1
(Formula 2) -14 <a * <2, -8 <b * <2
車両の窓に使用される熱線遮蔽機能を有する微粒子を含む車窓用日射遮蔽体であって、前記熱線遮蔽機能を有する微粒子が、6ホウ化ランタン、窒化チタン、酸化タングステンから選択される少なくとも1種以上の微粒子と、アンチモンドープ酸化錫、錫ドープ酸化インジウム、一般式MWO(0.001≦Y≦1.0、2.2≦Z≦3.0)で示される複合タングステン酸化物から選択される少なくとも1種以上の微粒子と、酸化鉄微粒子とを混合してなり、且つ、前記日射遮蔽体の可視光透過率が5%以上40%以下の範囲であり、前記日射遮蔽体の日射透過率と可視光透過率が下記(式3)を満たし、更に前記日射遮蔽体の透過色が下記(式4)を満たすことを特徴とする車窓用日射遮蔽体。
(式3)日射透過率/可視光透過率<1
(式4)−2<a<14、2<b<12
A solar radiation shielding body for vehicle windows containing fine particles having a heat ray shielding function used for a vehicle window, wherein the fine particles having the heat ray shielding function are selected from lanthanum hexaboride, titanium nitride, and tungsten oxide. From the above fine particles, and antimony-doped tin oxide, tin-doped indium oxide, a composite tungsten oxide represented by the general formula M Y WO Z (0.001 ≦ Y ≦ 1.0, 2.2 ≦ Z ≦ 3.0) At least one kind of fine particles selected and iron oxide fine particles are mixed, and the visible light transmittance of the solar radiation shielding body is in the range of 5% to 40%, and the solar radiation of the solar radiation shielding body. A vehicle window solar shading body characterized in that the transmittance and the visible light transmittance satisfy the following (formula 3), and the transmitted color of the solar shading body satisfies the following (formula 4).
(Expression 3) Solar radiation transmittance / visible light transmittance <1
(Formula 4) -2 <a * <14, 2 <b * <12
酸化タングステンがWO、或いは、W1849であることを特徴とする請求項1又は2に記載の車窓用日射遮蔽体。The solar radiation shielding body for vehicle windows according to claim 1, wherein the tungsten oxide is WO 2 or W 18 O 49 . 複合タングステン酸化物微粒子に含まれるM元素が、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Snのうちの1種類以上であることを特徴とする請求項1又は2に記載の車窓用日射遮蔽体。  The element M contained in the composite tungsten oxide fine particles is at least one of Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, and Sn. The solar radiation shielding body for vehicle windows according to 2. 前記熱線遮蔽機能を有する微粒子の直径が、300nm以下であることを特徴とする請求項1〜4のいずれか1項に記載の車窓用日射遮蔽体。  The solar radiation shielding body for vehicle windows according to any one of claims 1 to 4, wherein a diameter of the fine particles having a heat ray shielding function is 300 nm or less. 前記熱線遮蔽機能を有する微粒子が、シラン化合物、チタン化合物、ジルコニア化合物から選択される少なくとも1種によって表面処理されていることを特徴とする請求項1〜5のいずれか1項に記載の車窓用日射遮蔽体。  6. The vehicle window according to claim 1, wherein the fine particles having a heat ray shielding function are surface-treated with at least one selected from a silane compound, a titanium compound, and a zirconia compound. Solar radiation shield. 更に、酸化亜鉛微粒子、酸化セリウム微粒子、酸化チタン微粒子から選択される少なくとも1種を含有することを特徴とする請求項1〜6のいずれか1項に記載の車窓用日射遮蔽体。  The vehicle window solar radiation shield according to any one of claims 1 to 6, further comprising at least one selected from zinc oxide fine particles, cerium oxide fine particles, and titanium oxide fine particles. 前記熱線遮蔽機能を有する微粒子が、ポリカーボネート樹脂成形体に含まれていることを特徴とする請求項1〜7のいずれか1項に記載の車窓用日射遮蔽体。  The solar radiation shielding body for vehicle windows according to any one of claims 1 to 7, wherein the fine particles having a heat ray shielding function are contained in a polycarbonate resin molded body. 請求項8記載のポリカーボネート樹脂成形体の少なくとも一表面に、耐擦傷性ハードコート層が形成されていることを特徴とする車窓用日射遮蔽体。  A solar radiation shielding body for vehicle windows, wherein a scratch-resistant hard coat layer is formed on at least one surface of the polycarbonate resin molded body according to claim 8. 請求項8又は9に記載の日射遮蔽体を他の樹脂成形体に積層することにより得られることを特徴とする車窓用日射遮蔽体。  A solar radiation shielding body for vehicle windows, which is obtained by laminating the solar radiation shielding body according to claim 8 on another resin molded body. 請求項1〜7に記載の熱線遮蔽機能を有する微粒子がポリビニルブチラール樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂から選択される一種に含まれていることを特徴とする車窓用日射遮蔽体。  A solar radiation shielding body for vehicle windows, wherein the fine particles having a heat ray shielding function according to claim 1 are contained in one kind selected from polyvinyl butyral resin, polyvinyl acetate resin, and polyvinyl alcohol resin. 請求項11記載の日射遮蔽体を2枚の合わせ板間に中間膜として介在させてなる合わせ構造体であって、該合わせ板が無機板ガラス、ポリカーボネート樹脂成形体、ポリエチレンテレフタレート樹脂成形体から選択される少なくとも一種であることを特徴とする車窓用日射遮蔽体。  A laminated structure comprising the solar radiation shielding body according to claim 11 interposed as an intermediate film between two laminated plates, wherein the laminated plate is selected from inorganic plate glass, polycarbonate resin molded body, and polyethylene terephthalate resin molded body. A solar shading body for vehicle windows, characterized in that it is at least one kind. 請求項12記載の合わせ板の少なくとも一方が、請求項8〜10のいずれか1項に記載の日射遮蔽体であることを特徴とする車窓用日射遮蔽体。  The solar radiation shielding body for vehicle windows, wherein at least one of the laminated plates according to claim 12 is the solar radiation shielding body according to any one of claims 8 to 10. 前記車窓用日射遮蔽体の形状が、厚さ2.5mm〜30mm、かつ最大投影面積が400〜60000cmであることを特徴とする請求項1〜13のいずれか1項に記載の車窓用日射遮蔽体。14. The vehicle window solar radiation according to claim 1, wherein the vehicle window solar radiation shield has a thickness of 2.5 mm to 30 mm and a maximum projected area of 400 to 60000 cm 2. Shield. 請求項1〜14のいずれか1項に記載の車窓用日射遮蔽体が使用されていることを特徴とする車両用窓。  The vehicle window solar radiation shielding body of any one of Claims 1-14 is used, The vehicle window characterized by the above-mentioned.
JP2007217613A 2006-03-30 2007-07-25 Sunshine screen for vehicle window and vehicle window Pending JP2008044609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007217613A JP2008044609A (en) 2006-03-30 2007-07-25 Sunshine screen for vehicle window and vehicle window

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006096068 2006-03-30
JP2007217613A JP2008044609A (en) 2006-03-30 2007-07-25 Sunshine screen for vehicle window and vehicle window

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006236779 Division 2006-08-31

Publications (2)

Publication Number Publication Date
JP2008044609A true JP2008044609A (en) 2008-02-28
JP2008044609A5 JP2008044609A5 (en) 2010-06-24

Family

ID=39178732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007217613A Pending JP2008044609A (en) 2006-03-30 2007-07-25 Sunshine screen for vehicle window and vehicle window

Country Status (1)

Country Link
JP (1) JP2008044609A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231164A (en) * 2007-03-16 2008-10-02 Sumitomo Metal Mining Co Ltd Ultraviolet ray- and near-infrared light-shielding dispersion, and ultraviolet ray- and near-infrared light-shielding item
JP2009535248A (en) * 2006-05-02 2009-10-01 ソリユテイア・インコーポレイテツド Bilayer glazing with cesium tungsten oxide
JP2010155938A (en) * 2008-12-27 2010-07-15 Mitsubishi Materials Corp Near-infrared absorbent and dispersion thereof
JP2010228959A (en) * 2009-03-26 2010-10-14 Sumitomo Metal Mining Co Ltd Combined structure
JP2011157504A (en) * 2010-02-02 2011-08-18 Sumitomo Metal Mining Co Ltd Dispersion of fine particle of near-infrared shield material, near-infrared shield body, process for producing near-infrared shield fine particle and near-infrared shield fine particle
JP2011184522A (en) * 2010-03-05 2011-09-22 Sumitomo Metal Mining Co Ltd Near-infrared shielding polyester resin composition and molded article thereof, and laminate of the molded article
JP2011212849A (en) * 2010-03-31 2011-10-27 Sumitomo Osaka Cement Co Ltd Heat-ray shielding film
JP2012506794A (en) * 2008-10-28 2012-03-22 ビーエーエスエフ ソシエタス・ヨーロピア Nanoscale IR absorber in multilayer coated moldings
JP2012102266A (en) * 2010-11-11 2012-05-31 Sumitomo Metal Mining Co Ltd Heat ray shielding polycarbonate sheet, heat ray shielding polycarbonate sheet laminate, and manufacturing method for heat ray shielding polycarbonate sheet
CN102781868A (en) * 2010-03-02 2012-11-14 株式会社普利司通 Heat ray-blocking multilayered glass
JP2013001610A (en) * 2011-06-17 2013-01-07 Kureha Corp Method for producing laminated glass
JP2013064042A (en) * 2011-09-15 2013-04-11 Sumitomo Metal Mining Co Ltd Heat-ray shielding film, method for producing the same, and heat-ray shielding laminated transparent base material
JP5371957B2 (en) * 2008-03-31 2013-12-18 帝人株式会社 Aromatic polycarbonate resin composition and molded article thereof
JP2014166701A (en) * 2013-02-28 2014-09-11 Sumitomo Metal Mining Co Ltd Laminated structure for shielding heat ray
JP2015044922A (en) * 2013-08-27 2015-03-12 住友金属鉱山株式会社 Heat ray-shielding dispersion material, coating liquid for forming heat ray-shielding dispersion material, and heat ray-shielding body
EP3192785A4 (en) * 2014-09-11 2018-04-11 Sekisui Chemical Co., Ltd. Interlayer for laminated glass, laminated glass, and method for installing laminated glass
JP2019089939A (en) * 2017-11-14 2019-06-13 住友金属鉱山株式会社 Infrared absorber
WO2019128705A1 (en) * 2017-01-05 2019-07-04 黄宗之 Slurry and preparation method therefor, food packaging material and preparation method therefor, and food packaging component
JP2019206670A (en) * 2018-05-30 2019-12-05 住友金属鉱山株式会社 Near-infrared absorptive fine particle dispersion liquid and production method of the same
JP2020163653A (en) * 2019-03-29 2020-10-08 大日本印刷株式会社 Manufacturing method for frosted glass-like organic glass

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259279A (en) * 1995-01-23 1996-10-08 Central Glass Co Ltd Laminated glass and its production
JP2003201155A (en) * 2001-12-28 2003-07-15 Sumitomo Metal Mining Co Ltd Coating liquid for intermediate film of solar radiation shielding laminated glass and intermediate film for solar radiation shielding laminated glass and solar radiation shielding laminated glass using the same
JP2004002073A (en) * 2002-05-30 2004-01-08 Nippon Sheet Glass Co Ltd Intermediate film and laminated glass using the same
JP2004162020A (en) * 2002-09-25 2004-06-10 Sumitomo Metal Mining Co Ltd Heat radiation shielding component dispersion, process for its preparation and heat radiation shielding film forming coating liquid, heat radiation shielding film and heat radiation shielding resin form which are obtained using the dispersion
JP2004526840A (en) * 2001-03-23 2004-09-02 ソリュティア インコーポレイテッド Control of solar radiation in safety glass laminates
JP2004244613A (en) * 2003-01-23 2004-09-02 Sumitomo Metal Mining Co Ltd Solar radiation screening material and dispersion for forming the solar radiation screening material
JP2005232399A (en) * 2004-02-23 2005-09-02 Sumitomo Metal Mining Co Ltd Sunlight-screening fine particle, sunlight-screening material and sunlight-screening composite material containing the same, and dispersion used for producing sunlight-screening material or sunlight-screening composite material
WO2005087680A1 (en) * 2004-03-16 2005-09-22 Sumitomo Metal Mining Co., Ltd. Sun screening laminated structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08259279A (en) * 1995-01-23 1996-10-08 Central Glass Co Ltd Laminated glass and its production
JP2004526840A (en) * 2001-03-23 2004-09-02 ソリュティア インコーポレイテッド Control of solar radiation in safety glass laminates
JP2003201155A (en) * 2001-12-28 2003-07-15 Sumitomo Metal Mining Co Ltd Coating liquid for intermediate film of solar radiation shielding laminated glass and intermediate film for solar radiation shielding laminated glass and solar radiation shielding laminated glass using the same
JP2004002073A (en) * 2002-05-30 2004-01-08 Nippon Sheet Glass Co Ltd Intermediate film and laminated glass using the same
JP2004162020A (en) * 2002-09-25 2004-06-10 Sumitomo Metal Mining Co Ltd Heat radiation shielding component dispersion, process for its preparation and heat radiation shielding film forming coating liquid, heat radiation shielding film and heat radiation shielding resin form which are obtained using the dispersion
JP2004244613A (en) * 2003-01-23 2004-09-02 Sumitomo Metal Mining Co Ltd Solar radiation screening material and dispersion for forming the solar radiation screening material
JP2005232399A (en) * 2004-02-23 2005-09-02 Sumitomo Metal Mining Co Ltd Sunlight-screening fine particle, sunlight-screening material and sunlight-screening composite material containing the same, and dispersion used for producing sunlight-screening material or sunlight-screening composite material
WO2005087680A1 (en) * 2004-03-16 2005-09-22 Sumitomo Metal Mining Co., Ltd. Sun screening laminated structure

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009535248A (en) * 2006-05-02 2009-10-01 ソリユテイア・インコーポレイテツド Bilayer glazing with cesium tungsten oxide
JP2008231164A (en) * 2007-03-16 2008-10-02 Sumitomo Metal Mining Co Ltd Ultraviolet ray- and near-infrared light-shielding dispersion, and ultraviolet ray- and near-infrared light-shielding item
EP2261287A4 (en) * 2008-03-31 2015-09-16 Teijin Chemicals Ltd Aromatic polycarbonate resin composition and molded article thereof
JP5371957B2 (en) * 2008-03-31 2013-12-18 帝人株式会社 Aromatic polycarbonate resin composition and molded article thereof
JP2012506794A (en) * 2008-10-28 2012-03-22 ビーエーエスエフ ソシエタス・ヨーロピア Nanoscale IR absorber in multilayer coated moldings
JP2010155938A (en) * 2008-12-27 2010-07-15 Mitsubishi Materials Corp Near-infrared absorbent and dispersion thereof
JP2010228959A (en) * 2009-03-26 2010-10-14 Sumitomo Metal Mining Co Ltd Combined structure
JP2011157504A (en) * 2010-02-02 2011-08-18 Sumitomo Metal Mining Co Ltd Dispersion of fine particle of near-infrared shield material, near-infrared shield body, process for producing near-infrared shield fine particle and near-infrared shield fine particle
CN102781868A (en) * 2010-03-02 2012-11-14 株式会社普利司通 Heat ray-blocking multilayered glass
JP2011184522A (en) * 2010-03-05 2011-09-22 Sumitomo Metal Mining Co Ltd Near-infrared shielding polyester resin composition and molded article thereof, and laminate of the molded article
JP2011212849A (en) * 2010-03-31 2011-10-27 Sumitomo Osaka Cement Co Ltd Heat-ray shielding film
JP2012102266A (en) * 2010-11-11 2012-05-31 Sumitomo Metal Mining Co Ltd Heat ray shielding polycarbonate sheet, heat ray shielding polycarbonate sheet laminate, and manufacturing method for heat ray shielding polycarbonate sheet
JP2013001610A (en) * 2011-06-17 2013-01-07 Kureha Corp Method for producing laminated glass
JP2013064042A (en) * 2011-09-15 2013-04-11 Sumitomo Metal Mining Co Ltd Heat-ray shielding film, method for producing the same, and heat-ray shielding laminated transparent base material
JP2014166701A (en) * 2013-02-28 2014-09-11 Sumitomo Metal Mining Co Ltd Laminated structure for shielding heat ray
JP2015044922A (en) * 2013-08-27 2015-03-12 住友金属鉱山株式会社 Heat ray-shielding dispersion material, coating liquid for forming heat ray-shielding dispersion material, and heat ray-shielding body
EP3192785A4 (en) * 2014-09-11 2018-04-11 Sekisui Chemical Co., Ltd. Interlayer for laminated glass, laminated glass, and method for installing laminated glass
WO2019128705A1 (en) * 2017-01-05 2019-07-04 黄宗之 Slurry and preparation method therefor, food packaging material and preparation method therefor, and food packaging component
JP2019089939A (en) * 2017-11-14 2019-06-13 住友金属鉱山株式会社 Infrared absorber
JP2019206670A (en) * 2018-05-30 2019-12-05 住友金属鉱山株式会社 Near-infrared absorptive fine particle dispersion liquid and production method of the same
JP7024608B2 (en) 2018-05-30 2022-02-24 住友金属鉱山株式会社 Near-infrared absorbing fine particle dispersion and its manufacturing method
JP2020163653A (en) * 2019-03-29 2020-10-08 大日本印刷株式会社 Manufacturing method for frosted glass-like organic glass
JP7268445B2 (en) 2019-03-29 2023-05-08 大日本印刷株式会社 A method for producing a frosted glass-like organic glass.

Similar Documents

Publication Publication Date Title
US10795065B2 (en) Solar-radiation-shielding material for vehicle window and window for vehicle
JP2008044609A (en) Sunshine screen for vehicle window and vehicle window
JP2008044609A5 (en)
JP4349779B2 (en) Heat ray shielding transparent resin molding and heat ray shielding transparent laminate
KR101320228B1 (en) Masterbatch with high heat resistance, heat-ray-shielding transparent molded resin, and heat-ray-shielding transparent layered product
KR101507186B1 (en) Composition for producing vinyl chloride film for shielding heat ray, method for production of the composition, and vinyl chloride film for shielding heat ray
JP4632094B2 (en) Manufacturing method of high heat-resistant masterbatch, heat ray shielding transparent resin molding, and heat ray shielding transparent laminate
JP4998781B2 (en) UV / NIR light shielding dispersion for windows and UV / NIR light shielding for windows
CN105307996B (en) Heat-ray shielding film, heat-ray shielding transparent base material, heat-ray shielding resin sheet, automobile, and building
JP5050470B2 (en) Solar radiation shielding dispersion, solar radiation shielding body, and manufacturing method thereof
TWI576238B (en) Heat ray shielding combined structure
JP5257626B2 (en) High heat resistant masterbatch, heat ray shielding transparent resin molding, and heat ray shielding transparent laminate
WO2013080859A1 (en) Heat-ray-shielding film, combined heat ray shielding and transparent substrate, vehicle equipped with heat-ray-shielding transparent laminated substrate as window material, and building using heat-ray-shielding transparent laminated substrate as window material
TW201439140A (en) Heat-ray shielding film, heat-ray shielding laminated transparent base material, automobile and building
JP5898397B2 (en) Near-infrared shielding polyester resin composition, near-infrared shielding polyester resin laminate, molded article and method for producing the same
JP5257381B2 (en) Near-infrared shielding polyester resin composition, molded article thereof, and laminate thereof
JP2008290460A (en) Laminated structure for cutting off sunlight
JP2012082326A (en) Master batch containing high heat-resistant heat ray shielding component, production method of the master batch, high heat-resistant heat ray shielding transparent resin molded article, and high heat-resistant heat ray shielding transparent laminate
KR20210116428A (en) Surface-treated infrared absorbing fine particles, surface-treated infrared absorbing fine particle powder, infrared absorbing fine particle dispersion using the surface-treated infrared absorbing fine particle, infrared absorbing fine particle dispersion, and infrared absorbing substrate
JP2014166701A (en) Laminated structure for shielding heat ray
JP4289145B2 (en) Solar shading fine particles, solar shading resin material in which these fine particles are dispersed in a resin component, and solar shading fine particle dispersion used for manufacturing solar shading resin material and solar shading resin material And solar shading composite base material
JP5915500B2 (en) Heat ray shielding resin sheet material and automobile
JP5939188B2 (en) Laminated structure for heat ray shielding
JP5061665B2 (en) Masterbatch, method for producing the same, molded body using the masterbatch, and laminate using the molded body
JP2014114202A (en) Superposition structure for heat ray-shielding

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101125