JP2010155938A - Near-infrared absorbent and dispersion thereof - Google Patents

Near-infrared absorbent and dispersion thereof Download PDF

Info

Publication number
JP2010155938A
JP2010155938A JP2008335446A JP2008335446A JP2010155938A JP 2010155938 A JP2010155938 A JP 2010155938A JP 2008335446 A JP2008335446 A JP 2008335446A JP 2008335446 A JP2008335446 A JP 2008335446A JP 2010155938 A JP2010155938 A JP 2010155938A
Authority
JP
Japan
Prior art keywords
dispersion
infrared absorber
surface treatment
solvent
treatment agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008335446A
Other languages
Japanese (ja)
Other versions
JP5570114B2 (en
Inventor
Shinya Shiraishi
真也 白石
Takeshi Nakagawa
猛 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Electronic Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Materials Electronic Chemicals Co Ltd filed Critical Mitsubishi Materials Corp
Priority to JP2008335446A priority Critical patent/JP5570114B2/en
Publication of JP2010155938A publication Critical patent/JP2010155938A/en
Application granted granted Critical
Publication of JP5570114B2 publication Critical patent/JP5570114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a near-infrared absorbent which is excellent in near-infrared absorbing effect, exhibits good dispersibility in a liquid and ensures low haze of a thin film, and the dispersion thereof. <P>SOLUTION: The near-infrared absorbent is a near-infrared absorbent surface-modified with a surface treating agent which is the same component as a solvent forming the dispersion of a near-infrared absorbent or the same component as the principal component of a solvent, wherein the near-infrared absorbent is indium tin oxide (ITO) or antimony tin oxide (ATO), and the surface treating agent or the principal component of the dispersing solvent is glycols. The dispersion of the near-infrared absorbent is also provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、近赤外線の吸収効果に優れ、液中での分散性が良く、薄膜のヘーズが低い近赤外線吸収剤とその分散液に関する。   The present invention relates to a near-infrared absorber that has an excellent near-infrared absorption effect, good dispersibility in a liquid, and low haze of a thin film and a dispersion thereof.

近赤外線の吸収効果に優れた材料として、インジウム錫酸化物(ITO)、およびアンチモン錫酸化物(ATO)が知られており、さらに、その改良がなされている。例えば、特開平6−247716号公報(特許文献1)には、ITO粉末を有機溶媒に含浸させ、不活性ガス定雰囲気下で熱処理することによって、インジウムと錫の合計量に対して、1〜15モル%の錫を含有するインジウム錫酸化物(ITO)からなる粉末が記載されている。   Indium tin oxide (ITO) and antimony tin oxide (ATO) are known as materials having an excellent near-infrared absorption effect, and further improvements have been made. For example, in JP-A-6-247716 (Patent Document 1), by impregnating an ITO powder in an organic solvent and heat-treating under a constant inert gas atmosphere, the total amount of indium and tin is 1 to 1. A powder consisting of indium tin oxide (ITO) containing 15 mol% tin is described.

この粉末はITOの一部が還元されてキャリア濃度が向上することによって抵抗が低下し、導電性を有すると共に、一定範囲量の錫を含有することによって青味を帯びた色調を有するようになる。また、このITO粉末は高いキャリア密度に起因する近赤外線カット特性を有しているため、樹脂もしくは溶媒中に均一に分散することによって、可視光線に対して非常に高透明かつ近赤外線を効果的にカットすることが可能である。従って、このITO粉末を用いることによって、優れた近赤外線カット特性と高い可視光線透過率、低ヘーズを兼ね備えた中間膜および合わせガラスを得ることが可能である(特開2005−187226号公報:特許文献2)。   This powder is reduced in resistance by part of ITO being reduced and the carrier concentration is lowered, and it has conductivity, and has a bluish color tone by containing a certain amount of tin. . In addition, this ITO powder has a near-infrared cut characteristic due to a high carrier density, so it is very transparent to visible light and effective in the near-infrared by being uniformly dispersed in a resin or solvent. It is possible to cut into Therefore, by using this ITO powder, it is possible to obtain an intermediate film and a laminated glass having both excellent near-infrared cut characteristics, high visible light transmittance, and low haze (Japanese Patent Laid-Open No. 2005-187226: Patent) Reference 2).

しかし、より高い近赤外線カット特性を得るためには、膜中のITO微粒子含有量を増加させる必要があり、ITO微粒子含有量が増加すると、粒子による可視光線の散乱も増加するため膜ヘーズも高くなりやすいという問題があった。
特開平6−247716号公報 特開2005−187226号公報
However, in order to obtain higher near-infrared cut characteristics, it is necessary to increase the ITO fine particle content in the film. When the ITO fine particle content increases, the scattering of visible light by the particles also increases, so the film haze is also high. There was a problem that it was easy to become.
JP-A-6-247716 JP 2005-187226 A

本発明は、近赤外線吸収剤として用いられているITO粉末やATO粉末等について、従来の上記問題を解決したものであり、近赤外線の吸収効果に優れ、液中での分散性が良く、薄膜でのヘーズが低い近赤外線吸収剤とその分散液を提供する。   The present invention solves the above-mentioned problems with ITO powder and ATO powder used as near-infrared absorbers, has excellent near-infrared absorption effect, good dispersibility in liquid, and thin film A near-infrared absorber having a low haze and a dispersion thereof are provided.

本発明は上記課題を解決する手段として以下の構成を有する近赤外線吸収剤に関する。
〔1〕近赤外線吸収剤の分散液を形成する溶媒と同成分または溶媒の主成分と同成分の表面処理剤によって近赤外線吸収剤の表面が修飾されていることを特徴とする近赤外線吸収剤。
〔2〕近赤外線吸収剤がインジウム錫酸化物(ITO)またはアンチモン錫酸化物(ATO)である請求項1に記載する近赤外線吸収剤。
〔3〕表面処理剤がグリコール類である請求項1または請求項2に記載する近赤外線吸収剤。
〔4〕表面処理剤が、ジヘキシルアジペート、トリエチレングリコール−ジ−2−エチルヘキサノエート、テトラエチレングリコール−ジ−2−エチルヘキサノエート、トリエチレングリコール−ジ−2−エチルブチレート、テトラエチレングリコール−ジ−2−エチルブチレート、テトラエチレングリコール−ジ−ヘプタノエート、およびトリエチレングリコール−ジ−ヘプタノエートからなる群より選択される少なくとも1種である請求項1〜請求項3の何れかに記載する近赤外線吸収剤。
The present invention relates to a near-infrared absorber having the following configuration as means for solving the above problems.
[1] A near-infrared absorber, wherein the surface of the near-infrared absorber is modified with a surface treatment agent of the same component as the solvent forming the dispersion of the near-infrared absorber or the main component of the solvent. .
[2] The near infrared absorber according to claim 1, wherein the near infrared absorber is indium tin oxide (ITO) or antimony tin oxide (ATO).
[3] The near-infrared absorber according to claim 1 or 2, wherein the surface treatment agent is a glycol.
[4] Surface treatment agent is dihexyl adipate, triethylene glycol-di-2-ethylhexanoate, tetraethylene glycol-di-2-ethylhexanoate, triethylene glycol-di-2-ethylbutyrate, tetra 4. It is at least one selected from the group consisting of ethylene glycol-di-2-ethylbutyrate, tetraethylene glycol-di-heptanoate, and triethylene glycol-di-heptanoate. The near-infrared absorber to describe.

さらに本発明は、上記課題を解決する手段として以下の構成を有する近赤外線吸収剤分散液に関する。
〔5〕表面処理剤によって修飾された近赤外線吸収剤が、該表面処理剤と同成分または該表面処理剤の主成分と同成分の溶媒に分散されていることを特徴とする近赤外線吸収剤分散液。
〔6〕近赤外線吸収剤がインジウム錫酸化物(ITO)またはアンチモン錫酸化物(ATO)である請求項5に記載する近赤外線吸収剤分散液。
〔7〕表面処理剤がグリコール類であり、分散溶媒がグリコール類またはグリコール類を主成分としアルコールを含む混合溶媒である請求項5または請求項6に記載する近赤外線吸収剤分散液。
〔8〕表面処理剤が、ジヘキシルアジペート、トリエチレングリコール−ジ−2−エチルヘキサノエート、テトラエチレングリコール−ジ−2−エチルヘキサノエート、トリエチレングリコール−ジ−2−エチルブチレート、テトラエチレングリコール−ジ−2−エチルブチレート、テトラエチレングリコール−ジ−ヘプタノエート、およびトリエチレングリコール−ジ−ヘプタノエートからなる群より選択される少なくとも1種であり、分散溶媒が上記グリコール類とアルコールおよび水の混合溶媒である請求項5〜請求項7の何れかに記載する近赤外線吸収剤分散液。
〔9〕分散溶媒が、トリエチレングリコール−ジ−2−エチルヘキサノエート、またはトリエチレングリコール−ジ−2−エチルヘキサノエートとエタノールと水の混合溶媒である請求項8に記載する近赤外線吸収剤分散液。
Furthermore, this invention relates to the near-infrared absorber dispersion liquid which has the following structures as a means to solve the said subject.
[5] A near-infrared absorber, wherein the near-infrared absorber modified with the surface treatment agent is dispersed in the same component as the surface treatment agent or a solvent of the same component as the main component of the surface treatment agent. Dispersion.
[6] The near-infrared absorber dispersion according to claim 5, wherein the near-infrared absorber is indium tin oxide (ITO) or antimony tin oxide (ATO).
[7] The near-infrared absorber dispersion according to claim 5 or 6, wherein the surface treatment agent is glycols, and the dispersion solvent is glycols or a mixed solvent containing glycols as a main component and alcohol.
[8] Surface treatment agent is dihexyl adipate, triethylene glycol-di-2-ethylhexanoate, tetraethylene glycol-di-2-ethylhexanoate, triethylene glycol-di-2-ethylbutyrate, tetra And at least one selected from the group consisting of ethylene glycol-di-2-ethylbutyrate, tetraethylene glycol-di-heptanoate, and triethylene glycol-di-heptanoate, and the dispersion solvent is the glycols, alcohol and water. The near-infrared absorber dispersion liquid according to any one of claims 5 to 7, wherein
[9] The near infrared ray according to claim 8, wherein the dispersion solvent is triethylene glycol-di-2-ethylhexanoate, or a mixed solvent of triethylene glycol-di-2-ethylhexanoate, ethanol and water. Absorbent dispersion.

本発明の近赤外線吸収剤およびその分散液は、近赤外線吸収剤の表面が分散溶媒の主成分と同成分の表面処理剤によって修飾されているので、近赤外線吸収剤と分散溶媒の親和性がよく、アルコールによって表面処理したものよりも近赤外線吸収剤の分散性が良い。このため、従来よりも近赤外線吸収剤の分散性に優れた分散液を形成することが可能であり、近赤外線吸収特性に優れ、かつ分散液のヘーズが低い薄膜を形成することができる。また、分散時間の短縮も図れる。   The near-infrared absorber of the present invention and the dispersion liquid thereof have an affinity between the near-infrared absorber and the dispersion solvent because the surface of the near-infrared absorber is modified with the same surface treatment agent as the main component of the dispersion solvent. The dispersibility of the near-infrared absorber is better than that surface-treated with alcohol. For this reason, it is possible to form a dispersion excellent in dispersibility of near-infrared absorbers than before, and to form a thin film having excellent near-infrared absorption characteristics and low dispersion haze. Also, the dispersion time can be shortened.

以下、本発明を実施形態に基づいて具体的に説明する。
本発明の近赤外線吸収剤は、近赤外線吸収剤の分散液を形成する溶媒と同成分または溶媒の主成分と同成分の表面処理剤によって近赤外線吸収剤の表面が修飾されていることを特徴とする近赤外線吸収剤である。
Hereinafter, the present invention will be specifically described based on embodiments.
The near-infrared absorber of the present invention is characterized in that the surface of the near-infrared absorber is modified with the same component as the solvent forming the dispersion of the near-infrared absorber or the surface treatment agent of the same component as the main component of the solvent. It is a near infrared absorber.

近赤外線吸収剤としては、インジウム錫酸化物(ITO)、またはアンチモン錫酸化物(ATO)を用いることができる。   As the near-infrared absorber, indium tin oxide (ITO) or antimony tin oxide (ATO) can be used.

表面処理剤としては、例えば、グリコール類、またはグリコール類を主成分としアルコールを含む混合溶液を用いることができる。同様に、分散溶媒としては、グリコール類、またはグリコール類を主成分としアルコールを含む混合溶液を用いることができる。   As the surface treatment agent, for example, glycols or a mixed solution containing glycols as a main component and alcohol can be used. Similarly, as the dispersion solvent, glycols or a mixed solution containing glycols as a main component and alcohol can be used.

表面処理剤は、分散溶媒と同成分、または分散溶媒の主成分と同成分のものを用いる。分散溶媒の主成分と同成分の表面処理剤とは、例えば、分散溶媒がグリコール類、またはグリコール類を主成分としアルコールおよび水を含む混合溶媒である場合、グリコール類を表面処理剤として用い、または、グリコール類を主成分としアルコールまたは水含む混合溶液を表面処理剤として用いる。   As the surface treatment agent, the same component as the dispersion solvent or the same component as the main component of the dispersion solvent is used. The surface treatment agent having the same component as the main component of the dispersion solvent is, for example, when the dispersion solvent is a glycol or a mixed solvent containing glycols as a main component and containing alcohol and water, and using the glycols as the surface treatment agent, Alternatively, a mixed solution containing glycols as a main component and containing alcohol or water is used as the surface treatment agent.

分散溶媒のグリコール類は、具体的には、例えば、ジヘキシルアジペート、トリエチレングリコール−ジ−2−エチルヘキサノエート、テトラエチレングリコール−ジ−2−エチルヘキサノエート、トリエチレングリコール−ジ−2−エチルブチレート、テトラエチレングリコール−ジ−2−エチルブチレート、テトラエチレングリコール−ジ−ヘプタノエート、およびトリエチレングリコール−ジ−ヘプタノエートからなる群より選択される少なくとも1種を用いることができる。   Specific examples of the dispersion solvent glycol include dihexyl adipate, triethylene glycol-di-2-ethylhexanoate, tetraethylene glycol-di-2-ethylhexanoate, and triethylene glycol-di-2. -At least one selected from the group consisting of ethyl butyrate, tetraethylene glycol-di-2-ethylbutyrate, tetraethylene glycol-di-heptanoate, and triethylene glycol-di-heptanoate can be used.

表面処理剤としてグリコール類を用いた場合、分散溶媒としては、上記グリコール類を主成分とし、アルコールを含む混合溶媒、または上記グリコール類を主成分としアルコールを含み、さらに水やオクチル酸を加えた混合溶媒などが用いることができる。なお、水やオクチル酸は表面処理時に酸化剤として作用するので、単独で使用するとキャリア密度が減少するが、グリコール類と併用することによって近赤外線吸収剤と分散溶媒の親和性を高めることができる。   When glycols are used as the surface treatment agent, the dispersion solvent is the above glycols as a main component, a mixed solvent containing alcohol, or the glycols as a main component contains alcohol, and water or octylic acid is added. A mixed solvent or the like can be used. In addition, since water and octylic acid act as an oxidizing agent during the surface treatment, the carrier density decreases when used alone, but the affinity between the near-infrared absorber and the dispersion solvent can be increased by using it together with glycols. .

ITO粉末、ATO粉末などの近赤外線吸収剤の表面に、分散溶媒と同成分の表面処理剤または分散溶媒の主成分と同成分の表面処理剤を吸着させることにより、近赤外線吸収剤と分散溶媒との親和性が向上し、該溶媒中での近赤外線吸収剤の分散性に優れており、アルコールによって表面処理したものよりも近赤外線吸収剤の分散性が良い。このため、分散時間を短縮することができ、さらに、従来よりも近赤外線吸収剤の分散性に優れた分散液を形成することが可能であり、近赤外線吸収特性に優れ、かつ分散液のヘーズが低い薄膜を形成することができる。   By adsorbing the surface treatment agent of the same component as the dispersion solvent or the surface treatment agent of the same component as the main component of the dispersion solvent on the surface of the near infrared absorber such as ITO powder or ATO powder, the near infrared absorber and the dispersion solvent Is improved, the dispersibility of the near-infrared absorber in the solvent is excellent, and the dispersibility of the near-infrared absorber is better than that obtained by surface treatment with alcohol. For this reason, the dispersion time can be shortened, and furthermore, it is possible to form a dispersion having better dispersibility of the near-infrared absorber than before, which has excellent near-infrared absorption characteristics and has a haze of dispersion. A thin film with a low thickness can be formed.

本発明に係る近赤外線吸収剤の分散液は、具体的には、表面処理剤によって修飾された近赤外線吸収剤が、該表面処理剤と同成分または該表面処理剤の主成分と同成分の溶媒に分散されている近赤外線吸収剤分散液である。   Specifically, the near-infrared absorbent dispersion according to the present invention is such that the near-infrared absorbent modified with the surface treatment agent is the same component as the surface treatment agent or the same component as the main component of the surface treatment agent. It is a near-infrared absorber dispersion liquid dispersed in a solvent.

近赤外線吸収剤の表面に付着している表面処理剤の量は、近赤外線吸収剤の質量に対して0.001〜5.0%が好ましい。表面処理剤の量が上記範囲より少ないと近赤外線吸収剤の分散性を十分に高めることが難しくなる。一方、上記範囲よりも多く表面処理剤を使用しても近赤外線吸収剤の分散性は上記範囲量の場合と同程度である。   The amount of the surface treatment agent adhering to the surface of the near infrared absorber is preferably 0.001 to 5.0% with respect to the mass of the near infrared absorber. When the amount of the surface treatment agent is less than the above range, it is difficult to sufficiently enhance the dispersibility of the near infrared absorber. On the other hand, even if the surface treatment agent is used more than the above range, the dispersibility of the near-infrared absorber is almost the same as that in the above range.

表面処理の方法は、ITO粉末、ATO粉末などの近赤外線吸収剤を表面処理剤の溶液に浸して近赤外線吸収剤の粉末表面に表面処理剤を含浸させ、これを引上げた後に窒素ガス等の不活性ガス雰囲気下で、50〜500℃で、1分-〜24時間、加熱処理すると良い。上記加熱処理によってグリコール類は還元され分解される。   The surface treatment method is carried out by immersing a near-infrared absorber such as ITO powder or ATO powder in a solution of the surface treatment agent so that the surface of the near-infrared absorber powder is impregnated with the surface treatment agent. Heat treatment is preferably performed at 50 to 500 ° C. for 1 minute to 24 hours in an inert gas atmosphere. The glycols are reduced and decomposed by the heat treatment.

以下、本発明の実施例を比較例と共に示す。
〔ITO粉末の合成〕
InCl3水溶液(In金属 350g含有)900mLと、55%SnCl4水溶液144gとを混合し、この混合水溶液を、NH4HCO31900gを含有するアルカリ水溶液6Lに加えて60℃の液温で30分間反応させ、反応後、イオン交換水によって繰り返し傾斜洗浄を行った。上澄み液の電気伝導度が5000Ω・cm以上になったところで沈殿(In/Sn共沈水酸化物)を濾別し、110℃で一晩乾燥した後、大気中、550℃で3時間焼成し、粉砕して凝集体をほぐし、ITO粉末440gを得た。
Examples of the present invention are shown below together with comparative examples.
[Synthesis of ITO powder]
900 mL of an InCl 3 aqueous solution (containing 350 g of In metal) and 144 g of a 55% SnCl 4 aqueous solution are mixed, and this mixed aqueous solution is added to 6 L of an alkaline aqueous solution containing 1900 g of NH 4 HCO 3 and added at a liquid temperature of 60 ° C. for 30 minutes. The reaction was carried out, and after the reaction, repeated washing with ion-exchanged water was performed. The precipitate (In / Sn coprecipitated hydroxide) was filtered off when the electrical conductivity of the supernatant liquid reached 5000 Ω · cm or more, dried at 110 ° C. overnight, and then baked at 550 ° C. for 3 hours in the atmosphere. The aggregate was loosened by pulverization to obtain 440 g of ITO powder.

〔表面処理〕
上記ITO粉末40gを、表面処理剤として用いた表1に示す溶媒に浸して、ITO粉末に下記溶媒を含浸させた後、ガラスシャーレに入れ、窒素ガス雰囲気下、330℃にて2時間加熱処理した。
〔surface treatment〕
40 g of the above ITO powder is immersed in the solvent shown in Table 1 used as a surface treatment agent, and after impregnating the ITO powder with the following solvent, it is placed in a glass petri dish and heated at 330 ° C. for 2 hours in a nitrogen gas atmosphere. did.

〔分散液の調製〕
表面処理されたITO粉末10gを分散混合溶媒に加え、この混合溶媒をジルコニアビーズによって60分間攪拌して分散液を調製した。分散混合溶媒は表1に示す分散溶媒30gにリン酸エステル系分散剤1gおよびエタノール3gを加えたものを用いた。
(Preparation of dispersion)
10 g of the surface-treated ITO powder was added to the dispersion mixed solvent, and this mixed solvent was stirred with zirconia beads for 60 minutes to prepare a dispersion. As the dispersion mixed solvent, a dispersion solvent obtained by adding 30 g of a dispersion solvent shown in Table 1 to 1 g of a phosphate ester dispersant and 3 g of ethanol was used.

〔分散液の評価〕
上記分散液を、トリエチレングリコール−ジ−2−エチルヘキサノエートで0.7質量%まで希釈した。この希釈液を光路長1mmのガラスセルに入れ、分光透過率を日立自記分光光度計(U−4000)を用い、規格(JIS R 3216−1998)に従って測定した。さらに、ヘーズをスガ試験機製ヘーズコンピュータ(HZ-2)を用い、規格(JIS K 7136)に従って測定した。測定結果を表1に示す。
(Evaluation of dispersion)
The dispersion was diluted to 0.7% by mass with triethylene glycol-di-2-ethylhexanoate. This diluted solution was put into a glass cell having an optical path length of 1 mm, and the spectral transmittance was measured according to the standard (JIS R 3216-1998) using a Hitachi auto-spectrometer (U-4000). Furthermore, haze was measured according to the standard (JIS K 7136) using a haze computer (HZ-2) manufactured by Suga Test Instruments. The measurement results are shown in Table 1.

〔実施例1〜3〕
実施例1:表面処理剤としてトリエチレングリコール−ジ−2−エチルヘキサノエートを用いた。
実施例2:表面処理剤としてトリエチレングリコール−ジ−2−エチルヘキサノエートに無水エタノールおよび水を含む混合溶液を用いた。
実施例3:表面処理剤としてトリエチレングリコール−ジ−2−エチルヘキサノエートにオクチル酸、無水エタノール、および水を含む混合溶液を用いた。
[Examples 1-3]
Example 1: Triethylene glycol-di-2-ethylhexanoate was used as a surface treatment agent.
Example 2: A mixed solution containing triethylene glycol-di-2-ethylhexanoate and absolute ethanol and water was used as a surface treatment agent.
Example 3 A mixed solution containing triethylene glycol-di-2-ethylhexanoate, octylic acid, absolute ethanol, and water was used as a surface treatment agent.

〔比較例1〜5〕
比較例1:表面処理剤として無水エタノールを用いた。
比較例2:表面処理剤として無水エタノールに水を加えた混合溶液を用いた。
比較例3:表面処理剤としてオクチル酸を用いた。
比較例4:表面処理剤として水を用いた。
比較例5:表面処理剤を含浸させずに窒素ガス雰囲気下、330℃にて2時間加熱処理した。
[Comparative Examples 1-5]
Comparative Example 1: Absolute ethanol was used as a surface treatment agent.
Comparative Example 2: A mixed solution obtained by adding water to absolute ethanol was used as a surface treatment agent.
Comparative Example 3: Octylic acid was used as the surface treatment agent.
Comparative Example 4: Water was used as the surface treatment agent.
Comparative Example 5: Heat treatment was performed at 330 ° C. for 2 hours in a nitrogen gas atmosphere without impregnation with the surface treatment agent.

表1に示すように、本発明の近赤外線吸収剤を用いた分散液(実施例1〜3)は、何れも分散時間が短く、日射透過率が60%以下であり、近赤外線吸収効果が良い。さらに、ヘーズは0.5%以下であり、可視光線の散乱が少なく可視光線透過率が高い。   As shown in Table 1, each of the dispersions (Examples 1 to 3) using the near-infrared absorber of the present invention has a short dispersion time, a solar transmittance of 60% or less, and a near-infrared absorption effect. good. Further, the haze is 0.5% or less, visible light scattering is small, and visible light transmittance is high.

一方、比較例1〜5は、何れもヘーズ0.6%以上である。また比較例1〜2は日射透過率が低く、近赤外線吸収効果は良いが、可視光線透過率が低い。比較例3〜5はヘーズが0.7以上であり、また日射透過率が高く、近赤外線吸収効果が低い。   On the other hand, all of Comparative Examples 1 to 5 have a haze of 0.6% or more. Comparative Examples 1 and 2 have low solar transmittance and good near-infrared absorption effect, but have low visible light transmittance. In Comparative Examples 3 to 5, the haze is 0.7 or more, the solar radiation transmittance is high, and the near infrared absorption effect is low.

Figure 2010155938
Figure 2010155938

Claims (9)

近赤外線吸収剤の分散液を形成する溶媒と同成分または溶媒の主成分と同成分の表面処理剤によって近赤外線吸収剤の表面が修飾されていることを特徴とする近赤外線吸収剤。 A near-infrared absorbent, wherein the surface of the near-infrared absorbent is modified with the same component as the solvent forming the dispersion of the near-infrared absorbent or the surface treatment agent of the same component as the main component of the solvent. 近赤外線吸収剤がインジウム錫酸化物(ITO)またはアンチモン錫酸化物(ATO)である請求項1に記載する近赤外線吸収剤。 The near-infrared absorber according to claim 1, wherein the near-infrared absorber is indium tin oxide (ITO) or antimony tin oxide (ATO). 表面処理剤がグリコール類である請求項1または請求項2に記載する近赤外線吸収剤。 The near-infrared absorber according to claim 1 or 2, wherein the surface treatment agent is a glycol. 表面処理剤が、ジヘキシルアジペート、トリエチレングリコール−ジ−2−エチルヘキサノエート、テトラエチレングリコール−ジ−2−エチルヘキサノエート、トリエチレングリコール−ジ−2−エチルブチレート、テトラエチレングリコール−ジ−2−エチルブチレート、テトラエチレングリコール−ジ−ヘプタノエート、およびトリエチレングリコール−ジ−ヘプタノエートからなる群より選択される少なくとも1種である請求項1〜請求項3の何れかに記載する近赤外線吸収剤。 Surface treatment agents are dihexyl adipate, triethylene glycol-di-2-ethylhexanoate, tetraethylene glycol-di-2-ethylhexanoate, triethylene glycol-di-2-ethylbutyrate, tetraethylene glycol- The proximity according to any one of claims 1 to 3, which is at least one selected from the group consisting of di-2-ethylbutyrate, tetraethylene glycol-di-heptanoate, and triethylene glycol-di-heptanoate. Infrared absorber. 表面処理剤によって修飾された近赤外線吸収剤が、該表面処理剤と同成分または該表面処理剤の主成分と同成分の溶媒に分散されていることを特徴とする近赤外線吸収剤分散液。 A near-infrared absorber dispersion liquid, wherein a near-infrared absorber modified with a surface treatment agent is dispersed in the same component as the surface treatment agent or a solvent having the same component as the main component of the surface treatment agent. 近赤外線吸収剤がインジウム錫酸化物(ITO)またはアンチモン錫酸化物(ATO)である請求項5に記載する近赤外線吸収剤分散液。 The near-infrared absorber dispersion liquid according to claim 5, wherein the near-infrared absorber is indium tin oxide (ITO) or antimony tin oxide (ATO). 表面処理剤がグリコール類であり、分散溶媒がグリコール類またはグリコール類を主成分としアルコールを含む混合溶媒である請求項5または請求項6に記載する近赤外線吸収剤分散液。 The near-infrared absorber dispersion liquid according to claim 5 or 6, wherein the surface treatment agent is glycols, and the dispersion solvent is glycols or a mixed solvent containing glycols as a main component and alcohol. 表面処理剤が、ジヘキシルアジペート、トリエチレングリコール−ジ−2−エチルヘキサノエート、テトラエチレングリコール−ジ−2−エチルヘキサノエート、トリエチレングリコール−ジ−2−エチルブチレート、テトラエチレングリコール−ジ−2−エチルブチレート、テトラエチレングリコール−ジ−ヘプタノエート、およびトリエチレングリコール−ジ−ヘプタノエートからなる群より選択される少なくとも1種であり、分散溶媒が上記グリコール類とアルコールおよび水の混合溶媒である請求項5〜請求項7の何れかに記載する近赤外線吸収剤分散液。 Surface treatment agents are dihexyl adipate, triethylene glycol-di-2-ethylhexanoate, tetraethylene glycol-di-2-ethylhexanoate, triethylene glycol-di-2-ethylbutyrate, tetraethylene glycol- It is at least one selected from the group consisting of di-2-ethylbutyrate, tetraethylene glycol-di-heptanoate, and triethylene glycol-di-heptanoate, and the dispersion solvent is a mixed solvent of the glycols, alcohol and water. The near-infrared absorber dispersion liquid according to any one of claims 5 to 7. 分散溶媒が、トリエチレングリコール−ジ−2−エチルヘキサノエート、またはトリエチレングリコール−ジ−2−エチルヘキサノエートとエタノールと水の混合溶媒である請求項8に記載する近赤外線吸収剤分散液。 The near-infrared absorber dispersion according to claim 8, wherein the dispersion solvent is triethylene glycol-di-2-ethylhexanoate or a mixed solvent of triethylene glycol-di-2-ethylhexanoate, ethanol, and water. liquid.
JP2008335446A 2008-12-27 2008-12-27 Near-infrared absorber and dispersion thereof Active JP5570114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008335446A JP5570114B2 (en) 2008-12-27 2008-12-27 Near-infrared absorber and dispersion thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008335446A JP5570114B2 (en) 2008-12-27 2008-12-27 Near-infrared absorber and dispersion thereof

Publications (2)

Publication Number Publication Date
JP2010155938A true JP2010155938A (en) 2010-07-15
JP5570114B2 JP5570114B2 (en) 2014-08-13

Family

ID=42574085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008335446A Active JP5570114B2 (en) 2008-12-27 2008-12-27 Near-infrared absorber and dispersion thereof

Country Status (1)

Country Link
JP (1) JP5570114B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235352A (en) * 2009-03-30 2010-10-21 Mitsubishi Materials Corp Surface-modified transparent conductive antimony tin oxide powder and production method of the same
EP2913827A1 (en) 2014-02-26 2015-09-02 Titan Kogyo Kabushiki Kaisha Fine powder of transparent and electric conductive oxide composites and production method thereof and transparent electric conductive film
CN105549133A (en) * 2015-12-09 2016-05-04 同济大学 Near-infrared omnidirectional absorber based on hyperbolic specific material micro-cavity
JP2018003058A (en) * 2016-06-28 2018-01-11 住友金属鉱山株式会社 Heating method of product to be treated, heat treatment method of article to be treated, heat treatment method of steel sheet and heat promotion coating layer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105549132B (en) * 2015-12-09 2017-11-07 同济大学 A kind of near-infrared omnidirectional absorber based on hyperbolic photonic crystal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005343723A (en) * 2004-06-01 2005-12-15 Sekisui Chem Co Ltd Thermally insulating particle dispersion, interlayer for laminated glass, and laminated glass
JP2006169544A (en) * 2004-12-10 2006-06-29 Mitsubishi Materials Corp Metal particulate, method for producing the same, composition containing the same and application thereof
JP2008044609A (en) * 2006-03-30 2008-02-28 Sumitomo Metal Mining Co Ltd Sunshine screen for vehicle window and vehicle window
JP2008202000A (en) * 2007-02-22 2008-09-04 Sanyo Shikiso Kk Metal naphthalocyanine pigment, near-ir absorbing material and near-ir absorbing ink

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005343723A (en) * 2004-06-01 2005-12-15 Sekisui Chem Co Ltd Thermally insulating particle dispersion, interlayer for laminated glass, and laminated glass
JP2006169544A (en) * 2004-12-10 2006-06-29 Mitsubishi Materials Corp Metal particulate, method for producing the same, composition containing the same and application thereof
JP2008044609A (en) * 2006-03-30 2008-02-28 Sumitomo Metal Mining Co Ltd Sunshine screen for vehicle window and vehicle window
JP2008202000A (en) * 2007-02-22 2008-09-04 Sanyo Shikiso Kk Metal naphthalocyanine pigment, near-ir absorbing material and near-ir absorbing ink

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235352A (en) * 2009-03-30 2010-10-21 Mitsubishi Materials Corp Surface-modified transparent conductive antimony tin oxide powder and production method of the same
EP2913827A1 (en) 2014-02-26 2015-09-02 Titan Kogyo Kabushiki Kaisha Fine powder of transparent and electric conductive oxide composites and production method thereof and transparent electric conductive film
CN105549133A (en) * 2015-12-09 2016-05-04 同济大学 Near-infrared omnidirectional absorber based on hyperbolic specific material micro-cavity
CN105549133B (en) * 2015-12-09 2017-12-15 同济大学 A kind of near-infrared omnidirectional absorber based on hyperbolic metamaterials microcavity
JP2018003058A (en) * 2016-06-28 2018-01-11 住友金属鉱山株式会社 Heating method of product to be treated, heat treatment method of article to be treated, heat treatment method of steel sheet and heat promotion coating layer

Also Published As

Publication number Publication date
JP5570114B2 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
KR101568561B1 (en) Indium tin oxide powder, method for producing same, dispersion, paint, and functional thin film
JP5849766B2 (en) Composite tungsten oxide fine particles for forming solar radiation shield, composite tungsten oxide fine particle dispersion for forming solar radiation shield, and method for producing solar radiation shield
EP2305607A1 (en) Core-shell particle and method for producing core-shell particle
JP5570114B2 (en) Near-infrared absorber and dispersion thereof
JP4586761B2 (en) Heat ray shielding glass and manufacturing method thereof
WO2007058016A1 (en) Process for producing base material for forming heat shielding film
JP6266230B2 (en) Surface-modified metal oxide fine particles, coating liquid for thin film formation, substrate with thin film, photoelectric cell, and method for producing surface-modified metal oxide fine particles
JP5638935B2 (en) Metal fine particle dispersion, transparent conductive film forming coating liquid, and substrate with transparent conductive film
JPH0841441A (en) Indium-tin oxide powder for shielding ultraviolet and near infrared rays, ultraviolet and near-infrared ray-shielding glass and production thereof
JP4600685B2 (en) UV and near infrared shielding glass
JP2009073722A (en) Porous silica, laminate and composition for optical use, and method for producing porous silica
JP5580153B2 (en) Metal fine particle dispersion, metal fine particle, production method of metal fine particle dispersion, etc.
JP2011116623A (en) Heat ray shielding composition and method for manufacturing the same
JP2015199668A (en) Composite tungsten oxide fine particle for forming solar radiation shielding body and manufacturing method therefor, composite tungsten oxide fine particle dispersion for forming solar radiation shielding body and solar radiation shielding body
JP4826126B2 (en) Solar radiation shielding film forming coating solution, solar radiation shielding film, and substrate having solar radiation shielding function
JP6171733B2 (en) Heat ray shielding dispersion forming coating solution and heat ray shielding body
US20040197549A1 (en) Conductive film, manufactruing method thereof, substrate having the same
JP5068298B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
KR100484102B1 (en) Composition for forming transparent conductive layer, transparent conductive layer formed therefrom and image display device employing the same
JP2009013358A (en) Composition forming shield layer against ultraviolet ray and heat ray, and use thereof
JP2008162863A (en) White electroconductive powder
JP3915880B2 (en) Method for producing fine particles for solar radiation shielding film formation
JP2015044922A (en) Heat ray-shielding dispersion material, coating liquid for forming heat ray-shielding dispersion material, and heat ray-shielding body
JP2006193670A (en) Hexaborate particulate coated with silica film, method for producing the same, coating liquid for optical component produced by using the particulate and optical component
JP2005022941A (en) Infrared shielding glass and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140624

R150 Certificate of patent or registration of utility model

Ref document number: 5570114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250