JP2012082326A - Master batch containing high heat-resistant heat ray shielding component, production method of the master batch, high heat-resistant heat ray shielding transparent resin molded article, and high heat-resistant heat ray shielding transparent laminate - Google Patents

Master batch containing high heat-resistant heat ray shielding component, production method of the master batch, high heat-resistant heat ray shielding transparent resin molded article, and high heat-resistant heat ray shielding transparent laminate Download PDF

Info

Publication number
JP2012082326A
JP2012082326A JP2010229976A JP2010229976A JP2012082326A JP 2012082326 A JP2012082326 A JP 2012082326A JP 2010229976 A JP2010229976 A JP 2010229976A JP 2010229976 A JP2010229976 A JP 2010229976A JP 2012082326 A JP2012082326 A JP 2012082326A
Authority
JP
Japan
Prior art keywords
ray shielding
heat ray
high heat
fine particles
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010229976A
Other languages
Japanese (ja)
Inventor
Takeshi Naganami
武 長南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2010229976A priority Critical patent/JP2012082326A/en
Publication of JP2012082326A publication Critical patent/JP2012082326A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a master batch relating to a heat ray shielding transparent resin molded article in various shapes having transmitting property for visible rays and a heat ray shielding function, the master batch containing a high heat-resistant heat ray shielding component, from which a transparent resin molded article having good transmitting property for visible rays, a superior heat ray shielding function and high heat resistance can be obtained.SOLUTION: The master batch containing the high heat-resistant heat ray shielding component contains: composite tungsten oxide fine particles having a hexagonal crystalline structure expressed by general formula MWO, the particles subjected to an oxidation exposure treatment at 50°C or higher and 400°C or lower in an oxygen-containing atmosphere; and at least one kind of thermoplastic resin selected from an acrylic resin, a polycarbonate resin, a polyether imide resin, a polystyrene resin, a polyether sulfonic resin, a fluororesin, a polyolefin resin and a polyester resin. The master batch is used for producing a heat ray shielding transparent resin molded article.

Description

本発明は、建築物の屋根材や壁材、自動車、電車、航空機などの開口部に使用される窓材、アーケード、天井ドーム、カーポート等に広く利用される熱線遮蔽成形体の製造に用いられる高耐熱性熱線遮蔽成分含有マスターバッチおよびその製造方法、当該マスターバッチを用いて製造された高耐熱性熱線遮蔽透明樹脂成形体、並びに高耐熱性熱線遮蔽透明積層体に関するものである。   The present invention is used for the manufacture of heat ray shielding moldings widely used for window materials, arcades, ceiling domes, carports, etc. used for building roofing materials and wall materials, automobiles, trains, airplanes, etc. The present invention relates to a masterbatch containing a high heat resistance heat ray shielding component and a production method thereof, a high heat resistance heat ray shielding transparent resin molding produced using the master batch, and a high heat resistance heat ray shielding transparent laminate.

各種建築物や車両の窓、ドア等のいわゆる開口部分から入射する太陽光線には可視光線の他に紫外線や赤外線が含まれている。この太陽光線に含まれている赤外線のうち波長800〜2500nmの近赤外線は熱線と呼ばれ、開口部分から進入することにより室内の温度を上昇させる原因になる。これを解消するために、近年、各種建築物や車両の窓材等の分野では、可視光線を十分に取り入れながら熱線を遮蔽し、明るさを維持しつつ室内の温度上昇を抑制する熱線遮蔽成形体の需要が急増しており、熱線遮蔽成形体に関し多くの提案がなされている。   In addition to visible light, ultraviolet rays and infrared rays are included in the sunlight that enters through so-called openings such as windows and doors of various buildings and vehicles. Near infrared rays having a wavelength of 800 to 2500 nm among infrared rays contained in the sunlight are called heat rays, and cause the indoor temperature to rise by entering from the opening. In order to solve this problem, in recent years, in various fields of buildings and vehicle window materials, heat ray shielding molding that shields heat rays while taking in enough visible light, and suppresses temperature rise while maintaining brightness. The demand for the body has increased rapidly, and many proposals have been made regarding the heat ray shielding molded body.

例えば、透明樹脂フィルムに金属、金属酸化物を蒸着してなる熱線反射フィルムを、ガラス、アクリル板、ポリカーボネート板等の透明成形体に接着した熱線遮蔽板が提案されていた。しかし、この熱線反射フィルム自体が非常に高価である。その上、接着工程等の煩雑な工程を要するため高コストとなる。また、透明成形体と反射フィルムとの接着性が良好でないので、経時変化によりフィルムの剥離が生じるといった欠点を有している。   For example, a heat ray shielding plate has been proposed in which a heat ray reflective film obtained by vapor-depositing a metal or metal oxide on a transparent resin film is bonded to a transparent molded body such as glass, an acrylic plate, or a polycarbonate plate. However, this heat ray reflective film itself is very expensive. In addition, since a complicated process such as an adhesion process is required, the cost is increased. Moreover, since the adhesiveness of a transparent molded object and a reflective film is not favorable, it has the fault that peeling of a film arises by a time-dependent change.

透明成形体表面に、金属若しくは金属酸化物を直接蒸着してなる熱線遮蔽板も数多く提案されている。当該熱線遮蔽板の製造に際しては、高真空で精度の高い雰囲気制御を要する装置が必要となるため、量産性が悪く、汎用性に乏しいという問題を有している。   Many heat ray shielding plates formed by directly depositing metal or metal oxide on the surface of the transparent molded body have been proposed. In manufacturing the heat-ray shielding plate, an apparatus that requires high-vacuum and high-precision atmosphere control is required, which has a problem that mass productivity is poor and versatility is poor.

この他、例えば、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリエチレン樹脂、ポリスチレン樹脂等の熱可塑性透明樹脂にフタロシアニン系化合物、アントラキノン系化合物に代表される有機近赤外線吸収剤を練り込んだ熱線遮蔽板およびフィルムが提案されている(特許文献1、2等参照)。
さらに、例えば、アクリル樹脂、ポリカーボネート樹脂等の透明樹脂に、熱線反射能を有する酸化チタンあるいは酸化チタンで被覆されたマイカ等の無機粒子を、熱線反射粒子として練り込んだ熱線遮蔽板も提案されている(特許文献3、4等参照)。
In addition, for example, a heat ray shielding plate in which an organic near-infrared absorber typified by a phthalocyanine compound or an anthraquinone compound is incorporated into a thermoplastic transparent resin such as polyethylene terephthalate resin, polycarbonate resin, acrylic resin, polyethylene resin, or polystyrene resin. And films have been proposed (see Patent Documents 1 and 2, etc.).
Furthermore, for example, a heat ray shielding plate in which inorganic particles such as mica coated with titanium oxide or titanium oxide having heat ray reflectivity are kneaded as heat ray reflective particles in a transparent resin such as acrylic resin and polycarbonate resin has been proposed. (See Patent Documents 3 and 4).

一方、本出願人は、熱線遮蔽効果を有する成分として自由電子を多量に保有する六ホウ化物微粒子に着目し、ポリカーボネート樹脂やアクリル樹脂中に、六ホウ化物微粒子が分散され、または、六ホウ化物微粒子とITO微粒子及び/又はATO微粒子とが分散されている熱線遮蔽樹脂シート材を開示している(特許文献5参照)。   On the other hand, the present applicant pays attention to hexaboride fine particles having a large amount of free electrons as a component having a heat ray shielding effect, and hexaboride fine particles are dispersed in polycarbonate resin or acrylic resin, or hexaboride. A heat ray shielding resin sheet material in which fine particles and ITO fine particles and / or ATO fine particles are dispersed is disclosed (see Patent Document 5).

六ホウ化物微粒子単独、または、六ホウ化物微粒子と、ITO微粒子および/またはATO微粒子と、が分散された熱線遮蔽樹脂シート材の光学特性は、可視光領域に可視光透過率の極大を有すると共に、近赤外線領域に強い吸収を発現して日射透過率の極小を有する。この結果、可視光透過率が70%以上で日射透過率が50%台という光学特性を発揮する。
本出願人は、特許文献6において、熱可塑性樹脂と熱線遮蔽成分六ホウ化物(XB,但し、Xは、La、Ce、Pr、Nd、Gd、Tb、Dy、Ho、Y、Sm、Eu、Er、Tm、Yb、Lu、SrおよびCaから選択される少なくとも1種以上)とを主成分として含有するマスターバッチと、このマスターバッチが適用された熱線遮蔽透明樹脂成形体並びに熱線遮蔽透明積層体を開示した。そして、当該マスターバッチを適用することで、優れた可視光線透過能を維持しつつ高い熱線遮蔽機能を有する様々な形状の熱線遮蔽透明樹脂成形体を、高コストの物理成膜法などを用いることなく簡便な方法で作製することを開示した。
The optical properties of the heat ray shielding resin sheet material in which hexaboride fine particles alone or hexaboride fine particles, ITO fine particles and / or ATO fine particles are dispersed have a maximum of visible light transmittance in the visible light region. It exhibits a strong absorption in the near infrared region and has a minimum solar radiation transmittance. As a result, the optical characteristics of visible light transmittance of 70% or more and solar radiation transmittance in the range of 50% are exhibited.
The present applicant has disclosed in Patent Document 6 a thermoplastic resin and a heat ray shielding component hexaboride (XB 6 , where X is La, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Y, Sm, Eu. , Er, Tm, Yb, Lu, Sr and Ca) as a main component, and a heat ray-shielding transparent resin molded article and heat ray-shielding transparent laminate to which the masterbatch is applied. Disclosed the body. And, by applying the masterbatch, heat-shielding transparent resin moldings of various shapes having a high heat-ray shielding function while maintaining excellent visible light transmission ability, using a high-cost physical film-forming method, etc. It was disclosed that it was prepared by a simple method without any problem.

さらに、本出願人は、特許文献7において、日射遮蔽機能を有する微粒子として、一般式WyOz(但し、Wはタングステン、Oは酸素、2.0<z/y<3.0)で表記されるタングステン酸化物の微粒子、および/または、一般式MxWyOz(但し、Wはタングステン、Oは酸素、0.001≦x/y≦1、2.0<z/y≦3.0)で表記される複合タングステン酸化物の微粒子を適用することにより、高い日射遮蔽特性を有し、ヘイズ値が小さく、生産コストの安価な日射遮蔽用合わせ構造体を製造できることを開示している。   Further, in the patent document 7, the applicant of the present invention is represented by the general formula WyOz (where W is tungsten, O is oxygen, 2.0 <z / y <3.0) as fine particles having a solar radiation shielding function. Tungsten oxide fine particles and / or general formula MxWyOz (W is tungsten, O is oxygen, 0.001 ≦ x / y ≦ 1, 2.0 <z / y ≦ 3.0) By applying fine particles of composite tungsten oxide, it is disclosed that a solar radiation shielding laminated structure having high solar radiation shielding characteristics, a low haze value, and low production costs can be manufactured.

特開平6−256541号公報JP-A-6-256541 特開平6−264050号公報JP-A-6-264050 特開平2−173060号公報JP-A-2-173060 特開平5−78544号公報JP-A-5-78544 特開2003−327717号公報JP 2003-327717 A 特開2004−59875号公報JP 2004-59875 A 国際公開第WO2005/87680A1号パンフレットInternational Publication No. WO2005 / 87680A1 Pamphlet

本発明者らの検討によると、特許文献1、2に記載の熱線遮蔽板およびフィルムにおいては、熱線を十分に遮蔽するために多量の近赤外線吸収剤を配合しなければならない。しかし、近赤外線吸収剤を多量に配合すると、今度は可視光線透過能が低下してしまうという課題がある。さらに、近赤外線吸収剤として有機化合物を使用しているため、直射日光に常時曝される建築物や車両の窓材等への適用は耐侯性に難があり、必ずしも適当であるとはいえなかった。   According to the study by the present inventors, in the heat ray shielding plates and films described in Patent Documents 1 and 2, a large amount of near infrared absorber must be blended in order to sufficiently shield the heat rays. However, when a large amount of the near-infrared absorber is blended, there is a problem that the visible light transmission ability is lowered. Furthermore, since organic compounds are used as near-infrared absorbers, application to buildings and vehicle window materials that are constantly exposed to direct sunlight has difficulty in weather resistance and is not necessarily appropriate. It was.

また特許文献3、4に記載の熱線遮蔽板においては、熱線遮蔽能を高めるために当該熱線反射粒子を多量に添加する必要があり、熱線反射粒子の配合量の増大に伴って可視光線透過能が低下したり、成形体である透明樹脂の物性、特に耐衝撃強度や靭性が低下するという課題があった。
一方、特許文献5乃至7に記載の熱線遮蔽シート材は、耐熱性に関し十分満足すべきものではなく、未だ改善の余地が残されていた。
In addition, in the heat ray shielding plates described in Patent Documents 3 and 4, it is necessary to add a large amount of the heat ray reflective particles in order to enhance the heat ray shielding ability, and the visible light transmission ability is increased as the blending amount of the heat ray reflective particles is increased. There is a problem that the physical properties of the transparent resin as a molded body, particularly the impact strength and toughness, are lowered.
On the other hand, the heat ray shielding sheet materials described in Patent Documents 5 to 7 are not sufficiently satisfactory with respect to heat resistance, and there is still room for improvement.

本発明は上述の問題点に着目してなされたもので、その課題とするところは、可視光線透過能及び熱線遮蔽機能を有する様々な形状の熱線遮蔽透明樹脂成形体について、可視光透過性が良好でかつ優れた熱線遮蔽機能を有し、さらには高耐熱性の透明樹脂成形体が得られる高耐熱性熱線遮蔽成分含有マスターバッチおよびその製造方法を提供し、併せてこのマスターバッチを用いて製造された高耐熱性熱線遮蔽透明樹脂成形体、並びに高耐熱性熱線遮蔽透明積層体を提供することにある。   The present invention has been made paying attention to the above-mentioned problems, and the problem is that the visible light transmittance of various shapes of the heat ray-shielding transparent resin moldings having a visible ray transmission ability and a heat ray shielding function. Provided a masterbatch containing a high heat resistance heat ray shielding component having a good and excellent heat ray shielding function, and further obtaining a highly heat resistant transparent resin molded product, and a method for producing the same, and using this master batch together An object of the present invention is to provide a manufactured high heat resistant heat ray shielding transparent resin molding and a high heat resistant heat ray shielding transparent laminate.

上記課題を解決するため、本発明者等が鋭意研究をおこなった結果、一般式MyWOz(但し、MはCs、Rb、K、Na、Ba、Ca、Sr、Mg、Nb、Ge、In、Tlの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で表記される六方晶の結晶構造を有する複合タングステン酸化物微粒子が既に酸化物であるにも拘わらず、当該複合タングステン酸化物微粒子を、酸素含有雰囲気下で酸化暴露処理した熱線遮蔽材料微粒子が、耐熱性に優れていることを知見するに至り、かつ、当該熱線遮蔽材料微粒子が分散されてなるマスターバッチや熱線遮蔽透明樹脂成形体並びに熱線遮蔽透明積層体も耐熱性に優れていることを知見するに至った。本発明はこのような技術的知見に基づき完成されたものである。   In order to solve the above-mentioned problems, the present inventors have conducted extensive research. As a result, the general formula MyWOz (where M is Cs, Rb, K, Na, Ba, Ca, Sr, Mg, Nb, Ge, In, Tl). One or more elements selected from the above, W is tungsten, O is oxygen, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) Although the composite tungsten oxide fine particles are already oxides, the heat-shielding material fine particles obtained by subjecting the composite tungsten oxide fine particles to an oxidation exposure treatment in an oxygen-containing atmosphere are found to have excellent heat resistance. In addition, it has been found that the masterbatch in which the heat ray shielding material fine particles are dispersed, the heat ray shielding transparent resin molding, and the heat ray shielding transparent laminate are also excellent in heat resistance. The present invention has been completed based on such technical knowledge.

すなわち、上述の課題を解決するための第1の構成は、
一般式MWO(但し、MはCs、Rb、K、Na、Ba、Ca、Sr、Mg、Nb、Ge、In、Tlの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で示される六方晶の結晶構造を持つ複合タングステン酸化物微粒子であって、さらに、酸素含有雰囲気下において50℃以上400℃以下で酸化暴露処理された複合タングステン酸化物微粒子と、
アクリル樹脂、ポリカーボネート樹脂、ポリエーテルイミド樹脂、ポリスチレン樹脂、ポリエーテルスルホン樹脂、フッ素樹脂、ポリオレフィン樹脂およびポリエステル樹脂から選択される1種以上の前記熱可塑性樹脂とを含み、
熱線遮蔽透明樹脂成形体を製造するために用いられることを特徴とする高耐熱性熱線遮蔽成分含有マスターバッチである。
第2の構成は、
前記酸化暴露処理を施して得られた複合タングステン酸化物微粒子が、分散粒子径800nm以下の微粒子であることを特徴とする請求項1に記載の高耐熱性熱線遮蔽成分含有マスターバッチである。
第3の構成は、
第1または第2の構成に記載の高耐熱性熱線遮蔽成分含有マスターバッチが、このマスターバッチの上記熱可塑性樹脂と同種の熱可塑性樹脂成形材料若しくは相溶性を有する異種の熱可塑性樹脂成形材料により希釈され、かつ、所定の形状に成形されたものであることを特徴とする高耐熱性熱線遮蔽透明樹脂成形体である。
第4の構成は、
第3の構成に記載の高耐熱性熱線遮蔽透明樹脂成形体が、他の透明成形体に積層されたものであることを特徴とする高耐熱性熱線遮蔽透明積層体である。
第5の構成は、
熱線遮蔽透明樹脂成形体を製造するために用いられる高耐熱性熱線遮蔽成分含有マスターバッチの製造方法であって、
一般式MyWOz(但し、0.1≦Y≦0.5、2.2≦Z≦3.0)で示され且つ六方晶の結晶構造を持つ複合タングステン酸化物微粒子を酸素含有雰囲気下において、50℃以上400℃以下で酸化暴露処理する工程と、
当該酸化暴露処理された複合タングステン酸化物微粒子と、分散剤とを、溶媒に加え粉砕・分散処理を行い、微粒子分散液を得る工程と、
当該微粒子分散液を得る工程の後、溶媒を除去して、当該微粒子分散粉を得る工程と、
当該微粒子分散粉と熱可塑性樹脂ペレットとを混合し、熔融混練し、成形する工程とを、具備することを特徴とする高耐熱性熱線遮蔽成分含有マスターバッチの製造方法である。
第6の構成は、
前記酸素含有雰囲気の酸素濃度が、0.1体積%以上25体積%以下であることを特徴とする第5の構成に記載の高耐熱性熱線遮蔽成分含有マスターバッチの製造方法の製造方法である。
That is, the first configuration for solving the above-described problem is:
Formula M y WO z (where, M is Cs, Rb, K, Na, Ba, Ca, Sr, Mg, Nb, Ge, In, 1 or more elements selected from among Tl, W is tungsten, O is a composite tungsten oxide fine particle having a hexagonal crystal structure represented by oxygen, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0), and further in an oxygen-containing atmosphere. Composite tungsten oxide fine particles treated by oxidation exposure at 50 ° C. or higher and 400 ° C. or lower;
And one or more thermoplastic resins selected from acrylic resins, polycarbonate resins, polyetherimide resins, polystyrene resins, polyethersulfone resins, fluororesins, polyolefin resins and polyester resins,
A masterbatch containing a high heat resistance heat ray shielding component, which is used for producing a heat ray shielding transparent resin molded article.
The second configuration is
2. The high heat-resistant heat ray shielding component-containing masterbatch according to claim 1, wherein the composite tungsten oxide fine particles obtained by the oxidation exposure treatment are fine particles having a dispersed particle diameter of 800 nm or less.
The third configuration is
The high heat-resistant heat ray shielding component-containing masterbatch described in the first or second configuration is made of the same kind of thermoplastic resin molding material as the thermoplastic resin of the masterbatch or a different type of thermoplastic resin molding material having compatibility. A highly heat-resistant heat ray-shielding transparent resin molded article that is diluted and molded into a predetermined shape.
The fourth configuration is
A high heat resistant heat ray shielding transparent laminate, wherein the high heat resistant heat ray shielding transparent resin molding described in the third configuration is laminated on another transparent molding.
The fifth configuration is
A method for producing a heat-shielding heat ray shielding component-containing masterbatch used for producing a heat ray shielding transparent resin molded article,
A composite tungsten oxide fine particle represented by the general formula MyWOz (where 0.1 ≦ Y ≦ 0.5, 2.2 ≦ Z ≦ 3.0) and having a hexagonal crystal structure is obtained in an oxygen-containing atmosphere. A step of oxidizing exposure treatment at a temperature of from ℃ to 400 ℃,
A step of adding the composite tungsten oxide fine particles subjected to the oxidation exposure treatment and a dispersing agent to a solvent and performing pulverization / dispersion treatment to obtain a fine particle dispersion;
After obtaining the fine particle dispersion, removing the solvent to obtain the fine particle dispersion; and
A method for producing a masterbatch containing a high heat resistance heat ray shielding component, comprising: mixing, melting and kneading and molding the fine particle dispersed powder and a thermoplastic resin pellet.
The sixth configuration is
It is a manufacturing method of the manufacturing method of the high heat resistant heat ray shielding component containing masterbatch as described in the 5th structure characterized by the oxygen concentration of the said oxygen containing atmosphere being 0.1 volume% or more and 25 volume% or less. .

本発明に係る高耐熱性熱線遮蔽成分含有マスターバッチを熱可塑性樹脂成形材料により希釈・混練し、さらに、押出成形、射出成形、圧縮成形等公知の方法により、板状、フィルム状、球面状等の任意の形状に成形することによって、可視光領域に透過率の極大を持つと共に近赤外域に強い吸収を持ち、かつ高耐熱性の熱線遮蔽透明樹脂成形体並びに熱線遮蔽透明積層体の作製が可能となった。   A masterbatch containing a high heat-resistant heat ray shielding component according to the present invention is diluted and kneaded with a thermoplastic resin molding material, and further, a plate shape, a film shape, a spherical shape, etc. by a known method such as extrusion molding, injection molding, compression molding, etc. By forming into an arbitrary shape, it is possible to produce a heat ray shielding transparent resin molding and a heat ray shielding transparent laminate having a maximum transmittance in the visible light region and strong absorption in the near infrared region and having high heat resistance. It has become possible.

以下、本発明の実施の形態について、具体的に説明する。
本実施形態の熱線遮蔽透明樹脂成形体用の高耐熱性熱線遮蔽成分含有マスターバッチは、熱可塑性樹脂と、一般式MWO(但し、MはCs、Rb、K、Na、Ba、Ca、Sr、Mg、Nb、Ge、In、Tlの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)とで示される六方晶の結晶構造を持つ複合タングステン酸化物微粒子とを主成分としている。そして、前記熱可塑性樹脂が、アクリル樹脂、ポリカーボネート樹脂、ポリエーテルイミド樹脂、ポリスチレン樹脂、ポリエーテルスルホン樹脂、フッ素樹脂、ポリオレフィン樹脂およびポリエステル樹脂から選択される少なくとも一種であると共に、上記複合タングステン酸化物微粒子表面が酸化暴露処理されていることを特徴とする高耐熱性熱線遮蔽成分含有マスターバッチである。
Hereinafter, embodiments of the present invention will be specifically described.
The masterbatch containing a high heat resistance heat ray shielding component for the heat ray shielding transparent resin molded article of the present embodiment is composed of a thermoplastic resin and a general formula M y WO z (where M is Cs, Rb, K, Na, Ba, Ca). , Sr, Mg, Nb, Ge, In, Tl, one or more elements selected from W, tungsten, O is oxygen, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3. The main component is composite tungsten oxide fine particles having a hexagonal crystal structure represented by (0). The thermoplastic resin is at least one selected from an acrylic resin, a polycarbonate resin, a polyetherimide resin, a polystyrene resin, a polyethersulfone resin, a fluororesin, a polyolefin resin, and a polyester resin, and the composite tungsten oxide. A masterbatch containing a highly heat-resistant heat ray shielding component, characterized in that the surface of fine particles is subjected to an oxidation exposure treatment.

以下、当該高耐熱性熱線遮蔽成分含有マスターバッチを構成する、複合タングステン酸化物微粒子、高耐熱性分散剤、熱可塑性樹脂について順に説明し、さらに、熱線遮蔽機能を有する微粒子の熱可塑性樹脂への分散方法、高耐熱性熱線遮蔽成分含有マスターバッチの製造方法、について説明し、最後に、熱線遮蔽透明樹脂成形体について説明する。   Hereinafter, the composite tungsten oxide fine particles, the high heat resistant dispersant, and the thermoplastic resin constituting the high heat resistant heat ray shielding component-containing master batch will be described in this order, and further, the fine particles having a heat ray shielding function to the thermoplastic resin will be described. A dispersion method and a method for producing a high heat-resistant heat ray shielding component-containing masterbatch will be described, and finally, a heat ray shielding transparent resin molded product will be described.

1)複合タングステン酸化物微粒子
複合タングステン酸化物微粒子は、近赤外線領域、特に波長1000nm付近の光を大きく吸収するため、その透過色調はブルー系の色調となるものが多い。また、当該熱線遮蔽材料の粒子径は、その使用目的によって適宜選定することができる。
1) Composite tungsten oxide fine particles The composite tungsten oxide fine particles absorb a large amount of light in the near-infrared region, particularly in the vicinity of a wavelength of 1000 nm. Therefore, the transmitted color tone often has a blue color tone. Moreover, the particle diameter of the said heat ray shielding material can be suitably selected according to the use purpose.

まず、透明性を保持した応用に使用する場合には、複合タングステン酸化物微粒子は、800nm以下の分散粒子径を有していることが好ましい。800nmよりも小さい分散粒子径は、散乱により光を完全に遮蔽することが無く、可視光領域の視認性を保持し、同時に効率よく透明性を保持することができるからである。特に可視光領域の透明性を重視する場合には、さらに粒子による散乱を考慮することが好ましい。   First, when used for applications that maintain transparency, the composite tungsten oxide fine particles preferably have a dispersed particle diameter of 800 nm or less. This is because a dispersed particle size of less than 800 nm does not completely block light by scattering, can maintain visibility in the visible light region, and at the same time can efficiently maintain transparency. In particular, when importance is attached to transparency in the visible light region, it is preferable to further consider scattering by particles.

また、この粒子による散乱の低減を重視するときには、複合タングステン酸化物微粒子の分散粒子径は200nm以下、好ましくは100nm以下がよい。その理由は、分散粒子の分散粒子径が小さければ、幾何学散乱もしくはミー散乱による波長400nm〜780nmの可視光線領域の光の散乱が低減されるからである。当該光の散乱が低減される結果、熱線遮蔽膜が曇りガラスのようになって鮮明な透明性が得られなくなるのを回避できるからである。即ち、分散粒子の分散粒子径が200nm以下になると、上記幾何学散乱もしくはミー散乱が低減し、レイリー散乱領域になるからである。当該レイリー散乱領域では、散乱光は粒子径の6乗に反比例して低減するため、分散粒子径の減少に伴い散乱が低減し、透明性が向上するからである。さらに、分散粒子径が100nm以下になると、散乱光は非常に少なくなり好ましい。光の散乱を回避する観点からは、分散粒子径が小さい方が好ましく、分散粒子径が1nm以上であれば工業的な製造は容易である。   When importance is attached to the reduction of scattering by the particles, the dispersed particle diameter of the composite tungsten oxide fine particles is 200 nm or less, preferably 100 nm or less. The reason is that if the dispersed particle diameter of the dispersed particles is small, the scattering of light in the visible light region having a wavelength of 400 nm to 780 nm due to geometric scattering or Mie scattering is reduced. This is because, as a result of the light scattering being reduced, it can be avoided that the heat ray shielding film becomes like frosted glass and clear transparency cannot be obtained. That is, when the dispersed particle diameter of the dispersed particles is 200 nm or less, the geometric scattering or Mie scattering is reduced and a Rayleigh scattering region is obtained. This is because in the Rayleigh scattering region, the scattered light is reduced in inverse proportion to the sixth power of the particle diameter, so that the scattering is reduced and the transparency is improved as the dispersed particle diameter is reduced. Furthermore, when the dispersed particle size is 100 nm or less, the scattered light is preferably extremely small. From the viewpoint of avoiding light scattering, it is preferable that the dispersed particle size is small. If the dispersed particle size is 1 nm or more, industrial production is easy.

上記複合酸化物微粒子は、一般式MWO(但し、0.1≦y≦0.5、2.2≦z≦3.0)で示され、かつ六方晶の結晶構造を持つ複合タングステン酸化物微粒子である。ここで、M元素が、例えばCs、Rb、K、Tl、Na、Ba、Ca、Sr、Mg、Nb、Ge、In、Tlの内から選択される1種類以上を含むような複合タングステン酸化物微粒子が挙げられる。添加元素Mの添加量yは、0.1以上、0.5以下が好ましく、更に好ましくは0.33付近が好ましい。これは六方晶の結晶構造から理論的に算出されるyの値が0.33であり、この前後の添加量で好ましい光学特性が得られるからである。また、zの範囲については、2.2≦z≦3.0が好ましい。 The composite oxide fine particles are composite tungsten represented by the general formula M y WO z (where 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) and having a hexagonal crystal structure. Oxide fine particles. Here, the composite tungsten oxide in which the M element includes one or more selected from, for example, Cs, Rb, K, Tl, Na, Ba, Ca, Sr, Mg, Nb, Ge, In, and Tl. Fine particles are mentioned. The addition amount y of the additive element M is preferably 0.1 or more and 0.5 or less, and more preferably around 0.33. This is because the value of y theoretically calculated from the hexagonal crystal structure is 0.33, and preferable optical characteristics can be obtained with addition amounts around this value. Moreover, about the range of z, 2.2 <= z <= 3.0 is preferable.

本発明に係る複合タングステン酸化物微粒子は、上述の構成を有する複合タングステン酸化物微粒子が既に酸化物であるにも拘わらず、当該複合タングステン酸化物微粒子を、酸素含有雰囲気下で暴露による酸化処理して得られたものである。
当該暴露による酸化処理により、最終製品である高耐熱性熱線遮蔽透明樹脂成形体や積層体の耐熱性が向上する正確な機構は未だ不明である。しかし、本発明者らは、当該暴露による酸化処理により、上述の構成を有する複合タングステン酸化物微粒子の表面に、さらに、新たな酸化膜が形成され当該酸化膜が外部酸素のバリアー層となる結果、本発明に係る複合タングステン酸化物微粒子の耐熱性が向上し、最終製品である高耐熱性熱線遮蔽透明樹脂成形体や積層体の耐熱性が向上したものと考えている。
The composite tungsten oxide fine particles according to the present invention are obtained by subjecting the composite tungsten oxide fine particles to oxidation treatment by exposure in an oxygen-containing atmosphere even though the composite tungsten oxide fine particles having the above-described configuration are already oxides. It was obtained.
The exact mechanism by which the heat resistance of the final heat-resistant heat-shielding transparent resin molded product or laminate is improved by the oxidation treatment by the exposure is still unclear. However, the present inventors have a result that a new oxide film is further formed on the surface of the composite tungsten oxide fine particles having the above-described structure by the oxidation treatment by the exposure, and the oxide film becomes a barrier layer of external oxygen. It is considered that the heat resistance of the composite tungsten oxide fine particles according to the present invention is improved, and the heat resistance of the high heat resistant heat ray shielding transparent resin molded product or the laminate as the final product is improved.

2)複合タングステン酸化物微粒子の製造方法
本発明に係る一般式MWO(但し、Mは前記M元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で表される複合タングステン酸化物微粒子の製造方法について説明する。
本発明に係る高耐熱性熱線遮蔽体形成用複合タングステン酸化物微粒子は、タングステン酸(H2WO4)とM元素の酸化物または/および水酸化物とを混合した混合粉、または、三酸化タングステン微粒子とM元素の酸化物または/および水酸化物とを混合した混合粉、または、タングステン酸(H2WO4)と三酸化タングステン微粒子との混合物と、M元素の酸化物または/および水酸化物とを混合した混合粉、または、タングステン酸(H2WO4)および/または三酸化タングステン微粒子と、M元素の金属塩の水溶液、金属酸化物のコロイド溶液、アルコキシ溶液のうちから選択される1種以上とを混合して乾燥した乾燥粉を、不活性ガスまたは不活性ガスと還元性ガスとの混合ガス雰囲気下で焼成することにより、一般式MyWOz(但し、Mは前記M元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で表される複合タングステン酸化物粒子を生成させた後、湿式粉砕して得た複合タングステン酸化物微粒子である。そして当該式粉砕して得た複合タングステン酸化物微粒子へ、再び、酸素含有雰囲気下で酸化暴露処理を行なって、本発明に係る高耐熱性熱線遮蔽体形成用複合タングステン酸化物微粒子を得る。
2) Method for producing composite tungsten oxide fine particles General formula M y WO z according to the present invention (where M is the M element, W is tungsten, O is oxygen, 0.1 ≦ y ≦ 0.5, 2.2) A method for producing the composite tungsten oxide fine particles represented by ≦ z ≦ 3.0) will be described.
The composite tungsten oxide fine particles for forming a high heat-resistant heat ray shield according to the present invention are a mixed powder obtained by mixing tungstic acid (H 2 WO 4 ) and an oxide or / and hydroxide of M element, or trioxide. Mixed powder in which tungsten fine particles and oxide or / and hydroxide of M element are mixed, or mixture of tungstic acid (H 2 WO 4 ) and tungsten trioxide fine particles, oxide of M element and / or water A mixed powder in which an oxide is mixed, or tungstic acid (H 2 WO 4 ) and / or tungsten trioxide fine particles, an aqueous solution of a metal salt of an M element, a colloidal solution of a metal oxide, or an alkoxy solution. The dried powder obtained by mixing and drying one or more of the above is calcined in an inert gas or a mixed gas atmosphere of an inert gas and a reducing gas to obtain a general formula My A composite tungsten oxide particle represented by Oz (where M is the M element, W is tungsten, O is oxygen, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0) is generated. Then, the composite tungsten oxide fine particles obtained by wet pulverization. Then, the composite tungsten oxide fine particles obtained by the above-mentioned formula pulverization are again subjected to an oxidation exposure treatment in an oxygen-containing atmosphere to obtain the composite tungsten oxide fine particles for forming a high heat resistant heat ray shield according to the present invention.

原料として用いるタングステン酸(H2WO4)は、焼成によって酸化物となるものであれば特に制限は無い。また、原料として用いる三酸化タングステンは、前記タングステン酸(H2WO4)を焼成して三酸化タングステン微粒子としたものを用いてもよいし、市販品を用いてもよい。ここで、製造される熱線遮蔽用複合タングステン酸化物微粒子の光学的特性の観点からは、原料として用いるタングステン酸(H2WO4)の焼成によって得られる酸化物を用いることが好ましいが、コスト、生産性の観点からは市販品等の三酸化タングステン微粒子を用いることもでき、同様の観点より、両者の混合物を使用しても良い。 The tungstic acid (H 2 WO 4 ) used as a raw material is not particularly limited as long as it becomes an oxide by firing. As the tungsten trioxide used as a raw material, tungsten trioxide fine particles obtained by firing the tungstic acid (H 2 WO 4 ) may be used, or commercially available products may be used. Here, from the viewpoint of the optical characteristics of the composite tungsten oxide fine particles for heat ray shielding to be produced, it is preferable to use an oxide obtained by firing tungstic acid (H 2 WO 4 ) used as a raw material. From the viewpoint of productivity, tungsten trioxide fine particles such as commercially available products can be used. From the same viewpoint, a mixture of both may be used.

前記タングステン酸(H2WO4)を焼成して三酸化タングステン微粒子として用いる場合、焼成時の処理温度は、望まれる三酸化タングステン微粒子の性状および光学特性の観点から200℃以上が好ましい。一方、焼成時の処理温度が1000℃を越えると焼成の効果が飽和し、また、1000℃以下であれば光学特性の低下原因となる粒成長を回避できることから1000℃以下が好ましい。焼成時の処理時間は処理温度に応じて適宜選択すればよいが、10分間以上5時間以下でよい。 When the tungstic acid (H 2 WO 4 ) is fired and used as tungsten trioxide fine particles, the treatment temperature during firing is preferably 200 ° C. or higher from the viewpoint of the desired properties and optical properties of the tungsten trioxide fine particles. On the other hand, if the treatment temperature during firing exceeds 1000 ° C., the effect of firing is saturated, and if it is 1000 ° C. or less, grain growth that causes a decrease in optical properties can be avoided, and therefore 1000 ° C. or less is preferable. The treatment time during firing may be appropriately selected according to the treatment temperature, but may be 10 minutes or more and 5 hours or less.

添加するときの原料の種類は、酸化物または/および水酸化物が好ましい。このM元素の酸化物、水酸化物とタングステン酸(H2WO4)または/および三酸化タングステン微粒子とを混合する。混合工程は、市販の擂潰機、ニーダー、ボールミル、サンドミル、ペイントシェカー等で行えばよい。 The kind of the raw material when added is preferably an oxide or / and a hydroxide. The M element oxide and hydroxide are mixed with tungstic acid (H 2 WO 4 ) and / or tungsten trioxide fine particles. What is necessary is just to perform a mixing process with a commercially available crusher, a kneader, a ball mill, a sand mill, a paint shaker, etc.

また、タングステン酸(H2WO4)または/および三酸化タングステン微粒子と、前記M元素の金属塩の水溶液、金属酸化物のコロイド溶液、アルコキシ溶液のうちから選択される1種以上とを、混合して乾燥した乾燥粉を製造する場合、前記M元素と塩を形成するための相手方のイオンは特に限定されるものでなく、例えば硝酸イオン、硫酸イオン、塩化物イオン、炭酸イオンなどが挙げられる。乾燥温度や時間は特に限定されるものでない。 Further, tungstic acid (H 2 WO 4 ) or / and tungsten trioxide fine particles are mixed with one or more selected from an aqueous solution of a metal salt of the M element, a colloidal solution of a metal oxide, and an alkoxy solution. When the dried powder is produced, the partner ion for forming the salt with the element M is not particularly limited, and examples thereof include nitrate ion, sulfate ion, chloride ion, carbonate ion and the like. . The drying temperature and time are not particularly limited.

次に、上記混合物または乾燥粉は、酸素空孔を生成させるために、不活性ガスと還元性ガスとの混合ガス雰囲気下で焼成する。この焼成の際の雰囲気は、窒素、アルゴン、ヘリウムなどの不活性ガスと、水素、アルコール、アンモニアなどの還元性ガスとの混合ガスを用いることができる。前記のように、不活性ガスと還元性ガスとの混合ガス雰囲気下で焼成する場合、不活性ガス中の還元性ガスの濃度は焼成温度に応じて適宜選択すれば良く、特に限定されないが、例えば20vol%以下、好ましくは10vol%以下、より好ましくは7vol%以下である。還元性ガスの濃度が20vol%以下であれば、急速な還元による熱線遮蔽機能を有しないWO2の生成を回避できるからである。 Next, the mixture or the dried powder is fired in a mixed gas atmosphere of an inert gas and a reducing gas in order to generate oxygen vacancies. As the atmosphere for the firing, a mixed gas of an inert gas such as nitrogen, argon, or helium and a reducing gas such as hydrogen, alcohol, or ammonia can be used. As described above, when firing in a mixed gas atmosphere of an inert gas and a reducing gas, the concentration of the reducing gas in the inert gas may be appropriately selected according to the firing temperature, and is not particularly limited. For example, it is 20 vol% or less, preferably 10 vol% or less, more preferably 7 vol% or less. This is because if the concentration of the reducing gas is 20 vol% or less, the production of WO 2 having no heat ray shielding function due to rapid reduction can be avoided.

焼成の際の処理温度は、還元性ガス濃度に応じて適宜選択すればよいが、当該還元ガスの存在によりWO2が生成することのない温度を適宜選択すればよい。
また、上述したように当該焼成を1ステップの処理温度下で実施してもよいが、焼成途中で雰囲気や焼成温度を変化させる複数ステップとしてもよい。例えば、第1ステップにおいて、不活性ガスと還元性ガスとの混合ガス雰囲気下、100℃以上650℃以下で焼成し、第2ステップにおいて不活性ガス雰囲気下、650℃を超え1200℃以下で焼成することで、熱線遮蔽特性に優れた熱線遮蔽微粒子を得ることができ好ましい構成である。
The treatment temperature during firing may be appropriately selected according to the reducing gas concentration, but may be appropriately selected at a temperature at which WO 2 is not generated due to the presence of the reducing gas.
Moreover, although the said baking may be implemented under the process temperature of 1 step as mentioned above, it is good also as multiple steps which change atmosphere and baking temperature in the middle of baking. For example, in the first step, firing is performed at 100 ° C. or more and 650 ° C. or less in a mixed gas atmosphere of an inert gas and a reducing gas, and in the second step, firing is performed at 650 ° C. or more and 1200 ° C. or less in an inert gas atmosphere. By doing so, a heat ray shielding fine particle having excellent heat ray shielding properties can be obtained, which is a preferable configuration.

これらの焼成の処理時間は温度に応じて適宜選択すればよいが、5分間以上5時間以下でよい。このようにして得た複合タングステン酸化物粒子を、適宜な溶媒とともに、例えばビーズミル、ボールミル、サンドミル、ペイントシェーカー、超音波ホモジナイザーなどとともに湿式粉砕して複合タングステン酸化物粒子をより微粒子化する。   The firing treatment time may be appropriately selected depending on the temperature, but may be 5 minutes or more and 5 hours or less. The composite tungsten oxide particles thus obtained are wet pulverized together with an appropriate solvent, for example, with a bead mill, a ball mill, a sand mill, a paint shaker, an ultrasonic homogenizer, etc., to make the composite tungsten oxide particles finer.

次に、前記湿式粉砕された複合タングステン酸化物微粒子を回収し耐熱性機能を付与するために、当該複合タングステン酸化物微粒子を酸素含有雰囲気下で酸化暴露処理する。尤も、当該酸素含有雰囲気の酸素濃度は、高過ぎると微粒子表面が過度に酸化されて酸化膜が厚膜化する。微粒子表面の酸化膜が過度に厚膜化すると、後工程においてフィラー使用量の増加を招きコストアップとなる。
一方、当該酸素含有雰囲気の酸素濃度が低過ぎると、微粒子表面の酸化膜が過度に薄くなり耐熱に対する効果が低くなる。
以上のことから、当該酸素含有雰囲気の酸素濃度は、0.1vol%以上25vol%以下が好ましい。従って、大気中(酸素濃度 約21体積%)で当該酸化暴露処理を行なっても、本発明に係る高耐熱性熱線遮蔽体形成用複合タングステン酸化物微粒子を得ることができる。
処理温度は、酸素濃度に応じて適宜選択すればよいが、耐熱効果の観点から20℃以上400℃以下が好ましい。酸化暴露処理時間は、処理温度に応じて適宜選択すればよいが、具体的には、例えば、処理温度が50℃以上100℃未満であれば、処理時間は10時間以上72時間以下、100℃以上400℃以下であれば1時間以上72時間以下が好ましい。得られた複合タングステン酸化物微粒子は、十分な耐熱機能を発揮する。
Next, in order to collect the wet-pulverized composite tungsten oxide fine particles and impart a heat resistance function, the composite tungsten oxide fine particles are subjected to an oxidation exposure treatment in an oxygen-containing atmosphere. However, if the oxygen concentration in the oxygen-containing atmosphere is too high, the surface of the fine particles is excessively oxidized and the oxide film becomes thicker. If the oxide film on the surface of the fine particles is excessively thick, the amount of filler used is increased in the subsequent process, resulting in an increase in cost.
On the other hand, if the oxygen concentration in the oxygen-containing atmosphere is too low, the oxide film on the surface of the fine particles becomes excessively thin and the effect on heat resistance is reduced.
From the above, the oxygen concentration in the oxygen-containing atmosphere is preferably 0.1 vol% or more and 25 vol% or less. Therefore, even when the oxidation exposure treatment is performed in the atmosphere (oxygen concentration of about 21% by volume), the composite tungsten oxide fine particles for forming a high heat resistant heat ray shield according to the present invention can be obtained.
The treatment temperature may be appropriately selected according to the oxygen concentration, but is preferably 20 ° C. or higher and 400 ° C. or lower from the viewpoint of the heat resistance effect. The oxidation exposure treatment time may be appropriately selected according to the treatment temperature. Specifically, for example, if the treatment temperature is 50 ° C. or more and less than 100 ° C., the treatment time is 10 hours or more and 72 hours or less, 100 ° C. If it is 400 degreeC or less, 1 hour or more and 72 hours or less are preferable. The obtained composite tungsten oxide fine particles exhibit a sufficient heat resistance function.

3)高耐熱性分散剤
従来、塗料用として一般的に使用されている分散剤は、様々な酸化物微粒子を有機溶剤中に均一に分散する目的で使用されている。しかし本発明者らの検討によれば、これらの分散剤は、200℃以上の高温で使用されることを想定されて設計されていない。具体的には、本実施形態において、熱線遮蔽微粒子と熱可塑性樹脂とを溶融混練する際に、耐熱性の低い分散剤を使用すると、当該分散剤中の官能基が熱により分解され、分散能が低下すると伴に黄〜茶色に変色する等の不具合を起こしていたのである。
3) High heat-resistant dispersant Conventionally, a dispersant generally used for coating is used for the purpose of uniformly dispersing various oxide fine particles in an organic solvent. However, according to studies by the present inventors, these dispersants are not designed on the assumption that they are used at a high temperature of 200 ° C. or higher. Specifically, in this embodiment, when a heat-shielding fine particle and a thermoplastic resin are melt-kneaded, if a dispersant having low heat resistance is used, the functional group in the dispersant is decomposed by heat, and the dispersibility This caused problems such as yellowing to browning as the color decreased.

これに対し、本実施形態においては、高耐熱性分散剤として、TG−DTAで測定される熱分解温度が230℃以上、好ましくは250℃以上あるものを用いることとしている。当該高耐熱性分散剤の具体的な構造例としては、主鎖としてアクリル主鎖、官能基として水酸基またはエポキシ基とを有する分散剤がある。当該構造を有する分散剤は、耐熱性が高く好ましい。   On the other hand, in this embodiment, as the high heat resistant dispersant, one having a thermal decomposition temperature measured by TG-DTA of 230 ° C. or higher, preferably 250 ° C. or higher is used. As a specific structural example of the high heat resistant dispersant, there is a dispersant having an acrylic main chain as a main chain and a hydroxyl group or an epoxy group as a functional group. A dispersant having this structure is preferable because of its high heat resistance.

そして、分散剤の熱分解温度が230℃以上であれば、成形時に当該分散剤が熱分解することなく分散能を維持すると伴に、それ自体が黄〜茶色に変色することもない。この結果、製造される成形体において、熱線遮蔽微粒子が十分に分散される結果、可視光透過率が良好に確保されて本来の光学特性を得ることができると伴に、成形体が黄色に着色することもない。
具体的には、ポリカーボネートの一般的な混練設定温度(290℃)で上記本発明の分散剤とポリカーボネート樹脂とを混練する試験を行った場合、混練物はポリカーボネートのみを混練した場合とまったく同じ外観を呈し、無色透明で全く着色しないことが確認された。一方、例えば、後述する比較例1で説明する耐熱性の低い分散剤を用いて同様の試験を行った場合、混練物は茶色に着色してしまうことが確認された。
And if the thermal decomposition temperature of a dispersing agent is 230 degreeC or more, it will not discolor from yellow to brown itself while maintaining the dispersibility without the said dispersing agent thermally decomposing at the time of shaping | molding. As a result, in the molded article to be produced, the heat ray shielding fine particles are sufficiently dispersed, so that the visible light transmittance is ensured well and the original optical characteristics can be obtained, and the molded article is colored yellow. There is no need to
Specifically, when a test for kneading the dispersant of the present invention and a polycarbonate resin at a general kneading setting temperature (290 ° C.) of polycarbonate is performed, the kneaded product has exactly the same appearance as when only the polycarbonate is kneaded. Was confirmed to be colorless and transparent and not colored at all. On the other hand, for example, when a similar test was performed using a dispersant having low heat resistance described in Comparative Example 1 described later, it was confirmed that the kneaded material was colored brown.

上述したように、本実施形態に使用される高耐熱性分散剤はアクリル主鎖を有するが、同時に、水酸基またはエポキシ基を官能基として有する分散剤が好ましい。これらの官能基は,複合タングステン酸化物微粒子の表面に吸着して、これらの複合タングステン酸化物微粒子の凝集を防ぎ、成形体中で複合タングステン酸化物微粒子を均一に分散させる効果を持つからである。
具体的には、エポキシ基を官能基として有するアクリル系分散剤、水酸基を官能基として有するアクリル系分散剤が好ましい例として挙げられる。このような分散剤は、市販の分散剤製品に対し、上述したTG−DTA測定を行い、適宜なものを選択すれば良い。
As described above, the high heat resistant dispersant used in the present embodiment has an acrylic main chain, but at the same time, a dispersant having a hydroxyl group or an epoxy group as a functional group is preferable. This is because these functional groups are adsorbed on the surface of the composite tungsten oxide fine particles to prevent the aggregation of the composite tungsten oxide fine particles and have an effect of uniformly dispersing the composite tungsten oxide fine particles in the molded body. .
Specifically, an acrylic dispersant having an epoxy group as a functional group and an acrylic dispersant having a hydroxyl group as a functional group are preferable examples. Such a dispersant may be selected from a commercially available dispersant product by performing the TG-DTA measurement described above.

特に、熱可塑性樹脂として、ポリカーボネート樹脂、アクリル樹脂など、溶融混練温度が高い樹脂を使用する場合には、熱分解温度が250℃以上であるアクリル主鎖と水酸基またはエポキシ基とを有する高耐熱性分散剤を使用することの効果が顕著に発揮される。   In particular, when a resin having a high melt kneading temperature such as a polycarbonate resin or an acrylic resin is used as the thermoplastic resin, it has a high heat resistance having an acrylic main chain having a thermal decomposition temperature of 250 ° C. or more and a hydroxyl group or an epoxy group. The effect of using the dispersant is remarkably exhibited.

上記高耐熱性分散剤と複合タングステン酸化物微粒子との重量比は、10≧[高耐熱性分散剤の重量/複合タングステン酸化物微粒子の重量]≧0.5の範囲であることが好ましい。当該重量比が0.5以上あれば、複合タングステン酸化物微粒子を十分に分散することが出来るので、微粒子同士の凝集が発生せず、十分な光学特性が得られるからである。また、当該重量比が10以下あれば、熱線遮蔽透明樹脂成形体自体の機械特性(曲げ強度、表面高度)が損なわれることがない。   The weight ratio of the high heat resistant dispersant to the composite tungsten oxide fine particles is preferably in the range of 10 ≧ [weight of the high heat resistant dispersant / weight of the composite tungsten oxide fine particles] ≧ 0.5. If the weight ratio is 0.5 or more, the composite tungsten oxide fine particles can be sufficiently dispersed, so that the fine particles do not aggregate and sufficient optical characteristics are obtained. Moreover, if the said weight ratio is 10 or less, the mechanical characteristics (bending strength, surface height) of heat ray shielding transparent resin molding itself will not be impaired.

4)熱可塑性樹脂
次に、本実施形態に使用される熱可塑性樹脂としては、可視光領域の光線透過率が高い透明な熱可塑性樹脂であれば特に制限はない。例えば、3mm厚の板状成形体としたときのJIS R 3106記載の可視光透過率が50%以上で、JISK7105記載のヘイズが30%以下のものが好ましいものとして挙げられる。
具体的には、アクリル樹脂、ポリカーボネート樹脂、ポリエーテルイミド樹脂、ポリエステル樹脂、ポリスチレン樹脂、ポリエーテルスルホン樹脂、フッ素系樹脂およびポリオレフィン樹脂を挙げることができる。熱線遮蔽透明樹脂成形体を各種建築物や車両の窓材等に適用することを目的とした場合、透明性、耐衝撃性、耐侯性などを考慮すると、アクリル樹脂、ポリカーボネート樹脂、ポリエーテルイミド樹脂、フッ素系樹脂がより好ましい。
4) Thermoplastic resin Next, the thermoplastic resin used in the present embodiment is not particularly limited as long as it is a transparent thermoplastic resin having a high light transmittance in the visible light region. For example, it is preferable that the visible light transmittance described in JIS R3106 is 50% or more and the haze described in JISK7105 is 30% or less when a plate-like molded body having a thickness of 3 mm is used.
Specific examples include acrylic resins, polycarbonate resins, polyetherimide resins, polyester resins, polystyrene resins, polyethersulfone resins, fluorine resins, and polyolefin resins. When heat-shielding transparent resin moldings are applied to various building and vehicle window materials, acrylic resin, polycarbonate resin, polyetherimide resin are considered in consideration of transparency, impact resistance, weather resistance, etc. Fluorine resin is more preferable.

アクリル樹脂としては、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレートを主原料とし、必要に応じて炭素数1〜8のアルキル基を有するアクリル酸エステル、酢酸ビニル、スチレン、アクリロニトリル、メタクリロニトリル等を共重合成分として用いた重合体または共重合体が挙げられる。さらには、多段で重合したアクリル樹脂を用いることもできる。   As acrylic resin, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate as main raw materials, acrylic acid ester having vinyl group having 1 to 8 carbon atoms as required, vinyl acetate, styrene, acrylonitrile, methacrylonitrile, etc. A polymer or copolymer using as a copolymerization component. Furthermore, an acrylic resin polymerized in multiple stages can also be used.

また、ポリカーボネート樹脂としては、芳香族ポリカーボネートが好ましい。芳香族ポリカーボネートとしては、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジブロモ−4−ヒドロキシフェニル)プロパンに代表される二価のフェノール系化合物の一種以上と、ホスゲンまたはジフェニルカーボネート等で代表されるカーボネート前駆体とから、界面重合、溶融重合または固相重合等の公知の方法によって得られる重合体が挙げられる。   The polycarbonate resin is preferably an aromatic polycarbonate. As the aromatic polycarbonate, one or more divalent phenolic compounds represented by 2,2-bis (4-hydroxyphenyl) propane and 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane And a polymer obtained by a known method such as interfacial polymerization, melt polymerization, or solid phase polymerization from a carbonate precursor typified by phosgene or diphenyl carbonate.

また、フッ素系樹脂としては、ポリフッ化エチレン、ポリ2フッ化エチレン、ポリ4フッ化エチレン、エチレン−2フッ化エチレン共重合体、エチレン−4フッ化エチレン共重合体、4フッ化エチレン−パーフルオロアルコキシエチレン共重合体などが挙げられる。   In addition, as the fluororesin, polyfluorinated ethylene, polydifluorinated ethylene, polytetrafluoroethylene, ethylene-2 fluoroethylene copolymer, ethylene-4 fluoroethylene copolymer, tetrafluoroethylene-par Examples include fluoroalkoxyethylene copolymers.

5)熱線遮蔽機能を有する微粒子の熱可塑性樹脂への分散方法
熱線遮蔽機能を有する微粒子である複合タングステン酸化物微粒子の熱可塑性樹脂への分散方法は、微粒子が均一に樹脂に分散できる方法であれば任意に選択できる。例としては、まず、ビーズミル、ボールミル、サンドミル、超音波分散などの方法を用い、上記複合タングステン酸化物微粒子を任意の溶剤に分散した分散液を調製する。次に、当該分散液と、分散剤と、熱可塑性樹脂の粉粒体またはペレットと、必要に応じて他の添加剤とを、リボンブレンダー、タンブラー、ナウターミキサー、ヘンシェルミキサー、スーパーミキサー、プラネタリーミキサー等の混合機、および、バンバリーミキサー、ニーダー、ロール、ニーダールーダー、一軸押出機、二軸押出機等の混練機を使用して、当該分散液から溶剤を除去しながら均一に溶融混合して、熱可塑性樹脂に複合タングステン酸化物微粒子を均一に分散した混合物を調製することができる。混錬時の温度は、使用する熱可塑性樹脂が分解しない温度に維持される。
5) Dispersion method of fine particles having heat ray shielding function in thermoplastic resin The dispersion method of the composite tungsten oxide fine particles, which are fine particles having a heat ray shielding function, in the thermoplastic resin may be a method in which the fine particles can be uniformly dispersed in the resin. Can be arbitrarily selected. As an example, first, a dispersion in which the composite tungsten oxide fine particles are dispersed in an arbitrary solvent is prepared using a method such as a bead mill, a ball mill, a sand mill, or an ultrasonic dispersion. Next, the dispersion, dispersant, thermoplastic resin granules or pellets, and other additives as necessary are added to a ribbon blender, tumbler, nauter mixer, Henschel mixer, super mixer, planetar. Using a kneader such as a Lee mixer, and a Banbury mixer, kneader, roll, kneader ruder, single screw extruder, twin screw extruder, etc., uniformly melt and mix while removing the solvent from the dispersion. Thus, a mixture in which the composite tungsten oxide fine particles are uniformly dispersed in the thermoplastic resin can be prepared. The kneading temperature is maintained at a temperature at which the thermoplastic resin used does not decompose.

また、他の方法として、熱線遮蔽機能を有する複合タングステン酸化物微粒子の分散液に高耐熱性分散剤を添加し、溶剤を公知の方法で除去し、得られた粉末と熱可塑性樹脂の粉粒体またはペレット、および必要に応じて他の添加剤を均一に溶融混合して、熱可塑性樹脂に複合タングステン酸化物微粒子を均一に分散した混合物を調整することもできる。
その他、分散処理をしていない複合タングステン酸化物微粒子の粉末と分散剤とを熱可塑性樹脂に直接添加し、均一に溶融混合する方法を用いることもできる。
分散方法は、熱可塑性樹脂中に複合タングステン酸化物微粒子が均一に分散されていればよく、これらの方法に限定されない。
As another method, a high heat-resistant dispersant is added to a dispersion of composite tungsten oxide fine particles having a heat ray shielding function, the solvent is removed by a known method, and the obtained powder and thermoplastic resin particles It is also possible to prepare a mixture in which composite tungsten oxide fine particles are uniformly dispersed in a thermoplastic resin by uniformly melting and mixing the body or pellets and, if necessary, other additives.
In addition, it is also possible to use a method in which a powder of composite tungsten oxide fine particles not subjected to dispersion treatment and a dispersant are directly added to a thermoplastic resin and uniformly melt-mixed.
The dispersion method is not limited to these methods as long as the composite tungsten oxide fine particles are uniformly dispersed in the thermoplastic resin.

6)高耐熱性熱線遮蔽成分含有マスターバッチの製造方法
複合タングステン酸化物微粒子が均一に分散された熱可塑性樹脂を、ベント式一軸若しくは二軸の押出機で混練し、ペレット状に加工することにより、本実施形態に係る高耐熱性熱線遮蔽成分含有マスターバッチを得ることができる。
上記高耐熱性熱線遮蔽成分含有マスターバッチのペレットは、最も一般的な溶融押出されたストランドをカットする方法により得ることができる。従って、その形状としては円柱状や角柱状のものを挙げることができる。また、溶融押出物を直接カットするいわゆるホットカット法を採ることも可能である。当該ホットカット法を採る場合には、球状に近い形状をとることが一般的である。
6) Manufacturing method of masterbatch containing high heat-resistant heat ray shielding component By kneading a thermoplastic resin in which composite tungsten oxide fine particles are uniformly dispersed with a vent type uniaxial or biaxial extruder, and processing into a pellet form And the high heat resistant heat ray shielding component containing masterbatch which concerns on this embodiment can be obtained.
The high heat-resistant heat ray shielding component-containing masterbatch pellets can be obtained by a method of cutting the most general melt-extruded strand. Accordingly, examples of the shape include a cylindrical shape and a prismatic shape. It is also possible to adopt a so-called hot cut method in which the molten extrudate is directly cut. When adopting the hot cut method, it is common to take a shape close to a sphere.

本発明に係る高耐熱性熱線遮蔽成分含有マスターバッチは、いずれの形態または形状を採り得るものである。尤も、熱線遮蔽透明樹脂成形体を成形するときに、当該高耐熱性熱線遮蔽成分含有マスターバッチの希釈に使用される熱可塑性樹脂成形材料と同一の形態および形状を有していることが好ましい。   The high heat-resistant heat ray shielding component-containing masterbatch according to the present invention can take any form or shape. However, when the heat ray-shielding transparent resin molded product is molded, it is preferable to have the same form and shape as the thermoplastic resin molding material used for dilution of the high heat-resistant heat ray shielding component-containing masterbatch.

更に、本発明に係る高耐熱性熱線遮蔽成分含有マスターバッチへ、さらに、一般的な添加剤を配合することも可能である。例えば、必要に応じて任意の色調を与えるため、アゾ系染料、シアニン系染料、キノリン系染料、ペリレン系染料、カーボンブラック等、一般的に熱可塑性樹脂の着色に利用されている染料、顔料の、有効発現量を配合してもよい。また、ヒンダードフェノール系、リン系等の安定剤、離型剤、ヒドロキシベンゾフェノン系、サリチル酸系、HALS系、トリアゾール系、トリアジン系等の紫外線吸収剤、カップリング剤、界面活性剤、帯電防止剤等の有効発現量を配合してもよい。   Furthermore, it is also possible to mix | blend a general additive further to the high heat-resistant heat ray shielding component containing masterbatch which concerns on this invention. For example, azo dyes, cyanine dyes, quinoline dyes, perylene dyes, carbon black, and other dyes and pigments commonly used for coloring thermoplastic resins in order to give any color tone as necessary An effective expression level may be blended. In addition, hindered phenol and phosphorus stabilizers, release agents, hydroxybenzophenone, salicylic acid, HALS, triazole and triazine UV absorbers, coupling agents, surfactants and antistatic agents An effective expression amount such as

7)高耐熱性熱線遮蔽透明樹脂成形体
本発明に係る高耐熱性熱線遮蔽透明樹脂成形体は、上記高耐熱性熱線遮蔽成分含有マスターバッチを、当該マスターバッチの熱可塑性樹脂と同種の熱可塑性樹脂成形材料、あるいは当該マスターバッチの熱可塑性樹脂と相溶性を有する異種の熱可塑性樹脂成形材料で希釈・混練し、所定の形状に成形することによって得られる。
7) High heat-resistant heat ray shielding transparent resin molded product The high heat resistant heat ray shielding transparent resin molded product according to the present invention comprises the above-mentioned high heat resistant heat ray shielding component-containing masterbatch and the same kind of thermoplastic resin as the masterbatch thermoplastic resin. It is obtained by diluting and kneading with a resin molding material or a different kind of thermoplastic resin molding material having compatibility with the thermoplastic resin of the masterbatch and molding into a predetermined shape.

本発明に係る高耐熱性熱線遮蔽透明樹脂成形体は、高耐熱性熱線遮蔽成分含有マスターバッチを用いて製造されていることから、成形時の熱劣化が非常に少ない。このため、複合タングステン酸化物微粒子である熱線遮蔽微粒子が、透明樹脂成形体中に、十分に分散される結果、可視光透過率が良好に確保される。
上記高耐熱性熱線遮蔽透明樹脂成形体の形状は、必要に応じて任意の形状に成形可能であり、平面状および曲面状に成形することが可能である。また、高耐熱性熱線遮蔽透明樹脂成形体の厚さは、板状からフィルム状まで必要に応じて任意の厚さに調整することが可能である。さらに平面状に形成した樹脂シートは、後加工によって球面状等の任意の形状に成形することができる。
Since the high heat resistant heat ray shielding transparent resin molding according to the present invention is manufactured using a master batch containing a high heat resistance heat ray shielding component, there is very little thermal deterioration during molding. For this reason, the heat ray shielding fine particles, which are composite tungsten oxide fine particles, are sufficiently dispersed in the transparent resin molded product, and as a result, good visible light transmittance is secured.
The shape of the high heat-resistant heat ray shielding transparent resin molding can be molded into an arbitrary shape as necessary, and can be molded into a flat shape and a curved shape. Moreover, the thickness of the high heat-resistant heat ray shielding transparent resin molding can be adjusted to an arbitrary thickness as necessary from a plate shape to a film shape. Furthermore, the resin sheet formed in a planar shape can be formed into an arbitrary shape such as a spherical shape by post-processing.

上記高耐熱性熱線遮蔽透明樹脂成形体の成形方法としては、射出成形、押出成形、圧縮成形または回転成形等の任意の方法を挙げることができる。特に、射出成形により成形品を得る方法と、押出成形により成形品を得る方法が好適に採用される。押出成形により板状、フィルム状の成形品を得る方法として、Tダイなどの押出機を用いて押出した溶融熱可塑性樹脂を冷却ロールで冷却しながら引き取る方法により製造される。上記射出成形品は、自動車の窓ガラスやルーフ等の車体に好適に使用され、押出成形により得られた板状、フィルム状の成形品は、アーケードやカーポート等の建造物に好適に使用される。   Examples of the molding method of the high heat-resistant heat ray shielding transparent resin molded product include any methods such as injection molding, extrusion molding, compression molding, and rotational molding. In particular, a method of obtaining a molded product by injection molding and a method of obtaining a molded product by extrusion molding are preferably employed. As a method for obtaining a plate-like or film-like molded article by extrusion molding, the molded thermoplastic resin is produced by a method in which a molten thermoplastic resin extruded using an extruder such as a T-die is taken out while being cooled by a cooling roll. The injection-molded product is suitably used for a vehicle body such as an automobile window glass or a roof, and the plate-like or film-like product obtained by extrusion molding is suitably used for a building such as an arcade or a carport. The

上記高耐熱性熱線遮蔽透明樹脂成形体は、それ自体のみを、窓ガラス、アーケード等の構造材に使用することができるほか、無機ガラス、樹脂ガラス、樹脂フィルムなどの他の透明成形体に任意の方法で積層し、一体化した高耐熱性熱線遮蔽透明積層体として、構造材に使用することもできる。例えば、予めフィルム状に成形した高耐熱性熱線遮蔽透明樹脂成形体を無機ガラスに熱ラミネート法により積層一体化することで、熱線遮蔽機能、飛散防止機能を有する高耐熱性熱線遮蔽透明積層体を得ることができる。   The above high heat-resistant heat ray shielding transparent resin molded product can be used for structural materials such as window glass and arcade as well as other transparent molded products such as inorganic glass, resin glass and resin film. It can also be used for a structural material as a highly heat-resistant heat ray shielding transparent laminate laminated and integrated by the above method. For example, a highly heat-resistant heat ray shielding transparent laminate having a heat ray shielding function and a scattering prevention function can be obtained by laminating and integrating a high heat resistant heat ray shielding transparent resin molded body previously formed into a film shape onto an inorganic glass by a heat lamination method. Obtainable.

また、熱ラミネート法、共押出法、プレス成形法、射出成形法等により、高耐熱性熱線遮蔽透明樹脂成形体の成形と同時に他の透明成形体に積層一体化することで、高耐熱性熱線遮蔽透明積層体を得ることも可能である。上記高耐熱性熱線遮蔽透明積層体は、相互の成形体の持つ利点を有効に発揮させつつ、相互の欠点を補完することで、より有用な構造材として使用することができる。   In addition, by heat lamination method, co-extrusion method, press molding method, injection molding method, etc., high heat resistant heat ray is formed by laminating and integrating with other transparent molded body at the same time as molding of high heat resistant heat ray shielding transparent resin molded body. It is also possible to obtain a shielding transparent laminate. The high heat-resistant heat ray shielding transparent laminate can be used as a more useful structural material by complementing each other's drawbacks while effectively exhibiting the advantages of the mutual molded bodies.

以上、詳細に述べたように熱線遮蔽成分として複合タングステン酸化物微粒子を、分散剤を用いて熱可塑性樹脂に均一に分散させた本実施形態の高耐熱性熱線遮蔽成分含有マスターバッチを用いることにより、高コストの物理成膜法や複雑な工程を用いることなく熱線遮蔽機能を有しかつ可視光域に高い透過性能を有し、さらには耐熱性の高い熱線遮蔽透明樹脂成形体並びに熱線遮蔽透明積層体を提供することが可能となる。   As described above in detail, by using the masterbatch containing the high heat resistance heat ray shielding component of the present embodiment in which the composite tungsten oxide fine particles are uniformly dispersed in the thermoplastic resin using a dispersant as the heat ray shielding component. The heat-shielding transparent resin molded body and the heat-ray-shielding transparent body having a heat-ray shielding function and a high transmission performance in the visible light range without using a high-cost physical film-forming method or a complicated process. A laminated body can be provided.

以下、本発明について実施例を参照しながら具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。
各実施例において、熱線遮蔽透明樹脂成形体の可視光透過率並びに熱線透過率は、日立製作所(株)製の分光光度計U−4000を用いて測定した。この熱線透過率は、熱線遮蔽性能を示す指標である。また、ヘイズ値は村上色彩技術研究所(株)製HR−200を用い、JIS K 7105に基づいて測定した。
Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples.
In each Example, the visible light transmittance and the heat ray transmittance of the heat ray shielding transparent resin molding were measured using a spectrophotometer U-4000 manufactured by Hitachi, Ltd. This heat ray transmittance is an index indicating heat ray shielding performance. The haze value was measured based on JIS K 7105 using HR-200 manufactured by Murakami Color Research Laboratory Co., Ltd.

[実施例1]
タングステン酸(H2WO4)34.57kgへ、炭酸セシウム7.43kgを水6.70kgに溶解した水溶液を添加して混合した後、100℃で攪拌しながら水分を除去して乾燥粉を得た。次に、当該乾燥粉を、N2ガスをキャリアとした5%H2ガスを供給しながら加熱し、800℃の温度で5.5時間加熱処理することによってCs0.33WO粒子(a)を得た。
次に、当該Cs0.33WO粒子(a)5重量%、高耐熱性分散剤(S)5重量%、トルエン90重量%を秤量し、0.3mmφZrO2ビーズを入れたペイントシェーカーで6時間粉砕・分散処理することによって複合タングステン酸化物微粒子分散液(A液)を調製した。そして、当該(A液)へ、さらに高耐熱性分散剤(b)を添加して、高耐熱性分散剤(S):複合タングステン酸化物微粒子=3:1(重量比)の割合とした。
(A液)を真空擂潰機に装填し、真空擂潰しながらトルエンを除去し、複合タングステン酸化物微粒子分散粉(A粉)を得た。
得られた(A粉)を、Nガスをキャリアとした5体積%Oガスの流通下において、100℃の温度で24時間酸化暴露処理して、実施例1に係る酸化暴露処理粉(処理A粉)を得た。
得られた(処理A粉)と、熱可塑性樹脂であるポリカーボネート樹脂ペレットとを、Cs0.33WO濃度が2.0重量%となるように混合し、ブレンダーを用いて均一に混合した。
当該混合物を二軸押出機で290℃で熔融混練し、押出されたストランドをペレット状にカットし、熱線遮蔽透明樹脂成形体用の高耐熱性熱線遮蔽成分含有マスターバッチ(マスターバッチA)を得た。
得られた(マスターバッチA)を、ポリカーボネート樹脂ペレット(直径2.5mm、長さ3mm)で希釈し、Cs0.33WO濃度を0.03重量%とした。当該マスターバッチAのポリカーボネート樹脂希釈物をタンブラーで均一に混合した後、Tダイを用いて厚さ1mm、2mmおよび3mmに押出成形し、複合タングステン酸化物微粒子が樹脂全体に均一に分散した実施例1に係る各熱線遮蔽透明樹脂成形体(成形体A)を得た。
実施例1に係る(成形体A)の光学特性を測定し、3点プロットより可視光透過率75%のときの熱線透過率とヘイズ値を求めた。
[Example 1]
After adding an aqueous solution prepared by dissolving 7.43 kg of cesium carbonate in 6.70 kg of water to 34.57 kg of tungstic acid (H 2 WO 4 ), moisture was removed while stirring at 100 ° C. to obtain a dry powder. It was. Next, the dry powder is heated while supplying 5% H 2 gas with N 2 gas as a carrier, and heat-treated at a temperature of 800 ° C. for 5.5 hours to obtain Cs 0.33 WO 3 particles (a )
Next, 5 wt% of the Cs 0.33 WO 3 particles (a), 5 wt% of the high heat resistant dispersant (S), and 90 wt% of toluene were weighed, and 6 with a paint shaker containing 0.3 mmφZrO 2 beads. A composite tungsten oxide fine particle dispersion (liquid A) was prepared by time pulverization and dispersion treatment. And the high heat resistant dispersing agent (b) was further added to the said (A liquid), and it was set as the ratio of high heat resistant dispersing agent (S): composite tungsten oxide microparticles | fine-particles = 3: 1 (weight ratio).
(A liquid) was loaded into a vacuum crusher, and toluene was removed while vacuum crushing to obtain a composite tungsten oxide fine particle dispersed powder (A powder).
The resulting (A flour), N 2 gas in the distribution of a 5 vol% O 2 gas as a carrier, and 24-hour oxidation exposure process at a temperature of 100 ° C., oxidation exposure process powder according to Example 1 ( Treatment A powder) was obtained.
The obtained (treated A powder) and polycarbonate resin pellets which are thermoplastic resins were mixed so that the Cs 0.33 WO 3 concentration was 2.0% by weight and mixed uniformly using a blender.
The mixture is melt-kneaded at 290 ° C. with a twin-screw extruder, and the extruded strand is cut into pellets to obtain a masterbatch (masterbatch A) containing a high heat-resistant heat ray shielding component for a heat ray shielding transparent resin molding. It was.
The obtained (Masterbatch A) was diluted with polycarbonate resin pellets (diameter 2.5 mm, length 3 mm) to adjust the Cs 0.33 WO 3 concentration to 0.03% by weight. An example in which the polycarbonate resin dilution of the master batch A was uniformly mixed with a tumbler and then extruded to a thickness of 1 mm, 2 mm and 3 mm using a T-die, and the composite tungsten oxide fine particles were uniformly dispersed throughout the resin. Each heat ray shielding transparent resin molded product according to 1 (molded product A) was obtained.
The optical characteristics of (Form A) according to Example 1 were measured, and the heat ray transmittance and haze value when the visible light transmittance was 75% were determined from a three-point plot.

表1に示すように、(成形体A)の熱線透過率は38.7%で、ヘイズ値は1.1%であった。
次に、(成形体A)の耐熱性を調べるために以下のような加速試験を行った。
(成形体A)を120℃の温度下に72時間暴露し、当該暴露前後の可視光透過率の変化率(ΔVLTと記す)を調べた。その結果、168時間後における(ΔVLT)は0.95%であり、酸素含有雰囲気下で焼成処理しない場合(下記の比較例1参照)と比べて耐熱性の向上が確認された。
As shown in Table 1, the heat ray transmittance of (Form A) was 38.7% and the haze value was 1.1%.
Next, in order to investigate the heat resistance of (Form A), the following accelerated test was performed.
(Formed product A) was exposed at a temperature of 120 ° C. for 72 hours, and the change rate of visible light transmittance before and after the exposure (denoted as ΔVLT) was examined. As a result, (ΔVLT) after 168 hours was 0.95%, and an improvement in heat resistance was confirmed as compared with the case where no baking treatment was performed in an oxygen-containing atmosphere (see Comparative Example 1 below).

[実施例2]
実施例1において得られた(A粉)を大気雰囲気下で加熱し、100℃の温度で1時間酸化暴露処理して、実施例2に係る酸化暴露処理粉(処理B粉)を得た。
以降、(処理A粉)を(処理B粉)に代替した以外は、実施例1と同様の操作を行って、実施例2に係る熱線遮蔽透明樹脂成形体(成形体B)を得た。
[Example 2]
The (A powder) obtained in Example 1 was heated in an air atmosphere and subjected to an oxidation exposure treatment at a temperature of 100 ° C. for 1 hour to obtain an oxidation exposure treatment powder (treatment B powder) according to Example 2.
Thereafter, the same operation as in Example 1 was performed except that (Processing A powder) was replaced with (Processing B powder) to obtain a heat ray shielding transparent resin molded product (molded product B) according to Example 2.

表1に示すように、(成形体B)の可視光透過率75%のときの熱線透過率は38.8%で、ヘイズ値は0.9%であった。
また、120℃の温度下に168時間暴露後の(ΔVLT)は1.30%であり、酸素含有雰囲気下で処理しない以下の比較例1と比べて耐熱性の向上が確認された。
As shown in Table 1, the heat ray transmittance was 38.8% and the haze value was 0.9% when the visible light transmittance of the molded body B was 75%.
Moreover, (ΔVLT) after exposure for 168 hours at a temperature of 120 ° C. was 1.30%, and an improvement in heat resistance was confirmed as compared with Comparative Example 1 below, which was not treated in an oxygen-containing atmosphere.

[実施例3]
熱可塑性樹脂としてアクリル樹脂を用いた以外は、実施例1と同様にして実施例3に係る熱線遮蔽透明樹脂成形体(成形体C)を得た。
[Example 3]
A heat ray shielding transparent resin molded product (molded product C) according to Example 3 was obtained in the same manner as in Example 1 except that an acrylic resin was used as the thermoplastic resin.

表1に示すように、(成形体C)の可視光透過率75%のときの熱線透過率は39.3%で、ヘイズ値は2.1%であった。
また、120℃の温度下に168時間暴露後の(ΔVLT)は0.98%であり、酸素含有雰囲気下で処理しない以下の比較例1と比べて耐熱性の向上が確認された。
As shown in Table 1, the heat ray transmittance was 39.3% and the haze value was 2.1% when the visible light transmittance of the molded body C was 75%.
Moreover, (ΔVLT) after exposure for 168 hours at a temperature of 120 ° C. was 0.98%, confirming an improvement in heat resistance as compared with Comparative Example 1 below, which was not treated in an oxygen-containing atmosphere.

[実施例4]
熱可塑性樹脂としてポリエチレンテレフタレート樹脂を用いた以外は、実施例1と同様にして実施例4に係る熱線遮蔽透明樹脂成形体(成形体D)を得た。
[Example 4]
A heat ray shielding transparent resin molded product (molded product D) according to Example 4 was obtained in the same manner as in Example 1 except that polyethylene terephthalate resin was used as the thermoplastic resin.

表1に示すように、(成形体D)の可視光透過率75%のときの熱線透過率は38.6%で、ヘイズ値は0.55%であった。
また、120℃の温度下に72時間暴露後の(ΔVLT)は0.95%であり、酸素含有雰囲気下で処理しない以下の比較例1と比べて耐熱性の向上が確認された。
As shown in Table 1, the heat ray transmittance of the (molded product D) when the visible light transmittance was 75% was 38.6%, and the haze value was 0.55%.
In addition, (ΔVLT) after exposure for 72 hours at a temperature of 120 ° C. was 0.95%, and an improvement in heat resistance was confirmed as compared with Comparative Example 1 below, which was not treated in an oxygen-containing atmosphere.

[実施例5]
熱可塑性樹脂としてエチレン−4フッ化エチレン樹脂を用いた以外は、実施例1と同様にして実施例5に係る熱線遮蔽透明樹脂成形体(成形体E)を得た。
[Example 5]
A heat ray shielding transparent resin molded product (molded product E) according to Example 5 was obtained in the same manner as Example 1 except that ethylene-tetrafluoroethylene resin was used as the thermoplastic resin.

表1に示すように、(成形体E)の可視光透過率75%のときの熱線透過率は39.5%で、ヘイズ値は22.7%であった。
また、120℃の温度下に168時間暴露後の(ΔVLT)は0.98%であり、酸素含有雰囲気下で処理しない以下の比較例1と比べて耐熱性の向上が確認された。
尚、ヘイズ値が22.7%と高い値を示したが、これはエチレン−4フッ化エチレン樹脂自体が濁っているためヘイズが高くなったものである。
As shown in Table 1, the heat ray transmittance of (molded product E) when the visible light transmittance was 75% was 39.5%, and the haze value was 22.7%.
Moreover, (ΔVLT) after exposure for 168 hours at a temperature of 120 ° C. was 0.98%, confirming an improvement in heat resistance as compared with Comparative Example 1 below, which was not treated in an oxygen-containing atmosphere.
The haze value was as high as 22.7%. This is because the haze was increased because the ethylene-tetrafluoroethylene resin itself was cloudy.

[実施例6]
熱可塑性樹脂としてポリエチレン樹脂を用いた以外は、実施例1と同様にして実施例6に係る熱線遮蔽透明樹脂成形体(成形体F)を得た。
[Example 6]
A heat ray shielding transparent resin molded product (molded product F) according to Example 6 was obtained in the same manner as Example 1 except that a polyethylene resin was used as the thermoplastic resin.

表1に示すように、(成形体F)の可視光透過率75%のときの熱線透過率は40.1%で、ヘイズ値は12.8%であった。
また、120℃の温度下に168時間暴露後の(ΔVLT)は0.99%であり、酸素含有雰囲気下で処理しない以下の比較例1と比べて耐熱性の向上が確認された。
尚、ヘイズ値が12.8%と高い値を示したが、これはポリエチレン樹脂自体が濁っているためヘイズが高くなったものである。
As shown in Table 1, the heat ray transmittance of (molded product F) when the visible light transmittance was 75% was 40.1%, and the haze value was 12.8%.
Further, (ΔVLT) after exposure for 168 hours at a temperature of 120 ° C. was 0.99%, and an improvement in heat resistance was confirmed as compared with Comparative Example 1 below, which was not treated in an oxygen-containing atmosphere.
The haze value was as high as 12.8%. This is because the haze was increased because the polyethylene resin itself was cloudy.

[実施例7]
炭酸セシウムを炭酸ルビジウムへ代替し、タングステン酸(HWO)と炭酸ルビジウムの水溶液とを、Rb/W=0.33(モル比)となるように混合した以外は、実施例1と同様にしてRb0.33WO微粒子(b)を得た。
以降、微粒子(a)を微粒子(b)に代替した以外は、実施例1と同様の操作を行って、実施例7に係る熱線遮蔽透明樹脂成形体(成形体G)を得た。
[Example 7]
Except for replacing cesium carbonate with rubidium carbonate and mixing tungstic acid (H 2 WO 4 ) and an aqueous solution of rubidium carbonate so that Rb / W = 0.33 (molar ratio), the same as in Example 1. Thus, Rb 0.33 WO 3 fine particles (b) were obtained.
Thereafter, the same operation as in Example 1 was performed except that the fine particles (a) were replaced with the fine particles (b) to obtain a heat ray shielding transparent resin molded product (molded product G) according to Example 7.

表1に示すように、(成形体G)の可視光透過率75%のときの熱線透過率は46.5%で、ヘイズ値は1.1%であった。
また、120℃の温度下に168時間暴露後の(ΔVLT)は1.14%であり、酸素含有雰囲気下で処理しない以下の比較例1と比べて耐熱性の向上が確認された。
As shown in Table 1, the heat ray transmittance of (molded product G) when the visible light transmittance was 75% was 46.5%, and the haze value was 1.1%.
Moreover, (ΔVLT) after exposure for 168 hours at a temperature of 120 ° C. was 1.14%, and an improvement in heat resistance was confirmed as compared with Comparative Example 1 below, which was not treated in an oxygen-containing atmosphere.

[実施例8]
炭酸セシウムを硝酸インジウムへ代替し、タングステン酸(HWO)と硝酸インジウム水溶液とを、In/W=0.3(モル比)となるように混合した以外は、実施例1と同様にしてIn0.3WO微粒子(c)を得た。
以降、微粒子(a)を微粒子(c)に代替した以外は、実施例1と同様の操作を行って、実施例8に係る熱線遮蔽透明樹脂成形体(成形体H)を得た。
[Example 8]
Except that cesium carbonate was replaced with indium nitrate and tungstic acid (H 2 WO 4 ) and an indium nitrate aqueous solution were mixed so that In / W = 0.3 (molar ratio), the same as in Example 1. Thus, In 0.3 WO 3 fine particles (c) were obtained.
Thereafter, a heat ray shielding transparent resin molded product (molded product H) according to Example 8 was obtained by performing the same operation as in Example 1 except that the fine particles (a) were replaced with the fine particles (c).

表1に示すように、(成形体H)の可視光透過率75%のときの熱線透過率は50.7%で、ヘイズ値は1.0%であった。
また、120℃の温度下に168時間酸化暴露後の(ΔVLT)は1.24%であり、酸素含有雰囲気下で処理しない以下の比較例1と比べて耐熱性の向上が確認された。
As shown in Table 1, the heat ray transmittance was 50.7% and the haze value was 1.0% when the visible light transmittance of the molded body H was 75%.
In addition, (ΔVLT) after 168 hours of oxidation exposure at a temperature of 120 ° C. was 1.24%, and an improvement in heat resistance was confirmed as compared with Comparative Example 1 below, which was not treated in an oxygen-containing atmosphere.

[実施例9]
炭酸セシウムを蟻酸タリウムへ代替し、タングステン酸(HWO)と蟻酸タリウム水溶液とを、Tl/W=0.33(モル比)となるように混合した以外は、実施例1と同様にしてTl0.33WO微粒子(d)を得た。
以降、微粒子(a)を微粒子(d)に代替した以外は、実施例1と同様の操作を行って、実施例9に係る熱線遮蔽透明樹脂成形体(成形体I)を得た。
[Example 9]
Except that cesium carbonate was replaced with thallium formate and tungstic acid (H 2 WO 4 ) and thallium formate aqueous solution were mixed so that Tl / W = 0.33 (molar ratio), the same as in Example 1. Thus, Tl 0.33 WO 3 fine particles (d) were obtained.
Thereafter, the same operation as in Example 1 was performed except that the fine particles (a) were replaced with the fine particles (d) to obtain a heat ray shielding transparent resin molded product (molded product I) according to Example 9.

表1に示すように、(成形体I)の可視光透過率75%のときの熱線透過率は44.3%で、ヘイズ値は1.1%であった。
また、120℃の温度下に168時間暴露後の(ΔVLT)は1.09%であり、酸素含有雰囲気下で処理しない以下の比較例1と比べて耐熱性の向上が確認された。
As shown in Table 1, the heat ray transmittance was 44.3% and the haze value was 1.1% when the (molded product I) had a visible light transmittance of 75%.
In addition, (ΔVLT) after exposure for 168 hours at a temperature of 120 ° C. was 1.09%, and an improvement in heat resistance was confirmed as compared with Comparative Example 1 below which was not treated in an oxygen-containing atmosphere.

[実施例10]
炭酸セシウムを塩化カリウムへ代替し、タングステン酸(HWO)と塩化カリウム水溶液とを、K/W=0.33(モル比)となるように混合した以外は、実施例1と同様にしてK0.33WO微粒子(e)を得た。
以降、微粒子(a)を微粒子(e)に代替した以外は、実施例1と同様の操作を行って、実施例10に係る熱線遮蔽透明樹脂成形体(成形体J)を得た。
[Example 10]
Except that cesium carbonate was replaced with potassium chloride, and tungstic acid (H 2 WO 4 ) and an aqueous potassium chloride solution were mixed so that K / W = 0.33 (molar ratio), the same as in Example 1. Thus, K 0.33 WO 3 fine particles (e) were obtained.
Thereafter, the same operation as in Example 1 was performed except that the fine particles (a) were replaced with the fine particles (e) to obtain a heat ray shielding transparent resin molded product (molded product J) according to Example 10.

表1に示すように、(成形体J)の可視光透過率75%のときの熱線透過率は47.4%で、ヘイズ値は1.1%であった。
また、120℃の温度下に168時間暴露後の(ΔVLT)は1.16%であり、酸素含有雰囲気下で処理しない以下の比較例1と比べて耐熱性の向上が確認された。
As shown in Table 1, the heat ray transmittance of the (molded product J) when the visible light transmittance was 75% was 47.4%, and the haze value was 1.1%.
In addition, (ΔVLT) after exposure for 168 hours at a temperature of 120 ° C. was 1.16%, and an improvement in heat resistance was confirmed as compared with Comparative Example 1 below, which was not treated in an oxygen-containing atmosphere.

[実施例11]
炭酸セシウムを水酸化バリウム八水和物へ代替し、タングステン酸(HWO)と水酸化バリウム水溶液とを、Ba/W=0.33(モル比)となるように混合した以外は、実施例1と同様にしてBa0.33WO微粒子(f)を得た。
以降、微粒子(a)を微粒子(f)に代替した以外は、実施例1と同様の操作を行って、実施例10に係る熱線遮蔽透明樹脂成形体(成形体K)を得た。
[Example 11]
Except that cesium carbonate was replaced with barium hydroxide octahydrate and tungstic acid (H 2 WO 4 ) and barium hydroxide aqueous solution were mixed so that Ba / W = 0.33 (molar ratio), In the same manner as in Example 1, Ba 0.33 WO 3 fine particles (f) were obtained.
Thereafter, the same operation as in Example 1 was performed except that the fine particles (a) were replaced with the fine particles (f) to obtain a heat ray shielding transparent resin molded product (molded product K) according to Example 10.

表1に示すように、(成形体K)の可視光透過率75%のときの熱線透過率は53.5%で、ヘイズ値は1.1%であった。
また、120℃の温度下に168時間暴露後の(ΔVLT)は1.31%であり、酸素含有雰囲気下で処理しない以下の比較例1と比べて耐熱性の向上が確認された。
As shown in Table 1, the heat ray transmittance of the (molded product K) when the visible light transmittance was 75% was 53.5%, and the haze value was 1.1%.
In addition, (ΔVLT) after exposure for 168 hours at a temperature of 120 ° C. was 1.31%, and an improvement in heat resistance was confirmed as compared with Comparative Example 1 below, which was not treated in an oxygen-containing atmosphere.

[実施例12]
実施例1において得られた(A粉)を、酸素5体積%窒素95体積%の混合ガス雰囲気下において加熱し、200℃の温度で24時間酸化暴露処理して、実施例12に係る酸化暴露処理粉(処理C粉)を得た。
以降、(処理A粉)を(処理C粉)に代替した以外は、実施例1と同様の操作を行って、実施例12に係る熱線遮蔽透明樹脂成形体(成形体L)を得た。
[Example 12]
The (A powder) obtained in Example 1 was heated in a mixed gas atmosphere of 5 volume% oxygen and 95 volume% nitrogen, and subjected to an oxidation exposure treatment at a temperature of 200 ° C. for 24 hours. A treated powder (treated C powder) was obtained.
Thereafter, the same operation as in Example 1 was performed except that (Processing A powder) was replaced with (Processing C powder) to obtain a heat ray shielding transparent resin molded product (molded product L) according to Example 12.

表1に示すように、(成形体L)の可視光透過率75%のときの熱線透過率は38.5%で、ヘイズ値は1.1%であった。
また、120℃の温度下に72時間暴露後の(ΔVLT)は0.27%であり、酸素含有雰囲気下で処理しない以下の比較例1と比べて耐熱性の向上が確認された。
As shown in Table 1, the heat ray transmittance of the (formed product L) when the visible light transmittance was 75% was 38.5%, and the haze value was 1.1%.
Further, (ΔVLT) after exposure for 72 hours at a temperature of 120 ° C. was 0.27%, and an improvement in heat resistance was confirmed as compared with Comparative Example 1 below, which was not treated in an oxygen-containing atmosphere.

[実施例13]
実施例1において得られた(A粉)を、酸素1体積%窒素99体積%の混合ガス雰囲気下において加熱し、100℃の温度で24時間酸化暴露処理して、実施例13に係る酸化暴露処理粉(処理D粉)を得た。
以降、(処理A粉)を(処理D粉)に代替した以外は、実施例1と同様の操作を行って、実施例13に係る熱線遮蔽透明樹脂成形体(成形体M)を得た。
[Example 13]
The (A powder) obtained in Example 1 was heated in a mixed gas atmosphere of 1 vol% oxygen and 99 vol% nitrogen, and subjected to an oxidation exposure treatment at a temperature of 100 ° C. for 24 hours. A treated powder (treated D powder) was obtained.
Thereafter, the same operation as in Example 1 was performed except that (Processing A powder) was replaced with (Processing D powder) to obtain a heat ray shielding transparent resin molded product (molded product M) according to Example 13.

表1に示すように、(成形体M)の可視光透過率75%のときの熱線透過率は38.6%で、ヘイズ値は1.0%であった。
また、120℃の温度下に72時間暴露後の(ΔVLT)は1.15%であり、酸素含有雰囲気下で処理しない以下の比較例1と比べて耐熱性の向上が確認された。
As shown in Table 1, the heat ray transmittance of the (Molded product M) when the visible light transmittance was 75% was 38.6%, and the haze value was 1.0%.
In addition, (ΔVLT) after exposure for 72 hours at a temperature of 120 ° C. was 1.15%, and an improvement in heat resistance was confirmed as compared with Comparative Example 1 below which was not treated in an oxygen-containing atmosphere.

[比較例1]
実施例1において得られた(A粉)を酸化暴露処理することなく、(処理A粉)を(A粉)に代替した以外は、実施例1と同様の操作を行って、比較例1に係る熱線遮蔽透明樹脂成形体(成形体N)を得た。
[Comparative Example 1]
The same operation as in Example 1 was performed except that (A powder) obtained in Example 1 was replaced with (A powder) without subjecting the (A powder) to oxidation exposure treatment. The heat ray shielding transparent resin molding (molded body N) was obtained.

表1に示すように、(成形体N)の可視光透過率75%のときの熱線透過率は38.8%で、ヘイズ値は1.0%であった。
また、120℃の温度下に72時間暴露後の(ΔVLT)は1.46%であり、上記実施例1〜13と比べて耐熱性が劣ることが確認された。
As shown in Table 1, the heat ray transmittance was 38.8% and the haze value was 1.0% when the visible light transmittance of the molded body N was 75%.
Moreover, (ΔVLT) after exposure for 72 hours at a temperature of 120 ° C. was 1.46%, and it was confirmed that the heat resistance was inferior to those of Examples 1 to 13.

Figure 2012082326
Figure 2012082326

Claims (6)

一般式MWO(但し、MはCs、Rb、K、Na、Ba、Ca、Sr、Mg、Nb、Ge、In、Tlの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦y≦0.5、2.2≦z≦3.0)で示される六方晶の結晶構造を持つ複合タングステン酸化物微粒子であって、さらに、酸素含有雰囲気下において50℃以上400℃以下で酸化暴露処理された複合タングステン酸化物微粒子と、
アクリル樹脂、ポリカーボネート樹脂、ポリエーテルイミド樹脂、ポリスチレン樹脂、ポリエーテルスルホン樹脂、フッ素樹脂、ポリオレフィン樹脂およびポリエステル樹脂から選択される1種以上の前記熱可塑性樹脂とを含み、
熱線遮蔽透明樹脂成形体を製造するために用いられることを特徴とする高耐熱性熱線遮蔽成分含有マスターバッチ。
Formula M y WO z (where, M is Cs, Rb, K, Na, Ba, Ca, Sr, Mg, Nb, Ge, In, 1 or more elements selected from among Tl, W is tungsten, O is a composite tungsten oxide fine particle having a hexagonal crystal structure represented by oxygen, 0.1 ≦ y ≦ 0.5, 2.2 ≦ z ≦ 3.0), and further in an oxygen-containing atmosphere. Composite tungsten oxide fine particles treated by oxidation exposure at 50 ° C. or higher and 400 ° C. or lower;
And one or more thermoplastic resins selected from acrylic resins, polycarbonate resins, polyetherimide resins, polystyrene resins, polyethersulfone resins, fluororesins, polyolefin resins and polyester resins,
A masterbatch containing a high heat resistance heat ray shielding component, which is used for producing a heat ray shielding transparent resin molding.
前記酸化暴露処理を施して得られた複合タングステン酸化物微粒子が、分散粒子径800nm以下の微粒子であることを特徴とする請求項1に記載の高耐熱性熱線遮蔽成分含有マスターバッチ。   2. The high heat-resistant heat ray shielding component-containing masterbatch according to claim 1, wherein the composite tungsten oxide fine particles obtained by the oxidation exposure treatment are fine particles having a dispersed particle diameter of 800 nm or less. 請求項1または2記載の高耐熱性熱線遮蔽成分含有マスターバッチが、このマスターバッチの上記熱可塑性樹脂と同種の熱可塑性樹脂成形材料若しくは相溶性を有する異種の熱可塑性樹脂成形材料により希釈され、かつ、所定の形状に成形されたものであることを特徴とする高耐熱性熱線遮蔽透明樹脂成形体。   The high heat-resistant heat ray shielding component-containing masterbatch according to claim 1 or 2 is diluted with a thermoplastic resin molding material of the same type as the thermoplastic resin of the masterbatch or a different type of thermoplastic resin molding material having compatibility, And the high heat resistant heat ray shielding transparent resin molding characterized by being shape | molded by the predetermined | prescribed shape. 請求項3記載の高耐熱性熱線遮蔽透明樹脂成形体が、他の透明成形体に積層されたものであることを特徴とする高耐熱性熱線遮蔽透明積層体。   4. A high heat resistant heat ray shielding transparent laminate, wherein the high heat resistant heat ray shielding transparent resin molding according to claim 3 is laminated on another transparent molding. 熱線遮蔽透明樹脂成形体を製造するために用いられる高耐熱性熱線遮蔽成分含有マスターバッチの製造方法であって、
一般式MyWOz(但し、0.1≦Y≦0.5、2.2≦Z≦3.0)で示され且つ六方晶の結晶構造を持つ複合タングステン酸化物微粒子を酸素含有雰囲気下において、50℃以上400℃以下で酸化暴露処理する工程と、
当該酸化暴露処理された複合タングステン酸化物微粒子と、分散剤とを、溶媒に加え粉砕・分散処理を行い、微粒子分散液を得る工程と、
当該微粒子分散液を得る工程の後、溶媒を除去して、当該微粒子分散粉を得る工程と、
当該微粒子分散粉と熱可塑性樹脂ペレットとを混合し、熔融混練し、成形する工程とを、具備することを特徴とする高耐熱性熱線遮蔽成分含有マスターバッチの製造方法。
A method for producing a heat-shielding heat ray shielding component-containing masterbatch used for producing a heat ray shielding transparent resin molded article,
A composite tungsten oxide fine particle represented by the general formula MyWOz (where 0.1 ≦ Y ≦ 0.5, 2.2 ≦ Z ≦ 3.0) and having a hexagonal crystal structure is obtained in an oxygen-containing atmosphere. A step of oxidizing exposure treatment at a temperature of from ℃ to 400 ℃,
A step of adding the composite tungsten oxide fine particles subjected to the oxidation exposure treatment and a dispersing agent to a solvent and performing pulverization / dispersion treatment to obtain a fine particle dispersion;
After obtaining the fine particle dispersion, removing the solvent to obtain the fine particle dispersion; and
A method for producing a masterbatch containing a high heat resistance heat ray shielding component, comprising: mixing, melting and kneading and molding the fine particle dispersed powder and a thermoplastic resin pellet.
前記酸素含有雰囲気の酸素濃度が、0.1体積%以上25体積%以下であることを特徴とする請求項5に記載の高耐熱性熱線遮蔽成分含有マスターバッチの製造方法。   The method for producing a masterbatch containing a high heat resistance heat ray shielding component according to claim 5, wherein the oxygen concentration in the oxygen-containing atmosphere is 0.1 vol% or more and 25 vol% or less.
JP2010229976A 2010-10-12 2010-10-12 Master batch containing high heat-resistant heat ray shielding component, production method of the master batch, high heat-resistant heat ray shielding transparent resin molded article, and high heat-resistant heat ray shielding transparent laminate Pending JP2012082326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010229976A JP2012082326A (en) 2010-10-12 2010-10-12 Master batch containing high heat-resistant heat ray shielding component, production method of the master batch, high heat-resistant heat ray shielding transparent resin molded article, and high heat-resistant heat ray shielding transparent laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010229976A JP2012082326A (en) 2010-10-12 2010-10-12 Master batch containing high heat-resistant heat ray shielding component, production method of the master batch, high heat-resistant heat ray shielding transparent resin molded article, and high heat-resistant heat ray shielding transparent laminate

Publications (1)

Publication Number Publication Date
JP2012082326A true JP2012082326A (en) 2012-04-26

Family

ID=46241554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010229976A Pending JP2012082326A (en) 2010-10-12 2010-10-12 Master batch containing high heat-resistant heat ray shielding component, production method of the master batch, high heat-resistant heat ray shielding transparent resin molded article, and high heat-resistant heat ray shielding transparent laminate

Country Status (1)

Country Link
JP (1) JP2012082326A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014094493A (en) * 2012-11-08 2014-05-22 Sumitomo Metal Mining Co Ltd Transparent resin laminate, method for producing the same, and primer liquid for forming primer layer having thermal ray-shielding function
AU2015203070A1 (en) * 2014-06-11 2016-01-07 Zirco Applied Materials Co., Ltd. A near-infrared ray shielding film and a method thereof
WO2016104375A1 (en) * 2014-12-25 2016-06-30 住友化学株式会社 Heat ray absorbing lamp cover
WO2018235138A1 (en) * 2017-06-19 2018-12-27 住友金属鉱山株式会社 Masterbatch containing far-infrared absorbing component, and method for producing same, far-infrared absorbing transparent resin molding, and far-infrared absorbing transparent laminate
CN109679206A (en) * 2018-12-13 2019-04-26 广州市聚赛龙工程塑料股份有限公司 A kind of low nano-filler modified polypropylene material and the preparation method and application thereof that volatilizees
JP2019089939A (en) * 2017-11-14 2019-06-13 住友金属鉱山株式会社 Infrared absorber
JP2019131727A (en) * 2018-01-31 2019-08-08 共同印刷株式会社 Infrared absorbing ink and method for producing the same
CN111032745A (en) * 2017-07-24 2020-04-17 住友金属矿山株式会社 Pulverized masterbatch containing infrared absorbing fine particles, dispersion containing pulverized masterbatch containing infrared absorbing fine particles, ink containing infrared absorbing material, forgery prevention ink using the same, forgery prevention print film, and method for producing pulverized masterbatch containing infrared absorbing fine particles

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014094493A (en) * 2012-11-08 2014-05-22 Sumitomo Metal Mining Co Ltd Transparent resin laminate, method for producing the same, and primer liquid for forming primer layer having thermal ray-shielding function
AU2015203070B2 (en) * 2014-06-11 2016-12-01 Zirco Applied Materials Co., Ltd. A near-infrared ray shielding film and a method thereof
AU2015203070A1 (en) * 2014-06-11 2016-01-07 Zirco Applied Materials Co., Ltd. A near-infrared ray shielding film and a method thereof
US10359171B2 (en) * 2014-12-25 2019-07-23 Sumitomo Chemical Company, Limited Heat ray absorbing lamp cover
JPWO2016104375A1 (en) * 2014-12-25 2017-11-02 住友化学株式会社 Heat ray absorbing lamp cover
US20170343183A1 (en) * 2014-12-25 2017-11-30 Sumitomo Chemical Company, Limited Heat ray absorbing lamp cover
JP6427710B1 (en) * 2014-12-25 2018-11-21 住友化学株式会社 Heat ray absorbing lamp cover
JP2019016601A (en) * 2014-12-25 2019-01-31 住友化学株式会社 Heat ray absorbing lamp cover
WO2016104375A1 (en) * 2014-12-25 2016-06-30 住友化学株式会社 Heat ray absorbing lamp cover
CN107002974A (en) * 2014-12-25 2017-08-01 住友化学株式会社 Heat ray absorbability lampshade
CN107002974B (en) * 2014-12-25 2019-10-29 住友化学株式会社 Heat ray absorbability lampshade
WO2018235138A1 (en) * 2017-06-19 2018-12-27 住友金属鉱山株式会社 Masterbatch containing far-infrared absorbing component, and method for producing same, far-infrared absorbing transparent resin molding, and far-infrared absorbing transparent laminate
JPWO2018235138A1 (en) * 2017-06-19 2020-04-23 住友金属鉱山株式会社 Masterbatch containing heat ray absorbing component, method for producing the same, heat ray absorbing transparent resin molding, and heat ray absorbing transparent laminate
CN111032745A (en) * 2017-07-24 2020-04-17 住友金属矿山株式会社 Pulverized masterbatch containing infrared absorbing fine particles, dispersion containing pulverized masterbatch containing infrared absorbing fine particles, ink containing infrared absorbing material, forgery prevention ink using the same, forgery prevention print film, and method for producing pulverized masterbatch containing infrared absorbing fine particles
JP2019089939A (en) * 2017-11-14 2019-06-13 住友金属鉱山株式会社 Infrared absorber
JP2019131727A (en) * 2018-01-31 2019-08-08 共同印刷株式会社 Infrared absorbing ink and method for producing the same
JP7133932B2 (en) 2018-01-31 2022-09-09 共同印刷株式会社 Infrared absorbing ink and method for producing the same
CN109679206A (en) * 2018-12-13 2019-04-26 广州市聚赛龙工程塑料股份有限公司 A kind of low nano-filler modified polypropylene material and the preparation method and application thereof that volatilizees
CN109679206B (en) * 2018-12-13 2021-09-28 广州市聚赛龙工程塑料股份有限公司 Low-volatility nano filler modified polypropylene material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP4632094B2 (en) Manufacturing method of high heat-resistant masterbatch, heat ray shielding transparent resin molding, and heat ray shielding transparent laminate
KR101320228B1 (en) Masterbatch with high heat resistance, heat-ray-shielding transparent molded resin, and heat-ray-shielding transparent layered product
JP4349779B2 (en) Heat ray shielding transparent resin molding and heat ray shielding transparent laminate
JP5257626B2 (en) High heat resistant masterbatch, heat ray shielding transparent resin molding, and heat ray shielding transparent laminate
KR101967018B1 (en) Polycarbonate resin composition containing dispersed composite-tungsten-oxide microparticles and radiated-heat-blocking molded body and radiated-heat-blocking laminate using said composition
JP2012082326A (en) Master batch containing high heat-resistant heat ray shielding component, production method of the master batch, high heat-resistant heat ray shielding transparent resin molded article, and high heat-resistant heat ray shielding transparent laminate
JP6274283B2 (en) Heat ray shielding dispersion, heat ray shielding dispersion, and heat ray shielding body
JP2011063741A (en) Heat ray shielding resin sheet material, heat ray shielding resin sheet material laminate and building structure using these
JP5898397B2 (en) Near-infrared shielding polyester resin composition, near-infrared shielding polyester resin laminate, molded article and method for producing the same
JP2006199850A (en) Heat ray-shading component-containing master batch, heat ray-shading transparent resin-molded article and heat ray-shading transparent resin laminate
JP2011063740A (en) Heat ray shielding resin sheet material, heat ray shielding resin sheet material laminate and building structure using these
JP5257381B2 (en) Near-infrared shielding polyester resin composition, molded article thereof, and laminate thereof
JP5614586B2 (en) Heat ray shielding polycarbonate sheet, heat ray shielding polycarbonate sheet laminate, and method for producing heat ray shielding polycarbonate sheet
JP2005232399A (en) Sunlight-screening fine particle, sunlight-screening material and sunlight-screening composite material containing the same, and dispersion used for producing sunlight-screening material or sunlight-screening composite material
JP5061665B2 (en) Masterbatch, method for producing the same, molded body using the masterbatch, and laminate using the molded body
WO2018235138A1 (en) Masterbatch containing far-infrared absorbing component, and method for producing same, far-infrared absorbing transparent resin molding, and far-infrared absorbing transparent laminate
JP2009144037A (en) Tungsten oxide microparticle dispersion for addition to resin, molded product of tungsten oxide microparticle-dispersed vinyl chloride resin, and method for producing molded product of tungsten oxide microparticle-dispersed vinyl chloride resin
JP2018118463A (en) Heat ray-shielding transparent resin laminate