JP2005179121A - Solar radiation shielding particulate and solar radiation shielding resin material dispersed with the particulate in resin component, and solar radiation shielding particulate dispersing element used for manufacturing solar radiation shielding resin material, and solar radiation shielding resin base material and solar radiation shielding composite base material obtained by using solar radiation shielding resin material - Google Patents

Solar radiation shielding particulate and solar radiation shielding resin material dispersed with the particulate in resin component, and solar radiation shielding particulate dispersing element used for manufacturing solar radiation shielding resin material, and solar radiation shielding resin base material and solar radiation shielding composite base material obtained by using solar radiation shielding resin material Download PDF

Info

Publication number
JP2005179121A
JP2005179121A JP2003422858A JP2003422858A JP2005179121A JP 2005179121 A JP2005179121 A JP 2005179121A JP 2003422858 A JP2003422858 A JP 2003422858A JP 2003422858 A JP2003422858 A JP 2003422858A JP 2005179121 A JP2005179121 A JP 2005179121A
Authority
JP
Japan
Prior art keywords
solar radiation
radiation shielding
resin
fine particles
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003422858A
Other languages
Japanese (ja)
Other versions
JP4289145B2 (en
Inventor
Hiroko Kuno
裕子 久野
Kenji Adachi
健治 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003422858A priority Critical patent/JP4289145B2/en
Publication of JP2005179121A publication Critical patent/JP2005179121A/en
Application granted granted Critical
Publication of JP4289145B2 publication Critical patent/JP4289145B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide solar radiation shielding particulates having transmission performance of a high solar radiation shielding function and a high visible light region and having a color tone of blue, a solar radiation shielding resin material dispersed with the particulates in the resin component, and a solar radiation shielding particulate dispersing element used for manufacturing the solar radiation shielding resin material, and a solar radiation shielding resin base material and solar radiation shielding composite base material obtained by using the solar radiation shielding resin material. <P>SOLUTION: The solar radiation shielding particulates are composed of titanium nitride particulates which have a crystal structure of a face-centered cubic crystal of ≥0.423 nm in lattice constant, is ≤250 nm in average grain size, and is L*=35 to 60, a*=-0.1 to 10.0, and b*=-0.5 to 15.0 in powder color due to diffused reflected light in an L*a*b* color system. Also, the solar radiation shielding resin material is prepared by dispersing the solar radiation shielding particulates into the resin component. The solar radiation shielding resin base material and the solar radiation shielding composite base material are obtained by molding the solar radiation shielding resin material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、車両、ビル、一般住宅の窓材、および、アーケード、ドームの屋根材等に適用される日射遮蔽用微粒子や日射遮蔽樹脂材料等に係り、特に、日射遮蔽機能が高く可視光領域の高い透過性能を有しかつ青色の色調を備えた日射遮蔽用微粒子とこの微粒子が樹脂成分中に分散された日射遮蔽樹脂材料、および、日射遮蔽樹脂材料の製造に用いられる日射遮蔽用微粒子分散体と日射遮蔽樹脂材料を用いて得られる日射遮蔽樹脂基材並びに日射遮蔽複合基材に関するものである。   The present invention relates to solar shading fine particles and solar shading resin materials applied to vehicles, buildings, general housing window materials, and arcades, dome roof materials, etc., and in particular, has a high solar shading function and a visible light region. Solar radiation-shielding fine particles having high transmission performance and blue color tone, solar radiation-shielding resin material in which these fine particles are dispersed in a resin component, and solar radiation-shielding fine particle dispersion used in the production of solar radiation shielding resin materials The present invention relates to a solar radiation shielding resin base material and a solar radiation shielding composite base material obtained by using a body and a solar radiation shielding resin material.

従来から各種建物の屋根や車両の窓等のいわゆる開口部は、太陽光線を取り入れるために透明なガラス板や樹脂板で構成されている。しかし、太陽光線には可視光線の他に紫外線や赤外線が含まれ、特に、赤外線のうち800〜2500nmの近赤外線は熱線と呼ばれ、開口部から進入することにより室内の温度を上昇させる原因となる。   Conventionally, so-called openings such as roofs of various buildings and windows of vehicles are made of a transparent glass plate or resin plate for taking in sunlight. However, the sun rays include ultraviolet rays and infrared rays in addition to visible rays. In particular, near infrared rays of 800 to 2500 nm out of infrared rays are called heat rays, and cause the indoor temperature to rise by entering from the opening. Become.

そこで近年では各種建物や車両の窓材等として、可視光線を十分に取り入れながら熱線を遮蔽し明るさを維持しつつ同時に室内の温度上昇を抑制する熱線遮蔽材料が検討され、そのための各種手法が提案されている。また、意匠性の観点から青色の色調を備えると共に、日射遮蔽機能が高く、可視光領域の透過性能を有し、更に、高い耐候性を併せ持つ熱線遮蔽材料の要求が高まっている。   Therefore, in recent years, heat ray shielding materials have been studied as window materials for various buildings and vehicles, etc., which sufficiently absorb visible light and shield the heat rays to maintain the brightness while simultaneously suppressing the temperature rise in the room. Proposed. In addition, from the viewpoint of design properties, there is an increasing demand for a heat ray shielding material having a blue color tone, a high solar shading function, a visible light region transmission performance, and a high weather resistance.

例えば、特許文献1や特許文献2には、アクリル樹脂やポリカーボネート樹脂等の透明樹脂に、熱線反射粒子(日射遮蔽用微粒子)として酸化チタンで被覆したマイカを練り込んで形成した熱線遮蔽板が提案されている。しかし、この手法においては熱線反射能を高めるために熱線反射粒子を多量に添加する必要があり、そのため熱線反射粒子の添加量を増大すると可視光線透過率が低下してしまうという欠点があった。反対に熱線反射粒子添加量を少なくすると、熱線遮蔽性と可視光線透過性を同時に満足させることは困難であった。更に、熱線反射粒子を多量に配合すると、基材である透明樹脂の物性、特に耐衝撃性や靭性が低下するという強度面の欠点も有していた。   For example, Patent Document 1 and Patent Document 2 propose a heat ray shielding plate formed by kneading mica coated with titanium oxide as heat ray reflective particles (sunlight shielding fine particles) in a transparent resin such as an acrylic resin or a polycarbonate resin. Has been. However, in this method, it is necessary to add a large amount of heat ray reflective particles in order to improve the heat ray reflectivity. For this reason, when the addition amount of the heat ray reflective particles is increased, the visible light transmittance is lowered. On the other hand, if the addition amount of the heat ray reflective particles is reduced, it is difficult to satisfy both the heat ray shielding property and the visible light transmittance at the same time. Further, when a large amount of heat ray reflective particles are blended, there is a drawback in strength that the physical properties of the transparent resin as a base material, particularly impact resistance and toughness, are lowered.

そこで、特許文献3には、TiN等の窒化物と金属酸化物等、各種金属や金属酸化物材料をガラスにスパッタリングした熱線反射ガラスが提案されている。しかし、この手法では大掛かりな装置や真空設備を必要とし、生産性、大面積化、生産コスト等に問題があると共に、この熱線反射ガラスにおいては近赤外線以外に可視光領域の光も同時に反射もしくは吸収する性質があり、鏡のようなぎらぎらした外観を与えて美観を損ねるという欠点もあった。更に、この方法では膜の導電性が高くなるものが多く、膜の導電性が高いと携帯電話やTV、ラジオ等の電波を反射して電波障害を引き起こす等の問題があった。   Therefore, Patent Document 3 proposes a heat ray reflective glass in which various metals and metal oxide materials such as nitrides such as TiN and metal oxides are sputtered onto the glass. However, this method requires large-scale equipment and vacuum equipment, and there are problems in productivity, large area, production cost, etc., and in this heat ray reflective glass, light in the visible light region other than near infrared rays is reflected or reflected simultaneously. It has the property of absorbing and has the disadvantage of giving a glimmering appearance like a mirror and detracting from aesthetics. Furthermore, this method often has high film conductivity, and if the film conductivity is high, there is a problem that radio waves from mobile phones, TVs, radios, etc. are reflected to cause radio interference.

また、特許文献4には、着色ガラス上に真空蒸着法やスパッタリング法等により窒化チタン膜を成膜し、かつ、この窒化チタン膜上に金属酸化物膜を形成して成る熱線反射ガラス等が提案されている。すなわち、この熱線反射ガラスにおいては、ガラス板の被膜が形成されていない面側から見た可視光反射率が25%以下で、ガラス板の被膜が形成されていない面側から見た反射色がグリーン系およびブルー系の色調を呈しており、上記特許文献3における反射光害のような欠点が改善されている。しかし、この手法においても大掛かりな装置や真空設備を必要とし、特許文献3と同様、生産性、大面積化、生産コスト等に依然として問題を有している。   Patent Document 4 discloses a heat ray reflective glass formed by forming a titanium nitride film on a colored glass by a vacuum deposition method, a sputtering method, or the like, and forming a metal oxide film on the titanium nitride film. Proposed. That is, in this heat ray reflective glass, the visible light reflectance when viewed from the surface side where the glass plate coating is not formed is 25% or less, and the reflection color viewed from the side where the glass plate coating is not formed. It exhibits green and blue color tones, and the drawbacks such as reflected light damage in Patent Document 3 are improved. However, this method also requires a large-scale device and vacuum equipment, and still has problems in productivity, area increase, production cost, etc., as in Patent Document 3.

他方、上記特許文献3〜4における生産性、大面積化、生産コスト等の弊害を解消した手法も開発されている。例えば、特許文献5には、平均粒径100nm以下の窒化チタン微粒子、窒化ジルコニウム微粒子、窒化ハフニウム微粒子、窒化バナジウム微粒子、窒化ニオブ微粒子、および、窒化タンタル微粒子の少なくとも1種が分散された熱線遮蔽膜用塗布液を用いて作製される、可視光領域の光透過率が高くて反射率が低く、近赤外領域の光透過率が低くて反射率が高く、かつ、膜の導電性が概ね106Ω/□以上に制御可能な熱線遮蔽膜(日射遮蔽膜)が開示されている。しかし、特許文献5では使用する材料(日射遮蔽用微粒子)における物性の最適化まで解明されてはおらず、熱線遮蔽膜(日射遮蔽膜)内における日射遮蔽用微粒子の分散を進めても鮮やかな青色の色調が発現するまでには至っていなかった。また、特許文献5記載の発明では、透明基材上に形成される塗膜に限ったものであり、樹脂成分中に日射遮蔽用微粒子を練り込む手法ついては、何ら検討されていなかった。 On the other hand, methods have been developed in which the above-described Patent Documents 3 to 4 are free from adverse effects such as productivity, area increase, and production cost. For example, Patent Document 5 discloses a heat ray shielding film in which at least one of titanium nitride fine particles, zirconium nitride fine particles, hafnium fine particles, vanadium nitride fine particles, niobium nitride fine particles, and tantalum nitride fine particles having an average particle diameter of 100 nm or less is dispersed. The light transmittance in the visible light region is high and the reflectance is low, the light transmittance in the near infrared region is low and the reflectance is high, and the conductivity of the film is about 10 A heat ray shielding film (sunlight shielding film) that can be controlled to 6 Ω / □ or more is disclosed. However, Patent Document 5 does not elucidate the optimization of the physical properties of the material used (sunlight shielding fine particles), and even if the dispersion of the sunscreening fine particles in the heat ray shielding film (sunlight shielding film) is advanced, a bright blue color is achieved. The color tone of was not developed. Further, the invention described in Patent Document 5 is limited to the coating film formed on the transparent substrate, and has not been studied at all for the method of kneading the solar shielding fine particles into the resin component.

同様に、特許文献6では、濃着色成分として、窒化酸化チタン、窒化チタン、カーボンブラック、および、酸化鉄のいずれか1種以上からなる粒子径200nm以下の無機微粒子と、必要により日射遮蔽成分として、アンチモン添加酸化錫(ATO)または/および錫添加酸化インジウム(ITO)からなる粒子径200nm以下の無機微粒子とを含有し、プライバシー保護と日射遮蔽機能が同時に付与できるフィルムを得るための濃着色インク等が提案されている。しかし、上記特許文献5と同様に、濃着色成分としての無機微粒子等おける物性の最適化まで解明されてはおらず、得られるフィルムの特性として鮮やかな青色の色調を発現できるまでには至っていなかった。
特開平5−78544号公報 特開平2−173060号公報 特開平6−345489号公報 特開2000−233946号公報 特開平11−263639号公報 特開2001−262016号公報
Similarly, in Patent Document 6, as the deeply colored component, inorganic fine particles having a particle diameter of 200 nm or less composed of any one or more of titanium nitride oxide, titanium nitride, carbon black, and iron oxide, and, if necessary, a solar radiation shielding component , An antimony-added tin oxide (ATO) and / or tin-added indium oxide (ITO) inorganic fine particles having a particle diameter of 200 nm or less, and a deeply colored ink for obtaining a film capable of simultaneously providing privacy protection and solar shading function Etc. have been proposed. However, as in the above-mentioned Patent Document 5, the optimization of the physical properties of inorganic fine particles as a dark coloring component has not been elucidated, and it has not yet been possible to express a vivid blue color tone as a characteristic of the obtained film. It was.
JP-A-5-78544 JP-A-2-173060 JP-A-6-345489 JP 2000-233946 A Japanese Patent Laid-Open No. 11-263639 JP 2001-262016 A

本発明はこのような問題点に着目してなされたもので、その課題とするところは、日射遮蔽機能が高く可視光領域の高い透過性能を有しかつ青色の色調を備えた日射遮蔽用微粒子とこの微粒子が樹脂成分中に分散された日射遮蔽樹脂材料、および、日射遮蔽樹脂材料の製造に用いられる日射遮蔽用微粒子分散体と日射遮蔽樹脂材料を用いて得られる日射遮蔽樹脂基材並びに日射遮蔽複合基材を提供することにある。   The present invention has been made paying attention to such problems, and the problem is that the solar shading fine particles having a high solar shading function and a high transmission performance in the visible light region and having a blue color tone. A solar shading resin material in which the fine particles are dispersed in a resin component, and a solar shading resin base material obtained by using the solar shading fine particle dispersion and the solar shading resin material used in the production of the solar shading resin material. It is to provide a shielding composite substrate.

そこで、日射遮蔽機能が高く可視光領域の高い透過性能を有しかつ青色の色調を備えた日射遮蔽用微粒子を得るため、本発明者等は材料そのものの特性として自由電子を多量に保有する窒化チタンに着目し、種々検討を行った。その結果、特定の条件を具備した窒化チタン微粒子においては、可視光領域に透過率の極大を持つと共に可視光領域に近い近赤外域に強いプラズマ反射が発現されて透過率の極小を持つようになり、更にこの透過色は美しい青色の色調を呈するという事実を発見するに至った。また、特定の条件を具備した上記窒化チタン微粒子の表面をSi、Al、Zr,Tiの群から選択されたいずれかの元素を含む化合物で被覆処理することにより、高い耐侯性を具備させることも可能となることを見出すに至った。本発明はこのような技術的発見に基づき完成されている。   Therefore, in order to obtain a solar shading fine particle having a high solar shading function and a high transmission performance in the visible light region and having a blue color tone, the present inventors have nitrided a large amount of free electrons as a characteristic of the material itself. Various studies were conducted focusing on titanium. As a result, titanium nitride fine particles with specific conditions have a maximum transmittance in the visible light region and a strong plasma reflection in the near infrared region close to the visible light region so that the transmittance has a minimum. In addition, the inventors have discovered the fact that this transmitted color exhibits a beautiful blue color tone. In addition, the surface of the titanium nitride fine particles having specific conditions may be coated with a compound containing any element selected from the group of Si, Al, Zr, and Ti, thereby providing high weather resistance. I came to find that it would be possible. The present invention has been completed based on such technical findings.

すなわち、請求項1に係る発明は、
可視光を透過し熱線を遮蔽する日射遮蔽用微粒子を前提とし、
格子定数が0.423nm以上の面心立方晶の結晶構造を有し、平均粒径が250nm以下で、かつ、L***表色系における拡散反射光による粉体色がL*=35〜60、a*=−0.1〜10.0、b*=−0.5〜15.0である窒化チタン微粒子で構成されることを特徴とする。
That is, the invention according to claim 1
Assuming solar shielding particles that transmit visible light and shield heat rays,
It has a face-centered cubic crystal structure with a lattice constant of 0.423 nm or more, an average particle size of 250 nm or less, and the powder color by diffuse reflection in the L * a * b * color system is L * = 35 to 60, a * = − 0.1 to 10.0, and b * = − 0.5 to 15.0.

また、請求項2に係る発明は、
請求項1記載の発明に係る日射遮蔽用微粒子を前提とし、
日射遮蔽用微粒子を分散した希釈液の透過率が、波長400〜600nmに極大値を持ち、波長700〜1100nmに極小値を持つと共に、可視光透過率20%以上80%未満のときに上記極大値と極小値との差が百分率で15ポイント以上であることを特徴とし、
請求項3に係る発明は、
請求項1または2記載の発明に係る日射遮蔽用微粒子を前提とし、
Si、Al、Zr、Tiの群から選択されたいずれかの元素を含む化合物で被覆されていることを特徴とするものである。
The invention according to claim 2
On the premise of solar radiation shielding fine particles according to the invention of claim 1,
The above-mentioned maximum is obtained when the transmittance of the diluting liquid in which the solar shielding fine particles are dispersed has a maximum value at a wavelength of 400 to 600 nm, a minimum value at a wavelength of 700 to 1100 nm, and a visible light transmittance of 20% or more and less than 80%. The difference between the value and the minimum value is 15 points or more in percentage,
The invention according to claim 3
On the premise of the solar radiation shielding fine particles according to the invention of claim 1 or 2,
It is characterized by being coated with a compound containing any element selected from the group of Si, Al, Zr and Ti.

次に、請求項4に係る発明は、
樹脂成分とこの樹脂成分に分散された日射遮蔽用微粒子を含有する日射遮蔽樹脂材料を前提とし、
上記樹脂成分に分散される日射遮蔽用微粒子が請求項1〜3のいずれかに記載の日射遮蔽用微粒子で構成されていることを特徴とし、
請求項5に係る発明は、
請求項4記載の発明に係る日射遮蔽樹脂材料を前提とし、
上記樹脂成分が、ポリカーボネート樹脂、アクリル樹脂、フッ素樹脂、ポリエステル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、エチレン−酢酸ビニル共重合体樹脂のいずれかであることを特徴とする。
Next, the invention according to claim 4 is:
Assuming a solar radiation shielding resin material containing a resin component and solar radiation shielding fine particles dispersed in the resin component,
The solar shading fine particles dispersed in the resin component is composed of the solar shading fine particles according to any one of claims 1 to 3,
The invention according to claim 5
Based on the solar radiation shielding resin material according to the invention of claim 4,
The resin component is any one of a polycarbonate resin, an acrylic resin, a fluorine resin, a polyester resin, a polyvinyl acetal resin, a polyvinyl butyral resin, and an ethylene-vinyl acetate copolymer resin.

また、請求項6に係る発明は、
日射遮蔽樹脂基材を前提とし、
請求項4または5記載の日射遮蔽樹脂材料を平面若しくは立体形状に成形して成ることを特徴とし、
請求項7に係る発明は、
日射遮蔽複合基材を前提とし、
請求項4または5記載の日射遮蔽樹脂材料をシート状に成形した日射遮蔽樹脂基材とこの日射遮蔽樹脂基材の両面に貼り合わされた一対の板状ガラスとで構成されるか、請求項4または5記載の日射遮蔽樹脂材料をシート状に成形した日射遮蔽樹脂基材とこの日射遮蔽樹脂基材に貼り合わされた1以上の他の樹脂板とで構成されることを特徴とする。
The invention according to claim 6
Assuming a sunscreen resin base material,
The solar radiation shielding resin material according to claim 4 or 5 is formed into a flat or three-dimensional shape,
The invention according to claim 7 provides:
Assuming a solar-shielding composite substrate,
It is comprised by the solar radiation shielding resin base material which shape | molded the solar radiation shielding resin material of Claim 4 or 5 in the sheet form, and a pair of plate-like glass bonded together on both surfaces of this solar radiation shielding resin base material, or Claim 4 Or it is comprised by the solar radiation shielding resin base material which shape | molded the solar radiation shielding resin material of 5 in the sheet form, and one or more other resin plates bonded together by this solar radiation shielding resin base material.

次に、請求項8に係る発明は、
請求項4または5記載の日射遮蔽樹脂材料を製造するために使用される日射遮蔽用微粒子分散体を前提とし、
有機溶剤および/または可塑剤と、請求項1〜3のいずれかに記載の日射遮蔽用微粒子と、この日射遮蔽用微粒子を分散させる高分子系分散剤とを主成分とし、かつ、日射遮蔽用微粒子と高分子系分散剤との混合割合が日射遮蔽用微粒子1重量部に対し高分子系分散剤0.3重量部以上10重量部未満であることを特徴とし、
また、請求項9に係る発明は、
請求項4または5記載の日射遮蔽樹脂材料を製造するために使用される日射遮蔽用微粒子分散体を前提とし、
請求項1〜3のいずれかに記載の日射遮蔽用微粒子とこの日射遮蔽用微粒子を分散させる高分子系分散剤を含有し、かつ、日射遮蔽用微粒子と高分子系分散剤との混合割合が日射遮蔽用微粒子1重量部に対し高分子系分散剤0.3重量部以上10重量部未満であると共に、溶液成分を実質的に含まないことを特徴とするものである。
Next, the invention according to claim 8 is:
Premise of the solar shading fine particle dispersion used for producing the solar shading resin material according to claim 4 or 5,
An organic solvent and / or a plasticizer, the solar shading fine particles according to any one of claims 1 to 3, and a polymer-based dispersant for dispersing the solar shading fine particles as main components, and for sun shading The mixing ratio of the fine particles and the polymer dispersant is 0.3 parts by weight or more and less than 10 parts by weight of the polymer dispersant with respect to 1 part by weight of the solar radiation shielding particles,
The invention according to claim 9 is
Premise of the solar shading fine particle dispersion used for producing the solar shading resin material according to claim 4 or 5,
The solar radiation shielding fine particles according to any one of claims 1 to 3 and a polymer dispersing agent that disperses the solar radiation shielding fine particles, and the mixing ratio of the solar radiation shielding fine particles and the polymer dispersing agent is The amount of the polymer dispersant is not less than 0.3 parts by weight and less than 10 parts by weight with respect to 1 part by weight of the solar radiation shielding fine particles, and is substantially free of solution components.

本発明に係る日射遮蔽用微粒子によれば、格子定数が0.423nm以上の面心立方晶の結晶構造を有し、平均粒径が250nm以下で、かつ、L***表色系における拡散反射光による粉体色がL*=35〜60、a*=−0.1〜10.0、b*=−0.5〜15.0である窒化チタン微粒子で構成されている。 The solar radiation shielding fine particles according to the present invention have a face-centered cubic crystal structure with a lattice constant of 0.423 nm or more, an average particle size of 250 nm or less, and an L * a * b * color system. The powder color by diffuse reflected light in is composed of titanium nitride fine particles having L * = 35-60, a * = − 0.1 to 10.0, and b * = − 0.5 to 15.0.

従って、この窒化チタン微粒子を分散した希釈液の透過率は、波長400〜600nmに極大値を持ち、波長700〜1100nmに極小値を持ち、可視光透過率20%以上80%未満のときに上記極大値と極小値との差が百分率で15ポイント以上となり、かつ、青色の色調を呈するようになるため、日射遮蔽機能が高く可視光領域の高い透過性能を有しかつ青色の色調を備えた日射遮蔽用微粒子を得ることが可能となる。   Therefore, the transmittance of the diluted liquid in which the titanium nitride fine particles are dispersed has a maximum value at a wavelength of 400 to 600 nm, a minimum value at a wavelength of 700 to 1100 nm, and a visible light transmittance of 20% or more and less than 80%. The difference between the maximum value and the minimum value is 15 points or more as a percentage, and the color tone of blue is exhibited. Therefore, the solar radiation shielding function is high, the transmission performance in the visible light region is high, and the color tone of blue is provided. It is possible to obtain solar radiation shielding fine particles.

また、この日射遮蔽用微粒子が樹脂成分中に分散された本発明に係る日射遮蔽樹脂材料によれば、日射遮蔽機能が高く可視光領域の高い透過性能を有しかつ青色の色調を備えた窓材等の日射遮蔽樹脂基材若しくは日射遮蔽複合基材を得ることが可能となる。   Further, according to the solar shading resin material according to the present invention in which the solar shading fine particles are dispersed in the resin component, the window having a high solar shading function and a high transmission performance in the visible light region and having a blue color tone. It becomes possible to obtain a solar radiation shielding resin base material such as a material or a solar radiation shielding composite base material.

更に、この日射遮蔽用微粒子が分散された本発明に係る液状若しくは粉末状の日射遮蔽用微粒子分散体によれば、上記日射遮蔽用微粒子が樹脂成分中に分散された日射遮蔽樹脂材料を簡便かつ低コストで製造することが可能となる。   Furthermore, according to the liquid or powdery solar shading fine particle dispersion according to the present invention in which the solar shading fine particles are dispersed, the solar shading resin material in which the solar shading fine particles are dispersed in the resin component can be simply and It becomes possible to manufacture at low cost.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

まず、本発明に係る日射遮蔽用微粒子は、格子定数が0.423nm以上の面心立方晶の結晶構造を有し、平均粒径が250nm以下で、かつ、国際照明委員会(CIE)で規定されたL***表色系(JIS Z 8729)における拡散反射光による粉体色がL*=35〜60、a*=−0.1〜10.0、b*=−0.5〜15.0である窒化チタン微粒子で構成されることを特徴としており、この窒化チタン微粒子は、優れた日射遮蔽特性と美しい青色の色調を呈する特性を併せ持っている。 First, the solar shading fine particles according to the present invention have a face-centered cubic crystal structure with a lattice constant of 0.423 nm or more, an average particle size of 250 nm or less, and specified by the International Commission on Illumination (CIE). Powder color by diffuse reflection in the L * a * b * color system (JIS Z 8729) is L * = 35-60, a * = − 0.1 to 10.0, b * = − 0. The titanium nitride fine particles are characterized by being composed of 5 to 15.0 titanium nitride fine particles. The titanium nitride fine particles have both excellent solar radiation shielding characteristics and beautiful blue tone.

ところで、工業化されている窒化チタン(TiN)は侵入型化合物を形成する代表的物質であり、面心立方晶の結晶構造で、格子定数が0.424nmであることが知られている。窒化チタン(TiN)はTiの格子にNが侵入固溶体として入り、B1型(NaCl型)結晶構造となりTiNxと表すことができ、このとき組成領域は0.8<x<1.16と広く取り得る。そして、この組成領域内でxを変化させた場合、TiNの格子定数が0.423から0.425の範囲内で変化することが知られている。ところで、一般に入手される窒化チタン(TiN)として、格子定数が0.423nm未満の粉末が存在する。しかし、本発明者等の研究により格子定数が0.423nm未満の粉末は、窒化チタンの窒素とチタンの当量比にずれが生じていたり、酸化の影響を受けていたりする等の理由から所望とする光学特性が得られないことが判明した。   By the way, industrialized titanium nitride (TiN) is a typical material that forms interstitial compounds, and is known to have a face-centered cubic crystal structure and a lattice constant of 0.424 nm. Titanium nitride (TiN) has a B1 type (NaCl type) crystal structure and can be expressed as TiNx, with N entering the Ti lattice as a penetrating solid solution. At this time, the composition region is broadly set as 0.8 <x <1.16. obtain. It is known that when x is changed within this composition region, the lattice constant of TiN changes within the range of 0.423 to 0.425. By the way, there is a powder having a lattice constant of less than 0.423 nm as commonly obtained titanium nitride (TiN). However, a powder having a lattice constant of less than 0.423 nm as a result of research by the present inventors is not desirable for reasons such as a deviation in the equivalent ratio of nitrogen to titanium in titanium nitride or the influence of oxidation. It has been found that the optical characteristics to be obtained cannot be obtained.

また、L***表色系における拡散反射光による粉体色がL*=35〜60、a*=−0.1〜10.0、b*=−0.5〜15.0の範囲を外れた窒化チタン微粒子では、原料の窒化チタン表面が過剰に酸化されている等の理由から所望とする日射遮蔽特性が得られず、また、分散を進めても鮮やかな青色が発現しないことも本発明者等の実験により確認されている。窒化チタン微粒子は、その表面が酸化していないことが好ましいが、通常は僅かに酸化していることが多く、また微粒子の分散工程で表面の酸化が起こることはある程度避けられない。しかし、その場合でも上述した粉体色の条件を満たしていれば日射遮蔽効果を発現する有効性に変わりはなく、また一部がオキシ窒化物に変化している場合でも同様である。 Also, the powder color by diffuse reflection in the L * a * b * color system is L * = 35-60, a * = − 0.1 to 10.0, b * = − 0.5 to 15.0 In the case of titanium nitride fine particles outside the above range, the desired solar radiation shielding characteristics cannot be obtained due to excessive oxidation of the titanium nitride surface of the raw material, and vivid blue does not appear even if the dispersion is advanced This has also been confirmed by experiments by the inventors. The surface of the titanium nitride fine particles is preferably not oxidized, but usually the surface is often slightly oxidized, and surface oxidation is inevitable to some extent during the fine particle dispersion step. However, even in such a case, if the above-described powder color condition is satisfied, the effectiveness of exhibiting the solar radiation shielding effect is not changed, and the same applies to the case where a part thereof is changed to oxynitride.

この窒化チタン微粒子の粒径を可視光波長に比べて十分小さくし、透明媒体中に均一に分散させた状態において、可視光透過性が生じる。この状態においても赤外光遮蔽性は十分強く保持できる。この理由は詳細には解明されていないが、微粒子中の自由電子の量が多く、微粒子内部および表面の自由電子プラズモンによるプラズマ周波数がちょうど可視〜近赤外の付近にあるために、この波長領域の熱線が選択的に反射・吸収されると考えられる。つまり、本発明で用いる窒化チタン微粒子は、十分に細かく粉砕し、これを希釈分散させた液体の透過プロファイルは、透過率が波長400〜600nmに極大値を持ち、かつ、波長700〜1100nmに極小値を持つと共に、透過率の上記極大値と極小値の差が可視光透過率20%以上80%未満のときに百分率で15ポイント以上となることが確認された。可視光領域は380〜780nmであり、視感度が550nm付近をピークとする釣鐘型であることを考慮すると、上記の様な透過率プロファイルを持つということによって、可視光を有効に透過し、それ以外の熱線を有効に反射・吸収する光学特性を有することが理解できる。   Visible light transmission occurs when the particle diameter of the titanium nitride fine particles is sufficiently smaller than the visible light wavelength and is uniformly dispersed in the transparent medium. Even in this state, the infrared light shielding property can be kept sufficiently strong. The reason for this has not been elucidated in detail, but since the amount of free electrons in the fine particles is large and the plasma frequency of free electron plasmons inside and on the surface of the particles is just in the vicinity of visible to near infrared, this wavelength region It is thought that the heat rays of are selectively reflected and absorbed. That is, the titanium nitride fine particles used in the present invention are sufficiently finely pulverized, and the liquid transmission profile obtained by diluting and dispersing the fine particles has a maximum transmittance at a wavelength of 400 to 600 nm and a minimum at a wavelength of 700 to 1100 nm. It was confirmed that when the difference between the maximum value and the minimum value of the transmittance was 20% or more and less than 80%, the percentage was 15 points or more. Considering that the visible light region is 380 to 780 nm and the visibility is a bell-shaped peak having a peak at around 550 nm, it has the transmittance profile as described above, so that visible light is effectively transmitted, It can be understood that it has an optical characteristic of effectively reflecting and absorbing heat rays other than the above.

また、本発明に係る日射遮蔽用微粒子は、その平均粒径が250nm以下であることを要する。平均粒子径が250nmを超えると、上述した特有の透過率プロファイル、すなわち、透過率が波長400〜600nmに極大値を持ち、かつ、波長700〜1100nmに極小値を持つと共に、透過率の上記極大値と極小値の差が可視光透過率20%以上80%未満のときに百分率で15ポイント以上となるようなプロファイルが得られず、単調に透過率が減少した黒色〜灰色の透過色になる。また、平均粒子径が250nmを超えた場合、樹脂中に分散したときに微粒子同士の凝集傾向が強くなり、微粒子の沈降の原因となる。また、250nmを超える微粒子若しくはそれらが凝集した粗大粒子は光散乱源となって曇り(ヘイズ)を生じたり、可視光透過率が減少したりする原因となる。   The solar shading fine particles according to the present invention are required to have an average particle size of 250 nm or less. When the average particle diameter exceeds 250 nm, the above-described specific transmittance profile, that is, the transmittance has a maximum value at a wavelength of 400 to 600 nm and a minimum value at a wavelength of 700 to 1100 nm, and the above-mentioned maximum of transmittance. When the difference between the minimum value and the minimum value is 20% or more and less than 80%, a profile with a percentage of 15 points or more cannot be obtained, and the transmission color is monotonously reduced from black to gray. . Moreover, when the average particle diameter exceeds 250 nm, the tendency of the fine particles to aggregate becomes strong when dispersed in the resin, causing the fine particles to settle. Further, fine particles exceeding 250 nm or coarse particles obtained by agglomerating them become a light scattering source and cause clouding (haze), or cause a decrease in visible light transmittance.

そして、このような窒化チタン微粒子は、熱プラズマ法等の乾式プロセスや還元雰囲気下での固相反応法により製造可能である。また、微粒子の原料段階における平均粒径は250nmより大きくても、粉砕工程を導入し、最終的に250nm以下にできれば特に問題はなく、原料段階の製造方法も特に問わない。   Such titanium nitride fine particles can be produced by a dry process such as a thermal plasma method or a solid phase reaction method in a reducing atmosphere. Even if the average particle size of the fine particles in the raw material stage is larger than 250 nm, there is no particular problem as long as a pulverization step is introduced and the final particle size can be reduced to 250 nm or less.

次に、窒化チタン微粒子の表面処理は、微粒子の耐侯性を向上させることができ、また簡便かつ均一に樹脂成分中に導入できるため好ましい。表面処理方法は特に問わないが、例えば、微粒子を粉砕する工程において、一般的な有機溶剤と共に、Si、Al、Zr,Tiをベースにしたアルコキシド、カップリング剤、界面活性剤等を用いて通常の粉砕処理をすることにより、また必要に応じて加水分解処理、重縮合処理、焼結処理等を行うことにより、微粒子表面にSi、Al、Zr,Tiの元素を含む化合物を均一にコートすることができる。また、粉砕方法は特に問わないが、ボールミル、サンドミル、超音波分散、ビーズミル等の方法を用いることができる。このとき必要に応じて各種分散剤を添加することも可能である。これらの表面被覆処理を行うことにより、窒化チタン微粒子の表面状態がより安定になり、未処理の窒化チタン微粒子と比べて耐侯性が向上する。   Next, the surface treatment of the titanium nitride fine particles is preferable because it can improve the weather resistance of the fine particles and can be easily and uniformly introduced into the resin component. The surface treatment method is not particularly limited. For example, in the step of pulverizing the fine particles, it is usual to use an alkoxide based on Si, Al, Zr, Ti, a coupling agent, a surfactant, etc. together with a general organic solvent. The compound containing Si, Al, Zr, and Ti elements is uniformly coated on the surface of the fine particles by performing a pulverization process and, if necessary, a hydrolysis process, a polycondensation process, a sintering process, etc. be able to. The pulverization method is not particularly limited, and methods such as a ball mill, a sand mill, ultrasonic dispersion, and a bead mill can be used. At this time, various dispersants may be added as necessary. By performing these surface coating treatments, the surface state of the titanium nitride fine particles becomes more stable, and the weather resistance is improved as compared with the untreated titanium nitride fine particles.

そして、上述した結晶構造、平均粒径、L***表色系における拡散反射光による粉体色の各要件を具備した窒化チタン微粒子、あるいは、更に表面被覆処理が施された窒化チタン微粒子を樹脂成分中に分散させて以下に述べる日射遮蔽樹脂材料は構成される。この日射遮蔽樹脂材料を製造する際、日射遮蔽用微粒子分散体が適用される。すなわち、有機溶剤および/または可塑剤と、上記各要件を具備した窒化チタン微粒子、あるいは更に表面被覆処理が施された窒化チタン微粒子と、高分子系分散剤とを主成分とする液状の日射遮蔽用微粒子分散体、または、溶液成分を公知の方法で加熱除去して得られた粉末状の日射遮蔽用微粒子分散体を用いて窒化チタン微粒子が樹脂成分中に分散された日射遮蔽樹脂材料を製造することができる。尚、溶液成分を公知の方法で加熱除去して得られた粉末状の日射遮蔽用微粒子分散体は、有機溶剤、可塑剤、樹脂中へ導入するときに特別な装置や処理を必要とせず、簡単な攪拌だけで均一に微粒子を分散することができる。このとき、高分子系分散剤が日射遮蔽用微粒子1重量部に対し0.3重量部未満では、有機溶剤、可塑剤、樹脂中へ導入するときに凝集等が生じる場合があり、日射遮蔽樹脂材料にヘイズが生じる原因となる。また、10重量部以上であると日射遮蔽樹脂材料中の高分子系分散剤が過剰となり、日射遮蔽樹脂材料の耐侯性に悪影響を与える場合がある。従って、日射遮蔽用微粒子と高分子系分散剤との混合割合は、日射遮蔽用微粒子1重量部に対し高分子系分散剤0.3重量部以上10重量部未満であることが望ましい。 Further, fine particles of titanium nitride having the above-mentioned crystal structure, average particle diameter, and powder color requirements by diffuse reflected light in the L * a * b * color system, or titanium nitride subjected to surface coating treatment The solar radiation shielding resin material described below is constituted by dispersing fine particles in a resin component. When this solar radiation shielding resin material is produced, a solar radiation shielding fine particle dispersion is applied. That is, liquid solar radiation shielding mainly composed of an organic solvent and / or a plasticizer, titanium nitride fine particles having the above-mentioned requirements, or titanium nitride fine particles subjected to surface coating treatment, and a polymer dispersant. A solar shading resin material in which titanium nitride fine particles are dispersed in a resin component using a fine particle dispersion for heat treatment or a powdery solar shading fine particle dispersion obtained by heating and removing a solution component by a known method can do. Incidentally, the powdery solar shielding fine particle dispersion obtained by heating and removing the solution component by a known method does not require any special equipment or treatment when introduced into an organic solvent, a plasticizer, or a resin. Fine particles can be uniformly dispersed by simple stirring. At this time, if the polymer dispersant is less than 0.3 part by weight with respect to 1 part by weight of the solar shading fine particles, aggregation or the like may occur when it is introduced into the organic solvent, plasticizer or resin. This causes haze in the material. On the other hand, if the amount is 10 parts by weight or more, the polymer dispersant in the solar shading resin material becomes excessive, which may adversely affect the weather resistance of the solar shading resin material. Therefore, it is desirable that the mixing ratio of the solar shielding fine particles and the polymer dispersant is 0.3 part by weight or more and less than 10 parts by weight of the polymer dispersant with respect to 1 part by weight of the solar radiation shielding particles.

また、上記日射遮蔽用微粒子分散体は、溶液成分を公知の方法で加熱除去して得られた粉末状のほか、上述したように粉砕、表面処理工程で添加した溶液成分を除去しない液状のものでも良く、また、日射遮蔽樹脂材料に用いる樹脂に応じた原料や可塑剤中に分散したものでも良い。ここで用いる有機溶剤や可塑剤は特に限定されるものではなく、配合する樹脂を形成する条件等に合わせて選択可能であり、一般的な有機溶剤や可塑剤が利用できる。また、必要に応じて酸やアルカリを添加してpHを調整しても良い。また、高分子系分散剤としては、ポリアクリレート系分散剤、ポリウレタン系分散剤、ポリエーテル系分散剤、ポリエステル系分散剤、ポリエステルウレタン系分散剤等を挙げることができ、上記ポリアクリレート系分散剤として、サンノプコ(SAN NOPKO)株式会社製の商品名 SNシックナーA-850、SNシックナーA-815、エフカアディティブス゛(EFKA ADDITIVES B. V.)社製の商品名 EFKA4500、EFKA4530、ビックケミー(BYK-Chemie)社製の商品名 Disperbyk-116等が例示され、ポリウレタン系分散剤として、エフカアディティブス゛社製の商品名 EFKA4046、EFKA4047、EFKA4520、コグニス(Cognis)社製の商品名 TEXAPHOR P60、TEXAPHOR P63、TEXAPHOR P610等が例示され、ポリエーテル系分散剤として、サンノプコ株式会社製の商品名 SNシックナーA-801、SNシックナーA-802、SNシックナーA-803、SNシックナーA-804、SNシックナーA-806、楠本化成社製の商品名 DISPARLON DA234、DISPARLON DA325等が例示され、ポリエステル系分散剤として、アビシア(Avecia)社製の商品名 Solsperse22000、Solsperse24000SC、Solsperse24000GR、Solsperse26000、Solsperse27000、Solsperse28000、Solsperse36000、Solsperse36600、Solsperse38500、楠本化成社製の商品名 DISPARLON DA70350、DISPARLON DA705、DISPARLON DA725、DISPARLON DA860、DISPARLON DA873N等が例示される。尚、高分子系分散剤の常温での状態は、液体、固体、ゲル状のいずれの場合も使用可能である。   In addition, the above-mentioned solar shading fine particle dispersion is in a liquid form that does not remove the solution components added in the pulverization and surface treatment steps as described above, in addition to the powder obtained by heating and removing the solution components by a known method. Alternatively, it may be a material dispersed in a raw material or a plasticizer according to the resin used for the solar shading resin material. The organic solvent and plasticizer used here are not particularly limited, and can be selected according to the conditions for forming the resin to be blended, and general organic solvents and plasticizers can be used. Moreover, you may adjust pH by adding an acid and an alkali as needed. Examples of the polymer dispersant include polyacrylate dispersants, polyurethane dispersants, polyether dispersants, polyester dispersants, polyester urethane dispersants, and the like. SAN NOPKO (SAN NOPKO) brand name SN thickener A-850, SN thickener A-815, EFKA ADDITIVES BV brand name EFKA4500, EFKA4530, BYK-Chemie company The product name Disperbyk-116 and the like manufactured by Efka Additives Co., Ltd. are trade names of EFKA4046, EFKA4047, EFKA4520, Cognis, TEXAPHOR P60, TEXAPHOR P63, and TEXAPHOR P610. Etc., and as a polyether-based dispersant, trade names of SN Nopco Corporation SN thickener A-801, SN thickener A-802, SN thickener A -803, SN thickener A-804, SN thickener A-806, trade names manufactured by Enomoto Kasei Co., Ltd. DISPARLON DA234, DISPARLON DA325, etc. are exemplified. As polyester-based dispersants, trade names manufactured by Avecia, Solsperse 22000, Solsperse 24000SC , Solsperse24000GR, Solsperse26000, Solsperse27000, Solsperse28000, Solsperse36000, Solsperse36600, Solsperse38500, trade names made by Enomoto Kasei Co., Ltd. DISPARLON DA70350, DISPARLON DA705, DISPARLON DA725, DISPARLON DA860, DISPARLON DA873N, etc. In addition, the state of the polymer dispersant at normal temperature can be used in any of liquid, solid, and gel.

そして、液状若しくは粉末状の上記日射遮蔽用微粒子分散体を用いて日射遮蔽樹脂材料を製造するには、日射遮蔽樹脂材料に用いる樹脂中に日射遮蔽用微粒子が均一に分散できればどのような方法でも良い。一般的なリボンブレンダー、タンブラー、ナウターミキサー、ヘンシェルミキサー等の混合機、およびバンバリーミキサー、ニーダー、ロール、一軸押出機、二軸押出機等の混練機で均一に溶融混合する方法を用いることも可能である。   And, in order to produce a solar shading resin material using the above-mentioned liquid or powdery solar shading fine particle dispersion, any method can be used as long as the solar shading fine particles can be uniformly dispersed in the resin used for the solar shading resin material. good. It is also possible to use a method of uniformly melt-mixing with a kneader such as a general ribbon blender, tumbler, nauter mixer, Henschel mixer, etc., and a Banbury mixer, kneader, roll, single screw extruder, twin screw extruder, etc. Is possible.

例えば、日射遮蔽樹脂材料に用いる樹脂が、ポリカーボネート樹脂の場合には、樹脂の原料となる2価フェノール類に粉末状の日射遮蔽用微粒子分散体を添加し、溶融混合し、ホスゲンで例示されるカーボネート前駆体と反応させることによって、樹脂に微粒子を均一に分散した混合物(日射遮蔽樹脂材料)を調製することができる。また、日射遮蔽樹脂材料に用いる樹脂が、アクリル樹脂の場合は、アクリル樹脂の原料となるメチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレート等に液状の日射遮蔽用微粒子分散体を添加し、公知の方法で均一に混合し、懸濁重合や魂状重合等公知の方法で重合させることによって、アクリル樹脂に微粒子を均一に分散した混合物(日射遮蔽樹脂材料)を調製することができる。また、日射遮蔽樹脂材料に用いる樹脂が、ポリビニルブチラール樹脂の場合は、粉末状の日射遮蔽用微粒子分散体をトリエチレングリコール・ジ−2エチルブチレート(3GH)やトリエチレングリコール・ジ−2エチルヘキサノエート(3GO)等の一般的な可塑剤と攪拌混合し、これをポリビニルブチラール樹脂と公知の方法で混合混練することにより、樹脂に微粒子を均一に分散した混合物(日射遮蔽樹脂材料)を調製することができる。   For example, when the resin used for the solar shading resin material is a polycarbonate resin, a powdery solar shading fine particle dispersion is added to a dihydric phenol used as a raw material of the resin, melt-mixed, and exemplified by phosgene. By reacting with the carbonate precursor, a mixture (sunlight shielding resin material) in which fine particles are uniformly dispersed in the resin can be prepared. Further, when the resin used for the solar shading resin material is an acrylic resin, a liquid solar shading fine particle dispersion is added to methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate or the like that is a raw material of the acrylic resin, By mixing uniformly by a method and polymerizing by a known method such as suspension polymerization or soul polymerization, a mixture (sunlight shielding resin material) in which fine particles are uniformly dispersed in an acrylic resin can be prepared. Further, when the resin used for the solar shading resin material is a polyvinyl butyral resin, the powdery solar shading fine particle dispersion is made of triethylene glycol di-2 ethyl butyrate (3GH) or triethylene glycol di-2 ethyl. Mixing and kneading with a general plasticizer such as hexanoate (3GO) and mixing and kneading it with a polyvinyl butyral resin by a known method, a mixture (sunlight shielding resin material) in which fine particles are uniformly dispersed in the resin Can be prepared.

次に、このようにして得られた混合物(日射遮蔽樹脂材料)を、射出成形、押出成形、圧縮成形等の公知の成形方法によって平面状や曲面状(すなわち平面若しくは立体形状)に成形することにより日射遮蔽樹脂基材を製造することができる。また、樹脂中に日射遮蔽用微粒子が均一に分散した混合物(日射遮蔽樹脂材料)を造粒装置により一旦ペレット化し、このペレットを樹脂中に添加混合し、上記方法と同様の成形方法により日射遮蔽樹脂基材を製造することもできる。尚、日射遮蔽樹脂基材の厚さは板状から薄いフィルム状まで必要に応じて任意に調整することが可能である。   Next, the mixture (sunlight shielding resin material) thus obtained is molded into a planar shape or a curved surface shape (that is, a planar or three-dimensional shape) by a known molding method such as injection molding, extrusion molding, or compression molding. Thus, it is possible to produce a solar radiation shielding resin substrate. Also, a mixture (sunlight shielding resin material) in which fine particles for solar shading are uniformly dispersed in the resin is once pelletized by a granulator, and the pellet is added and mixed in the resin, and the solar shading is performed by the same molding method as above. A resin base material can also be manufactured. In addition, the thickness of a solar radiation shielding resin base material can be arbitrarily adjusted as needed from a plate shape to a thin film shape.

また、シート状に成形された日射遮蔽樹脂基材を2枚の板ガラスまたは1枚以上の他の樹脂板と貼り合わせて日射遮蔽複合基材として使用することも可能である。例えば、シート状に成形されたポリカーボネート樹脂基材とガラス板とを接着剤を用いて貼り合わせ、日射遮蔽複合基材として用いたり、また、シート状に成形されたポリビニルブチラール樹脂基材を中間膜としこれを2枚のガラス板で挟み込み、オートクレーブで圧着した日射遮蔽複合基材としたりして使用することができる。   Further, it is also possible to use a solar radiation shielding resin base material formed into a sheet shape as a solar radiation shielding composite base material by laminating it with two plate glasses or one or more other resin plates. For example, a polycarbonate resin base material and a glass plate formed into a sheet shape are bonded together using an adhesive and used as a solar radiation shielding composite base material, or a polyvinyl butyral resin base material formed into a sheet shape is used as an intermediate film And this can be used as a solar radiation shielding composite base material sandwiched between two glass plates and pressure-bonded by an autoclave.

上記日射遮蔽樹脂基材および日射遮蔽複合基材の表面には、更に熱線遮蔽膜や紫外線吸収膜を形成しても良い。例えば、日射遮蔽樹脂基材上にITO微粒子やATO微粒子を各種バインダーに分散させた塗布液を塗布し、表面上に更に熱線遮蔽膜を形成することもできる。また、上記日射遮蔽樹脂基材上にベンゾトリアゾール系、ベンゾフェノン系等の紫外線吸収剤を各種バインダーに溶解させた塗布液を塗布し、硬化させて紫外線吸収膜を形成することができる。この紫外線吸収膜の形成により、樹脂基材の耐侯性を更に向上させることが可能である。   A heat ray shielding film or an ultraviolet absorbing film may be further formed on the surfaces of the solar radiation shielding resin base material and the solar radiation shielding composite base material. For example, it is possible to apply a coating solution in which ITO fine particles or ATO fine particles are dispersed in various binders on a solar radiation shielding resin substrate, and further form a heat ray shielding film on the surface. In addition, an ultraviolet absorbing film can be formed by applying a coating solution prepared by dissolving a benzotriazole-based or benzophenone-based ultraviolet absorber in various binders on the solar radiation shielding resin substrate and curing it. By forming this ultraviolet absorbing film, it is possible to further improve the weather resistance of the resin substrate.

なお、日射遮蔽樹脂基材の樹脂原料としては、透過性があり散乱の少ない、無色透明の樹脂ならば特に限定せず、ポリカーボネート樹脂、アクリル樹脂、フッ素樹脂、ポリエステル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、エチレン−酢酸ビニル共重合体樹脂のほかに、ポリオレフィン系樹脂や塩化ビニル樹脂、フッ化ビニル樹脂等を適宜使用することができる。   The resin material for the solar shading resin base material is not particularly limited as long as it is a transparent and lightly transparent, colorless and transparent resin. Polycarbonate resin, acrylic resin, fluororesin, polyester resin, polyvinyl acetal resin, polyvinyl butyral In addition to resins and ethylene-vinyl acetate copolymer resins, polyolefin resins, vinyl chloride resins, vinyl fluoride resins, and the like can be used as appropriate.

ポリカーボネート樹脂は、2価フェノール類とカーボネート系前駆体とを、溶液法または溶融法で反応させることによって得られるものである。2価フェノールとしては、2,2−ビス(4−ヒドロキシフェニル)プロパン[ビスフェノールA]、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジブロモフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、ビス(4−ヒドロキシフェニル)スルフィド、ビス(4−ヒドロキシフェニル)スルホン等が代表例として挙げられる。また、好ましい2価フェノールは、ビス(4−ヒドロキシフェニル)アルカン系であり、特にビスフェノールAを主成分とするものが好ましい。   The polycarbonate resin is obtained by reacting a dihydric phenol with a carbonate precursor by a solution method or a melting method. Examples of the dihydric phenol include 2,2-bis (4-hydroxyphenyl) propane [bisphenol A], 1,1-bis (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, , 2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane, 2,2-bis (4-hydroxy-3-methyl) Representative examples include phenyl) propane, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, and the like. Further, a preferred dihydric phenol is a bis (4-hydroxyphenyl) alkane series, and those having bisphenol A as a main component are particularly preferred.

また、アクリル樹脂としては、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレートを主原料とし、必要に応じて炭素数1〜8のアルキル基を有するアクリル酸エステル、酢酸ビニル、スチレン、アクリロニトリル、メタクリロニトリル等を共重合成分として用いた重合体または共重合体が用いられる。また更に多段で重合したアクリル樹脂を用いることもできる。   As acrylic resins, methyl methacrylate, ethyl methacrylate, propyl methacrylate, and butyl methacrylate are used as main raw materials, and acrylic acid esters having 1 to 8 carbon atoms, vinyl acetate, styrene, acrylonitrile, methacryloyl as necessary. A polymer or copolymer using nitrile or the like as a copolymerization component is used. Furthermore, an acrylic resin polymerized in multiple stages can also be used.

また、フッ素樹脂としては、分子構造中にフッ素を含有する樹脂であれば良く、例えば4フッ化エチレン樹脂、3フッ化エチレン樹脂、2フッ化エチレン樹脂、1フッ化エチレン樹脂等が挙げられ、これらの混合物であってもよい。   Further, as the fluororesin, any resin containing fluorine in the molecular structure may be used, and examples thereof include tetrafluoroethylene resin, trifluoride ethylene resin, difluoroethylene resin, monofluoroethylene resin, and the like. A mixture thereof may be used.

ポリエステル樹脂としては、酸成分とジオール成分との重縮合で得られる線状飽和ポリエステル樹脂、具体的にはポリエチレンテレフタレート、ポリエチレンナフタレート等が適宜使用できる。ここで酸成分としてはフタル酸、無水フタル酸、セバシン酸、アゼライン酸等の飽和二塩基酸、ダイマー酸等の1種または2種以上が使用でき、ジオール成分としてはエチレングリコール、プロピレングリコール、デカンジオール、ドデカンジオール、ヘキサデカンジオール、ビスフェノール化合物およびそのエチレンオキサイドまたはプロピレンオキサイド付加物等の1種または2種以上が使用できる。   As the polyester resin, a linear saturated polyester resin obtained by polycondensation of an acid component and a diol component, specifically, polyethylene terephthalate, polyethylene naphthalate, or the like can be used as appropriate. Here, the acid component may be one or more of saturated dibasic acids such as phthalic acid, phthalic anhydride, sebacic acid and azelaic acid, and dimer acid, and the diol component may be ethylene glycol, propylene glycol, decane. One kind or two or more kinds such as diol, dodecanediol, hexadecanediol, bisphenol compound and ethylene oxide or propylene oxide adduct thereof can be used.

ポリビニルアセタール樹脂としては、2枚の板ガラスで挟み込んだ合せガラスを構成する密着性樹脂として使用する場合、炭素数が4〜8程度のアルデヒドでポリビニルアルコールをアセタール化して得られるポリビニルブチラール樹脂が特に好ましい。このポリビニルブチラール樹脂のブチラール化度は特に限定されるものではないが、約60〜75%程度が透明性、密着性の観点から特に好ましい。   The polyvinyl acetal resin is particularly preferably a polyvinyl butyral resin obtained by acetalizing polyvinyl alcohol with an aldehyde having about 4 to 8 carbon atoms when used as an adhesive resin constituting a laminated glass sandwiched between two plate glasses. . The degree of butyralization of this polyvinyl butyral resin is not particularly limited, but about 60 to 75% is particularly preferable from the viewpoint of transparency and adhesion.

エチレン−酢酸ビニル共重合体系樹脂としては、エチレンを主成分とするエチレン−酢酸ビニルランダム共重合体ならば特に限定せず、酢酸ビニル単位の含有量が10〜45重量%程度であることが好ましい。   The ethylene-vinyl acetate copolymer-based resin is not particularly limited as long as it is an ethylene-vinyl acetate random copolymer containing ethylene as a main component, and the content of vinyl acetate units is preferably about 10 to 45% by weight. .

このように上述した特性を持つ窒化チタン微粒子を日射遮蔽用微粒子として用い、樹脂成分中に均一に分散させシート状に成形することで、高コストの物理成膜法や複雑な接着工程を用いずに、日射遮蔽機能を有しかつ可視光域に高い透過性を有すると共に青色の色調を呈する日射遮蔽樹脂基材若しくは日射遮蔽複合基材を提供することが可能となる。   In this way, titanium nitride fine particles having the above-mentioned characteristics are used as solar shielding fine particles, and are uniformly dispersed in the resin component and formed into a sheet shape without using a high-cost physical film forming method or a complicated bonding process. In addition, it is possible to provide a solar radiation shielding resin base material or a solar radiation shielding composite base material that has a solar radiation shielding function and has high transparency in the visible light range and exhibits a blue color tone.

また、上述した特性を持つ窒化チタン微粒子は一般的な有機青色顔料に比べて隠蔽力が高く少量の添加で効果を発揮できるため、材料コストの低減を図ることが可能となる。   In addition, since the titanium nitride fine particles having the above-described characteristics have a high hiding power compared to a general organic blue pigment and can exhibit an effect when added in a small amount, it is possible to reduce the material cost.

以下、実施例により本発明を具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。尚、得られた試料の可視光透過率VLT(波長380〜780nm)および希釈液の透過プロファイルならびに拡散反射光による粉体色(標準光源D65,10°視野)は日立製作所(株)製の分光光度計U−4000を用いて測定した。   Hereinafter, the present invention will be described specifically by way of examples. However, the present invention is not limited to the following examples. The visible light transmittance VLT (wavelength 380 to 780 nm) of the obtained sample, the transmission profile of the diluted solution, and the powder color (standard light source D65, 10 ° field of view) by diffuse reflected light are spectroscopic products manufactured by Hitachi, Ltd. It measured using the photometer U-4000.

また、上記VLTについてはJIS R3106に従って算出し、粉体色についてはJIS Z8729に従って算出した。また、拡散反射光による粉体色は、日立U4000形分光光度計用粉末セル(パ−ツNo139−0647、22mm径×10mm厚)を用いて測定した。   The VLT was calculated according to JIS R3106, and the powder color was calculated according to JIS Z8729. Moreover, the powder color by diffuse reflected light was measured using a powder cell for Hitachi U4000 type spectrophotometer (Part No. 139-0647, 22 mm diameter × 10 mm thickness).

更に、ヘイズは村上色材(株)製HR−200を用いて測定した。また、耐侯性試験は作製した日射遮蔽樹脂基材や日射遮蔽複合基材をISO4892−2の試験サイクルに従って稼動しているサンシャインウエザオメータ(ATLAS社製Ci4000)に500時間投入し、投入前後の可視光透過率の差(ΔVLT)を測定することにより評価した。   Further, haze was measured using HR-200 manufactured by Murakami Coloring Co., Ltd. In addition, in the weather resistance test, the produced solar shading resin base material or solar shading composite base material was placed in a sunshine weatherometer (Ci4000 manufactured by ATLAS) operating according to the test cycle of ISO 4892-2 for 500 hours. Evaluation was made by measuring the difference in visible light transmittance (ΔVLT).

初期粒径1500nmのTiN粉200g、エチレングリコール700g、および、適量の高分子系分散剤を混合し、直径5mmのジルコニアボールを用いて200時間ボールミル混合粉砕して分散処理を行った。この分散液(A液)中におけるTiN粉の平均粒径は145nmであった。   200 g of TiN powder having an initial particle diameter of 1500 nm, 700 g of ethylene glycol, and an appropriate amount of a polymeric dispersant were mixed, and dispersion treatment was performed by ball mill mixing and grinding for 200 hours using zirconia balls having a diameter of 5 mm. The average particle diameter of the TiN powder in this dispersion (liquid A) was 145 nm.

次に、上記分散液(A液)の一部につき真空乾燥機を用いてエチレングリコールを乾燥させた後、得られた粉末の特性を評価したところ、面心立方晶で格子定数は0.4245nm、拡散反射光による粉体色はL*=46.68、a*=4.74、b*=11.99であった。また、この粉末をTiN濃度が0.003重量%になるようにエタノールで希釈し、この液をPYREX(登録商標)製10mm角セルに入れたものの透過プロファイルを測定した。この結果、透過率の極大値は波長440nmにおいて49.48%、極小値は波長945nmにおいて31.48%であり、極大値と極小値の透過率の差は18.0%であった。尚、測定時における希釈液のVLTは43.5%であった。 Next, after the ethylene glycol was dried using a vacuum dryer for a part of the dispersion liquid (liquid A), the characteristics of the obtained powder were evaluated. As a result, the lattice constant was 0.4245 nm. The powder color by diffuse reflected light was L * = 46.68, a * = 4.74, b * = 1.11.99. Further, this powder was diluted with ethanol so that the TiN concentration was 0.003% by weight, and the permeation profile of this liquid was put into a 10 mm square cell made of PYREX (registered trademark), and the transmission profile was measured. As a result, the maximum value of transmittance was 49.48% at a wavelength of 440 nm, the minimum value was 31.48% at a wavelength of 945 nm, and the difference between the transmittances of the maximum value and the minimum value was 18.0%. The VLT of the diluted solution at the time of measurement was 43.5%.

次に、上記分散液(A液)をTiN濃度が0.2重量%になるようにエチレングリコールで希釈して液状の日射遮蔽用微粒子分散体を得、この液状の日射遮蔽用微粒子分散体とテレフタル酸とを前者が30重量%、後者が70重量%の割合で混合し、更に、高温真空混合槽でエステル化、重縮合反応を行ない、日射遮蔽ポリエチレンテレフタレート樹脂(日射遮蔽樹脂材料)を調製した。   Next, the dispersion (liquid A) is diluted with ethylene glycol so that the TiN concentration is 0.2% by weight to obtain a liquid solar shading fine particle dispersion. Terephthalic acid is mixed with 30% by weight of the former and 70% by weight of the latter, and esterification and polycondensation are performed in a high-temperature vacuum mixing tank to prepare a solar-shielding polyethylene terephthalate resin (solar-shielding resin material). did.

この日射遮蔽樹脂材料をブレンダー、二軸押出機で均一に溶融混合した後、Tダイを用いて厚さ50μmに押出し成形し、日射遮蔽用微粒子が全体に均一に分散したシート状の日射遮蔽ポリエチレンテレフタレート成形体(日射遮蔽樹脂基材)を作製した。   This solar shading resin material is melted and mixed uniformly with a blender and a twin screw extruder, and then extruded using a T-die to a thickness of 50 μm. The solar shading polyethylene in which the solar shading fine particles are uniformly dispersed throughout. A terephthalate molded body (sunlight shielding resin base material) was produced.

得られた試料(日射遮蔽樹脂基材)の透過プロファイルを図1に示す。透過率の極大が波長440nm、極小が波長945nmにあり可視光領域で透過率が高く、近赤外領域で透過率が小さいプロファイルになっており日射遮蔽特性に優れることが確認される。   The transmission profile of the obtained sample (sunlight shielding resin substrate) is shown in FIG. It is confirmed that the transmittance maximum is at a wavelength of 440 nm, the minimum is at a wavelength of 945 nm, the transmittance is high in the visible light region, and the transmittance is small in the near infrared region, and the solar radiation shielding characteristics are excellent.

また、この試料(日射遮蔽樹脂基材)の透過色は美しい青色であった。   Further, the transmitted color of this sample (sunlight shielding resin base material) was a beautiful blue color.

この試料(日射遮蔽樹脂基材)の可視光透過率、極大、極小透過率、ヘイズ、耐侯性試験結果(ΔVLT)等を以下の表1に示す。   Table 1 below shows the visible light transmittance, maximum, minimum transmittance, haze, weather resistance test result (ΔVLT), and the like of this sample (sunlight shielding resin base material).

実施例1で得られたA液にテトラメトキシシラン500g、水400gを添加して充分攪拌した後、真空乾燥機を用いてエチレングリコールを蒸発させ、これを300℃にて焼成することによりSi化合物に被覆されたTiN粉末を得た。   After adding 500 g of tetramethoxysilane and 400 g of water to the liquid A obtained in Example 1 and stirring sufficiently, the ethylene glycol was evaporated using a vacuum dryer, and this was baked at 300 ° C. to obtain a Si compound. TiN powder coated on the surface was obtained.

次に、Si化合物で被覆されたTiN粉末に、TiN1重量部に対して高分子系分散剤が3重量部になるように高分子系分散剤を添加し、更に適量のエタノールを追加して攪拌混合した。この分散液中のエタノールについて真空乾燥機を用いて蒸発させ、粉末状の日射遮蔽用微粒子分散体(分散体B)を得た。   Next, the polymer dispersant is added to the TiN powder coated with the Si compound so that the polymer dispersant is 3 parts by weight with respect to 1 part by weight of TiN, and an appropriate amount of ethanol is further added and stirred. Mixed. The ethanol in the dispersion was evaporated using a vacuum dryer to obtain a powdery solar shading fine particle dispersion (dispersion B).

次に、粉末状の日射遮蔽用微粒子分散体(分散体B)を、TiN濃度で0.001重量%となるようにポリカーボネート樹脂に添加し、ブレンダー、二軸押出機で均一に溶融混合した後、Tダイを用いて厚さ3mmに押出し成形し、日射遮蔽用微粒子が全体に均一に分散したシート状の日射遮蔽ポリカーボネート成形体(日射遮蔽樹脂基材)を作製した。   Next, after adding powdery solar shading fine particle dispersion (dispersion B) to polycarbonate resin so that the TiN concentration is 0.001% by weight, the mixture is uniformly melt-mixed by a blender and a twin screw extruder. The sheet was extruded to a thickness of 3 mm using a T-die to produce a sheet-shaped solar-shielding polycarbonate molded body (solar-shielding resin base material) in which the solar-shielding fine particles were uniformly dispersed throughout.

得られた試料(日射遮蔽樹脂基材)の透過プロファイルは、透過率の極大が波長430nm、極小が波長860nmにあり可視光領域で透過率が高く、近赤外領域で透過率が小さいプロファイルになっており日射遮蔽特性に優れることが確認される。   The transmission profile of the obtained sample (sunlight shielding resin base material) has a maximum transmittance of 430 nm, a minimum of 860 nm, a high transmittance in the visible light region, and a low transmittance in the near infrared region. It is confirmed that it has excellent solar shading characteristics.

また、この試料(日射遮蔽樹脂基材)の透過色は美しい青色であった。   Further, the transmitted color of this sample (sunlight shielding resin base material) was a beautiful blue color.

この試料(日射遮蔽樹脂基材)の可視光透過率、極大、極小透過率、ヘイズ、耐侯性試験結果(ΔVLT)等を以下の表1に示す。   Table 1 below shows the visible light transmittance, maximum, minimum transmittance, haze, weather resistance test result (ΔVLT), and the like of this sample (sunlight shielding resin base material).

初期粒径220nmのTiN粉200g、エタノール700g、および、適量の高分子系分散剤を混合し、直径5mmのジルコニアボールを用いて100時間ボールミル混合して分散液(C液)を得た。この分散液(C液)中におけるTiNの平均粒径は110nmであった。   200 g of TiN powder having an initial particle size of 220 nm, 700 g of ethanol, and an appropriate amount of a polymeric dispersant were mixed, and ball mill mixing was performed for 100 hours using zirconia balls having a diameter of 5 mm to obtain a dispersion (solution C). The average particle diameter of TiN in this dispersion (liquid C) was 110 nm.

次に、上記分散液(C液)の一部についてエタノールを蒸発させ、得られた粉末の特性を評価したところ、面心立方晶で格子定数は0.4239nm、拡散反射光による粉体色はL*=36.61、a*=0.27、b*=1.50であった。また、この粉末を、TiN濃度で0.003重量%になるようにエタノールで希釈し、この液をPYREX(登録商標)製10mm角セルに入れたものの透過プロファイルを測定した。この結果、透過率の極大値は波長420nmにおいて45.7%であり、極小値は波長750nmにおいて26.8%であり、極大値と極小値の透過率の差は18.9%であった。尚、測定時における希釈液のVLTは35.14%であった。 Next, ethanol was evaporated from a part of the dispersion liquid (liquid C), and the characteristics of the obtained powder were evaluated. As a result, the lattice constant was 0.4239 nm with a face-centered cubic crystal, and the powder color by diffuse reflected light was L * = 36.61, a * = 0.27, b * = 1.50. Further, this powder was diluted with ethanol so that the TiN concentration was 0.003% by weight, and the permeation profile of this liquid was put into a 10 mm square cell made of PYREX (registered trademark), and the transmission profile was measured. As a result, the maximum value of the transmittance was 45.7% at a wavelength of 420 nm, the minimum value was 26.8% at a wavelength of 750 nm, and the difference between the transmittances of the maximum value and the minimum value was 18.9%. . The VLT of the diluted solution at the time of measurement was 35.14%.

次に、上記分散液(C液)に、TiN1重量部に対して高分子系分散剤が3重量部になるように高分子系分散剤を添加し攪拌混合した。この分散液中のエタノールについて真空乾燥機を用いて蒸発させ、粉末状の日射遮蔽用微粒子分散体(分散体C)を得た。   Next, the polymer dispersant was added to the dispersion (liquid C) so that the polymer dispersant was 3 parts by weight with respect to 1 part by weight of TiN, and the mixture was stirred and mixed. The ethanol in the dispersion was evaporated using a vacuum dryer to obtain a powdery solar shielding fine particle dispersion (dispersion C).

次に、粉末状の日射遮蔽用微粒子分散体(分散体C)を、TiN濃度で0.001重量%となるようにポリカーボネート樹脂に添加し、ブレンダー、二軸押出機で均一に溶融混合した後、Tダイを用いて厚さ3mmに押出し成形し、日射遮蔽用微粒子が全体に均一に分散したシート状の日射遮蔽ポリカーボネート成形体(日射遮蔽樹脂基材)を作製した。   Next, after adding powdery solar shading fine particle dispersion (dispersion C) to polycarbonate resin so that the TiN concentration is 0.001% by weight, the mixture is uniformly melt-mixed by a blender and a twin screw extruder. The sheet was extruded to a thickness of 3 mm using a T-die to produce a sheet-shaped solar-shielding polycarbonate molded body (solar-shielding resin base material) in which the solar-shielding fine particles were uniformly dispersed throughout.

得られた試料(日射遮蔽樹脂基材)の透過プロファイルを図1に示す。透過率の極大が波長420nm、極小が波長720nmにあり可視光領域で透過率が高く、近赤外領域に近い波長で透過率が小さいプロファイルになっており日射遮蔽特性に優れることが確認される。   The transmission profile of the obtained sample (sunlight shielding resin substrate) is shown in FIG. It is confirmed that the transmittance maximum is 420 nm, the minimum is 720 nm, the transmittance is high in the visible light region, and the transmittance is small at the wavelength close to the near infrared region, and the solar radiation shielding characteristics are excellent. .

また、この試料(日射遮蔽樹脂基材)の透過色は美しい深青色であった。   Moreover, the transmitted color of this sample (sunlight shielding resin base material) was a beautiful deep blue.

この試料(日射遮蔽樹脂基材)の可視光透過率、極大、極小透過率、ヘイズ、耐侯性試験結果(ΔVLT)等を以下の表1に示す。   Table 1 below shows the visible light transmittance, maximum, minimum transmittance, haze, weather resistance test result (ΔVLT), and the like of this sample (sunlight shielding resin base material).

実施例3で得られた分散液(C液)にチタンイソプロポキシド500g、水400gを添加して充分攪拌した後、真空乾燥機を用いてエタノールを蒸発させ、これを250℃にて焼成することによりTi化合物に被覆されたTiN粉末(D粉)を得た。   After adding 500 g of titanium isopropoxide and 400 g of water to the dispersion (liquid C) obtained in Example 3 and stirring sufficiently, ethanol was evaporated using a vacuum dryer, and this was baked at 250 ° C. Thus, TiN powder (D powder) coated with a Ti compound was obtained.

次に、Ti化合物で被覆されたTiN粉末(D粉)を、TiN濃度で4重量%となるようにトリエチレングリコール・ジ−2エチルブチレート(3GH)に混合し、更に適量の高分子系分散剤を追加し、直径5mmのジルコニアボールを用いて20時間ボールミル混合して分散処理を行った。得られた液状の日射遮蔽用微粒子分散体を、TiN濃度で0.004重量%となるようにポリビニルブチラール樹脂に混合し、3本ロールミキサーにより約70℃で練り込み混合した。得られた樹脂(日射遮蔽樹脂材料)について型押出機を用いて厚さ0.8mmシート状に押出し成形してシート状樹脂(日射遮蔽樹脂基材)を得た。   Next, the TiN powder (D powder) coated with the Ti compound is mixed with triethylene glycol di-2 ethyl butyrate (3GH) so that the TiN concentration is 4% by weight, and an appropriate amount of polymer system is mixed. A dispersing agent was added, and the dispersion treatment was performed by ball mill mixing for 20 hours using zirconia balls having a diameter of 5 mm. The obtained liquid solar shading fine particle dispersion was mixed with polyvinyl butyral resin so that the TiN concentration was 0.004 wt%, and kneaded and mixed at about 70 ° C. with a three-roll mixer. The obtained resin (sunlight shielding resin material) was extruded into a 0.8 mm thick sheet using a mold extruder to obtain a sheet-like resin (sunlight shielding resin substrate).

次に、大きさ約300×300mm、厚さ約2.1mmの青板ガラスを2枚用意し、この青板ガラスと同じ大きさに上記シート状樹脂(日射遮蔽樹脂基材)を裁断した後、2枚の青板ガラス間に挟みこんで積層体とした。   Next, two pieces of blue plate glass having a size of about 300 × 300 mm and a thickness of about 2.1 mm are prepared, and after cutting the sheet-like resin (sunlight shielding resin base material) into the same size as this blue plate glass, 2 A laminate was obtained by sandwiching between a pair of blue plate glasses.

次いで、この積層体をゴム製の真空袋に入れ、袋内を減圧し約100℃で30分保持した後、常温まで冷却し、袋から取り出した積層体をオートクレーブ装置に入れ、圧力約12kg/cm2、温度約120℃で30分加圧加熱して合せガラス化処理を行ない、日射遮蔽複合基材を作製した。 Next, this laminate is put into a rubber vacuum bag, the inside of the bag is decompressed and held at about 100 ° C. for 30 minutes, then cooled to room temperature, and the laminate taken out of the bag is put into an autoclave apparatus, and the pressure is about 12 kg / A laminated glass substrate was prepared by applying pressure and heating at cm 2 and a temperature of about 120 ° C. for 30 minutes to perform vitrification.

得られた試料(日射遮蔽複合基材)の透過プロファイルを図1に示す。透過率の極大が波長420nm、極小が波長720nmにあり可視光領域で透過率が高く、近赤外領域に近い波長で透過率が小さいプロファイルになっており日射遮蔽特性に優れることが確認される。   The transmission profile of the obtained sample (sunlight shielding composite substrate) is shown in FIG. It is confirmed that the transmittance maximum is 420 nm, the minimum is 720 nm, the transmittance is high in the visible light region, and the transmittance is small at the wavelength close to the near infrared region, and the solar radiation shielding characteristics are excellent. .

また、この試料(日射遮蔽複合基材)の透過色は美しい深青色であった。   Further, the transmitted color of this sample (sunlight shielding composite base material) was a beautiful deep blue color.

この試料(日射遮蔽複合基材)の可視光透過率、極大、極小透過率、ヘイズ、耐侯性試験結果(ΔVLT)等を以下の表1に示す。   Table 1 below shows the visible light transmittance, maximum, minimum transmittance, haze, weather resistance test result (ΔVLT), and the like of this sample (sunlight shielding composite base material).

実施例4で得られたTi化合物で被覆されたTiN粉末(D粉)に、適量のエチレングリコールおよび高分子系分散剤を添加し、5mmのジルコニアボールを用いて3時間ボールミル混合して液状の日射遮蔽用微粒子分散体(分散体D)を調製した。   Appropriate amounts of ethylene glycol and a polymeric dispersant were added to the TiN powder (D powder) coated with the Ti compound obtained in Example 4, and the mixture was liquid-mixed by ball milling for 3 hours using 5 mm zirconia balls. A sunscreen fine particle dispersion (dispersion D) was prepared.

次に、上記分散体Dを用い、実施例1と同様の方法で日射遮蔽用微粒子が全体に均一に分散したシート状の日射遮蔽ポリエチレンテレフタレート成形体(日射遮蔽樹脂基材)を作製した。   Next, using the dispersion D, a sheet-shaped solar-shielding polyethylene terephthalate molded body (solar-shielding resin base material) in which the solar-shielding fine particles were uniformly dispersed throughout was produced in the same manner as in Example 1.

得られた試料(日射遮蔽樹脂基材)の透過プロファイルは、透過率の極大が波長430nm、極小が波長740nmにあり可視光領域で透過率が高く、近赤外領域に近い波長で透過率が小さいプロファイルになっており日射遮蔽特性に優れることが確認される。   The transmission profile of the obtained sample (sunlight shielding resin base material) has a transmittance maximum at a wavelength of 430 nm, a minimum at a wavelength of 740 nm, a high transmittance in the visible light region, and a transmittance at a wavelength close to the near infrared region. It is confirmed that it has a small profile and excellent solar shading characteristics.

また、この試料(日射遮蔽樹脂基材)の透過色は美しい深青色であった。   Moreover, the transmitted color of this sample (sunlight shielding resin base material) was a beautiful deep blue.

この試料(日射遮蔽樹脂基材)の可視光透過率、極大、極小透過率、ヘイズ、耐侯性試験結果(ΔVLT)等を以下の表1に示す。   Table 1 below shows the visible light transmittance, maximum, minimum transmittance, haze, weather resistance test result (ΔVLT), and the like of this sample (sunlight shielding resin base material).

実施例5で作製したシート状の日射遮蔽ポリエチレンテレフタレート成形体(日射遮蔽樹脂基材)に、ディップコート法にて紫外線遮蔽インク[ベンゾトリアゾール系紫外線吸収剤(チバスペシャリティー社製「チヌビン384」)2重量%、アクリル樹脂10重量%、トルエン88重量%]を塗布し、80℃の電気炉で30分乾燥を行ない、紫外線吸収膜が形成された日射遮蔽樹脂基材を作製した。   The sheet-shaped solar-shielded polyethylene terephthalate molded body (solar-shielding resin base material) produced in Example 5 was subjected to UV shielding ink [benzotriazole-based UV absorber (“Tinubin 384” manufactured by Ciba Specialty Co., Ltd.)] by a dip coating method. 2 wt%, acrylic resin 10 wt%, toluene 88 wt%] was applied and dried in an electric furnace at 80 ° C. for 30 minutes to produce a solar shading resin base material on which an ultraviolet absorbing film was formed.

得られた日射遮蔽樹脂基材の可視光透過率、極大、極小透過率、ヘイズ、耐侯性試験結果(ΔVLT)等を以下の表1に示す。
(比較例1)
初期粒径300nmのTiN粉200g、エチレングリコール700g、および、適量の高分子系分散剤を混合し、直径5mmのジルコニアボールを用いて100時間ボールミル混合粉砕して分散処理を行った。この分散液(E液)の平均粒径は135nmであった。
Table 1 below shows the visible light transmittance, maximum value, minimum transmittance, haze, weather resistance test result (ΔVLT), and the like of the obtained solar shading resin base material.
(Comparative Example 1)
200 g of TiN powder having an initial particle size of 300 nm, 700 g of ethylene glycol, and an appropriate amount of a polymer dispersant were mixed, and dispersion treatment was performed by ball mill mixing and grinding for 100 hours using zirconia balls having a diameter of 5 mm. The average particle size of this dispersion (liquid E) was 135 nm.

次に、分散液(E液)中のエチレングリコールについて真空乾燥機を用いて蒸発させ、TiN粉末の評価を行ったところ、面心立方晶で格子定数は0.4225nmで、本発明の日射遮蔽用微粒子に要求される条件「0.423nm」を下まわり、かつ、拡散反射光による粉体色もL*=34.73、a*=−0.12、b*=−0.74であり、本発明の日射遮蔽用微粒子に要求される条件を下まわる値であった。 Next, when the ethylene glycol in the dispersion (liquid E) was evaporated using a vacuum dryer and the TiN powder was evaluated, it was face-centered cubic and the lattice constant was 0.4225 nm. Is lower than the condition “0.423 nm” required for the fine particles for use, and the powder color by diffuse reflected light is L * = 34.73, a * = − 0.12, and b * = − 0.74. The value was below the conditions required for the solar shading fine particles of the present invention.

また、この粉末を、TiN濃度が0.012重量%になるようにエタノールで希釈し、この希釈液をPYREX(登録商標)製10mm角セルに入れたものの透過プロファイルを測定したところ、透過率の極大値は波長580nmにおいて47.1%、極小値は波長805nmにおいて44.91%、極大値と極小値の透過率の差が2.2%となり、15%以上の透過率の差は得られなかった。尚、測定時における希釈液のVLTは46.89%であった。   Moreover, when this powder was diluted with ethanol so that the TiN concentration was 0.012% by weight, and the diluted liquid was put in a 10 mm square cell made of PYREX (registered trademark), the transmission profile was measured. The maximum value is 47.1% at a wavelength of 580 nm, the minimum value is 44.91% at a wavelength of 805 nm, the difference between the transmittances of the maximum value and the minimum value is 2.2%, and a difference in transmittance of 15% or more is obtained. There wasn't. The VLT of the diluted solution at the time of measurement was 46.89%.

次に、実施例1で得られたA液に代えて分散液(E液)を用いたこと以外は実施例1と同様に行い、シート状の日射遮蔽ポリエチレンテレフタレート成形体を作製した。   Next, it carried out similarly to Example 1 except having used the dispersion liquid (E liquid) instead of A liquid obtained in Example 1, and produced the sheet-like solar radiation shielding polyethylene terephthalate molded object.

得られた成形体の透過プロファイルを図1に示す。透過率の極大値が波長540nmにおいて43.35%、極小値が波長945nmにおいて41.59%であり、極大値と極小値の透過率差が1.76%となり日射遮蔽機能を有するものが得られなかった。   The transmission profile of the obtained molded body is shown in FIG. The maximum value of transmittance is 43.35% at a wavelength of 540 nm, the minimum value is 41.59% at a wavelength of 945 nm, and the difference in transmittance between the maximum value and the minimum value is 1.76%, thereby obtaining a solar radiation shielding function. I couldn't.

また、この試料(シート状の日射遮蔽ポリエチレンテレフタレート成形体)の透過色は青色を呈せず、黒〜灰色であった。   Moreover, the transmission color of this sample (sheet-like solar-shielded polyethylene terephthalate molded product) did not exhibit blue, but was black to gray.

この試料の可視光透過率、極大、極小透過率、ヘイズ、耐侯性試験結果(ΔVLT)等を以下の表1に示す。
(比較例2)
実施例3で得られた分散液(C液)に代えて上記分散液(E液)を用いたこと以外は実施例3と同様に行い、シート状の日射遮蔽ポリカーボネート成形体を作製した。
The visible light transmittance, maximum, minimum transmittance, haze, weather resistance test result (ΔVLT), etc. of this sample are shown in Table 1 below.
(Comparative Example 2)
A sheet-like solar shading polycarbonate molded body was produced in the same manner as in Example 3 except that the above dispersion (Liquid E) was used instead of the dispersion (Liquid C) obtained in Example 3.

得られた日射遮蔽ポリカーボネート成形体の透過色は青色を呈せず、黒〜灰色であった。   The transmission color of the obtained solar shading polycarbonate molded article was not blue but black to gray.

この試料の可視光透過率、極大、極小透過率、ヘイズ、耐侯性試験結果(ΔVLT)等を以下の表1に示す。
(比較例3)
初期粒径1500nmのTiN粉200g、エチレングリコール700gを混合し、かつ、直径5mmのジルコニアボールを用いて20時間ボールミル混合して分散処理を行った。この分散液(F液)中におけるTiN粉の平均粒径は350nmであり、本発明の日射遮蔽用微粒子に要求される条件「250nm以下」を満たさない微粒子であった。
The visible light transmittance, maximum, minimum transmittance, haze, weather resistance test result (ΔVLT), etc. of this sample are shown in Table 1 below.
(Comparative Example 3)
Dispersion treatment was performed by mixing 200 g of TiN powder having an initial particle diameter of 1500 nm and 700 g of ethylene glycol, and ball mill mixing for 20 hours using zirconia balls having a diameter of 5 mm. The average particle diameter of the TiN powder in this dispersion (F liquid) was 350 nm, and the fine particles did not satisfy the condition “250 nm or less” required for the solar radiation shielding fine particles of the present invention.

次に、上記分散液(F液)の一部につき真空乾燥機を用いてエチレングリコールを乾燥気化させた後、粉末の特性を評価したところ、面心立方晶で格子定数は0.4242、拡散反射光による粉体色はL*=43.58、a*=3.73、b*=10.98であり、平均粒径を除き本発明の日射遮蔽用微粒子に要求される条件を満たしていた。 Next, after the ethylene glycol was dried and vaporized by using a vacuum dryer for a part of the dispersion liquid (F liquid), the characteristics of the powder were evaluated. As a result, the lattice constant was 0.4242 with a face-centered cubic crystal. The powder color by reflected light is L * = 43.58, a * = 3.73, b * = 10.98, and satisfies the conditions required for the solar shading fine particles of the present invention except for the average particle diameter. It was.

次に、この粉末をTiN濃度が0.003重量%になるようにエタノールで希釈し、この希釈液をPYREX(登録商標)製10mm角セルに入れたものの透過プロファイルを測定したところ、透過率の極大値は波長435nmにおいて51.9%、極小値は波長800nmにおいて43.0%、極大値と極小値の透過率の差は8.9%となり15%以上の透過率の差が得られなかった。尚、測定時における希釈液のVLTは46.89%であった。   Next, this powder was diluted with ethanol so that the TiN concentration was 0.003% by weight, and when this diluted solution was put in a 10 mm square cell made of PYREX (registered trademark), the transmission profile was measured. The maximum value is 51.9% at a wavelength of 435 nm, the minimum value is 43.0% at a wavelength of 800 nm, and the difference in transmittance between the maximum value and the minimum value is 8.9%, and a difference in transmittance of 15% or more cannot be obtained. It was. The VLT of the diluted solution at the time of measurement was 46.89%.

次に、実施例1で得られたA液に代えて上記分散液(F液)を用いたこと以外は実施例2と同様に行い、シート状の日射遮蔽ポリカーボネート成形体を作製した。   Next, it carried out similarly to Example 2 except having used the said dispersion liquid (F liquid) instead of A liquid obtained in Example 1, and produced the sheet-like solar radiation shielding polycarbonate molding.

得られた成形体の透過プロファイルを図1に示す。また、この成形体の透過色は青色を呈せず、青黒色であった。   The transmission profile of the obtained molded body is shown in FIG. Moreover, the transmission color of this molded object did not exhibit blue, and was blue black.

この成形体の可視光透過率、極大、極小透過率、ヘイズ、耐侯性試験結果(ΔVLT)等を以下の表1に示す。   The visible light transmittance, maximum value, minimum transmittance, haze, weather resistance test result (ΔVLT) and the like of this molded body are shown in Table 1 below.

Figure 2005179121
[評 価]
1.表1に示されたデータから明らかなように各実施例に係る試料においては日射遮蔽機能が高く、可視光領域の高い透過性能を有し、しかも青色の色調を備えていることが確認される。
2.他方、各比較例に係る試料においてはその全てが青色の色調を備えておらず、かつ、日射遮蔽機能と可視光領域の透過性能についても劣っていることが確認される。特に、比較例3においては、ヘイズ値が13.9と他の試料に較べて極端に劣っていることも確認される。
Figure 2005179121
[Evaluation]
1. As is clear from the data shown in Table 1, it is confirmed that the samples according to each Example have a high solar shading function, a high transmission performance in the visible light region, and a blue color tone. .
2. On the other hand, it is confirmed that all the samples according to the comparative examples do not have a blue color tone, and that the solar radiation shielding function and the transmission performance in the visible light region are inferior. In particular, in Comparative Example 3, it is also confirmed that the haze value is 13.9, which is extremely inferior compared to other samples.

実施例と比較例に係る試料の透過プロファイルを示すグラフ図。The graph which shows the permeation | transmission profile of the sample concerning an Example and a comparative example.

Claims (9)

可視光を透過し熱線を遮蔽する日射遮蔽用微粒子において、
格子定数が0.423nm以上の面心立方晶の結晶構造を有し、平均粒径が250nm以下で、かつ、L***表色系における拡散反射光による粉体色がL*=35〜60、a*=−0.1〜10.0、b*=−0.5〜15.0である窒化チタン微粒子で構成されることを特徴とする日射遮蔽用微粒子。
In solar radiation shielding particles that transmit visible light and shield heat rays,
It has a face-centered cubic crystal structure with a lattice constant of 0.423 nm or more, an average particle size of 250 nm or less, and the powder color by diffuse reflection in the L * a * b * color system is L * = 35. A solar shading fine particle comprising 35 to 60, titanium nitride fine particles having a * = − 0.1 to 10.0 and b * = − 0.5 to 15.0.
日射遮蔽用微粒子を分散した希釈液の透過率が、波長400〜600nmに極大値を持ち、波長700〜1100nmに極小値を持つと共に、可視光透過率20%以上80%未満のときに上記極大値と極小値との差が百分率で15ポイント以上であることを特徴とする請求項1記載の日射遮蔽用微粒子。   The above-mentioned maximum is obtained when the transmittance of the diluting liquid in which the solar shielding fine particles are dispersed has a maximum value at a wavelength of 400 to 600 nm, a minimum value at a wavelength of 700 to 1100 nm, and a visible light transmittance of 20% or more and less than 80%. The fine particle for solar radiation shielding according to claim 1, wherein the difference between the value and the minimum value is 15 points or more in percentage. Si、Al、Zr、Tiの群から選択されたいずれかの元素を含む化合物で被覆されていることを特徴とする請求項1または2記載の日射遮蔽用微粒子。   3. The solar radiation shielding fine particles according to claim 1, which are coated with a compound containing any element selected from the group consisting of Si, Al, Zr and Ti. 樹脂成分とこの樹脂成分に分散された日射遮蔽用微粒子を含有する日射遮蔽樹脂材料において、
上記樹脂成分に分散される日射遮蔽用微粒子が請求項1〜3のいずれかに記載の日射遮蔽用微粒子で構成されていることを特徴とする日射遮蔽樹脂材料。
In the solar radiation shielding resin material containing the resin component and the solar radiation shielding fine particles dispersed in the resin component,
The solar radiation shielding resin material, wherein the solar radiation shielding fine particles dispersed in the resin component are composed of the solar radiation shielding fine particles according to any one of claims 1 to 3.
上記樹脂成分が、ポリカーボネート樹脂、アクリル樹脂、フッ素樹脂、ポリエステル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、エチレン−酢酸ビニル共重合体樹脂のいずれかであることを特徴とする請求項4記載の日射遮蔽樹脂材料。   5. The solar radiation shielding according to claim 4, wherein the resin component is one of polycarbonate resin, acrylic resin, fluororesin, polyester resin, polyvinyl acetal resin, polyvinyl butyral resin, and ethylene-vinyl acetate copolymer resin. Resin material. 請求項4または5記載の日射遮蔽樹脂材料を平面若しくは立体形状に成形して成ることを特徴とする日射遮蔽樹脂基材。   A solar radiation shielding resin base material, comprising the solar radiation shielding resin material according to claim 4 or 5 molded into a flat or three-dimensional shape. 請求項4または5記載の日射遮蔽樹脂材料をシート状に成形した日射遮蔽樹脂基材とこの日射遮蔽樹脂基材の両面に貼り合わされた一対の板状ガラスとで構成されるか、請求項4または5記載の日射遮蔽樹脂材料をシート状に成形した日射遮蔽樹脂基材とこの日射遮蔽樹脂基材に貼り合わされた1以上の他の樹脂板とで構成されることを特徴とする日射遮蔽複合基材。   It is comprised by the solar radiation shielding resin base material which shape | molded the solar radiation shielding resin material of Claim 4 or 5 in the sheet form, and a pair of plate-like glass bonded together on both surfaces of this solar radiation shielding resin base material, or Claim 4 Or a solar radiation shielding composite comprising a solar radiation shielding resin base material obtained by molding the solar radiation shielding resin material according to 5 into a sheet and one or more other resin plates bonded to the solar radiation shielding resin base material. Base material. 請求項4または5記載の日射遮蔽樹脂材料を製造するために使用される日射遮蔽用微粒子分散体において、
有機溶剤および/または可塑剤と、請求項1〜3のいずれかに記載の日射遮蔽用微粒子と、この日射遮蔽用微粒子を分散させる高分子系分散剤とを主成分とし、かつ、日射遮蔽用微粒子と高分子系分散剤との混合割合が日射遮蔽用微粒子1重量部に対し高分子系分散剤0.3重量部以上10重量部未満であることを特徴とする日射遮蔽用微粒子分散体。
In the solar shading fine particle dispersion used for producing the solar shading resin material according to claim 4 or 5,
An organic solvent and / or a plasticizer, the solar shading fine particles according to any one of claims 1 to 3, and a polymer-based dispersant for dispersing the solar shading fine particles as main components, and for sun shading A fine particle dispersion for solar radiation shielding, wherein the mixing ratio of the fine particles and the polymer dispersant is 0.3 part by weight or more and less than 10 parts by weight of the polymer dispersant with respect to 1 part by weight of the solar radiation shielding fine particles.
請求項4または5記載の日射遮蔽樹脂材料を製造するために使用される日射遮蔽用微粒子分散体において、
請求項1〜3のいずれかに記載の日射遮蔽用微粒子とこの日射遮蔽用微粒子を分散させる高分子系分散剤を含有し、かつ、日射遮蔽用微粒子と高分子系分散剤との混合割合が日射遮蔽用微粒子1重量部に対し高分子系分散剤0.3重量部以上10重量部未満であると共に、溶液成分を実質的に含まないことを特徴とする日射遮蔽用微粒子分散体。
In the solar shading fine particle dispersion used for producing the solar shading resin material according to claim 4 or 5,
The solar radiation shielding fine particles according to any one of claims 1 to 3 and a polymer dispersing agent that disperses the solar radiation shielding fine particles, and the mixing ratio of the solar radiation shielding fine particles and the polymer dispersing agent is A fine particle dispersion for solar shading, characterized in that the amount is not less than 0.3 part by weight and less than 10 parts by weight of a polymer-based dispersant with respect to 1 part by weight of the solar shading fine particles, and does not substantially contain a solution component.
JP2003422858A 2003-12-19 2003-12-19 Solar shading fine particles, solar shading resin material in which these fine particles are dispersed in a resin component, and solar shading fine particle dispersion used for manufacturing solar shading resin material and solar shading resin material And solar shading composite base material Expired - Lifetime JP4289145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003422858A JP4289145B2 (en) 2003-12-19 2003-12-19 Solar shading fine particles, solar shading resin material in which these fine particles are dispersed in a resin component, and solar shading fine particle dispersion used for manufacturing solar shading resin material and solar shading resin material And solar shading composite base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003422858A JP4289145B2 (en) 2003-12-19 2003-12-19 Solar shading fine particles, solar shading resin material in which these fine particles are dispersed in a resin component, and solar shading fine particle dispersion used for manufacturing solar shading resin material and solar shading resin material And solar shading composite base material

Publications (2)

Publication Number Publication Date
JP2005179121A true JP2005179121A (en) 2005-07-07
JP4289145B2 JP4289145B2 (en) 2009-07-01

Family

ID=34783596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003422858A Expired - Lifetime JP4289145B2 (en) 2003-12-19 2003-12-19 Solar shading fine particles, solar shading resin material in which these fine particles are dispersed in a resin component, and solar shading fine particle dispersion used for manufacturing solar shading resin material and solar shading resin material And solar shading composite base material

Country Status (1)

Country Link
JP (1) JP4289145B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008519903A (en) * 2004-11-12 2008-06-12 イーストマン ケミカル カンパニー Polyester polymer and copolymer compositions comprising titanium nitride particles
JP2008222903A (en) * 2007-03-14 2008-09-25 Sumitomo Metal Mining Co Ltd Light-absorbing resin composition for laser welding, light-absorbing resin molded article, and method for producing light-absorbing resin molded article
WO2008123097A1 (en) 2007-03-20 2008-10-16 Toray Industries, Inc. Black resin composition, resin black matrix, color filter and liquid crystal display
JP2009280418A (en) * 2008-05-20 2009-12-03 National Institute For Materials Science TiN-BASED CRYSTALLINE SUBSTANCE
JP2010030833A (en) * 2008-07-29 2010-02-12 Kyocera Corp Ceramic for decorative piece and decorative piece
WO2010123104A1 (en) * 2009-04-24 2010-10-28 京セラ株式会社 Ceramics for decorative component and decorative component using same
JP2011184522A (en) * 2010-03-05 2011-09-22 Sumitomo Metal Mining Co Ltd Near-infrared shielding polyester resin composition and molded article thereof, and laminate of the molded article
WO2017150093A1 (en) * 2016-02-29 2017-09-08 富士フイルム株式会社 Composition, method for producing composition, cured film, color filter, light-blocking film, solid-state imaging element, and image display device
WO2021181984A1 (en) * 2020-03-12 2021-09-16 富士フイルム株式会社 Optical element, infrared sensor, solid state imaging element, and method for manufacturing optical element
US12066218B2 (en) * 2019-08-28 2024-08-20 The Hong Kong University Of Science And Technology Solution-processed selective solar absorption coatings and methods of preparation thereof

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8039577B2 (en) 2004-11-12 2011-10-18 Grupo Petrotemex, S.A. De C.V. Polyester polymer and copolymer compositions containing titanium nitride particles
JP2008519903A (en) * 2004-11-12 2008-06-12 イーストマン ケミカル カンパニー Polyester polymer and copolymer compositions comprising titanium nitride particles
JP2008222903A (en) * 2007-03-14 2008-09-25 Sumitomo Metal Mining Co Ltd Light-absorbing resin composition for laser welding, light-absorbing resin molded article, and method for producing light-absorbing resin molded article
WO2008123097A1 (en) 2007-03-20 2008-10-16 Toray Industries, Inc. Black resin composition, resin black matrix, color filter and liquid crystal display
JP2008260927A (en) * 2007-03-20 2008-10-30 Toray Ind Inc Black resin composition, resin black matrix, color filter, and liquid crystal display
EP2135900A1 (en) * 2007-03-20 2009-12-23 Toray Industries, Inc. Black resin composition, resin black matrix, color filter and liquid crystal display
KR101485436B1 (en) 2007-03-20 2015-01-23 도레이 카부시키가이샤 Black resin composition, resin black matrix, color filter and liquid crystal display
EP2135900A4 (en) * 2007-03-20 2010-04-28 Toray Industries Black resin composition, resin black matrix, color filter and liquid crystal display
US8329068B2 (en) 2007-03-20 2012-12-11 Toray Industries, Inc. Black resin composition, resin black matrix, color filter and liquid crystal display
JP2009280418A (en) * 2008-05-20 2009-12-03 National Institute For Materials Science TiN-BASED CRYSTALLINE SUBSTANCE
JP2010030833A (en) * 2008-07-29 2010-02-12 Kyocera Corp Ceramic for decorative piece and decorative piece
WO2010123104A1 (en) * 2009-04-24 2010-10-28 京セラ株式会社 Ceramics for decorative component and decorative component using same
JP2011184522A (en) * 2010-03-05 2011-09-22 Sumitomo Metal Mining Co Ltd Near-infrared shielding polyester resin composition and molded article thereof, and laminate of the molded article
WO2017150093A1 (en) * 2016-02-29 2017-09-08 富士フイルム株式会社 Composition, method for producing composition, cured film, color filter, light-blocking film, solid-state imaging element, and image display device
JPWO2017150093A1 (en) * 2016-02-29 2019-05-16 富士フイルム株式会社 Composition, method of producing composition, cured film, color filter, light shielding film, solid-state imaging device, and image display device
US12066218B2 (en) * 2019-08-28 2024-08-20 The Hong Kong University Of Science And Technology Solution-processed selective solar absorption coatings and methods of preparation thereof
WO2021181984A1 (en) * 2020-03-12 2021-09-16 富士フイルム株式会社 Optical element, infrared sensor, solid state imaging element, and method for manufacturing optical element
JPWO2021181984A1 (en) * 2020-03-12 2021-09-16
JP7407268B2 (en) 2020-03-12 2023-12-28 富士フイルム株式会社 Optical elements, infrared sensors, solid-state image sensors, manufacturing methods for optical elements

Also Published As

Publication number Publication date
JP4289145B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
US10795065B2 (en) Solar-radiation-shielding material for vehicle window and window for vehicle
KR101320228B1 (en) Masterbatch with high heat resistance, heat-ray-shielding transparent molded resin, and heat-ray-shielding transparent layered product
JP4349779B2 (en) Heat ray shielding transparent resin molding and heat ray shielding transparent laminate
US7238418B2 (en) Heat radiation shielding component dispersion, process for its preparation and heat radiation shielding film forming coating liquid, heat radiation shielding film and heat radiation shielding resin form which are obtained using the dispersion
EP2360220B1 (en) Infrared blocking particle, method for producing the same, infrared blocking particle dispersion using the same, and infrared blocking base
JP4998781B2 (en) UV / NIR light shielding dispersion for windows and UV / NIR light shielding for windows
JP2008044609A (en) Sunshine screen for vehicle window and vehicle window
JP5050470B2 (en) Solar radiation shielding dispersion, solar radiation shielding body, and manufacturing method thereof
JP2008044609A5 (en)
JP2022041986A (en) Manufacturing method of infrared absorbing particle
JP4289145B2 (en) Solar shading fine particles, solar shading resin material in which these fine particles are dispersed in a resin component, and solar shading fine particle dispersion used for manufacturing solar shading resin material and solar shading resin material And solar shading composite base material
JP2011001551A (en) Highly heat-resistant masterbatch, heat ray-shielding transparent resin molded body, and heat ray-shielding transparent laminate
JP2012082326A (en) Master batch containing high heat-resistant heat ray shielding component, production method of the master batch, high heat-resistant heat ray shielding transparent resin molded article, and high heat-resistant heat ray shielding transparent laminate
JP5898397B2 (en) Near-infrared shielding polyester resin composition, near-infrared shielding polyester resin laminate, molded article and method for producing the same
JP5257381B2 (en) Near-infrared shielding polyester resin composition, molded article thereof, and laminate thereof
JP2018077301A (en) Near-infrared absorptive optical member and image display device using the same
JP5614586B2 (en) Heat ray shielding polycarbonate sheet, heat ray shielding polycarbonate sheet laminate, and method for producing heat ray shielding polycarbonate sheet
JP2005232399A (en) Sunlight-screening fine particle, sunlight-screening material and sunlight-screening composite material containing the same, and dispersion used for producing sunlight-screening material or sunlight-screening composite material
JP2005179521A (en) Insolation-screening resin material and particulate dispersion for insolation screening used for production of insolation-screening resin material, and insolation-screening resin base material and insolation-screening composite material obtained by using insolation-screening resin material
JP4487787B2 (en) Solar-shielding boride fine particles, solar-shielding-body-forming dispersion liquid and solar-light shielding body using the boride-fine particles, method for producing solar-shielding boride fine particles, and method for producing solar-shielding body-forming dispersion liquid
JP2012082109A (en) Method for producing tungsten oxide fine particle for forming highly heat-resistant heat ray-shielding material, tungsten oxide fine particle for forming highly heat-resistant heat ray-shielding material and dispersion for forming highly heat-resistant heat ray-shielding material, and highly heat-resistant heat ray-shielding material
WO2022209712A1 (en) Infrared absorbing particles, infrared-absorbing particle dispersion liquid, infrared-absorbing particle dispersion material, infrared-absorbing laminate transparent substrate, and infrared-absorbing transparent substrate
WO2024106139A1 (en) Infrared-absorbing material fine particle dispersion liquid and infrared-absorbing material fine particle dispersion
WO2024106140A1 (en) Infrared radiation-absorbing material fine particle dispersion liquid and infrared radiation-absorbing material fine particle dispersion
CN117043299A (en) Infrared absorbing particles, infrared absorbing particle dispersion, infrared absorbing interlayer transparent substrate, and infrared absorbing transparent substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R150 Certificate of patent or registration of utility model

Ref document number: 4289145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

EXPY Cancellation because of completion of term