JP2011184522A - Near-infrared shielding polyester resin composition and molded article thereof, and laminate of the molded article - Google Patents

Near-infrared shielding polyester resin composition and molded article thereof, and laminate of the molded article Download PDF

Info

Publication number
JP2011184522A
JP2011184522A JP2010049494A JP2010049494A JP2011184522A JP 2011184522 A JP2011184522 A JP 2011184522A JP 2010049494 A JP2010049494 A JP 2010049494A JP 2010049494 A JP2010049494 A JP 2010049494A JP 2011184522 A JP2011184522 A JP 2011184522A
Authority
JP
Japan
Prior art keywords
polyester resin
infrared shielding
fine particles
resin composition
titanium nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010049494A
Other languages
Japanese (ja)
Other versions
JP5257381B2 (en
Inventor
Kenichi Fujita
賢一 藤田
Hiroshi Kobayashi
宏 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2010049494A priority Critical patent/JP5257381B2/en
Publication of JP2011184522A publication Critical patent/JP2011184522A/en
Application granted granted Critical
Publication of JP5257381B2 publication Critical patent/JP5257381B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyester resin composition which enables near-infrared shielding polyester resin molded articles of various shapes having transparency and near-infrared shielding function to be produced in a simple and easy way without using physical film-forming method or the like, does not bring about changes such as yellowing in molding, and has excellent near-infrared shielding function because fine particles having near-infrared shielding function are uniformly dispersed therein. <P>SOLUTION: The near-infrared shielding polyester resin composition used to produce near-infrared shielding polyester resin molded articles contains a polyester resin, titanium nitride fine particles having an average particle size of ≤30 nm, and a dispersant having a thermal decomposition temperature of ≥230°C and a basic functional group in a polyester main chain thereof. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、建築物、自動車、電車、航空機などの開口部に使用される窓材、フラットパネルディスプレイの近赤外線吸収フィルター材等に広く利用される、近赤外線遮蔽ポリエステル樹脂成形体および積層体、それら成形体および積層体の製造に用いられる、近赤外線遮蔽ポリエステル樹脂組成物に関するものである。   The present invention is a near-infrared-shielding polyester resin molded body and laminate widely used for window materials used in openings of buildings, automobiles, trains, airplanes, near-infrared absorbing filter materials for flat panel displays, etc. The present invention relates to a near-infrared shielding polyester resin composition used for the production of these molded products and laminates.

各種建築物や車両の窓、ドア等のいわゆる開口部分から入射する太陽光線には、可視光線、紫外線および赤外線が含まれている。この太陽光線に含まれている赤外線のうち波長800〜2500nmの近赤外線は熱線と呼ばれ、前記開口部分から進入することにより、室内や車内の温度を上昇させる原因になる。
当該温度上昇を解消するために、近年、各種建築物や車両の窓材等の分野では、可視光線を十分に取り入れながら熱線を遮蔽し、明るさを維持しつつ室内の温度上昇を抑制する近赤外線遮蔽成形体の需要が急増しており、近赤外線遮蔽成形体に関する提案が多数されている。
Sun rays entering from so-called openings such as windows and doors of various buildings and vehicles include visible light, ultraviolet light, and infrared light. Near infrared rays having a wavelength of 800 to 2500 nm among infrared rays contained in the solar rays are called heat rays, and they enter the opening to cause the temperature in the room or the vehicle to rise.
In recent years, in order to eliminate the temperature rise, in the fields of various buildings and vehicle window materials, the heat ray is shielded while sufficiently taking in visible light, and the temperature rise in the room is maintained while maintaining the brightness. The demand for infrared shielding molded bodies is increasing rapidly, and many proposals for near-infrared shielding molded bodies have been made.

例えば、透明樹脂フィルムに金属、金属酸化物を蒸着してなる熱線反射フィルムを、ガラス、アクリル板、ポリカーボネート板等の透明成形体に接着した近赤外線遮蔽板が提案されている。しかし、この金属酸化物を蒸着してなる熱線反射フィルムは、フィルム自体が非常に高価であり、かつ接着工程等の煩雑な工程を要する為さらに高コストとなる。さらに、透明成形体と反射フィルムとの接着性が良好でないので、経時変化により透明成形体からのフィルム剥離が生じるといった欠点を有している。   For example, a near-infrared shielding plate in which a heat ray reflective film obtained by vapor-depositing a metal or metal oxide on a transparent resin film is bonded to a transparent molded body such as glass, an acrylic plate, or a polycarbonate plate has been proposed. However, the heat ray reflective film formed by vapor-depositing this metal oxide is further expensive because the film itself is very expensive and requires a complicated process such as an adhesion process. Furthermore, since the adhesiveness between the transparent molded body and the reflective film is not good, there is a disadvantage that the film peels off from the transparent molded body due to a change with time.

また、透明成形体表面へ金属または金属酸化物を直接蒸着してなる、近赤外線遮蔽板も数多く提案されている。しかし、当該近赤外線遮蔽板の製造に際しては、高真空で精度の高い雰囲気制御を要する蒸着装置が必要となる為、量産性に乏しく、汎用性に乏しいという問題を有している。   In addition, many near-infrared shielding plates have been proposed in which a metal or metal oxide is directly deposited on the surface of a transparent molded body. However, when manufacturing the near-infrared shielding plate, a vapor deposition apparatus that requires high-vacuum and high-precision atmosphere control is required. Therefore, there is a problem that the mass productivity is poor and the versatility is poor.

この他、例えば、ポリエチレンテレフタレート樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリエチレン樹脂、ポリスチレン樹脂等の熱可塑性透明樹脂へ、フタロシアニン系化合物、アントラキノン系化合物に代表される有機近赤外線吸収剤を練り込んだ近赤外線遮蔽板およびフィルムが提案されている(特許文献1、2等参照)。   In addition, for example, a near infrared ray in which an organic near infrared absorber typified by a phthalocyanine compound or an anthraquinone compound is kneaded into a thermoplastic transparent resin such as a polyethylene terephthalate resin, a polycarbonate resin, an acrylic resin, a polyethylene resin, or a polystyrene resin. A shielding plate and a film have been proposed (see Patent Documents 1 and 2, etc.).

さらに、アクリル樹脂、ポリカーボネート樹脂等の透明樹脂へ、熱線反射能を有する酸化チタン、あるいは酸化チタンで被覆されたマイカ等の無機粒子を、熱線反射粒子として練り込んだ近赤外線遮蔽板も提案されている(特許文献3、4等参照)。   Furthermore, a near-infrared shielding plate is proposed in which inorganic particles such as titanium oxide having heat ray reflectivity or mica coated with titanium oxide are kneaded as heat ray reflective particles into a transparent resin such as acrylic resin or polycarbonate resin. (See Patent Documents 3 and 4).

一方、本出願人は、近赤外線遮蔽効果を有する成分として、材料そのものの特性として自由電子を多量に保有する金属窒化物に着目した。そして、種々検討の結果、金属窒化物を超微粒子化し、当該金属窒化物の超微粒子が高度に分散された膜を製造することにより、可視光領域に透過率の極大を持つとともに、可視光領域に近い近赤外域に強いプラズマ反射を発現して透過率の極小を持つようになるという事実を見出した。具体的には、平均粒径100nm以下の窒化チタン微粒子、平均粒径100nm以下の窒化ジルコニウム微粒子、平均粒径100nm以下の窒化ハフニウム微粒子、平均粒径100nm以下の窒化バナジウム微粒子、平均粒径100nm以下の窒化ニオブ微粒子、および、平均粒径100nm以下の窒化タンタル微粒子のうち少なくとも1種が分散された熱線遮蔽膜形成用塗
布液、当該熱線遮蔽膜形成用塗布液を基材に塗布後加熱して得られる近赤外線遮蔽能を有する微粒子分散膜を提案している(特許文献5参照)。
On the other hand, the present applicant paid attention to a metal nitride having a large amount of free electrons as a characteristic of the material itself as a component having a near-infrared shielding effect. As a result of various studies, metal nitride is made ultrafine and a film in which the ultrafine particles of the metal nitride are highly dispersed has a maximum transmittance in the visible light region and the visible light region. We found the fact that strong plasma reflection appears in the near-infrared region close to, and the transmittance becomes minimum. Specifically, titanium nitride fine particles having an average particle size of 100 nm or less, zirconium nitride fine particles having an average particle size of 100 nm or less, hafnium nitride fine particles having an average particle size of 100 nm or less, vanadium nitride fine particles having an average particle size of 100 nm or less, average particle size of 100 nm or less A coating solution for forming a heat ray shielding film in which at least one of niobium nitride fine particles and tantalum nitride fine particles having an average particle size of 100 nm or less is dispersed, and the heat ray shielding film forming coating solution are applied to a substrate and then heated. An obtained fine particle dispersion film having a near-infrared shielding ability is proposed (see Patent Document 5).

特開平6−256541号公報JP-A-6-256541 特開平6−264050号公報JP-A-6-264050 特開平2−173060号公報JP-A-2-173060 特開平5−78544号公報JP-A-5-78544 特開平11−263639号公報Japanese Patent Laid-Open No. 11-263639

しかしながら、本発明者らの検討によると、特許文献1、2に記載の近赤外線遮蔽板およびフィルムにおいては、熱線を十分に遮蔽するために多量の近赤外線吸収剤を配合しなければならない。だからといって、近赤外線遮蔽板およびフィルムへ近赤外線吸収剤を多量に配合すると、今度は可視光線透過能が低下したり、フィルムの機械特性が低下してしまうという課題がある。さらに、近赤外線吸収剤として有機化合物を使用しているため、当該近赤外線遮蔽板およびフィルムを、直射日光に常時曝される建築物や車両の窓材等へ適用するには耐侯性に難があり、必ずしも適当であるとはいえなかった。   However, according to the study by the present inventors, in the near-infrared shielding plates and films described in Patent Documents 1 and 2, a large amount of near-infrared absorber must be blended in order to sufficiently shield the heat rays. However, when a large amount of a near-infrared absorber is added to the near-infrared shielding plate and the film, there is a problem that the visible light transmission ability is lowered and the mechanical properties of the film are lowered. Furthermore, since an organic compound is used as a near-infrared absorber, it is difficult to apply the near-infrared shielding plate and film to a building or a vehicle window material that is constantly exposed to direct sunlight. Yes, it was not always appropriate.

また、特許文献3、4に記載の近赤外線遮蔽板においては、近赤外線遮蔽能を高める為に当該熱線反射粒子を多量に添加する必要があり、上記特許文献1、2と同様、熱線反射粒子の多量配合に伴って成形体である透明樹脂の物性、特に耐衝撃強度や靭性が低下するという強度面からの問題があった。だからといって、熱線反射粒子の添加量を少なくすると、今度は、近赤外線遮蔽板の近赤外線遮蔽能が低下してしまい、近赤外線遮蔽能と可視光線透過能とを同時に満足させることが困難であるといった問題があった。   Moreover, in the near-infrared shielding plates described in Patent Documents 3 and 4, it is necessary to add a large amount of the heat ray-reflecting particles in order to enhance the near-infrared shielding ability. There is a problem from the viewpoint of strength that the physical properties, particularly impact strength and toughness, of the transparent resin, which is a molded product, are reduced with the addition of a large amount of the above. However, if the addition amount of the heat ray reflective particles is reduced, the near-infrared shielding ability of the near-infrared shielding plate is lowered, and it is difficult to satisfy the near-infrared shielding ability and the visible light transmission ability at the same time. There was a problem.

ここで、本発明者らは、適宜な熱可塑性を有する樹脂としてポリエステル樹脂を選択し、当該ポリエステル樹脂を加熱溶融し、ここへ特許文献5に記載の金属窒化物微粒子を分散し、それを成形して、近赤外線遮蔽ポリエステル樹脂成形体や、近赤外線遮蔽ポリエステル樹脂積層体とすることに想到した。当該方法によれば、透明性および近赤外線遮蔽機能を有する様々な形状の近赤外線遮蔽ポリエステル樹脂成形体や、近赤外線遮蔽ポリエステル樹脂積層体を、物理成膜法などを用いることなく簡便な方法で作製出来ると考えたのである。
しかし、当該金属窒化物微粒子を添加してポリエステル樹脂中へ分散させて成形しようとすると、成形時に黄変が発生し、さらに、ポリエステル樹脂中における微粒子の分散の均一性に不足があり、十分な近赤外線遮蔽機能を得ることが出来ないことを知見した。
Here, the present inventors select a polyester resin as a resin having appropriate thermoplasticity, heat and melt the polyester resin, disperse the metal nitride fine particles described in Patent Document 5, and mold it. Thus, the inventors have come up with a near-infrared shielding polyester resin molding or a near-infrared shielding polyester resin laminate. According to this method, various shapes of near-infrared shielding polyester resin moldings having transparency and a near-infrared shielding function, and near-infrared shielding polyester resin laminates can be obtained by a simple method without using a physical film forming method or the like. I thought it could be made.
However, if the metal nitride fine particles are added and dispersed in the polyester resin to be molded, yellowing occurs at the time of molding, and furthermore, there is insufficient uniformity of dispersion of the fine particles in the polyester resin. It was found that the near infrared shielding function could not be obtained.

本発明は、上述の状況の下になされたものである。
その課題とするところは、透明性及び近赤外線遮蔽機能を有する様々な形状の近赤外線遮蔽ポリエステル樹脂成形体を、物理成膜法などを用いることなく簡便な方法で作製でき、成形時に黄変等の変化が起こらず、且つ近赤外線遮蔽機能を有する微粒子が均一に分散し、優れた近赤外線遮蔽機能を有するポリエステル樹脂組成物を提供すること。併せて当該樹脂組成物から製造した、近赤外線遮蔽ポリエステル樹脂成形体、並びに、近赤外線遮蔽ポリエステル樹脂積層体を提供することである。
The present invention has been made under the above circumstances.
The problem is that near-infrared shielding polyester resin moldings having various shapes having transparency and a near-infrared shielding function can be produced by a simple method without using a physical film forming method, etc. And a polyester resin composition having an excellent near-infrared shielding function in which fine particles having a near-infrared shielding function are uniformly dispersed. Moreover, it is providing the near-infrared shielding polyester resin molding manufactured from the said resin composition, and the near-infrared shielding polyester resin laminated body.

本発明者等は、上記課題を解決するため鋭意研究を行った結果、製造される近赤外線遮蔽成形体において、当該近赤外線遮蔽成形体が黄変する原因、および、当該近赤外線遮蔽
成形体が期待される可視光線透過能及び近赤外線遮蔽機能が得られない原因が、いずれも樹脂組成物中に含まれる分散剤の熱変性に起因するとの知見を得た。
つまり、近赤外線遮蔽樹脂組成物中に含まれる分散剤の耐熱性が低いため、当該近赤外線遮蔽樹脂組成物を加熱しながら混練混合する際、当該分散剤が熱変性し、当該分散剤の分散能力が劣化して近赤外線遮蔽樹脂組成物中に含まれる近赤外線遮蔽微粒子の分散に支障をきたし、期待される近赤外線遮蔽機能が得られず、さらには、当該熱変性した分散剤が黄から茶色に着色し、近赤外線遮蔽樹脂成形体が黄変する原因となっていたのである。
As a result of earnest research to solve the above-mentioned problems, the present inventors, in the manufactured near-infrared shielding molded body, cause the near-infrared shielding molded body to turn yellow, and the near-infrared shielding molded body is The present inventors have found that the expected visible light transmission ability and near-infrared shielding function cannot be obtained due to thermal denaturation of the dispersant contained in the resin composition.
That is, since the heat resistance of the dispersant contained in the near-infrared shielding resin composition is low, when the near-infrared shielding resin composition is kneaded and mixed while heating, the dispersant is thermally denatured and the dispersion of the dispersant The ability is deteriorated and the dispersion of the near-infrared shielding fine particles contained in the near-infrared shielding resin composition is hindered, the expected near-infrared shielding function cannot be obtained, and further, the heat-modified dispersant is yellow. It was colored brown, causing the near-infrared shielding resin molding to turn yellow.

上述の知見に基づいて、本発明者らはさらに研究を進め、近赤外線遮蔽ポリエステル樹脂成形体を製造するために用いられる近赤外線遮蔽ポリエステル樹脂組成物であって、ポリエステル樹脂(本発明において「A」という符号を付与する場合がある。)と、平均粒径30nm以下の窒化チタン微粒子(本発明において「B」という符号を付与する場合がある。)と、熱分解温度が230℃以上であって、ポリエステル主鎖に塩基性官能基をもつ分散剤(本発明において「C」という符号を付与する場合がある。)と、を含む、近赤外線遮蔽ポリエステル樹脂組成物に想到した。   Based on the above-mentioned knowledge, the present inventors have further studied and are a near-infrared shielding polyester resin composition used for producing a near-infrared shielding polyester resin molded article. And a titanium nitride fine particle having an average particle size of 30 nm or less (in some cases, a symbol “B” is provided in the present invention) and a thermal decomposition temperature of 230 ° C. or higher. Thus, a near-infrared shielding polyester resin composition comprising a dispersant having a basic functional group in the polyester main chain (in some cases, a symbol “C” may be provided in the present invention) has been conceived.

そして、当該近赤外線遮蔽ポリエステル樹脂組成物を加熱しながら混練し、かつ、押出成形、射出成形、圧縮成形等公知の方法により、板状、フィルム状、球面状等の任意の形状に成形することによって、可視光領域に透過率の極大を持つと共に近赤外域に吸収を持ちながら、成形の際に黄変しない近赤外線遮蔽ポリエステル樹脂成形体、並びに近赤外線遮蔽ポリエステル積層体の作製が可能となることを見出し、本発明を完成するに至った。   Then, the near-infrared shielding polyester resin composition is kneaded while being heated, and formed into an arbitrary shape such as a plate shape, a film shape, or a spherical shape by a known method such as extrusion molding, injection molding, or compression molding. Makes it possible to produce a near-infrared shielding polyester resin molded product that has a maximum transmittance in the visible light region and absorbs in the near-infrared region but does not yellow during molding, and a near-infrared shielding polyester laminate. As a result, the present invention has been completed.

すなわち、本発明に係る第1の発明は、
近赤外線遮蔽ポリエステル樹脂成形体を製造するために用いられる近赤外線遮蔽ポリエステル樹脂組成物であって、
ポリエステル樹脂(A)と、平均粒径30nm以下の窒化チタン微粒子(B)と、熱分解温度が230℃以上であって、ポリエステル主鎖に塩基性官能基をもつ分散剤(C)と、を含むことを特徴とする近赤外線遮蔽ポリエステル樹脂組成物である。
That is, the first invention according to the present invention is:
A near-infrared shielding polyester resin composition used for producing a near-infrared shielding polyester resin molding,
A polyester resin (A), titanium nitride fine particles (B) having an average particle size of 30 nm or less, and a dispersant (C) having a thermal decomposition temperature of 230 ° C. or more and having a basic functional group in the polyester main chain. It is a near-infrared shielding polyester resin composition characterized by including.

第2の発明は、
前記ポリエステル樹脂(A)が、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレートから選択される1種類以上であることを特徴とする第1の発明に記載の近赤外線遮蔽ポリエステル樹脂組成物である。
The second invention is
The polyester resin (A) is at least one selected from polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate. The near-infrared shielding polyester resin composition according to the first invention.

第3の発明は、
前記窒化チタン微粒子(B)が、熱プラズマ法によって製造されたことを特徴とする第1または第2の発明のいずれかに記載の近赤外線遮蔽ポリエステル樹脂組成物である。
The third invention is
The near-infrared shielding polyester resin composition according to any one of the first and second inventions, wherein the titanium nitride fine particles (B) are produced by a thermal plasma method.

第4の発明は、
前記窒化チタン微粒子(B)が、シラン化合物、チタン化合物、ジルコニア化合物から選択される少なくとも1種類の化合物によって表面処理されたことを特徴とする第1〜第3の発明のいずれかに記載の近赤外線遮蔽ポリエステル樹脂組成物である。
The fourth invention is:
The near surface according to any one of the first to third inventions, wherein the titanium nitride fine particles (B) are surface-treated with at least one compound selected from a silane compound, a titanium compound, and a zirconia compound. It is an infrared shielding polyester resin composition.

第5の発明は、
第1〜4の発明のいずれかに記載の近赤外線遮蔽ポリエステル樹脂組成物が、所定の形状に成形されていることを特徴とする近赤外線遮蔽ポリエステル樹脂成形体である。
The fifth invention is:
A near-infrared shielding polyester resin composition, wherein the near-infrared shielding polyester resin composition according to any one of the first to fourth inventions is molded into a predetermined shape.

第6の発明は、
第5の発明に記載の近赤外線遮蔽ポリエステル樹脂成形体が、他の透明成形体上に積層されていることを特徴とする近赤外線遮蔽ポリエステル樹脂積層体である。
The sixth invention is:
A near-infrared shielding polyester resin laminate, wherein the near-infrared shielding polyester resin molded product according to the fifth invention is laminated on another transparent molded product.

第7の発明は、
第5の発明に記載の近赤外線遮蔽ポリエステル樹脂成形体の表面に、近赤外線遮蔽膜が形成されていることを特徴とする近赤外線遮蔽ポリエステル樹脂成形体である。
The seventh invention
A near-infrared shielding polyester resin molded article in which a near-infrared shielding film is formed on the surface of the near-infrared shielding polyester resin molded article according to the fifth invention.

本発明の第8の発明は、
前記近赤外線遮蔽膜が、六ホウ化物微粒子分散液、アンチモンドープ酸化錫微粒子分散液、一般式MWO(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Reの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦Y≦0.5、2.2≦Z≦3.0)で示され且つ六方晶の結晶構造を持つ複合タングステン酸化物微粒子分散液、の少なくとも1種と、UV硬化樹脂または常温硬化樹脂と、を混合した塗布液を塗布し、その後硬化して得られる膜であることを特徴とする第7の発明に記載の近赤外線遮蔽ポリエステル樹脂成形体である。
The eighth invention of the present invention is:
The near-infrared shielding film is a hexaboride fine particle dispersion, an antimony-doped tin oxide fine particle dispersion, a general formula M Y WO Z (where M is H, He, an alkali metal, an alkaline earth metal, a rare earth element, Mg , Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb , B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, W is tungsten, O is oxygen, 0.1 ≦ Y ≦ 0.5, 2.2 ≦ Z ≦ 3.0) and a composite tungsten oxide fine particle dispersion having a hexagonal crystal structure, and a UV curable resin or a room temperature curable resin, A film obtained by applying a mixed coating solution and then curing It is a near-infrared shielding polyester resin molding as described in 7th invention characterized by the above-mentioned.

本発明に係る近赤外線遮蔽ポリエステル樹脂組成物は、押出成形、射出成形、圧縮成形等公知の方法により、板状、フィルム状、球面状等の任意形状の成形体に成形出来、当該成形時の溶融混錬に起因する黄変がない。そして、成形された本発明に係る近赤外線遮蔽ポリエステル樹脂成形体は、可視光領域に透過率の極大を持つと共に、近赤外域に強い吸収を持つ。この為、太陽光に含まれる、近赤外線に加えて可視光領域の一部をも吸収することで、近赤外から長波長可視光領域において、効率的に太陽光線を吸収することが可能であって工業的に有用である。   The near-infrared shielding polyester resin composition according to the present invention can be molded into a molded body having an arbitrary shape such as a plate shape, a film shape, or a spherical shape by a known method such as extrusion molding, injection molding, or compression molding. There is no yellowing caused by melting and kneading. The molded near-infrared shielding polyester resin molding according to the present invention has a maximum transmittance in the visible light region and strong absorption in the near-infrared region. For this reason, by absorbing part of the visible light region in addition to the near infrared rays contained in sunlight, it is possible to efficiently absorb sunlight rays from the near infrared to the long wavelength visible light region. And industrially useful.

以下、本発明の実施の形態について詳細に説明する。
本発明の近赤外線遮蔽ポリエステル樹脂成形体を製造するために用いられる近赤外線遮蔽ポリエステル樹脂組成物は、ポリエステル樹脂(A)と、平均粒径30nm以下の窒化チタン微粒子(B)と、熱分解温度が230℃以上であって、ポリエステル主鎖に塩基性官能基をもつ分散剤(C)と、を含み、上記窒化チタン微粒子(B)がポリエステル樹脂(A)中において、均一に分散していることを特徴とする近赤外線遮蔽ポリエステル樹脂組成物である。
そこで、本発明の近赤外線遮蔽ポリエステル樹脂組成物を構成する、
(1)窒化チタン微粒子(B)
(2)高耐熱性を有する分散剤(C)
(3)ポリエステル樹脂(A)
(4)窒化チタン微粒子のポリエステル樹脂への分散方法、
(5)近赤外線遮蔽ポリエステル樹脂組成物の製造方法、
(6)近赤外線遮蔽樹脂成形体
について順に説明する。
Hereinafter, embodiments of the present invention will be described in detail.
The near-infrared shielding polyester resin composition used for producing the near-infrared shielding polyester resin molding of the present invention comprises a polyester resin (A), titanium nitride fine particles (B) having an average particle size of 30 nm or less, and a thermal decomposition temperature. And a dispersant (C) having a basic functional group in the polyester main chain, and the titanium nitride fine particles (B) are uniformly dispersed in the polyester resin (A) This is a near-infrared shielding polyester resin composition.
Therefore, constituting the near-infrared shielding polyester resin composition of the present invention,
(1) Titanium nitride fine particles (B)
(2) Dispersant (C) having high heat resistance
(3) Polyester resin (A)
(4) Dispersing method of titanium nitride fine particles in polyester resin,
(5) Manufacturing method of near-infrared shielding polyester resin composition,
(6) The near-infrared shielding resin molding will be described in order.

1)窒化チタン微粒子(B)
本発明に係る近赤外線遮蔽ポリエステル樹脂組成物において、近赤外線遮蔽材料として用いられる窒化チタン微粒子(B)は、窒化チタンそのものの特性として自由電子を多量に保有している。当該窒化チタンを超微粒子化し、かつポリエステル樹脂に均一に分散させることにより、可視光領域に透過率の極大を持つとともに、可視光領域に近い近赤外域に強いプラズマ反射を発現して透過率の極小を持つという特性を発揮する。また、本発明に係る近赤外線遮蔽ポリエステル樹脂組成物に用いられる窒化チタン微粒子は、可視光領
域に近い近赤外線領域である波長600〜1000nm付近の光を強く吸収するため、その透過色調は濃紺系の色調となるものが多い。
1) Titanium nitride fine particles (B)
In the near-infrared shielding polyester resin composition according to the present invention, the titanium nitride fine particles (B) used as a near-infrared shielding material have a large amount of free electrons as a characteristic of titanium nitride itself. By making the titanium nitride ultrafine particles and uniformly dispersing it in the polyester resin, it has a maximum transmittance in the visible light region, and expresses a strong plasma reflection in the near infrared region close to the visible light region. Demonstrate that it has a minimum. Further, the titanium nitride fine particles used in the near infrared shielding polyester resin composition according to the present invention strongly absorbs light in the vicinity of a wavelength of 600 to 1000 nm which is a near infrared region close to the visible light region. There are many things that become the color tone.

上記構成から、本発明に係る近赤外線遮蔽ポリエステル樹脂成形体は近赤外から長波長可視光領域において、低透過率特性を有する。すなわち、太陽光に含まれる、近赤外線に加えて可視光領域の一部をも吸収することで、近赤外から長波長可視光領域において、効率的に太陽光線を吸収することを可能としている。この点は、従来の顔料を用いた成形体が、可視光透過率を低減することは出来たものの、近赤外線の透過率を低減できなかったことと大きく異なる点である。つまり、従来の顔料では、近赤外から長波長可視光領域のうち、近赤外線領域を十分に吸収することができず、太陽光線から効率的に熱線を吸収することが出来なかった。
これに対し、本発明においては、窒化チタン微粒子を用いることで、近赤外から長波長可視光領域において、高い日射遮蔽特性を有する本発明の近赤外線遮蔽ポリエステル樹脂成形体に付与することが可能となり有用である。
From the above configuration, the near-infrared shielding polyester resin molding according to the present invention has low transmittance characteristics in the near-infrared to long-wavelength visible light region. That is, by absorbing a part of the visible light region in addition to the near infrared ray contained in sunlight, it is possible to efficiently absorb solar rays from the near infrared region to the long wavelength visible light region. . This point is largely different from the fact that a molded article using a conventional pigment could reduce the visible light transmittance but could not reduce the near infrared transmittance. In other words, the conventional pigment cannot sufficiently absorb the near-infrared region in the near-infrared to long-wavelength visible light region, and cannot efficiently absorb the heat rays from the sun rays.
On the other hand, in the present invention, by using titanium nitride fine particles, it is possible to apply to the near-infrared shielding polyester resin molded article of the present invention having high solar shielding characteristics in the near-infrared to long-wavelength visible light region. It is useful.

本発明に係る近赤外線遮蔽ポリエステル樹脂組成物に使用される窒化チタン微粒子は、一部または全量がオキシ窒化物で代替されたものであっても良い。また当該窒化チタン微粒子は、その表面が酸化していないことが好ましいが、通常は僅かに酸化していることが多く、また、微粒子の分散工程で表面の酸化が起こることがあるがある程度避けられない。しかし、当該僅かな酸化が有る場合でも、熱線遮蔽効果を発現する有効性に変わりはない。   The titanium nitride fine particles used in the near-infrared shielding polyester resin composition according to the present invention may be partially or wholly replaced with oxynitride. In addition, the titanium nitride fine particles are preferably not oxidized on the surface, but are usually slightly oxidized, and surface oxidation may occur in the fine particle dispersion process, but it is avoided to some extent. Absent. However, even in the presence of the slight oxidation, the effectiveness of developing the heat ray shielding effect remains unchanged.

また、本発明に使用される窒化チタン微粒子は、結晶としての完全性が高いほど大きい熱線遮蔽効果が得られる。しかし、結晶性が低くX線回折で極めてブロードな回折ピークを生じるような窒化チタン微粒子であっても、微粒子内部の基本的な結合がチタンと窒素の結合から成り立っているものであるならば熱線遮蔽効果を発現する。   In addition, the titanium nitride fine particles used in the present invention have a greater heat ray shielding effect as the crystal completeness is higher. However, even if a titanium nitride fine particle has low crystallinity and generates a very broad diffraction peak by X-ray diffraction, if the basic bond inside the fine particle consists of a bond between titanium and nitrogen, heat rays Develops a shielding effect.

窒化チタン微粒子の平均粒子径は、30nm以下、好ましくは20nm以下がよい。その理由は、粒子の平均粒子径が小さければ、幾何学散乱またはミー散乱が低減し、レイリー散乱領域になるからである。当該レイリー散乱領域では、散乱光は粒子径の6乗に反比例して低減するため、平均粒子径の減少に伴い散乱が低減し、透明性が向上するからである。従って、光の散乱を回避する観点からは、平均粒子径が小さい方が好ましい。一方、平均粒子径が1nm以上であれば工業的な製造は容易である。当該光の散乱が低減される結果、当該ポリエステル透明樹脂成形体はヘイズが小さくなり、曇りガラスのようになって鮮明な透明性が得られなくなることを回避できる。
上述の通り、窒化チタンの平均粒径は、工業的に製造可能な限り、より小さいほうが好ましい。よって、粒径の小さな窒化チタンを製造する方法としては、熱プラズマ法等の乾式プロセスや、還元雰囲気下での固相反応法が挙げられる。その中でも、不純物の混入が少なく、粒子径が揃いやすく、また生産性も高い熱プラズマ法が好ましい。熱プラズマを発生させる方法としては、直流アーク放電、多層アーク放電、高周波(RF)プラズマ、ハイブリッドプラズマ等が挙げられ、電極からの不純物の混入が少ない高周波プラズマがより好ましい。熱プラズマ法による窒化チタン微粒子の具体的な製造方法としては、チタン粉末を高周波熱プラズマにより蒸発させ、窒素をキャリアーガスとして導入し冷却過程にて窒化させ合成する方法や、プラズマの周縁部にアンモニアガスを吹き込む方法、その他、プラズマ炎中で四塩化チタンとアンモニアガスを反応させる方法等が挙げられるがこれらに限定されるものではなく、上記の、所望とする物性を有する窒化チタン微粒子とすることができる製造方法であれば良い。
The average particle diameter of the titanium nitride fine particles is 30 nm or less, preferably 20 nm or less. The reason is that if the average particle diameter of the particles is small, geometrical scattering or Mie scattering is reduced and a Rayleigh scattering region is obtained. This is because in the Rayleigh scattering region, the scattered light decreases in inverse proportion to the sixth power of the particle diameter, so that the scattering is reduced and the transparency is improved as the average particle diameter is decreased. Therefore, from the viewpoint of avoiding light scattering, it is preferable that the average particle diameter is small. On the other hand, if the average particle diameter is 1 nm or more, industrial production is easy. As a result of the light scattering being reduced, the polyester transparent resin molded product can be prevented from having a haze that becomes frosted glass and cannot provide clear transparency.
As described above, the average particle size of titanium nitride is preferably smaller as long as it can be produced industrially. Therefore, examples of the method for producing titanium nitride having a small particle diameter include a dry process such as a thermal plasma method and a solid phase reaction method in a reducing atmosphere. Among them, the thermal plasma method is preferable because it contains less impurities, has a uniform particle diameter, and has high productivity. Examples of the method for generating thermal plasma include direct current arc discharge, multilayer arc discharge, radio frequency (RF) plasma, hybrid plasma, and the like, and high frequency plasma in which impurities from the electrode are less mixed is more preferable. As a specific method for producing titanium nitride fine particles by the thermal plasma method, titanium powder is evaporated by high-frequency thermal plasma, nitrogen is introduced as a carrier gas, and nitriding is performed in the cooling process. Examples include a method of blowing gas, and a method of reacting titanium tetrachloride with ammonia gas in a plasma flame. However, the method is not limited to these, and the titanium nitride fine particles having the desired physical properties described above are used. Any manufacturing method can be used.

上記窒化チタン微粒子を、シラン化合物、チタン化合物、ジルコニア化合物から選択される少なくとも1種類以上によって表面処理し、微粒子の表面を、Si、Ti、Zr、A
lの1種類以上を含有する酸化物で被覆することで、耐候性が向上し好ましい。
The titanium nitride fine particles are surface-treated with at least one selected from silane compounds, titanium compounds, and zirconia compounds, and the surfaces of the fine particles are treated with Si, Ti, Zr, A
Coating with an oxide containing one or more of l is preferable because the weather resistance is improved.

2)高耐熱性を有する分散剤(C)
従来、酸化物微粒子を分散させた塗液を用いて塗膜を得る時の塗料用として一般的に使用されている分散剤は、様々な酸化物微粒子を有機溶剤中に均一に分散する目的で使用されている。しかし本発明者等の検討によれば、これらの分散剤は、200℃以上の高温で使用されることを想定されて設計されてはいない。具体的には、本発明の近赤外線遮蔽ポリエステル樹脂組成物を得るために、窒化チタン微粒子(B)とポリエステル樹脂(A)とを溶融混練する際に、耐熱性の低い分散剤を使用すると、当該分散剤中の官能基が熱により分解され、分散能が低下するとともに、分散剤が黄から茶色に変色する等の不具合を起こすことを確認した。
2) Dispersant (C) having high heat resistance
Conventionally, a dispersant generally used as a coating for obtaining a coating film using a coating liquid in which oxide fine particles are dispersed is for the purpose of uniformly dispersing various oxide fine particles in an organic solvent. in use. However, according to the study by the present inventors, these dispersants are not designed on the assumption that they are used at a high temperature of 200 ° C. or higher. Specifically, in order to obtain the near-infrared shielding polyester resin composition of the present invention, when a titanium nitride fine particle (B) and the polyester resin (A) are melt-kneaded, a dispersant having low heat resistance is used. It was confirmed that the functional group in the dispersant was decomposed by heat and the dispersibility was lowered, and that the dispersant changed its color from yellow to brown.

本発明においては、TG−DTAで測定される熱分解温度が230℃以上である分散剤を、高耐熱性を有する分散剤(C)として用いることが肝要である。より好ましくは当該熱分解温度が250℃以上ある分散剤を用いる。高耐熱性を有する分散剤(C)の具体的な構造例としては、ポリエステル主鎖を有し、官能基として塩基性官能基を有する分散剤が挙げられる。当該構造を有する高耐熱性を有する分散剤(C)は、耐熱性が高く好ましい。
高耐熱性を有する分散剤(C)の熱分解温度が230℃以上であるので、溶融混練時または成形時に熱分解することがなく、分散能を維持できると伴に、分散剤自体が黄から茶色に変色することもない。この結果、製造されるポリエステル樹脂成形体において、近赤外線遮蔽微粒子が十分に分散され、可視光透過率が良好に確保されて、本来の光学特性を得ることが出来るとともに、成形体が黄色に着色することもない。
In the present invention, it is important to use a dispersant having a thermal decomposition temperature measured by TG-DTA of 230 ° C. or higher as a dispersant (C) having high heat resistance. More preferably, a dispersant having a thermal decomposition temperature of 250 ° C. or higher is used. Specific examples of the structure of the dispersant (C) having high heat resistance include a dispersant having a polyester main chain and a basic functional group as a functional group. The dispersant (C) having high heat resistance having the structure is preferable because of high heat resistance.
Since the thermal decomposition temperature of the dispersant (C) having high heat resistance is 230 ° C. or higher, it does not thermally decompose during melt-kneading or molding, and the dispersibility can be maintained. It does not turn brown. As a result, in the produced polyester resin molded body, near-infrared shielding fine particles are sufficiently dispersed, visible light transmittance is ensured well, original optical characteristics can be obtained, and the molded body is colored yellow. I don't have to.

具体的には、ポリエチレンテレフタレートの一般的な混練設定温度(250℃)で、高耐熱性を有する分散剤(C)とポリエチレンテレフタレート樹脂とを混練する試験を行ったところ、得られた混練物は、ポリエチレンテレフタレート樹脂のみを混練した場合とまったく同じ外観を呈し、無色透明で全く着色しないことが確認された。これに対し、例えば、後述する比較例1で使用している通常の分散剤を用いて同様の試験を行った場合、混練物は茶色に着色してしまうことが確認された。   Specifically, when a test of kneading a highly heat-resistant dispersant (C) and a polyethylene terephthalate resin at a general kneading setting temperature (250 ° C.) of polyethylene terephthalate was performed, the obtained kneaded product was It was confirmed that the appearance was exactly the same as when only the polyethylene terephthalate resin was kneaded, and it was colorless and transparent and was not colored at all. On the other hand, for example, when a similar test was performed using a normal dispersant used in Comparative Example 1 described later, it was confirmed that the kneaded material was colored brown.

上述したように、本発明に係る高耐熱性を有する分散剤(C)はポリエステル主鎖を有し、且つ官能基として塩基性官能基を有する分散剤である。当該塩基性官能基は、窒化チタン微粒子の表面に吸着して、当該窒化チタン微粒子の凝集を抑止し、成形体中において窒化チタン物微粒子が均一に分散するという効果を発揮するからである。分散剤には、酸性官能基を有する分散剤も存在するが、当該酸性官能基を有する分散剤を使用すると、ポリエステル樹脂と分散剤とが相溶せず、成形体の透明性が失われてしまう。この為、官能基は、塩基性官能基であることが肝要である。
塩基性官能基としては、アミノ基を有するものが好ましく、具体的には、メチルアミノ基、ジメチルアミノ基などが挙げられる。また、芳香族複素環化合物であるピリジン、ピロール、イミダゾールなどを末端に持つ官能基も好ましい。
また、ポリエステル樹脂(A)と分散剤(C)の相溶性の観点より、分散剤の主鎖としては、同じ構造を持つポリエステル骨格であることが好ましい。ポリエステル主鎖を有する分散剤を使用することで、より透明度の高い成形体が得られる。
ポリエステル樹脂(A)として、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレートといった、溶融混練温度が高い樹脂を使用する場合には、熱分解温度が230℃以上である高耐熱性を有する分散剤(C)を使用する効果が明確である。
As described above, the dispersant (C) having high heat resistance according to the present invention is a dispersant having a polyester main chain and a basic functional group as a functional group. This is because the basic functional group is adsorbed on the surface of the titanium nitride fine particles to suppress aggregation of the titanium nitride fine particles, and exhibits an effect that the titanium nitride fine particles are uniformly dispersed in the molded body. Dispersants with acidic functional groups also exist in the dispersants. However, if the dispersant having the acidic functional groups is used, the polyester resin and the dispersant are not compatible with each other, and the transparency of the molded product is lost. End up. For this reason, it is important that the functional group is a basic functional group.
As the basic functional group, those having an amino group are preferable, and specific examples include a methylamino group and a dimethylamino group. Further, a functional group having a terminal of an aromatic heterocyclic compound such as pyridine, pyrrole, or imidazole is also preferable.
Further, from the viewpoint of compatibility between the polyester resin (A) and the dispersant (C), the main chain of the dispersant is preferably a polyester skeleton having the same structure. By using a dispersant having a polyester main chain, a molded article with higher transparency can be obtained.
When a resin having a high melt kneading temperature, such as polyethylene terephthalate, polyethylene naphthalate, or polybutylene terephthalate, is used as the polyester resin (A), a dispersant having a high heat resistance having a thermal decomposition temperature of 230 ° C. or higher (C The effect of using) is clear.

高耐熱性を有する分散剤(C)と、窒化チタン微粒子(B)との重量比(分散剤(C)
の重量/複合タングステン酸化物微粒子(B)の重量)が0.5以上あれば、窒化チタン微粒子(B)を十分に分散することが出来、微粒子同士の凝集が発生せず、十分な光学特性が得られる。一方、当該重量比が9以下あれば、近赤外線遮蔽ポリエステル樹脂成形体自体の機械特性(引っ張り強度、曲げ強度、表面硬度)が損なわれることがない。
Weight ratio of dispersing agent (C) having high heat resistance to titanium nitride fine particles (B) (dispersing agent (C)
Weight / weight of composite tungsten oxide fine particles (B) is 0.5 or more, the titanium nitride fine particles (B) can be sufficiently dispersed, and the fine particles do not aggregate and have sufficient optical properties. Is obtained. On the other hand, if the weight ratio is 9 or less, the mechanical properties (tensile strength, bending strength, surface hardness) of the near-infrared shielding polyester resin molded body itself are not impaired.

3)ポリエステル樹脂(A)
本発明に係る近赤外線遮蔽ポリエステル樹脂成形体は、建築物、自動車、電車、航空機などの開口部に使用される窓材、フラットパネルディスプレイの近赤外線吸収フィルター等に広く利用される。これは、当該成形体に用いられるポリエステル樹脂の可視光領域における光線透過率が高く、当該成形体の透明性が優れていることによると考えられる。
3) Polyester resin (A)
The near-infrared shielding polyester resin molding according to the present invention is widely used for window materials used in openings of buildings, automobiles, trains, airplanes, etc., near-infrared absorption filters for flat panel displays, and the like. This is considered to be because the light transmittance in the visible light region of the polyester resin used in the molded body is high, and the transparency of the molded body is excellent.

本発明に係る近赤外線遮蔽ポリエステル樹脂成形体に使用されるポリエステル樹脂(A)としては、可視光領域の光線透過率が高い透明なポリエステル樹脂であれば、好ましく使用することが出来る。具体的には、3mm厚の板状成形体としたとき、JIS R 3106記載の可視光透過率が50%以上、JISK7105記載のヘイズが30%以下、のものが好ましい例として挙げられる。具体的には、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレートを挙げることができる。   As the polyester resin (A) used in the near-infrared shielding polyester resin molding according to the present invention, any transparent polyester resin having a high light transmittance in the visible light region can be preferably used. Specifically, when a 3 mm-thick plate-like molded article is used, preferred examples include those having a visible light transmittance of 50% or more described in JIS R 3106 and a haze of 30% or less described in JISK7105. Specific examples include polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate.

本発明に係る近赤外線遮蔽ポリエステル樹脂成形体を、各種建築物や車両の窓材等に適用することを目的とした場合、当該成形体の透明性、耐衝撃性、耐侯性などを考慮すると、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレートが好ましい。また、フラットパネルディスプレイの近赤外線吸収フィルター等に適用することを目的とした場合、汎用性などを考慮すると、ポリエチレンテレフタレートがより好ましい。   When the near-infrared shielding polyester resin molding according to the present invention is applied to various building or vehicle window materials, considering the transparency, impact resistance, weather resistance, etc. of the molding, Polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate are preferable. Moreover, when it aims at applying to the near-infrared absorption filter etc. of a flat panel display, when versatility etc. are considered, a polyethylene terephthalate is more preferable.

4)窒化チタン微粒子(B)のポリエステル樹脂(A)への分散方法
近赤外線遮蔽機能を有する微粒子である窒化チタン微粒子(B)のポリエステル樹脂(A)への分散方法は、当該微粒子が均一に樹脂中に分散できる方法であれば任意に選択できる。
具体例としては、まず、ビーズミル、ボールミル、サンドミル、超音波分散などの方法を用い、窒化チタン微粒子(B)を任意の溶剤に分散した分散液を調製する。次に、当該分散液と、高耐熱性を有する分散剤(C)と、ポリエステル樹脂(A)の粉粒体またはペレットと、必要に応じて他の添加剤とを、リボンブレンダー、タンブラー、ナウターミキサー、ヘンシェルミキサー、スーパーミキサー、プラネタリーミキサー等の混合機を用いて均一に混合し混合物とする。続いて、バンバリーミキサー、ニーダー、ロール、ニーダールーダー、一軸押出機、二軸押出機等の混練機を使用して、当該混合物から前記溶剤を除去しながら均一に溶融混合して、ポリエステル樹脂(A)に窒化チタン微粒子(B)を均一に分散した近赤外線遮蔽ポリエステル樹脂組成物を調製することができる。尚、混錬時の温度は、使用するポリエステル樹脂(A)が分解しない温度に維持する。
4) Dispersion method of titanium nitride fine particles (B) to polyester resin (A) Dispersion method of titanium nitride fine particles (B), which are fine particles having a near infrared shielding function, to polyester resin (A) is such that the fine particles are uniform. Any method that can be dispersed in the resin can be selected.
As a specific example, first, a dispersion in which the titanium nitride fine particles (B) are dispersed in an arbitrary solvent is prepared using a method such as a bead mill, a ball mill, a sand mill, or ultrasonic dispersion. Next, the dispersion liquid, the dispersant (C) having high heat resistance, the granules or pellets of the polyester resin (A), and other additives as necessary are added to a ribbon blender, tumbler, now Mix uniformly using a mixer such as a Turmixer, Henschel mixer, Super mixer, Planetary mixer, etc. to obtain a mixture. Subsequently, using a kneader such as a Banbury mixer, a kneader, a roll, a kneader ruder, a single screw extruder, a twin screw extruder or the like, the mixture is uniformly melt-mixed while removing the solvent from the mixture, to obtain a polyester resin (A ), A near-infrared shielding polyester resin composition in which the titanium nitride fine particles (B) are uniformly dispersed can be prepared. The kneading temperature is maintained at a temperature at which the polyester resin (A) used does not decompose.

他の方法として、上述した窒化チタン微粒子(B)の分散液へ、高耐熱性を有する分散剤(C)を添加した後、溶剤を公知の方法で除去して、窒化チタン微粒子(B)と高耐熱性を有する分散剤(C)との混合粉末を得る。得られた混合粉末と、ポリエステル樹脂(A)の粉粒体またはペレットと、必要に応じて他の添加剤とを均一に溶融混合して、ポリエステル樹脂(A)に窒化チタン微粒子(B)が均一に分散した近赤外線遮蔽ポリエステル樹脂組成物を調製することもできる。   As another method, after adding the dispersant (C) having high heat resistance to the dispersion liquid of the titanium nitride fine particles (B) described above, the solvent is removed by a known method to obtain the titanium nitride fine particles (B). A mixed powder with the dispersant (C) having high heat resistance is obtained. The obtained mixed powder, the granules or pellets of the polyester resin (A), and other additives as necessary are uniformly melt-mixed, and the titanium nitride fine particles (B) are mixed into the polyester resin (A). A uniformly dispersed near-infrared shielding polyester resin composition can also be prepared.

また、分散処理を施していない窒化チタン微粒子(B)の粉末と、高耐熱性を有する分散剤(C)とを、ポリエステル樹脂(A)に直接添加し、均一に溶融混合する方法を用いることもできる。   Also, use a method in which the powder of titanium nitride fine particles (B) not subjected to dispersion treatment and the dispersant (C) having high heat resistance are directly added to the polyester resin (A) and uniformly melt-mixed. You can also.

上述した分散方法の他にも、ポリエステル樹脂(A)中へ、窒化チタン微粒子(B)を均一に分散出来る方法であれば良く、上述した方法に限定されない。   In addition to the dispersion method described above, any method that can uniformly disperse the titanium nitride fine particles (B) in the polyester resin (A) may be used, and the method is not limited to the method described above.

以上のようにして得られた近赤外線遮蔽ポリエステル樹脂組成物をペレット状に加工することにより、本発明に係る近赤外線遮蔽ポリエステル樹脂成形体製造用の中間原料を得ることも可能である。   By processing the near-infrared shielding polyester resin composition obtained as described above into a pellet shape, it is possible to obtain an intermediate raw material for producing a near-infrared shielding polyester resin molding according to the present invention.

上述したペレット状の中間原料は、最も一般的な方法として、溶融押出されたストランドをカットすることにより得ることができる。従って、そのペレット形状としては、円柱状や角柱状のものを挙げることができる。また、溶融押出されたストランドを直接カットする、所謂ホットカット法を採ることも可能である。当該ホットカット法において、ペレット形状は球状に近い形状をとることが一般的である。   The pellet-shaped intermediate raw material described above can be obtained by cutting the melt-extruded strand as the most general method. Accordingly, examples of the pellet shape include a columnar shape and a prismatic shape. It is also possible to adopt a so-called hot cut method in which the melt-extruded strand is directly cut. In the hot cut method, the pellet shape is generally a spherical shape.

本発明に係る近赤外線遮蔽ポリエステル樹脂組成物へ、さらに、一般的な添加剤を配合することも可能である。例えば、任意の色調を与えるためのアゾ系染料、シアニン系染料、キノリン系染料、ペリレン系染料、カーボンブラック等であって、熱可塑性樹脂の着色に用いられる一般的な染料、顔料の有効発現量を、配合することが出来る。また、ヒンダードフェノール系、リン系等の安定剤、離型剤、ヒドロキシベンゾフェノン系、サリチル酸系、HALS系、トリアゾール系、トリアジン系等の紫外線吸収剤、カップリング剤、界面活性剤、帯電防止剤等の有効発現量を配合することも出来る。   It is also possible to add a general additive to the near-infrared shielding polyester resin composition according to the present invention. For example, azo dyes, cyanine dyes, quinoline dyes, perylene dyes, carbon black, etc. for giving an arbitrary color tone, and effective expression amounts of general dyes and pigments used for coloring thermoplastic resins Can be blended. In addition, hindered phenol and phosphorus stabilizers, release agents, hydroxybenzophenone, salicylic acid, HALS, triazole and triazine UV absorbers, coupling agents, surfactants and antistatic agents An effective expression amount such as can be blended.

5)近赤外線遮蔽ポリエステル樹脂組成物の製造方法
本発明に係る近赤外線遮蔽ポリエステル樹脂成形体は、上述した近赤外線遮蔽ポリエステル樹脂組成物を、所定の形状に成形することによって得られる。
本発明に係る近赤外線遮蔽ポリエステル樹脂成形体は、高耐熱性を有する分散剤(C)を用いて製造されていることから、成形時においても熱劣化が非常に少ない。この為、窒化チタン微粒子(B)は、近赤外線遮蔽ポリエステル樹脂成形体中においても十分に分散される結果、当該成形体の透明性が良好に確保される。そして、高耐熱性を有する分散剤(C)が、黄色から茶色に変色することもないので、当該成形体が黄色に着色することもない。
5) Manufacturing method of near-infrared shielding polyester resin composition The near-infrared shielding polyester resin molding which concerns on this invention is obtained by shape | molding the near-infrared shielding polyester resin composition mentioned above in a defined shape.
Since the near-infrared shielding polyester resin molding according to the present invention is manufactured using the dispersant (C) having high heat resistance, the thermal deterioration is very small even during molding. For this reason, the titanium nitride fine particles (B) are sufficiently dispersed even in the near-infrared shielding polyester resin molded body, and as a result, the transparency of the molded body is ensured satisfactorily. And since the dispersing agent (C) which has high heat resistance does not discolor from yellow to brown, the said molded object does not color yellow.

近赤外線遮蔽ポリエステル樹脂成形体の形状は、任意の形状に成形可能であり、例えば、平面状や曲面状に成形することが可能である。また、当該成形体の厚さは、板状からフィルム状まで任意の厚さに調整することが可能である。さらに平面状に形成した当該成形体の樹脂シートは、後加工によって球面状等の任意の形状に成形することができる。   The shape of the near-infrared shielding polyester resin molding can be molded into an arbitrary shape, for example, can be molded into a flat shape or a curved shape. Moreover, the thickness of the said molded object can be adjusted to arbitrary thickness from plate shape to film shape. Furthermore, the resin sheet of the molded body formed into a flat shape can be formed into an arbitrary shape such as a spherical shape by post-processing.

近赤外線遮蔽ポリエステル樹脂成形体の成形方法としては、射出成形、押出成形、圧縮成形、および、回転成形等の任意の方法を挙げることができる。中でも、射出成形により成形品を得る方法と、押出成形により成形品を得る方法が好適に採用される。
押出成形により板状、フィルム状の成形品を得るには、Tダイなどの押出機を用いて押出した溶融樹脂組成物を冷却ロールで冷却しながら引き取る方法により製造される。また必要に応じて、当該溶融樹脂組成物を延伸加工し、成形品の厚みを調整することも可能である。押出成形により得られた板状品は、アーケードやカーポート等の建造物用に好適に使用され、フィルム状の成形品は、窓ガラスへの貼り付け用に好適に使用される。また、上記射出成形で得られた成形品は、自動車の窓ガラスやルーフ等の車体用に好適に使用される。
Examples of the molding method of the near-infrared shielding polyester resin molded body include arbitrary methods such as injection molding, extrusion molding, compression molding, and rotational molding. Among these, a method of obtaining a molded product by injection molding and a method of obtaining a molded product by extrusion molding are preferably employed.
In order to obtain a plate-like or film-like molded product by extrusion molding, it is produced by a method in which a molten resin composition extruded using an extruder such as a T-die is taken up while being cooled by a cooling roll. If necessary, the molten resin composition can be stretched to adjust the thickness of the molded product. A plate-like product obtained by extrusion molding is suitably used for buildings such as arcades and carports, and a film-like molded product is suitably used for application to window glass. Moreover, the molded product obtained by the said injection molding is used suitably for vehicle bodies, such as a window glass and a roof of a motor vehicle.

本発明に係る近赤外線遮蔽ポリエステル樹脂成形体は、当該成形体自体として、窓ガラス、アーケード等の構造材に使用することが出来るほか、無機ガラス、樹脂ガラス、樹脂
フィルムなどの他の透明成形体へ任意の方法で積層し、一体化した近赤外線遮蔽ポリエステル樹脂積層体として、構造材に使用することも出来る。例えば、予めフィルム状に成形した近赤外線遮蔽ポリエステル樹脂成形体を、熱ラミネート法により、無機ガラスへ積層し一体化することで、近赤外線遮蔽機能、ガラスの飛散防止機能を有する近赤外線遮蔽ポリエステル樹脂積層体を得ることができる。当該近赤外線遮蔽ポリエステル樹脂積層体は、相互の成形体の持つ利点を有効に発揮させつつ相互の欠点を補完するので、より有用な構造材として使用することが出来る。
The near-infrared shielding polyester resin molded product according to the present invention can be used as a structural material such as window glass and arcade as the molded product itself, and other transparent molded products such as inorganic glass, resin glass, and resin film. It can also be used as a structural material as a near-infrared shielding polyester resin laminate laminated and integrated by any method. For example, a near-infrared shielding polyester resin having a near-infrared shielding function and a glass scattering prevention function by laminating and integrating a near-infrared shielding polyester resin molded body previously formed into a film shape onto inorganic glass by a thermal laminating method. A laminate can be obtained. The near-infrared shielding polyester resin laminate can be used as a more useful structural material because it effectively complements the mutual defects while effectively exhibiting the advantages of the mutual molded body.

また、熱ラミネート法、共押出法、プレス成形法、射出成形法等を用いて、本発明に係る近赤外線遮蔽ポリエステル樹脂成形体の成形の際、同時に他の透明成形体に積層一体化することで、近赤外線遮蔽ポリエステル樹脂積層体を得ることも可能である。当該近赤外線遮蔽ポリエステル樹脂積層体も、相互の成形体の持つ利点を有効に発揮させつつ、相互の欠点を補完することで、より有用な構造材として使用することが出来る。   In addition, when forming the near-infrared shielding polyester resin molding according to the present invention using a heat laminating method, a co-extrusion method, a press molding method, an injection molding method, etc., it is laminated and integrated with another transparent molded body at the same time Thus, it is also possible to obtain a near-infrared shielding polyester resin laminate. The near-infrared shielding polyester resin laminate can also be used as a more useful structural material by complementing each other's drawbacks while effectively exhibiting the advantages of each molded body.

また、本発明に係る近赤外線遮蔽ポリエステル樹脂成形体は、当該成形体の表面へ近赤外線遮蔽能を有する微粒子を含む塗料を塗布して近赤外線遮蔽膜を形成することで、さらに、近赤外線吸収能を調整することが可能である。当該近赤外線遮蔽能を有する微粒子としては、六ホウ化物微粒子、アンチモンドープ酸化錫(以下、ATOと記す場合がある。)微粒子が挙げられる。   Further, the near-infrared shielding polyester resin molded body according to the present invention further absorbs near-infrared light by forming a near-infrared shielding film by applying a coating containing fine particles having near-infrared shielding ability to the surface of the molded body. Performance can be adjusted. Examples of the fine particles having near infrared shielding ability include hexaboride fine particles and antimony-doped tin oxide (hereinafter sometimes referred to as ATO) fine particles.

例えば、六ホウ化物微粒子の一つである六ホウ化ランタン微粒子分散液をUV硬化樹脂と混合して得られた塗布液を、本発明に係る近赤外線遮蔽ポリエステル樹脂成形体に塗布し、その後硬化させて、表面に近赤外線遮蔽膜を形成することで、近赤外線遮蔽ポリエステル樹脂成形体自体よりも近赤外線遮蔽能を向上させることが出来る。   For example, a coating solution obtained by mixing a lanthanum hexaboride fine particle dispersion, which is one of the hexaboride fine particles, with a UV curable resin is applied to the near-infrared shielding polyester resin molding according to the present invention, and then cured. By forming a near-infrared shielding film on the surface, the near-infrared shielding ability can be improved as compared with the near-infrared shielding polyester resin molded body itself.

ATO微粒子は、可視光領域で光の吸収や反射がほとんど無く、波長1000nm以上の領域の光に対し、プラズマ共鳴に由来する反射・吸収が大きい。そして、ATO微粒子の透過プロファイルは、近赤外領域で長波長側に向かうに従って透過率が減少する。一方、上述した六ホウ化物の透過プロファイルは、波長1000nm付近に極小値をもち、それより長波長側では徐々に透過率の上昇を示す。ここで、本発明に係る近赤外線遮蔽ポリエステル樹脂成形体と、六ホウ化物と、ATOとを組み合わせて使用することにより、可視光透過率は減少させずに、近赤外領域の熱線を遮蔽することが可能となり、それぞれ単独で使用するよりも熱線遮蔽特性が向上する。   The ATO fine particles hardly absorb or reflect light in the visible light region, and have a large reflection / absorption due to plasma resonance with respect to light having a wavelength of 1000 nm or more. And the transmittance | permeability of the transmission profile of ATO microparticles | fine-particles reduces as it goes to a long wavelength side in a near infrared region. On the other hand, the transmission profile of the hexaboride described above has a minimum value in the vicinity of the wavelength of 1000 nm, and gradually increases the transmittance on the longer wavelength side. Here, by using the near-infrared shielding polyester resin molding according to the present invention in combination with hexaboride and ATO, the visible light transmittance is not reduced, and the heat rays in the near-infrared region are shielded. It becomes possible, and the heat ray shielding characteristics are improved as compared with the case where each is used alone.

上述した用途に用いる為、近赤外線遮蔽能を有する微粒子を含む塗料を作製するにあたり、ATO微粒子を用いる場合は、ATO微粒子の平均粒径は200nm以下であることが好ましい。
一方、近赤外線遮蔽ポリエステル樹脂成形体の一部の用途においては、透明性よりも不透明な光透過性を要求されることがある。そのような要求の下では、ATO粒子の粒径を大きくして散乱を助長する構成が望ましい。しかし、ATO粒子の粒径が大きすぎると赤外線吸収能そのものも減衰するため、やはり200nm以下の平均粒径が好ましい。
In order to use for the above-mentioned use, when producing a paint containing fine particles having near-infrared shielding ability, when using ATO fine particles, the average particle diameter of the ATO fine particles is preferably 200 nm or less.
On the other hand, in some applications of the near-infrared shielding polyester resin molded article, opaque light transmittance rather than transparency may be required. Under such a demand, a configuration in which scattering is promoted by increasing the particle size of the ATO particles is desirable. However, if the particle size of the ATO particles is too large, the infrared absorptivity itself is also attenuated. Therefore, an average particle size of 200 nm or less is preferable.

六ホウ化物微粒子の単位重量当たりの熱線遮蔽能力は非常に高く、ATO微粒子と比較して30分の1以下の使用量で同等の効果を発揮する。従って、六ホウ化物微粒子を添加することによって、少量でも好ましい熱線遮蔽効果が得られるうえ、ATO微粒子と併用した場合にはこれらの微粒子を削減してコスト低下を図ることが可能となる。また、全微粒子の使用量を大幅に削減できるので、基材である樹脂の物性、特に耐衝撃強度や靭性の低下を防ぐことができる。
六ホウ化物微粒子としては、CeB、GdB、TbB、DyB、HoB、YB、SmB、EuB、ErB、TmB、YbB、LuB、SrB、Cr
、LaB、PrB、NdB微粒子が挙げられる。これら六ホウ化物微粒子は、単独または2種以上を混合して使用することもできる。これら六ホウ化物微粒子は、暗い青紫などに着色した粉末であるが、粒径を可視光波長に比べて十分に小さくし、且つ薄膜中に分散させた状態では、当該膜に可視光透過性が生じるものの、近赤外線遮蔽能は十分強く保持できる。
The hexaboride fine particles have a very high heat ray shielding ability per unit weight, and exhibit the same effect at a use amount of 1/30 or less compared with the ATO fine particles. Therefore, by adding hexaboride fine particles, a preferable heat ray shielding effect can be obtained even in a small amount, and when used in combination with ATO fine particles, these fine particles can be reduced to reduce the cost. Moreover, since the usage-amount of all the fine particles can be reduced significantly, the physical property of resin which is a base material, especially the fall of impact strength and toughness can be prevented.
The hexaboride fine particles include CeB 6 , GdB 6 , TbB 6 , DyB 6 , HoB 6 , YB 6 , SmB 6 , EuB 6 , ErB 6 , TmB 6 , YbB 6 , LuB 6 , SrB 6 , and SrB 6 .
Examples thereof include B 6 , LaB 6 , PrB 6 , and NdB 6 fine particles. These hexaboride fine particles can be used alone or in admixture of two or more. These hexaboride microparticles are powders colored dark blue-violet, etc., but when the particle size is sufficiently smaller than the visible light wavelength and dispersed in the thin film, the film has visible light permeability. Although it occurs, the near-infrared shielding ability can be maintained sufficiently strong.

本発明者の検討によれば、六ホウ化物微粒子を十分細かく、かつ均一に分散した膜では、透過率が波長400〜700nmの間に極大値を持ち、且つ波長700〜1800nmの間に極小値を持つことが観察された。可視光波長が380〜780nmであり、人間の視感度が波長550nm付近をピークとする釣鐘型であることを考慮すると、このような膜では可視光を有効に透過し、それ以外の波長の光を有効に吸収・反射することが理解できる。   According to the inventor's study, in a film in which hexaboride fine particles are sufficiently finely and uniformly dispersed, the transmittance has a maximum value between wavelengths of 400 to 700 nm and a minimum value between wavelengths of 700 to 1800 nm. Was observed to have. Considering that the visible light wavelength is 380 to 780 nm and the human visual sensitivity is a bell-shaped peak with a peak at around 550 nm, such a film effectively transmits visible light, and light of other wavelengths. Can be effectively absorbed and reflected.

近赤外線遮蔽に用いる六ホウ化物微粒子の平均粒径は200nm以下、好ましくは100nm以下とする。その理由は、六ホウ化物微粒子の平均粒径が200nm以下であれば、微粒子同士の凝集傾向が強くならず、塗布液中に微粒子の沈降が生じ難いからである。さらに、平均粒径が200nm以下の六ホウ化物微粒子、またはそれらが凝集した粒子であれば、それらの凝集粒子による光散乱があっても可視光透過率の低下の原因とならないので好ましいからである。なお六ホウ化物微粒子の平均粒径は200nm以下、好ましくは100nm以下と、小さいほど好ましいが、現在の技術では商業的に製造できる最小粒径はせいぜい2nm程度である。   The average particle size of hexaboride fine particles used for near infrared shielding is 200 nm or less, preferably 100 nm or less. The reason is that if the average particle diameter of the hexaboride fine particles is 200 nm or less, the tendency of the fine particles to aggregate does not increase, and the fine particles do not easily settle in the coating solution. Furthermore, hexaboride fine particles having an average particle diameter of 200 nm or less, or particles in which they are aggregated are preferable because they do not cause a decrease in visible light transmittance even if there is light scattering by the aggregated particles. . The average particle size of the hexaboride fine particles is preferably as small as 200 nm or less, and preferably 100 nm or less, but the minimum particle size that can be produced commercially with the current technology is about 2 nm at most.

以上、詳細に説明したように、近赤外線遮蔽成分として窒化チタン微粒子(B)を、高耐熱性を有する分散剤(C)を用いてポリエステル樹脂(A)へ均一に分散させた近赤外線遮蔽ポリエステル樹脂組成物を、本発明係る近赤外線遮蔽ポリエステル樹脂成形体製造に用いることにより、高コストの物理成膜法や複雑な工程を用いることなく、近赤外線遮蔽機能を有しかつ透明性を有し、成形時の溶融混錬による分散剤(C)の熱劣化に起因する黄変が少ない近赤外線遮蔽ポリエステル樹脂成形体並びに近赤外線遮蔽ポリエステル樹脂積層体を提供することが可能となる。   As described above in detail, the near-infrared shielding polyester in which the titanium nitride fine particles (B) are uniformly dispersed in the polyester resin (A) using the dispersant (C) having high heat resistance as the near-infrared shielding component. By using the resin composition for the production of a near-infrared shielding polyester resin molding according to the present invention, it has a near-infrared shielding function and transparency without using a high-cost physical film forming method or complicated processes. Thus, it is possible to provide a near-infrared shielding polyester resin molded body and a near-infrared shielding polyester resin laminate in which yellowing due to thermal deterioration of the dispersant (C) due to melt kneading during molding is small.

6)近赤外線遮蔽樹脂成形体
当該本発明に係る近赤外線遮蔽ポリエステル樹脂組成物並びに近赤外線遮蔽ポリエステル樹脂積層体は、ポリエステル樹脂(A)と、平均粒径30nm以下の窒化チタン微粒子(B)と、熱分解温度が230℃以上であって、ポリエステル主鎖に塩基性官能基をもつ分散剤(C)と、を含み、上記窒化チタン微粒子(B)がポリエステル樹脂(A)中において、均一に分散している近赤外線遮蔽ポリエステル樹脂組成物である。
当該近赤外線遮蔽ポリエステル樹脂組成物を、押出成形、射出成形、圧縮成形等公知の方法により、板状、フィルム状、球面状等の任意の形状に成形することによって得られる近赤外線遮蔽ポリエステル樹脂成形体並びに近赤外線遮蔽ポリエステル樹脂積層体は、可視光領域に透過率の極大を持つと共に近赤外域に強い吸収を持ち、太陽光に含まれる、近赤外線に加えて可視光領域の一部をも吸収することで、近赤外から長波長可視光領域において、効率的に太陽光線を吸収することが出来、工業的に有用である。
6) Near-infrared shielding resin molding The near-infrared shielding polyester resin composition and the near-infrared shielding polyester resin laminate according to the present invention comprise a polyester resin (A) and titanium nitride fine particles (B) having an average particle size of 30 nm or less. And a dispersing agent (C) having a thermal decomposition temperature of 230 ° C. or more and having a basic functional group in the polyester main chain, wherein the titanium nitride fine particles (B) are uniformly in the polyester resin (A) A dispersed near-infrared shielding polyester resin composition.
Near-infrared shielding polyester resin molding obtained by molding the near-infrared shielding polyester resin composition into an arbitrary shape such as a plate shape, a film shape, or a spherical shape by a known method such as extrusion molding, injection molding, compression molding or the like. Body and near-infrared shielding polyester resin laminates have a maximum transmittance in the visible light region and strong absorption in the near-infrared region, and include part of the visible light region in addition to the near-infrared light contained in sunlight. By absorbing, sunlight can be absorbed efficiently in the near-infrared to long-wavelength visible light region, which is industrially useful.

以下、実施例を参照しながら本発明を具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。
尚、各実施例において、近赤外線遮蔽ポリエステル樹脂成形体の可視光透過率並びに日射透過率は、日立製作所(株)製の分光光度計U−4000を用いて測定した。この日射透過率は近赤外線遮蔽性能を示す指標である。また、ヘイズ値は村上色彩技術研究所(株)社製HR−200を用い、JISK 7105に基づいて測定した。
(実施例1)
Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples.
In each example, the visible light transmittance and solar transmittance of the near-infrared shielding polyester resin molding were measured using a spectrophotometer U-4000 manufactured by Hitachi, Ltd. This solar radiation transmittance is an index indicating near infrared shielding performance. The haze value was measured based on JISK 7105 using HR-200 manufactured by Murakami Color Research Laboratory Co., Ltd.
Example 1

熱プラズマ法で製造した平均粒径DBET13.5nm(比表面積81.6m)の窒化チタン微粒子aを10重量%、高耐熱性分散剤α(ポリエステル主鎖に、芳香族複素環化合物を末端に持つ官能基を有する分散剤、TG−DTAで測定した熱分解温度は250℃。)を5重量%、トルエンを85重量%秤量し、0.3mmφZrOビ−ズを入れたペイントシェ−カ−で3時間分散処理することによって窒化チタン微粒子分散液(以下、本実施例において「A液」と記載する。)を調製した。
上記A液へ、さらに、高耐熱性分散剤αを添加し、この高耐熱性分散剤αと窒化チタン微粒子a微粒子の重量比[高耐熱性分散剤/窒化チタン微粒子]が3となるように調整した。次に、窒化チタン微粒子分散液A液と高耐熱性分散剤αとの混合物からスプレードライヤーを用いてトルエンを除去し、窒化チタン微粒子aと高耐熱性分散剤αとの混合粉を得た(以下、本実施例において「A粉」と記載する。)。
得られたA粉と、ポリエステル樹脂であるポリエチレンテレフタレート樹脂ペレットとを、窒化チタン微粒子a濃度が0.2重量%となるように混合し、ブレンダーを用いて均一に混合した後、二軸押出機で240℃で熔融混練し、押出されたストランドをペレット状にカットし、近赤外線遮蔽機能を持つポリエステル樹脂成形体用のコンパウンドを得た(以下、本実施例において「コンパウンドA」と記載する。)。
得られたコンパウンドAを、一軸押出機を用い240℃で熔融混練した後、Tダイより押し出し、二軸延伸加工し、0.05mm厚に成形することで窒化チタン微粒子がポリエステル樹脂全体に均一に分散した実施例1に係る近赤外線遮蔽ポリエステル樹脂成形体を得た。
当該実施例1に係る近赤外線遮蔽ポリエステル樹脂成形体の光学特性を測定したところ、表1に示すように、可視光透過率35.0%のときの日射透過率は33.8%で、ヘイズ値は1.1%であった。成形体の断面TEM観察の結果、窒化チタン微粒子がポリエステル樹脂中に均一に分散していることが確認出来た。
10% by weight of titanium nitride fine particles a having an average particle diameter DBET of 13.5 nm (specific surface area 81.6 m 2 ) produced by a thermal plasma method, a high heat resistant dispersant α (polyester main chain, aromatic heterocyclic compound at the end) A dispersant having a functional group having a thermal decomposition temperature measured by TG-DTA is 250 ° C.) 5 wt%, toluene 85 wt%, and paint shaker containing 0.3 mmφZrO 2 beads The titanium nitride fine particle dispersion liquid (hereinafter referred to as “liquid A” in the present example) was prepared by dispersing for 3 hours.
Further, a high heat resistant dispersant α is added to the liquid A so that the weight ratio of the high heat resistant dispersant α and the titanium nitride fine particles a fine particles [high heat resistant dispersant / titanium nitride fine particles] is 3. It was adjusted. Next, toluene was removed from the mixture of the titanium nitride fine particle dispersion liquid A and the high heat-resistant dispersant α using a spray dryer to obtain a mixed powder of the titanium nitride fine particles a and the high heat-resistant dispersant α ( Hereinafter, it is referred to as “A powder” in this example.)
The obtained A powder and polyethylene terephthalate resin pellets which are polyester resins are mixed so that the concentration of titanium nitride fine particles a is 0.2% by weight and mixed uniformly using a blender, and then a twin-screw extruder. The extruded strand was melted and kneaded at 240 ° C., and the extruded strand was cut into pellets to obtain a compound for a polyester resin molded body having a near infrared shielding function (hereinafter referred to as “compound A” in this Example). ).
The obtained compound A is melt kneaded at 240 ° C. using a single screw extruder, then extruded from a T die, biaxially stretched, and formed into a thickness of 0.05 mm so that titanium nitride fine particles are uniformly distributed over the entire polyester resin. A dispersed near-infrared shielding polyester resin molding according to Example 1 was obtained.
When the optical properties of the near-infrared shielding polyester resin molding according to Example 1 were measured, as shown in Table 1, the solar radiation transmittance was 33.8% when the visible light transmittance was 35.0%, and haze The value was 1.1%. As a result of cross-sectional TEM observation of the molded body, it was confirmed that the titanium nitride fine particles were uniformly dispersed in the polyester resin.

(実施例2)
ポリエステル樹脂を、ポリエチレンテレフタレート樹脂ペレットからポリエチレンナフタレート樹脂ペレットへ代替した以外は、実施例1と同様にして実施例2に係る近赤外線遮蔽ポリエステル樹脂成形体を得た。
実施例2に係る近赤外線遮蔽ポリエステル樹脂成形体の光学特性を測定したところ、表1に示すように、可視光透過率34.8%のときの日射透過率は34.1%で、ヘイズ値は1.0%であった。成形体の断面TEM観察の結果、窒化チタン微粒子がポリエステル樹脂中に均一に分散していることが確認できた。
(Example 2)
A near-infrared shielding polyester resin molded article according to Example 2 was obtained in the same manner as Example 1 except that the polyester resin was replaced with polyethylene naphthalate resin pellets from polyethylene terephthalate resin pellets.
When the optical characteristics of the near-infrared shielding polyester resin molding according to Example 2 were measured, as shown in Table 1, the solar radiation transmittance was 34.1% when the visible light transmittance was 34.8%, and the haze value was Was 1.0%. As a result of cross-sectional TEM observation of the molded body, it was confirmed that the titanium nitride fine particles were uniformly dispersed in the polyester resin.

(実施例3)
ポリエステル樹脂を、ポリエチレンテレフタレート樹脂ペレットからポリブチレンテレフタレート樹脂ペレットへ代替した以外は、実施例1と同様にして実施例3に係る近赤外線遮蔽ポリエステル樹脂成形体を得た。
実施例3に係る近赤外線遮蔽ポリエステル樹脂成形体の光学特性を測定したところ、表1に示すように、可視光透過率35.1%のときの日射透過率は34.1%で、ヘイズ値は1.1%であった。成形体の断面TEM観察の結果、窒化チタン微粒子がポリエステル樹脂中に均一に分散していることが確認できた。
(Example 3)
A near-infrared shielding polyester resin molded article according to Example 3 was obtained in the same manner as in Example 1 except that the polyester resin was replaced with polyethylene terephthalate resin pellets to polybutylene terephthalate resin pellets.
When the optical properties of the near-infrared shielding polyester resin molding according to Example 3 were measured, as shown in Table 1, the solar radiation transmittance was 34.1% when the visible light transmittance was 35.1%, and the haze value was Was 1.1%. As a result of cross-sectional TEM observation of the molded body, it was confirmed that the titanium nitride fine particles were uniformly dispersed in the polyester resin.

(実施例4)
A粉と、ポリエステル樹脂であるポリエチレンテレフタレート樹脂ペレットとを、窒化チタン微粒子濃度が0.02重量%となるように混合した以外は、実施例1と同様にして近赤外線遮蔽ポリエステル樹脂成形体用のコンパウンドを得た(以下、本実施例において「コンパウンドB」と記載する。)。得られたコンパウンドBを0.5mm厚に成形した
以外は、実施例1と同様にして、実施例4に係る近赤外線遮蔽ポリエステル樹脂成形体を得た。実施例4に係る近赤外線遮蔽ポリエステル樹脂成形体の光学特性を測定したところ、表1に示すように、可視光透過率35.2%のときの日射透過率は34.0%で、ヘイズ値は1.0%であった。成形体の断面TEM観察の結果、窒化チタン微粒子がポリエステル樹脂中に均一に分散していることが確認できた。
Example 4
A powder and a polyethylene terephthalate resin pellet which is a polyester resin were mixed in such a manner that the titanium nitride fine particle concentration was 0.02% by weight. A compound was obtained (hereinafter referred to as “compound B” in this example). A near-infrared shielding polyester resin molding according to Example 4 was obtained in the same manner as in Example 1 except that the obtained compound B was molded to a thickness of 0.5 mm. When the optical characteristics of the near-infrared shielding polyester resin molding according to Example 4 were measured, as shown in Table 1, the solar radiation transmittance was 34.0% when the visible light transmittance was 35.2%, and the haze value was Was 1.0%. As a result of cross-sectional TEM observation of the molded body, it was confirmed that the titanium nitride fine particles were uniformly dispersed in the polyester resin.

(実施例5)
熱プラズマ法で製造した平均粒径DBET30nmの窒化チタン微粒子bを使用した以外は、実施例1と同様にして実施例5に係る近赤外線遮蔽ポリエステル樹脂成形体を得た。
実施例5に係る近赤外線遮蔽ポリエステル樹脂成形体の光学特性を測定したところ、表1に示すように、可視光透過率34.5%のときの日射透過率は33.7%で、ヘイズ値は1.1%であった。成形体の断面TEM観察の結果、窒化チタン微粒子がポリエステル樹脂中に均一に分散していることが確認できた。
(Example 5)
A near-infrared shielding polyester resin molded article according to Example 5 was obtained in the same manner as in Example 1 except that titanium nitride fine particles b having an average particle diameter DBET of 30 nm manufactured by a thermal plasma method were used.
When the optical characteristics of the near-infrared shielding polyester resin molding according to Example 5 were measured, as shown in Table 1, the solar radiation transmittance was 33.7% when the visible light transmittance was 34.5%, and the haze value was Was 1.1%. As a result of cross-sectional TEM observation of the molded body, it was confirmed that the titanium nitride fine particles were uniformly dispersed in the polyester resin.

(実施例6)
高耐熱性分散剤αを高耐熱性分散剤β(ポリエステル主鎖に、ジメチルアミノ基を官能基として有する分散剤、TG−DTAで測定した熱分解温度は230℃である。)へ代替した以外は、実施例1と同様にして実施例6に係る近赤外線遮蔽ポリエステル樹脂成形体を得た。
実施例6に係る近赤外線遮蔽ポリエステル樹脂成形体の光学特性を測定したところ、表1に示すように、可視光透過率34.8%のときの日射透過率は33.6%で、ヘイズ値は1.2%であった。成形体の断面TEM観察の結果、窒化チタン微粒子がポリエステル樹脂中に均一に分散していることが確認できた。
(Example 6)
Except for replacing the high heat resistant dispersant α with the high heat resistant dispersant β (dispersant having a dimethylamino group as a functional group in the polyester main chain, the thermal decomposition temperature measured by TG-DTA is 230 ° C.). Obtained the near-infrared shielding polyester resin molding which concerns on Example 6 like Example 1. FIG.
When the optical characteristics of the near-infrared shielding polyester resin molding according to Example 6 were measured, as shown in Table 1, the solar radiation transmittance was 33.6% when the visible light transmittance was 34.8%, and the haze value was Was 1.2%. As a result of cross-sectional TEM observation of the molded body, it was confirmed that the titanium nitride fine particles were uniformly dispersed in the polyester resin.

(実施例7)
実施例1と同様の方法で調製したA液へ、メチル−トリメトキシシランを添加し、メカニカルスターラーで1時間攪拌し混合した後、スプレードライヤーを用いてトルエンを除去し、シラン化合物にて表面処理を施された窒化チタン微粒子cを得た。
以下、実施例1と同様にして実施例7に係る近赤外線遮蔽ポリエステル樹脂成形体を得た。実施例7に係る近赤外線遮蔽ポリエステル樹脂成形体の光学特性を測定したところ、表1に示すように、可視光透過率35.6%のときの日射透過率は34.3%で、ヘイズ値は1.2%であった。成形体の断面TEM観察の結果、シラン化合物にて表面処理された窒化チタン微粒子がポリエステル樹脂中に均一に分散していることが確認できた。
(Example 7)
After adding methyl-trimethoxysilane to the liquid A prepared in the same manner as in Example 1, stirring and mixing with a mechanical stirrer for 1 hour, the toluene was removed using a spray dryer, and surface treatment was performed with a silane compound. The titanium nitride fine particles c subjected to the above were obtained.
Thereafter, a near-infrared shielding polyester resin molding according to Example 7 was obtained in the same manner as Example 1. When the optical properties of the near-infrared shielding polyester resin molding according to Example 7 were measured, as shown in Table 1, the solar radiation transmittance was 34.3% when the visible light transmittance was 35.6%, and the haze value was Was 1.2%. As a result of cross-sectional TEM observation of the molded product, it was confirmed that the titanium nitride fine particles surface-treated with the silane compound were uniformly dispersed in the polyester resin.

(比較例1)
熱プラズマ法で製造した平均粒径DBET50nmの窒化チタン微粒子dを使用した以外は、実施例1と同様にして比較例1に係る近赤外線遮蔽ポリエステル樹脂成形体を得た。
比較例1に係る近赤外線遮蔽ポリエステル樹脂成形体の光学特性を測定したところ、表1に示すように、可視光透過率35.0%のときの日射透過率は33.8%で、ヘイズ値は9.5%であった。
平均粒径DBET50nmの窒化チタン微粒子を使用したため、ヘイズ値が9.5%と高くなり、透明度の低い成形体となった。
(Comparative Example 1)
A near-infrared shielding polyester resin molded article according to Comparative Example 1 was obtained in the same manner as in Example 1 except that titanium nitride fine particles d having an average particle diameter DBET of 50 nm produced by a thermal plasma method were used.
When the optical properties of the near-infrared shielding polyester resin molding according to Comparative Example 1 were measured, as shown in Table 1, the solar radiation transmittance was 33.8% when the visible light transmittance was 35.0%, and the haze value was Was 9.5%.
Since titanium nitride fine particles having an average particle diameter of DBET of 50 nm were used, the haze value was increased to 9.5%, and a molded article having low transparency was obtained.

(比較例2)
高耐熱性分散剤αを分散剤γ(ポリエステル主鎖に、、芳香族複素環化合物を末端に持つ官能基を有する分散剤、TG−DTAで測定した熱分解温度は200℃である。)へ代替した以外は、実施例1と同様にして比較例2に係る近赤外線遮蔽ポリエステル樹脂成形体を得た。
比較例2に係る近赤外線遮蔽ポリエステル樹脂成形体の光学特性を測定したところ、表1に示すように、可視光透過率29.5%のときの日射透過率は33.2%で、ヘイズ値は4.5%であった。
TG−DTAで測定した熱分解温度が200℃の分散剤γを使用した為、成形体が黄変し、窒化チタン本来の色調が得られなかった。また、ヘイズ値が4.5%と高くなり、透明度の低い成形体であった。成形体の断面TEM観察の結果、窒化チタン微粒子が一部凝集しており、ポリエステル樹脂中に均一に分散していないことが確認された。
(Comparative Example 2)
High heat-resistant dispersant α to dispersant γ (dispersant having a functional group having a polyester main chain and an aromatic heterocyclic compound at the end, and a thermal decomposition temperature measured by TG-DTA is 200 ° C.). A near-infrared shielding polyester resin molded article according to Comparative Example 2 was obtained in the same manner as in Example 1 except that it was replaced.
When the optical characteristics of the near-infrared shielding polyester resin molding according to Comparative Example 2 were measured, as shown in Table 1, the solar radiation transmittance was 33.2% when the visible light transmittance was 29.5%, and the haze value was Was 4.5%.
Since a dispersant γ having a thermal decomposition temperature measured by TG-DTA of 200 ° C. was used, the molded product turned yellow and the original color tone of titanium nitride could not be obtained. Moreover, the haze value was as high as 4.5%, and the molded product had low transparency. As a result of cross-sectional TEM observation of the molded body, it was confirmed that the titanium nitride fine particles were partially aggregated and not uniformly dispersed in the polyester resin.

Claims (8)

近赤外線遮蔽ポリエステル樹脂成形体を製造するために用いられる近赤外線遮蔽ポリエステル樹脂組成物であって、
ポリエステル樹脂と、平均粒径30nm以下の窒化チタン微粒子と、熱分解温度が230℃以上であって、ポリエステル主鎖に塩基性官能基をもつ分散剤と、を含むことを特徴とする近赤外線遮蔽ポリエステル樹脂組成物。
A near-infrared shielding polyester resin composition used for producing a near-infrared shielding polyester resin molding,
Near-infrared shielding comprising: polyester resin; titanium nitride fine particles having an average particle size of 30 nm or less; and a dispersant having a thermal decomposition temperature of 230 ° C. or higher and having a basic functional group in the polyester main chain. Polyester resin composition.
前記ポリエステル樹脂が、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレートから選択される1種類以上であることを特徴とする請求項1に記載の近赤外線遮蔽ポリエステル樹脂組成物。   The near-infrared shielding polyester resin composition according to claim 1, wherein the polyester resin is at least one selected from polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate. 前記窒化チタン微粒子が、熱プラズマ法によって製造されたことを特徴とする請求項1〜2のいずれかに記載の近赤外線遮蔽ポリエステル樹脂組成物。   The near-infrared shielding polyester resin composition according to claim 1, wherein the titanium nitride fine particles are produced by a thermal plasma method. 前記窒化チタン微粒子が、シラン化合物、チタン化合物、ジルコニア化合物から選択される少なくとも1種類以上の化合物によって表面処理されていることを特徴とする請求項
1から3のいずれかに記載の近赤外線遮蔽ポリエステル樹脂組成物。
The near-infrared shielding polyester according to any one of claims 1 to 3, wherein the titanium nitride fine particles are surface-treated with at least one compound selected from a silane compound, a titanium compound, and a zirconia compound. Resin composition.
請求項1から4のいずれかに記載の近赤外線遮蔽ポリエステル樹脂組成物が、所定の形状に成形されていることを特徴とする近赤外線遮蔽ポリエステル樹脂成形体。   The near-infrared shielding polyester resin composition according to any one of claims 1 to 4, wherein the near-infrared shielding polyester resin composition is molded into a predetermined shape. 請求項5に記載の近赤外線遮蔽ポリエステル樹脂成形体が、他の透明成形体に積層されていることを特徴とする近赤外線遮蔽ポリエステル樹脂積層体。   The near-infrared shielding polyester resin molded body according to claim 5, wherein the near-infrared shielding polyester resin molded body is laminated on another transparent molded body. 請求項5に記載の近赤外線遮蔽ポリエステル樹脂成形体の表面に、近赤外線遮蔽膜が形成されていることを特徴とする近赤外線遮蔽ポリエステル樹脂成形体。   A near-infrared shielding polyester resin molded article, wherein a near-infrared shielding film is formed on the surface of the near-infrared shielding polyester resin molded article according to claim 5. 前記近赤外線遮蔽膜が、六ホウ化物微粒子分散液、アンチモンドープ酸化錫微粒子分散液、一般式MWO(但し、Mは、H、He、アルカリ金属、アルカリ土類金属、希土類元素、Mg、Zr、Cr、Mn、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Cu、Ag、Au、Zn、Cd、Al、Ga、In、Tl、Si、Ge、Sn、Pb、Sb、B、F、P、S、Se、Br、Te、Ti、Nb、V、Mo、Ta、Reの内から選択される1種以上の元素、Wはタングステン、Oは酸素、0.1≦Y≦0.5、2.2≦Z≦3.0)で示され且つ六方晶の結晶構造を持つ複合タングステン酸化物微粒子分散液、の少なくとも1種と、UV硬化樹脂または常温硬化樹脂と、を混合した塗布液を塗布し、その後硬化して得られる膜であることを特徴とする請求項7に記載の近赤外線遮蔽ポリエステル樹脂成形体。 The near-infrared shielding film is a hexaboride fine particle dispersion, an antimony-doped tin oxide fine particle dispersion, a general formula M Y WO Z (where M is H, He, an alkali metal, an alkaline earth metal, a rare earth element, Mg , Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb , B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, W is tungsten, O is oxygen, 0.1 ≦ Y ≦ 0.5, 2.2 ≦ Z ≦ 3.0) and a composite tungsten oxide fine particle dispersion having a hexagonal crystal structure, and a UV curable resin or a room temperature curable resin, A film obtained by applying a mixed coating solution and then curing The near-infrared shielding polyester resin molding according to claim 7, wherein
JP2010049494A 2010-03-05 2010-03-05 Near-infrared shielding polyester resin composition, molded article thereof, and laminate thereof Active JP5257381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010049494A JP5257381B2 (en) 2010-03-05 2010-03-05 Near-infrared shielding polyester resin composition, molded article thereof, and laminate thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010049494A JP5257381B2 (en) 2010-03-05 2010-03-05 Near-infrared shielding polyester resin composition, molded article thereof, and laminate thereof

Publications (2)

Publication Number Publication Date
JP2011184522A true JP2011184522A (en) 2011-09-22
JP5257381B2 JP5257381B2 (en) 2013-08-07

Family

ID=44791186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010049494A Active JP5257381B2 (en) 2010-03-05 2010-03-05 Near-infrared shielding polyester resin composition, molded article thereof, and laminate thereof

Country Status (1)

Country Link
JP (1) JP5257381B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103788593A (en) * 2013-12-20 2014-05-14 安徽国星生物化学有限公司 Nanometer titanium nitride/PET composite material as well as preparation method and application thereof
WO2017002443A1 (en) * 2015-06-29 2017-01-05 東レ株式会社 Polyester resin powder mixture
CN109437132A (en) * 2018-12-14 2019-03-08 中信锦州金属股份有限公司 A kind of production method nitrogenizing titanium valve
KR102211975B1 (en) * 2019-09-06 2021-02-04 미래솔레어 주식회사 Composion for hot radiation shielding film
JP2021026170A (en) * 2019-08-08 2021-02-22 株式会社豊田中央研究所 Light absorption structure and method for manufacturing the same
US11001046B2 (en) 2015-06-29 2021-05-11 Toray Industries, Inc. Polybutylene terephthalate resin powder mixture

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174939A (en) * 1985-01-22 1986-08-06 ゼネカ・リミテッド Fine non-magnetic solid composition and dispersant
JPH02245231A (en) * 1989-03-20 1990-10-01 Kawamura Inst Of Chem Res Polymer dispersant and dispersion containing the same dispersant
JPH1060169A (en) * 1996-08-20 1998-03-03 Mikuni Shikiso Kk Carbon-black-containing composition
JP2005179121A (en) * 2003-12-19 2005-07-07 Sumitomo Metal Mining Co Ltd Solar radiation shielding particulate and solar radiation shielding resin material dispersed with the particulate in resin component, and solar radiation shielding particulate dispersing element used for manufacturing solar radiation shielding resin material, and solar radiation shielding resin base material and solar radiation shielding composite base material obtained by using solar radiation shielding resin material
JP2008044609A (en) * 2006-03-30 2008-02-28 Sumitomo Metal Mining Co Ltd Sunshine screen for vehicle window and vehicle window
JP2008519903A (en) * 2004-11-12 2008-06-12 イーストマン ケミカル カンパニー Polyester polymer and copolymer compositions comprising titanium nitride particles
JP2008222903A (en) * 2007-03-14 2008-09-25 Sumitomo Metal Mining Co Ltd Light-absorbing resin composition for laser welding, light-absorbing resin molded article, and method for producing light-absorbing resin molded article
WO2009054051A1 (en) * 2007-10-23 2009-04-30 Sumitomo Metal Mining Co., Ltd. Solar-radiation-shielding material for vehicle window and window for vehicle
WO2009054060A1 (en) * 2007-10-25 2009-04-30 Sumitomo Metal Mining Co., Ltd. Masterbatch with high heat resistance, heat-ray-shielding transparent molded resin, and heat-ray-shielding transparent layered product

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174939A (en) * 1985-01-22 1986-08-06 ゼネカ・リミテッド Fine non-magnetic solid composition and dispersant
JPH02245231A (en) * 1989-03-20 1990-10-01 Kawamura Inst Of Chem Res Polymer dispersant and dispersion containing the same dispersant
JPH1060169A (en) * 1996-08-20 1998-03-03 Mikuni Shikiso Kk Carbon-black-containing composition
JP2005179121A (en) * 2003-12-19 2005-07-07 Sumitomo Metal Mining Co Ltd Solar radiation shielding particulate and solar radiation shielding resin material dispersed with the particulate in resin component, and solar radiation shielding particulate dispersing element used for manufacturing solar radiation shielding resin material, and solar radiation shielding resin base material and solar radiation shielding composite base material obtained by using solar radiation shielding resin material
JP2008519903A (en) * 2004-11-12 2008-06-12 イーストマン ケミカル カンパニー Polyester polymer and copolymer compositions comprising titanium nitride particles
JP2008044609A (en) * 2006-03-30 2008-02-28 Sumitomo Metal Mining Co Ltd Sunshine screen for vehicle window and vehicle window
JP2008222903A (en) * 2007-03-14 2008-09-25 Sumitomo Metal Mining Co Ltd Light-absorbing resin composition for laser welding, light-absorbing resin molded article, and method for producing light-absorbing resin molded article
WO2009054051A1 (en) * 2007-10-23 2009-04-30 Sumitomo Metal Mining Co., Ltd. Solar-radiation-shielding material for vehicle window and window for vehicle
WO2009054060A1 (en) * 2007-10-25 2009-04-30 Sumitomo Metal Mining Co., Ltd. Masterbatch with high heat resistance, heat-ray-shielding transparent molded resin, and heat-ray-shielding transparent layered product

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103788593A (en) * 2013-12-20 2014-05-14 安徽国星生物化学有限公司 Nanometer titanium nitride/PET composite material as well as preparation method and application thereof
WO2017002443A1 (en) * 2015-06-29 2017-01-05 東レ株式会社 Polyester resin powder mixture
JPWO2017002443A1 (en) * 2015-06-29 2017-07-06 東レ株式会社 Polybutylene terephthalate resin powder mixture for molding materials
CN107406662A (en) * 2015-06-29 2017-11-28 东丽株式会社 Polyester resin bulk material mixture
CN107406662B (en) * 2015-06-29 2021-03-30 东丽株式会社 Polyester resin powder/particle mixture
US11001046B2 (en) 2015-06-29 2021-05-11 Toray Industries, Inc. Polybutylene terephthalate resin powder mixture
CN109437132A (en) * 2018-12-14 2019-03-08 中信锦州金属股份有限公司 A kind of production method nitrogenizing titanium valve
JP2021026170A (en) * 2019-08-08 2021-02-22 株式会社豊田中央研究所 Light absorption structure and method for manufacturing the same
JP7188321B2 (en) 2019-08-08 2022-12-13 株式会社豊田中央研究所 Light absorbing structure and method for manufacturing light absorbing structure
KR102211975B1 (en) * 2019-09-06 2021-02-04 미래솔레어 주식회사 Composion for hot radiation shielding film

Also Published As

Publication number Publication date
JP5257381B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP4632094B2 (en) Manufacturing method of high heat-resistant masterbatch, heat ray shielding transparent resin molding, and heat ray shielding transparent laminate
JP4349779B2 (en) Heat ray shielding transparent resin molding and heat ray shielding transparent laminate
AU2007360455B2 (en) Masterbatch with high heat resistance, heat-ray-shielding transparent molded resin, and heat-ray-shielding transparent layered product
JP5257626B2 (en) High heat resistant masterbatch, heat ray shielding transparent resin molding, and heat ray shielding transparent laminate
KR101507186B1 (en) Composition for producing vinyl chloride film for shielding heat ray, method for production of the composition, and vinyl chloride film for shielding heat ray
JP5257381B2 (en) Near-infrared shielding polyester resin composition, molded article thereof, and laminate thereof
JP2008044609A5 (en)
JP2008044609A (en) Sunshine screen for vehicle window and vehicle window
WO2017217459A1 (en) Heat-ray-shielding microparticle dispersion, heat-ray-shielding laminated transparent base, and production processes therefor
JP6041161B2 (en) Method for producing heat ray shielding dispersion and method for producing heat ray shielding body
JP5898397B2 (en) Near-infrared shielding polyester resin composition, near-infrared shielding polyester resin laminate, molded article and method for producing the same
JP2012082326A (en) Master batch containing high heat-resistant heat ray shielding component, production method of the master batch, high heat-resistant heat ray shielding transparent resin molded article, and high heat-resistant heat ray shielding transparent laminate
JP4487787B2 (en) Solar-shielding boride fine particles, solar-shielding-body-forming dispersion liquid and solar-light shielding body using the boride-fine particles, method for producing solar-shielding boride fine particles, and method for producing solar-shielding body-forming dispersion liquid
JP4289145B2 (en) Solar shading fine particles, solar shading resin material in which these fine particles are dispersed in a resin component, and solar shading fine particle dispersion used for manufacturing solar shading resin material and solar shading resin material And solar shading composite base material
JP5614586B2 (en) Heat ray shielding polycarbonate sheet, heat ray shielding polycarbonate sheet laminate, and method for producing heat ray shielding polycarbonate sheet
JP5915500B2 (en) Heat ray shielding resin sheet material and automobile
JP6949304B2 (en) Masterbatch containing heat ray absorbing component and its manufacturing method, heat ray absorbing transparent resin molded body, and heat ray absorbing transparent laminate
JP5061665B2 (en) Masterbatch, method for producing the same, molded body using the masterbatch, and laminate using the molded body
JP2009144037A (en) Tungsten oxide microparticle dispersion for addition to resin, molded product of tungsten oxide microparticle-dispersed vinyl chloride resin, and method for producing molded product of tungsten oxide microparticle-dispersed vinyl chloride resin
WO2022209712A1 (en) Infrared absorbing particles, infrared-absorbing particle dispersion liquid, infrared-absorbing particle dispersion material, infrared-absorbing laminate transparent substrate, and infrared-absorbing transparent substrate
JP2012082109A (en) Method for producing tungsten oxide fine particle for forming highly heat-resistant heat ray-shielding material, tungsten oxide fine particle for forming highly heat-resistant heat ray-shielding material and dispersion for forming highly heat-resistant heat ray-shielding material, and highly heat-resistant heat ray-shielding material
CN117043299A (en) Infrared absorbing particles, infrared absorbing particle dispersion, infrared absorbing interlayer transparent substrate, and infrared absorbing transparent substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5257381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150