JP2019206670A - Near-infrared absorptive fine particle dispersion liquid and production method of the same - Google Patents

Near-infrared absorptive fine particle dispersion liquid and production method of the same Download PDF

Info

Publication number
JP2019206670A
JP2019206670A JP2018103573A JP2018103573A JP2019206670A JP 2019206670 A JP2019206670 A JP 2019206670A JP 2018103573 A JP2018103573 A JP 2018103573A JP 2018103573 A JP2018103573 A JP 2018103573A JP 2019206670 A JP2019206670 A JP 2019206670A
Authority
JP
Japan
Prior art keywords
particle dispersion
fine particle
infrared absorbing
boiling point
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018103573A
Other languages
Japanese (ja)
Other versions
JP7024608B2 (en
JP2019206670A5 (en
Inventor
健二 福田
Kenji Fukuda
健二 福田
中山 博貴
Hirotaka Nakayama
博貴 中山
小林 宏
Hiroshi Kobayashi
宏 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018103573A priority Critical patent/JP7024608B2/en
Publication of JP2019206670A publication Critical patent/JP2019206670A/en
Publication of JP2019206670A5 publication Critical patent/JP2019206670A5/ja
Application granted granted Critical
Publication of JP7024608B2 publication Critical patent/JP7024608B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a near-infrared absorptive fine particle dispersion liquid (hereinafter abbreviated as a fine particle dispersion liquid) containing near-infrared absorptive fine particles uniformly dispersed in a polyester resin (hereinafter abbreviated as PE) without aggregation, which is to be used for manufacturing a near-infrared absorptive PE molded body.SOLUTION: Fine particle dispersion liquid is to be used for manufacturing a near-infrared absorptive PE molded body by melting and kneading the fine particle dispersion liquid and PE to prepare a near-infrared absorptive PE composition and molding the PE composition. The fine particle dispersion liquid contains near-infrared absorptive fine particles, a high boiling point solvent and a low boiling point solvent. The near-infrared absorptive fine particles are constituted by composite tungsten oxide fine particles represented by a general formula of MyWOz; the high boiling point solvent is constituted by a diol compound (such as polyester polyol) that has a boiling point of 195°C or higher and a hydroxyl group at both molecular ends and that is liquid at room temperature; and the low boiling point solvent is constituted by an organic solvent having a boiling point of 150°C or lower and is included by 5 mass% or less.SELECTED DRAWING: None

Description

本発明は、可視光領域の光をよく透過し、近赤外線領域の光を吸収する複合タングステン酸化物微粒子を含有する近赤外線吸収ポリエステル樹脂成形体の製造に用いられる近赤外線吸収ポリエステル樹脂組成物用の近赤外線吸収微粒子分散液とその製造方法に係り、特に、複合タングステン酸化物微粒子で構成される近赤外線吸収微粒子が凝集せずにポリエステル樹脂中に均一に分散された近赤外線吸収ポリエステル樹脂成形体の製造を可能とする近赤外線吸収ポリエステル樹脂組成物用の近赤外線吸収微粒子分散液とその製造方法の改良に関するものである。   The present invention is for a near-infrared-absorbing polyester resin composition used for the production of a near-infrared-absorbing polyester resin molding containing composite tungsten oxide fine particles that transmit light in the visible-light region well and absorb light in the near-infrared region. In particular, a near-infrared absorbing polyester resin molded body in which near-infrared absorbing fine particles composed of composite tungsten oxide fine particles are uniformly dispersed in a polyester resin without agglomeration. The present invention relates to a near-infrared-absorbing fine particle dispersion for a near-infrared-absorbing polyester resin composition that can be manufactured and an improvement of the production method.

各種建築物や車両の窓、ドア等のいわゆる開口部分から入射する太陽光線には可視光線の他に紫外線や赤外線が含まれている。この太陽光線に含まれている赤外線のうち波長800〜2500nmの近赤外線は熱線と呼ばれ、開口部分から進入することにより室内の温度を上昇させる原因になる。これを解消するため、近年、各種建築物や車両の窓材等の分野では、可視光線を十分に取り入れながら熱線を遮蔽し、明るさを維持しつつ室内の温度上昇を抑制する近赤外線遮蔽成形体の需要が急増しており、近赤外線遮蔽成形体に関する特許が多く提案されている。   In addition to visible light, ultraviolet rays and infrared rays are included in the sunlight that enters from various openings such as windows and doors of buildings and vehicles. Near infrared rays having a wavelength of 800 to 2500 nm among infrared rays contained in the sunlight are called heat rays, and cause the indoor temperature to rise by entering from the opening. In order to solve this problem, in recent years, in the fields of various buildings and vehicle window materials, near-infrared shielding molding that shields heat rays while sufficiently incorporating visible light, and suppresses temperature rise while maintaining brightness. The demand for the body has increased rapidly, and many patents relating to near-infrared shielding molded bodies have been proposed.

例えば、透明樹脂フィルムに、金属若しくは金属酸化物を蒸着してなる熱線反射フィルムを、ガラス、アクリル板、ポリカーボネート板、ポリエチレンテレフタレート板等の透明成形体に接着した近赤外線遮蔽板が提案されている。しかし、この近赤外線遮蔽板においては、熱線反射フィルム自体が非常に高価でかつ接着工程等の煩雑な工程を要するため高コストになる。また、透明成形体と熱線反射フィルムの接着性が良好でないため、経時変化によりフィルム剥離が生じるといった欠点を有している。   For example, a near-infrared shielding plate in which a heat ray reflective film obtained by vapor-depositing a metal or metal oxide on a transparent resin film is bonded to a transparent molded body such as glass, an acrylic plate, a polycarbonate plate, or a polyethylene terephthalate plate has been proposed. . However, in this near-infrared shielding plate, the heat ray reflective film itself is very expensive and requires a complicated process such as an adhesion process, resulting in high costs. Moreover, since the adhesiveness of a transparent molded object and a heat ray reflective film is not favorable, it has the fault that film peeling arises with a time-dependent change.

また、透明成形体表面に、金属若しくは金属酸化物を直接蒸着してなる近赤外線遮蔽板も数多く提案されている。しかし、この近赤外線遮蔽板の製造に際しては、高真空で精度の高い雰囲気制御を要する蒸着装置が必要となるため、量産性が悪く、汎用性に乏しいという問題を有している。   Many near-infrared shielding plates obtained by directly depositing metal or metal oxide on the surface of the transparent molded body have been proposed. However, the production of this near-infrared shielding plate requires a vapor deposition apparatus that requires high-vacuum and high-precision atmosphere control, and therefore has a problem that mass productivity is poor and versatility is poor.

この他、例えば、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリエチレン樹脂、ポリスチレン樹脂等の熱可塑性透明樹脂にフタロシアニン系化合物、アントラキノン系化合物に代表される有機近赤外線吸収剤を練り込んだ近赤外線遮蔽板およびフィルムが提案されている。しかし、これ等の近赤外線遮蔽板およびフィルムにおいては、熱線を十分に遮蔽するには多量の有機近赤外線吸収剤を配合しなければならず、有機近赤外線吸収剤を多量に配合すると、可視光線透過能が低下してしまうという課題が残っていた。更に、近赤外線吸収剤として有機化合物を使用しているため、直射日光に常時曝される建築物や車両の窓材等への適用は耐候性に難があり、必ずしも適当であるとはいえなかった。   In addition, for example, near-infrared shielding obtained by kneading an organic near-infrared absorber typified by a phthalocyanine compound or an anthraquinone compound into a thermoplastic transparent resin such as polyethylene terephthalate resin, polycarbonate resin, acrylic resin, polyethylene resin, or polystyrene resin. Boards and films have been proposed. However, in these near-infrared shielding plates and films, a large amount of an organic near-infrared absorber must be blended in order to sufficiently shield heat rays. The problem that the permeability was reduced remained. Furthermore, since organic compounds are used as near-infrared absorbers, they are difficult to apply to buildings and vehicle window materials that are constantly exposed to direct sunlight, and are not necessarily suitable. It was.

このような技術的背景の下、本出願人は、耐候性に難のある有機系の近赤外線吸収剤に代えて、一般式WOx(但し、2.45≦x≦2.999)で示されるタングステン酸化物微粒子および/または一般式MyWOz(但し、MはH、He、アルカリ金属、アルカリ土類金属、希土類金属、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Reの内から選択される1種以上の元素、0.1≦y≦0.5、2.2≦z≦3.0)で示されかつ六方晶の結晶構造を持つ複合タングステン酸化物微粒子を近赤外線吸収微粒子として適用し、該近赤外線吸収微粒子を熱可塑性樹脂に分散させた近赤外線吸収(遮蔽)樹脂成形体等を既に提案している。すなわち、特許文献1において、熱線遮蔽透明樹脂成形体を製造するために用いられる高耐熱性マスターバッチの製造方法を提案し、特許文献2において、近赤外線遮蔽ポリエステル樹脂成形体を製造するために用いられる近赤外線遮蔽ポリエステル樹脂組成物を提案している。   Under such a technical background, the present applicant has the general formula WOx (however, 2.45 ≦ x ≦ 2.999) instead of the organic near-infrared absorber having difficulty in weather resistance. Tungsten oxide fine particles and / or general formula MyWOz (where M is H, He, alkali metal, alkaline earth metal, rare earth metal, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, One or more elements selected from V, Mo, Ta, and Re, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) and have a hexagonal crystal structure The composite tungsten oxide fine particles are applied as near infrared absorbing fine particles, and the near infrared absorbing fine particles are applied. Particles near infrared absorbing dispersed in the thermoplastic resin (shielding) resin molding or the like has already proposed. That is, in patent document 1, the manufacturing method of the high heat resistant masterbatch used in order to manufacture a heat ray shielding transparent resin molding is proposed, and in patent document 2, it uses in order to manufacture a near-infrared shielding polyester resin molding. The proposed near-infrared shielding polyester resin composition is proposed.

特許文献1で提案した高耐熱性マスターバッチの製造方法は、近赤外線吸収微粒子と高耐熱性分散剤をトルエン等の溶媒に加え、粉砕・分散処理して微粒子分散液を得る工程と、該微粒子分散液に上記高耐熱性分散剤を所定量添加した後、トルエン等の溶媒を除去して「微粒子分散粉」を得る工程と、得られた「微粒子分散粉」とアクリル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ポリエーテルスルホン樹脂、フッ素系樹脂、ポリオレフィン樹脂およびポリエステル樹脂等の熱可塑性樹脂を混合し、溶融混練し、成形する工程を具備する方法であった。また、熱線遮蔽透明樹脂成形体は、高耐熱性マスターバッチと、該マスターバッチに含まれる熱可塑性樹脂と同種の熱可塑性樹脂または相溶性を有する異種の熱可塑性樹脂とを混合し、所定の形状に成形して得られるものであった。   The method for producing a high heat-resistant masterbatch proposed in Patent Document 1 includes a step of adding a near-infrared absorbing fine particle and a high heat-resistant dispersant to a solvent such as toluene, and pulverizing and dispersing to obtain a fine particle dispersion; After adding a predetermined amount of the above high heat-resistant dispersant to the dispersion, a solvent such as toluene is removed to obtain “fine particle dispersed powder”, and the obtained “fine particle dispersed powder” and acrylic resin, polycarbonate resin, polystyrene This was a method comprising the steps of mixing, melt-kneading and molding a thermoplastic resin such as resin, polyethersulfone resin, fluorine resin, polyolefin resin and polyester resin. Further, the heat ray shielding transparent resin molded product is obtained by mixing a high heat resistant masterbatch with a thermoplastic resin of the same kind as the thermoplastic resin contained in the masterbatch or a different kind of thermoplastic resin and having a predetermined shape. To be obtained.

また、特許文献2で提案した近赤外線遮蔽ポリエステル樹脂組成物は、特許文献1と同様にして製造した上記「微粒子分散粉」とポリエステル樹脂を均一に混合し、二軸押出機で溶融混練し、押出されたストランドをペレット状にカットしたものである。また、近赤外線遮蔽ポリエステル樹脂成形体は、ペレット状にカットされた近赤外線遮蔽ポリエステル樹脂組成物を一軸押出機で溶融混練した後、Tダイより押し出し、二軸延伸加工して、得られるものであった。   In addition, the near-infrared shielding polyester resin composition proposed in Patent Document 2 is a uniform mixture of the above-mentioned “fine particle dispersed powder” produced in the same manner as Patent Document 1 and a polyester resin, and melt-kneaded with a twin-screw extruder, The extruded strand is cut into pellets. The near-infrared shielding polyester resin molded body is obtained by melt-kneading the near-infrared shielding polyester resin composition cut into pellets with a uniaxial extruder, then extruding from a T-die and biaxially stretching. there were.

更に、特許文献3には、可視光に対して高い透明性と同時に熱線遮蔽機能を有する成形体とこの製造に供されるポリマー組成物の製造方法等が開示されている。   Furthermore, Patent Document 3 discloses a molded body having high transparency to visible light and at the same time a heat ray shielding function, a method for producing a polymer composition used for the production, and the like.

すなわち、可視光に対し高い透明性と熱線遮蔽機能を有する成形体の製造に用いられる上記ポリマー組成物は、ナノ粒子状IR吸収剤(金属ホウ化物、ATO、ITO、ナノスケールのカーボンブラック等)と、液状担持媒体(アルキンカルボン酸およびアリールカルボン酸のエステル、アリールカルボン酸とアルカノールとの水素化エステル、一価若しくは多価のアルコール、エーテルアルコール、ポリエーテルポリオール、エーテル、非環状および環状の飽和炭化水素、鉱油誘導体、シリコーン油、非プロトン性極性溶剤等)と、熱可塑性ポリマー[ポリオレフィン、ポリオレフィンコポリマー、ポリビニルアルコール、ポリビニルエステル、ポリビニルアルカナール、ポリビニルケタール、ポリアミド、ポリイミド、ポリカーボネート、ポリカーボネートブレンド、ポリエステル、ポリエステルブレンド、ポリ(メタ)アクリレート、ポリ(メタ)アクリレート―スチレンコポリマーブレンド、ポリ(メタ)アクリレート―ポリビニリデンフルオリドブレンド、ポリウレタン、ポリスチレン、スチレンコポリマー、ポリエーテル、ポリエーテルケトン、ポリスルホン、ポリビニルクロリド等]とを含有するものであった。   That is, the polymer composition used for the production of a molded article having high transparency to visible light and a heat ray shielding function is a nanoparticulate IR absorber (metal boride, ATO, ITO, nanoscale carbon black, etc.) And liquid support media (esters of alkyne carboxylic acids and aryl carboxylic acids, hydrogenated esters of aryl carboxylic acids and alkanols, mono- or polyhydric alcohols, ether alcohols, polyether polyols, ethers, acyclic and cyclic saturation Hydrocarbons, mineral oil derivatives, silicone oils, aprotic polar solvents, etc.) and thermoplastic polymers [polyolefins, polyolefin copolymers, polyvinyl alcohol, polyvinyl esters, polyvinyl alkanals, polyvinyl ketals, polyamides, polyimides, polycarbonates Polycarbonate blend, polyester, polyester blend, poly (meth) acrylate, poly (meth) acrylate-styrene copolymer blend, poly (meth) acrylate-polyvinylidene fluoride blend, polyurethane, polystyrene, styrene copolymer, polyether, polyether ketone, Polysulfone, polyvinyl chloride, etc.].

特開2011−001551号公報(特許請求の範囲参照)JP 2011-001551 A (refer to claims) 特開2011−26440号公報(実施例1参照)JP 2011-26440 A (refer to Example 1) WO2010/092013号公報(特許請求の範囲、段落0009参照)WO 2010/092013 (see Claims, paragraph 0009)

ところで、特許文献1と特許文献2に記載された近赤外線吸収(遮蔽)樹脂成形体においては、有機系の近赤外線吸収剤に代えて、タングステン酸化物微粒子および/または複合タングステン酸化物微粒子を近赤外線吸収微粒子として適用しているため、耐候性に関する課題は確かに改善されている。   By the way, in the near-infrared absorbing (shielding) resin moldings described in Patent Document 1 and Patent Document 2, tungsten oxide fine particles and / or composite tungsten oxide fine particles are used in place of organic near-infrared absorbers. Since it is applied as infrared-absorbing fine particles, the problem regarding weather resistance is certainly improved.

しかし、特許文献1の高耐熱性マスターバッチは、高耐熱性分散剤と近赤外線吸収微粒子からなる「微粒子分散粉」を、アクリル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ポリエーテルスルホン樹脂、フッ素系樹脂、ポリオレフィン樹脂、ポリエステル樹脂等の熱可塑性樹脂と溶融混練して製造されているが、「微粒子分散粉」と熱可塑性樹脂を均一に混練することは難しく、特に、熱可塑性樹脂がポリエステル樹脂の場合に顕著であった。このため、ポリエステル樹脂中に近赤外線吸収微粒子を均一に分散させることが難しいことから、近赤外線遮蔽ポリエステル樹脂成形体のヘイズ値が高くなり、可視光透過率も低下する問題が存在した。更に、可視光透過率が高くかつ近赤外線領域に強い吸収を有する近赤外線遮蔽ポリエステル樹脂成形体を製造するには、ポリエステル樹脂(熱可塑性樹脂)中に近赤外線吸収微粒子が良好に分散されることを要するため、その分、多量の高耐熱性分散剤を配合する必要がある。しかし、高耐熱性分散剤が多量に含まれるマスターバッチを用いて製造された近赤外線遮蔽ポリエステル樹脂成形体は、分散剤を多量に含有する分、機械的強度が低下してしまう問題があった。   However, the high heat-resistant masterbatch of Patent Document 1 is a “fine particle dispersion powder” composed of a high heat-resistant dispersant and near-infrared absorbing fine particles, an acrylic resin, a polycarbonate resin, a polystyrene resin, a polyethersulfone resin, a fluorine resin, It is manufactured by melt-kneading with thermoplastic resins such as polyolefin resin and polyester resin, but it is difficult to uniformly knead the “fine particle dispersion powder” and thermoplastic resin, especially when the thermoplastic resin is a polyester resin. It was remarkable. For this reason, it is difficult to uniformly disperse the near-infrared absorbing fine particles in the polyester resin, so that there is a problem that the near-infrared shielding polyester resin molded article has a high haze value and a low visible light transmittance. Furthermore, in order to produce a near-infrared shielding polyester resin molded article having high visible light transmittance and strong absorption in the near-infrared region, the near-infrared absorbing fine particles are well dispersed in the polyester resin (thermoplastic resin). Therefore, it is necessary to blend a large amount of a high heat resistant dispersant accordingly. However, the near-infrared shielding polyester resin molded body produced using a masterbatch containing a large amount of a high heat-resistant dispersant has a problem that the mechanical strength is reduced due to the large amount of the dispersant. .

また、近赤外線遮蔽ポリエステル樹脂成形体の製造に用いられる特許文献2に係る近赤外線遮蔽ポリエステル樹脂組成物も、特許文献1と同様、高耐熱性分散剤と近赤外線吸収微粒子からなる「微粒子分散粉」をポリエステル樹脂と溶融混練して製造されているため、「微粒子分散粉」とポリエステル樹脂を均一に混練することが難しく、ポリエステル樹脂中に近赤外線吸収微粒子を均一に分散させることが困難な課題が存在した。そして、近赤外線吸収微粒子をポリエステル樹脂中に均一に分散させることが困難なことから、近赤外線遮蔽ポリエステル樹脂成形体のヘイズ値が高くなり、可視光透過率も低下する問題が存在し、ヘイズ値を下げるために多量の高耐熱性分散剤を配合した場合、近赤外線遮蔽ポリエステル樹脂成形体の機械的強度が低下してしまう問題があった。   Moreover, the near-infrared shielding polyester resin composition according to Patent Document 2 used for the production of a near-infrared shielding polyester resin molded article is also a “fine particle dispersed powder comprising a high heat-resistant dispersant and near-infrared absorbing fine particles, as in Patent Document 1. ”Is manufactured by melt-kneading with polyester resin, so it is difficult to uniformly knead“ fine particle dispersed powder ”and polyester resin, and it is difficult to uniformly disperse near-infrared absorbing fine particles in the polyester resin. Existed. And since it is difficult to uniformly disperse the near-infrared absorbing fine particles in the polyester resin, there is a problem that the haze value of the near-infrared shielding polyester resin molded article increases and the visible light transmittance also decreases, and the haze value exists. When a large amount of a high heat-resistant dispersant is blended in order to lower the temperature, there is a problem that the mechanical strength of the near-infrared shielding polyester resin molded product is lowered.

特許文献3においては、多種の液状担持媒体中でナノ粒子状IR吸収剤を粉砕若しくは分散して「微粒子分散液」を調製した後、熱可塑性樹脂と「微粒子分散液」を溶融混練してポリマー組成物(IR吸収樹脂組成物)を製造している。このため、「微粒子分散粉」と熱可塑性樹脂(ポリエステル樹脂)を溶融混練する特許文献1〜2の方法と異なり、熱可塑性樹脂中におけるナノ粒子状IR吸収剤の凝集は起こり難い。しかし、熱可塑性樹脂が溶融温度の高いポリエステル樹脂の場合、溶融混練時において液状担持媒体の気化が起こり易いため、混練ムラやヘイズ悪化の原因となる問題が存在した。また、粘性の高い液状担持媒体中でナノ粒子状IR吸収剤を粉砕若しくは分散して「微粒子分散液」を調製することは作業性に難があり、効率も非常に悪いという問題があった。   In Patent Document 3, a “fine particle dispersion” is prepared by pulverizing or dispersing nanoparticulate IR absorbers in various liquid carriers, and then a thermoplastic resin and “fine particle dispersion” are melt-kneaded to form a polymer. The composition (IR absorption resin composition) is manufactured. For this reason, unlike the methods of Patent Documents 1 and 2 in which “fine particle dispersed powder” and a thermoplastic resin (polyester resin) are melt-kneaded, aggregation of the nanoparticulate IR absorber in the thermoplastic resin hardly occurs. However, when the thermoplastic resin is a polyester resin having a high melting temperature, the liquid carrier medium is easily vaporized during melt-kneading, which causes problems such as kneading unevenness and haze deterioration. In addition, it has been difficult to prepare a “fine particle dispersion” by pulverizing or dispersing a nanoparticulate IR absorbent in a highly viscous liquid-carrying medium.

本発明は、このような問題点に着目してなされたもので、その課題とするところは、複合タングステン酸化物微粒子で構成される近赤外線吸収微粒子が凝集せずにポリエステル樹脂中に均一に分散された近赤外線吸収ポリエステル樹脂成形体の製造を可能とする近赤外線吸収ポリエステル樹脂組成物用の近赤外線吸収微粒子分散液とその製造方法を提供することにある。   The present invention has been made paying attention to such problems, and the problem is that the near-infrared absorbing fine particles composed of composite tungsten oxide fine particles are uniformly dispersed in the polyester resin without aggregation. An object of the present invention is to provide a near-infrared-absorbing fine particle dispersion for a near-infrared-absorbing polyester resin composition that enables the production of a molded near-infrared-absorbing polyester resin and a method for producing the same.

そこで、上記課題を解決するため、本発明者等が、ポリエステル樹脂と上記「微粒子分散液」を溶融混練して近赤外線吸収ポリエステル樹脂組成物を調製する際の「微粒子分散液」の溶媒について、沸点が195℃以上でかつ分子両末端に水酸基を有する室温で液状のジオール化合物(高沸点溶媒)を適用したところ、複合タングステン酸化物微粒子で構成される近赤外線吸収微粒子が凝集せずにポリエステル樹脂中に均一に分散されることを発見するに至った。更に、高沸点溶媒の「微粒子分散液」とポリエステル樹脂を溶融混練して製造された近赤外線吸収ポリエステル樹脂組成物を成形して得られた近赤外線吸収ポリエステル樹脂成形体は、ヘイズ値が低いと共に、可視光透過率が高くかつ近赤外線領域に強い吸収を有することを見出すに至った。本発明はこのような技術的発見と分析により完成されたものである。   Therefore, in order to solve the above problems, the present inventors have melted and kneaded the polyester resin and the above "fine particle dispersion" to prepare a near-infrared absorbing polyester resin composition, the solvent for the "fine particle dispersion". When a diol compound (high boiling point solvent) having a boiling point of 195 ° C. or higher and having hydroxyl groups at both molecular ends is applied at room temperature, the near-infrared absorbing fine particles composed of the composite tungsten oxide fine particles are not aggregated, and the polyester resin It has been found that it is uniformly dispersed in it. Furthermore, the near-infrared-absorbing polyester resin molding obtained by molding a near-infrared-absorbing polyester resin composition produced by melt-kneading a “fine particle dispersion” of a high-boiling solvent and a polyester resin has a low haze value. It has been found that it has a high visible light transmittance and a strong absorption in the near infrared region. The present invention has been completed by such technical discovery and analysis.

すなわち、本発明に係る第1の発明は、
近赤外線吸収ポリエステル樹脂組成物を製造するために用いられる近赤外線吸収微粒子分散液において、
近赤外線吸収微粒子と高沸点溶媒と低沸点溶媒を含有し、
上記近赤外線吸収微粒子が、一般式MyWOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In,Tl、Si、Ge、Sn、Pb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Reの内から選択される1種類以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で示されかつ六方晶の結晶構造を持つ複合タングステン酸化物微粒子で構成され、
上記高沸点溶媒が、沸点が195℃以上でかつ分子両末端に水酸基を有する室温で液状のジオール化合物で構成されると共に、
上記低沸点溶媒が、沸点が150℃以下の有機溶剤で構成され、かつ、その含有量が5質量%以下であることを特徴とするものである。
That is, the first invention according to the present invention is:
In the near-infrared absorbing fine particle dispersion used for producing the near-infrared absorbing polyester resin composition,
Contains near-infrared absorbing fine particles, a high boiling point solvent and a low boiling point solvent,
The near-infrared absorbing fine particles have the general formula MyWOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni). , Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, B, F, P, S, Se, Br, Te, Ti, Nb, V One or more elements selected from Mo, Ta, and Re, W is tungsten, O is oxygen, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) and Consists of composite tungsten oxide fine particles with hexagonal crystal structure,
The high-boiling solvent is composed of a diol compound that has a boiling point of 195 ° C. or higher and has hydroxyl groups at both molecular ends at room temperature,
The low boiling point solvent is composed of an organic solvent having a boiling point of 150 ° C. or less, and the content thereof is 5% by mass or less.

また、本発明に係る第2の発明は、
第1の発明に記載の近赤外線吸収微粒子分散液において、
上記ジオール化合物が、ポリエステルポリオール類、脂肪族ジオール類、脂環族ジオール類、芳香族ジオール類から選択される化合物であることを特徴とし、
第3の発明は、
第1の発明または第2の発明に記載の近赤外線吸収微粒子分散液において、
上記近赤外線吸収微粒子に含まれるM元素が、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Sn、Al、Cuから選択される少なくとも1種類以上であることを特徴とし、
第4の発明は、
第1の発明〜第3の発明のいずれかに記載の近赤外線吸収微粒子分散液において、
上記近赤外線吸収微粒子の分散粒子径が1nm以上800nm以下であることを特徴とするものである。
Further, the second invention according to the present invention is:
In the near-infrared absorbing fine particle dispersion described in the first invention,
The diol compound is a compound selected from polyester polyols, aliphatic diols, alicyclic diols, aromatic diols,
The third invention is
In the near-infrared absorbing fine particle dispersion according to the first invention or the second invention,
The element M contained in the near-infrared absorbing fine particles is at least one selected from Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, Sn, Al, and Cu. age,
The fourth invention is:
In the near-infrared absorbing fine particle dispersion according to any one of the first to third inventions,
The dispersion particle diameter of the near infrared absorbing fine particles is 1 nm or more and 800 nm or less.

次に、第5の発明は、
第1の発明〜第4の発明のいずれかに記載の近赤外線吸収微粒子分散液において、
熱分解温度が200℃以上の分散剤を含むことを特徴とし、
第6の発明は、
第5の発明に記載の近赤外線吸収微粒子分散液において、
上記近赤外線吸収微粒子の質量をA、高沸点溶媒の質量をC、および、分散剤の質量をDとした場合、
0.1≦[D/A]≦10、
0.5≦[(C+D)/A]≦50
を満たすことを特徴とするものである。
Next, the fifth invention is:
In the near-infrared absorbing fine particle dispersion according to any one of the first to fourth inventions,
It contains a dispersant having a thermal decomposition temperature of 200 ° C. or higher,
The sixth invention is:
In the near-infrared absorbing fine particle dispersion described in the fifth invention,
When the mass of the near-infrared absorbing fine particles is A, the mass of the high-boiling solvent is C, and the mass of the dispersant is D,
0.1 ≦ [D / A] ≦ 10,
0.5 ≦ [(C + D) / A] ≦ 50
It is characterized by satisfying.

また、第7の発明は、
第1の発明〜第4の発明のいずれかに記載の近赤外線吸収微粒子分散液を製造する方法において、
近赤外線吸収微粒子と低沸点溶媒を混合し、湿式媒体ミルを用いて近赤外線吸収微粒子を粉砕かつ分散処理して低沸点溶媒の微粒子分散液を得る工程と、
得られた低沸点溶媒の微粒子分散液に高沸点溶媒を添加する工程と、
高沸点溶媒が添加された上記微粒子分散液から低沸点溶媒の含有量が5質量%以下になるまで低沸点溶媒を除去して高沸点溶媒の微粒子分散液を得る工程、
を具備することを特徴とし、
第8の発明は、
第5の発明〜第6の発明のいずれかに記載の近赤外線吸収微粒子分散液を製造する方法において、
近赤外線吸収微粒子と低沸点溶媒および分散剤を混合し、湿式媒体ミルを用いて近赤外線吸収微粒子を粉砕かつ分散処理して低沸点溶媒の微粒子分散液を得る工程と、
得られた低沸点溶媒の微粒子分散液に高沸点溶媒を添加する工程と、
高沸点溶媒が添加された上記微粒子分散液から低沸点溶媒の含有量が5質量%以下になるまで低沸点溶媒を除去して高沸点溶媒の微粒子分散液を得る工程、
を具備することを特徴とするものである。
In addition, the seventh invention,
In the method for producing the near-infrared absorbing fine particle dispersion according to any one of the first to fourth inventions,
A step of mixing near-infrared absorbing fine particles and a low-boiling solvent, and pulverizing and dispersing the near-infrared absorbing fine particles using a wet medium mill to obtain a low-boiling solvent fine particle dispersion;
Adding a high boiling point solvent to the resulting low boiling point solvent fine particle dispersion;
Removing the low boiling point solvent from the fine particle dispersion to which the high boiling point solvent has been added until the content of the low boiling point solvent is 5% by mass or less to obtain a fine particle dispersion of the high boiling point solvent;
It is characterized by comprising,
The eighth invention
In the method for producing the near-infrared absorbing fine particle dispersion according to any one of the fifth to sixth inventions,
Mixing near-infrared absorbing fine particles with a low-boiling solvent and a dispersant, and pulverizing and dispersing the near-infrared absorbing fine particles using a wet medium mill to obtain a low-boiling solvent fine particle dispersion;
Adding a high boiling point solvent to the resulting low boiling point solvent fine particle dispersion;
Removing the low boiling point solvent from the fine particle dispersion to which the high boiling point solvent has been added until the content of the low boiling point solvent is 5% by mass or less to obtain a fine particle dispersion of the high boiling point solvent;
It is characterized by comprising.

近赤外線吸収ポリエステル樹脂組成物を製造するために用いられる本発明に係る近赤外線吸収微粒子分散液は、
近赤外線吸収微粒子と高沸点溶媒と低沸点溶媒を含有し、
上記近赤外線吸収微粒子が、一般式MyWOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In,Tl、Si、Ge、Sn、Pb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Reの内から選択される1種類以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で示されかつ六方晶の結晶構造を持つ複合タングステン酸化物微粒子で構成され、
上記高沸点溶媒が、沸点が195℃以上でかつ分子両末端に水酸基を有する室温で液状のジオール化合物で構成されると共に、
上記低沸点溶媒が、沸点が150℃以下の有機溶剤で構成され、かつ、その含有量が5質量%以下であることを特徴としている。
The near-infrared absorbing fine particle dispersion according to the present invention used to produce a near-infrared absorbing polyester resin composition is:
Contains near-infrared absorbing fine particles, a high boiling point solvent and a low boiling point solvent,
The near-infrared absorbing fine particles have the general formula MyWOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni). , Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, B, F, P, S, Se, Br, Te, Ti, Nb, V One or more elements selected from Mo, Ta, and Re, W is tungsten, O is oxygen, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) and Consists of composite tungsten oxide fine particles with hexagonal crystal structure,
The high-boiling solvent is composed of a diol compound that has a boiling point of 195 ° C. or higher and has hydroxyl groups at both molecular ends at room temperature,
The low boiling point solvent is composed of an organic solvent having a boiling point of 150 ° C. or less, and its content is 5% by mass or less.

そして、本発明に係る近赤外線吸収微粒子分散液は、分子両末端に水酸基を有する上記高沸点溶媒の作用により近赤外線吸収微粒子の凝集が防止され、分散液中において近赤外線吸収微粒子が均一に分散されているため、本発明に係る近赤外線吸収微粒子分散液とポリエステル樹脂を溶融混練して製造される近赤外線吸収ポリエステル樹脂組成物中においても近赤外線吸収微粒子の凝集は防止され、ポリエステル樹脂中において複合タングステン酸化物微粒子で構成される上記近赤外線吸収微粒子は均一に分散されている。   The near-infrared absorbing fine particle dispersion according to the present invention prevents the aggregation of near-infrared absorbing fine particles by the action of the high boiling point solvent having hydroxyl groups at both molecular ends, and the near-infrared absorbing fine particles are uniformly dispersed in the dispersion. Therefore, in the near-infrared absorbing polyester resin composition produced by melt-kneading the near-infrared absorbing fine particle dispersion and the polyester resin according to the present invention, the aggregation of the near-infrared absorbing fine particles is prevented, The near-infrared absorbing fine particles composed of composite tungsten oxide fine particles are uniformly dispersed.

従って、本発明に係る近赤外線吸収微粒子分散液が適用された近赤外線吸収ポリエステル樹脂組成物を成形して得られる近赤外線吸収ポリエステル樹脂成形体においても、複合タングステン酸化物微粒子で構成される近赤外線吸収微粒子がポリエステル樹脂中に均一に分散されているため、ヘイズ値が低く、可視光透過率が高く、かつ、近赤外線領域に強い吸収を有する近赤外線吸収ポリエステル樹脂成形体を提供できる効果を有する。   Therefore, the near infrared ray absorbing polyester resin molded body obtained by molding the near infrared ray absorbing polyester resin composition to which the near infrared ray absorbing fine particle dispersion according to the present invention is applied is also a near infrared ray composed of composite tungsten oxide fine particles. Since the absorbing fine particles are uniformly dispersed in the polyester resin, it has the effect of providing a near-infrared absorbing polyester resin molded article having a low haze value, high visible light transmittance, and strong absorption in the near-infrared region. .

更に、ポリエステル樹脂と溶融混練される本発明に係る近赤外線吸収微粒子分散液の溶媒が高沸点溶媒で構成され、溶融混練時における高沸点溶媒の気化が起こり難いため、混練ムラや近赤外線吸収ポリエステル樹脂組成物のヘイズ悪化を防止できる効果を有する。   Furthermore, since the solvent of the near-infrared absorbing fine particle dispersion liquid according to the present invention that is melt-kneaded with the polyester resin is composed of a high-boiling solvent, vaporization of the high-boiling solvent hardly occurs during melt-kneading. It has the effect of preventing haze deterioration of the resin composition.

以下、本発明の実施の形態について詳細を説明する。   Hereinafter, the embodiment of the present invention will be described in detail.

本発明の第一実施形態に係る近赤外線吸収微粒子分散液は、
近赤外線吸収微粒子と高沸点溶媒と低沸点溶媒を含有し、
上記近赤外線吸収微粒子が、一般式MyWOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In,Tl、Si、Ge、Sn、Pb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Reの内から選択される1種類以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で示されかつ六方晶の結晶構造を持つ複合タングステン酸化物微粒子で構成され、
上記高沸点溶媒が、沸点が195℃以上でかつ分子両末端に水酸基を有する室温で液状のジオール化合物で構成されると共に、
上記低沸点溶媒が、沸点が150℃以下の有機溶剤で構成され、かつ、その含有量が5質量%以下であることを特徴とし、
本発明の第二実施形態に係る近赤外線吸収微粒子分散液は、
近赤外線吸収微粒子と高沸点溶媒と低沸点溶媒および熱分解温度が200℃以上の分散剤を含有し、
上記近赤外線吸収微粒子が、一般式MyWOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In,Tl、Si、Ge、Sn、Pb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Reの内から選択される1種類以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で示されかつ六方晶の結晶構造を持つ複合タングステン酸化物微粒子で構成され、
上記高沸点溶媒が、沸点が195℃以上でかつ分子両末端に水酸基を有する室温で液状のジオール化合物で構成されると共に、
上記低沸点溶媒が、沸点が150℃以下の有機溶剤で構成され、かつ、その含有量が5質量%以下であることを特徴とする。
Near-infrared absorbing fine particle dispersion according to the first embodiment of the present invention,
Contains near-infrared absorbing fine particles, a high boiling point solvent and a low boiling point solvent,
The near-infrared absorbing fine particles have the general formula MyWOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni). , Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, B, F, P, S, Se, Br, Te, Ti, Nb, V One or more elements selected from Mo, Ta, and Re, W is tungsten, O is oxygen, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) and Consists of composite tungsten oxide fine particles with hexagonal crystal structure,
The high-boiling solvent is composed of a diol compound that has a boiling point of 195 ° C. or higher and has hydroxyl groups at both molecular ends at room temperature,
The low boiling point solvent is composed of an organic solvent having a boiling point of 150 ° C. or less, and its content is 5% by mass or less,
Near-infrared absorbing fine particle dispersion according to the second embodiment of the present invention,
Containing a near-infrared absorbing fine particle, a high boiling point solvent, a low boiling point solvent, and a dispersant having a thermal decomposition temperature of 200 ° C.
The near-infrared absorbing fine particles have the general formula MyWOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni). , Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, B, F, P, S, Se, Br, Te, Ti, Nb, V One or more elements selected from Mo, Ta, and Re, W is tungsten, O is oxygen, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) and Consists of composite tungsten oxide fine particles with hexagonal crystal structure,
The high-boiling solvent is composed of a diol compound that has a boiling point of 195 ° C. or higher and has hydroxyl groups at both molecular ends at room temperature,
The low boiling point solvent is composed of an organic solvent having a boiling point of 150 ° C. or less, and the content thereof is 5% by mass or less.

また、第一実施形態に係る近赤外線吸収微粒子分散液の製造方法は、
近赤外線吸収微粒子と低沸点溶媒を混合し、湿式媒体ミルを用いて近赤外線吸収微粒子を粉砕かつ分散処理して低沸点溶媒の微粒子分散液を得る工程と、
得られた低沸点溶媒の微粒子分散液に高沸点溶媒を添加する工程と、
高沸点溶媒が添加された上記微粒子分散液から低沸点溶媒の含有量が5質量%以下になるまで低沸点溶媒を除去して高沸点溶媒の微粒子分散液を得る工程、
を具備することを特徴とし、
第二実施形態に係る近赤外線吸収微粒子分散液の製造方法は、
近赤外線吸収微粒子と低沸点溶媒および分散剤を混合し、湿式媒体ミルを用いて近赤外線吸収微粒子を粉砕かつ分散処理して低沸点溶媒の微粒子分散液を得る工程と、
得られた低沸点溶媒の微粒子分散液に高沸点溶媒を添加する工程と、
高沸点溶媒が添加された上記微粒子分散液から低沸点溶媒の含有量が5質量%以下になるまで低沸点溶媒を除去して高沸点溶媒の微粒子分散液を得る工程、
を具備することを特徴とする。
Moreover, the manufacturing method of the near-infrared absorbing fine particle dispersion according to the first embodiment is as follows.
A step of mixing near-infrared absorbing fine particles and a low-boiling solvent, and pulverizing and dispersing the near-infrared absorbing fine particles using a wet medium mill to obtain a low-boiling solvent fine particle dispersion;
Adding a high boiling point solvent to the resulting low boiling point solvent fine particle dispersion;
Removing the low boiling point solvent from the fine particle dispersion to which the high boiling point solvent has been added until the content of the low boiling point solvent is 5% by mass or less to obtain a fine particle dispersion of the high boiling point solvent;
It is characterized by comprising,
The method for producing a near-infrared absorbing fine particle dispersion according to the second embodiment is as follows.
Mixing near-infrared absorbing fine particles with a low-boiling solvent and a dispersant, and pulverizing and dispersing the near-infrared absorbing fine particles using a wet medium mill to obtain a low-boiling solvent fine particle dispersion;
Adding a high boiling point solvent to the resulting low boiling point solvent fine particle dispersion;
Removing the low boiling point solvent from the fine particle dispersion to which the high boiling point solvent has been added until the content of the low boiling point solvent is 5% by mass or less to obtain a fine particle dispersion of the high boiling point solvent;
It is characterized by comprising.

以下、(1)近赤外線吸収微粒子分散液とその構成成分、すなわち(1-1)近赤外線吸収微粒子、(1-2)高沸点溶媒、(1-3)低沸点溶媒、(1-4)分散剤、(2)近赤外線吸収微粒子分散液の製造方法、(3)近赤外線吸収ポリエステル樹脂組成物、および、(4)近赤外線吸収ポリエステル樹脂成形体について順次説明する。   Hereinafter, (1) near-infrared absorbing fine particle dispersion and its constituent components, that is, (1-1) near-infrared absorbing fine particles, (1-2) high boiling point solvent, (1-3) low boiling point solvent, (1-4) A dispersing agent, (2) a method for producing a near-infrared absorbing fine particle dispersion, (3) a near-infrared absorbing polyester resin composition, and (4) a near-infrared absorbing polyester resin molded article will be described sequentially.

(1)近赤外線吸収微粒子分散液とその構成成分
本発明の第一実施形態に係る近赤外線吸収微粒子分散液は、上述したように近赤外線吸収微粒子と高沸点溶媒と低沸点溶媒を含有し、
上記近赤外線吸収微粒子が複合タングステン酸化物微粒子で構成され、
上記高沸点溶媒が、沸点が195℃以上でかつ分子両末端に水酸基を有する室温で液状のジオール化合物で構成されると共に、
上記低沸点溶媒が、沸点が150℃以下の有機溶剤で構成され、かつ、その含有量が5質量%以下であることを特徴とし、
また、本発明の第二実施形態に係る近赤外線吸収微粒子分散液は、上述したように近赤外線吸収微粒子と高沸点溶媒と低沸点溶媒および熱分解温度が200℃以上の分散剤を含有し、
上記近赤外線吸収微粒子が、複合タングステン酸化物微粒子で構成され、
上記高沸点溶媒が、沸点が195℃以上でかつ分子両末端に水酸基を有する室温で液状のジオール化合物で構成されると共に、
上記低沸点溶媒が、沸点が150℃以下の有機溶剤で構成され、かつ、その含有量が5質量%以下であることを特徴とする。
(1) Near-infrared absorbing fine particle dispersion and components thereof The near-infrared absorbing fine particle dispersion according to the first embodiment of the present invention contains near-infrared absorbing fine particles, a high boiling point solvent, and a low boiling point solvent as described above.
The near-infrared absorbing fine particles are composed of composite tungsten oxide fine particles,
The high-boiling solvent is composed of a diol compound that has a boiling point of 195 ° C. or higher and has hydroxyl groups at both molecular ends at room temperature,
The low boiling point solvent is composed of an organic solvent having a boiling point of 150 ° C. or less, and its content is 5% by mass or less,
The near-infrared absorbing fine particle dispersion according to the second embodiment of the present invention contains a near-infrared absorbing fine particle, a high-boiling solvent, a low-boiling solvent, and a dispersant having a thermal decomposition temperature of 200 ° C. or higher, as described above.
The near infrared absorbing fine particles are composed of composite tungsten oxide fine particles,
The high-boiling solvent is composed of a diol compound that has a boiling point of 195 ° C. or higher and has hydroxyl groups at both molecular ends at room temperature,
The low boiling point solvent is composed of an organic solvent having a boiling point of 150 ° C. or less, and the content thereof is 5% by mass or less.

尚、第二実施形態に係る近赤外線吸収微粒子分散液において、近赤外線吸収微粒子の質量をA、高沸点溶媒の質量をC、および、分散剤の質量をDとした場合、
0.1≦[D/A]≦10、および、0.5≦[(C+D)/A]≦50の範囲であることが好ましい。[D/A]の質量比が0.1以上および[(C+D)/A]の質量比が0.5以上あれば、近赤外線吸収微粒子を十分に分散することができるので、微粒子同士の凝集が発生せず、充分な光学特性が得られるからである。また、上記[D/A]の質量比が10以下および[(C+D)/A]の質量比が50以下であれば、近赤外線吸収微粒子分散液を用いて製造される近赤外線吸収ポリエステル樹脂成形体自体の機械特性(引張強度、曲げ強度、表面硬度)が大きく損なわれることがないからである。
In the near-infrared absorbing fine particle dispersion according to the second embodiment, when the mass of the near-infrared absorbing fine particles is A, the mass of the high-boiling solvent is C, and the mass of the dispersant is D,
It is preferable that 0.1 ≦ [D / A] ≦ 10 and 0.5 ≦ [(C + D) / A] ≦ 50. If the [D / A] mass ratio is 0.1 or more and the [(C + D) / A] mass ratio is 0.5 or more, the near-infrared absorbing fine particles can be sufficiently dispersed. This is because sufficient optical characteristics can be obtained. Further, if the mass ratio of [D / A] is 10 or less and the mass ratio of [(C + D) / A] is 50 or less, a near-infrared absorbing polyester resin molding produced using a near-infrared absorbing fine particle dispersion is used. This is because the mechanical properties (tensile strength, bending strength, surface hardness) of the body itself are not greatly impaired.

(1-1)近赤外線吸収微粒子
本発明に係る近赤外線吸収微粒子分散液は、近赤外線吸収(遮蔽)機能を有する近赤外線吸収微粒子(複合タングステン酸化物微粒子)を含有する。
(1-1) Near-infrared absorbing fine particles The near-infrared absorbing fine particle dispersion according to the present invention contains near-infrared absorbing fine particles (composite tungsten oxide fine particles) having a near-infrared absorbing (shielding) function.

複合タングステン酸化物微粒子は、近赤外線領域、特に波長1000nm付近の光を大きく吸収する。太陽光線は様々な波長から構成されているが、大きく紫外線、可視光線、赤外線に分類でき、中でも赤外線が約46%を占めていることが知られている。そして、上述したように複合タングステン酸化物微粒子は、近赤外線領域、特に波長1000nm付近の光を大きく吸収する。   The composite tungsten oxide fine particles greatly absorb light in the near infrared region, particularly in the vicinity of a wavelength of 1000 nm. Sun rays are composed of various wavelengths, but can be broadly classified into ultraviolet rays, visible rays, and infrared rays, and it is known that infrared rays account for about 46%. As described above, the composite tungsten oxide fine particles greatly absorb light in the near infrared region, particularly in the vicinity of a wavelength of 1000 nm.

ここで、近赤外線吸収性は、太陽光線の透過率、すなわち日射透過率で評価することができる。日射透過率が低い場合、近赤外領域の光をよく吸収していることから、近赤外線吸収性が優れていると判断できる。そして、吸収された近赤外線は熱に変換される。   Here, the near infrared absorptivity can be evaluated by the transmittance of sunlight, that is, the solar radiation transmittance. When the solar radiation transmittance is low, light in the near infrared region is well absorbed, so it can be determined that the near infrared absorptivity is excellent. And the absorbed near infrared rays are converted into heat.

[粒子径]
本発明の近赤外線吸収微粒子分散液中に分散した近赤外線吸収微粒子の「分散粒子径」は、上記微粒子における凝集体の径を含んでおり、凝集していない個々の近赤外線吸収微粒子がもつ粒子径の平均値である平均粒子径とは異なる。
[Particle size]
The “dispersed particle diameter” of the near-infrared absorbing fine particles dispersed in the near-infrared absorbing fine particle dispersion of the present invention includes the diameter of the aggregate in the fine particles, and the particles possessed by the individual non-aggregated near-infrared absorbing fine particles It is different from the average particle diameter which is the average value of the diameter.

上記平均粒子径は近赤外線吸収微粒子の電子顕微鏡像から算出される。すなわち、近赤外線吸収微粒子分散液とポリエステル樹脂を溶融混練して製造された近赤外線吸収ポリエステル樹脂組成物および近赤外線吸収ポリエステル樹脂成形体のポリエステル樹脂中に存在する近赤外線吸収微粒子(複合タングステン酸化物微粒子)の平均粒子径は、近赤外線吸収ポリエステル樹脂組成物または近赤外線吸収ポリエステル樹脂成形体を樹脂包埋した後、薄片化を行い、薄片化試料の透過型電子顕微鏡(TEM)像から、複合タングステン酸化物微粒子100個の粒子径を、画像処理装置を用いて測定し、その平均値を算出することで求めることができる。上記薄片化を行う断面加工には、ミクロトーム、クロスセクションポリッシャ、集束イオンビーム(FIB)装置等を用いることができる。尚、近赤外線吸収ポリエステル樹脂組成物および近赤外線吸収ポリエステル樹脂成形体のポリエステル樹脂中に存在する近赤外線吸収微粒子(複合タングステン酸化物微粒子)の平均粒子径とは、マトリックスである固体媒体(ポリエステル樹脂)中で分散している複合タングステン酸化物微粒子における粒子径の平均値である。   The average particle diameter is calculated from an electron microscope image of near-infrared absorbing fine particles. That is, a near-infrared-absorbing polyester resin composition produced by melt-kneading a near-infrared-absorbing fine particle dispersion and a polyester resin, and a near-infrared-absorbing fine particle (composite tungsten oxide) present in the polyester resin of the near-infrared-absorbing polyester resin molding The average particle size of the fine particles) is determined from the transmission electron microscope (TEM) image of the thinned sample after embedding the near-infrared absorbing polyester resin composition or the near-infrared absorbing polyester resin molded body with resin. The particle diameter of 100 tungsten oxide fine particles can be measured by using an image processing apparatus, and the average value can be calculated. A microtome, a cross section polisher, a focused ion beam (FIB) apparatus, or the like can be used for the cross-section processing for thinning. The average particle diameter of the near-infrared absorbing fine particles (composite tungsten oxide fine particles) present in the polyester resin of the near-infrared absorbing polyester resin composition and the near-infrared absorbing polyester resin molding is a solid medium (polyester resin) that is a matrix. ) Is the average value of the particle diameters of the composite tungsten oxide fine particles dispersed therein.

一方、上記「分散粒子径」は、後述する低沸点溶媒若しくは高沸点溶媒の微粒子分散液中に分散した近赤外線吸収微粒子(複合タングステン酸化物微粒子)の単体粒子や、当該複合タングステン酸化物微粒子が凝集した凝集粒子の粒子径を含んでいる。そして、当該分散粒子径は、市販されている種々の粒度分布計で測定することができる。例えば、当該複合タングステン酸化物微粒子分散液のサンプルを採取し、当該サンプルを動的光散乱法に基づく粒径測定装置(大塚電子株式会社製ELS−8000)を用いて測定することができる。   On the other hand, the above-mentioned “dispersed particle size” refers to a single particle of near-infrared absorbing fine particles (composite tungsten oxide fine particles) dispersed in a low-boiling solvent or high-boiling solvent fine particle dispersion described later, or the composite tungsten oxide fine particles. The particle diameter of the aggregated aggregated particles is included. And the said dispersion | distribution particle diameter can be measured with the various particle size distribution analyzer marketed. For example, a sample of the composite tungsten oxide fine particle dispersion can be collected, and the sample can be measured using a particle size measuring device (ELS-8000 manufactured by Otsuka Electronics Co., Ltd.) based on a dynamic light scattering method.

本発明に係る近赤外線吸収微粒子分散液の「分散粒子径」は、使用目的によって選宜選定することができるが、1nm以上800nm以下の範囲が好ましい。   The “dispersed particle size” of the near-infrared absorbing fine particle dispersion according to the present invention can be selected appropriately depending on the purpose of use, but is preferably in the range of 1 nm to 800 nm.

以下、複合タングステン酸化物微粒子の組成と製造方法について説明する。   Hereinafter, the composition and manufacturing method of the composite tungsten oxide fine particles will be described.

[組成]
本発明に係る近赤外線吸収微粒子の組成について説明する。
[composition]
The composition of the near-infrared absorbing fine particles according to the present invention will be described.

本発明に係る近赤外線吸収微粒子は、上述したように、一般式MyWOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In,Tl、Si、Ge、Sn、Pb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Reの内から選択される1種類以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で示されかつ六方晶の結晶構造を持つ複合タングステン酸化物微粒子で構成される。   As described above, the near-infrared absorbing fine particles according to the present invention have the general formula MyWOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru). , Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, B, F, P, S, Se, Br , Te, Ti, Nb, V, Mo, Ta, Re, one or more elements, W is tungsten, O is oxygen, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) and composed of composite tungsten oxide fine particles having a hexagonal crystal structure.

上記複合タングステン酸化物微粒子に含まれるM元素が、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Sn、Al、Cuから選択される少なくとも1種類以上を含むような近赤外線吸収微粒子が好ましい。   The M element contained in the composite tungsten oxide fine particles contains at least one selected from Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, Sn, Al, and Cu. Near infrared absorbing fine particles are preferred.

添加元素Mの添加量は、0.1≦y≦0.5が好ましく、更に好ましくはy=0.33付近である。これは六方晶の結晶構造から理論的に算出される値が0.33であり、この前後の添加量で好ましい光学特性が得られるからである。また、酸素の含有量は、2.2≦z≦3.0が好ましい。これは、MyWOzで表記される複合タングステン酸化物材料において、zの値が2.2以上であれば、当該複合タングステン酸化物微粒子中に目的外であるWO2の結晶相が現れるのを回避できると共に、材料の化学的安定性を得ることができるのに加え、z≦3.0においても、上記元素Mの添加による自由電子の供給があるためである。もっとも、光学特性の観点からより好ましくは、2.2≦z≦2.99、更に好ましくは、2.45≦z≦2.99である。 The amount of additive element M added is preferably 0.1 ≦ y ≦ 0.5, more preferably in the vicinity of y = 0.33. This is because the value theoretically calculated from the hexagonal crystal structure is 0.33, and preferable optical characteristics can be obtained with the addition amount before and after this. The oxygen content is preferably 2.2 ≦ z ≦ 3.0. This is because, in the composite tungsten oxide material expressed by MyWOz, if the value of z is 2.2 or more, it is possible to avoid the appearance of an unintended WO 2 crystal phase in the composite tungsten oxide fine particles. At the same time, the chemical stability of the material can be obtained, and also when z ≦ 3.0, free electrons are supplied by the addition of the element M. However, from the viewpoint of optical characteristics, 2.2 ≦ z ≦ 2.99 is more preferable, and 2.45 ≦ z ≦ 2.99 is more preferable.

当該複合タングステン酸化物材料の典型的な例としては、Cs0.33WO3、Rb0.33WO3、K0.33WO3、Ba0.33WO3、Ba0.33WO3等を挙げることができる。 Typical examples of the composite tungsten oxide material include Cs 0.33 WO 3 , Rb 0.33 WO 3 , K 0.33 WO 3 , Ba 0.33 WO 3 , Ba 0.33 WO 3 and the like.

[製造方法]
上記複合タングステン酸化物微粒子は、タングステン化合物を出発原料とし、タングステン化合物に元素Mを添加して得られる混合粉体を、不活性ガス雰囲気または還元性ガス雰囲気中で熱処理して得ることができる。
[Production method]
The composite tungsten oxide fine particles can be obtained by heat-treating, in an inert gas atmosphere or a reducing gas atmosphere, a mixed powder obtained by using a tungsten compound as a starting material and adding the element M to the tungsten compound.

タングステン化合物は、三酸化タングステン粉末、二酸化タングステン粉末、または酸化タングステンの水和物、または、六塩化タングステン粉末、またはタングステン酸アンモニウム粉末、または、六塩化タングステンをアルコール中に溶解させた後乾燥して得られるタングステン酸化物の水和物粉末、または六塩化タングステンをアルコール中に溶解させた後水を添加して沈殿させこれを乾燥して得られるタングステン化合物粉末、金属タングステン粉末、から選ばれたいずれか1種類以上であることが好ましい。   Tungsten compounds are dried after dissolving tungsten trioxide powder, tungsten dioxide powder, or tungsten oxide hydrate, tungsten hexachloride powder, ammonium tungstate powder, or tungsten hexachloride in alcohol. Any of tungsten oxide hydrate powder obtained, or tungsten compound powder obtained by dissolving tungsten hexachloride in alcohol and then adding water to precipitate and drying it, and metal tungsten powder. It is preferable that it is 1 type or more.

また、元素Mの化合物としては、元素Mの酸化物、水酸化物、硝酸塩、硫酸塩、シュウ酸塩、塩化物塩、炭酸塩から選ばれる1種以上を用いることが好ましい。   Further, as the compound of element M, it is preferable to use one or more selected from oxides, hydroxides, nitrates, sulfates, oxalates, chlorides, and carbonates of element M.

上述したタングステン化合物と上述した元素Mの化合物は、水や有機溶剤等の溶媒に溶解するものが好ましく、溶液の形で混合することにより、各成分が均一な混合溶液が得られる。そして、得られた混合溶液を乾燥することにより、タングステン化合物と元素Mの化合物との混合粉体が得られる。得られた混合粉体を不活性ガス雰囲気または還元性ガス雰囲気中で熱処理して、複合タングステン酸化物微粒子を含有する近赤外線吸収微粒子を得ることができる。   The above-described tungsten compound and the above-described compound of the element M are preferably those that dissolve in a solvent such as water or an organic solvent. By mixing in the form of a solution, a mixed solution in which each component is uniform can be obtained. And the mixed powder of the tungsten compound and the compound of the element M is obtained by drying the obtained mixed solution. The obtained mixed powder can be heat-treated in an inert gas atmosphere or a reducing gas atmosphere to obtain near-infrared absorbing fine particles containing composite tungsten oxide fine particles.

次に、不活性ガス雰囲気または還元性ガス雰囲気中における熱処理について説明する。まず、上述の方法で得られた混合粉体を還元性ガス雰囲気中にて100℃以上650℃以下で熱処理し、次いで不活性ガス雰囲気中にて650℃以上1200℃以下の温度で熱処理することがよい。このときの還元性ガスは、特に限定されないが、H2が好ましい。そして、還元性ガスとしてH2を用いる場合は、還元性雰囲気の組成として、例えば、Ar、N2等の不活性ガスにH2を体積比で0.1%以上を混合することが好ましく、更に好ましくは0.2%以上混合したものである。H2が体積比で0.1%以上であれば効率よく還元を進めることができる。 Next, heat treatment in an inert gas atmosphere or a reducing gas atmosphere will be described. First, the mixed powder obtained by the above method is heat-treated in a reducing gas atmosphere at 100 ° C. or more and 650 ° C. or less, and then heat-treated in an inert gas atmosphere at a temperature of 650 ° C. or more and 1200 ° C. or less. Is good. The reducing gas at this time is not particularly limited, but H 2 is preferable. Then, when H 2 is used as the reducing gas, the composition of the reducing atmosphere, for example, Ar, preferably mixed with 0.1% or more by volume of H 2 in an inert gas such as N 2, More preferably, 0.2% or more is mixed. If H 2 is 0.1% or more by volume, the reduction can proceed efficiently.

(1-2)高沸点溶媒
本発明の高沸点溶媒は、沸点が195℃以上でかつ分子両末端に水酸基を有する室温で液状の「ジオール化合物」で構成されている。
(1-2) High-boiling point solvent The high-boiling point solvent of the present invention is composed of a “diol compound” which is liquid at room temperature and has a boiling point of 195 ° C. or higher and hydroxyl groups at both molecular ends.

そして、本発明に係る近赤外線吸収微粒子分散液は、分子両末端に水酸基を有する上記高沸点溶媒の作用により近赤外線吸収微粒子の凝集が防止され、分散液中において近赤外線吸収微粒子が均一に分散されているため、本発明に係る近赤外線吸収微粒子分散液とポリエステル樹脂を溶融混練して製造される近赤外線吸収ポリエステル樹脂組成物中においても近赤外線吸収微粒子の凝集は防止され、ポリエステル樹脂中において複合タングステン酸化物微粒子で構成される上記近赤外線吸収微粒子は均一に分散されている。   The near-infrared absorbing fine particle dispersion according to the present invention prevents the aggregation of near-infrared absorbing fine particles by the action of the high boiling point solvent having hydroxyl groups at both molecular ends, and the near-infrared absorbing fine particles are uniformly dispersed in the dispersion. Therefore, in the near-infrared absorbing polyester resin composition produced by melt-kneading the near-infrared absorbing fine particle dispersion and the polyester resin according to the present invention, the aggregation of the near-infrared absorbing fine particles is prevented, The near-infrared absorbing fine particles composed of composite tungsten oxide fine particles are uniformly dispersed.

また、ポリエステル樹脂と溶融混練する本発明に係る近赤外線吸収微粒子分散液の溶媒は高沸点溶媒で構成され、溶融混練時における高沸点溶媒の気化が起こり難いため、混練ムラや近赤外線吸収ポリエステル樹脂組成物のヘイズ悪化を防止することができる。   Further, the solvent of the near-infrared absorbing fine particle dispersion according to the present invention that is melt-kneaded with the polyester resin is composed of a high-boiling solvent, and the high-boiling solvent hardly evaporates at the time of melt-kneading. The haze deterioration of the composition can be prevented.

尚、分子両末端に水酸基を有する高沸点溶媒により近赤外線吸収微粒子の凝集が防止される理由については、複合タングステン酸化物微粒子(近赤外線吸収微粒子)の表面に水酸基を介して「ジオール化合物」が吸着され、分散剤と類似した作用によるものと推察している。また、「室温で液状」の高沸点溶媒が適用される理由は、近赤外線吸収ポリエステル樹脂組成物の調製時における作業性を考慮したものである。   The reason why the high-infrared solvent having hydroxyl groups at both ends of the molecule prevents aggregation of the near-infrared absorbing fine particles is that the “diol compound” is formed on the surface of the composite tungsten oxide fine particles (near-infrared absorbing fine particles) via the hydroxyl groups. It is presumed that it is adsorbed and has an action similar to that of a dispersant. The reason why the high boiling point solvent that is “liquid at room temperature” is applied is because the workability at the time of preparing the near-infrared absorbing polyester resin composition is taken into consideration.

そして、沸点が195℃以上でかつ分子両末端に水酸基を有する室温で液状の「ジオール化合物」は、ポリエステルポリオール類、脂肪族ジオール類、脂環族ジオール類、および、芳香族ジオール類から選択される。   The “diol compound” having a boiling point of 195 ° C. or more and having hydroxyl groups at both molecular ends at room temperature is selected from polyester polyols, aliphatic diols, alicyclic diols, and aromatic diols. The

以下、具体例を説明する。   Specific examples will be described below.

(1-2-1)ポリエステルポリオール類
ポリエステルポリオール類は、ポリカルボン酸と多価アルコール(後述する脂肪族ジオール類等)を脱水縮合して製造される化合物であり、下記化学構造で示されるポリ[(3-メチル-1,5-ペンタンジオール)-alt-(アジピン酸)]が例示される。

Figure 2019206670
(1-2-1) Polyester polyols Polyester polyols are compounds produced by dehydration condensation of polycarboxylic acids and polyhydric alcohols (such as aliphatic diols described later), and are represented by the following chemical structure. [(3-Methyl-1,5-pentanediol) -alt- (adipic acid)] is exemplified.
Figure 2019206670

そして、上記ポリカルボン酸としては、例えば、シュウ酸、マロン酸(C344)、コハク酸(C464)、イタコン酸(メチレンコハク酸:C564)、グルタル酸(C584)、アジピン酸(C6104)、ピメリン酸(C7124)、スベリン酸(C8144)、アゼライン酸(C9164)、セバシン酸(C10184)、ドデカン二酸(C12224)、マレイン酸(C444、鎖状不飽和ジカルボン酸)、フマル酸(C444、鎖状不飽和ジカルボン酸)、シトラコン酸(C564、鎖状不飽和ジカルボン酸、メサコン酸のシス体)、イソフタル酸(C864)、テレフタル酸、無水コハク酸、無水マレイン酸等の脂肪族ジカルボン酸およびその無水物等が挙げられる。 Examples of the polycarboxylic acid include oxalic acid, malonic acid (C 3 H 4 O 4 ), succinic acid (C 4 H 6 O 4 ), and itaconic acid (methylene succinic acid: C 5 H 6 O 4 ). Glutaric acid (C 5 H 8 O 4 ), adipic acid (C 6 H 10 O 4 ), pimelic acid (C 7 H 12 O 4 ), suberic acid (C 8 H 14 O 4 ), azelaic acid (C 9) H 16 O 4 ), sebacic acid (C 10 H 18 O 4 ), dodecanedioic acid (C 12 H 22 O 4 ), maleic acid (C 4 H 4 O 4 , chain unsaturated dicarboxylic acid), fumaric acid ( C 4 H 4 O 4 , chain unsaturated dicarboxylic acid), citraconic acid (C 5 H 6 O 4 , chain unsaturated dicarboxylic acid, mesaconic acid cis isomer), isophthalic acid (C 8 H 6 O 4 ), Aliphatic dicarboxylic acids such as terephthalic acid, succinic anhydride and maleic anhydride, and anhydrides thereof.

上記ポリエステルポリオール類には、ポリ[(3-メチル-1,5-ペンタンジオール)-alt-(アジピン酸)]として、株式会社クラレ社製のクラレポリオールP510(Mn=500)、クラレポリオールP1010(Mn=1,000)、クラレポリオールP2010(Mn=2,000)、クラレポリオールP3010(Mn=3,000)、クラレポリオールP4010(Mn=4,000)、クラレポリオールP5010(Mn=5,000)、クラレポリオールP6010(Mn=6,000)等が挙げられ、ポリ[(3-メチル-1,5-ペンタンジオール)-alt-(セバシン酸)]として、クラレポリオールP2050(Mn=2,000)、クラレポリオールP3050(Mn=3,000)、クラレポリオールP4050(Mn=4,000)等が挙げられ、ポリ[(1,9-ノナンジオール)-alt-(アジピン酸)]として、クラレポリオールN2010(Mn=2,000)、クラレポリオールN4010(Mn=4,000)、クラレポリオールPNOA1010(Mn=1,000)、クラレポリオールPNOA2014(Mn=2,000)等が挙げられ、ポリ[(3-メチル-1,5-ペンタンジオール)-alt-(アジピン酸;イソフタル酸)]として、クラレポリオールP1012(Mn=1,000)、クラレポリオールP2012(Mn=2,000)等が挙げられ、ポリ[(3-メチル-1,5-ペンタンジオール)-alt-(アジピン酸;テレフタル酸)]として、クラレポリオールP1013(Mn=1,000)、クラレポリオールP2013(Mn=2,000)等が挙げられ、ポリ[(3-メチル-1,5-ペンタンジオール)-alt-(テレフタル酸)]として、クラレポリオールP1020(Mn=1,000)、クラレポリオールP2020(Mn=2,000)等が挙げられ、ポリ[(3-メチル-1,5-ペンタンジオール)-alt-(イソフタル酸)]として、クラレポリオールP530(Mn=500)、クラレポリオールP1030(Mn=1,000)、クラレポリオールP2030(Mn=2,000)等が挙げられる。   The polyester polyols include poly [(3-methyl-1,5-pentanediol) -alt- (adipic acid)] as Kuraray Polyol P510 (Mn = 500), Kuraray Polyol P1010 (manufactured by Kuraray Co., Ltd.). Mn = 1,000), Kuraray polyol P2010 (Mn = 2,000), Kuraray polyol P3010 (Mn = 3,000), Kuraray polyol P4010 (Mn = 4,000), Kuraray polyol P5010 (Mn = 5,000) Kuraray polyol P6010 (Mn = 6,000) and the like, and as poly [(3-methyl-1,5-pentanediol) -alt- (sebacic acid)], Kuraray polyol P2050 (Mn = 2,000) Kuraray polyol P3050 (Mn = 3,000), Kuraray polyol P4050 (Mn = 4, 00) and the like, and as poly [(1,9-nonanediol) -alt- (adipic acid)], Kuraray polyol N2010 (Mn = 2,000), Kuraray polyol N4010 (Mn = 4,000), Kuraray Polyol PNOA1010 (Mn = 1,000), Kuraray polyol PNOA2014 (Mn = 2,000) and the like, poly [(3-methyl-1,5-pentanediol) -alt- (adipic acid; isophthalic acid)] And Kuraray polyol P1012 (Mn = 1,000), Kuraray polyol P2012 (Mn = 2,000), and the like. Poly [(3-methyl-1,5-pentanediol) -alt- (adipic acid; terephthalic acid Acid)], and Kuraray polyol P1013 (Mn = 1,000), Kuraray polyol P2013 (Mn = 2,000), and the like. Examples of poly [(3-methyl-1,5-pentanediol) -alt- (terephthalic acid)] include Kuraray polyol P1020 (Mn = 1,000), Kuraray polyol P2020 (Mn = 2,000), and the like. As poly [(3-methyl-1,5-pentanediol) -alt- (isophthalic acid)], Kuraray polyol P530 (Mn = 500), Kuraray polyol P1030 (Mn = 1,000), Kuraray polyol P2030 ( Mn = 2,000).

また、伊藤製油社製のURIC H−62(Mn=430)、URIC Y−202(Mn=980)、URIC Y−332(Mn=910)、URIC AC−005(Mn=550)、URIC AC−006(Mn=650)等、また、ダイセル社製のPLACCEL 205(Mn=530)、協和発酵ケミカル社製のキョーワポール2000BA(Mn=2,000)、キョーワポール5000PA(Mn=5,000)等、DIC社製のポリライト(登録商標)OD−X−221(Mn=2,000)、ポリライトOD−X−2586(Mn=850)、ポリライトOD−X−2420(Mn=2,000)、ポリライトOD−X−2722(Mn=2,000)等、日立化成社製のファントール(登録商標) SV−298(Mn=450)、ファントール SV−208(Mn=480)、ファントール TA22−735A(Mn=1,400)、ファントール TA22−735C(Mn=1,450)等、アデカ社製のアデカニューエース(登録商標)F18−62(Mn=1,000)、アデカニューエースF7−67(Mn=2,000)、アデカニューエース YT−101(Mn=680)、アデカニューエースY9−10(Mn=1,000)等、川崎化成工業社製のMAXMOL(登録商標) RDK−133(Mn=360)、MAXMOL RDK−142(Mn=280)等、CRODA社製のプリプラスト(登録商標)1900(Mn=2,000)、プリプラスト1838(Mn=2,000)、プリプラスト3186(Mn=1,700)、プリプラスト3199(Mn=2,000)等が挙げられる。   Moreover, URIC H-62 (Mn = 430), URIC Y-202 (Mn = 980), URIC Y-332 (Mn = 910), URIC AC-005 (Mn = 550), URIC AC- manufactured by Ito Oil Co., Ltd. 006 (Mn = 650), etc. Also, Daicel Corporation's PLACEL 205 (Mn = 530), Kyowa Hakko Chemical Co., Ltd. Kyowapol 2000BA (Mn = 2,000), Kyowapol 5000PA (Mn = 5,000), etc. DIC polylite (registered trademark) OD-X-221 (Mn = 2,000), polylite OD-X-2586 (Mn = 850), polylite OD-X-2420 (Mn = 2,000), polylite OD-X-2722 (Mn = 2,000), etc. manufactured by Hitachi Chemical Co., Ltd. Phantor (registered trademark) SV-298 (Mn = 50), Phanthol SV-208 (Mn = 480), Phanthol TA22-735A (Mn = 1,400), Phanthol TA22-735C (Mn = 1,450), etc. Adeka New Ace (registered) Trademarks) F18-62 (Mn = 1,000), Adeka New Ace F7-67 (Mn = 2,000), Adeka New Ace YT-101 (Mn = 680), Adeka New Ace Y9-10 (Mn = 1, 000), etc., such as MAXMOL (registered trademark) RDK-133 (Mn = 360), MAXMOL RDK-142 (Mn = 280) manufactured by Kawasaki Kasei Kogyo Co., Ltd., and Preplast (registered trademark) 1900 (Mn = 2, manufactured by CRODA). 000), Preplast 1838 (Mn = 2,000), Preplast 3186 (Mn = 1,700), Prep And last 3199 (Mn = 2,000).

更に、豊国製油社製のHS2H−201AP(Mn=2,000)、HS2H−351A(Mn=3,500)、HS2H−451A(Mn=4,500)、HS2H−851A(Mn=8,500)、HS2H−179A(Mn=1,750)、HS2H−359T・CR(Mn=3,500)、HS2H−458T(Mn=4,500)、HS2F−131A(Mn=1,000)、HS2F−231AS(Mn=2,000)、HS2F−431A(Mn=3,500)、HS2F−136P(Mn=1,000)、HS2F−306P(Mn=3,000)、HS2E−581A(Mn=5,500)、HS2D−121A(Mn=1,000)、HS2F−237P(Mn=2,000)、HSポリオール1000(Mn=3,500)、HSポリオール2000(Mn=3,500)、HS2N−221A(Mn=2,000)、HS2N−521A(Mn=5,000)、HS2N−220S(Mn=2,000)、HS2N−226P(Mn=2,000)、HS2B−222A(Mn=2,000)、HOKOKUOL HT−110(Mn=1,000)、HOKOKUOL HT−210(Mn=2,000)、HOKOKUOL HT−12(Mn=2,000)、HOKOKUOL HT−250(Mn=2,500)、HOKOKUOL HT−310(Mn=3,000)、HOKOKUOL HT−40M(Mn=4,000)等が挙げられ、および、日立化成社製のテスラック(登録商標)2460(Mn=2,000)、テスラック2450(Mn=2,000)、テスラック2462(Mn=2,000)、テスラック2464(Mn=1,000)、テスラック2469(Mn=3,000)、テスラック2471(Mn=2,000)、テスラック2477(Mn=1,750)、テスラックTA22−558(Mn=2,000)、テスラックTA22−559(Mn=2,500)等が挙げられ、また、テスラック2455(Mn=2,000)、テスラック2459(Mn=2,000)、テスラック2461(Mn=2,000)等が挙げられる。   Furthermore, HS2H-201AP (Mn = 2,000), HS2H-351A (Mn = 3,500), HS2H-451A (Mn = 4,500), HS2H-851A (Mn = 8,500) manufactured by Toyokuni Oil Co., Ltd. HS2H-179A (Mn = 1,750), HS2H-359T.CR (Mn = 3,500), HS2H-458T (Mn = 4,500), HS2F-131A (Mn = 1,000), HS2F-231AS (Mn = 2,000), HS2F-431A (Mn = 3,500), HS2F-136P (Mn = 1,000), HS2F-306P (Mn = 3,000), HS2E-581A (Mn = 5,500) ), HS2D-121A (Mn = 1,000), HS2F-237P (Mn = 2,000), HS polyol 1000 (Mn = 3, 5) 0), HS polyol 2000 (Mn = 3,500), HS2N-221A (Mn = 2,000), HS2N-521A (Mn = 5,000), HS2N-220S (Mn = 2,000), HS2N-226P (Mn = 2,000), HS2B-222A (Mn = 2,000), HOKOKOOL HT-110 (Mn = 1,000), HOKOKOOL HT-210 (Mn = 2,000), HOKOKOOL HT-12 (Mn = 2,000), HOKOKOOL HT-250 (Mn = 2,500), HOKOKOOL HT-310 (Mn = 3,000), HOKOKOL HT-40M (Mn = 4,000) and the like. Teslack (registered trademark) 2460 (Mn = 2,000), Teslack 2450 (M = 2,000), Teslak 2462 (Mn = 2,000), Teslak 2464 (Mn = 1,000), Teslak 2469 (Mn = 3,000), Teslak 2471 (Mn = 2,000), Teslak 2477 (Mn) = 1,750), TESLAC TA22-558 (Mn = 2,000), TESLAC TA22-559 (Mn = 2,500), etc., and TESLAC 2455 (Mn = 2,000), TESLAC 2459 (Mn) = 2,000), Teslac 2461 (Mn = 2,000), and the like.

尚、ポリエステルポリオール類の分子量(Mn)は3,000以下が好ましい。ポリエステルポリオール類の分子量(Mn)が3,000を超えた場合、分子両末端の水酸基が相対的に少なくなるため近赤外線吸収微粒子を分散させる作用が低下するからである。   The molecular weight (Mn) of the polyester polyols is preferably 3,000 or less. This is because when the molecular weight (Mn) of the polyester polyol exceeds 3,000, the hydroxyl groups at both molecular ends are relatively decreased, and thus the action of dispersing near-infrared absorbing fine particles is reduced.

(1-2-2)脂肪族ジオール類
沸点が195℃以上でかつ分子両末端に水酸基を有する室温で液状の脂肪族ジオール類としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3−プロパンジオール、2−メチル−1,3−プロパンジオール、2−ブチル−2−エチル−1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、3−ブチル−3−エチル−1,5−ペンタンジオール、3−メチル−1,5−ペンタンジオール、2,4−ジエチル−1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、2−エチル−1,3−ヘキサンジオール、3,3’−ジメチロールヘプタン、1,8−オクタンジオール、2−メチル−1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール(C10222)、1,12−ドデカンジオール(C12262)、1,4−テトラコサンジオール(C24502)、1,6−テトラコサンジオール(C24502)、1,4−ヘキサコサンジオール(C26542)、1,6−オクタコサンジオール(C28582)等が例示される。
(1-2-2) Aliphatic diols Aliphatic diols having a boiling point of 195 ° C. or higher and having hydroxyl groups at both molecular ends at room temperature include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene. Glycol, dipropylene glycol, 1,3-propanediol, 2-methyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 1,3-butanediol, 1,4- Butanediol, 1,5-pentanediol, 3-butyl-3-ethyl-1,5-pentanediol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, neo Pentyl glycol, 1,6-hexanediol, 2-ethyl-1,3-hexanediol, 3,3′- Dimethylol heptane, 1,8-octanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol, 1,10-decanediol (C 10 H 22 O 2 ), 1,12-dodecanediol (C 12 H 26 O 2) , 1,4- tetramethyl co Sanji ol (C 24 H 50 O 2) , 1,6- tetramethyl co Sanji ol (C 24 H 50 O 2) , 1,4- hexamethylene co Sanji ol (C 26 H 54 O 2 ), 1,6-octacosanediol (C 28 H 58 O 2 ) and the like.

(1-2-3)脂環族ジオール類
沸点が195℃以上でかつ分子両末端に水酸基を有する室温で液状の脂環族ジオール類としては、1,2−シクロヘキサンジオール、1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノール,トリシクロデカンジエタノール、シクロペンタジエンジメタノール、2,5−ノルボルナンジオール、1,3−アダマンタンジオール、ダイマージオール等が例示される。
(1-2-3) Alicyclic diols 1,2-cyclohexanediol and 1,4-cyclohexane are liquid alicyclic diols having a boiling point of 195 ° C. or higher and having hydroxyl groups at both molecular ends at room temperature. Examples include diol, 1,4-cyclohexanedimethanol, tricyclodecane diethanol, cyclopentadiene dimethanol, 2,5-norbornanediol, 1,3-adamantanediol, dimer diol, and the like.

(1-2-4)芳香族ジオール類
沸点が195℃以上でかつ分子両末端に水酸基を有する室温で液状の芳香族ジオール類としては、o−,m−,p−ジヒドロキシベンゼン、1,2−インダンジオール、ベンゼン−1,2−ジメタノール(別名:フタリルアルコール)、ベンゼン−1,3−ジメタノール(別名:イソフタリルアルコール)、ベンゼン−1,4−ジメタノール(別名:テレフタリルアルコール)、1,3−ビス(2−ヒドロキシエトキシ)ベンゼン、1,2−ビス(2−ヒドロキシエトキシ)ベンゼン、1,4−ビス(2−ヒドロキシエトキシ)ベンゼン、(3,4−ジヒドロキシフェニル)メタノール(別名:プロトカテクイルアルコール)、(4−ヒドロキシ−3−メトキシフェニル)メタノール(別名:バニリルアルコール)、2−(4−ヒドロキシ−3−メトキシフェニル)エタン−1−オール(別名:ホモバニリルアルコール)、3−(4−ヒドロキシ−3−メトキシフェニル)プロパ−2−エン−1−オール(別名:コニフェリルアルコール)、3−(4−ヒドロキシ−3,5−ジメトキシフェニル)プロパ−2−エン−1−オール(別名:シナピルアルコール)、1,2−ジフェニルエタン−1,2−ジオール(別名:ヒドロベンゾイン)、ハイドロキノン、レゾルシン、4−クロロレゾルシン、4−メチルレゾルシン、5−メチルベンゼン−1,3−ジオール(別名:オルシノール)、2−メチルベンゼン−1,4−ジオール(別名:トルヒドロキノン)、2,3−ジメチルベンゼン−1,4−ジオール(別名:o−キシロヒドロキノン)、2,6−ジメチルベンゼン−1,4−ジオール(別名:m−キシロヒドロキノン)、2,5−ジメチルベンゼン−1,4−ジオール(別名:p−キシロヒドロキノン)、2,3,5−トリメチルベンゼン−1,4−ジオール(別名:プソイドクモヒドロキノン)、2−イソプロピル−5−メチルベンゼン−1,4−ジオール(別名:チモヒドロキノン)、2,3,5,6−テトラメチルベンゼン−1,4−ジオール(別名:ジュロヒドロキノン)、5−ペンチルベンゼン−1,3−ジオール(別名:オリベトール)、4,4’−メチレンジフェノール(別名:p,p−ビスフェノールF)、4,4’−(2−ノルボルニリデン)ジフェノール、4,4’−ジヒドロキシメチルビフェニル、4,4’−ビフェニルジオール、2,3−ジヒドロキシブフェニル、テトラニトロビフェニルジオール、5,5’−ジプロピル−ビフェニル−2,2’−ジオール、3,3’−ジアミノビフェニル−4,4’−ジオール、5,5’−テトラメチルビフェニル−4,4’−ジオール、ジフェニルシランジオール、(E)−4,4’−(ヘキサ−3−エン−3,4−ジイル)ジフェノール(別名:ジエチルスチルベストロール)、2,2−ビス(4−ヒドロキシフェニル)スルホン(別名:ビスフェノールS)、4,4’−イソプロピリデンフェノール、4,4’−ジヒドロキシジフェニルエーテル(別名:4,4'−オキシジフェノール)、2,2−ビス(4−ヒドロキシフェニル)プロパン(別名:ビスフェノールA)、1,3−ナフタレンジオール、1,5−ナフタレンジオール、1,7−ナフタレンジオール、1,7−ジヒドロキシメチルナフタレン、1,4−ジヒドロキシ−2−ナフタレンスルホン酸アンモニウム、9,9’−ビス(4−ヒドロキシフェニル)フルオレン、9,9’−ビス(3−メチル−4−ヒドロキシフェニル)フルオレン1,4−ジヒドロ−9,10−アントラセンジオール等が例示される。
(1-2-4) Aromatic diols Aromatic diols having a boiling point of 195 ° C. or higher and having hydroxyl groups at both ends of the molecule and liquid at room temperature include o-, m-, p-dihydroxybenzene, 1,2 -Indandiol, benzene-1,2-dimethanol (also known as phthalyl alcohol), benzene-1,3-dimethanol (also known as isophthalyl alcohol), benzene-1,4-dimethanol (also known as terephthalyl alcohol) ), 1,3-bis (2-hydroxyethoxy) benzene, 1,2-bis (2-hydroxyethoxy) benzene, 1,4-bis (2-hydroxyethoxy) benzene, (3,4-dihydroxyphenyl) methanol (Alias: protocatechuyl alcohol), (4-hydroxy-3-methoxyphenyl) methanol (alias: vanillyl alcohol) 2- (4-hydroxy-3-methoxyphenyl) ethane-1-ol (also known as homovanillyl alcohol), 3- (4-hydroxy-3-methoxyphenyl) prop-2-en-1-ol (also known as: Coniferyl alcohol), 3- (4-hydroxy-3,5-dimethoxyphenyl) prop-2-en-1-ol (also known as sinapyl alcohol), 1,2-diphenylethane-1,2-diol (also known as : Hydrobenzoin), hydroquinone, resorcin, 4-chlororesorcin, 4-methylresorcin, 5-methylbenzene-1,3-diol (also known as orcinol), 2-methylbenzene-1,4-diol (also known as toluhydroquinone) ), 2,3-dimethylbenzene-1,4-diol (also known as o-xylohydroquinone), 2,6-dimethyl Rubenzene-1,4-diol (alias: m-xylohydroquinone), 2,5-dimethylbenzene-1,4-diol (alias: p-xylohydroquinone), 2,3,5-trimethylbenzene-1,4- Diol (aka pseudo spider hydroquinone), 2-isopropyl-5-methylbenzene-1,4-diol (alias: thymohydroquinone), 2,3,5,6-tetramethylbenzene-1,4-diol (alias) : Durohydroquinone), 5-pentylbenzene-1,3-diol (alias: olivetol), 4,4'-methylenediphenol (alias: p, p-bisphenol F), 4,4 '-(2-norbornylidene) Diphenols, 4,4'-dihydroxymethylbiphenyl, 4,4'-biphenyldiol, 2,3-dihydroxybuphenyl, teto Nitrobiphenyldiol, 5,5′-dipropyl-biphenyl-2,2′-diol, 3,3′-diaminobiphenyl-4,4′-diol, 5,5′-tetramethylbiphenyl-4,4′-diol , Diphenylsilanediol, (E) -4,4 ′-(hex-3-ene-3,4-diyl) diphenol (also known as diethylstilbestrol), 2,2-bis (4-hydroxyphenyl) sulfone (Alias: bisphenol S), 4,4′-isopropylidenephenol, 4,4′-dihydroxydiphenyl ether (alias: 4,4′-oxydiphenol), 2,2-bis (4-hydroxyphenyl) propane (alias) : Bisphenol A), 1,3-naphthalenediol, 1,5-naphthalenediol, 1,7-naphthalenediol, 1,7-dihydride Xymethylnaphthalene, ammonium 1,4-dihydroxy-2-naphthalenesulfonate, 9,9′-bis (4-hydroxyphenyl) fluorene, 9,9′-bis (3-methyl-4-hydroxyphenyl) fluorene 1, Examples include 4-dihydro-9,10-anthracenediol.

(1-3)低沸点溶媒
本発明の低沸点溶媒は、沸点が150℃以下の有機溶媒で構成され、該低沸点溶媒としては、ケトン類、芳香族化合物、アルコール(エタノール、イソブチルアルコール等)類が好ましく、特に、メチルエチルケトン、メチルイソブチルケトン(MIBK)、キシレン、トルエンがより好ましい。
(1-3) Low-boiling point solvent The low-boiling point solvent of the present invention is composed of an organic solvent having a boiling point of 150 ° C. or less. Examples of the low-boiling point solvent include ketones, aromatic compounds, alcohols (ethanol, isobutyl alcohol, etc.). In particular, methyl ethyl ketone, methyl isobutyl ketone (MIBK), xylene, and toluene are more preferable.

(1-4)分散剤
本発明の分散剤は、近赤外線吸収微粒子(複合タングステン酸化物微粒子)の表面に吸着し、当該複合タングステン酸化物微粒子の凝集を防ぎ、低沸点溶媒若しくは高沸点溶媒の微粒子分散液中で、および、近赤外線吸収ポリエステル樹脂組成物および近赤外線吸収ポリエステル樹脂成形体のポリエステル樹脂中で、これ等の微粒子を均一に分散させる効果を発揮するものである。各種の高分子分散剤、界面活性剤、シランカップリング剤等が適用可能である。また、上記高沸点溶媒の種類によっては、高沸点溶媒それ自体が複合タングステン酸化物微粒子に対して分散剤として機能する。本発明で用いる分散剤は、ポリエステル樹脂として、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート等、溶融混練温度が高い樹脂を使用するため、熱分解温度が200℃以上である高耐熱性有することが好ましい。熱分解温度は、例えばTG-DTA等の熱分析を行うことで測定できる。このときの昇温速度は5℃/min〜20℃/minが適当であるが、昇温速度が穏やかであるほど、測定精度が向上する。また、測定雰囲気は窒素等の不活性ガスが好ましい。
(1-4) Dispersant The dispersant of the present invention is adsorbed on the surface of near-infrared absorbing fine particles (composite tungsten oxide fine particles) to prevent the aggregation of the composite tungsten oxide fine particles. The effect of uniformly dispersing these fine particles in the fine particle dispersion and in the near-infrared-absorbing polyester resin composition and the polyester resin of the near-infrared-absorbing polyester resin molded body is exhibited. Various polymer dispersants, surfactants, silane coupling agents and the like are applicable. Further, depending on the kind of the high boiling point solvent, the high boiling point solvent itself functions as a dispersant for the composite tungsten oxide fine particles. Since the dispersant used in the present invention uses a resin having a high melt-kneading temperature such as polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, etc. as the polyester resin, it may have a high heat resistance with a thermal decomposition temperature of 200 ° C. or higher. preferable. The thermal decomposition temperature can be measured, for example, by performing a thermal analysis such as TG-DTA. The heating rate at this time is suitably 5 ° C./min to 20 ° C./min, but the measurement accuracy improves as the heating rate is gentle. The measurement atmosphere is preferably an inert gas such as nitrogen.

そして、本発明で適用される分散剤は、特に限定されるものではなく、例えば高分子分散剤であることが好ましく、ポリエステル系、ポリエーテル系、ポリアクリル系、ポリウレタン系、ポリアミン系、ポリスチレン系、脂肪族系から選択されるいずれかの主鎖、あるいはポリエステル系、ポリエーテル系、ポリアクリル系、ポリウレタン系、ポリアミン系、ポリスチレン系、脂肪族系から選択される2種類以上の単位構造が共重合した主鎖を有する分散剤、等であることがより好ましい。   The dispersant applied in the present invention is not particularly limited, and is preferably a polymer dispersant, for example, polyester-based, polyether-based, polyacrylic-based, polyurethane-based, polyamine-based, polystyrene-based. , Any main chain selected from aliphatic, or two or more types of unit structures selected from polyester, polyether, polyacryl, polyurethane, polyamine, polystyrene, and aliphatic. More preferably, the dispersant has a polymerized main chain.

また、分散剤は、アミンを含有する基、水酸基、カルボキシル基、カルボキシル基を含有する基、スルホ基、りん酸基、または、エポキシ基から選択される1種類以上を官能基として有することが好ましい。特にアミンを含有する基を官能基として有するポリアクリル系が好ましい。上述のいずれかの官能基を有する分散剤は、複合タングステン酸化物微粒子の表面に吸着し、複合タングステン酸化物微粒子の凝集をより確実に防ぐことができる。従って、複合タングステン酸化物微粒子をより均一に分散させることができるため、好適に用いることができる。   The dispersant preferably has one or more types selected from an amine-containing group, a hydroxyl group, a carboxyl group, a group containing a carboxyl group, a sulfo group, a phosphate group, or an epoxy group as a functional group. . Particularly preferred is a polyacrylic group having an amine-containing group as a functional group. The dispersant having any one of the above-described functional groups is adsorbed on the surface of the composite tungsten oxide fine particles, and can more reliably prevent aggregation of the composite tungsten oxide fine particles. Therefore, the composite tungsten oxide fine particles can be more uniformly dispersed and can be preferably used.

このような分散剤には、日本ルーブリゾール株式会社製ソルスパース(登録商標)(以下同じ)9000、12000、17000、20000、21000、24000、26000、27000、28000、32000、35100、54000、ソルシックス250、エフカアディティブズ社製EFKA(登録商標)(以下同じ)4008、EFKA4009、EFKA4010、EFKA4015、EFKA4046、EFKA4047、EFKA4060、EFKA4080、EFKA7462、EFKA4020、EFKA4050、EFKA4055、EFKA4585、EFKA4400、EFKA4401、EFKA4402、EFKA4403、EFKA4300、EFKA4320、EFKA4330、EFKA4340、EFKA6220、EFKA6225、EFKA6700、EFKA6780、EFKA6782、EFKA8503、味の素ファインテクノ株式会社製アジスパー(登録商標)(以下同じ)PB821、アジスパーPB822、アジスパーPB824、アジスパーPB881、フェイメックスL−12、ビックケミー・ジャパン株式会社製DisperBYK(登録商標)(以下同じ)101、DisperBYK106、DisperBYK108、DisperBYK116、DisperBYK130、DisperBYK140、DisperBYK142、DisperBYK145、DisperBYK161、DisperBYK162、DisperBYK163、DisperBYK164、DisperBYK166、DisperBYK167、DisperBYK168DisperBYK171、DisperBYK180、DisperBYK182、DisperBYK2000、DisperBYK2001、DisperBYK2009、DisperBYK2013、DisperBYK2022、DisperBYK2025、DisperBYK2050、DisperBYK2155、DisperBYK2164、BYK350、BYK354、BYK355、BYK356、BYK358、BYK361、BYK381、BYK392、BYK394、BYK300、BYK3441、楠本化成株式会社製ディスパロン(登録商標)(以下同じ)1831、ディスパロン1850、ディスパロン1860、ディスパロンDA−400N、ディスパロンDA−703−50、ディスパロンDA−725、ディスパロンDA−705、ディスパロンDA−7301、ディスパロンDN−900、ディスパロンNS−5210、ディスパロンNVI−8514L、大塚化学株式会社製TERPLUS(登録商標) MD1000、D 1180、D 1130が挙げられる。   Examples of such a dispersant include Solsperse (registered trademark) manufactured by Nippon Lubrizol Corporation (hereinafter the same) 9000, 12000, 17000, 20000, 21000, 24000, 26000, 27000, 28000, 32000, 35100, 54000, Sol Six 250. EFKA Additives' EFKA (registered trademark) (hereinafter the same) 4008, EFKA4009, EFKA4010, EFKA4015, EFKA4046, EFKA4047, EFKA4060, EFKA4080, EFKA7462, EFKA4020, EFKA4050, EFKA4050, EFKA4050, EFKA4050 EFKA4300, EFKA4320, EFKA4330, EFKA4 40, EFKA6220, EFKA6225, EFKA6700, EFKA6780, EFKA6782 and EFKA8503 Company-made DisperBYK (registered trademark) (hereinafter the same) 101, DisperBYK106, DisperBYK108, DisperBYK116, DisperBYK130, DisperBYK140, DisperBYK142, DisperBYK145, DisperBY16161, DisperBY16161, DisperBY16161, DisperBY16161 166, DisperBYK167, DisperBYK168DisperBYK171, DisperBYK180, DisperBYK182, DisperBYK2000, DisperBYK2001, DisperBYK2009, DisperBYK2013, DisperBYK2022, DisperBYK2025, DisperBYK2050, DisperBYK2155, DisperBYK2164, BYK350, BYK354, BYK355, BYK356, BYK358, BYK361, BYK381, BYK392, BYK394, BYK300, BYK3441, Disparon (registered trademark) 1831, Disparon 1850, Disparon 1860, Disparon D manufactured by Enomoto Kasei Co., Ltd. A-400N, Disparon DA-703-50, Disparon DA-725, Disparon DA-705, Disparon DA-7301, Disparon DN-900, Disparon NS-5210, Disparon NVI-8514L, Terplus (registered trademark) manufactured by Otsuka Chemical Co., Ltd. ) MD1000, D1180, D1130.

上述したいずれかの官能基を有する分散剤として、例えば、アミンを含有する基を官能基として有するアクリル系分散剤、および、カルボキシル基を官能基として有するアクリル−スチレン共重合体系分散剤等が挙げられる。アミンを含有する基を官能基として有する分散剤は、分子量Mwが2000以上200000以下であることが好ましく、アミン価が5mgKOH/g以上100mgKOH/g以下であることが好ましい。一方、カルボキシル基を官能基として有する分散剤は、分子量Mwが2000以上200000以下であることが好ましく、酸価が1mgKOH/g以上100mgKOH/g以下であることが好ましい。   Examples of the dispersant having any one of the functional groups described above include an acrylic dispersant having an amine-containing group as a functional group, and an acrylic-styrene copolymer dispersant having a carboxyl group as a functional group. It is done. The dispersant having an amine-containing group as a functional group preferably has a molecular weight Mw of 2,000 to 200,000, and an amine value of 5 mgKOH / g to 100 mgKOH / g. On the other hand, the dispersant having a carboxyl group as a functional group preferably has a molecular weight Mw of 2,000 to 200,000 and an acid value of 1 mgKOH / g to 100 mgKOH / g.

(2)近赤外線吸収微粒子分散液の製造方法
上述したように第一実施形態に係る近赤外線吸収微粒子分散液の製造方法は、
近赤外線吸収微粒子と低沸点溶媒を混合し、湿式媒体ミルを用いて近赤外線吸収微粒子を粉砕かつ分散処理して低沸点溶媒の微粒子分散液を得る工程と、
得られた低沸点溶媒の微粒子分散液に高沸点溶媒を添加する工程と、
高沸点溶媒が添加された上記微粒子分散液から低沸点溶媒の含有量が5質量%以下になるまで低沸点溶媒を除去して高沸点溶媒の微粒子分散液を得る工程、
を具備することを特徴とし、
第二実施形態に係る近赤外線吸収微粒子分散液の製造方法は、
近赤外線吸収微粒子と低沸点溶媒および分散剤を混合し、湿式媒体ミルを用いて近赤外線吸収微粒子を粉砕かつ分散処理して低沸点溶媒の微粒子分散液を得る工程と、
得られた低沸点溶媒の微粒子分散液に高沸点溶媒を添加する工程と、
高沸点溶媒が添加された上記微粒子分散液から低沸点溶媒の含有量が5質量%以下になるまで低沸点溶媒を除去して高沸点溶媒の微粒子分散液を得る工程、
を具備することを特徴とする。
(2) Manufacturing method of near-infrared absorbing fine particle dispersion As described above , the manufacturing method of the near-infrared absorbing fine particle dispersion according to the first embodiment includes:
A step of mixing near-infrared absorbing fine particles and a low-boiling solvent, and pulverizing and dispersing the near-infrared absorbing fine particles using a wet medium mill to obtain a low-boiling solvent fine particle dispersion;
Adding a high boiling point solvent to the resulting low boiling point solvent fine particle dispersion;
Removing the low boiling point solvent from the fine particle dispersion to which the high boiling point solvent has been added until the content of the low boiling point solvent is 5% by mass or less to obtain a fine particle dispersion of the high boiling point solvent;
It is characterized by comprising,
The method for producing a near-infrared absorbing fine particle dispersion according to the second embodiment is as follows.
Mixing near-infrared absorbing fine particles with a low-boiling solvent and a dispersant, and pulverizing and dispersing the near-infrared absorbing fine particles using a wet medium mill to obtain a low-boiling solvent fine particle dispersion;
Adding a high boiling point solvent to the resulting low boiling point solvent fine particle dispersion;
Removing the low boiling point solvent from the fine particle dispersion to which the high boiling point solvent has been added until the content of the low boiling point solvent is 5% by mass or less to obtain a fine particle dispersion of the high boiling point solvent;
It is characterized by comprising.

尚、近赤外線吸収微粒子と低沸点溶媒、および、近赤外線吸収微粒子と低沸点溶媒と分散剤を混合し、湿式媒体ミルを用いて近赤外線吸収微粒子を粉砕かつ分散処理して低沸点溶媒の微粒子分散液を調製している理由は、高沸点溶媒中に近赤外線吸収微粒子を直接分散させる方法に較べて効率的に高沸点溶媒の微粒子分散液を調製できるからである。   The near-infrared absorbing fine particles and the low-boiling solvent, and the near-infrared absorbing fine particles, the low-boiling solvent, and the dispersant are mixed, and the near-infrared absorbing fine particles are pulverized and dispersed using a wet medium mill. The reason why the dispersion liquid is prepared is that the high-boiling solvent fine particle dispersion liquid can be efficiently prepared as compared with the method in which the near-infrared absorbing fine particles are directly dispersed in the high-boiling solvent.

以下に、第二実施形態に係る近赤外線吸収微粒子分散液について説明する。尚、この微粒子分散液は、近赤外線吸収微粒子(複合タングステン酸化物微粒子)、分散剤、低沸点溶媒、および、高沸点溶媒を含んでいる。   The near infrared absorbing fine particle dispersion according to the second embodiment will be described below. This fine particle dispersion contains near-infrared absorbing fine particles (composite tungsten oxide fine particles), a dispersant, a low boiling point solvent, and a high boiling point solvent.

[低沸点溶媒の微粒子分散液を調製する工程](粉砕・分散処理工程)
近赤外線吸収微粒子に低沸点溶媒と分散剤を添加してスラリーを調製し、かつ、湿式媒体ミルを用いてスラリー中の近赤外線吸収微粒子を粉砕かつ分散処理して低沸点溶媒の微粒子分散液を調製する。
[Process for preparing a fine particle dispersion of a low boiling point solvent] (grinding / dispersing process)
A slurry is prepared by adding a low-boiling solvent and a dispersant to the near-infrared absorbing fine particles, and the near-infrared absorbing fine particles in the slurry are pulverized and dispersed using a wet medium mill to prepare a low-boiling solvent fine particle dispersion. Prepare.

低沸点溶媒としては、上述したようにケトン類、芳香族化合物、アルコール(エタノール、イソブチルアルコール等)類が好ましく、特に、メチルエチルケトン、メチルイソブチルケトン(MIBK)、キシレン、トルエンがより好ましい。また、低沸点溶媒の添加量は特に限定されないが、低沸点溶媒と近赤外線吸収微粒子(複合タングステン酸化物微粒子)の質量比(低沸点溶媒/近赤外線吸収微粒子)が0.8以上4.0以下とすることが好ましい。これは、上記質量比(低沸点溶媒/近赤外線吸収微粒子)を0.8以上とすることで、微粒子分散液としての保存性を担保し易く、その後の高沸点溶媒と混合する際の作業性を高めることもできる。また、上記質量比を4.0以下とすることで、後述する近赤外線吸収ポリエステル樹脂組成物を製造する際に容易に低沸点溶媒を除去できる。   As described above, ketones, aromatic compounds, and alcohols (ethanol, isobutyl alcohol, etc.) are preferable as the low boiling point solvent, and methyl ethyl ketone, methyl isobutyl ketone (MIBK), xylene, and toluene are more preferable. The amount of the low-boiling solvent added is not particularly limited, but the mass ratio (low-boiling solvent / near-infrared absorbing fine particles) of the low-boiling solvent and the near-infrared absorbing fine particles (composite tungsten oxide fine particles) is 0.8 or more and 4.0. The following is preferable. This is because when the mass ratio (low boiling point solvent / near infrared absorbing fine particles) is 0.8 or more, it is easy to ensure storage stability as a fine particle dispersion, and workability when mixed with a high boiling point solvent thereafter. Can also be increased. Moreover, a low boiling-point solvent can be easily removed when manufacturing the near-infrared absorptive polyester resin composition mentioned later by making the said mass ratio into 4.0 or less.

「粉砕・分散処理」は、ビーズミル、ボールミル、サンドミル、超音波分散等の公知の湿式媒体ミルを用いればよい。   For the “pulverization / dispersion treatment”, a known wet medium mill such as a bead mill, a ball mill, a sand mill, or an ultrasonic dispersion may be used.

[高沸点溶媒の微粒子分散液を調製する工程](真空加熱混合工程)
前工程で得られた低沸点溶媒の微粒子分散液に高沸点溶媒を添加し、該微粒子分散液から低沸点溶媒を除去して高沸点溶媒の微粒子分散液を調製する。
[Process for preparing a high-boiling solvent fine particle dispersion] (vacuum heating mixing process)
A high boiling point solvent is added to the fine particle dispersion of the low boiling point solvent obtained in the previous step, and the low boiling point solvent is removed from the fine particle dispersion to prepare a fine particle dispersion of the high boiling point solvent.

高沸点溶媒の微粒子分散液中における低沸点溶媒の含有量は5質量%以下であることを要する。低沸点溶媒の含有量が5質量%を超えた場合、高沸点溶媒の微粒子分散液(すなわち、本発明に係る近赤外線吸収微粒子分散液)とポリエステル樹脂とを溶融混練する工程において低沸点溶媒が気化し、近赤外線吸収ポリエステル樹脂組成物のヘイズ値を悪化させる可能性があるからである。   The content of the low boiling point solvent in the fine particle dispersion of the high boiling point solvent is required to be 5% by mass or less. When the content of the low boiling point solvent exceeds 5% by mass, the low boiling point solvent is added in the step of melt-kneading the fine particle dispersion of the high boiling point solvent (that is, the near infrared absorption fine particle dispersion according to the present invention) and the polyester resin. It is because it may vaporize and deteriorate the haze value of the near-infrared absorbing polyester resin composition.

低沸点溶媒を除去する方法としては、真空加熱混合機等の公知の方法を用いることができる。   As a method for removing the low boiling point solvent, a known method such as a vacuum heating mixer can be used.

(3)近赤外線吸収ポリエステル樹脂組成物
本発明に係る近赤外線吸収微粒子分散液を適用した近赤外線吸収ポリエステル樹脂組成物は、上記近赤外線吸収微粒子分散液にポリエステル樹脂を配合し、溶融混練装置を用いて微粒子分散液とポリエステル樹脂を溶融混練して製造される。
(3) Near-infrared-absorbing polyester resin composition A near-infrared-absorbing polyester resin composition to which the near-infrared-absorbing fine particle dispersion according to the present invention is applied is obtained by blending a polyester resin with the near-infrared-absorbing fine particle dispersion, It is manufactured by melting and kneading a fine particle dispersion and a polyester resin.

尚、本発明に係る近赤外線吸収微粒子分散液とポリエステル樹脂を溶融混練する際、必要に応じて、紫外線吸収剤、カップリング剤、界面活性剤、帯電防止剤、樹脂改質剤等を添加してもよい。近赤外線吸収微粒子がポリエステル樹脂に均一に分散すればよく、溶融混練の方法としては、バンバリーミキサー、ニーダー、ロール、ニーダールーダー、一軸押出機、二軸押出機等の溶融混練装置を使用することができる。   In addition, when melt-kneading the near-infrared absorbing fine particle dispersion and the polyester resin according to the present invention, an ultraviolet absorber, a coupling agent, a surfactant, an antistatic agent, a resin modifier, etc. are added as necessary. May be. The near-infrared absorbing fine particles only need to be uniformly dispersed in the polyester resin, and a melt kneading apparatus such as a Banbury mixer, a kneader, a roll, a kneader ruder, a single screw extruder, or a twin screw extruder may be used as a melt kneading method. it can.

近赤外線吸収微粒子分散液と溶融混練されるポリエステル樹脂としては、可視光領域の光線透過率が高い透明なポリエステル樹脂であれば特に制限はなく、例えば、0.05mm厚の板状成形体としたときのJISR3106(1998)記載の可視光透過率が70%以上で、JISK7136(2000)記載のヘイズが3%以下のものであり、具体的には、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレートを挙げることができる。尚、近赤外線吸収ポリエステル樹脂組成物を成形して得られる近赤外線吸収ポリエステル樹脂成形体が各種建築物や車両の窓材等に適用されることを目的とした場合、透明性、耐衝撃性、耐候性等を考慮すると、上記ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレートが好ましく、また、フラットパネルディスプレイの近赤外線吸収フィルター等に適用されることを目的とした場合、汎用性等を考慮すると、ポリエチレンナフタレートがより好ましい。   The polyester resin that is melt kneaded with the near-infrared absorbing fine particle dispersion is not particularly limited as long as it is a transparent polyester resin having a high light transmittance in the visible light region. For example, a 0.05 mm thick plate-shaped molded body is used. When the visible light transmittance described in JIS R3106 (1998) is 70% or more and the haze described in JIS K7136 (2000) is 3% or less, specifically, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate is used. Can be mentioned. In addition, when the near-infrared-absorbing polyester resin molded body obtained by molding the near-infrared-absorbing polyester resin composition is intended to be applied to various building or vehicle window materials, etc., transparency, impact resistance, In consideration of weather resistance and the like, the above polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate are preferable, and when it is intended to be applied to a near infrared absorption filter of a flat panel display, considering versatility, Polyethylene naphthalate is more preferred.

尚、第二実施形態に係る近赤外線吸収微粒子分散液を適用した近赤外線吸収ポリエステル樹脂組成物においては、近赤外線吸収微粒子の質量をA、ポリエステル樹脂の質量をB、高沸点溶媒の質量をC、および、分散剤の質量をDとした場合、
5≦[(B+C+D)/A]≦1000の条件を満たすことが好ましい。当該質量比が5以上であれば、近赤外線吸収ポリエステル樹脂組成物を用いて製造される近赤外線吸収ポリエステル樹脂成形体自体の機械特性(引張強度、曲げ強度、表面硬度)が大きく損なわれることがなく、当該質量比が1000以下であれば、十分な近赤外線吸収特性が得られるため十分な近赤外線遮蔽特性も得られるからである。
In the near-infrared absorbing polyester resin composition to which the near-infrared absorbing fine particle dispersion according to the second embodiment is applied, the mass of the near-infrared absorbing fine particles is A, the mass of the polyester resin is B, and the mass of the high-boiling solvent is C. And when the mass of the dispersant is D,
It is preferable to satisfy the condition of 5 ≦ [(B + C + D) / A] ≦ 1000. If the mass ratio is 5 or more, the mechanical properties (tensile strength, bending strength, surface hardness) of the near-infrared-absorbing polyester resin molded body produced using the near-infrared-absorbing polyester resin composition may be greatly impaired. If the mass ratio is 1000 or less, sufficient near-infrared absorption characteristics can be obtained, and sufficient near-infrared shielding characteristics can also be obtained.

また、近赤外線吸収ポリエステル樹脂組成物のポリエステル樹脂中に存在する近赤外線吸収微粒子(複合タングステン酸化物微粒子)の粒子径は、その使用目的によって選宜選定することができる。例えば、上記ポリエステル樹脂組成物を成形して得られる近赤外線吸収ポリエステル樹脂成形体が、可視光領域の透明性を重視する用途に使用される場合には、近赤外線吸収微粒子による散乱の低減を重視して、当該近赤外線吸収微粒子の平均粒子径は、100nm以下、好ましくは50nm以下がよい。平均粒子径が50nm以下になると、微粒子のミー散乱およびレイリー散乱による光の散乱が十分に制御され、可視光波長領域の視認性を保持し、同時に効率よく透明性を保持することができるからである。光の散乱を回避する観点からは、平均粒子径が小さい方が好ましく、平均粒子径が1nm以上であれば工業的な製造は容易である。   Moreover, the particle diameter of the near-infrared-absorbing fine particles (composite tungsten oxide fine particles) present in the polyester resin of the near-infrared-absorbing polyester resin composition can be appropriately selected depending on the purpose of use. For example, when the near-infrared absorbing polyester resin molded body obtained by molding the polyester resin composition is used for applications that place importance on transparency in the visible light region, it is important to reduce scattering by near-infrared absorbing fine particles. The average particle diameter of the near-infrared absorbing fine particles is 100 nm or less, preferably 50 nm or less. When the average particle size is 50 nm or less, light scattering due to Mie scattering and Rayleigh scattering of fine particles is sufficiently controlled, and visibility in the visible light wavelength region can be maintained, and at the same time, transparency can be efficiently maintained. is there. From the viewpoint of avoiding light scattering, it is preferable that the average particle size is small. If the average particle size is 1 nm or more, industrial production is easy.

尚、本発明に係る近赤外線吸収微粒子分散液が適用された近赤外線吸収ポリエステル樹脂組成物に一般的な添加剤を配合することも可能である。例えば、必要に応じて任意の色調を与えるため、アゾ系染料、シアニン系染料、キノリン系染料、ペリレン系染料、カーボンブラック等、熱可塑性樹脂の着色に一般的に利用されている染料、顔料の有効発現量を上記樹脂組成物に配合してもよい。また、ヒンダードフェノール系、りん系等の安定剤、離形剤、ヒドロキシベンゾフェノン系、サリチル酸系、HALS系、トリアゾール系、トリアジン系等の紫外線吸収剤、カップリング剤、界面活性剤、および、帯電防止剤等についてその有効発現量を上記樹脂組成物に配合してもよい。   In addition, it is also possible to mix | blend a general additive with the near-infrared absorptive polyester resin composition to which the near-infrared absorptive fine particle dispersion according to the present invention is applied. For example, azo dyes, cyanine dyes, quinoline dyes, perylene dyes, carbon black, and other dyes and pigments that are commonly used for coloring thermoplastic resins to give an arbitrary color tone as necessary. You may mix | blend an effective expression level with the said resin composition. Also, stabilizers such as hindered phenols and phosphorus, mold release agents, hydroxybenzophenone, salicylic acid, HALS, triazole, triazine and other UV absorbers, coupling agents, surfactants, and charging You may mix | blend the effective expression level with respect to an inhibitor etc. in the said resin composition.

また、本発明に係る近赤外線吸収微粒子分散液が適用された近赤外線吸収ポリエステル樹脂組成物について、ベント式一軸若しくは二軸の押出機で混練し、ペレット状に加工することで、近赤外線吸収ポリエステル樹脂成形体用のマスターバッチとしてもよく、上述した一般的な添加剤をマスターバッチに配合することも可能である。   The near-infrared-absorbing polyester resin composition to which the near-infrared-absorbing fine particle dispersion according to the present invention is applied is kneaded with a vent-type uniaxial or biaxial extruder and processed into a pellet, thereby obtaining a near-infrared absorbing polyester. It is good also as a masterbatch for resin moldings, and it is also possible to mix | blend the general additive mentioned above with a masterbatch.

(4)近赤外線吸収ポリエステル樹脂成形体
本発明に係る近赤外線吸収微粒子分散液が適用された近赤外線吸収ポリエステル樹脂成形体は、該成形体を構成するポリエステル樹脂の可視光領域における光線透過率が高く透明性に優れていることから、建造物、自動車、電車、航空機等の開口部に使用される窓材(貼り付けフィルムを含む)、および、フラットパネルディスプレイの近赤外線吸収フィルター等に用いられる。
(4) Near-infrared-absorbing polyester resin molded body The near-infrared-absorbing polyester resin molded body to which the near-infrared-absorbing fine particle dispersion according to the present invention is applied has a light transmittance in the visible light region of the polyester resin constituting the molded body. Because it is highly transparent and excellent in transparency, it is used for window materials (including pasting films) used for openings in buildings, automobiles, trains, aircraft, etc., and near infrared absorption filters for flat panel displays. .

上記近赤外線吸収ポリエステル樹脂成形体は、近赤外線吸収ポリエステル樹脂組成物を所定の形状に成形することによって得られる。また、近赤外線吸収ポリエステル樹脂組成物のマスターバッチを、該マスターバッチに含まれるポリエステル樹脂と同種のポリエステル樹脂または相溶性を有する異種の熱可塑性樹脂とを混合し、希釈・混練した後、所定の形状に成形することによって得られる。   The near-infrared-absorbing polyester resin molded body can be obtained by molding a near-infrared-absorbing polyester resin composition into a predetermined shape. Further, after mixing, diluting and kneading the master batch of the near-infrared absorbing polyester resin composition with the polyester resin contained in the master batch and the same type of polyester resin or a different kind of compatible thermoplastic resin, It is obtained by molding into a shape.

近赤外線吸収ポリエステル樹脂成形体の形状は、任意の形状に成形可能であり、平面状および曲面状に成形することが可能である。また、近赤外線吸収ポリエステル樹脂成形体の厚さについては、板状からフィルム状まで必要に応じて任意に調整可能である。更に、平面状に形成した樹脂シートは、後加工によって球面状等の任意の形状に成形することができる。また、上記近赤外線吸収ポリエステル樹脂成形体の成形方法としては、射出成形、押出成形、圧縮成形または回転成形等の任意の方法を例示できる。特に、射出成形により成形品を得る方法と、押出成形により成形品を得る方法が好適に採用される。   The shape of the near-infrared absorbing polyester resin molding can be molded into any shape, and can be molded into a flat shape and a curved shape. Moreover, about the thickness of a near-infrared absorptive polyester resin molding, it can adjust arbitrarily as needed from plate shape to a film form. Furthermore, the resin sheet formed in a planar shape can be formed into an arbitrary shape such as a spherical shape by post-processing. Moreover, as a shaping | molding method of the said near-infrared absorption polyester resin molded object, arbitrary methods, such as injection molding, extrusion molding, compression molding, or rotational molding, can be illustrated. In particular, a method of obtaining a molded product by injection molding and a method of obtaining a molded product by extrusion molding are preferably employed.

押出成形により板状、フィルム状の成形品を得るには、Tダイ等の押出機を用いて押出した溶融樹脂組成物を冷却ロールで冷却しながら引き取る方法により製造される。また、必要に応じて延伸加工し、成形品の厚みを調製することも可能である。押出成形により得られた板状品は、アーケードやカーポート等の建造物用に好適に使用され、フィルム状の成形品は、窓ガラスの貼り付け用、フラットパネルディスプレイの近赤外線吸収フィルター用に好適に使用される。   In order to obtain a plate-like or film-like molded product by extrusion molding, it is produced by a method in which a molten resin composition extruded using an extruder such as a T-die is taken out while being cooled by a cooling roll. Moreover, it is also possible to prepare the thickness of a molded article by extending | stretching as needed. The plate-like product obtained by extrusion is suitably used for buildings such as arcades and carports, and the film-like product is used for attaching window glass and for near-infrared absorption filters for flat panel displays. Preferably used.

そして、本発明に係る近赤外線吸収微粒子分散液が適用された近赤外線吸収ポリエステル樹脂成形体においては、上記分散液に含まれる高沸点溶媒の作用により近赤外線吸収微粒子の凝集が防止されるため、ポリエステル樹脂中に近赤外線吸収微粒子が均一に分散されている。このため、可視光領域における光線透過率が高くなるように上記樹脂成形体の厚さを50μm(0.05mm)以下に設定しても、ポリエステル樹脂中に均一に分散された近赤外線吸収微粒子により近赤外線が吸収(遮蔽)され、かつ、ヘイズ値も2.0%以下に調整することが可能となる。   And in the near-infrared absorbing polyester resin molding to which the near-infrared absorbing fine particle dispersion according to the present invention is applied, the aggregation of the near-infrared absorbing fine particles is prevented by the action of the high boiling point solvent contained in the dispersion, Near infrared absorbing fine particles are uniformly dispersed in the polyester resin. For this reason, even if the thickness of the resin molded body is set to 50 μm (0.05 mm) or less so that the light transmittance in the visible light region becomes high, the near-infrared absorbing fine particles uniformly dispersed in the polyester resin Near infrared rays are absorbed (shielded), and the haze value can be adjusted to 2.0% or less.

また、近赤外線吸収ポリエステル樹脂成形体は、それ自体のみを、上述した建造物、自動車、電車、航空機等の構造材に使用することができるほか、無機ガラス、樹脂ガラス、樹脂フィルム等の他の透明成形体に任意の方法で積層し、一体化した近赤外線吸収ポリエステル樹脂積層体として構造材に使用することもできる。例えば、予めフィルム状に成形した近赤外線吸収ポリエステル樹脂成形体を、熱ラミネート法により無機ガラスに積層一体化することで、近赤外線遮蔽機能、飛散防止機能を有する近赤外線吸収ポリエステル樹脂積層体を得ることができる。また、熱ラミネート法、共押出法、プレス成形法、射出成形法等により近赤外線吸収ポリエステル樹脂成形体の成形と同時に、他の透明成形体に積層一体化することで、近赤外線吸収ポリエステル樹脂積層体を得ることも可能である。上記近赤外線吸収ポリエステル樹脂積層体は、相互の成形体の持つ利点を有効に発揮させつつ、相互の欠点を補完することで、より有用な構造材として使用することができる。   In addition, the near-infrared-absorbing polyester resin molded body can be used only for structural materials such as the above-mentioned buildings, automobiles, trains, airplanes, and other materials such as inorganic glass, resin glass, and resin film. It can also be used for a structural material as a near-infrared-absorbing polyester resin laminate that is laminated on a transparent molded body by any method and integrated. For example, a near-infrared absorbing polyester resin laminate having a near-infrared shielding function and a scattering prevention function is obtained by laminating and integrating a near-infrared absorbing polyester resin molded body previously formed into a film shape onto inorganic glass by a thermal laminating method. be able to. Also, near-infrared-absorbing polyester resin laminates by laminating and integrating with other transparent molded bodies simultaneously with molding of near-infrared-absorbing polyester resin molded bodies by thermal lamination, co-extrusion, press molding, injection molding, etc. It is also possible to get a body. The near-infrared-absorbing polyester resin laminate can be used as a more useful structural material by complementing each other's drawbacks while effectively exhibiting the advantages of each molded body.

また、上記近赤外線吸収ポリエステル樹脂成形体は、当該成形体の表面に近赤外線吸収能を有する微粒子が含まれる塗料を塗布し、近赤外線吸収膜を形成することで近赤外線吸収能を調整することも可能である。近赤外線吸収能を有する微粒子として、六ホウ化物微粒子、アンチモンドープ酸化錫微粒子等が挙げられる。例えば、六ホウ化ランタン微粒子分散液をUV硬化樹脂と混合して得られた塗布液を、上記近赤外線吸収ポリエステル樹脂成形体に塗布し、その後硬化させて近赤外線吸収膜を形成することにより近赤外線吸収能を更に向上させることが可能となる。   In addition, the near-infrared-absorbing polyester resin molded body is applied with a paint containing fine particles having near-infrared absorbing ability on the surface of the molded body, and the near-infrared absorbing ability is adjusted by forming a near-infrared absorbing film. Is also possible. Examples of the fine particles having near infrared absorption ability include hexaboride fine particles and antimony-doped tin oxide fine particles. For example, a coating solution obtained by mixing a lanthanum hexaboride fine particle dispersion with a UV curable resin is applied to the near-infrared-absorbing polyester resin molding, and then cured to form a near-infrared-absorbing film. It is possible to further improve the infrared absorption ability.

以下に、本発明の実施例を比較例と共に具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。   Examples of the present invention will be specifically described below together with comparative examples. However, the present invention is not limited to the following examples.

尚、各実施例において、分散剤の熱分解温度は、熱重量示差熱同時測定装置(ブルカーAX社製、TG-DTA2020SR)を用いて、窒素雰囲気下、昇温速度5℃/minで室温から500℃まで重量変化を測定した。   In each example, the thermal decomposition temperature of the dispersing agent was measured from room temperature at a heating rate of 5 ° C./min in a nitrogen atmosphere using a thermogravimetric differential thermal simultaneous measurement apparatus (Bruker AX, TG-DTA2020SR). The weight change was measured up to 500 ° C.

また、複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)に含まれる低沸点溶媒の残留量は、電子水分計(島津製作所社製「MOC63u」)を用い、140℃に10分間保持した際の重量変化を測定することで得た。   The residual amount of the low-boiling solvent contained in the composite tungsten oxide fine particle dispersion (high-boiling solvent fine particle dispersion) is maintained at 140 ° C. for 10 minutes using an electronic moisture meter (“MOC63u” manufactured by Shimadzu Corporation). It was obtained by measuring the weight change at the time.

また、近赤外線吸収ポリエステル樹脂成形体の可視光透過率と日射透過率は、日立製作所(株)社製の「分光光度計U−4100」を用い、JIS R 3106:1988に基づいて測定した。この日射透過率は近赤外線吸収(遮蔽)性能を示す指標である。   Moreover, the visible light transmittance and the solar radiation transmittance of the near-infrared-absorbing polyester resin molded body were measured based on JIS R 3106: 1988 using “Spectrophotometer U-4100” manufactured by Hitachi, Ltd. This solar radiation transmittance is an index indicating near infrared absorption (shielding) performance.

また、近赤外線吸収ポリエステル樹脂成形体のヘイズ値は、村上色彩技術研究所(株)社製「HR−150W」を用い、JIS K 7136:2000に基づいて測定した。   Moreover, the haze value of the near-infrared absorbing polyester resin molding was measured based on JIS K 7136: 2000 using “HR-150W” manufactured by Murakami Color Research Laboratory Co., Ltd.

また、近赤外線吸収ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径は、近赤外線吸収ポリエステル樹脂成形体を樹脂包埋した後、薄片化を行い、得られた薄片サンプルをTEM観察に供して解析した。装置はJEOL社製「JEM−1400Plus」を用い、倍率10万倍〜15万倍での観察において、100個の微粒子について粒子径を測定して平均粒子径を算出した。   In addition, the average particle diameter of the near-infrared absorbing fine particles present in the near-infrared-absorbing polyester resin molded product is thinned after embedding the near-infrared-absorbing polyester resin molded product, and the obtained flake sample is observed by TEM And analyzed. The apparatus used “JEM-1400 Plus” manufactured by JEOL Co., Ltd. In observation at a magnification of 100,000 to 150,000 times, the particle diameter was measured for 100 fine particles, and the average particle diameter was calculated.

[実施例1]
(1)複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)の調製
複合タングステン酸化物微粒子(Cs0.33WO3:以下、CWOと略称する)20質量%、アクリル系高分子分散剤[アクリル主鎖と官能基としてアミノ基を有し、アミン価29mgKOH/g、熱分解温度280℃の分散剤(以下、分散剤aと略称する)]20質量%、低沸点溶媒としてメチルイソブチルケトン(MIBK)60質量%を秤量した。これ等を、0.3mmφZrO2ビーズを入れたペイントシェーカーに装填し、20時間粉砕・分散処理することにより複合タングステン酸化物微粒子分散液(低沸点溶媒の微粒子分散液)を調製した。
[Example 1]
(1) Preparation of Composite Tungsten Oxide Fine Particle Dispersion (Particulate Dispersion of High Boiling Solvent) 20% by mass of composite tungsten oxide fine particles (Cs 0.33 WO 3 : hereinafter referred to as CWO), acrylic polymer dispersant Dispersant having an acrylic main chain and an amino group as a functional group, an amine value of 29 mg KOH / g, and a thermal decomposition temperature of 280 ° C. (hereinafter referred to as “dispersant a”)] 20 mass%, methyl isobutyl ketone ( MIBK) 60% by mass was weighed. These were loaded into a paint shaker containing 0.3 mmφZrO 2 beads, and pulverized and dispersed for 20 hours to prepare a composite tungsten oxide fine particle dispersion (low-boiling solvent fine particle dispersion).

得られた複合タングステン酸化物微粒子分散液(低沸点溶媒の微粒子分散液)に、該微粒子分散液と下記高沸点溶媒の比率が5:3となるように高沸点溶媒を加えた後、真空加熱混合機を用いて低沸点溶媒(MIBK)を除去し、複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)を得た。高沸点溶媒は、ポリエステルポリオール[エステル基を2個有し、分子量500の(株)クラレ社製 商品名「クラレポリオール」]を使用した。また、調製された複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)中における低沸点溶媒(MIBK)の残留量は2質量%であった。   A high-boiling solvent is added to the obtained composite tungsten oxide fine particle dispersion (low-boiling solvent fine particle dispersion) so that the ratio of the fine particle dispersion to the following high-boiling solvent is 5: 3, followed by vacuum heating. The low boiling point solvent (MIBK) was removed using a mixer to obtain a composite tungsten oxide fine particle dispersion (a fine particle dispersion of a high boiling point solvent). As the high boiling point solvent, polyester polyol [trade name “Kuraray polyol” manufactured by Kuraray Co., Ltd., having two ester groups and having a molecular weight of 500] was used. Further, the residual amount of the low boiling point solvent (MIBK) in the prepared composite tungsten oxide fine particle dispersion (fine particle dispersion of high boiling point solvent) was 2% by mass.

尚、分散剤の質量をD、複合タングステン酸化物微粒子の質量をA、高沸点溶媒の質量をCとした場合、D/A、および、(C+D)/Aを表1に示す。   Table 1 shows D / A and (C + D) / A, where D is the mass of the dispersant, A is the mass of the composite tungsten oxide fine particles, and C is the mass of the high boiling point solvent.

(2)近赤外線吸収ポリエステル樹脂組成物の調製
調製された複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)とポリエステル樹脂であるポリエチレンテレフタレート樹脂ペレットとを、近赤外線吸収ポリエステル樹脂組成物中のCWO濃度が3質量%(但し、表1等は質量比で表記、以下同様)となるように混合し、ブレンダーを用いて均一に混合した後、二軸押出機を用いて240℃で溶融混練し、かつ、押出されたストランドをペレット状にカットし、近赤外線吸収ポリエステル樹脂成形体用コンパウンド(近赤外線吸収ポリエステル樹脂組成物)を得た。
(2) Preparation of near-infrared absorbing polyester resin composition The prepared composite tungsten oxide fine particle dispersion (high-boiling solvent fine particle dispersion) and polyester resin polyethylene terephthalate resin pellets are used as a near-infrared absorbing polyester resin composition. The CWO concentration in the mixture was 3% by mass (however, Table 1 and the like are expressed in terms of mass ratio, the same applies hereinafter), mixed uniformly using a blender, and then at 240 ° C. using a twin screw extruder. The melt-kneaded and extruded strand was cut into pellets to obtain a near-infrared-absorbing polyester resin molded compound (near-infrared-absorbing polyester resin composition).

尚、分散剤の質量をD、複合タングステン酸化物微粒子の質量をA、高沸点溶媒の質量をC、ポリエステル樹脂の質量をBとした場合、(B+C+D)/Aを表1に示す。   Table 1 shows (B + C + D) / A, where D is the mass of the dispersant, A is the mass of the composite tungsten oxide fine particles, C is the mass of the high-boiling solvent, and B is the mass of the polyester resin.

(3)近赤外線吸収ポリエステル樹脂成形体の製造
得られた近赤外線吸収ポリエステル樹脂成形体用コンパウンドを、一軸押出機を用いて240℃で溶融混練した後、Tダイより押し出し、二軸延伸加工し、厚さ0.05mmに成形することで、複合タングステン酸化物(CWO)微粒子がポリエステル樹脂全体に均一に分散した実施例1に係る近赤外線吸収ポリエステル樹脂成形体を得た。
(3) Production of near-infrared-absorbing polyester resin molded body The obtained compound for near-infrared-absorbing polyester resin molded body was melt-kneaded at 240 ° C using a single screw extruder, then extruded from a T-die and biaxially stretched. The near-infrared absorbing polyester resin molded body according to Example 1 in which composite tungsten oxide (CWO) fine particles were uniformly dispersed throughout the polyester resin was obtained by molding to a thickness of 0.05 mm.

実施例1に係る近赤外線吸収ポリエステル樹脂成形体の光学特性を測定したところ、表3に示すように、可視光透過率74.6%のときの日射透過率は35.3%で、ヘイズ値は1.0%であった。   When the optical characteristics of the near-infrared absorbing polyester resin molding according to Example 1 were measured, as shown in Table 3, the solar radiation transmittance was 35.3% when the visible light transmittance was 74.6%, and the haze value was Was 1.0%.

また、表3に示すように、近赤外線吸収ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径は45nmであった。   Moreover, as shown in Table 3, the average particle diameter of the near-infrared absorbing fine particles present in the near-infrared absorbing polyester resin molding was 45 nm.

[実施例2]
低沸点溶媒(MIBK)を除去した後の複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)に係る組成を、複合タングステン酸化物(CWO)微粒子:20質量%、上記分散剤a:10質量%、ポリエステルポリオール(エステル基を2個有し、分子量500):70質量%とした以外は、実施例1と同様にして実施例2に係る近赤外線吸収ポリエステル樹脂成形体を作製した。
[Example 2]
The composition of the composite tungsten oxide fine particle dispersion (high-boiling solvent fine particle dispersion) after the removal of the low boiling point solvent (MIBK) is the composite tungsten oxide (CWO) fine particle: 20% by mass, and the dispersant a: A near-infrared absorbing polyester resin molding according to Example 2 was produced in the same manner as in Example 1 except that 10% by mass and polyester polyol (having two ester groups, molecular weight 500): 70% by mass.

実施例2に係る近赤外線吸収ポリエステル樹脂成形体の光学特性を測定したところ、表3に示すように、可視光透過率73.1%のときの日射透過率は34.9%で、ヘイズ値は1.2%であった。   When the optical properties of the near-infrared absorbing polyester resin molding according to Example 2 were measured, as shown in Table 3, the solar radiation transmittance was 34.9% when the visible light transmittance was 73.1%, and the haze value was Was 1.2%.

また、表3に示すように、近赤外線吸収ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径は52nmであった。   Moreover, as shown in Table 3, the average particle diameter of the near-infrared absorbing fine particles present in the near-infrared absorbing polyester resin molding was 52 nm.

実施例1と同様、表1に、D/A、(C+D)/A、(B+C+D)/Aを示す。   As in Example 1, Table 1 shows D / A, (C + D) / A, and (B + C + D) / A.

[実施例3]
低沸点溶媒(MIBK)を除去した後の複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)に係る組成を、複合タングステン酸化物(CWO)微粒子:20質量%、上記分散剤a:60質量%、ポリエステルポリオール(エステル基を2個有し、分子量500):20質量%とした以外は、実施例1と同様にして実施例3に係る近赤外線吸収ポリエステル樹脂成形体を作製した。
[Example 3]
The composition of the composite tungsten oxide fine particle dispersion (high-boiling solvent fine particle dispersion) after the removal of the low boiling point solvent (MIBK) is the composite tungsten oxide (CWO) fine particle: 20% by mass, and the dispersant a: A near-infrared absorbing polyester resin molded article according to Example 3 was produced in the same manner as in Example 1 except that 60% by mass and polyester polyol (having two ester groups, molecular weight 500): 20% by mass.

実施例3に係る近赤外線吸収ポリエステル樹脂成形体の光学特性を測定したところ、表3に示すように、可視光透過率74.0%のときの日射透過率は35.8%で、ヘイズ値は1.0%であった。   When the optical characteristics of the near-infrared absorbing polyester resin molding according to Example 3 were measured, as shown in Table 3, the solar radiation transmittance was 35.8% when the visible light transmittance was 74.0%, and the haze value was Was 1.0%.

また、表3に示すように、近赤外線吸収ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径は44nmであった。   Moreover, as shown in Table 3, the average particle diameter of the near-infrared absorbing fine particles present in the near-infrared absorbing polyester resin molding was 44 nm.

実施例1と同様、表1に、D/A、(C+D)/A、(B+C+D)/Aを示す。   As in Example 1, Table 1 shows D / A, (C + D) / A, and (B + C + D) / A.

[実施例4]
分散剤をアクリル系高分子分散剤[アクリル主鎖と官能基としてアミノ基を有し、アミン価10mgKOH/g、熱分解温度300℃の分散剤(以下、分散剤bと略称する)]に変更し、低沸点溶媒(MIBK)を除去した後の複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)に係る組成を、複合タングステン酸化物(CWO)微粒子:20質量%、上記分散剤b:20質量%、ポリエステルポリオール(エステル基を2個有し、分子量500):60質量%とした以外は、実施例1と同様にして実施例4に係る近赤外線吸収ポリエステル樹脂成形体を作製した。
[Example 4]
Dispersing agent changed to acrylic polymer dispersing agent (dispersing agent having acrylic main chain and amino group as functional group, amine value of 10 mgKOH / g, thermal decomposition temperature of 300 ° C. (hereinafter abbreviated as dispersing agent b)) Then, the composition of the composite tungsten oxide fine particle dispersion (high-boiling solvent fine particle dispersion) after removing the low boiling point solvent (MIBK) is the composite tungsten oxide (CWO) fine particle: 20% by mass, the dispersant b: 20% by mass, polyester polyol (having two ester groups, molecular weight 500): a near-infrared absorbing polyester resin molded article according to Example 4 was prepared in the same manner as in Example 1 except that the mass was 60% by mass. did.

実施例4に係る近赤外線吸収ポリエステル樹脂成形体の光学特性を測定したところ、表3に示すように、可視光透過率72.6%のときの日射透過率は34.2%で、ヘイズ値は0.9%であった。   When the optical characteristics of the near-infrared absorbing polyester resin molding according to Example 4 were measured, as shown in Table 3, the solar radiation transmittance was 34.2% when the visible light transmittance was 72.6%, and the haze value was Was 0.9%.

また、表3に示すように、近赤外線吸収ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径は42nmであった。   Moreover, as shown in Table 3, the average particle diameter of the near-infrared absorbing fine particles present in the near-infrared absorbing polyester resin molding was 42 nm.

実施例1と同様、表1に、D/A、(C+D)/A、(B+C+D)/Aを示す。   As in Example 1, Table 1 shows D / A, (C + D) / A, and (B + C + D) / A.

[実施例5]
分散剤をアクリル系高分子分散剤[アクリル主鎖と官能基としてアミノ基を有し、アミン価40mgKOH/g、熱分解温度230℃の分散剤(以下、分散剤cと略称する)]に変更し、低沸点溶媒(MIBK)を除去した後の複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)に係る組成を、複合タングステン酸化物(CWO)微粒子:20質量%、上記分散剤c:20質量%、ポリエステルポリオール(エステル基を2個有し、分子量500):60質量%とした以外は、実施例1と同様にして実施例5に係る近赤外線吸収ポリエステル樹脂成形体を作製した。
[Example 5]
Dispersing agent changed to acrylic polymer dispersing agent [dispersing agent having acrylic main chain and amino group as functional group, amine value of 40 mgKOH / g, thermal decomposition temperature of 230 ° C. (hereinafter abbreviated as dispersing agent c)] Then, the composition of the composite tungsten oxide fine particle dispersion (high-boiling solvent fine particle dispersion) after removing the low boiling point solvent (MIBK) is the composite tungsten oxide (CWO) fine particle: 20% by mass, the dispersant c: 20% by mass, polyester polyol (having two ester groups, molecular weight 500): a near-infrared absorbing polyester resin molded article according to Example 5 was prepared in the same manner as in Example 1 except that the mass was 60% by mass. did.

実施例5に係る近赤外線吸収ポリエステル樹脂成形体の光学特性を測定したところ、表3に示すように、可視光透過率73.5%のときの日射透過率は35.6%で、ヘイズ値は1.2%であった。   When the optical characteristics of the near-infrared absorbing polyester resin molding according to Example 5 were measured, as shown in Table 3, the solar radiation transmittance was 35.6% when the visible light transmittance was 73.5%, and the haze value was Was 1.2%.

また、表3に示すように、近赤外線吸収ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径は55nmであった。   Moreover, as shown in Table 3, the average particle diameter of the near-infrared absorbing fine particles present in the near-infrared absorbing polyester resin molding was 55 nm.

実施例1と同様、表1に、D/A、(C+D)/A、(B+C+D)/Aを示す。   As in Example 1, Table 1 shows D / A, (C + D) / A, and (B + C + D) / A.

[実施例6]
上記高沸点溶媒をポリエステルポリオール[エステル基を2個有し、分子量2000の(株)クラレ社製 商品名「クラレポリオール」]に変更し、低沸点溶媒(MIBK)を除去した後の複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)に係る組成を、複合タングステン酸化物(CWO)微粒子:20質量%、上記分散剤a:20質量%、ポリエステルポリオール:60質量%とした以外は、実施例1と同様にして実施例6に係る近赤外線吸収ポリエステル樹脂成形体を作製した。
[Example 6]
The above-mentioned high boiling point solvent is changed to polyester polyol [trade name “Kuraray Polyol” manufactured by Kuraray Co., Ltd. having two ester groups and having a molecular weight of 2000], and complex tungsten oxidation after removing the low boiling point solvent (MIBK) The composition related to the fine particle dispersion (high-boiling solvent fine particle dispersion) was changed to composite tungsten oxide (CWO) fine particles: 20% by mass, dispersant a: 20% by mass, polyester polyol: 60% by mass. In the same manner as in Example 1, a near-infrared absorbing polyester resin molded body according to Example 6 was produced.

実施例6に係る近赤外線吸収ポリエステル樹脂成形体の光学特性を測定したところ、表3に示すように、可視光透過率74.6%のときの日射透過率は36.5%で、ヘイズ値は1.1%であった。   When the optical characteristics of the near-infrared absorbing polyester resin molding according to Example 6 were measured, as shown in Table 3, the solar radiation transmittance was 36.5% when the visible light transmittance was 74.6%, and the haze value was Was 1.1%.

また、表3に示すように、近赤外線吸収ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径は48nmであった。   Moreover, as shown in Table 3, the average particle diameter of the near-infrared absorbing fine particles present in the near-infrared absorbing polyester resin molding was 48 nm.

実施例1と同様、表1に、D/A、(C+D)/A、(B+C+D)/Aを示す。   As in Example 1, Table 1 shows D / A, (C + D) / A, and (B + C + D) / A.

[実施例7]
分散剤をアクリル系高分子分散剤[アクリル主鎖と官能基としてアミノ基を有し、アミン価40mgKOH/g、熱分解温度230℃の分散剤(以下、分散剤cと略称する)]に変更し、高沸点溶媒を、分子両末端に水酸基を有する安息香酸グリコールエステル[エステル基を2個、フェニル基を2個有し、分子量1000の(株)ジェイプラス社製 商品名「JP120」]に変更し、低沸点溶媒(MIBK)を除去した後の複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)に係る組成を、複合タングステン酸化物(CWO)微粒子:20質量%、上記分散剤c:20質量%、安息香酸グリコールエステル:60質量%とした以外は、実施例1と同様にして実施例7に係る近赤外線吸収ポリエステル樹脂成形体を作製した。
[Example 7]
Dispersing agent changed to acrylic polymer dispersing agent [dispersing agent having acrylic main chain and amino group as functional group, amine value of 40 mgKOH / g, thermal decomposition temperature of 230 ° C. (hereinafter abbreviated as dispersing agent c)] A high-boiling solvent is added to a benzoic acid glycol ester having hydroxyl groups at both ends of the molecule [trade name “JP120” manufactured by J-PLUS Co., Ltd., having two ester groups and two phenyl groups, and having a molecular weight of 1000]. The composition related to the composite tungsten oxide fine particle dispersion (high-boiling solvent fine particle dispersion) after changing and removing the low boiling point solvent (MIBK) is the composite tungsten oxide (CWO) fine particle: 20% by mass, the above dispersion A near-infrared absorbing polyester resin molded article according to Example 7 was prepared in the same manner as in Example 1 except that the agent c was 20% by mass and the benzoic acid glycol ester was 60% by mass. .

実施例7に係る近赤外線吸収ポリエステル樹脂成形体の光学特性を測定したところ、表3に示すように、可視光透過率73.3%のときの日射透過率は36.8%で、ヘイズ値は1.2%であった。   When the optical characteristics of the near-infrared absorbing polyester resin molding according to Example 7 were measured, as shown in Table 3, the solar radiation transmittance was 36.8% when the visible light transmittance was 73.3%, and the haze value was Was 1.2%.

また、表3に示すように、近赤外線吸収ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径は58nmであった。   Moreover, as shown in Table 3, the average particle diameter of the near-infrared absorbing fine particles present in the near-infrared absorbing polyester resin molding was 58 nm.

実施例1と同様、表1に、D/A、(C+D)/A、(B+C+D)/Aを示す。   As in Example 1, Table 1 shows D / A, (C + D) / A, and (B + C + D) / A.

[実施例8]
高沸点溶媒を、分子両末端に水酸基を有する脂肪酸エステル(エステル基を2個有し、分子量1700のトリエチレングリコール−ビス−2−エチルヘキサネート)に変更し、低沸点溶媒(MIBK)を除去した後の複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)に係る組成を、複合タングステン酸化物(CWO)微粒子:20質量%、上記分散剤a:20質量%、脂肪酸エステル:60質量%とした以外は、実施例1と同様にして実施例8に係る近赤外線吸収ポリエステル樹脂成形体を作製した。
[Example 8]
Change the high boiling point solvent to fatty acid ester having hydroxyl groups at both molecular ends (triethylene glycol-bis-2-ethylhexanate with 2 ester groups and molecular weight 1700) to remove low boiling point solvent (MIBK) The composition of the composite tungsten oxide fine particle dispersion (high-boiling solvent fine particle dispersion) is as follows: composite tungsten oxide (CWO) fine particles: 20% by mass, dispersant a: 20% by mass, fatty acid ester: 60 A near-infrared absorbing polyester resin molded article according to Example 8 was produced in the same manner as in Example 1 except that the mass% was changed.

実施例8に係る近赤外線吸収ポリエステル樹脂成形体の光学特性を測定したところ、表3に示すように、可視光透過率75.1%のときの日射透過率は34.8%で、ヘイズ値は1.1%であった。   When the optical properties of the near-infrared absorbing polyester resin molding according to Example 8 were measured, as shown in Table 3, the solar radiation transmittance was 34.8% when the visible light transmittance was 75.1%, and the haze value was Was 1.1%.

また、表3に示すように、近赤外線吸収ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径は44nmであった。   Moreover, as shown in Table 3, the average particle diameter of the near-infrared absorbing fine particles present in the near-infrared absorbing polyester resin molding was 44 nm.

実施例1と同様、表1に、D/A、(C+D)/A、(B+C+D)/Aを示す。   As in Example 1, Table 1 shows D / A, (C + D) / A, and (B + C + D) / A.

[実施例9]
(1)複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)の調製
複合タングステン酸化物微粒子(CWO)20質量%、低沸点溶媒としてエタノール80質量%を秤量した。上記微粒子とエタノールを、0.3mmφZrO2ビーズを入れたペイントシェーカーに装填し、23時間粉砕・分散処理することにより複合タングステン酸化物微粒子分散液(低沸点溶媒の微粒子分散液)を調製した。
[Example 9]
(1) Preparation of Composite Tungsten Oxide Fine Particle Dispersion (Particle Dispersion of High Boiling Solvent) 20% by mass of composite tungsten oxide fine particles (CWO) and 80% by mass of ethanol as a low boiling point solvent were weighed. The fine particles and ethanol were loaded into a paint shaker containing 0.3 mmφZrO 2 beads, and pulverized and dispersed for 23 hours to prepare a composite tungsten oxide fine particle dispersion (low-boiling solvent fine particle dispersion).

得られた複合タングステン酸化物微粒子分散液(低沸点溶媒の微粒子分散液)に、該微粒子分散液と高沸点溶媒であるエチレングリコールの比率が5:4となるように高沸点溶媒を加えた後、真空加熱混合機を用いて低沸点溶媒(エタノール)を除去し、複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)を得た。また、調製された複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)中におけるエタノールの残留量は2質量%であった。   After adding the high boiling point solvent to the obtained composite tungsten oxide fine particle dispersion (fine particle dispersion of the low boiling point solvent) so that the ratio of the fine particle dispersion and the high boiling point ethylene glycol is 5: 4 The low boiling point solvent (ethanol) was removed using a vacuum heating mixer to obtain a composite tungsten oxide fine particle dispersion (fine dispersion of high boiling point solvent). In addition, the residual amount of ethanol in the prepared composite tungsten oxide fine particle dispersion (high-boiling solvent fine particle dispersion) was 2% by mass.

(2)近赤外線吸収ポリエステル樹脂組成物の調製
調製された複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)とポリエチレンテレフタレート樹脂ペレットとを、CWO濃度が3質量%となるように混合し、ブレンダーを用いて均一に混合した後、二軸押出機を用いて240℃で溶融混練し、かつ、押出されたストランドをペレット状にカットし、近赤外線吸収ポリエステル樹脂成形体用コンパウンド(近赤外線吸収ポリエステル樹脂組成物)を得た。
(2) Preparation of near-infrared absorbing polyester resin composition The prepared composite tungsten oxide fine particle dispersion (high-boiling solvent fine particle dispersion) and polyethylene terephthalate resin pellets are mixed so that the CWO concentration becomes 3% by mass. After mixing uniformly using a blender, the mixture is melt-kneaded at 240 ° C. using a twin screw extruder, and the extruded strand is cut into pellets. Infrared absorbing polyester resin composition) was obtained.

(3)近赤外線吸収ポリエステル樹脂成形体の製造
得られた近赤外線吸収ポリエステル樹脂成形体用コンパウンドを、一軸押出機を用いて240℃で溶融混練した後、Tダイより押し出し、二軸延伸加工し、厚さ0.05mmに成形することで、複合タングステン酸化物(CWO)微粒子がポリエステル樹脂全体に均一に分散した実施例9に係る近赤外線吸収ポリエステル樹脂成形体を得た。
(3) Production of near-infrared-absorbing polyester resin molded body The obtained compound for near-infrared-absorbing polyester resin molded body was melt-kneaded at 240 ° C using a single screw extruder, then extruded from a T-die and biaxially stretched. By molding to a thickness of 0.05 mm, a near-infrared absorbing polyester resin molding according to Example 9 in which composite tungsten oxide (CWO) fine particles were uniformly dispersed throughout the polyester resin was obtained.

実施例9に係る近赤外線吸収ポリエステル樹脂成形体の光学特性を測定したところ、表3に示すように、可視光透過率73.0%のときの日射透過率は36.3%で、ヘイズ値は1.3%であった。   When the optical characteristics of the near-infrared absorbing polyester resin molding according to Example 9 were measured, as shown in Table 3, the solar radiation transmittance was 36.3% when the visible light transmittance was 73.0%, and the haze value was Was 1.3%.

また、表3に示すように、近赤外線吸収ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径は64nmであった。   Moreover, as shown in Table 3, the average particle diameter of the near-infrared absorbing fine particles present in the near-infrared absorbing polyester resin molding was 64 nm.

実施例1と同様、表1に、D/A、(C+D)/A、(B+C+D)/Aを示す。   As in Example 1, Table 1 shows D / A, (C + D) / A, and (B + C + D) / A.

[実施例10]
低沸点溶媒(MIBK)を除去した後の複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)に係る組成を、複合タングステン酸化物(CWO)微粒子:33.3質量%、上記分散剤a:16.7質量%、ポリエステルポリオール(エステル基を2個有し、分子量500):50質量%とし、近赤外線吸収ポリエステル樹脂成形体の厚さを0.01mmとした以外は、実施例1と同様にして実施例10に係る近赤外線吸収ポリエステル樹脂成形体を作製した。
[Example 10]
The composition of the composite tungsten oxide fine particle dispersion (high-boiling solvent fine particle dispersion) after removing the low-boiling solvent (MIBK) is the composite tungsten oxide (CWO) fine particle: 33.3% by mass, the above dispersant Example 1 except that a: 16.7% by mass, polyester polyol (having two ester groups, molecular weight 500): 50% by mass, and the thickness of the near-infrared absorbing polyester resin molded body was 0.01 mm. In the same manner, a near-infrared absorbing polyester resin molded body according to Example 10 was produced.

実施例10に係る近赤外線吸収ポリエステル樹脂成形体の光学特性を測定したところ、表3に示すように、可視光透過率73.2%のときの日射透過率は36.9%で、ヘイズ値は1.3%であった。   When the optical properties of the near-infrared absorbing polyester resin molding according to Example 10 were measured, as shown in Table 3, the solar radiation transmittance was 36.9% when the visible light transmittance was 73.2%, and the haze value was Was 1.3%.

また、表3に示すように、近赤外線吸収ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径は66nmであった。   Moreover, as shown in Table 3, the average particle diameter of the near-infrared absorbing fine particles present in the near-infrared absorbing polyester resin molding was 66 nm.

実施例1と同様、表1に、D/A、(C+D)/A、(B+C+D)/Aを示す。   As in Example 1, Table 1 shows D / A, (C + D) / A, and (B + C + D) / A.

[実施例11]
上記高沸点溶媒を、ポリエステルポリオール[エステル基を2個有し、分子量3000の(株)クラレ社製 商品名「クラレポリオール」]に変更し、低沸点溶媒(MIBK)を除去した後の複合タングステン酸化物微粒子分散液(高沸点溶媒の微粒子分散液)に係る組成を、複合タングステン酸化物(CWO)微粒子:20質量%、上記分散剤a:20質量%、ポリエステルポリオール:60質量%とした以外は、実施例1と同様にして実施例11に係る近赤外線吸収ポリエステル樹脂成形体を作製した。
[Example 11]
The above high-boiling solvent is changed to polyester polyol [trade name “Kuraray polyol” manufactured by Kuraray Co., Ltd. having two ester groups and having a molecular weight of 3000], and the composite tungsten after removing the low-boiling solvent (MIBK) The composition relating to the oxide fine particle dispersion (high-boiling solvent fine particle dispersion) was changed to composite tungsten oxide (CWO) fine particles: 20% by mass, dispersant a: 20% by mass, polyester polyol: 60% by mass. Produced the near-infrared-absorbing polyester resin molding which concerns on Example 11 like Example 1. FIG.

実施例11に係る近赤外線吸収ポリエステル樹脂成形体の光学特性を測定したところ、表3に示すように、可視光透過率73.3%のときの日射透過率は36.7%で、ヘイズ値は1.3%であった。   When the optical characteristics of the near-infrared absorbing polyester resin molding according to Example 11 were measured, as shown in Table 3, the solar radiation transmittance was 36.7% when the visible light transmittance was 73.3%, and the haze value was Was 1.3%.

また、表3に示すように、近赤外線吸収ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径は65nmであった。   Moreover, as shown in Table 3, the average particle diameter of the near-infrared absorbing fine particles present in the near-infrared absorbing polyester resin molding was 65 nm.

実施例1と同様、表1に、D/A、(C+D)/A、(B+C+D)/Aを示す。   As in Example 1, Table 1 shows D / A, (C + D) / A, and (B + C + D) / A.

[比較例1]
複合タングステン酸化物(CWO)微粒子20質量%、分散剤a:20質量%、低沸点溶媒としてメチルイソブチルケトン(MIBK)60質量%を秤量した。上記微粒子と分散剤とMIBKを、0.3mmφZrO2ビーズを入れたペイントシェーカーに装填し、20時間粉砕・分散処理することにより複合タングステン酸化物微粒子分散液(低沸点溶媒の微粒子分散液)を調製した。
[Comparative Example 1]
Composite tungsten oxide (CWO) fine particles 20% by mass, dispersant a: 20% by mass, and methyl isobutyl ketone (MIBK) 60% by mass as a low boiling point solvent were weighed. The above-mentioned fine particles, dispersant and MIBK are loaded into a paint shaker containing 0.3 mmφZrO 2 beads, and pulverized and dispersed for 20 hours to prepare a composite tungsten oxide fine particle dispersion (fine dispersion of low boiling point solvent). did.

次いで、得られた複合タングステン酸化物微粒子分散液(低沸点溶媒の微粒子分散液)から真空加熱混合機を用いてMIBKを除去し、複合タングステン酸化物微粒子分散粉を得た。   Next, MIBK was removed from the obtained composite tungsten oxide fine particle dispersion (low-boiling solvent fine particle dispersion) using a vacuum heating mixer to obtain a composite tungsten oxide fine particle dispersion.

得られた複合タングステン酸化物微粒子分散粉とポリエステル樹脂であるポリエチレンテレフタレート樹脂ペレットを、上記CWO濃度が3質量%となるように混合し、ブレンダーを用いて均一に混合した後、実施例1と同様、二軸押出機を用いて240℃で溶融混練し、かつ、押出されたストランドをペレット状にカットし、近赤外線吸収ポリエステル樹脂成形体用コンパウンド(近赤外線吸収ポリエステル樹脂組成物)を得た。   The obtained composite tungsten oxide fine particle dispersed powder and the polyethylene terephthalate resin pellet which is a polyester resin are mixed so that the CWO concentration becomes 3% by mass and mixed uniformly using a blender, and then the same as in Example 1. Then, the mixture was melt-kneaded at 240 ° C. using a twin-screw extruder, and the extruded strand was cut into pellets to obtain a compound for a near-infrared-absorbing polyester resin molding (near-infrared-absorbing polyester resin composition).

次いで、得られた近赤外線吸収ポリエステル樹脂成形体用コンパウンドを、実施例1と同様、一軸押出機を用いて240℃で溶融混練した後、Tダイより押し出し、二軸延伸加工し、厚さ0.05mmに成形することで、比較例1に係る近赤外線吸収ポリエステル樹脂成形体を作製した。   Next, the obtained compound for near-infrared absorbing polyester resin molded body was melt-kneaded at 240 ° C. using a single screw extruder as in Example 1, and then extruded from a T die and biaxially stretched to obtain a thickness of 0. A near-infrared absorbing polyester resin molded body according to Comparative Example 1 was produced by molding to .05 mm.

比較例1に係る近赤外線吸収ポリエステル樹脂成形体の光学特性を測定したところ、表4に示すように、可視光透過率72.1%のときの日射透過率は35.7%で、ヘイズ値は3.3%であった。   When the optical properties of the near-infrared absorbing polyester resin molding according to Comparative Example 1 were measured, as shown in Table 4, the solar radiation transmittance was 35.7% when the visible light transmittance was 72.1%, and the haze value was Was 3.3%.

また、表4に示すように、近赤外線吸収ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径は87nmであった。   Moreover, as shown in Table 4, the average particle diameter of the near-infrared absorbing fine particles present in the near-infrared absorbing polyester resin molding was 87 nm.

実施例1と同様、表2に、D/A、(C+D)/A、(B+C+D)/Aを示す。   As in Example 1, Table 2 shows D / A, (C + D) / A, and (B + C + D) / A.

[比較例2]
分散剤aに代えて分散剤bを用いた以外は、比較例1と同様にして比較例2に係る近赤外線吸収ポリエステル樹脂成形体を得た。
[Comparative Example 2]
A near-infrared absorbing polyester resin molded article according to Comparative Example 2 was obtained in the same manner as Comparative Example 1 except that Dispersant b was used in place of Dispersant a.

比較例2に係る近赤外線吸収ポリエステル樹脂成形体の光学特性を測定したところ、表4に示すように、可視光透過率71.5%のときの日射透過率は35.2%で、ヘイズ値は3.6%であった。   When the optical characteristics of the near-infrared absorbing polyester resin molding according to Comparative Example 2 were measured, as shown in Table 4, the solar radiation transmittance was 35.2% when the visible light transmittance was 71.5%, and the haze value was Was 3.6%.

また、表4に示すように、近赤外線吸収ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径は97nmであった。   Moreover, as shown in Table 4, the average particle diameter of the near-infrared absorbing fine particles present in the near-infrared absorbing polyester resin molding was 97 nm.

比較例1と同様、表2に、D/A、(C+D)/A、(B+C+D)/Aを示す。   As in Comparative Example 1, Table 2 shows D / A, (C + D) / A, and (B + C + D) / A.

[比較例3]
分散剤aに代えて分散剤cを用いた以外は、比較例1と同様にして比較例3に係る近赤外線吸収ポリエステル樹脂成形体を得た。
[Comparative Example 3]
A near-infrared absorbing polyester resin molded article according to Comparative Example 3 was obtained in the same manner as Comparative Example 1 except that Dispersant c was used instead of Dispersant a.

比較例3に係る近赤外線吸収ポリエステル樹脂成形体の光学特性を測定したところ、表4に示すように、可視光透過率72.1%のときの日射透過率は35.5%で、ヘイズ値は3.4%であった。   When the optical properties of the near-infrared absorbing polyester resin molding according to Comparative Example 3 were measured, as shown in Table 4, the solar radiation transmittance was 35.5% when the visible light transmittance was 72.1%, and the haze value was Was 3.4%.

また、表4に示すように、近赤外線吸収ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径は92nmであった。   Moreover, as shown in Table 4, the average particle diameter of the near-infrared absorbing fine particles present in the near-infrared absorbing polyester resin molding was 92 nm.

[比較例4]
複合タングステン酸化物(CWO)微粒子を20質量%、分散剤cを20質量%、低沸点溶媒であるメチルイソブチルケトン(MIBK)60質量%を秤量した。これ等を、0.3mmφZrO2ビーズを入れたペイントシェーカーに装填し、20時間粉砕・分散処理することにより複合タングステン酸化物微粒子分散液(低沸点溶媒の微粒子分散液)を調製した。
[Comparative Example 4]
20% by mass of composite tungsten oxide (CWO) fine particles, 20% by mass of dispersant c, and 60% by mass of methyl isobutyl ketone (MIBK) as a low boiling point solvent were weighed. These were loaded into a paint shaker containing 0.3 mmφZrO 2 beads, and pulverized and dispersed for 20 hours to prepare a composite tungsten oxide fine particle dispersion (low-boiling solvent fine particle dispersion).

得られた複合タングステン酸化物微粒子分散液(低沸点溶媒の微粒子分散液)に対し、分散剤cを更に添加し、分散剤cと複合タングステン酸化物(CWO)微粒子の質量比[分散剤/複合タングステン酸化物微粒子]が3となるように調整した後、真空加熱混合機を用いてMIBKを除去し、複合タングステン酸化物微粒子分散粉を得た。   To the obtained composite tungsten oxide fine particle dispersion (low-boiling solvent fine particle dispersion), a dispersant c is further added, and the mass ratio of the dispersant c and the composite tungsten oxide (CWO) fine particles [dispersant / composite]. After adjusting the tungsten oxide fine particles to be 3, the MIBK was removed using a vacuum heating mixer to obtain a composite tungsten oxide fine particle dispersed powder.

得られた複合タングステン酸化物微粒子分散粉を用い、比較例1と同様にして比較例4に係る近赤外線吸収ポリエステル樹脂成形体を得た。   Using the obtained composite tungsten oxide fine particle dispersed powder, a near-infrared absorbing polyester resin molded article according to Comparative Example 4 was obtained in the same manner as Comparative Example 1.

比較例4に係る近赤外線吸収ポリエステル樹脂成形体の光学特性を測定したところ、表4に示すように、可視光透過率71.9%のときの日射透過率は35.4%で、ヘイズ値は3.8%であった。   When the optical properties of the near-infrared absorbing polyester resin molding according to Comparative Example 4 were measured, as shown in Table 4, the solar radiation transmittance was 35.4% when the visible light transmittance was 71.9%, and the haze value was Was 3.8%.

また、表4に示すように、近赤外線吸収ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径は110nmであった。   Moreover, as shown in Table 4, the average particle diameter of the near-infrared absorbing fine particles present in the near-infrared absorbing polyester resin molding was 110 nm.

比較例1と同様、表2に、D/A、(C+D)/A、(B+C+D)/Aを示す。   As in Comparative Example 1, Table 2 shows D / A, (C + D) / A, and (B + C + D) / A.

[比較例5]
分散剤を用いない実施例9と同様、複合タングステン酸化物(CWO)微粒子を20質量%、低沸点溶媒としてエタノール80質量%を秤量した。これ等を、0.3mmφZrO2ビーズを入れたペイントシェーカーに装填し、23時間粉砕・分散処理することにより複合タングステン酸化物微粒子分散液(低沸点溶媒の微粒子分散液)を調製した。
[Comparative Example 5]
As in Example 9 without using a dispersant, 20% by mass of composite tungsten oxide (CWO) fine particles and 80% by mass of ethanol as a low boiling point solvent were weighed. These were loaded into a paint shaker containing 0.3 mmφZrO 2 beads and pulverized and dispersed for 23 hours to prepare a composite tungsten oxide fine particle dispersion (low-boiling solvent fine particle dispersion).

次いで、得られた複合タングステン酸化物微粒子分散液(低沸点溶媒の微粒子分散液)から真空加熱混合機を用いてエタノールを除去し、複合タングステン酸化物微粒子粉を得た。   Next, ethanol was removed from the obtained composite tungsten oxide fine particle dispersion (low-boiling solvent fine particle dispersion) using a vacuum heating mixer to obtain composite tungsten oxide fine particle powder.

得られた複合タングステン酸化物微粒子粉と、ポリエステル樹脂であるポリエチレンテレフタレート樹脂ペレットとをCWO濃度が3質量%となるように混合し、以下、実施例1と同様にして比較例5に係る近赤外線吸収ポリエステル樹脂成形体の作製を試みた。   The obtained composite tungsten oxide fine particle powder and a polyethylene terephthalate resin pellet which is a polyester resin were mixed so that the CWO concentration was 3% by mass. Hereinafter, in the same manner as in Example 1, the near infrared ray according to Comparative Example 5 was used. An attempt was made to produce an absorbent polyester resin molding.

しかし、分散剤や高沸点溶媒が用いられていないことから、ポリエステル樹脂中に存在する複合タングステン酸化物微粒子の分散安定性に劣るため、複合タングステン酸化物微粒子の激しい凝集が起こり、外観で不均一になる程、複合タングステン酸化物微粒子をポリエステル樹脂中に均一に分散させることはできなかった。   However, since no dispersing agent or high-boiling solvent is used, the dispersion stability of the composite tungsten oxide particles present in the polyester resin is poor, so that the composite tungsten oxide particles are agglomerated and uneven in appearance. Thus, the composite tungsten oxide fine particles could not be uniformly dispersed in the polyester resin.

[比較例6]
分散剤をアクリル系高分子分散剤[アクリル主鎖と官能基としてアミノ基を有し、アミン価48mgKOH/g、熱分解温度250℃の分散剤(以下、分散剤dと略称する)]に変更し、かつ、ポリエステルポリオール(エステル基を2個有し、分子量500)に代えてトリエチレングリコール−ジ−2−エチルブチレートを適用した以外は、実施例2と同様にして比較例6に係る近赤外線吸収ポリエステル樹脂成形体を作製した。
[Comparative Example 6]
Dispersing agent changed to acrylic polymer dispersing agent [dispersing agent having acrylic main chain and amino group as functional group, amine value of 48 mgKOH / g, thermal decomposition temperature of 250 ° C. (hereinafter abbreviated as dispersing agent d)] In addition, according to Comparative Example 6 except that triethylene glycol-di-2-ethylbutyrate was applied in place of the polyester polyol (having two ester groups and having a molecular weight of 500). A near-infrared absorbing polyester resin molding was produced.

しかし、実施例2の高沸点溶媒(ポリエステルポリオール)とは異なるトリエチレングリコール−ジ−2−エチルブチレートが用いられているため、ポリエステル樹脂中に存在する複合タングステン酸化物(CWO)微粒子の分散安定性に劣り、複合タングステン酸化物微粒子の激しい凝集が起こり、外観で不均一になる程、複合タングステン酸化物微粒子をポリエステル樹脂中に均一に分散させることはできなかった。   However, since triethylene glycol-di-2-ethylbutyrate different from the high boiling point solvent (polyester polyol) of Example 2 is used, dispersion of composite tungsten oxide (CWO) fine particles present in the polyester resin The composite tungsten oxide fine particles could not be uniformly dispersed in the polyester resin as the composite tungsten oxide fine particles were inferior in stability and agglomerated and the appearance became non-uniform.

[比較例7]
分散剤を、アクリル系高分子分散剤[アクリル主鎖と官能基としてアミノ基を有し、アミン価29mgKOH/g、熱分解温度280℃の分散剤(分散剤a)]に変更し、かつ、ポリエステルポリオール(エステル基を2個有し、分子量500)に代えてエポキシ基含有アクリル系ポリマーを適用した以外は、実施例4と同様にして比較例7に係る近赤外線吸収ポリエステル樹脂成形体を作製した。
[Comparative Example 7]
The dispersant is changed to an acrylic polymer dispersant [dispersant (dispersant a) having an acrylic main chain and an amino group as a functional group, an amine value of 29 mg KOH / g, and a thermal decomposition temperature of 280 ° C.], and A near-infrared absorbing polyester resin molded article according to Comparative Example 7 is produced in the same manner as in Example 4 except that an epoxy group-containing acrylic polymer is applied instead of the polyester polyol (having two ester groups and having a molecular weight of 500). did.

しかし、実施例4の高沸点溶媒(ポリエステルポリオール)とは異なるエポキシ基含有アクリル系ポリマーが用いられているため、ポリエステル樹脂中に存在する複合タングステン酸化物(CWO)微粒子の分散安定性に劣り、複合タングステン酸化物微粒子の激しい凝集が起こり、外観で不均一になる程、複合タングステン酸化物微粒子をポリエステル樹脂中に均一に分散させることはできなかった。   However, since an epoxy group-containing acrylic polymer different from the high boiling point solvent (polyester polyol) of Example 4 is used, the dispersion stability of the composite tungsten oxide (CWO) fine particles present in the polyester resin is inferior, The composite tungsten oxide fine particles could not be uniformly dispersed in the polyester resin to such an extent that the composite tungsten oxide fine particles agglomerated and became non-uniform in appearance.

[参考例]
特許文献2の実施例5に係る近赤外線吸収ポリエステル樹脂成形体の製造を試みた。
[Reference example]
An attempt was made to produce a near-infrared absorbing polyester resin molded article according to Example 5 of Patent Document 2.

まず、複合タングステン酸化物(CWO)微粒子を5質量%、高耐熱性分散剤[ポリエステル主鎖に塩基性官能基を持ち、熱分解温度250℃の分散剤(分散剤e)]を5質量%、トルエンを90質量%秤量した。これ等を、0.3mmφZrO2ビーズを入れたペイントシェーカーに装填し、3時間粉砕・分散処理することによって複合タングステン酸化物微粒子分散液(低沸点溶媒の微粒子分散液)を調製した。 First, 5% by mass of composite tungsten oxide (CWO) fine particles, 5% by mass of a high heat-resistant dispersant [dispersant having a basic functional group in the polyester main chain and a thermal decomposition temperature of 250 ° C. (dispersant e)] Toluene was weighed 90% by mass. These were loaded into a paint shaker containing 0.3 mmφZrO 2 beads, and pulverized and dispersed for 3 hours to prepare a composite tungsten oxide fine particle dispersion (low-boiling solvent fine particle dispersion).

上記複合タングステン酸化物微粒子分散液(低沸点溶媒の微粒子分散液)に、分散剤eを更に添加し、分散剤eと複合タングステン酸化物(CWO)微粒子の質量比[分散剤e/CWO微粒子]が3となるように調製した後、複合タングステン酸化物微粒子分散液からスプレードライヤーを用いてトルエンを除去し、タングステン酸化物微粒子分散粉を得た。   Dispersant e is further added to the composite tungsten oxide fine particle dispersion (low boiling point solvent fine particle dispersion), and the mass ratio of the dispersant e to the composite tungsten oxide (CWO) fine particles [dispersant e / CWO fine particles]. Then, toluene was removed from the composite tungsten oxide fine particle dispersion using a spray dryer to obtain a tungsten oxide fine particle dispersed powder.

得られたタングステン酸化物微粒子分散粉とポリエステル樹脂であるポリエチレンテレフタレート樹脂ペレットを、CWO濃度が9.09質量%となるように混合し、ブレンダーを用いて均一に混合した後、二軸押出機を用いて240℃で溶融混練し、押出されたストランドをペレット状にカットし、近赤外線吸収ポリエステル樹脂成形体用コンパウンドを得た。   After mixing the obtained tungsten oxide fine particle dispersion powder and the polyethylene terephthalate resin pellet which is a polyester resin so that the CWO concentration becomes 9.09% by mass, and uniformly mixing using a blender, a twin screw extruder is used. It was melt-kneaded at 240 ° C., and the extruded strand was cut into pellets to obtain a compound for a near-infrared absorbing polyester resin molded body.

得られた近赤外線吸収ポリエステル樹脂成形体用コンパウンドを、一軸押出機を用いて240℃で溶融混練した後、Tダイより押し出し、二軸延伸加工し、厚さ0.01mmに成形することで参考例に係る近赤外線吸収ポリエステル樹脂成形体を得た。   The obtained compound for near-infrared absorbing polyester resin molded body was melt-kneaded at 240 ° C using a single screw extruder, then extruded from a T-die, biaxially stretched, and molded to a thickness of 0.01 mm for reference A near-infrared absorbing polyester resin molding according to the example was obtained.

参考例に係る近赤外線吸収ポリエステル樹脂成形体の光学特性を測定したところ、樹脂成形体の測定部位により大きなばらつきが存在し、特性の極めてよい部位では可視光透過率70.8%のときの日射透過率は35.2%で、ヘイズ値は1.3%であったが、特性の悪い部位ではヘイズ値が3.0%を超えていた。   When the optical properties of the near-infrared absorbing polyester resin molded article according to the reference example were measured, there was a large variation depending on the measurement part of the resin molded article, and the solar radiation when the visible light transmittance was 70.8% in the part with extremely good characteristics. The transmittance was 35.2% and the haze value was 1.3%. However, the haze value exceeded 3.0% at a portion having poor characteristics.

そして、樹脂成形体の全体を測定した平均値は、可視光透過率73.1%のときの日射透過率は38.1%で、ヘイズ値は2.4%であった。   And as for the average value which measured the whole resin molding, the solar radiation transmittance | permeability in case of visible light transmittance | permeability 73.1% was 38.1%, and haze value was 2.4%.

また、近赤外線吸収ポリエステル樹脂成形体中に存在する近赤外線吸収微粒子の平均粒子径は75nmであった。   Moreover, the average particle diameter of the near-infrared absorbing fine particles present in the near-infrared absorbing polyester resin molding was 75 nm.

Figure 2019206670
Figure 2019206670

Figure 2019206670
Figure 2019206670

Figure 2019206670
Figure 2019206670

Figure 2019206670
Figure 2019206670

本発明に係る近赤外線吸収微粒子分散液とポリエステル樹脂を溶融混練して得た近赤外線吸収ポリエステル樹脂組成物が成形されて成る近赤外線吸収ポリエステル樹脂成形体は、複合タングステン酸化物微粒子で構成される近赤外線吸収微粒子がポリエステル樹脂中に均一に分散されるため、ヘイズ値が低く、可視光透過率が高く、かつ、近赤外線領域に強い吸収を有する。このため、建造物、自動車、電車、航空機等の構造材に利用される産業上の利用可能性を有している。   A near-infrared-absorbing polyester resin molded article obtained by molding a near-infrared-absorbing polyester resin composition obtained by melt-kneading a near-infrared-absorbing fine particle dispersion and a polyester resin according to the present invention is composed of composite tungsten oxide fine particles Since the near-infrared absorbing fine particles are uniformly dispersed in the polyester resin, the haze value is low, the visible light transmittance is high, and the near-infrared region has strong absorption. For this reason, it has the industrial applicability used for structural materials, such as a building, a motor vehicle, a train, and an aircraft.

Claims (8)

近赤外線吸収ポリエステル樹脂組成物を製造するために用いられる近赤外線吸収微粒子分散液において、
近赤外線吸収微粒子と高沸点溶媒と低沸点溶媒を含有し、
上記近赤外線吸収微粒子が、一般式MyWOz(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In,Tl、Si、Ge、Sn、Pb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Reの内から選択される1種類以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で示されかつ六方晶の結晶構造を持つ複合タングステン酸化物微粒子で構成され、
上記高沸点溶媒が、沸点が195℃以上でかつ分子両末端に水酸基を有する室温で液状のジオール化合物で構成されると共に、
上記低沸点溶媒が、沸点が150℃以下の有機溶剤で構成され、かつ、その含有量が5質量%以下であることを特徴とする近赤外線吸収微粒子分散液。
In the near-infrared absorbing fine particle dispersion used for producing the near-infrared absorbing polyester resin composition,
Contains near-infrared absorbing fine particles, a high boiling point solvent and a low boiling point solvent,
The near-infrared absorbing fine particles have the general formula MyWOz (where M is H, He, alkali metal, alkaline earth metal, rare earth element, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni). , Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, B, F, P, S, Se, Br, Te, Ti, Nb, V One or more elements selected from Mo, Ta, and Re, W is tungsten, O is oxygen, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) and Consists of composite tungsten oxide fine particles with hexagonal crystal structure,
The high-boiling solvent is composed of a diol compound that has a boiling point of 195 ° C. or higher and has hydroxyl groups at both molecular ends at room temperature,
The near-infrared absorbing fine particle dispersion, wherein the low-boiling solvent is composed of an organic solvent having a boiling point of 150 ° C. or less, and the content thereof is 5% by mass or less.
上記ジオール化合物が、ポリエステルポリオール類、脂肪族ジオール類、脂環族ジオール類、芳香族ジオール類から選択される化合物であることを特徴とする請求項1に記載の近赤外線吸収微粒子分散液。   The near-infrared absorbing fine particle dispersion according to claim 1, wherein the diol compound is a compound selected from polyester polyols, aliphatic diols, alicyclic diols, and aromatic diols. 上記近赤外線吸収微粒子に含まれるM元素が、Cs、Rb、K、Tl、In、Ba、Li、Ca、Sr、Fe、Sn、Al、Cuから選択される少なくとも1種類以上であることを特徴とする請求項1および2に記載の近赤外線吸収微粒子分散液。   The element M contained in the near-infrared absorbing fine particles is at least one selected from Cs, Rb, K, Tl, In, Ba, Li, Ca, Sr, Fe, Sn, Al, and Cu. The near-infrared absorbing fine particle dispersion according to claim 1 or 2. 上記近赤外線吸収微粒子の分散粒子径が1nm以上800nm以下であることを特徴とする請求項1〜3のいずれかに記載の近赤外線吸収微粒子分散液。   4. The near-infrared absorbing fine particle dispersion according to claim 1, wherein the near-infrared absorbing fine particles have a dispersed particle diameter of 1 nm to 800 nm. 熱分解温度が200℃以上の分散剤を含むことを特徴とする請求項1〜4のいずれかに記載の近赤外線吸収微粒子分散液。   The near-infrared absorbing fine particle dispersion according to any one of claims 1 to 4, comprising a dispersant having a thermal decomposition temperature of 200 ° C or higher. 上記近赤外線吸収微粒子の質量をA、高沸点溶媒の質量をC、および、分散剤の質量をDとした場合、
0.1≦[D/A]≦10、
0.5≦[(C+D)/A]≦50、
を満たすことを特徴とする請求項5に記載の近赤外線吸収微粒子分散液。
When the mass of the near-infrared absorbing fine particles is A, the mass of the high-boiling solvent is C, and the mass of the dispersant is D,
0.1 ≦ [D / A] ≦ 10,
0.5 ≦ [(C + D) / A] ≦ 50,
The near-infrared absorbing fine particle dispersion according to claim 5, wherein
請求項1〜4のいずれかに記載の近赤外線吸収微粒子分散液を製造する方法において、
近赤外線吸収微粒子と低沸点溶媒を混合し、湿式媒体ミルを用いて近赤外線吸収微粒子を粉砕かつ分散処理して低沸点溶媒の微粒子分散液を得る工程と、
得られた低沸点溶媒の微粒子分散液に高沸点溶媒を添加する工程と、
高沸点溶媒が添加された上記微粒子分散液から低沸点溶媒の含有量が5質量%以下になるまで低沸点溶媒を除去して高沸点溶媒の微粒子分散液を得る工程、
を具備することを特徴とする近赤外線吸収微粒子分散液の製造方法。
In the method for producing the near-infrared absorbing fine particle dispersion according to any one of claims 1 to 4,
A step of mixing near-infrared absorbing fine particles and a low-boiling solvent, and pulverizing and dispersing the near-infrared absorbing fine particles using a wet medium mill to obtain a low-boiling solvent fine particle dispersion;
Adding a high boiling point solvent to the resulting low boiling point solvent fine particle dispersion;
Removing the low boiling point solvent from the fine particle dispersion to which the high boiling point solvent has been added until the content of the low boiling point solvent is 5% by mass or less to obtain a fine particle dispersion of the high boiling point solvent;
The manufacturing method of the near-infrared absorptive fine particle dispersion characterized by comprising.
請求項5〜6のいずれかに記載の近赤外線吸収微粒子分散液を製造する方法において、
近赤外線吸収微粒子と低沸点溶媒および分散剤を混合し、湿式媒体ミルを用いて近赤外線吸収微粒子を粉砕かつ分散処理して低沸点溶媒の微粒子分散液を得る工程と、
得られた低沸点溶媒の微粒子分散液に高沸点溶媒を添加する工程と、
高沸点溶媒が添加された上記微粒子分散液から低沸点溶媒の含有量が5質量%以下になるまで低沸点溶媒を除去して高沸点溶媒の微粒子分散液を得る工程、
を具備することを特徴とする近赤外線吸収微粒子分散液の製造方法。
In the method for producing the near-infrared absorbing fine particle dispersion according to any one of claims 5 to 6,
Mixing near-infrared absorbing fine particles with a low-boiling solvent and a dispersant, and pulverizing and dispersing the near-infrared absorbing fine particles using a wet medium mill to obtain a low-boiling solvent fine particle dispersion;
Adding a high boiling point solvent to the resulting low boiling point solvent fine particle dispersion;
Removing the low boiling point solvent from the fine particle dispersion to which the high boiling point solvent has been added until the content of the low boiling point solvent is 5% by mass or less to obtain a fine particle dispersion of the high boiling point solvent;
The manufacturing method of the near-infrared absorptive fine particle dispersion characterized by comprising.
JP2018103573A 2018-05-30 2018-05-30 Near-infrared absorbing fine particle dispersion and its manufacturing method Active JP7024608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018103573A JP7024608B2 (en) 2018-05-30 2018-05-30 Near-infrared absorbing fine particle dispersion and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018103573A JP7024608B2 (en) 2018-05-30 2018-05-30 Near-infrared absorbing fine particle dispersion and its manufacturing method

Publications (3)

Publication Number Publication Date
JP2019206670A true JP2019206670A (en) 2019-12-05
JP2019206670A5 JP2019206670A5 (en) 2021-05-06
JP7024608B2 JP7024608B2 (en) 2022-02-24

Family

ID=68768359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018103573A Active JP7024608B2 (en) 2018-05-30 2018-05-30 Near-infrared absorbing fine particle dispersion and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7024608B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019206669A (en) * 2018-05-30 2019-12-05 住友金属鉱山株式会社 Near-infrared absorptive polyester resin composition and production method of the same, and near-infrared absorptive polyester resin molded body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008044609A (en) * 2006-03-30 2008-02-28 Sumitomo Metal Mining Co Ltd Sunshine screen for vehicle window and vehicle window
JP2009062409A (en) * 2007-09-04 2009-03-26 Bridgestone Corp Near infrared-shielding material, laminate and optical filter for display using the same and display
JP2012246183A (en) * 2011-05-27 2012-12-13 Sumitomo Metal Mining Co Ltd Manufacturing method for composition containing heat ray shielding fine particle, composition containing heat ray shielding fine particle, heat ray shielding film using composition of heat ray shielding fine particle, transparent laminated substrate using heat ray shielding film and manufacturing method for these
JP2016108221A (en) * 2014-11-10 2016-06-20 株式会社クラレ Intermediate film for glass laminate and glass laminate
JP2019206669A (en) * 2018-05-30 2019-12-05 住友金属鉱山株式会社 Near-infrared absorptive polyester resin composition and production method of the same, and near-infrared absorptive polyester resin molded body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008044609A (en) * 2006-03-30 2008-02-28 Sumitomo Metal Mining Co Ltd Sunshine screen for vehicle window and vehicle window
JP2009062409A (en) * 2007-09-04 2009-03-26 Bridgestone Corp Near infrared-shielding material, laminate and optical filter for display using the same and display
JP2012246183A (en) * 2011-05-27 2012-12-13 Sumitomo Metal Mining Co Ltd Manufacturing method for composition containing heat ray shielding fine particle, composition containing heat ray shielding fine particle, heat ray shielding film using composition of heat ray shielding fine particle, transparent laminated substrate using heat ray shielding film and manufacturing method for these
JP2016108221A (en) * 2014-11-10 2016-06-20 株式会社クラレ Intermediate film for glass laminate and glass laminate
JP2019206669A (en) * 2018-05-30 2019-12-05 住友金属鉱山株式会社 Near-infrared absorptive polyester resin composition and production method of the same, and near-infrared absorptive polyester resin molded body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019206669A (en) * 2018-05-30 2019-12-05 住友金属鉱山株式会社 Near-infrared absorptive polyester resin composition and production method of the same, and near-infrared absorptive polyester resin molded body
JP7070099B2 (en) 2018-05-30 2022-05-18 住友金属鉱山株式会社 Near-infrared absorbing polyester resin composition and its manufacturing method and near-infrared absorbing polyester resin molded product

Also Published As

Publication number Publication date
JP7024608B2 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
JP4632094B2 (en) Manufacturing method of high heat-resistant masterbatch, heat ray shielding transparent resin molding, and heat ray shielding transparent laminate
KR101507186B1 (en) Composition for producing vinyl chloride film for shielding heat ray, method for production of the composition, and vinyl chloride film for shielding heat ray
AU2007360455B2 (en) Masterbatch with high heat resistance, heat-ray-shielding transparent molded resin, and heat-ray-shielding transparent layered product
US7666930B2 (en) Master batch containing heat radiation shielding component, and heat radiation shielding transparent resin form and heat radiation shielding transparent laminate for which the master batch has been used
WO2017104854A1 (en) Near infrared shielding ultrafine particle dispersion, interlayer for solar shading, infrared shielding laminated structure, and method for producing near infrared shielding ultrafine particle dispersion
JP5257626B2 (en) High heat resistant masterbatch, heat ray shielding transparent resin molding, and heat ray shielding transparent laminate
JPWO2018020819A1 (en) Near infrared absorbing fine particle dispersion, near infrared absorbing fine particle dispersion, near infrared absorbing transparent base, near infrared absorbing transparent base
JP6879127B2 (en) Heat ray shielding particles, manufacturing method of heat ray shielding particles, heat ray shielding particle dispersion liquid, manufacturing method of heat ray shielding particle dispersion liquid, heat ray shielding particle dispersion, heat ray shielding laminated transparent base material, heat ray shielding transparent base material
WO2016010156A1 (en) Heat-ray-shielding microparticles, heat-ray-shielding microparticle liquid dispersion, heat-ray-shielding film, heat-ray-shielding glass, heat-ray-shielding dispersion, and heat-ray-shielding laminated transparent substrate
WO2014192676A1 (en) Heat ray-shielding microparticle-containing composition and method for producing same, heat ray-shielding film, and heat ray-shielding laminated transparent base material
JP2012082326A (en) Master batch containing high heat-resistant heat ray shielding component, production method of the master batch, high heat-resistant heat ray shielding transparent resin molded article, and high heat-resistant heat ray shielding transparent laminate
JP5898397B2 (en) Near-infrared shielding polyester resin composition, near-infrared shielding polyester resin laminate, molded article and method for producing the same
JP5257381B2 (en) Near-infrared shielding polyester resin composition, molded article thereof, and laminate thereof
US11661350B2 (en) Near-infrared absorbing material fine particle dispersion, near-infrared absorber, near-infrared absorber laminate, and laminated structure for near-infrared absorption
JP7024608B2 (en) Near-infrared absorbing fine particle dispersion and its manufacturing method
JP2019206669A (en) Near-infrared absorptive polyester resin composition and production method of the same, and near-infrared absorptive polyester resin molded body
TWI705099B (en) Aggregate of fine metal particles, fine metal particle dispersion liquid, heat ray shielding film, heat ray shielding glass, heat ray shielding fine particle dispersion and heat ray shielding laminated transparent base material
JP5061665B2 (en) Masterbatch, method for producing the same, molded body using the masterbatch, and laminate using the molded body
WO2019098144A1 (en) Infrared absorber object
JP6949304B2 (en) Masterbatch containing heat ray absorbing component and its manufacturing method, heat ray absorbing transparent resin molded body, and heat ray absorbing transparent laminate
JP5152131B2 (en) Method for producing hexaboride fine particle dispersion, heat ray shielding molded body and production method thereof, heat ray shielding component-containing masterbatch and production method thereof, and heat ray shielding laminate
TWI666352B (en) Heat-ray shielding fine particles, heat-ray shielding fine particles dispersion liquid, heat-ray shielding film, heat-ray shielding glass, heat-ray shielding fine particles dispersion body and heat-ray shielding laminated transparent base material
JP2009235303A (en) Antimony-doped tin oxide fine particles dispersion for addition to polycarbonate resin, its manufacturing method, and antimony-doped tin oxide dispersed polycarbonate resin molded product
JP2009144037A (en) Tungsten oxide microparticle dispersion for addition to resin, molded product of tungsten oxide microparticle-dispersed vinyl chloride resin, and method for producing molded product of tungsten oxide microparticle-dispersed vinyl chloride resin
JP6972524B2 (en) Polyester film

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210329

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220124

R150 Certificate of patent or registration of utility model

Ref document number: 7024608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150