JP2006193670A - Hexaborate particulate coated with silica film, method for producing the same, coating liquid for optical component produced by using the particulate and optical component - Google Patents

Hexaborate particulate coated with silica film, method for producing the same, coating liquid for optical component produced by using the particulate and optical component Download PDF

Info

Publication number
JP2006193670A
JP2006193670A JP2005008484A JP2005008484A JP2006193670A JP 2006193670 A JP2006193670 A JP 2006193670A JP 2005008484 A JP2005008484 A JP 2005008484A JP 2005008484 A JP2005008484 A JP 2005008484A JP 2006193670 A JP2006193670 A JP 2006193670A
Authority
JP
Japan
Prior art keywords
fine particles
film
coated
silica
hexaboride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005008484A
Other languages
Japanese (ja)
Inventor
Masahiro Oma
正弘 大麻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2005008484A priority Critical patent/JP2006193670A/en
Publication of JP2006193670A publication Critical patent/JP2006193670A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide hexaborate particulate having improved moisture resistance, free from the deterioration of properties and suitable as a sun screening material, etc., a coating liquid for optical components produced by using the particulate and a sun screening optical component. <P>SOLUTION: The particulate is produced by forming a primary coating film on the surface of a hexaborate particulate with a surface-modifying agent such as a silane coupling agent and forming a secondary coating film composed mainly of silica by using a silicic acid compound. The silica-coated hexaborate particulate has a nearly spherical form and excellent moisture resistance. The sun screening optical component is produced by coating a substrate with a coating liquid containing the silica-coated hexaborate particulate dispersed in the liquid or dispersing the silica-coated hexaborate particulate in a liquid medium or a solid medium and forming in the form of a film or a board. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、日射遮蔽材料として好適なシリカ膜で被覆された6ホウ化微粒子とその製造方法、これを用いた光学部材用塗布液、及び日射遮蔽用の光学部材に関する。   The present invention relates to a hexaboride fine particle coated with a silica film suitable as a solar shading material, a method for producing the same, a coating solution for an optical member using the same, and an optical member for solar shading.

従来、太陽光などからの熱成分を除去・減少させる日射遮蔽膜として、可視・赤外域の波長を反射する金属酸化物や金属薄膜を、樹脂フィルムやガラスの表面に形成することが行なわれていた。このような日射遮蔽膜に用いる日射遮蔽材料としては、無機系では、FeO、CoO、CrO、TiOなどの金属酸化物や、Ag、Au、アルミニウムなどの自由電子を多量にもつ金属材料が使用されていた。また、有機系では、フタロシアニン系や金属錯体系があり、樹脂バインダー中に添加した物がよく使用されていた。 Conventionally, as a solar radiation shielding film that removes and reduces heat components from sunlight, metal oxides and metal thin films that reflect visible and infrared wavelengths are formed on the surface of resin films and glass. It was. As the solar shading material used for such a solar shading film, in inorganic systems, metal oxides such as FeO x , CoO x , CrO x , TiO x, and metals having a large amount of free electrons such as Ag, Au, and aluminum Material was used. Moreover, in the organic type, there are a phthalocyanine type and a metal complex type, and those added to the resin binder are often used.

しかし、上記した従来の無機系の日射遮蔽材料は、特に太陽光線で熱効果に大きく寄与する近赤外線以外に、可視光領域の光も同時に反射若しくは吸収する性質がある。そのため、鏡のようなギラギラした外観を与えて美観を損ねたり、可視光透過率が低下してしまうという欠点があった。   However, the above-described conventional inorganic solar radiation shielding material has a property of reflecting or absorbing light in the visible light region at the same time, in addition to the near infrared ray that greatly contributes to the thermal effect, particularly with sunlight. For this reason, there is a drawback in that a lustrous appearance such as a mirror is given and the aesthetic appearance is impaired, and the visible light transmittance is lowered.

特に、住宅、ビル、乗り物などに用いる透明基材では、可視光領域の高い透過率が必要とされるため、無機系の日射遮蔽材料を利用する場合には膜厚を非常に薄くするという操作が必要となる。従って、スプレー焼き付け法、CVD法、スパッタ法、真空蒸着法などの物理成膜法を用いて、10nmレベルという極めて薄い膜を成膜しなければならなかった。このため、大がかりな装置や真空設備が必要となり、成膜コストが高くなるうえ、大面積化が難しく、生産性にも劣るという問題があった。   In particular, transparent substrates used in houses, buildings, vehicles, etc. require high transmittance in the visible light region, so when using inorganic solar shading materials, the operation is to make the film thickness very thin. Is required. Therefore, it has been necessary to form a very thin film of 10 nm level using a physical film forming method such as spray baking, CVD, sputtering, or vacuum deposition. For this reason, a large-scale apparatus and vacuum equipment are required, resulting in high film formation costs, difficulty in increasing the area, and inferior productivity.

更に、これら無機系の日射遮蔽材料では、膜の導電性が高くなるものが多く、携帯電話やTV受信、車内にアンテナを搭載したカーナビゲーションシステムなどの電波を反射して受信不能になったり、周辺地域に電波障害を引き起こしたりする欠点があった。   In addition, these inorganic solar shading materials often have high film conductivity, making it impossible to receive by reflecting radio waves from mobile phones, TV reception, car navigation systems equipped with antennas in the car, There was a fault that caused radio interference in the surrounding area.

一方、上記した従来の有機系の日射遮蔽材料は、無機系の材料に比べて熱や湿度による劣化が著しく、耐湿性に致命的な欠点があった。また、可視光透過率を高くしようとすると日射遮蔽特性が低下し、逆に日射遮蔽特性を高くすると可視光透過率が低下してしまうという問題もあった。   On the other hand, the above-mentioned conventional organic solar shading materials are significantly deteriorated by heat and humidity as compared with inorganic materials, and have a fatal defect in moisture resistance. In addition, when the visible light transmittance is increased, the solar shading characteristic is lowered, and conversely, when the solar shading characteristic is increased, the visible light transmittance is lowered.

他の日射遮蔽材料として、アンチモン含有酸化錫(ATO)や錫含有酸化インジウム(ITO)があり、可視光領域の光の吸収・反射率が比較的少なく、人の目に対して透明性が高いという利点がある。しかし、単位質量あたりの日射遮蔽力は低く、十分な日射遮蔽効果を得るためには大量の材料が必要となるため、これを用いた日射遮蔽膜は非常に高価であった。特に、ATOは自由電子濃度が低いため近赤外線の遮蔽力が弱く、日射遮蔽特性が不十分であった。また、ATOやITOの日射遮蔽膜を物理成膜法で形成しても、膜の導電性が上がり、電波を反射妨害してしまう欠点があった。   Other solar radiation shielding materials include antimony-containing tin oxide (ATO) and tin-containing indium oxide (ITO), which have relatively low light absorption / reflectance in the visible light region and high transparency to the human eye. There is an advantage. However, since the solar radiation shielding power per unit mass is low and a large amount of material is required to obtain a sufficient solar radiation shielding effect, the solar radiation shielding film using this is very expensive. In particular, since ATO has a low free electron concentration, it has a weak near-infrared shielding power and insufficient solar radiation shielding properties. In addition, even when an ATO or ITO solar shielding film is formed by a physical film forming method, there is a drawback that the conductivity of the film is increased and the radio wave is disturbed by reflection.

上記した従来の日射遮蔽材料の欠点を解決する方法として、特開2000−169765号公報には、可視光領域の光の透過率が高く且つ反射率が低く、近赤外領域の光の透過率が低く、自由電子を多量に保有する6ホウ化物に着目し、これを超微粒子化してATOやITOと併用することが記載されている。この方法によれば、それぞれの材料を単独で使用するよりも日射遮蔽特性が向上し、ATOやITOの使用量を少なくして材料コストを低減し、しかも表面抵抗値を10Ω/□以上に制御可能な膜を簡便な塗布法で成膜できる利点がある。 As a method for solving the drawbacks of the above-mentioned conventional solar shading material, Japanese Patent Application Laid-Open No. 2000-169765 discloses a light transmittance in the visible region that is high and a reflectance that is low, and a light transmittance in the near infrared region. However, it is described that the hexaboride which has a low amount of free electrons and has a large amount of free electrons is focused on and used in combination with ATO or ITO. According to this method, the solar shading characteristics are improved compared to using each material alone, the amount of ATO or ITO used is reduced, the material cost is reduced, and the surface resistance value is 10 6 Ω / □ or more. There is an advantage that a controllable film can be formed by a simple coating method.

しかしながら、上記6ホウ化物粒子は、空気中の水蒸気や水分によって表面が分解されることが知られている。特に微細な粒子の状態では体積に対して表面積が増加しているため、6ホウ化物微粒子の表面は水蒸気や水分で容易に分解し、酸化物や水酸化物の化合物に変化する割合が多く、その結果6ホウ化物本来の特性が徐々に低下してしまうという欠点があった。例えば、6ホウ化物微粒子を用いた塗膜などにおいて、その光学特性を利用して近赤外領域の光を遮蔽する用途に適用した場合、水蒸気や水分の影響で200〜2600nm領域の透過率が上昇してしまい、日射遮蔽性能が徐々に劣化することが知れている。   However, it is known that the surface of the hexaboride particles is decomposed by water vapor or moisture in the air. In particular, since the surface area is increased with respect to the volume in the state of fine particles, the surface of the hexaboride fine particles is easily decomposed with water vapor or moisture, and the ratio of changing to oxides or hydroxide compounds is large. As a result, there was a drawback that the original characteristics of hexaboride gradually deteriorated. For example, in a coating film using hexaboride fine particles and the like, when applied to an application that shields light in the near infrared region using its optical characteristics, the transmittance in the 200 to 2600 nm region is affected by the influence of water vapor and moisture. It is known that the solar radiation shielding performance gradually deteriorates.

これを防止する方法として、特開2004−043764号公報には、6ホウ化物微粒子を不定形シリカで表面処理することが記載されている。また、不定形シリカで表面処理した6ホウ化物微粒子同士を更に不定形シリカを結着剤として結合して、1〜100μm程度の粒子に成長させ、次いで、その粒子を粉砕して平均粒径が0.1〜30μmの6ホウ化物複合粒子とすることも開示されている。しかしながら、水蒸気や水分による6ホウ化物の分解を完全に抑えることは難しいうえ、粉砕時にシリカ膜が破損してしまうため耐湿性を維持することも困難であった。   As a method for preventing this, Japanese Patent Application Laid-Open No. 2004-043764 describes surface treatment of hexaboride fine particles with amorphous silica. Further, hexaboride fine particles surface-treated with amorphous silica are further bonded together with amorphous silica as a binder to grow into particles of about 1 to 100 μm, and then the particles are pulverized to obtain an average particle size. It is also disclosed to make 0.1-30 μm hexaboride composite particles. However, it is difficult to completely suppress the decomposition of hexaboride by water vapor or moisture, and it is also difficult to maintain moisture resistance because the silica film is broken during pulverization.

特開2000−169765号公報JP 2000-169765 A 特開2004−043764号公報JP 2004-043764 A

本発明は、上記した従来の事情に鑑みてなされたものであり、耐湿性に優れていて、日射遮蔽特性の劣化のない6ホウ化物微粒子を提供すること、これを用いた光学部材用塗布液並びに光学部材を提供することを目的とする。   The present invention has been made in view of the above-described conventional circumstances, and provides hexaboride fine particles that are excellent in moisture resistance and have no deterioration in solar shading properties, and a coating liquid for optical members using the same. An object of the present invention is to provide an optical member.

上記目的を達成するため、本発明は、6ホウ化物微粒子の表面に、表面修飾剤による一次被覆膜と、一次被覆膜上のシリカを主体とする二次被覆膜とを有し、外形が略球状であることを特徴とするシリカ膜被覆6ホウ化物微粒子を提供するものである。   In order to achieve the above-mentioned object, the present invention has, on the surface of hexaboride fine particles, a primary coating film by a surface modifier and a secondary coating film mainly composed of silica on the primary coating film, The present invention provides a silica film-coated hexaboride fine particle characterized by having a substantially spherical outer shape.

上記本発明のシリカ膜被覆6ホウ化物微粒子においては、前記6ホウ化物微粒子が、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sr、Caからなる群から選ばれた少なくとも1種の元素の6ホウ化物であることが好ましい。また、前記6ホウ化物微粒子の粒子径は2nm〜10μmであることが好ましい。   In the above-described silica film-coated hexaboride fine particles of the present invention, the hexaboride fine particles are Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu. It is preferably a hexaboride of at least one element selected from the group consisting of Sr, Ca. The hexaboride fine particles preferably have a particle diameter of 2 nm to 10 μm.

上記本発明のシリカ膜被覆6ホウ化物微粒子においては、前記一次被覆膜と二次被覆膜の合計厚さが1〜100nmであることが好ましい。また、前記表面修飾剤がシランカップリング剤であることが好ましい。   In the silica film-coated hexaboride fine particles of the present invention, the total thickness of the primary coating film and the secondary coating film is preferably 1 to 100 nm. The surface modifier is preferably a silane coupling agent.

上記本発明のシリカ膜被覆6ホウ化物微粒子の製造方法は、6ホウ化物微粒子が分散した液体に表面修飾剤を添加して粒子表面に表面修飾剤による一次被覆膜を形成し、次にケイ酸化合物を添加して加水分解重合させることにより一次被覆膜上にシリカを主体とする二次被覆膜を形成することを特徴とする。   In the above-described method for producing silica film-coated hexaboride fine particles of the present invention, a surface modifier is added to a liquid in which hexaboride fine particles are dispersed to form a primary coating film with the surface modifier on the particle surface, and then A secondary coating film mainly composed of silica is formed on the primary coating film by adding an acid compound and subjecting it to hydrolysis polymerization.

上記本発明のシリカ膜被覆6ホウ化物微粒子の製造方法においては、前記表面修飾剤がシランカップリング剤であり、その6ホウ化物微粒子に対する比率が、シランカップリング剤に含まれるケイ素換算で6ホウ化物微粒子1重量部に対して0.01〜10重量部であることが好ましい。また、前記ケイ酸化合物の6ホウ化物微粒子に対する比率が、ケイ酸化合物に含まれるケイ素換算で6ホウ化物微粒子1重量部に対して0.01〜100重量部であることが好ましい。   In the method for producing silica film-coated hexaboride fine particles of the present invention, the surface modifier is a silane coupling agent, and the ratio of the surface modifier to the hexaboride fine particles is 6 boron in terms of silicon contained in the silane coupling agent. It is preferable that it is 0.01-10 weight part with respect to 1 weight part of compound fine particles. Moreover, it is preferable that the ratio with respect to the hexaboride microparticles | fine-particles of the said silicate compound is 0.01-100 weight part with respect to 1 weight part of hexaboride microparticles | fine-particles in conversion of the silicon contained in a silicate compound.

本発明は、また、上記本発明のシリカ膜被覆6ホウ化物微粒子を、液体中に分散させたことを特徴とする光学部材用塗布液を提供する。この光学部材用塗布液においては、前記液体が、有機溶媒及び/又は水であるか、樹脂及び金属アルコキシドの少なくとも1種を溶解又は分散させた有機溶媒及び/又は水であることが好ましい。   The present invention also provides a coating solution for an optical member, wherein the silica film-coated hexaboride fine particles of the present invention are dispersed in a liquid. In the optical member coating solution, the liquid is preferably an organic solvent and / or water, or an organic solvent and / or water in which at least one of a resin and a metal alkoxide is dissolved or dispersed.

本発明は光学部材を提供するものであり、その第1は、上記した本発明の光学部材用塗布液を基材表面に塗布し、硬化させて形成したことを特徴とするものである。この光学部材は、また、上記した本発明のシリカ膜被覆6ホウ化物微粒子を固体媒質に分散させた光学部材用分散体からなる被膜が、基材表面に形成されていることを特徴とするものである。   The present invention provides an optical member, the first of which is characterized in that the optical member coating liquid of the present invention described above is applied to a substrate surface and cured. This optical member is also characterized in that a coating film comprising a dispersion for an optical member in which the above-described silica film-coated hexaboride fine particles of the present invention are dispersed in a solid medium is formed on the surface of the substrate. It is.

更に、本発明の第2の光学部材は、上記した本発明のシリカ膜被覆6ホウ化物微粒子を固体媒質に分散させた光学部材用分散体からなり、フィルム又はボードに成形されていることを特徴とする。   Furthermore, the second optical member of the present invention is composed of a dispersion for an optical member in which the above-described silica film-coated hexaboride fine particles of the present invention are dispersed in a solid medium, and is formed into a film or a board. And

上記第2の光学部材においては、前記固体媒質が樹脂又はガラスのいずれかであることが好ましい。また、前記光学用分散体からなるフィルム又はボードの厚さは0.1μm〜50mmであることが好ましい。   In the second optical member, it is preferable that the solid medium is either resin or glass. Moreover, it is preferable that the thickness of the film or board which consists of the said optical dispersion is 0.1 micrometer-50 mm.

また、本発明の第3の光学部材は、上記した本発明のシリカ膜被覆6ホウ化物微粒子を液体媒質に分散させた光学部材用分散体が、フィルム又はボードの間に封入されていることを特徴とするものである。   In the third optical member of the present invention, a dispersion for an optical member in which the above-described silica film-coated hexaboride fine particles of the present invention are dispersed in a liquid medium is enclosed between a film or a board. It is a feature.

本発明によれば、6ホウ化物微粒子の表面に最初に表面修飾剤で薄く一次被覆膜を形成し、次にケイ酸化合物を用いてシリカの二次被覆膜を形成することで、被覆時に粒子間の凝集が起こらず、表面が均一なシリカ膜で完全に被覆された、6ホウ化物微粒子を中心核とする外形が略球状のシリカ膜被覆6ホウ化物微粒子を得ることができる。   According to the present invention, a coating film is formed by first forming a thin primary coating film with a surface modifier on the surface of hexaboride fine particles and then forming a secondary coating film of silica using a silicate compound. In some cases, aggregation between particles does not occur, and silica film-coated hexaboride particles having a substantially spherical outer shape centered on hexaboride particles whose surface is completely covered with a uniform silica film can be obtained.

この外形が略球状のシリカ膜被覆6ホウ化物微粒子は、表面が均一なシリカ膜で完全に被覆されているだけでなく、分散性が高いため粉砕が不要か又は軽い解砕で済み、且つ外状が滑らかな略球状であるため、シリカ膜が破損することがない。従って、6ホウ化物微粒子の耐湿性が飛躍的に向上し、日射遮蔽材料として好適な耐湿性に優れたシリカ膜被覆6ホウ化微粒子、及びこれを用いた光学部材用塗布液並びに光学部材を提供することができる。   The hexaboride fine particles with a substantially spherical silica film covering the outer shape are not only completely coated with a silica film having a uniform surface, but also have high dispersibility, so that pulverization is unnecessary or light pulverization is required. Since the shape is smooth and approximately spherical, the silica film is not damaged. Therefore, the moisture resistance of hexaboride fine particles is dramatically improved, and silica film-coated hexaboride fine particles having excellent moisture resistance suitable as a solar radiation shielding material, and an optical member coating solution and an optical member using the same are provided. can do.

上述したように、日射遮蔽特性を有する6ホウ化物微粒子は、空気中の湿気等で表面が酸化物や水酸化物に変化し、6ホウ化物本来の特性が低下してしまうという問題がある。そこで、6ホウ化物微粒子の表面を表面処理剤で物理的もしくは化学的に被覆して、6ホウ化物微粒子の耐湿性を改善させる試みがなされてきた。例えば、前記特開2004−043764号公報に記載されるように、6ホウ化物微粒子に直接、3号ケイ酸ナトリウム(SiO含有量:28.5%)、テトラエチルシリケート、テトラメチルシリケート、テトラプロピルシリケート、テトラブチルシリケートのようなテトラアルキルシリケートなどのケイ酸化合物又はそれらの部分縮合物等を加水分解して、非結晶性、無定形のシリカで被覆する方法がある。 As described above, the hexaboride fine particles having solar radiation shielding characteristics have a problem that the surface changes to oxide or hydroxide due to moisture in the air and the like, and the original characteristics of hexaboride deteriorate. Therefore, attempts have been made to improve the moisture resistance of the hexaboride fine particles by physically or chemically coating the surface of the hexaboride fine particles with a surface treatment agent. For example, as described in the above-mentioned JP-A-2004-043764, hexaboride fine particles are directly applied to No. 3 sodium silicate (SiO 2 content: 28.5%), tetraethyl silicate, tetramethyl silicate, tetrapropyl. There is a method of hydrolyzing a silicic acid compound such as silicate, tetraalkyl silicate such as tetrabutyl silicate, or a partial condensate thereof, and coating with amorphous, amorphous silica.

しかしながら、このような方法でシリカ被覆された6ホウ化物微粒子は分散性が悪くなり、被覆時に粒子が凝集して結着するという問題があった。そこで、光学特性を出すため結着した粒子の粉砕を行うと、シリカ被覆層が破損して耐湿性の劣化を招く結果となっていた。また、6ホウ化物微粒子の表面に付着したシリカが滑らかでなく、凸凹した被覆膜であるために、水分の含浸が起こりやすく、満足すべき耐湿性を得ることも難しかった。   However, the hexaboride fine particles coated with silica by such a method have poor dispersibility, and there is a problem that the particles are aggregated and bound at the time of coating. Therefore, when the bound particles are pulverized in order to obtain optical characteristics, the silica coating layer is broken, resulting in deterioration of moisture resistance. Further, since the silica adhering to the surface of the hexaboride fine particles is not smooth and has a rough coating film, it is easy to impregnate moisture, and it is difficult to obtain satisfactory moisture resistance.

本発明においては、6ホウ化物微粒子の表面に、予めシランカップリング剤などの表面修飾剤で薄く一次被覆膜を形成し、その後ケイ酸化合物でシリカを主体とする丸みのある二次被覆膜を形成する。この方法によれば、被覆時に粒子間の凝集が起こらず、高い分散性を保持したまま、6ホウ化物微粒子の表面を均一なシリカ膜で覆うことができる。従って、凝集を除去するための粉砕が不要か又は軽い解砕で済むうえ、形状が滑らかで外形が略球状であるため、シリカ膜の破損が起き難くなり、耐湿性が飛躍的に向上する。   In the present invention, a thin primary coating film is previously formed on the surface of hexaboride fine particles with a surface modifier such as a silane coupling agent, and then a round secondary coating mainly composed of silica with a silicate compound. A film is formed. According to this method, aggregation between particles does not occur during coating, and the surface of hexaboride fine particles can be covered with a uniform silica film while maintaining high dispersibility. Therefore, the pulverization for removing the agglomeration is unnecessary or light pulverization, and since the shape is smooth and the outer shape is substantially spherical, the silica film is hardly damaged and the moisture resistance is remarkably improved.

かかる本発明によるシリカ膜被覆6ホウ化物微粒子は、6ホウ化物微粒子の表面に表面修飾剤による一次被覆膜とシリカを主体とする二次被覆膜とを有し、外形が略球状である。6ホウ化物微粒子表面の一次被覆膜と二次被覆膜の合計厚さは、1〜100nmの範囲であることが好ましい。膜厚が1nmよりも薄いと 耐湿性が低下し、逆に100nmを超えると凝集が起こりやすくなるため好ましくない。本発明による外形が略球状のシリカ膜被覆6ホウ化物微粒子の透過電子顕微鏡(TEMと略す)写真を図1に示す。   The silica film-coated hexaboride fine particles according to the present invention have a primary coating film made of a surface modifier and a secondary coating film mainly composed of silica on the surface of the hexaboride fine particles, and the outer shape is substantially spherical. . The total thickness of the primary coating film and the secondary coating film on the surface of the hexaboride fine particles is preferably in the range of 1 to 100 nm. If the film thickness is thinner than 1 nm, the moisture resistance is lowered, and conversely if it exceeds 100 nm, aggregation tends to occur, which is not preferable. A transmission electron microscope (abbreviated as TEM) photograph of silica film-coated hexaboride fine particles having a substantially spherical outer shape according to the present invention is shown in FIG.

本発明によるシリカ膜被覆6ホウ化物微粒子は、6ホウ化物に特有の電子構造に由来する日射遮蔽特性を有している。即ち、6ホウ化物は特に1000nm付近に自由電子のプラズモン共鳴があるため、この領域の光(近赤外線)をブロードに吸収反射する。同時に、380〜780nmの可視光領域の吸収が少ないため、可視光線を透過し近赤外線を遮蔽する光学部材としての用途に適している。従って、本発明のシリカ膜被覆6ホウ化物微粒子を適用した断熱用光学フィルターは、例えば住宅や自動車の窓材、温室等に適用することによって、太陽光線の1000nm付近の近赤外線を遮蔽することで高い断熱効果が得られると同時に、視認性が確保される利点を有する。   The silica film-coated hexaboride fine particles according to the present invention have solar radiation shielding properties derived from the electronic structure unique to hexaboride. That is, since hexaboride has plasmon resonance of free electrons particularly near 1000 nm, light (near infrared rays) in this region is broadly absorbed and reflected. At the same time, since there is little absorption in the visible light region of 380 to 780 nm, it is suitable for use as an optical member that transmits visible light and blocks near infrared light. Accordingly, the heat insulating optical filter to which the silica film-coated hexaboride fine particles of the present invention are applied can be applied to, for example, houses and automobile window materials, greenhouses, etc., thereby shielding the near infrared rays around 1000 nm of sunlight. A high heat insulating effect is obtained, and at the same time, visibility is ensured.

尚、断熱用光学フィルターなどの光学部材におけるシリカ膜被覆6ホウ化物微粒子の使用量は、その求められる特性によって適宜変更可能である。具体的には、可視光線領域を透過し近赤外線を遮蔽する断熱用光学フィルターの場合、例えばLaBにおいては、1m当たりのフィラー量が0.01g以上で有効な断熱効果が得られる。使用量の上限は求める光学特性に応じて適宜定めることができるが、1m当たり0.1gで約50%の太陽光線の熱エネルギーを吸収遮蔽することが可能であるから、単位重量における断熱効率は優れている。 In addition, the usage-amount of the silica film coating | coated hexaboride microparticles | fine-particles in optical members, such as an optical filter for heat insulation, can be suitably changed with the characteristic calculated | required. Specifically, in the case of an adiabatic optical filter that transmits the visible light region and shields near infrared rays, for example, in LaB 6 , an effective heat insulation effect is obtained when the filler amount per 1 m 2 is 0.01 g or more. The upper limit of the amount used can be appropriately determined according to the required optical characteristics, but it is possible to absorb and shield about 50% of the solar energy at 0.1 g per m 2 , so that the heat insulation efficiency in unit weight Is excellent.

本発明で用いる6ホウ化物微粒子は、従来から日射遮蔽用として公知のものであってよいが、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sr、Caからなる群から選ばれた少なくとも1種の元素の6ホウ化物であることが好ましい。   The hexaboride fine particles used in the present invention may be conventionally known for solar radiation shielding, but Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm It is preferably a hexaboride of at least one element selected from the group consisting of Yb, Lu, Sr, and Ca.

上記6ホウ化物微粒子の粒子径は、光学的利用目的によって2nm〜10μmの範囲内で適宜設定される。例えば、光学的選択透過膜(可視光領域の光を透過させ、近赤外領域の光を遮蔽する膜)のように透明性を重視する場合、6ホウ化物微粒子の粒子径は200nm以下、好ましくは100nm以下とする。その理由は、粒子径が200nmを超えると、幾何学散乱若しくはミー散乱によって、380〜780nmの可視光領域の光を散乱して曇りガラスのようになり、鮮明な透明性が達成できないからである。   The particle diameter of the hexaboride fine particles is appropriately set within the range of 2 nm to 10 μm depending on the purpose of optical use. For example, when importance is attached to transparency such as an optical selective transmission film (a film that transmits light in the visible light region and shields light in the near infrared region), the particle size of the hexaboride fine particles is preferably 200 nm or less, preferably Is 100 nm or less. The reason is that when the particle diameter exceeds 200 nm, the light in the visible light region of 380 to 780 nm is scattered by geometrical scattering or Mie scattering to become a frosted glass, and clear transparency cannot be achieved. .

6ホウ化物微粒子の粒子径が200nm以下になると上記散乱が低減し、レイリー散乱領域になる。レイリー散乱領域では、散乱光は粒子径の6乗に反比例して低減するため、粒子径の減少に伴って透明性が向上する。更に100nm以下になると、散乱光は非常に少なくなり透過性が一層向上する。ただし、用途によっては透明性が要求されない場合もあるため、2nm〜10μmの範囲内で適宜設定すればよい。尚、粒子径が2nmよりも小さい微粒子は6ホウ化物が硬質であることから得ることが難しく、また粒子径が10μmを超えると滑らかな膜の形成が困難となるため好ましくない。   When the particle size of the hexaboride fine particles is 200 nm or less, the scattering is reduced and a Rayleigh scattering region is obtained. In the Rayleigh scattering region, the scattered light decreases in inverse proportion to the sixth power of the particle diameter, so that the transparency improves as the particle diameter decreases. Further, when the thickness is 100 nm or less, the scattered light is extremely reduced and the transmittance is further improved. However, since transparency may not be required depending on the application, it may be appropriately set within a range of 2 nm to 10 μm. Fine particles having a particle size smaller than 2 nm are difficult to obtain because the hexaboride is hard, and if the particle size exceeds 10 μm, it is difficult to form a smooth film, which is not preferable.

本発明方法において、6ホウ化物微粒子の表面に表面修飾剤による一次被覆膜とシリカを主体とする二次被覆膜を順次形成するには、湿式法を用いることが好ましい。この方法によれば、6ホウ化物微粒子を液体中に分散させ、その中に表面修飾剤を添加して6ホウ化物微粒子表面を単分子層で被覆し、次にケイ酸化合物を添加して、その加水分解重合により非結晶性ないし無定形のシリカを主体とする被覆膜を形成することができる。   In the method of the present invention, it is preferable to use a wet method in order to sequentially form a primary coating film with a surface modifier and a secondary coating film mainly composed of silica on the surface of hexaboride fine particles. According to this method, hexaboride fine particles are dispersed in a liquid, a surface modifier is added therein to coat the surface of the hexaboride fine particles with a monomolecular layer, and then a silicate compound is added, By the hydrolysis polymerization, it is possible to form a coating film mainly composed of amorphous or amorphous silica.

上記一次被覆膜を形成するための表面修飾剤は、6ホウ化物微粒子表面を化学的もしくは物理的に被覆するものであればよい。中でも1分子中に無機物及び有機物に化学結合する官能基を併せ持つ有機ケイ素化合物、例えばシランカップリング剤などが好ましい。また、好ましいシランカップリング剤としては、アミノ系、ウレイド系、エポキシ系、イソシアネート系、ビニル系、メタクリル系、メルカプト系等があげられる。   The surface modifier for forming the primary coating film may be any one that chemically or physically coats the surface of the hexaboride fine particles. Among them, an organosilicon compound having a functional group chemically bonded to an inorganic substance and an organic substance in one molecule, such as a silane coupling agent, is preferable. Preferred silane coupling agents include amino, ureido, epoxy, isocyanate, vinyl, methacrylic, mercapto and the like.

シランカップリング剤の6ホウ化物微粒子に対する比率は、シランカップリング剤に含まれるケイ素換算で6ホウ化物微粒子1重量部に対して0.01〜10重量部であることが好ましい。このシランカップリング剤の比率が0.01重量部よりも少ないとカップリング剤による一次被覆膜形成の効果が得られず、10重量部を超えると凝集が起こりやすくなるからである。   The ratio of the silane coupling agent to the hexaboride fine particles is preferably 0.01 to 10 parts by weight with respect to 1 part by weight of the hexaboride fine particles in terms of silicon contained in the silane coupling agent. This is because if the ratio of the silane coupling agent is less than 0.01 parts by weight, the effect of forming the primary coating film by the coupling agent cannot be obtained, and if it exceeds 10 parts by weight, aggregation tends to occur.

また、上記二次被覆膜を形成するためのケイ酸化合物としては、3号ケイ酸ナトリウム(SiO含有量:28.5%)、テトラエトキシシラン、テトラメトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン等のアルコキシシラン、又はそれらの部分縮合物等を用いることができる。ここで、テトラエトキシシラン等のアルコキシシランは、前記特開2004−043764号公報に記載のテトラエチルシリケート等のテトラアルキルシリケートと同一物質である。 As the silicate compound for forming the secondary coating film, No. 3 sodium silicate (SiO 2 content: 28.5%), tetraethoxysilane, tetramethoxysilane, tetrapropoxysilane, tetrabutoxy Silane, methyltrimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, alkoxysilane such as dimethyldiethoxysilane, or a partial condensate thereof can be used. Here, alkoxysilane such as tetraethoxysilane is the same substance as tetraalkyl silicate such as tetraethyl silicate described in JP-A-2004-043764.

シリカを主体とする二次被覆膜は、上記ケイ酸化合物の加水分解重合により形成される。例えば、テトラエトキシシラン(Si(OC))と水(HO)の加水分解重合では、徐々にエトキシ基がエタノールとして除かれ、更にSi−O−H同士が結合してSi−O−Si構造が形成される。この加水分解重合により、非結晶性ないし無定形のシリカを主体とする二次被覆膜が形成される。また、この加水分解重合反応を制御するために、触媒としてHClやHNOなどの酸やNHOHなどのアルカリを添加することもできる。 The secondary coating film mainly composed of silica is formed by hydrolysis polymerization of the silicate compound. For example, in the hydrolysis polymerization of tetraethoxysilane (Si (OC 2 H 5 ) 4 ) and water (H 2 O), the ethoxy group is gradually removed as ethanol, and Si—O—H bonds to each other to form Si. A -O-Si structure is formed. By this hydrolysis polymerization, a secondary coating film mainly composed of amorphous or amorphous silica is formed. In order to control this hydrolysis polymerization reaction, an acid such as HCl or HNO 3 or an alkali such as NH 4 OH can be added as a catalyst.

また、ケイ酸化合物の6ホウ化物微粒子に対する比率は、ケイ酸化合物に含まれるケイ素換算で6ホウ化物微粒子1重量部に対して0.01〜100重量部の範囲が好ましい。このケイ酸化合物の比率が0.01重量部未満では二次被覆膜の形成が難しく、逆に100重量部を超えると粒子間の凝集が起こるからである。   The ratio of the silicate compound to the hexaboride fine particles is preferably in the range of 0.01 to 100 parts by weight with respect to 1 part by weight of the hexaboride fine particles in terms of silicon contained in the silicate compound. This is because if the ratio of the silicate compound is less than 0.01 parts by weight, it is difficult to form a secondary coating film, and conversely if it exceeds 100 parts by weight, aggregation between particles occurs.

上述した表面修飾剤は、液体中で効率良く6ホウ化物微粒子表面を覆って一次被覆膜を形成し、液体中の6ホウ化物微粒子の凝集を防ぐ。同時に、その一次被覆膜は、二次被覆膜形成時におけるケイ酸化合物の加水分解重合の際に、シリカ前駆体が優先的に6ホウ化物微粒子表面に形成されることを促し、シリカ前駆体が表面以外で使われること、例えば液中でシリカ単一粒子を形成したり、6ホウ化物微粒子間の結着に使われたりすることを抑制する。   The surface modifier described above efficiently covers the surface of the hexaboride fine particles in the liquid to form a primary coating film and prevents aggregation of the hexaboride fine particles in the liquid. At the same time, the primary coating film promotes the silica precursor to be preferentially formed on the surface of the hexaboride fine particles during the hydrolysis polymerization of the silicate compound during the formation of the secondary coating film. Suppressing the use of the body on surfaces other than the surface, for example, forming silica single particles in a liquid or binding between hexaboride fine particles.

即ち、表面修飾剤がシリカ前駆体のシリカ形成核となって6ホウ化物微粒子表面にシリカが形成され、更にそこが次の核となって6ホウ化物微粒子表面にのみ次々にシリカ前駆体からの核形成が起こり、シリカの二次被覆膜が形成されるのである。その結果、シリカ前駆体からの単一シリカ粒子の形成や、粒子間の結着につながる粒子間での橋渡し的シリカの形成を抑制することができる。更に、6ホウ化物微粒子表面にシリカの被覆膜が形成されると、裸の6ホウ化物微粒子に比べて粒子間の電気的反発力が増し、凝集が起こり難くなる。   That is, the surface modifier becomes the silica-forming nuclei of the silica precursor to form silica on the surface of the hexaboride fine particles, which further becomes the next nuclei only on the surface of the hexaboride fine particles from the silica precursor one after another. Nucleation occurs and a secondary coating of silica is formed. As a result, the formation of single silica particles from the silica precursor and the formation of bridging silica between the particles leading to the binding between the particles can be suppressed. Further, when a silica coating film is formed on the surface of the hexaboride fine particles, the electric repulsive force between the particles is increased as compared with the bare hexaboride fine particles, and aggregation is less likely to occur.

このようにして得られた外形が略球状のシリカ膜被覆6ホウ化物微粒子は、そのまま又は加熱乾燥して、日射遮蔽製品などの原料として使用する。特に加熱処理により、シリカ膜が緻密になり、耐湿性が一層向上する利点がある。加熱処理温度は、6ホウ化物の耐熱温度や加熱雰囲気によって決定されるが、酸素が存在する雰囲気、特に大気中では6ホウ化物は600℃前後から酸化されるため、酸素が存在する雰囲気中では600℃以下とすることが好ましい。   The thus obtained silica film-coated hexaboride fine particles having a substantially spherical outer shape are used as raw materials for solar shading products or the like as they are or after heat drying. In particular, the heat treatment is advantageous in that the silica film becomes dense and the moisture resistance is further improved. The heat treatment temperature is determined by the heat resistance temperature of the hexaboride and the heating atmosphere, but in an atmosphere in which oxygen exists, particularly in the air, hexaboride is oxidized from around 600 ° C., so in an atmosphere in which oxygen exists. It is preferable that the temperature be 600 ° C. or lower.

次に、本発明のシリカ膜被覆6ホウ化物微粒子を用いた日射遮蔽用の光学部材について説明する。まず、日射遮蔽製品などの光学部材を製造する手段の一つとして、シリカ膜被覆6ホウ化物微粒子を液体中に分散させた光学部材用塗布液がある。シリカ膜被覆6ホウ化物微粒子を分散させる液体としては、アルコールなどの有機溶媒及び/又は水、あるいは樹脂及び金属アルコキシドの少なくとも1種を溶解又は分散させた有機溶媒及び/又は水であることが好ましい。樹脂成分としては、用途に合わせて選択すればよく、紫外線硬化樹脂、熱硬化樹脂、常温硬化樹脂、熱可塑樹脂等を用いることができる。   Next, an optical member for solar radiation shielding using the silica film-coated hexaboride fine particles of the present invention will be described. First, as one means for producing an optical member such as a solar shading product, there is a coating solution for an optical member in which silica film-coated hexaboride fine particles are dispersed in a liquid. The liquid for dispersing the silica film-coated hexaboride fine particles is preferably an organic solvent such as alcohol and / or water, or an organic solvent and / or water in which at least one of resin and metal alkoxide is dissolved or dispersed. . As a resin component, what is necessary is just to select according to a use, and ultraviolet curable resin, thermosetting resin, normal temperature curable resin, a thermoplastic resin etc. can be used.

この光学部材用塗布液を基材表面に塗布し、硬化させることによって、シリカ膜被覆6ホウ化物微粒子が固体媒質に分散した光学部材用分散体の被膜を形成することができる。例えば、光学部材用塗布液が樹脂や金属アルコキシドを含む場合は、その塗布液を基材表面に塗布し、有機溶剤や水等の溶媒を蒸発させると共に、樹脂や金属アルコキシドを硬化させることによって、基材表面にシリカ膜被覆6ホウ化物微粒子が固体媒質に分散した被膜を有する光学部材を簡単に作製することができる。   By applying this optical member coating solution to the substrate surface and curing, a coating film of the optical member dispersion in which the silica film-coated hexaboride fine particles are dispersed in a solid medium can be formed. For example, when the optical member coating solution contains a resin or a metal alkoxide, the coating solution is applied to the substrate surface, and the solvent such as an organic solvent or water is evaporated, and the resin or the metal alkoxide is cured, An optical member having a coating film in which silica film-coated hexaboride fine particles are dispersed in a solid medium on the surface of the substrate can be easily produced.

また、光学部材用塗布液が樹脂及び金属アルコキシドを含まない場合には、塗布後に有機溶剤や水等の溶媒を蒸発させることにより、基材表面にシリカ膜被覆6ホウ化物微粒子が堆積した被膜が形成される。この場合、シリカ膜被覆6ホウ化物微粒子を基材表面に積層させた後に、樹脂等の成分を含む液体媒質を塗布しても、上記と同様の光学部材を得ることができる。尚、基材表面に堆積したシリカ膜被覆6ホウ化物微粒子層の上に、別の基材を重ね合わせてもよい。   Further, when the coating liquid for optical members does not contain a resin and a metal alkoxide, a film in which silica film-coated hexaboride fine particles are deposited on the surface of the substrate is obtained by evaporating a solvent such as an organic solvent or water after coating. It is formed. In this case, an optical member similar to the above can be obtained by laminating silica film-coated hexaboride particles on the surface of the substrate and then applying a liquid medium containing a component such as a resin. In addition, another base material may be superposed on the silica film-coated hexaboride fine particle layer deposited on the base material surface.

ここで、シリカ膜被覆6ホウ化物微粒子が固体媒体中に分散した被膜は、後から加熱処理することにより耐湿性が向上する。特に、予め加熱処理を施していないシリカ膜被覆6ホウ化物微粒子が適用されている場合には、この加熱処理により被膜が緻密となり、耐湿性がより一層向上する。加熱処理温度は、上述したように6ホウ化物の耐熱温度や加熱雰囲気によって決定されるが、酸素が存在する雰囲気、特に大気中では6ホウ化物微粒子の酸化を防ぐために600℃以下とすることが好ましい。   Here, the moisture resistance of the coating film in which the silica film-coated hexaboride fine particles are dispersed in the solid medium is improved by heat treatment later. In particular, when silica film-coated hexaboride fine particles that have not been subjected to heat treatment in advance are applied, the heat treatment makes the coating dense and further improves moisture resistance. As described above, the heat treatment temperature is determined by the heat resistance temperature of the hexaboride and the heating atmosphere. However, in an atmosphere where oxygen exists, particularly in the air, the temperature is set to 600 ° C. or less in order to prevent oxidation of the hexaboride fine particles. preferable.

他の形態の光学部材としては、本発明のシリカ膜被覆6ホウ化物微粒子を固体媒質に分散させた光学部材用分散体を、フィルム又はボードに成形したものがある。このシリカ膜被覆6ホウ化物微粒子を固体媒質に分散させたフィルム又はボードは、その厚さが0.1μm〜50mmの範囲であることが好ましい。フィルム又はボードの厚さが0.1μm未満では強度が弱くなるであり、また50mmを超えると加工が困難となるからである。   As another type of optical member, there is one in which a dispersion for an optical member in which the silica film-coated hexaboride fine particles of the present invention are dispersed in a solid medium is formed into a film or a board. The film or board in which the silica film-coated hexaboride fine particles are dispersed in a solid medium preferably has a thickness in the range of 0.1 μm to 50 mm. This is because if the thickness of the film or board is less than 0.1 μm, the strength becomes weak, and if it exceeds 50 mm, the processing becomes difficult.

上記フィルムやボードの母体となる固体媒質としては、樹脂又はガラスが好ましい。使用する樹脂は、特に限定されるものではなく、用途に合わせて選択可能であるが、耐湿性を考慮するとフッ素樹脂が有効である。また、フッ素樹脂に較べて低コストで、透明性が高く、汎用性の広い樹脂としては、PET樹脂、アクリル樹脂、ポリアミド樹脂、塩化ビニル樹脂、ポリカーボネート樹脂、オレフィン樹脂、エポキシ樹脂、ポリイミド樹脂等が挙げられる。   As the solid medium serving as a base of the film or board, resin or glass is preferable. The resin to be used is not particularly limited and can be selected in accordance with the intended use. However, considering moisture resistance, a fluororesin is effective. In addition, low-cost, high-transparency, and versatile resins compared to fluororesins include PET resin, acrylic resin, polyamide resin, vinyl chloride resin, polycarbonate resin, olefin resin, epoxy resin, and polyimide resin. Can be mentioned.

上記したシリカ膜被覆6ホウ化物微粒子が固体媒質に分散したフィルム又はボードからなる光学部材を製造する方法としては、例えば、シリカ膜被覆6ホウ化物微粒子を直接樹脂に練り込み、フィルム状やボード状に成形する方法が一般的である。また、シリカ膜被覆6ホウ化物微粒子が液体媒質に分散した分散体と樹脂を混合することも、あるいは、シリカ膜被覆6ホウ化物微粒子が固体媒質に分散された粉末状の分散体を液体媒質に添加し、更に樹脂と混合することも可能である。   As a method for producing an optical member composed of a film or board in which the silica film-coated hexaboride fine particles are dispersed in a solid medium, for example, the silica film-coated hexaboride fine particles are directly kneaded into a resin to form a film or board shape. The method of forming into a general shape is common. Alternatively, a dispersion in which silica film-coated hexaboride fine particles are dispersed in a liquid medium may be mixed with a resin, or a powdery dispersion in which silica film-coated hexaboride fine particles are dispersed in a solid medium may be used as the liquid medium. It is also possible to add and further mix with the resin.

一般に、樹脂に練り込む際には、樹脂の融点付近の温度(例えば200〜300℃前後)で加熱混合する。また、樹脂に混合した後ペレット化し、更にフィルムやボードを形成することも可能である。例えば、押し出し成形法、インフレーション成形法、溶液流延法、キャスティング法等により成形することが可能である。樹脂に対するフィラー量、即ちシリカ膜被覆6ホウ化物微粒子の配合量は、フィルム又はボードの厚さ、必要とされる光学特性や機械特性に応じて変えることができるが、一般的に樹脂に対して50重量%以下が好ましい。   Generally, when kneading into a resin, it is heated and mixed at a temperature near the melting point of the resin (for example, around 200 to 300 ° C.). It is also possible to form a film or a board after mixing with resin and pelletizing. For example, it is possible to mold by an extrusion molding method, an inflation molding method, a solution casting method, a casting method or the like. The amount of filler relative to the resin, that is, the blending amount of the silica film-coated hexaboride fine particles can be changed according to the thickness of the film or board, the required optical properties and mechanical properties, 50 weight% or less is preferable.

更に、上記シリカ膜被覆6ホウ化物微粒子を液体媒質に分散させた光学部材用分散体を、フィルム又はボードの間に封入して光学部材とすることもできる。この場合のフィルム又はボードも、樹脂又はガラスであってよい。   Furthermore, the optical member dispersion in which the silica film-coated hexaboride fine particles are dispersed in a liquid medium may be enclosed between a film or a board to form an optical member. The film or board in this case may also be resin or glass.

以下、本発明について具体的に説明するが、本発明はこれらの実施例に限定されるものではない。以下の実施例及び比較例において、平均分散粒子径は、動的光散乱法を用いた測定装置(大塚電子(株)製、ELS−800)により測定した平均値である。   The present invention will be specifically described below, but the present invention is not limited to these examples. In the following Examples and Comparative Examples, the average dispersed particle diameter is an average value measured by a measuring device using a dynamic light scattering method (ELS-800, manufactured by Otsuka Electronics Co., Ltd.).

また、可視光透過率とは、波長領域380〜780nmの光の透過量を人の目の視感度で規格化した透過光量の積算値で、人の目の感じる明るさを意味する値である。可視光透過率は、JISA
5759に準ずる方法で測定した(ただし、ガラスに貼付せずフィルムのみで測定を行った)。また、膜のヘイズ値は、JIS K 7105に基づいて測定した。
The visible light transmittance is an integrated value of the amount of transmitted light obtained by normalizing the amount of transmitted light in the wavelength region 380 to 780 nm with the visibility of the human eye, and is a value that represents the brightness perceived by the human eye. . Visible light transmittance is JISA
It was measured by a method according to 5759 (however, it was measured only with a film without being attached to glass). The haze value of the film was measured based on JIS K 7105.

更に、耐湿性の評価方法は、60℃で湿度90%の環境に3000時間保管したとき、可視光透過率60%〜70%の試料において、透過率の上昇が1%以下のものを良好とし、1%を越えるものは不良とした。   Furthermore, the evaluation method of moisture resistance is that a sample having a visible light transmittance of 60% to 70% and having an increase in transmittance of 1% or less when stored in an environment of 60 ° C. and 90% humidity for 3000 hours is regarded as good. Those exceeding 1% were regarded as defective.

[実施例1]
平均粒子径80nmのLaB微粒子16gを、シランカップリング剤であるγ−アミノプロピルトリエトキシシラン1gと水783gに撹拌混合し、LaB微粒子表面にγ−アミノプロピルトリエトキシシランを吸着させて表面修飾を行った。次に、遠心分離機で水を除去した後、表面修飾されたLaB微粒子とエタノール560gと水140gの混合溶媒中にテトラエトキシシラン90gを添加し、加水分解重合によりLaB微粒子表面にシリカの被覆膜を形成した。
[Example 1]
16 g of LaB 6 fine particles having an average particle size of 80 nm are stirred and mixed with 1 g of γ-aminopropyltriethoxysilane as a silane coupling agent and 783 g of water, and γ-aminopropyltriethoxysilane is adsorbed on the surface of LaB 6 fine particles. Modified. Next, after removing water with a centrifugal separator, 90 g of tetraethoxysilane was added to a mixed solvent of LaB 6 fine particles with surface modification, 560 g of ethanol and 140 g of water, and silica was added to the surface of LaB 6 fine particles by hydrolysis polymerization. A coating film was formed.

その後、遠心分離機でアルコールと水を除去した後、乾燥し、更に450℃で30分加熱処理して、シリカ膜被覆6ホウ化ランタン微粒子を得た。得られたシリカ膜被覆6ホウ化ランタン微粒子をTEM観察した結果、単分散化したLaB微粒子の表面に厚さ20nm程度のシリカ被覆膜が形成され、外形が略球状になっている状態が観察された。 Then, after removing alcohol and water with a centrifuge, it was dried and further subjected to heat treatment at 450 ° C. for 30 minutes to obtain silica film-coated lanthanum hexaboride fine particles. As a result of TEM observation of the obtained silica film-coated lanthanum hexaboride fine particles, a silica-coated film having a thickness of about 20 nm was formed on the surface of monodispersed LaB 6 fine particles, and the outer shape was substantially spherical. Observed.

この略球状のシリカ膜被覆6ホウ化ランタン微粒子は単分散化しているため、特に粉砕は行わなかった。このシリカ膜被覆6ホウ化ランタン微粒子が5重量%、有機高分子分散剤(アクリル系ポリマーからなり、無機成分を含まない)が2重量%、紫外線硬化樹脂(東亞合成(株)製、UV3701)が26重量%となるようにトルエン中で混合し、塗布液を調整した。この塗布液を厚み50μmのPETフィルム上にバーコーターを用いて塗布し、70℃で1分間乾燥して溶媒を蒸発させた後、高圧水銀ランプから紫外線を照射して被膜を硬化させた。   Since the substantially spherical silica film-coated lanthanum hexaboride fine particles were monodispersed, no particular pulverization was performed. This silica film-coated lanthanum hexaboride fine particle is 5% by weight, an organic polymer dispersant (made of an acrylic polymer, not containing an inorganic component) is 2% by weight, an ultraviolet curable resin (manufactured by Toagosei Co., Ltd., UV3701). Was mixed in toluene so as to be 26% by weight to prepare a coating solution. This coating solution was applied onto a 50 μm thick PET film using a bar coater, dried at 70 ° C. for 1 minute to evaporate the solvent, and then irradiated with ultraviolet rays from a high pressure mercury lamp to cure the coating.

得られた被膜とPETフィルムの合計の可視光透過率は65.6%であり、ヘイズ値は1.4%であった。また、この被膜を60℃で湿度90%の環境に3000時間保管した後、その可視光透過率を測定したところ65.7%であり、可視光透過率の上昇は0%で耐湿性は極めて良好であった。   The total visible light transmittance of the obtained coating film and PET film was 65.6%, and the haze value was 1.4%. Further, after storing this film in an environment of 90% humidity at 60 ° C. for 3000 hours, the visible light transmittance was measured to be 65.7%, the increase in visible light transmittance was 0%, and the moisture resistance was extremely high. It was good.

[実施例2]
シランカップリング剤としてγ−アミノプロピルトリメトキシシランを用いた以外は実施例1と同様にして、シリカ膜被覆6ホウ化ランタン微粒子を得た。得られたシリカ膜被覆6ホウ化ランタン微粒子をTEM観察した結果、単分散化したLaB微粒子の表面に厚さ20nm程度のシリカ被覆膜が形成され、外形が略球状になっている状態が観察された。
[Example 2]
Silica film-coated lanthanum boride fine particles were obtained in the same manner as in Example 1 except that γ-aminopropyltrimethoxysilane was used as the silane coupling agent. As a result of TEM observation of the obtained silica film-coated lanthanum hexaboride fine particles, a silica-coated film having a thickness of about 20 nm was formed on the surface of monodispersed LaB 6 fine particles, and the outer shape was substantially spherical. Observed.

このシリカ膜被覆LaB微粒子は単分散化しているため、特に粉砕は行わなかった。このシリカ膜被覆6ホウ化ランタン微粒子を用い、実施例1と同様にして、塗布液を調整した。更に、この塗布液を用いて、実施例1と同様に、PETフィルム上に被膜を形成した。 Since the silica film-coated LaB 6 fine particles were monodispersed, no particular pulverization was performed. Using this silica film-coated lanthanum hexaboride fine particles, a coating solution was prepared in the same manner as in Example 1. Further, a coating film was formed on the PET film using this coating solution in the same manner as in Example 1.

得られた被膜とPETフィルムの合計の可視光透過率は66.1%であり、ヘイズ値は1.4%であった。また、この被膜を60℃で湿度90%の環境に3000時間保管した後、その可視光透過率を測定したところ66.1%であり、可視光透過率の上昇は0%で耐湿性は極めて良好であった。   The total visible light transmittance of the obtained coating film and PET film was 66.1%, and the haze value was 1.4%. The film was stored in an environment of 90% humidity at 60 ° C. for 3000 hours, and the visible light transmittance was measured to be 66.1%. The increase in visible light transmittance was 0% and the moisture resistance was extremely high. It was good.

[実施例3]
シランカップリング剤としてγ−メルカプトプロピルトリメトキシシランを用いた以外は実施例1と同様にして、シリカ膜被覆6ホウ化ランタン微粒子を得た。得られたシリカ膜被覆6ホウ化ランタン微粒子をTEM観察した結果、単分散化したLaB微粒子の表面に厚さ20nm程度のシリカ被覆膜が形成され、外形が略球状になっている状態が観察された。
[Example 3]
Silica film-coated lanthanum hexaboride fine particles were obtained in the same manner as in Example 1 except that γ-mercaptopropyltrimethoxysilane was used as the silane coupling agent. As a result of TEM observation of the obtained silica film-coated lanthanum hexaboride fine particles, a silica-coated film having a thickness of about 20 nm was formed on the surface of monodispersed LaB 6 fine particles, and the outer shape was substantially spherical. Observed.

このシリカ膜被覆LaB微粒子は単分散化しているため、特に粉砕は行わなかった。このシリカ膜被覆6ホウ化ランタン微粒子を用い、実施例1と同様にして、塗布液を調整した。更に、この塗布液を用いて、実施例1と同様に、PETフィルム上に被膜を形成した。 Since the silica film-coated LaB 6 fine particles were monodispersed, no particular pulverization was performed. Using this silica film-coated lanthanum hexaboride fine particles, a coating solution was prepared in the same manner as in Example 1. Further, a coating film was formed on the PET film using this coating solution in the same manner as in Example 1.

得られた被膜とPETフィルムの合計の可視光透過率は65.3%であり、ヘイズ値は1.4%であった。また、この被膜を60℃で湿度90%の環境に3000時間保管した後、その可視光透過率を測定したところ65.3%であり、可視光透過率の上昇は0%で耐湿性は極めて良好であった。   The total visible light transmittance of the obtained coating film and PET film was 65.3%, and the haze value was 1.4%. The film was stored at 60 ° C. in a 90% humidity environment for 3000 hours, and its visible light transmittance was measured to be 65.3%. The increase in visible light transmittance was 0% and the moisture resistance was extremely high. It was good.

[実施例4]
シランカップリング剤としてγ−グリシドキシプロピルトリメトキシシランを用いた以外は実施例1と同様にして、シリカ膜被覆6ホウ化ランタン微粒子を得た。得られたシリカ膜被覆6ホウ化ランタン微粒子をTEM観察した結果、単分散化したLaB微粒子の表面に厚さ20nm程度のシリカ被覆膜が形成され、外形が略球状になっている状態が観察された。
[Example 4]
Silica film-coated lanthanum hexaboride fine particles were obtained in the same manner as in Example 1 except that γ-glycidoxypropyltrimethoxysilane was used as the silane coupling agent. As a result of TEM observation of the obtained silica film-coated lanthanum hexaboride fine particles, a silica-coated film having a thickness of about 20 nm was formed on the surface of monodispersed LaB 6 fine particles, and the outer shape was substantially spherical. Observed.

このシリカ膜被覆LaB微粒子は単分散化しているため、特に粉砕は行わなかった。このシリカ膜被覆6ホウ化ランタン微粒子を用い、実施例1と同様にして、塗布液を調整した。更に、この塗布液を用いて、実施例1と同様に、PETフィルム上に被膜を形成した。 Since the silica film-coated LaB 6 fine particles were monodispersed, no particular pulverization was performed. Using this silica film-coated lanthanum hexaboride fine particles, a coating solution was prepared in the same manner as in Example 1. Further, a coating film was formed on the PET film using this coating solution in the same manner as in Example 1.

得られた被膜とPETフィルムの合計の可視光透過率は66.3%であり、ヘイズ値は1.4%であった。また、この被膜を60℃で湿度90%の環境に3000時間保管した後、その可視光透過率を測定したところ66.3%であり、可視光透過率の上昇は0%で耐湿性は極めて良好であった。   The total visible light transmittance of the obtained coating film and PET film was 66.3%, and the haze value was 1.4%. The film was stored in an environment of 90% humidity at 60 ° C. for 3000 hours, and the visible light transmittance was measured to be 66.3%. The increase in visible light transmittance was 0% and the moisture resistance was extremely high. It was good.

[実施例5]
ケイ酸化合物としてテトラエトキシシランの代わりに3号ケイ酸ナトリウム(SiO含有量:28.5%)を用い、且つエタノールと水の混合溶媒に代えて水中で処理した以外は実施例1と同様にして、シリカ膜被覆6ホウ化ランタン微粒子を得た。
[Example 5]
Example 3 except that No. 3 sodium silicate (SiO 2 content: 28.5%) was used in place of tetraethoxysilane as the silicate compound, and the treatment was performed in water instead of the mixed solvent of ethanol and water. Thus, silica film-coated lanthanum hexaboride fine particles were obtained.

得られたシリカ膜被覆6ホウ化ランタン微粒子をTEM観察した結果、単分散化したLaB微粒子の表面に厚さ5nm程度のシリカ被覆膜が形成され、外形が略球状になっている状態が観察された。 As a result of TEM observation of the obtained silica film-coated lanthanum hexaboride fine particles, a silica-coated film having a thickness of about 5 nm was formed on the surface of monodispersed LaB 6 fine particles, and the outer shape was substantially spherical. Observed.

このシリカ膜被覆LaB微粒子は単分散化しているため、特に粉砕は行わなかった。このシリカ膜被覆6ホウ化ランタン微粒子を用い、実施例1と同様にして、塗布液を調整した。更に、この塗布液を用いて、実施例1と同様に、PETフィルム上に被膜を形成した。 Since the silica film-coated LaB 6 fine particles were monodispersed, no particular pulverization was performed. Using this silica film-coated lanthanum hexaboride fine particles, a coating solution was prepared in the same manner as in Example 1. Further, a coating film was formed on the PET film using this coating solution in the same manner as in Example 1.

得られた被膜とPETフィルムの合計の可視光透過率は67.5%であり、ヘイズ値は1.3%であった。また、この被膜を60℃で湿度90%の環境に3000時間保管した後、その可視光透過率を測定したところ67.7%であり、可視光透過率の上昇は0.2%で耐湿性は極めて良好であった。   The total visible light transmittance of the obtained coating film and PET film was 67.5%, and the haze value was 1.3%. The film was stored in an environment of 90% humidity at 60 ° C. for 3000 hours, and the visible light transmittance was measured to be 67.7%. The increase in visible light transmittance was 0.2% and moisture resistance. Was very good.

[実施例6]
ケイ酸化合物として3号ケイ酸ナトリウム(SiO含有量:28.5%)とテトラエトキシシランとを逐次添加した以外は実施例1と同様にして、シリカ膜被覆6ホウ化ランタン微粒子を得た。得られたシリカ膜被覆6ホウ化ランタン微粒子をTEM観察した結果、単分散化したLaB微粒子の表面に厚さ20nm程度のシリカ被覆膜が形成され、外形が略球状になっている状態が観察された。
[Example 6]
Silica film-coated 6-lanthanum boride fine particles were obtained in the same manner as in Example 1 except that No. 3 sodium silicate (SiO 2 content: 28.5%) and tetraethoxysilane were sequentially added as a silicate compound. . As a result of TEM observation of the obtained silica film-coated lanthanum hexaboride fine particles, a silica-coated film having a thickness of about 20 nm was formed on the surface of monodispersed LaB 6 fine particles, and the outer shape was substantially spherical. Observed.

このシリカ膜被覆LaB微粒子は単分散化しているため、特に粉砕は行わなかった。この略球状のシリカ膜被覆6ホウ化ランタン微粒子を用い、実施例1と同様にして、塗布液を調整した。更に、この塗布液を用いて、実施例1と同様に、PETフィルム上に被膜を形成した。 Since the silica film-coated LaB 6 fine particles were monodispersed, no particular pulverization was performed. Using the substantially spherical silica film-coated lanthanum hexaboride fine particles, a coating solution was prepared in the same manner as in Example 1. Further, a coating film was formed on the PET film using this coating solution in the same manner as in Example 1.

得られた被膜とPETフィルムの合計の可視光透過率は68.5%であり、ヘイズ値は1.4%であった。この被膜を60℃で湿度90%の環境に3000時間保管した後、その可視光透過率を測定したところ68.5%であり、可視光透過率の上昇は0%で耐湿性は極めて良好であった。   The total visible light transmittance of the obtained coating film and PET film was 68.5%, and the haze value was 1.4%. The film was stored in an environment of 90% humidity at 60 ° C. for 3000 hours, and the visible light transmittance was measured to be 68.5%. The increase in visible light transmittance was 0% and the humidity resistance was very good. there were.

[実施例7]
シランカップリング剤添加後に3号ケイ酸ナトリウム(SiO含有量:28.5%)を添加する以外は実施例1と同様にして、シリカ膜被覆6ホウ化ランタン微粒子を得た。得られたシリカ膜被覆6ホウ化ランタン微粒子をTEM観察した結果、単分散化したLaB微粒子の表面に厚さ20nm程度のシリカ被覆膜が形成され、外形が略球状になっている状態が観察された。
[Example 7]
Silica film-coated lanthanum boride fine particles were obtained in the same manner as in Example 1 except that No. 3 sodium silicate (SiO 2 content: 28.5%) was added after the addition of the silane coupling agent. As a result of TEM observation of the obtained silica film-coated lanthanum hexaboride fine particles, a silica-coated film having a thickness of about 20 nm was formed on the surface of monodispersed LaB 6 fine particles, and the outer shape was substantially spherical. Observed.

このシリカ膜被覆LaB微粒子は単分散化しているため、特に粉砕は行わなかった。このシリカ膜被覆6ホウ化ランタン微粒子を用い、実施例1と同様にして、塗布液を調整した。更に、この塗布液を用いて、実施例1と同様に、PETフィルム上に被膜を形成した。 Since the silica film-coated LaB 6 fine particles were monodispersed, no particular pulverization was performed. Using this silica film-coated lanthanum hexaboride fine particles, a coating solution was prepared in the same manner as in Example 1. Further, a coating film was formed on the PET film using this coating solution in the same manner as in Example 1.

得られた被膜とPETフィルムの合計の可視光透過率は68.6%であり、ヘイズ値は1.4%であった。また、この被膜を60℃で湿度90%の環境に3000時間保管した後、その可視光透過率を測定したところ68.6%であり、可視光透過率の上昇は0%で耐湿性は極めて良好であった。   The total visible light transmittance of the obtained coating film and PET film was 68.6%, and the haze value was 1.4%. The film was stored at 60 ° C. in a 90% humidity environment for 3000 hours, and the visible light transmittance was measured to be 68.6%. The increase in visible light transmittance was 0% and the moisture resistance was extremely high. It was good.

[実施例8]
ケイ酸化合物としてテトラメトキシシランを用いた以外は実施例1と同様にして、シリカ膜被覆6ホウ化ランタン微粒子を得た。得られたシリカ膜被覆6ホウ化ランタン微粒子をTEM観察した結果、単分散化したLaB微粒子の表面に厚さ20nm程度のシリカ被覆膜が形成され、外形が略球状になっている状態が観察された。
[Example 8]
Silica film-coated lanthanum hexaboride fine particles were obtained in the same manner as in Example 1 except that tetramethoxysilane was used as the silicate compound. As a result of TEM observation of the obtained silica film-coated lanthanum hexaboride fine particles, a silica-coated film having a thickness of about 20 nm was formed on the surface of monodispersed LaB 6 fine particles, and the outer shape was substantially spherical. Observed.

このシリカ膜被覆LaB微粒子は単分散化しているため、特に粉砕は行わなかった。このシリカ膜被覆6ホウ化ランタン微粒子を用い、実施例1と同様にして、塗布液を調整した。更に、この塗布液を用いて、実施例1と同様に、PETフィルム上に被膜を形成した。 Since the silica film-coated LaB 6 fine particles were monodispersed, no particular pulverization was performed. Using this silica film-coated lanthanum hexaboride fine particles, a coating solution was prepared in the same manner as in Example 1. Further, a coating film was formed on the PET film using this coating solution in the same manner as in Example 1.

得られた被膜とPETフィルムの合計の可視光透過率は65.5%であり、ヘイズ値は1.4%であった。また、この被膜を60℃で湿度90%の環境に3000時間保管した後、その可視光透過率を測定したところ65.5%であり、可視光透過率の上昇は0%で耐湿性は極めて良好であった。   The total visible light transmittance of the obtained coating film and PET film was 65.5%, and the haze value was 1.4%. The film was stored in an environment of 90% humidity at 60 ° C. for 3000 hours, and the visible light transmittance was measured to be 65.5%. The increase in visible light transmittance was 0% and the moisture resistance was extremely high. It was good.

[比較例1]
平均粒子径80nmのLaB微粒子16gが5重量%、有機高分子分散剤(アクリル系ポリマーからなり、無機成分を含まない)が2重量%、紫外線硬化樹脂(東亞合成(株)製、UV3701)が26重量%となるようにトルエン中で混合して、塗布液を調整した。この塗布液を厚み50μmのPETフィルム上にバーコーターを用いて塗布し、70℃で1分間乾燥して溶媒を蒸発させた後、高圧水銀ランプから紫外線を照射して被膜を硬化させた。
[Comparative Example 1]
16 g of LaB 6 fine particles having an average particle diameter of 80 nm are 5% by weight, an organic polymer dispersant (made of an acrylic polymer and not containing an inorganic component) is 2% by weight, an ultraviolet curable resin (manufactured by Toagosei Co., Ltd., UV3701). Was mixed in toluene so as to be 26% by weight to prepare a coating solution. This coating solution was applied onto a 50 μm thick PET film using a bar coater, dried at 70 ° C. for 1 minute to evaporate the solvent, and then irradiated with ultraviolet rays from a high pressure mercury lamp to cure the coating.

得られた被膜とPETフィルムの合計の可視光透過率は66.6%であり、ヘイズ値は1%であった。また、この被膜を60℃で湿度90%の環境に66時間保管した後、その可視光透過率を測定したところ72.6%であり、可視光透過率の上昇は6%であった。更に、3000時間保管したした後、その可視光透過率を測定したところ82.7%であり、可視光透過率の上昇は16.1%であった。   The total visible light transmittance of the obtained coating film and PET film was 66.6%, and the haze value was 1%. The film was stored in an environment of 90% humidity at 60 ° C. for 66 hours, and the visible light transmittance was measured to be 72.6% and the increase in visible light transmittance was 6%. Further, after storage for 3000 hours, the visible light transmittance was measured to be 82.7%, and the increase in visible light transmittance was 16.1%.

[比較例2]
平均粒子径80nmのLaB微粒子16gをエタノール570gと水140gの混合溶媒中に混合し、テトラエトキシシラン90gを添加して加水分解重合により、LaB微粒子の表面にシリカ被覆膜を形成した。この液を乾燥してアルコール溶媒を除去した後、更に450℃で30分加熱処理を行って、シリカ膜被覆6ホウ化ランタン微粒子を得た。
[Comparative Example 2]
16 g of LaB 6 fine particles having an average particle diameter of 80 nm were mixed in a mixed solvent of 570 g of ethanol and 140 g of water, 90 g of tetraethoxysilane was added, and a silica coating film was formed on the surface of the LaB 6 fine particles by hydrolysis polymerization. This solution was dried to remove the alcohol solvent, and further heat-treated at 450 ° C. for 30 minutes to obtain silica film-coated lanthanum hexaboride fine particles.

得られたシリカ膜被覆6ホウ化ランタン微粒子は凝集体になっていたため、ペイントシェーカー(浅田鉄工(株)製)による粉砕処理を行った。その後TEM観察したところ、凝集体の解砕は進んでいるが、LaB微粒子表面のシリカ膜は不均一であった。 Since the obtained silica film-coated lanthanum hexaboride fine particles were in the form of aggregates, they were pulverized by a paint shaker (manufactured by Asada Tekko Co., Ltd.). Subsequent TEM observation revealed that the agglomeration was proceeding, but the silica film on the surface of the LaB 6 fine particles was not uniform.

このシリカ膜被覆6ホウ化ランタン微粒子が5重量%、有機高分子分散剤(アクリル系ポリマーからなり、無機成分を含まない)が2重量%、紫外線硬化樹脂(東亞合成(株)製、UV3701)が26重量%となるようにトルエン中で混合し、塗布液と調整した。   This silica film-coated lanthanum hexaboride fine particle is 5% by weight, an organic polymer dispersant (made of an acrylic polymer, not containing an inorganic component) is 2% by weight, an ultraviolet curable resin (manufactured by Toagosei Co., Ltd., UV3701). Was mixed in toluene so as to be 26% by weight to prepare a coating solution.

この塗布液を厚さ50μmのPETフィルム上にバーコーターを用いて塗布し、70℃で1分間乾燥して溶媒を蒸発させた後、高圧水銀ランプから紫外線を照射して被膜を硬化させた。   This coating solution was applied onto a 50 μm thick PET film using a bar coater, dried at 70 ° C. for 1 minute to evaporate the solvent, and then irradiated with ultraviolet rays from a high pressure mercury lamp to cure the coating.

得られた被膜とPETフィルムの合計の可視光透過率は63.6%であり、ヘイズ値は20.3%であった。また、この被膜を60℃で湿度90%の環境に3000時間保管した後、その可視光透過率を測定したところ66.8%であり、可視光透過率の上昇は3.2%であった。   The total visible light transmittance of the obtained coating film and PET film was 63.6%, and the haze value was 20.3%. The film was stored in an environment with a humidity of 90% at 60 ° C. for 3000 hours, and the visible light transmittance was measured to be 66.8%. The increase in visible light transmittance was 3.2%. .

本発明による外形が略球状のシリカ膜被覆6ホウ化物微粒子の透過電子顕微鏡写真である。2 is a transmission electron micrograph of silica film-coated hexaboride fine particles having a substantially spherical outer shape according to the present invention.

Claims (16)

6ホウ化物微粒子の表面に、表面修飾剤による一次被覆膜と、一次被覆膜上のシリカを主体とする二次被覆膜とを有し、外形が略球状であることを特徴とするシリカ膜被覆6ホウ化物微粒子。   It has a primary coating film by a surface modifier and a secondary coating film mainly composed of silica on the primary coating film on the surface of hexaboride fine particles, and the outer shape is substantially spherical. Silica film coated hexaboride fine particles. 前記6ホウ化物微粒子が、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sr、Caからなる群から選ばれた少なくとも1種の元素の6ホウ化物であることを特徴とする、請求項1に記載のシリカ膜被覆6ホウ化物微粒子。   The hexaboride fine particles are at least one selected from the group consisting of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sr, and Ca. The silica film-coated hexaboride fine particles according to claim 1, which are hexaboride of the element described above. 前記6ホウ化物微粒子の粒子径が2nm〜10μmであることを特徴とする、請求項1又は2に記載のシリカ膜被覆6ホウ化物微粒子。   The silica film-coated hexaboride fine particles according to claim 1 or 2, wherein the hexaboride fine particles have a particle diameter of 2 nm to 10 µm. 前記一次被覆膜と二次被覆膜の合計厚さが1〜100nmであることを特徴とする、請求項1〜3のいずれかに記載のシリカ膜被覆6ホウ化物微粒子。   The total thickness of the said primary coating film and a secondary coating film is 1-100 nm, The silica film coating | coated hexaboride microparticles | fine-particles in any one of Claims 1-3 characterized by the above-mentioned. 前記表面修飾剤がシランカップリング剤であることを特徴とする、請求項1〜4のいずれかに記載のシリカ膜被覆6ホウ化物微粒子。   The silica film-coated hexaboride fine particles according to any one of claims 1 to 4, wherein the surface modifier is a silane coupling agent. 6ホウ化物微粒子が分散した液体に表面修飾剤を添加して粒子表面に表面修飾剤による一次被覆膜を形成し、次にケイ酸化合物を添加して加水分解重合させることにより一次被覆膜上にシリカを主体とする二次被覆膜を形成することを特徴とするシリカ膜被覆6ホウ化物微粒子の製造方法。   A primary coating film is formed by adding a surface modifier to a liquid in which hexaboride fine particles are dispersed to form a primary coating film by the surface modifier on the particle surface, and then adding a silicic acid compound to cause hydrolytic polymerization. A method for producing fine particles of hexaboride coated with silica film, wherein a secondary coating film mainly composed of silica is formed thereon. 前記表面修飾剤がシランカップリング剤であり、その6ホウ化物微粒子に対する比率が、シランカップリング剤に含まれるケイ素換算で6ホウ化物微粒子1重量部に対して0.01〜10重量部であることを特徴とする、請求項6に記載のシリカ膜被覆6ホウ化物微粒子の製造方法。   The surface modifier is a silane coupling agent, and the ratio to the hexaboride fine particles is 0.01 to 10 parts by weight with respect to 1 part by weight of the hexaboride fine particles in terms of silicon contained in the silane coupling agent. The method for producing fine particles of hexaboride coated with silica film according to claim 6. 前記ケイ酸化合物の6ホウ化物微粒子に対する比率が、ケイ酸化合物に含まれるケイ素換算で6ホウ化物微粒子1重量部に対して0.01〜100重量部であることを特徴とする、請求項6又は7に記載のシリカ膜被覆6ホウ化物微粒子の製造方法。   The ratio of the silicate compound to hexaboride fine particles is 0.01 to 100 parts by weight with respect to 1 part by weight of the hexaboride fine particles in terms of silicon contained in the silicate compound. Or the method for producing silica film-coated hexaboride microparticles according to 7. 請求項1〜5のいずれかに記載のシリカ膜被覆6ホウ化物微粒子を、液体中に分散させたことを特徴とする光学部材用塗布液。   A coating solution for an optical member, wherein the silica film-coated hexaboride fine particles according to any one of claims 1 to 5 are dispersed in a liquid. 前記液体が、有機溶媒及び/又は水であるか、樹脂及び金属アルコキシドの少なくとも1種を溶解又は分散させた有機溶媒及び/又は水であることを特徴とする、請求項9に記載の光学部材用塗布液。   The optical member according to claim 9, wherein the liquid is an organic solvent and / or water, or an organic solvent and / or water in which at least one of a resin and a metal alkoxide is dissolved or dispersed. Coating liquid. 請求項9又は10に記載の光学部材用塗布液を基材表面に塗布し、硬化させて形成したことを特徴とする光学部材。   An optical member formed by applying the coating liquid for an optical member according to claim 9 or 10 to the surface of the substrate and curing it. 請求項1〜5のいずれかに記載のシリカ膜被覆6ホウ化物微粒子を固体媒質に分散させた光学部材用分散体からなる被膜が、基材表面に形成されていることを特徴とする光学部材。   6. An optical member comprising a substrate surface formed with a coating film comprising a dispersion for an optical member in which the silica film-coated hexaboride fine particles according to claim 1 are dispersed in a solid medium. . 請求項1〜5のいずれかに記載のシリカ膜被覆6ホウ化物微粒子を固体媒質に分散させた光学部材用分散体からなり、フィルム又はボードに成形されていることを特徴とする光学部材。   An optical member comprising a dispersion for an optical member in which the silica film-coated hexaboride fine particles according to claim 1 are dispersed in a solid medium, and formed into a film or a board. 前記固体媒質が樹脂又はガラスのいずれかであることを特徴とする、請求項13に記載の光学部材。   The optical member according to claim 13, wherein the solid medium is either resin or glass. 前記光学用分散体からなるフィルム又はボードの厚さが0.1μm〜50mmであることを特徴とする、請求項13又は14に記載の光学部材。   The optical member according to claim 13 or 14, wherein a film or board made of the optical dispersion has a thickness of 0.1 µm to 50 mm. 請求項1〜5のいずれかに記載のシリカ膜被覆6ホウ化物微粒子を液体媒質に分散させた光学部材用分散体が、フィルム又はボードの間に封入されていることを特徴とする光学部材。


An optical member, wherein the dispersion for an optical member in which the silica film-coated hexaboride fine particles according to any one of claims 1 to 5 are dispersed in a liquid medium is enclosed between a film or a board.


JP2005008484A 2005-01-17 2005-01-17 Hexaborate particulate coated with silica film, method for producing the same, coating liquid for optical component produced by using the particulate and optical component Pending JP2006193670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005008484A JP2006193670A (en) 2005-01-17 2005-01-17 Hexaborate particulate coated with silica film, method for producing the same, coating liquid for optical component produced by using the particulate and optical component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005008484A JP2006193670A (en) 2005-01-17 2005-01-17 Hexaborate particulate coated with silica film, method for producing the same, coating liquid for optical component produced by using the particulate and optical component

Publications (1)

Publication Number Publication Date
JP2006193670A true JP2006193670A (en) 2006-07-27

Family

ID=36799995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005008484A Pending JP2006193670A (en) 2005-01-17 2005-01-17 Hexaborate particulate coated with silica film, method for producing the same, coating liquid for optical component produced by using the particulate and optical component

Country Status (1)

Country Link
JP (1) JP2006193670A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008062507A (en) * 2006-09-07 2008-03-21 Riken Technos Corp Heat ray cutting film for glass
WO2008075752A1 (en) 2006-12-21 2008-06-26 Teijin Chemicals Ltd. Polycarbonate resin composition and molded article thereof
JP2010106247A (en) * 2008-10-01 2010-05-13 Sumitomo Metal Mining Co Ltd Method for producing hexaboride fine particle dispersion, heat ray shielding molded product and method for producing the same, heat ray shielding component-containing masterbatch and method for producing the same, and heat ray shielding laminate
CN110546107A (en) * 2017-05-01 2019-12-06 Agc株式会社 Method for producing lanthanum hexaboride-containing composite particle and method for producing molded article

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008062507A (en) * 2006-09-07 2008-03-21 Riken Technos Corp Heat ray cutting film for glass
WO2008075752A1 (en) 2006-12-21 2008-06-26 Teijin Chemicals Ltd. Polycarbonate resin composition and molded article thereof
US8008371B2 (en) 2006-12-21 2011-08-30 Teijin Chemicals, Ltd. Polycarbonate resin composition and molded article thereof
JP2010106247A (en) * 2008-10-01 2010-05-13 Sumitomo Metal Mining Co Ltd Method for producing hexaboride fine particle dispersion, heat ray shielding molded product and method for producing the same, heat ray shielding component-containing masterbatch and method for producing the same, and heat ray shielding laminate
CN110546107A (en) * 2017-05-01 2019-12-06 Agc株式会社 Method for producing lanthanum hexaboride-containing composite particle and method for producing molded article

Similar Documents

Publication Publication Date Title
JP5228376B2 (en) Infrared shielding fine particles and manufacturing method thereof, infrared shielding fine particle dispersion, infrared shielding body, and infrared shielding base material
EP2221349B1 (en) Process for producing fine particles of surface treated zinc oxide, fine particles of surface treated zinc oxide, dispersion liquid and dispersion solid of the fine particles of surface treated zinc oxide, and base material coated with fine particles of zinc oxide
EP2360220B1 (en) Infrared blocking particle, method for producing the same, infrared blocking particle dispersion using the same, and infrared blocking base
JP5600457B2 (en) Base material with transparent conductive film
JP4872549B2 (en) Manufacturing method of heat ray shielding film forming substrate
TWI671192B (en) Infrared light shielding laminate and infrared light shielding material using the same
JP2000096034A (en) Sun radiation screening material, coating solution for sun radiation screening membrane and sun radiation screening membrane
WO2010007956A1 (en) Water-repellent substrate and process for production thereof
WO2006112370A1 (en) Glass plate with infrared shielding layer and process for producing the same
EP1541536A1 (en) Infrared shielding glass
JP4409169B2 (en) Paint containing colored pigment particles, substrate with visible light shielding film
US20050161642A1 (en) Hexaboride particles, hexaboride particle dispersion, and article making use of hexaboride particles or hexaboride particle dispersion
WO2019065788A1 (en) Liquid composition for forming infrared-shielding film, method for producing infrared-shielding film therefrom, and infrared-shielding film
JP2003277045A (en) Hexaboride particle, dispersed body with dispersed hexaboride particle and article using hexaboride particle or dispersed body
JP2006193670A (en) Hexaborate particulate coated with silica film, method for producing the same, coating liquid for optical component produced by using the particulate and optical component
JP4026399B2 (en) Coated hexaboride particles and optical member using the same
TWI814742B (en) Liquid composition for forming infrared shielding film, method for producing infrared shielding film using same and infrared shielding film
AU2019267798A1 (en) Surface-treated infrared-absorbing fine particle dispersion and infrared-absorbing transparent substrate
JP2006213576A (en) Boride microparticle for insolation shield, dispersion for forming insolation shield body using the boride microparticle and insolation shield body, and method of manufacturing boride microparticle for insolation shield and method of manufacturing dispersion for forming insolation shield body
JP4929835B2 (en) Method for producing surface-coated hexaboride particles
JP5087783B2 (en) Method for producing surface-coated hexaboride particle precursor, surface-coated hexaboride particle precursor, surface-coated hexaboride particle and dispersion thereof, and structure and article using surface-coated hexaboride particles
JP2004204173A (en) Coating for forming infrared light-shading film and substrate having infrared light-shading film
JP2015044921A (en) Heat ray-shielding dispersion material, coating liquid for forming heat ray-shielding dispersion material, and heat ray-shielding body
JP6155600B2 (en) Transparent resin laminate, method for producing the same, and primer layer forming primer layer having a heat ray shielding function
JP2005022941A (en) Infrared shielding glass and method of manufacturing the same