JP2005179521A - Insolation-screening resin material and particulate dispersion for insolation screening used for production of insolation-screening resin material, and insolation-screening resin base material and insolation-screening composite material obtained by using insolation-screening resin material - Google Patents

Insolation-screening resin material and particulate dispersion for insolation screening used for production of insolation-screening resin material, and insolation-screening resin base material and insolation-screening composite material obtained by using insolation-screening resin material Download PDF

Info

Publication number
JP2005179521A
JP2005179521A JP2003422859A JP2003422859A JP2005179521A JP 2005179521 A JP2005179521 A JP 2005179521A JP 2003422859 A JP2003422859 A JP 2003422859A JP 2003422859 A JP2003422859 A JP 2003422859A JP 2005179521 A JP2005179521 A JP 2005179521A
Authority
JP
Japan
Prior art keywords
resin
insolation
solar radiation
screening
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003422859A
Other languages
Japanese (ja)
Inventor
Hiroko Kuno
裕子 久野
Takeshi Naganami
武 長南
Kenji Adachi
健治 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003422859A priority Critical patent/JP2005179521A/en
Publication of JP2005179521A publication Critical patent/JP2005179521A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/249Glazing, e.g. vacuum glazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/22Glazing, e.g. vaccum glazing

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insolation-screening resin material with high insolation-screening function, high transmission performance of a visible light region and expressing blue color tone, and a particulate dispersion for insolation screening used for producing the insolation-screening resin material, and an insolation-screening resin base material and an insolation-screening composite material both obtained by using the insolation-screening resin material. <P>SOLUTION: The insolation-screening resin material is characterized in that the particulate for insolation screening dispersed in a resin component is constituted of rhenium trioxide having ≤200 nm average particle diameter, and the powder color by diffuse reflection light in L<SP>*</SP>a<SP>*</SP>b<SP>*</SP>color system expressed as L<SP>*</SP>=20-50; a<SP>*</SP>=-0.1-10.0; b<SP>*</SP>=-5.0-5.0. The insolation-screening resin base material is obtained by molding the insolation-screening resin material into a planar or cubic shape. The insolation-screening composite material is obtained by laminating the insolation-screening resin base material molded into a planar shape with a glass plate, or the like. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、車両、ビル、一般住宅の窓材、および、アーケード、ドームの屋根材等に適用される日射遮蔽樹脂基材や日射遮蔽複合基材等に係り、特に、日射遮蔽機能が高くて可視光領域の高い透過性能を有しかつ青色の色調を呈する日射遮蔽樹脂材料とこの日射遮蔽樹脂材料の製造に用いられる日射遮蔽用微粒子分散体、および、日射遮蔽樹脂材料を用いて得られる日射遮蔽樹脂基材並びに日射遮蔽複合基材に関するものである。   The present invention relates to a solar radiation shielding resin base material, a solar radiation shielding composite base material, and the like applied to windows for vehicles, buildings, ordinary houses, and roof materials for arcades, domes, and the like. A solar shading resin material having high transmission performance in the visible light region and exhibiting a blue color tone, a solar shading fine particle dispersion used for manufacturing the solar shading resin material, and solar radiation obtained by using the solar shading resin material The present invention relates to a shielding resin substrate and a solar radiation shielding composite substrate.

従来から各種建物の屋根や車両の窓等のいわゆる開口部は、太陽光線を取り入れるために透明なガラス板や樹脂板で構成されている。しかし、太陽光線には可視光線の他に紫外線や赤外線が含まれ、特に、赤外線のうち800〜2500nmの近赤外線は熱線と呼ばれ、開口部から進入することにより室内の温度を上昇させる原因となる。   Conventionally, so-called openings such as roofs of various buildings and windows of vehicles are made of a transparent glass plate or resin plate for taking in sunlight. However, the sun rays include ultraviolet rays and infrared rays in addition to visible rays. In particular, near infrared rays of 800 to 2500 nm out of infrared rays are called heat rays, and cause the indoor temperature to rise by entering from the opening. Become.

そこで近年では各種建物や車両の窓材等として、可視光線を十分に取り入れながら熱線を遮蔽し明るさを維持しつつ同時に室内の温度上昇を抑制する熱線遮蔽材料が検討され、そのための各種手法が提案されている。また、意匠性の観点から青色の色調を呈すると共に、日射遮蔽機能が高く、可視光領域の透過性能を有し、更に、高い耐候性を併せ持つ熱線遮蔽材料の要求が高まっている。   Therefore, in recent years, heat ray shielding materials have been studied as window materials for various buildings and vehicles, etc., which sufficiently absorb visible light and shield the heat rays to maintain the brightness while simultaneously suppressing the temperature rise in the room. Proposed. In addition, from the viewpoint of design properties, there is an increasing demand for a heat ray shielding material that exhibits a blue color tone, has a high solar shading function, has a visible light region transmission performance, and also has high weather resistance.

例えば、特許文献1や特許文献2には、アクリル樹脂やポリカーボネート樹脂等の透明樹脂に、熱線反射粒子(日射遮蔽用微粒子)として酸化チタンで被覆したマイカを練り込んで形成した熱線遮蔽板が提案されている。しかし、この手法においては熱線反射能を高めるために熱線反射粒子を多量に添加する必要があり、そのため熱線反射粒子の添加量を増大すると可視光線透過率が低下してしまうという欠点があった。反対に熱線反射粒子の添加量を少なくすると、熱線遮蔽性と可視光線透過性を同時に満足させることは困難であった。更に、熱線反射粒子を多量に配合すると、基材である透明樹脂の物性、特に耐衝撃性や靭性が低下するという強度面の欠点も有していた。   For example, Patent Document 1 and Patent Document 2 propose a heat ray shielding plate formed by kneading mica coated with titanium oxide as heat ray reflective particles (sunlight shielding fine particles) in a transparent resin such as an acrylic resin or a polycarbonate resin. Has been. However, in this method, it is necessary to add a large amount of heat ray reflective particles in order to improve the heat ray reflectivity. For this reason, when the addition amount of the heat ray reflective particles is increased, the visible light transmittance is lowered. On the contrary, if the addition amount of the heat ray reflective particles is reduced, it is difficult to satisfy both the heat ray shielding property and the visible light transmittance property at the same time. Further, when a large amount of heat ray reflective particles are blended, there is a drawback in strength that the physical properties of the transparent resin as a base material, particularly impact resistance and toughness, are lowered.

そこで、特許文献3には、TiN等の窒化物と金属酸化物等、各種金属や金属酸化物材料をガラスにスパッタリングした熱線反射ガラスが提案されている。しかし、この手法では大掛かりな装置や真空設備を必要とし、生産性、大面積化、生産コスト等に問題があると共に、この熱線反射ガラスにおいては近赤外線以外に可視光領域の光も同時に反射もしくは吸収する性質があり、鏡のようなぎらぎらした外観を与えて美観を損ねるという欠点もあった。更に、この方法では膜の導電性が高くなるものが多く、膜の導電性が高いと携帯電話やTV、ラジオ等の電波を反射して電波障害を引き起こす等の問題があった。   Therefore, Patent Document 3 proposes a heat ray reflective glass in which various metals and metal oxide materials such as nitrides such as TiN and metal oxides are sputtered onto the glass. However, this method requires large-scale equipment and vacuum equipment, and there are problems in productivity, large area, production cost, etc., and in this heat ray reflective glass, light in the visible light region other than near infrared rays is reflected or reflected simultaneously. It has the property of absorbing and has the disadvantage of giving a glimmering appearance like a mirror and detracting from aesthetics. Furthermore, this method often has high film conductivity, and if the film conductivity is high, there is a problem that radio waves from mobile phones, TVs, radios, etc. are reflected to cause radio interference.

他方、熱線反射特性を示す成分として三酸化レニウムを適用し、特許文献3における生産性、大面積化、生産コスト等の弊害を解消した手法も開発されている。すなわち、特許文献4には、レニウム化合物をアルコール、ケトン、アミン、および、水のうちの1種もしくは2種以上に溶解させた熱線反射膜用塗布液を基材に塗布し、次いで加熱処理して得られる三酸化レニウムを含む熱線反射膜が記載されている。但し、この熱線反射膜は、熱線反射特性としては優れているものの三酸化レニウムが大気中での安定性に劣ることから、この熱線反射膜を大気中に長時間放置した場合、熱線反射膜の透過率が徐々に上昇してしまう問題点を有していた。   On the other hand, a technique has been developed in which rhenium trioxide is applied as a component exhibiting heat ray reflection characteristics to eliminate adverse effects such as productivity, area increase, and production cost in Patent Document 3. That is, in Patent Document 4, a coating solution for a heat ray reflective film in which a rhenium compound is dissolved in one or more of alcohol, ketone, amine, and water is applied to a substrate, and then heat-treated. A heat ray reflective film containing rhenium trioxide is obtained. However, although this heat ray reflective film is excellent in heat ray reflection characteristics, rhenium trioxide is inferior in stability in the atmosphere, so when this heat ray reflective film is left in the atmosphere for a long time, the heat ray reflective film There was a problem that the transmittance gradually increased.

また、意匠性の観点から青色の色調を呈する材料として銅フタロシアニン系青色有機顔料やジオキサジン系青紫色有機顔料等の熱線遮蔽材料への応用も試みられているが、これ等有機顔料は日射遮蔽機能と可視光透過性能とを併せ持つ材料ではなく、しかも有機材料であるため紫外線等による退色等、耐候性に問題を有していた。   In addition, from the viewpoint of design, the application to heat ray shielding materials such as copper phthalocyanine-based blue organic pigments and dioxazine-based blue-violet organic pigments as materials exhibiting a blue color tone has been attempted. In addition, it is not a material having both visible light transmission performance and an organic material, so it has a problem in weather resistance such as fading due to ultraviolet rays.

このため、意匠性の観点から青色の色調を呈すると共に、日射遮蔽機能が高く、しかも可視光領域の透過性能を有する日射遮蔽樹脂基材や日射遮蔽複合基材等は実際には得られていないのが現状である。
特開平5−78544号公報 特開平2−173060号公報 特開平6−345489号公報 特開平9−157554号公報
For this reason, a solar shading resin base material or a solar shading composite base material having a blue color tone from the viewpoint of design properties, a high solar shading function, and having a visible light region transmission performance has not been actually obtained. is the current situation.
JP-A-5-78544 JP-A-2-173060 JP-A-6-345489 JP-A-9-157554

本発明はこのような問題点に着目してなされたもので、その課題とするところは、日射遮蔽機能が高くて可視光領域の高い透過性能を有しかつ青色の色調を呈する日射遮蔽樹脂材料とこの日射遮蔽樹脂材料の製造に用いられる日射遮蔽用微粒子分散体、および、日射遮蔽樹脂材料を用いて得られる日射遮蔽樹脂基材並びに日射遮蔽複合基材を提供することにある。   The present invention has been made paying attention to such problems, and the problem is that the solar radiation shielding resin material has a high solar radiation shielding function, a high transmission performance in the visible light region, and exhibits a blue color tone. Another object of the present invention is to provide a solar shading fine particle dispersion used in the production of the solar shading resin material, a solar shading resin base material and a solar shading composite base material obtained by using the solar shading resin material.

そこで、日射遮蔽機能が高くて可視光領域の高い透過性能を有しかつ青色の色調を呈する日射遮蔽材料を得るため、本発明者等は化合物導電体中で最も高い電気伝導度を持つ三酸化レニウムに着目し、種々検討を行った。   Accordingly, in order to obtain a solar radiation shielding material having a high solar radiation shielding function, a high transmission performance in the visible light region, and exhibiting a blue color tone, the present inventors have used trioxide having the highest electrical conductivity among compound conductors. Various studies were conducted focusing on rhenium.

その結果、三酸化レニウムを微細化して得た特定の条件を具備する三酸化レニウム微粒子を透明樹脂成分中に均一に分散させた場合、可視光領域に透過率の極大を持ち、かつ、可視光領域に近い近赤外域に強いプラズマ反射が発現されて透過率の極小を持つようになり、更に、この透過色は美しい青色の色調を呈すると共に、上記三酸化レニウム微粒子は樹脂成分中に分散されて外部に露出し難いことから高い耐候性も付与できるという事実を発見するに至った。   As a result, when rhenium trioxide fine particles having specific conditions obtained by refining rhenium trioxide are uniformly dispersed in the transparent resin component, the transmittance has a maximum in the visible light region, and visible light A strong plasma reflection appears in the near-infrared region close to the region to have a minimum transmittance, and this transmitted color exhibits a beautiful blue color tone, and the rhenium trioxide fine particles are dispersed in the resin component. The fact that it is difficult to expose to the outside, it can be found that it can also provide high weather resistance.

また、特定の条件を具備した上記三酸化レニウム微粒子の表面をSi、Al、Zr,Tiの群から選択されたいずれかの元素を含む化合物で被覆処理することにより、より高い耐侯性を具備させることも可能となることを見出すに至った。本発明はこのような技術的発見に基づき完成されている。   Further, the surface of the rhenium trioxide fine particles having specific conditions is coated with a compound containing any element selected from the group of Si, Al, Zr, and Ti, thereby providing higher weather resistance. I came to find that it would be possible. The present invention has been completed based on such technical findings.

すなわち、請求項1に係る発明は、
樹脂成分とこの樹脂成分に分散された日射遮蔽用微粒子とを含有する日射遮蔽樹脂材料を前提とし、
上記樹脂成分に分散される日射遮蔽用微粒子が、L***表色系における拡散反射光による粉体色がL*=20〜50、a*=−0.1〜10.0、b*=−5.0〜5.0、その平均粒径が200nm以下である三酸化レニウム微粒子により構成されることを特徴とする。
That is, the invention according to claim 1
Assuming a solar shading resin material containing a resin component and solar shading fine particles dispersed in the resin component,
The sunscreening fine particles dispersed in the resin component have a powder color of L * = 20 to 50, a * = − 0.1 to 10.0 by diffuse reflected light in the L * a * b * color system. b * = − 5.0 to 5.0, composed of rhenium trioxide fine particles having an average particle diameter of 200 nm or less.

また、請求項2に係る発明は、
請求項1記載の発明に係る日射遮蔽樹脂材料を前提とし、
上記三酸化レニウム微粒子を分散した希釈液の透過率が、波長400〜600nmに極大値を持ち、波長700〜1100nmに極小値を持つと共に、可視光透過率20%以上80%未満のときに上記極大値と極小値との差が百分率で30ポイント以上であることを特徴とし、
請求項3に係る発明は、
請求項1または2記載の発明に係る日射遮蔽樹脂材料を前提とし、
Si、Al、Zr、Tiの群から選択されたいずれかの元素を含む化合物で上記三酸化レニウム微粒子が被覆されていることを特徴とし、
請求項4に係る発明は、
請求項1〜3のいずれかに記載の発明に係る日射遮蔽樹脂材料を前提とし、
上記樹脂成分が、ポリカーボネート樹脂、アクリル樹脂、フッ素樹脂、ポリエステル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、エチレン−酢酸ビニル共重合体樹脂のいずれかであることを特徴とするものである。
The invention according to claim 2
Based on the solar radiation shielding resin material according to the invention of claim 1,
When the transmittance of the diluted liquid in which the rhenium trioxide fine particles are dispersed has a maximum value at a wavelength of 400 to 600 nm, a minimum value at a wavelength of 700 to 1100 nm, and a visible light transmittance of 20% or more and less than 80%. The difference between the maximum value and the minimum value is 30 points or more in percentage,
The invention according to claim 3
Based on the solar radiation shielding resin material according to the invention of claim 1 or 2,
The rhenium trioxide fine particles are coated with a compound containing any element selected from the group of Si, Al, Zr, and Ti,
The invention according to claim 4
Based on the solar radiation shielding resin material according to any one of claims 1 to 3,
The resin component is any one of a polycarbonate resin, an acrylic resin, a fluororesin, a polyester resin, a polyvinyl acetal resin, a polyvinyl butyral resin, and an ethylene-vinyl acetate copolymer resin.

次に、請求項5に係る発明は、
日射遮蔽樹脂基材を前提とし、
請求項1〜4のいずれかに記載の日射遮蔽樹脂材料を平面若しくは立体形状に成形して成ることを特徴とし、
請求項6に係る発明は、
日射遮蔽複合基材を前提とし、
請求項1〜4のいずれかに記載の日射遮蔽樹脂材料をシート状に成形した日射遮蔽樹脂基材とこの日射遮蔽樹脂基材の両面に貼り合わされた一対の板状ガラスとで構成されるか、請求項1〜4のいずれかに記載の日射遮蔽樹脂材料をシート状に成形した日射遮蔽樹脂基材とこの日射遮蔽樹脂基材に貼り合わされた1以上の他の樹脂板とで構成されることを特徴とするものである。
Next, the invention according to claim 5 is:
Assuming a sunscreen resin base material,
The solar radiation shielding resin material according to any one of claims 1 to 4 is formed into a flat or three-dimensional shape,
The invention according to claim 6
Assuming a solar-shielding composite substrate,
Whether the solar radiation shielding resin material according to any one of claims 1 to 4 is composed of a solar radiation shielding resin base material formed into a sheet shape and a pair of plate-like glasses bonded to both surfaces of the solar radiation shielding resin base material. The solar radiation shielding resin material according to claim 1 is formed into a sheet shape, and one or more other resin plates bonded to the solar radiation shielding resin substrate. It is characterized by this.

また、請求項7に係る発明は、
請求項1〜4のいずれかに記載の日射遮蔽樹脂材料を製造するために使用される日射遮蔽用微粒子分散体を前提とし、
有機溶剤および/または可塑剤と、請求項1〜3のいずれかに記載の三酸化レニウム微粒子より成る日射遮蔽用微粒子と、この日射遮蔽用微粒子を分散させる高分子系分散剤とを主成分とし、かつ、日射遮蔽用微粒子と高分子系分散剤との混合割合が日射遮蔽用微粒子1重量部に対し高分子系分散剤0.3重量部以上10重量部未満であることを特徴とし、
請求項8に係る発明は、
請求項1〜4のいずれかに記載の日射遮蔽樹脂材料を製造するために使用される日射遮蔽用微粒子分散体を前提とし、
請求項1〜3のいずれかに記載の三酸化レニウム微粒子より成る日射遮蔽用微粒子とこの日射遮蔽用微粒子を分散させる高分子系分散剤とを含有し、かつ、日射遮蔽用微粒子と高分子系分散剤との混合割合が日射遮蔽用微粒子1重量部に対し高分子系分散剤0.3重量部以上10重量部未満であると共に、溶液成分を実質的に含まないことを特徴とするものである。
The invention according to claim 7
Premise of the solar shading fine particle dispersion used for producing the solar shading resin material according to any one of claims 1 to 4,
The main component is an organic solvent and / or a plasticizer, solar shading fine particles comprising the rhenium trioxide fine particles according to any one of claims 1 to 3, and a polymer dispersant that disperses the solar shading fine particles. And, the mixing ratio of the solar shading fine particles and the polymer dispersing agent is 0.3 parts by weight or more and less than 10 parts by weight of the polymer dispersing agent with respect to 1 part by weight of the solar shading fine particles,
The invention according to claim 8 provides:
Premise of the solar shading fine particle dispersion used for producing the solar shading resin material according to any one of claims 1 to 4,
A solar radiation shielding fine particle comprising the rhenium trioxide fine particles according to any one of claims 1 to 3 and a polymer dispersant for dispersing the solar radiation shielding fine particle, and the solar radiation shielding fine particle and the polymer system. The mixing ratio with the dispersant is not less than 0.3 parts by weight and less than 10 parts by weight of the polymer dispersant with respect to 1 part by weight of the solar shading fine particles, and is substantially free of solution components. is there.

本発明に係る日射遮蔽樹脂材料によれば、樹脂成分に分散される日射遮蔽用微粒子が、L***表色系における拡散反射光による粉体色がL*=20〜50、a*=−0.1〜10.0、b*=−5.0〜5.0、その平均粒径が200nm以下である三酸化レニウム微粒子により構成されている。 According to the solar shading resin material according to the present invention, the solar shading fine particles dispersed in the resin component have a powder color of L * = 20 to 50 by diffuse reflection in the L * a * b * color system. * = − 0.1 to 10.0, b * = − 5.0 to 5.0, and composed of rhenium trioxide fine particles having an average particle diameter of 200 nm or less.

従って、この日射遮蔽樹脂材料の透過率は、波長400〜600nmに極大値を持ち、波長700〜1100nmに極小値を持ち、可視光透過率20%以上80%未満のときに上記極大値と極小値との差が百分率で30ポイント以上となり、かつ、青色の色調を呈するようになるため、日射遮蔽機能が高く可視光領域の高い透過性能を有しかつ青色の色調を備えた窓材等の日射遮蔽樹脂基材若しくは日射遮蔽複合基材を得ることが可能となる。   Therefore, the transmittance of the solar shading resin material has a maximum value at a wavelength of 400 to 600 nm, a minimum value at a wavelength of 700 to 1100 nm, and a maximum value and a minimum value when the visible light transmittance is 20% or more and less than 80%. Since the difference from the value is 30 points or more in percentage, and the blue color tone is exhibited, the window material having a high solar radiation shielding function and a high transmission performance in the visible light region and having a blue color tone, etc. It becomes possible to obtain a solar radiation shielding resin base material or a solar radiation shielding composite base material.

更に、本発明に係る日射遮蔽用微粒子分散体によれば、三酸化レニウム微粒子が樹脂成分中に分散された日射遮蔽樹脂材料を簡便かつ低コストで製造することが可能となる。   Furthermore, according to the solar radiation shielding fine particle dispersion according to the present invention, it is possible to easily and inexpensively produce a solar radiation shielding resin material in which rhenium trioxide fine particles are dispersed in a resin component.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

まず、本発明に係る日射遮蔽樹脂材料は、日射遮蔽用微粒子として特定の条件を具備する三酸化レニウム微粒子が、ポリカーボネート、アクリル樹脂、ポリビニルブチラール樹脂等の透明な樹脂成分中に分散されて成るもので、用途に応じて板状、フィルム状、球面状等任意の平面若しくは立体形状に成形して日射遮蔽樹脂基材とすることができる。   First, the solar shading resin material according to the present invention comprises rhenium trioxide fine particles having specific conditions as solar shading fine particles dispersed in a transparent resin component such as polycarbonate, acrylic resin, or polyvinyl butyral resin. Thus, it can be formed into an arbitrary flat or three-dimensional shape such as a plate shape, a film shape, a spherical shape, or the like, according to the application, to obtain a solar radiation shielding resin base material.

以下、具体的に説明する。
1.三酸化レニウム
日射遮蔽用微粒子として使用される三酸化レニウムは、平均粒径が200nm以下で、国際照明委員会(CIE)で規定されたL***表色系(JIS Z 8729)における拡散反射光による粉体色がL*=20〜50、a*=−0.1〜10.0、b*=−5.0〜5.0である微粒子で、可視光透明性、日射遮蔽性、および、鮮やかな青色の色調を呈する特性を併せ持っている。
This will be specifically described below.
1. Rhenium trioxide The rhenium trioxide used as the solar shading fine particles has an average particle size of 200 nm or less and is in the L * a * b * color system (JIS Z 8729) defined by the International Lighting Commission (CIE). Fine particles whose powder color by diffuse reflected light is L * = 20-50, a * = − 0.1 to 10.0, b * = − 5.0 to 5.0, visible light transparency, solar shading And has a characteristic of vivid blue tone.

この三酸化レニウム微粒子の粒径を200nm以下として可視光波長に比べて十分小さくし、透明媒体中に均一に分散させた状態においては可視光透過性が生じる。しかし、赤外光遮蔽性は十分強く保持できる。この理由は詳細には解明されていないが、微粒子中の自由電子の量が多く、微粒子内部および表面の自由電子プラズモンによるプラズマ周波数がちょうど可視〜近赤外の付近にあるため、この波長領域の熱線が選択的に反射・吸収されると考えられる。つまり、本発明で適用する三酸化レニウム微粒子を十分に細かく粉砕し、これを樹脂成分中に均一に分散させた日射遮蔽樹脂材料の透過プロファイルは、透過率が波長400〜600nmに極大値を持ち、かつ、波長700〜1100nmに極小値を持つと共に、透過率の上記極大値と極小値の差が可視光透過率20%以上80%未満のときに百分率で30ポイント以上となることが確認されている。可視光領域が380〜780nmであり、視感度が550nm付近をピークとする釣鐘型であることを考慮すると、この様な透過率プロファイルを持つことによって、可視光を有効に透過し、それ以外の熱線を有効に反射・吸収する光学特性を有することが理解できる。   In the state where the particle diameter of the rhenium trioxide fine particles is 200 nm or less and is sufficiently smaller than the visible light wavelength and is uniformly dispersed in the transparent medium, visible light transparency occurs. However, the infrared light shielding property can be kept sufficiently strong. The reason for this has not been elucidated in detail, but the amount of free electrons in the fine particles is large, and the plasma frequency of free electron plasmons inside and on the surface of the particles is just in the vicinity of the visible to near-infrared region. It is thought that heat rays are selectively reflected and absorbed. In other words, the transmittance profile of the solar shading resin material in which the rhenium trioxide fine particles applied in the present invention are sufficiently finely pulverized and uniformly dispersed in the resin component has a maximum transmittance at a wavelength of 400 to 600 nm. In addition, it has a minimum value at a wavelength of 700 to 1100 nm, and when the difference between the maximum value and the minimum value of the transmittance is 20% or more and less than 80%, the percentage is 30 points or more. ing. Considering that the visible light region is 380 to 780 nm and the visibility is a bell-shaped peak having a peak at around 550 nm, having such a transmittance profile effectively transmits visible light, It can be understood that it has an optical characteristic of effectively reflecting and absorbing heat rays.

また、本発明に係る三酸化レニウム微粒子は、その平均粒径が200nm以下であることを要する。平均粒径が200nmを超えると、上述した特有の透過率プロファイル、すなわち、透過率が波長400〜600nmに極大値を持ち、かつ、波長700〜1100nmに極小値を持つと共に、透過率の上記極大値と極小値の差が可視光透過率20%以上80%未満のときに百分率で30ポイント以上となるようなプロファイルが得られず、単調に透過率が減少した黒色〜灰色の透過色になる傾向がある。また、平均粒径が200nmを超えた場合、樹脂成分中に分散したときに微粒子同士の凝集傾向が強くなり、微粒子の沈降の原因となる。また、200nmを越える微粒子もしくはそれらの凝集した粗大粒子は光散乱源となって曇り(ヘイズ)を生じたり、可視光透過率が減少したりする原因となる。従って、三酸化レニウム微粒子の平均粒径は200nm以下であることを要する。この場合、微粒子原料段階における平均粒径が大きくても、粉砕工程を導入し最終的に200nm以下にできれば、日射遮蔽用微粒子として使用することに特に問題はない。   The rhenium trioxide fine particles according to the present invention are required to have an average particle size of 200 nm or less. When the average particle diameter exceeds 200 nm, the above-described specific transmittance profile, that is, the transmittance has a maximum value at a wavelength of 400 to 600 nm and a minimum value at a wavelength of 700 to 1100 nm, and the above-mentioned maximum of transmittance. When the difference between the value and the minimum value is 20% or more and less than 80% of the visible light transmittance, a profile with a percentage of 30 points or more cannot be obtained, resulting in a black to gray transmission color with a monotonously reduced transmittance. Tend. Further, when the average particle diameter exceeds 200 nm, the tendency of aggregation between the fine particles becomes strong when dispersed in the resin component, which causes sedimentation of the fine particles. Further, fine particles exceeding 200 nm or aggregated coarse particles serve as a light scattering source and cause clouding (haze) or decrease in visible light transmittance. Therefore, the average particle diameter of the rhenium trioxide fine particles is required to be 200 nm or less. In this case, even if the average particle size in the fine particle raw material stage is large, there is no particular problem in using it as solar shielding fine particles if a pulverization step can be introduced to finally reduce it to 200 nm or less.

また、L***表色系における拡散反射光による粉体色がL*=20〜50、a*=−0.1〜10.0、b*=−5.0〜5.0の範囲を外れた三酸化レニウム微粒子では、その原因と考えられる原料レニウム化合物の状態、三酸化レニウムの製造条件等の理由から所望とする日射遮蔽特性が得られず、また、分散を進めても鮮やかな青色が発現しないことも本発明者等の実験により確認されている。三酸化レニウム微粒子は、その表面が酸化していないことが好ましいが、通常は僅かに酸化していることが多く、また微粒子の分散工程で表面の酸化が起こることはある程度避けられない。しかし、その場合でも上述した粉体色の条件を満たしていれば日射遮蔽効果を発現する有効性に変わりはない。
2.三酸化レニウム微粒子の製造方法
三酸化レニウム微粒子は、金属レニウムを酸素雰囲気下で加熱して得る方法、七酸化二レニウムをCOやジオキサンで還元して得る方法、また、過レニウム酸をアルコールで還元して得る方法等、さまざまな方法により製造可能である。どのような方法で調製した三酸化レニウムも使用可能であるが、調製時の加熱温度が400℃以上の場合、一旦生成したReO3が過酸化傾向となり、目的とした日射遮蔽特性が得られない場合がある。また、生成したReO3の一次粒子径が粗大になり長時間の微細化工程が必要となる場合がある。反対に、加熱温度が120℃以下では三酸化レニウムの他に未反応の過レニウム酸やアルコールが残留し、これ等が日射遮蔽樹脂基材自体の劣化を引き起こす場合がある。
Also, the powder color by diffuse reflection in the L * a * b * color system is L * = 20 to 50, a * = − 0.1 to 10.0, b * = − 5.0 to 5.0. In the case of rhenium trioxide fine particles outside the above range, the desired solar shading characteristics cannot be obtained due to the state of the raw material rhenium compound, the production conditions of rhenium trioxide, etc. It has also been confirmed by experiments by the present inventors that a bright blue color does not appear. The surface of the rhenium trioxide fine particles is preferably not oxidized, but usually it is often slightly oxidized, and surface oxidation is inevitable to some extent during the fine particle dispersion step. However, even in that case, if the above-mentioned powder color condition is satisfied, the effectiveness of exhibiting the solar radiation shielding effect remains unchanged.
2. Production method of rhenium trioxide fine particles Rhenium trioxide fine particles are obtained by heating metallic rhenium in an oxygen atmosphere, obtaining dirhenium heptoxide by CO or dioxane, or reducing perrhenic acid with alcohol. Thus, it can be manufactured by various methods such as a method to be obtained. Although rhenium trioxide prepared by any method can be used, when the heating temperature at the time of preparation is 400 ° C. or higher, ReO 3 once generated tends to peroxidize, and the desired solar shading characteristics cannot be obtained. There is a case. In addition, the primary particle size of the produced ReO 3 may become coarse, requiring a long time refinement process. On the contrary, when the heating temperature is 120 ° C. or lower, unreacted perrhenic acid or alcohol remains in addition to rhenium trioxide, which may cause deterioration of the solar radiation shielding resin substrate itself.

次に、三酸化レニウム微粒子の表面処理は、微粒子の耐侯性を向上させることができ、また簡便かつ均一に樹脂成分中に導入できるため好ましい。三酸化レニウムは空気中での安定性に欠け、空気中の湿気と反応して徐々にHReO4に変化する傾向を持つ。本発明に係る日射遮蔽樹脂材料では、三酸化レニウム微粒子を樹脂成分中に均一に分散して使用するため、使用時に三酸化レニウム微粒子と空気が直接触れることが起こり難く(すなわち、三酸化レニウム微粒子が表面に露出し難く)、実用上三酸化レニウムの分解反応が殆ど起こらないことを本発明者等は確認している。しかし、三酸化レニウム微粒子の表面をSi、Al、Zr、Tiの群から選択されたいずれかの元素を含む化合物により被覆処理することにより、更に耐侯性を向上させることができる。表面処理方法は特に問わないが、例えば、微粒子を粉砕する工程において、一般的な有機溶剤と共にSi、Al、Zr、Tiをベースにしたアルコキシド、カップリング剤、界面活性剤等を用いて通常の粉砕処理をすることにより、また必要に応じて加水分解処理、重縮合処理、焼結処理等を行なうことにより、微粒子表面にSi、Al、Zr、Tiの元素を含む化合物を均一にコートすることができる。また、粉砕工程における方法も特に問わないが、ボールミル、サンドミル、超音波分散、ビーズミル等の方法を用いることができる。このとき必要に応じて各種分散剤を添加することも可能である。これらの表面被覆処理を行なうことにより、三酸化レニウム微粒子の表面状態がより安定になり、未処理の三酸化レニウム微粒子と較べて耐侯性が向上する。
3.日射遮蔽用微粒子分散体
このような方法で調製された上述の条件を具備する三酸化レニウム微粒子、あるいは、更に表面処理が施された三酸化レニウム微粒子を樹脂成分中に分散させて以下に述べる日射遮蔽樹脂材料は構成される。この日射遮蔽樹脂材料を製造する際、日射遮蔽用微粒子分散体が適用される。すなわち、有機溶剤および/または可塑剤と、上述の条件を具備する三酸化レニウム微粒子、あるいは更に表面被覆処理が施された三酸化レニウム微粒子と、高分子系分散剤とを主成分とする液状の日射遮蔽用微粒子分散体、または、有機溶剤、可塑剤等の溶液成分を公知の方法で加熱除去して得られた粉末状の日射遮蔽用微粒子分散体を用いて三酸化レニウム微粒子が樹脂成分中に分散された日射遮蔽樹脂材料を製造することができる。尚、有機溶剤、可塑剤等の溶液成分を公知の方法で加熱除去して得られた粉末状の日射遮蔽用微粒子分散体は、有機溶剤、可塑剤、樹脂中へ導入するときに特別な装置や処理を必要とせず、簡単な攪拌だけで均一に微粒子を分散することができる。このとき、高分子系分散剤が日射遮蔽用微粒子1重量部に対し0.3重量部未満では、有機溶剤、可塑剤、樹脂中へ導入するときに凝集等が生じる場合があり、日射遮蔽樹脂材料にヘイズが生じる原因となる。また、10重量部以上であると日射遮蔽樹脂材料中の高分子系分散剤が過剰となり、日射遮蔽樹脂材料の耐侯性に悪影響を与える場合がある。従って、日射遮蔽用微粒子と高分子系分散剤との混合割合は、日射遮蔽用微粒子1重量部に対し高分子系分散剤0.3重量部以上10重量部未満であることが望ましい。
Next, surface treatment of the rhenium trioxide fine particles is preferable because it can improve the weather resistance of the fine particles and can be easily and uniformly introduced into the resin component. Rhenium trioxide lacks stability in the air, and has a tendency to gradually change to HReO 4 by reacting with moisture in the air. In the solar shading resin material according to the present invention, the rhenium trioxide fine particles are uniformly dispersed in the resin component, so that it is difficult for the rhenium trioxide fine particles and the air to come into direct contact during use (that is, the rhenium trioxide fine particles). The present inventors have confirmed that the decomposition reaction of rhenium trioxide hardly occurs in practice. However, the weather resistance can be further improved by coating the surface of the rhenium trioxide fine particles with a compound containing any element selected from the group consisting of Si, Al, Zr and Ti. The surface treatment method is not particularly limited. For example, in the step of pulverizing the fine particles, a usual organic solvent is used together with an alkoxide based on Si, Al, Zr, Ti, a coupling agent, a surfactant, and the like. Uniformly coat the surface of fine particles with compounds containing Si, Al, Zr, and Ti by performing pulverization and, if necessary, hydrolysis, polycondensation, and sintering. Can do. The method in the pulverization step is not particularly limited, and methods such as a ball mill, a sand mill, ultrasonic dispersion, and a bead mill can be used. At this time, various dispersants may be added as necessary. By performing these surface coating treatments, the surface state of the rhenium trioxide fine particles becomes more stable, and the weather resistance is improved as compared with the untreated rhenium trioxide fine particles.
3. Sunlight shielding fine particle dispersion Rhenium trioxide fine particles having the above-mentioned conditions prepared by such a method, or rhenium trioxide fine particles subjected to further surface treatment, are dispersed in a resin component and the solar radiation described below. The shielding resin material is configured. When this solar radiation shielding resin material is produced, a solar radiation shielding fine particle dispersion is applied. That is, a liquid mainly composed of an organic solvent and / or a plasticizer, rhenium trioxide fine particles having the above-described conditions, or further rhenium trioxide fine particles subjected to surface coating treatment, and a polymer dispersant. The rhenium trioxide fine particles are contained in the resin component using a fine particle dispersion for solar shading or a powdery solar shading fine particle dispersion obtained by heating and removing a solution component such as an organic solvent or a plasticizer. It is possible to produce a solar shading resin material dispersed in the material. In addition, the powdery solar shading fine particle dispersion obtained by heating and removing solution components such as organic solvents and plasticizers by a known method is a special device when introduced into organic solvents, plasticizers and resins. In addition, fine particles can be uniformly dispersed by simple stirring without the need for or treatment. At this time, if the polymer dispersant is less than 0.3 part by weight with respect to 1 part by weight of the solar shading fine particles, aggregation or the like may occur when it is introduced into the organic solvent, plasticizer or resin. This causes haze in the material. On the other hand, if the amount is 10 parts by weight or more, the polymer dispersant in the solar shading resin material becomes excessive, which may adversely affect the weather resistance of the solar shading resin material. Therefore, it is desirable that the mixing ratio of the solar shielding fine particles and the polymer dispersant is 0.3 part by weight or more and less than 10 parts by weight of the polymer dispersant with respect to 1 part by weight of the solar radiation shielding particles.

また、上記日射遮蔽用微粒子分散体は、有機溶剤、可塑剤等の溶液成分を公知の方法で加熱除去して得られた粉末状のほか、上述したように粉砕、表面処理工程で添加した有機溶剤等の溶液成分を除去しない液状のものでも良く、また、日射遮蔽樹脂材料に用いる樹脂に応じた原料や可塑剤中に分散したものでも良い。ここで用いる有機溶剤や可塑剤は特に限定されるものではなく、配合する樹脂を形成する条件等に合わせて選択可能であり、一般的な有機溶剤や可塑剤が利用できる。また、必要に応じて酸やアルカリを添加してpHを調整しても良い。また、上記高分子系分散剤としては、ポリアクリレート系分散剤、ポリウレタン系分散剤、ポリエーテル系分散剤、ポリエステル系分散剤、ポリエステルウレタン系分散剤等を挙げることができ、上記ポリアクリレート系分散剤として、サンノプコ(SAN NOPKO)株式会社製の商品名 SNシックナーA-850、SNシックナーA-815、エフカアディティブス゛(EFKA ADDITIVES B. V.)社製の商品名 EFKA4500、EFKA4530、ビックケミー(BYK-Chemie)社製の商品名 Disperbyk-116等が例示され、ポリウレタン系分散剤として、エフカアディティブス゛社製の商品名 EFKA4046、EFKA4047、EFKA4520、コグニス(Cognis)社製の商品名 TEXAPHOR P60、TEXAPHOR P63、TEXAPHOR P610等が例示され、ポリエーテル系分散剤として、サンノプコ株式会社製の商品名 SNシックナーA-801、SNシックナーA-802、SNシックナーA-803、SNシックナーA-804、SNシックナーA-806、楠本化成社製の商品名 DISPARLON DA234、DISPARLON DA325等が例示され、ポリエステル系分散剤として、アビシア(Avecia)社製の商品名 Solsperse22000、Solsperse24000SC、Solsperse24000GR、Solsperse26000、Solsperse27000、Solsperse28000、Solsperse36000、Solsperse36600、Solsperse38500、楠本化成社製の商品名 DISPARLON DA70350、DISPARLON DA705、DISPARLON DA725、DISPARLON DA860、DISPARLON DA873N等が例示される。尚、高分子系分散剤の常温での状態は、液体、固体、ゲル状のいずれの場合も使用可能である。
4.日射遮蔽樹脂材料と日射遮蔽樹脂基材
上述した液状若しくは粉末状の日射遮蔽用微粒子分散体を用いて日射遮蔽樹脂材料を製造するには、日射遮蔽樹脂材料に用いる樹脂中に日射遮蔽用微粒子が均一に分散できればどのような方法でも良い。一般的なリボンブレンダー、タンブラー、ナウターミキサー、ヘンシェルミキサー等の混合機、および、バンバリーミキサー、ニーダー、ロール、一軸押出機、二軸押出機等の混練機で均一に溶融混合する方法を用いることも可能である。
In addition, the above-mentioned sunscreen fine particle dispersion is not only in the form of a powder obtained by heating and removing solution components such as an organic solvent and a plasticizer by a known method, but also in an organic material added in the pulverization and surface treatment steps as described above It may be a liquid that does not remove a solution component such as a solvent, or may be dispersed in a raw material or a plasticizer corresponding to the resin used for the solar shading resin material. The organic solvent and plasticizer used here are not particularly limited, and can be selected according to the conditions for forming the resin to be blended, and general organic solvents and plasticizers can be used. Moreover, you may adjust pH by adding an acid and an alkali as needed. Examples of the polymer dispersant include polyacrylate dispersants, polyurethane dispersants, polyether dispersants, polyester dispersants, polyester urethane dispersants, and the like. Product names: SN thickener A-850, SN thickener A-815, product names EFKA ADDITIVES BV manufactured by SAN NOPKO Co., Ltd. EFKA4500, EFKA4530, BYK-Chemie The product name Disperbyk-116 manufactured by the company is exemplified, and as the polyurethane dispersant, the product names EFKA4046, EFKA4047, EFKA4520, the product names Cognis manufactured by Efka Additives TEXAPHOR P60, TEXAPHOR P63, TEXAPHOR P610 and the like are exemplified, and the trade names SN thickener A-801, SN thickener A-802, SN thickener A-80 manufactured by San Nopco Co., Ltd. 3, SN thickener A-804, SN thickener A-806, trade names manufactured by Enomoto Kasei Co., Ltd. DISPARLON DA234, DISPARLON DA325, etc. are exemplified, and polyester dispersants are trade names manufactured by Avecia, Solsperse 22000, Solsperse 24000SC, Solsperse24000GR, Solsperse26000, Solsperse27000, Solsperse28000, Solsperse36000, Solsperse36600, Solsperse38500, trade names manufactured by Enomoto Kasei Co., Ltd. DISPARLON DA70350, DISPARLON DA705, DISPARLON DA725, DISPARLON DA860, DISPARLON DA873N, etc. In addition, the state of the polymer dispersant at normal temperature can be used in any of liquid, solid, and gel.
4). In order to produce a solar shading resin material using the above-described liquid or powdery solar shading fine particle dispersion, the solar shading fine particles are contained in the resin used for the solar shading resin material. Any method can be used as long as it can be uniformly dispersed. Use a method of uniformly melting and mixing with a kneader such as a general ribbon blender, tumbler, nauter mixer, Henschel mixer, etc., and a Banbury mixer, kneader, roll, single screw extruder, twin screw extruder, etc. Is also possible.

例えば、日射遮蔽樹脂材料に用いる樹脂がポリカーボネート樹脂の場合には、樹脂の原料となる2価フェノール類に粉末状の日射遮蔽用微粒子分散体を添加し、溶融混合し、ホスゲンで例示されるカーボネート前駆体と反応させることによって、樹脂に微粒子を均一に分散した混合物(日射遮蔽樹脂材料)を調製することができる。また、日射遮蔽樹脂材料に用いる樹脂がアクリル樹脂の場合は、アクリル樹脂の原料となるメチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレート等に液状の日射遮蔽用微粒子分散体を添加し、公知の方法で均一に混合し、懸濁重合や魂状重合等公知の方法で重合させることによって、アクリル樹脂に微粒子を均一に分散した混合物(日射遮蔽樹脂材料)を調製することができる。また、日射遮蔽樹脂材料に用いる樹脂がポリビニルブチラール樹脂の場合は、粉末状の日射遮蔽用微粒子分散体をトリエチレングリコール・ジ−2エチルブチレート(3GH)やトリエチレングリコール・ジ−2エチルヘキサノエート(3GO)等の一般的な可塑剤と攪拌混合し、これをポリビニルブチラール樹脂と公知の方法で混合混練することにより、樹脂に微粒子を均一に分散した混合物(日射遮蔽樹脂材料)を調製することができる。   For example, when the resin used for the solar shading resin material is a polycarbonate resin, a powdery solar shading fine particle dispersion is added to a dihydric phenol used as a raw material of the resin, melted and mixed, and carbonate exemplified by phosgene By reacting with the precursor, a mixture (sunlight shielding resin material) in which fine particles are uniformly dispersed in the resin can be prepared. Further, when the resin used for the solar shading resin material is an acrylic resin, a liquid solar shading fine particle dispersion is added to methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate or the like that is a raw material of the acrylic resin, and a known method The mixture (sunlight shielding resin material) in which the fine particles are uniformly dispersed in the acrylic resin can be prepared by mixing the mixture uniformly and by a known method such as suspension polymerization or soul polymerization. Further, when the resin used for the solar shading resin material is a polyvinyl butyral resin, the powdery solar shading fine particle dispersion may be triethylene glycol di-2 ethyl butyrate (3GH) or triethylene glycol di-2 ethyl hexa A mixture (sunlight shielding resin material) in which fine particles are uniformly dispersed in a resin is prepared by mixing with a general plasticizer such as noate (3GO) with stirring and mixing with a polyvinyl butyral resin by a known method. can do.

このようにして得られた混合物(日射遮蔽樹脂材料)を、射出成形、押出成形、圧縮成形等の公知の成形方法によって平面状や曲面状(すなわち、平面若しくは立体形状)に成形することにより日射遮蔽樹脂基材を製造することができる。また、樹脂中に日射遮蔽用微粒子が均一に分散した混合物(日射遮蔽樹脂材料)を造粒装置により一旦ペレット化し、このペレットを樹脂中に添加混合し、上記方法と同様の成形方法により日射遮蔽樹脂基材を製造することもできる。尚、日射遮蔽樹脂基材の厚さは板状から薄いフィルム状まで必要に応じて任意の厚さに調整することが可能である。
5.日射遮蔽複合基材
次に、シート状に成形された日射遮蔽樹脂基材を2枚の板ガラスまたは1枚以上の他の樹脂板と貼り合わせて日射遮蔽複合基材として使用することも可能である。例えば、シート状に成形されたポリカーボネート樹脂基材とガラス板とを接着剤を用いて貼り合わせ、日射遮蔽複合基材として用いたり、また、シート状に成形されたポリビニルブチラール樹脂基材を中間膜としこれを2枚のガラス板で挟み込み、オートクレーブで圧着した日射遮蔽複合基材としたりして使用することができる。
The mixture (sunlight shielding resin material) thus obtained is formed into a flat shape or a curved shape (that is, a flat or three-dimensional shape) by a known molding method such as injection molding, extrusion molding, compression molding, etc. A shielding resin base material can be manufactured. Also, a mixture (sunlight shielding resin material) in which fine particles for solar shading are uniformly dispersed in the resin is once pelletized by a granulator, and the pellet is added and mixed in the resin, and the solar shading is performed by the same molding method as above. A resin base material can also be manufactured. In addition, the thickness of a solar radiation shielding resin base material can be adjusted to arbitrary thickness from a plate shape to a thin film shape as needed.
5). Next, the solar-shielding composite base material formed into a sheet shape can be used as a solar-shielding composite base material by laminating it with two plate glasses or one or more other resin plates. . For example, a polycarbonate resin base material and a glass plate formed into a sheet shape are bonded together using an adhesive and used as a solar radiation shielding composite base material, or a polyvinyl butyral resin base material formed into a sheet shape is used as an intermediate film And this can be used as a solar radiation shielding composite base material sandwiched between two glass plates and pressure-bonded by an autoclave.

上記日射遮蔽樹脂基材および日射遮蔽複合基材の表面には、更に熱線遮蔽膜や紫外線吸収膜を形成しても良い。例えば、日射遮蔽樹脂基材上にITO微粒子やATO微粒子を各種バインダーに分散させた塗布液を塗布し、表面上に更に熱線遮蔽膜を形成することもできる。また、上記日射遮蔽樹脂基材上にベンゾトリアゾール系、ベンゾフェノン系等の紫外線吸収剤を各種バインダーに溶解させた塗布液を塗布し、硬化させて紫外線吸収膜を形成することができる。この紫外線吸収膜の形成により、樹脂基材の耐侯性を更に向上させることが可能である。   A heat ray shielding film or an ultraviolet absorbing film may be further formed on the surfaces of the solar radiation shielding resin base material and the solar radiation shielding composite base material. For example, it is possible to apply a coating solution in which ITO fine particles or ATO fine particles are dispersed in various binders on a solar radiation shielding resin substrate, and further form a heat ray shielding film on the surface. In addition, an ultraviolet absorbing film can be formed by applying a coating solution prepared by dissolving a benzotriazole-based or benzophenone-based ultraviolet absorber in various binders on the solar radiation shielding resin substrate and curing it. By forming this ultraviolet absorbing film, it is possible to further improve the weather resistance of the resin substrate.

尚、日射遮蔽樹脂基材の樹脂原料としては、透過性があり散乱の少ない、無色透明の樹脂ならば特に限定せず、ポリカーボネート樹脂、アクリル樹脂、フッ素樹脂、ポリエステル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、エチレン−酢酸ビニル共重合体樹脂のほかに、ポリオレフィン系樹脂や塩化ビニル樹脂、フッ化ビニル樹脂等を適宜使用することができる。   The resin material for the solar shading resin base material is not particularly limited as long as it is a transparent, colorless, transparent and colorless resin. Polycarbonate resin, acrylic resin, fluororesin, polyester resin, polyvinyl acetal resin, polyvinyl butyral In addition to resins and ethylene-vinyl acetate copolymer resins, polyolefin resins, vinyl chloride resins, vinyl fluoride resins, and the like can be used as appropriate.

ポリカーボネート樹脂は、2価フェノール類とカーボネート系前駆体とを、溶液法または溶融法で反応させることによって得られるものである。2価フェノールとしては、2,2−ビス(4−ヒドロキシフェニル)プロパン[ビスフェノールA]、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、2,2−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3,5−ジブロモフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、ビス(4−ヒドロキシフェニル)スルフィド、ビス(4−ヒドロキシフェニル)スルホン等が代表例として挙げられる。また、好ましい2価フェノールは、ビス(4−ヒドロキシフェニル)アルカン系であり、特にビスフェノールAを主成分とするものが好ましい。   The polycarbonate resin is obtained by reacting a dihydric phenol with a carbonate precursor by a solution method or a melting method. Examples of the dihydric phenol include 2,2-bis (4-hydroxyphenyl) propane [bisphenol A], 1,1-bis (4-hydroxyphenyl) ethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, , 2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3,5-dibromophenyl) propane, 2,2-bis (4-hydroxy-3-methyl) Representative examples include phenyl) propane, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, and the like. Further, a preferred dihydric phenol is a bis (4-hydroxyphenyl) alkane series, and those having bisphenol A as a main component are particularly preferred.

また、アクリル樹脂としては、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレートを主原料とし、必要に応じて炭素数1〜8のアルキル基を有するアクリル酸エステル、酢酸ビニル、スチレン、アクリロニトリル、メタクリロニトリル等を共重合成分として用いた重合体または共重合体が用いられる。また更に多段で重合したアクリル樹脂を用いることもできる。   As acrylic resins, methyl methacrylate, ethyl methacrylate, propyl methacrylate, and butyl methacrylate are used as main raw materials, and acrylic acid esters having 1 to 8 carbon atoms, vinyl acetate, styrene, acrylonitrile, methacryloyl as necessary. A polymer or copolymer using nitrile or the like as a copolymerization component is used. Furthermore, an acrylic resin polymerized in multiple stages can also be used.

また、フッ素樹脂としては、分子構造中にフッ素を含有する樹脂であれば良く、例えば4フッ化エチレン樹脂、3フッ化エチレン樹脂、2フッ化エチレン樹脂、1フッ化エチレン樹脂等が挙げられ、これらの混合物であってもよい。   Further, as the fluororesin, any resin containing fluorine in the molecular structure may be used, and examples thereof include tetrafluoroethylene resin, trifluoride ethylene resin, difluoroethylene resin, monofluoroethylene resin, and the like. A mixture thereof may be used.

ポリエステル樹脂としては、酸成分とジオール成分との重縮合で得られる線状飽和ポリエステル樹脂、具体的にはポリエチレンテレフタレート、ポリエチレンナフタレート等が適宜使用できる。ここで酸成分としてはフタル酸、無水フタル酸、セバシン酸、アゼライン酸等の飽和二塩基酸、ダイマー酸等の1種または2種以上が使用でき、ジオール成分としてはエチレングリコール、プロピレングリコール、デカンジオール、ドデカンジオール、ヘキサデカンジオール、ビスフェノール化合物およびそのエチレンオキサイドまたはプロピレンオキサイド付加物等の1種または2種以上が使用できる。   As the polyester resin, a linear saturated polyester resin obtained by polycondensation of an acid component and a diol component, specifically, polyethylene terephthalate, polyethylene naphthalate, or the like can be used as appropriate. Here, the acid component may be one or more of saturated dibasic acids such as phthalic acid, phthalic anhydride, sebacic acid and azelaic acid, and dimer acid, and the diol component may be ethylene glycol, propylene glycol, decane. One kind or two or more kinds such as diol, dodecanediol, hexadecanediol, bisphenol compound and ethylene oxide or propylene oxide adduct thereof can be used.

ポリビニルアセタール樹脂としては、2枚の板ガラスで挟み込んだ合せガラスを構成する密着性樹脂として使用する場合、炭素数が4〜8程度のアルデヒドでポリビニルアルコールをアセタール化して得られるポリビニルブチラール樹脂が特に好ましい。このポリビニルブチラール樹脂のブチラール化度は特に限定されるものではないが、約60〜75%程度が透明性、密着性の観点から特に好ましい。   The polyvinyl acetal resin is particularly preferably a polyvinyl butyral resin obtained by acetalizing polyvinyl alcohol with an aldehyde having about 4 to 8 carbon atoms when used as an adhesive resin constituting a laminated glass sandwiched between two plate glasses. . The degree of butyralization of this polyvinyl butyral resin is not particularly limited, but about 60 to 75% is particularly preferable from the viewpoint of transparency and adhesion.

エチレン−酢酸ビニル共重合体系樹脂としては、エチレンを主成分とするエチレン−酢酸ビニルランダム共重合体ならば特に限定せず、酢酸ビニル単位の含有量が10〜45重量%程度であることが好ましい。   The ethylene-vinyl acetate copolymer-based resin is not particularly limited as long as it is an ethylene-vinyl acetate random copolymer containing ethylene as a main component, and the content of vinyl acetate units is preferably about 10 to 45% by weight. .

このように上述した特性を持つ三酸化レニウム微粒子を日射遮蔽用微粒子として用い、樹脂成分中に均一に分散させて適宜形状に成形することで、高コストの物理成膜法や複雑な接着工程を用いずに、日射遮蔽機能を有しかつ可視光域に高い透過性を有すると共に青色の色調を呈する日射遮蔽樹脂基材や日射遮蔽複合基材を提供することが可能となる。   In this way, rhenium trioxide fine particles having the above-mentioned characteristics are used as solar shielding fine particles, and uniformly dispersed in the resin component and molded into an appropriate shape, thereby enabling a high-cost physical film forming method and a complicated bonding process. Without using it, it is possible to provide a solar radiation shielding resin base material or a solar radiation shielding composite base material that has a solar radiation shielding function and has high transparency in the visible light range and exhibits a blue color tone.

また、上述した三酸化レニウム微粒子は、一般的な有機青色顔料に比べて隠蔽力が高く少量の添加で効果を発揮できるため材料コストの低減を図ることも可能となる。   In addition, the rhenium trioxide fine particles described above have a high hiding power as compared with general organic blue pigments and can exhibit an effect when added in a small amount, so that the material cost can be reduced.

以下、実施例により本発明を具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。尚、得られた試料の可視光透過率VLT(波長380〜780nm)および透過プロファイル並びに拡散反射光による粉体色(標準光源D65,10°視野)は日立製作所(株)製の分光光度計U−4000を用いて測定した。   Hereinafter, the present invention will be described specifically by way of examples. However, the present invention is not limited to the following examples. The visible light transmittance VLT (wavelength 380 to 780 nm), transmission profile, and powder color (standard light source D65, 10 ° field of view) of the diffuse reflected light of the obtained sample are spectrophotometer U manufactured by Hitachi, Ltd. -4000.

また、上記VLTについてはJIS R3106に従って算出し、粉体色についてはJIS Z8729に従って算出した。また、拡散反射光による粉体色は、日立U4000形分光光度計用粉末セル(パ−ツNo139−0647、22mm径×10mm厚)を用いて測定した。   The VLT was calculated according to JIS R3106, and the powder color was calculated according to JIS Z8729. Moreover, the powder color by diffuse reflected light was measured using a powder cell for Hitachi U4000 type spectrophotometer (Part No. 139-0647, 22 mm diameter × 10 mm thickness).

更に、ヘイズ(Haze)は村上色材(株)製HR−200を用いて測定した。また、耐侯性試験は作製した日射遮蔽樹脂基材や日射遮蔽複合基材をISO4892−2の試験サイクルに従って稼動しているサンシャインウエザオメータ(ATLAS社製Ci4000)に500時間投入し、投入前後の可視光透過率の差(ΔVLT)を測定することにより評価した。   Furthermore, haze (Haze) was measured using HR-200 manufactured by Murakami Color Co., Ltd. In addition, in the weather resistance test, the produced solar shading resin base material or solar shading composite base material was placed in a sunshine weatherometer (Ci4000 manufactured by ATLAS) operating according to the test cycle of ISO 4892-2 for 500 hours. Evaluation was made by measuring the difference in visible light transmittance (ΔVLT).

過レニウム酸水溶液(三酸化レニウムに換算して55重量%含有)とメタノールとを、前者が40重量%、後者が60重量%の割合で混合し、この溶液を窒素雰囲気中、150℃で加熱攪拌した。加熱中に出発時の3倍量のメタノールを徐々に追加し、最終的に液体成分がなくなってから得られた試料を水で洗浄し、乾燥して微粒子を調製した。   A perrhenic acid aqueous solution (containing 55% by weight in terms of rhenium trioxide) and methanol were mixed in a ratio of 40% by weight for the former and 60% by weight for the latter, and this solution was heated at 150 ° C. in a nitrogen atmosphere. Stir. During the heating, 3 times the amount of methanol at the start was gradually added, and the sample obtained after the liquid component finally disappeared was washed with water and dried to prepare fine particles.

このようにして得られた微粒子(A粉)をXRD測定により同定したところ、三酸化レニウムであることが確認され、その他の物質の回折ピークは確認されなかった。また拡散反射光によるA粉の粉体色はL*=34.5、a*=4.2、b*=−1.2であった。 When the fine particles (A powder) thus obtained were identified by XRD measurement, it was confirmed to be rhenium trioxide, and diffraction peaks of other substances were not confirmed. The powder color of the A powder by diffuse reflected light was L * = 34.5, a * = 4.2, and b * = − 1.2.

この三酸化レニウム微粒子(A粉)200g、トリエチレングリコール・ジ−2エチルブチレート(3GH)700g、および、高分子系分散剤60gを混合し、直径5mmのジルコニアボールを用いて100時間ボールミル混合して分散処理を行なった。得られた分散液(日射遮蔽用微粒子分散体)中における三酸化レニウム微粒子の平均粒径は90nmであった。   200 g of the rhenium trioxide fine particles (A powder), 700 g of triethylene glycol di-2 ethyl butyrate (3 GH), and 60 g of a polymer dispersing agent are mixed and ball mill mixed for 100 hours using a zirconia ball having a diameter of 5 mm. The dispersion process was performed. The average particle diameter of the rhenium trioxide fine particles in the obtained dispersion (sunlight shielding fine particle dispersion) was 90 nm.

また、この分散液(日射遮蔽用微粒子分散体)の一部をReO3濃度が0.01重量%となるようにエタノールで希釈し、この希釈液をPYREX(登録商標)製10mm角セルに入れたものの透過プロファイルを測定した。この結果、透過率の極大値は波長445nmにおいて72.0%、極小値は波長830nmにおいて21.8%であり、極大値と極小値の透過率の差は50.2%であった。尚、測定時における希釈液のVLTは55.0%であった。 Further, a part of this dispersion (sunlight shielding fine particle dispersion) is diluted with ethanol so that the ReO 3 concentration becomes 0.01% by weight, and this diluted liquid is put in a 10 mm square cell made of PYREX (registered trademark). The transmission profile was measured. As a result, the maximum value of transmittance was 72.0% at a wavelength of 445 nm, the minimum value was 21.8% at a wavelength of 830 nm, and the difference between the transmittances of the maximum value and the minimum value was 50.2%. The VLT of the diluted solution at the time of measurement was 55.0%.

次に、上記分散液(日射遮蔽用微粒子分散体)を、ReO3濃度が0.1重量%となるようにポリビニルブチラール樹脂と混合し、3本ロールミキサーにより約70℃で練り込み混合した。得られた樹脂(日射遮蔽樹脂材料)について型押出機を用い厚さ0.8mmに押出し成形してシート状樹脂(日射遮蔽樹脂基材)を得た。 Next, the dispersion (sunlight shielding fine particle dispersion) was mixed with polyvinyl butyral resin so that the ReO 3 concentration was 0.1% by weight, and kneaded and mixed at about 70 ° C. with a three-roll mixer. The obtained resin (sunlight shielding resin material) was extruded to a thickness of 0.8 mm using a mold extruder to obtain a sheet-like resin (sunlight shielding resin substrate).

次に、大きさ約300×300mm、厚さ約2.1mmの青板ガラスを2枚用意し、この青板ガラスと同じ大きさに上記シート状樹脂(日射遮蔽樹脂基材)を裁断した後、2枚の青板ガラス間に挟み込んで積層体とした。   Next, two pieces of blue plate glass having a size of about 300 × 300 mm and a thickness of about 2.1 mm are prepared, and after cutting the sheet-like resin (sunlight shielding resin base material) into the same size as this blue plate glass, 2 A laminated body was obtained by sandwiching between blue sheets of glass.

次いで、この積層体をゴム製の真空袋に入れ、袋内を減圧し約100℃で30分保持した後、常温まで冷却し、袋から取り出した積層体をオートクレーブ装置に入れ、圧力約12kg/cm2、温度約120℃で30分加圧加熱して合せガラス化処理を行い、日射遮蔽複合基材を作製した。 Next, this laminate is put into a rubber vacuum bag, the inside of the bag is decompressed and held at about 100 ° C. for 30 minutes, then cooled to room temperature, and the laminate taken out of the bag is put into an autoclave apparatus, and the pressure is about 12 kg / A laminated glass substrate was prepared by applying pressure and heating at cm 2 and a temperature of about 120 ° C. for 30 minutes to perform a vitrification treatment.

得られた試料(日射遮蔽複合基材)の透過プロファイルを図1に示す。   The transmission profile of the obtained sample (sunlight shielding composite substrate) is shown in FIG.

そして、透過率の極大が波長445nmで65.1%、極小が波長825nmで12.2%であり、可視光領域で透過率が高く、近赤外領域に透過率の極小値を持つプロファイルになっており日射遮蔽特性に優れることが確認される。   The maximum transmittance is 65.1% at a wavelength of 445 nm, the minimum is 12.2% at a wavelength of 825 nm, the transmittance is high in the visible light region, and the transmittance has a minimum value in the near infrared region. It is confirmed that it has excellent solar shading characteristics.

また、この試料(日射遮蔽複合基材)の透過色は美しい青色であった。   Further, the transmitted color of this sample (sunlight shielding composite base material) was a beautiful blue color.

この試料(日射遮蔽複合基材)の可視光透過率、日射透過率、ヘイズ(Haze)、耐侯性試験結果(ΔVLT)、色調を以下の表1に示す。   Table 1 below shows the visible light transmittance, solar transmittance, haze, weather resistance test result (ΔVLT), and color tone of this sample (sunlight shielding composite substrate).

実施例1における三酸化レニウム調製工程において、調製時の加熱温度を300℃とした以外は実施例1と同様にして、三酸化レニウム微粒子(B粉)を得た。また拡散反射光によるB粉の粉体色はL*=34.9、a*=5.2、b*=−2.1であった。 In the rhenium trioxide preparation step in Example 1, rhenium trioxide fine particles (B powder) were obtained in the same manner as in Example 1 except that the heating temperature at the time of preparation was 300 ° C. The powder color of the B powder by diffuse reflection was L * = 34.9, a * = 5.2, and b * = − 2.1.

次に、上記三酸化レニウム微粒子(B粉)200g、イソプロピルアルコール700gを混合し、直径5mmのジルコニアボールを用いて100時間ボールミル混合して分散処理を行なった。この分散液内における三酸化レニウム微粒子の平均粒径は120nmであった。また、この分散液の一部をReO3濃度が0.01重量%となるようにエタノールで希釈し、この希釈液をPYREX(登録商標)製10mm角セルに入れたものの透過プロファイルを測定した。この結果、透過率の極大値は波長480nmにおいて75.0%、極小値は波長920nmにおいて16.5%であり、極大値と極小値の透過率の差は58.5%であった。尚、測定時における希釈液のVLTは56.2%であった。 Next, 200 g of the above-mentioned rhenium trioxide fine particles (B powder) and 700 g of isopropyl alcohol were mixed, and ball mill mixing was performed for 100 hours using a zirconia ball having a diameter of 5 mm for dispersion treatment. The average particle diameter of the rhenium trioxide fine particles in this dispersion was 120 nm. In addition, a part of this dispersion was diluted with ethanol so that the ReO 3 concentration was 0.01% by weight, and a transmission profile of this diluted solution placed in a 10 mm square cell made of PYREX (registered trademark) was measured. As a result, the maximum value of transmittance was 75.0% at a wavelength of 480 nm, the minimum value was 16.5% at a wavelength of 920 nm, and the difference between the transmittances of the maximum value and the minimum value was 58.5%. The VLT of the diluted solution at the time of measurement was 56.2%.

次に、上記分散液にテトラメトキシシランを1kg添加して攪拌し、更に蒸留水700gを徐々に滴下し、攪拌を24時間行い、Si化合物の被覆処理を行った。そして、真空乾燥機を用いてこの液の溶媒を完全に蒸発させ、得られた粉末を300℃で加熱することによりSi化合物に被覆された三酸化レニウム粉末(被覆B粉)を得た。   Next, 1 kg of tetramethoxysilane was added to the dispersion and stirred, and 700 g of distilled water was gradually added dropwise, followed by stirring for 24 hours to perform a Si compound coating treatment. And the solvent of this liquid was completely evaporated using the vacuum dryer, the rhenium trioxide powder (coating B powder) coat | covered with Si compound was obtained by heating the obtained powder at 300 degreeC.

この粉末(被覆B粉)100g、トリエチレングリコール・ジ−2エチルブチレート(3GH)400g、および、高分子系分散剤30gを混合し、直径10mmのジルコニアボールを用い50時間ボールミル混合して分散処理を行い、液状の日射遮蔽用微粒子分散体を得た。   100 g of this powder (coating B powder), 400 g of triethylene glycol di-2 ethyl butyrate (3GH), and 30 g of a polymer dispersing agent are mixed and dispersed by ball milling for 50 hours using zirconia balls having a diameter of 10 mm. The treatment was carried out to obtain a liquid solar shading fine particle dispersion.

そして、被覆B粉が適用された上記日射遮蔽用微粒子分散体を用いた点を除いて実施例1と同様に行い、実施例2に係る日射遮蔽複合基材を作製した。   And it carried out similarly to Example 1 except the point which used the said fine particle dispersion for solar radiation shielding to which coating | coated B powder was applied, and produced the solar radiation shielding composite base material which concerns on Example 2. FIG.

得られた試料(日射遮蔽複合基材)の透過プロファイルを図1に示す。   The transmission profile of the obtained sample (sunlight shielding composite substrate) is shown in FIG.

そして、透過率の極大が波長480nmで72%、極小が波長920nmで11.2%であり、可視光領域で透過率が高く、近赤外領域に透過率の極小値を持つプロファイルになっており日射遮蔽特性に優れることが確認される。   The maximum transmittance is 72% at a wavelength of 480 nm, the minimum is 11.2% at a wavelength of 920 nm, the transmittance is high in the visible light region, and the transmittance has a minimum value in the near infrared region. It is confirmed that the solar shading characteristics are excellent.

また、この試料(日射遮蔽複合基材)の透過色は美しい青色であった。   Further, the transmitted color of this sample (sunlight shielding composite base material) was a beautiful blue color.

この試料(日射遮蔽複合基材)の可視光透過率、日射透過率、ヘイズ(Haze)、耐侯性試験結果(ΔVLT)、色調を以下の表1に示す。   Table 1 below shows the visible light transmittance, solar transmittance, haze, weather resistance test result (ΔVLT), and color tone of this sample (sunlight shielding composite substrate).

三酸化レニウム粉末として豊島製作所製のReO3粉を用いた点を除いて実施例2と同様に行ってSi被覆処理を行い、更に実施例2と同様の方法で日射遮蔽複合基材を作製した。 Except for using Reo 3 powder made by Toshima Seisakusho as rhenium trioxide powder, Si coating treatment was performed in the same manner as in Example 2, and a solar radiation shielding composite substrate was prepared in the same manner as in Example 2. .

尚、拡散反射光による豊島製作所製ReO3粉の粉体色は、L*=37.2、a*=6.2、b*=−1.1であった。また、イソプロピルアルコールに分散させた豊島製作所製ReO3粉の平均粒径は160nmであった。上記分散液の一部をReO3濃度が0.01重量%となるようにエタノールで希釈し、この希釈液をPYREX(登録商標)製10mm角セルに入れたものの透過プロファイルを測定した。この結果、透過率の極大値は波長445nmにおいて73.2%、極小値は波長830nmにおいて36.2%であり、極大値と極小値の透過率の差は37.0%であった。また、測定時における希釈液のVLTは55.7%であった。 The powder colors of ReO 3 powder manufactured by Toshima Seisakusho using diffuse reflected light were L * = 37.2, a * = 6.2, and b * = − 1.1. The average particle size of ReO 3 powder manufactured by Toshima Seisakusho dispersed in isopropyl alcohol was 160 nm. A part of the dispersion was diluted with ethanol so that the ReO 3 concentration was 0.01% by weight, and the transmission profile of this diluted solution placed in a 10 mm square cell made of PYREX (registered trademark) was measured. As a result, the maximum value of the transmittance was 73.2% at a wavelength of 445 nm, the minimum value was 36.2% at a wavelength of 830 nm, and the difference between the transmittances of the maximum value and the minimum value was 37.0%. Further, the VLT of the diluted solution at the time of measurement was 55.7%.

得られた試料(日射遮蔽複合基材)の透過プロファイルを図1に示す。   The transmission profile of the obtained sample (sunlight shielding composite substrate) is shown in FIG.

そして、透過率の極大が波長455nmで69%、極小が波長835nmで32%であり、可視光領域で透過率が高く、近赤外領域に透過率の極小値を持つプロファイルになっており日射遮蔽特性に優れることが確認される。   The maximum transmittance is 69% at a wavelength of 455 nm and the minimum is 32% at a wavelength of 835 nm. The transmittance is high in the visible light region and has a minimum transmittance value in the near infrared region. It is confirmed that the shielding properties are excellent.

また、この試料(日射遮蔽複合基材)の透過色は美しい青色であった。   Further, the transmitted color of this sample (sunlight shielding composite base material) was a beautiful blue color.

この試料(日射遮蔽複合基材)の可視光透過率、日射透過率、ヘイズ(Haze)、耐侯性試験結果(ΔVLT)、色調を以下の表1に示す。   Table 1 below shows the visible light transmittance, solar transmittance, haze, weather resistance test result (ΔVLT), and color tone of this sample (sunlight shielding composite substrate).

実施例2で得られた被覆B粉を用い、この被覆B粉(ReO3)1重量部に対して高分子系分散剤の割合が3重量部になるように高分子系分散剤を添加し、更に適量のトルエンを追加して攪拌混合した。 Using the coated B powder obtained in Example 2, the polymeric dispersant was added so that the ratio of the polymeric dispersant was 3 parts by weight with respect to 1 part by weight of the coated B powder (ReO 3 ). Further, an appropriate amount of toluene was added and mixed with stirring.

次に、この分散液中のトルエンについて真空式乾燥機を用いて蒸発させ、粉末状の日射遮蔽用微粒子分散体を得た。   Next, toluene in this dispersion was evaporated using a vacuum dryer to obtain a powdery solar shading fine particle dispersion.

この粉末状の日射遮蔽用微粒子分散体を、ReO3濃度が0.03重量%となるようにポリカーボネート樹脂に添加し、ブレンダー、二軸押出機で均一に熔融混合した後、Tダイを用いて厚さ3mmに押出し成形し、日射遮蔽用微粒子が全体に均一に分散したシート状の日射遮蔽ポリカーボネート(日射遮蔽樹脂基材)を作製した。 This powdery solar shading fine particle dispersion is added to a polycarbonate resin so that the ReO 3 concentration is 0.03% by weight, and is uniformly melt-mixed with a blender and a twin screw extruder, and then used with a T die. Extrusion-molded to a thickness of 3 mm to produce a sheet-like solar-shielding polycarbonate (solar-shielding resin substrate) in which the solar-shielding fine particles were uniformly dispersed throughout.

得られた試料(日射遮蔽樹脂基材)の透過プロファイルは、透過率の極大が波長480nmで63%、極小が波長915nmで10%であり、可視光領域で透過率が高く、近赤外領域に透過率の極小値を持つプロファイルになっており日射遮蔽特性に優れることが確認される。   The transmission profile of the obtained sample (sunlight shielding resin substrate) has a maximum transmittance of 63% at a wavelength of 480 nm, a minimum of 10% at a wavelength of 915 nm, a high transmittance in the visible light region, and a near infrared region. It is confirmed that the profile has a minimum value of transmittance and is excellent in solar shading characteristics.

また、この試料(日射遮蔽樹脂基材)の透過色は美しい青色であった。   Further, the transmitted color of this sample (sunlight shielding resin base material) was a beautiful blue color.

この試料(日射遮蔽樹脂基材)の可視光透過率、日射透過率、ヘイズ(Haze)、耐侯性試験結果(ΔVLT)、色調を以下の表1に示す。   Table 1 below shows the visible light transmittance, solar transmittance, haze, weather resistance test result (ΔVLT), and color tone of this sample (sunlight shielding resin base material).

豊島製作所製ReO3粉200g、イソプロピルアルコール700gを混合し、直径5mmのジルコニアボールを用いて100時間ボールミル混合して分散処理を行なった。この分散液内におけるReO3粉の平均粒径は160nmであった。 200 g of ReO 3 powder manufactured by Toyoshima Seisakusho and 700 g of isopropyl alcohol were mixed, and dispersion treatment was performed by ball mill mixing for 100 hours using zirconia balls having a diameter of 5 mm. The average particle size of the ReO 3 powder in this dispersion was 160 nm.

この分散液にチタンイソプロポキシド500g添加して攪拌し、更に蒸留水400gを徐々に滴下し、攪拌を24時間行いTi化合物の被覆処理を行った。次に、真空乾燥機を用いてこの液の溶媒を完全に蒸発させ、得られた粉末を250℃で加熱することによりTi化合物に被覆された三酸化レニウム粉末(被覆C粉)を得た。   To this dispersion, 500 g of titanium isopropoxide was added and stirred, and then 400 g of distilled water was gradually added dropwise and stirred for 24 hours to coat the Ti compound. Next, the solvent of this liquid was completely evaporated using a vacuum dryer, and the resulting powder was heated at 250 ° C. to obtain rhenium trioxide powder (coated C powder) coated with a Ti compound.

そして、実施例4の被覆B粉に代えて被覆C粉を適用した点を除いて実施例4と同様に行い、被覆C粉が全体に均一に分散したシート状の日射遮蔽ポリカーボネート(日射遮蔽樹脂基材)を作製した。   And it carried out similarly to Example 4 except having replaced with the coating B powder of Example 4, and having applied the coating C powder, and the sheet-like solar radiation shielding polycarbonate (sunlight shielding resin) which the coating C powder uniformly disperse | distributed to the whole Substrate).

得られた試料(日射遮蔽樹脂基材)の透過プロファイルは、透過率の極大が波長465nmで61%、極小が波長855nm29%であり、可視光領域で透過率が高く、近赤外領域に透過率の極小値を持つプロファイルになっており日射遮蔽特性に優れることが確認される。   The transmission profile of the obtained sample (sunlight shielding resin base material) has a maximum transmittance of 61% at a wavelength of 465 nm and a minimum of a wavelength of 855 nm at 29%. The transmittance is high in the visible light region and transmitted in the near infrared region. It is confirmed that the profile has a minimum value of the rate and is excellent in solar shading characteristics.

また、この試料(日射遮蔽樹脂基材)の透過色は美しい青色であった。   Further, the transmitted color of this sample (sunlight shielding resin base material) was a beautiful blue color.

この試料(日射遮蔽樹脂基材)の可視光透過率、日射透過率、ヘイズ(Haze)、耐侯性試験結果(ΔVLT)、色調を以下の表1に示す。   Table 1 below shows the visible light transmittance, solar transmittance, haze, weather resistance test result (ΔVLT), and color tone of this sample (sunlight shielding resin base material).

実施例2で得られた被覆B粉を用い、この被覆B粉200g、エチレングリコール700g、および、高分子系分散剤60gを混合し、直径10mmのジルコニアボールを用い50時間ボールミル混合して液状の日射遮蔽用微粒子分散体を得た。   Using the coated B powder obtained in Example 2, 200 g of the coated B powder, 700 g of ethylene glycol, and 60 g of a polymer dispersant were mixed, and the mixture was liquid-mixed by ball milling for 50 hours using zirconia balls having a diameter of 10 mm. A fine particle dispersion for solar radiation shielding was obtained.

次に、この液状の日射遮蔽用微粒子分散体を、三酸化レニウム濃度が2.0重量%になるようにエチレングリコールで希釈し、この希釈液とテレフタル酸とを前者が30重量%、後者が70重量%の割合で混合した後、高温真空混合槽でエステル化、重縮合反応を行い、日射遮蔽ポリエチレンテレフタレート樹脂(日射遮蔽樹脂材料)を作製した。   Next, this liquid solar shading fine particle dispersion is diluted with ethylene glycol so that the rhenium trioxide concentration is 2.0% by weight. The diluted solution and terephthalic acid are 30% by weight for the former and the latter for After mixing at a ratio of 70% by weight, esterification and polycondensation reaction were carried out in a high-temperature vacuum mixing tank to produce a solar radiation shielding polyethylene terephthalate resin (a solar radiation shielding resin material).

次に、この樹脂(日射遮蔽樹脂材料)をブレンダー、二軸押出機で均一に熔融混合した後、Tダイを用いて厚さ50μmに押出し成形し、日射遮蔽粉末が全体に均一に分散したシート状の日射遮蔽ポリエチレンテレフタレート(日射遮蔽樹脂基材)を作製した。   Next, this resin (sunlight shielding resin material) is uniformly melt-mixed by a blender and a twin-screw extruder, and then extruded using a T-die to a thickness of 50 μm, and the sunscreening powder is uniformly dispersed throughout the sheet. -Shaped solar radiation shielding polyethylene terephthalate (a solar radiation shielding resin base material) was produced.

得られた試料(日射遮蔽樹脂基材)の透過プロファイルを図1に示す。   The transmission profile of the obtained sample (sunlight shielding resin substrate) is shown in FIG.

そして、透過率の極大が波長480nmで63%、極小が波長920nmで10%であり、可視光領域で透過率が高く、近赤外領域に透過率の極小値を持つプロファイルになっており日射遮蔽特性に優れることが確認される。   The maximum transmittance is 63% at a wavelength of 480 nm, the minimum is 10% at a wavelength of 920 nm, the transmittance is high in the visible light region, and the profile has the minimum transmittance in the near infrared region. It is confirmed that the shielding properties are excellent.

また、この試料(日射遮蔽樹脂基材)の透過色は美しい青色であった。   Further, the transmitted color of this sample (sunlight shielding resin base material) was a beautiful blue color.

この試料(日射遮蔽樹脂基材)の可視光透過率、日射透過率、ヘイズ(Haze)、耐侯性試験結果(ΔVLT)、色調を以下の表1に示す。
(比較例1)
実施例1における三酸化レニウムの調製工程において、調製時の加熱温度を400℃とした点を除き実施例1と同様にして三酸化レニウム微粒子(D粉)を得た。
Table 1 below shows the visible light transmittance, solar transmittance, haze, weather resistance test result (ΔVLT), and color tone of this sample (sunlight shielding resin base material).
(Comparative Example 1)
In the rhenium trioxide preparation step in Example 1, rhenium trioxide fine particles (D powder) were obtained in the same manner as in Example 1 except that the heating temperature at the time of preparation was 400 ° C.

この粉末(D粉)における拡散反射光による粉体色はL*=51.2、a*=−1.2、b*=−2.1であり、「L*=20〜50、a*=−0.1〜10.0」の条件を満たさないものであった。 The powder colors of the powder (D powder) by diffuse reflected light are L * = 51.2, a * = − 1.2, b * = − 2.1, “L * = 20 to 50, a *. = −0.1 to 10.0 ”was not satisfied.

次に、D粉200g、イソプロピルアルコール700gを混合し、直径5mmのジルコニアボールを用いて100時間ボールミル混合して分散処理を行った。尚、得られた分散液内におけるD粉の平均粒径は「200nm以下」の条件を満たさない225nmであった。また、この分散液の一部をReO3濃度が0.01重量%となるようにエタノールで希釈し、この希釈液をPYREX(登録商標)製10mm角セルに入れたものの透過プロファイルを測定した。この結果、透過率の極大値は波長480nmにおいて75.2%、極小値は波長860nmにおいて59.9%であり、極大値と極小値の透過率の差は15.3%であった。尚、測定時における希釈液のVLTは56.0%であった。 Next, 200 g of D powder and 700 g of isopropyl alcohol were mixed, and dispersion treatment was performed by ball mill mixing for 100 hours using zirconia balls having a diameter of 5 mm. In addition, the average particle diameter of D powder in the obtained dispersion was 225 nm which does not satisfy the condition of “200 nm or less”. In addition, a part of this dispersion was diluted with ethanol so that the ReO 3 concentration was 0.01% by weight, and a transmission profile of this diluted solution placed in a 10 mm square cell made of PYREX (registered trademark) was measured. As a result, the maximum value of transmittance was 75.2% at a wavelength of 480 nm, the minimum value was 59.9% at a wavelength of 860 nm, and the difference between the transmittances of the maximum value and the minimum value was 15.3%. The VLT of the diluted solution at the time of measurement was 56.0%.

次に、このD粉1重量部に対して高分子系分散剤の割合が3重量部になるように高分子系分散剤を添加し、攪拌混合した後、この分散液中のイソプロピルアルコールについて真空式乾燥機を用いて蒸発させ、粉末状の日射遮蔽用微粒子分散体を得た。   Next, a polymer dispersant is added so that the proportion of the polymer dispersant is 3 parts by weight with respect to 1 part by weight of the D powder, and after stirring and mixing, the isopropyl alcohol in the dispersion is vacuumed. Evaporation was carried out using a dry dryer to obtain a powdery fine particle dispersion for solar shading.

この粉末状の日射遮蔽用微粒子分散体を、ReO3濃度が0.03重量%となるようにポリカーボネート樹脂に直接添加し、ブレンダー、二軸押出機で均一に熔融混合した後、Tダイを用いて厚さ3mmに押出し成形し、ReO3が分散されたシート状の日射遮蔽ポリカーボネート(日射遮蔽樹脂基材)を作製した。 This powdery solar shading fine particle dispersion is directly added to the polycarbonate resin so that the ReO 3 concentration is 0.03% by weight, and is uniformly melt-mixed by a blender and a twin screw extruder, and then a T die is used. The sheet was extruded to a thickness of 3 mm to produce a sheet-like solar shading polycarbonate (sun solar shading resin base material) in which ReO 3 was dispersed.

得られた試料(日射遮蔽樹脂基材)の透過プロファイルを図1に示す。   The transmission profile of the obtained sample (sunlight shielding resin substrate) is shown in FIG.

そして、透過率の極大値が70%、極小値が54%であり、極大値と極小値との差の小さい比較的なだらかなプロファイルになり、優れた日射遮蔽特性を有する日射遮蔽樹脂基材が得られていないことが確認された。   The maximum value of the transmittance is 70%, the minimum value is 54%, and a comparatively gentle profile with a small difference between the maximum value and the minimum value is obtained. It was confirmed that it was not obtained.

また、この試料(日射遮蔽樹脂基材)の透過色は青色を呈せず青灰色であり、また、樹脂中の日射遮蔽用微粒子が不均一な状態で分散されヘイズ値が高くなった。   Further, the transmitted color of this sample (sunlight shielding resin base material) was not blue but bluish gray, and the sunscreening fine particles in the resin were dispersed in a non-uniform state, resulting in a high haze value.

この試料(日射遮蔽樹脂基材)の可視光透過率、日射透過率、ヘイズ(Haze)、耐侯性試験結果(ΔVLT)、色調を以下の表1に示す。
(比較例2)
比較例1で得られたD粉200gとイソブチルアルコール700gを攪拌混合し、ここにテトラメトキシシランを1kg添加して攪拌し、更に蒸留水700gを徐々に滴下し、攪拌を24時間行い、Si化合物の被覆処理を行った。そして、真空乾燥機を用いてこの液の溶媒を完全に蒸発させ、得られた粉末を300℃で加熱することによりSi化合物に被覆された三酸化レニウム粉末(被覆D粉)を得た。
Table 1 below shows the visible light transmittance, solar transmittance, haze, weather resistance test result (ΔVLT), and color tone of this sample (sunlight shielding resin base material).
(Comparative Example 2)
200 g of D powder obtained in Comparative Example 1 and 700 g of isobutyl alcohol are stirred and mixed, 1 kg of tetramethoxysilane is added and stirred, 700 g of distilled water is gradually added dropwise, and stirring is performed for 24 hours. The coating process was performed. And the solvent of this liquid was completely evaporated using the vacuum dryer, the rhenium trioxide powder (coating D powder) coat | covered with Si compound was obtained by heating the obtained powder at 300 degreeC.

この粉末(被覆D粉)100g、トリエチレングリコール・ジ−2エチルブチレート(3GH)400g、および、高分子系分散剤30gを混合し、直径10mmのジルコニアボールを用い50時間ボールミル混合して分散処理を行い、液状の日射遮蔽用微粒子分散体を得た。   100 g of this powder (coating D powder), 400 g of triethylene glycol di-2 ethyl butyrate (3GH), and 30 g of a polymeric dispersant are mixed and dispersed by ball mill mixing for 50 hours using zirconia balls having a diameter of 10 mm. The treatment was carried out to obtain a liquid solar shading fine particle dispersion.

そして、被覆D粉が適用された上記日射遮蔽用微粒子分散体を用いた点を除いて実施例1と同様に行い、比較例2に係る日射遮蔽複合基材を作製した。   And it carried out similarly to Example 1 except the point using the said fine particle dispersion for solar radiation shielding to which coating | coated D powder was applied, and the solar radiation shielding composite base material which concerns on the comparative example 2 was produced.

得られた試料(日射遮蔽複合基材)の透過プロファイルを図1に示す。   The transmission profile of the obtained sample (sunlight shielding composite substrate) is shown in FIG.

そして、透過率の極大値が80%、極小値が60%であり、極大値と極小値との差の小さい比較的なだらかなプロファイルになり、優れた日射遮蔽特性を有する日射遮蔽複合基材が得られていないことが確認された。   The maximum value of transmittance is 80%, the minimum value is 60%, and a comparatively gentle profile with a small difference between the maximum value and the minimum value is obtained. It was confirmed that it was not obtained.

また、この試料(日射遮蔽複合基材)の透過色は青色を呈せず青灰色であり、また、樹脂中の日射遮蔽用微粒子が不均一な状態で分散されヘイズ値が高くなった。
美しい青色であった。
Further, the transmitted color of this sample (sunlight shielding composite base material) was not blue but bluish gray, and the sunscreening fine particles in the resin were dispersed in a non-uniform state, resulting in a high haze value.
It was a beautiful blue color.

この試料(日射遮蔽複合基材)の可視光透過率、日射透過率、ヘイズ(Haze)、耐侯性試験結果(ΔVLT)、色調を以下の表1に示す。
(比較例3)
三酸化レニウムに代えて銅フタロシアニン系青色有機顔料(大日精化製「5203」)を用い、この顔料粉末100g、トリエチレングリコール・ジ−2エチルブチレート(3GH)400g、および、高分子系分散剤30gを混合し、直径10mmのジルコニアボールを用いて50時間ボールミル混合して分散処理を行なった。この分散液内における顔料粉末の平均粒径は150nmであった。
Table 1 below shows the visible light transmittance, solar transmittance, haze, weather resistance test result (ΔVLT), and color tone of this sample (sunlight shielding composite substrate).
(Comparative Example 3)
Instead of rhenium trioxide, a copper phthalocyanine-based blue organic pigment ("5203" manufactured by Dainichi Seika) was used, 100g of this pigment powder, 400g of triethylene glycol di-2ethylbutyrate (3GH), and a polymer dispersion 30 g of the agent was mixed, and dispersion treatment was performed by ball mill mixing for 50 hours using zirconia balls having a diameter of 10 mm. The average particle diameter of the pigment powder in this dispersion was 150 nm.

この分散液を用い、顔料濃度を0.04重量%としたこと以外は実施例1と同様の方法で日射遮蔽複合基材を作製した。   Using this dispersion, a sunscreen composite substrate was prepared in the same manner as in Example 1 except that the pigment concentration was 0.04% by weight.

得られた試料(日射遮蔽複合基材)の透過プロファイルを図1に示す。   The transmission profile of the obtained sample (sunlight shielding composite substrate) is shown in FIG.

そして、透過率の極大値が波長470nmにおいて87.13%、極小値が波長610nmにおいて5.27%であり、極大値と極小値の透過率の差は充分あったが、透過プロファイルの極小値は可視光領域内にあり、近赤外領域の780nmからは急激に透過率が上昇するプロファイルであることが確認される。すなわち、得られた試料(日射遮蔽複合基材)の可視光透過率が31.53%に対し、日射透過率が55.8%と充分な可視光透過性を有する日射遮蔽複合基材が得られなかったことが確認される。   The maximum value of the transmittance was 87.13% at a wavelength of 470 nm and the minimum value was 5.27% at a wavelength of 610 nm. There was a sufficient difference between the transmittances of the maximum value and the minimum value, but the minimum value of the transmission profile. Is in the visible light region, and it is confirmed that the transmittance sharply increases from 780 nm in the near infrared region. That is, the solar radiation-shielding composite base material having sufficient visible light transmittance of 55.8% with respect to the visible light transmittance of 31.53% of the obtained sample (sunlight-shielding composite base material) is obtained. It was confirmed that it was not possible.

尚、この試料(日射遮蔽複合基材)の透過色は青色であった。   In addition, the transmission color of this sample (sunlight shielding composite base material) was blue.

この試料(日射遮蔽複合基材)の可視光透過率、日射透過率、ヘイズ(Haze)、耐侯性試験結果(ΔVLT)、色調を以下の表1に示す。
(比較例4)
三酸化レニウムに代えてジオキサジン系青紫色有機顔料(大日精化社製「ECV5002」)を用い、この顔料粉末200g、トルエン700g、および、高分子系分散剤60gを混合し、直径5mmのジルコニアボールを用いて50時間ボールミル混合して分散処理を行った。この分散液内における顔料粉末の平均粒径は110nmであった。
Table 1 below shows the visible light transmittance, solar transmittance, haze, weather resistance test result (ΔVLT), and color tone of this sample (sunlight shielding composite substrate).
(Comparative Example 4)
A dioxazine-based blue-violet organic pigment ("ECV5002" manufactured by Dainichi Seika Co., Ltd.) is used in place of rhenium trioxide, and 200 g of this pigment powder, 700 g of toluene, and 60 g of a polymeric dispersant are mixed to form a zirconia ball having a diameter of 5 mm. Was mixed by ball milling for 50 hours for dispersion treatment. The average particle diameter of the pigment powder in this dispersion was 110 nm.

この分散液の顔料粉末1重量部に対して高分子系分散剤が3重量部になるように更に高分子系分散剤を添加して攪拌混合した。   The polymer dispersant was further added and stirred and mixed so that the polymer dispersant was 3 parts by weight with respect to 1 part by weight of the pigment powder in the dispersion.

次に、得られた分散液中のトルエンについて真空乾燥機を用いて蒸発させ、粉末状の日射遮蔽用微粒子分散体を得た。   Next, toluene in the obtained dispersion was evaporated using a vacuum dryer to obtain a powdery solar shielding fine particle dispersion.

この粉末状の日射遮蔽用微粒子分散体を、顔料濃度が0.01重量%となるようにポリカーボネート樹脂に添加し、ブレンダー、二軸押出機で均一に熔融混合した後、Tダイを用いて厚さ3mmに押出し成形し、顔料粉末が全体に均一に分散したシート状の日射遮蔽ポリカーボネート(日射遮蔽樹脂基材)を作製した。   This powdery solar shading fine particle dispersion is added to a polycarbonate resin so that the pigment concentration becomes 0.01% by weight, and is uniformly melt-mixed by a blender and a twin screw extruder, and then thickened using a T-die. The sheet was extruded to a thickness of 3 mm, and a sheet-like solar-shielding polycarbonate (solar-shielding resin substrate) in which pigment powder was uniformly dispersed throughout was produced.

得られた試料(日射遮蔽樹脂基材)の透過プロファイルを図1に示す。   The transmission profile of the obtained sample (sunlight shielding resin substrate) is shown in FIG.

そして、透過率の極大値が波長440nmにおいて71.47%、極小値が波長535nmにおいて7.26%であり、極大値と極小値の透過率の差は充分あったが、透過プロファイルの極小値は可視光領域内にあり、650nm付近から急激に透過率が上昇しているプロファイルであることが確認される。すなわち、得られた試料(日射遮蔽樹脂基材)の可視光透過率が17.12%に対し、日射透過率が61.09%と充分な可視光透過性を有する日射遮蔽樹脂基材が得られなかったことが確認される。   The maximum value of the transmittance was 71.47% at a wavelength of 440 nm and the minimum value was 7.26% at a wavelength of 535 nm. There was a sufficient difference between the transmittances of the maximum value and the minimum value, but the minimum value of the transmission profile. Is in the visible light region, and is confirmed to be a profile in which the transmittance suddenly increases from around 650 nm. That is, the solar radiation shielding resin base material having sufficient visible light transmittance of 61.09% to the visible light transmittance of 17.12% of the obtained sample (sunlight shielding resin base material) is obtained. It was confirmed that it was not possible.

尚、この試料(日射遮蔽樹脂基材)の透過色は青紫色であった。   In addition, the transmission color of this sample (sunlight shielding resin base material) was bluish purple.

この試料(日射遮蔽樹脂基材)の可視光透過率、日射透過率、ヘイズ(Haze)、耐侯性試験結果(ΔVLT)、色調を以下の表1に示す。   Table 1 below shows the visible light transmittance, solar transmittance, haze, weather resistance test result (ΔVLT), and color tone of this sample (sunlight shielding resin base material).

Figure 2005179521
「評 価」
1.表1に示されたデータから明らかなように各実施例に係る試料においては日射遮蔽機能が高く、可視光領域の高い透過性能を有し、しかも青色の色調を備えていることが確認される。
2.他方、比較例1〜2に係る試料においてはその全てが青色の色調を備えておらず、かつ、日射遮蔽機能とヘイズについて劣っていることが確認される。また、比較例3〜4に係る試料においては青色の色調を備えているが、可視光領域の透過性能が極端に劣っていることが確認される。
Figure 2005179521
"Evaluation"
1. As is clear from the data shown in Table 1, it is confirmed that the samples according to each Example have a high solar shading function, a high transmission performance in the visible light region, and a blue color tone. .
2. On the other hand, it is confirmed that all of the samples according to Comparative Examples 1 and 2 do not have a blue color tone and are inferior in the solar radiation shielding function and haze. Moreover, although the sample which concerns on Comparative Examples 3-4 is equipped with the blue color tone, it is confirmed that the permeation | transmission performance of visible region is extremely inferior.

実施例と比較例に係る試料の透過プロファイルを示すグラフ図。The graph which shows the permeation | transmission profile of the sample concerning an Example and a comparative example.

Claims (8)

樹脂成分とこの樹脂成分に分散された日射遮蔽用微粒子とを含有する日射遮蔽樹脂材料において、
上記樹脂成分に分散される日射遮蔽用微粒子が、L***表色系における拡散反射光による粉体色がL*=20〜50、a*=−0.1〜10.0、b*=−5.0〜5.0、その平均粒径が200nm以下である三酸化レニウム微粒子により構成されることを特徴とする日射遮蔽樹脂材料。
In the solar radiation shielding resin material containing the resin component and the solar radiation shielding fine particles dispersed in the resin component,
The sunscreening fine particles dispersed in the resin component have a powder color of L * = 20 to 50, a * = − 0.1 to 10.0 by diffuse reflected light in the L * a * b * color system. b * = − 5.0 to 5.0, a solar shading resin material comprising rhenium trioxide fine particles having an average particle diameter of 200 nm or less.
上記三酸化レニウム微粒子を分散した希釈液の透過率が、波長400〜600nmに極大値を持ち、波長700〜1100nmに極小値を持つと共に、可視光透過率20%以上80%未満のときに上記極大値と極小値との差が百分率で30ポイント以上であることを特徴とする請求項1記載の日射遮蔽樹脂材料。   When the transmittance of the diluted liquid in which the rhenium trioxide fine particles are dispersed has a maximum value at a wavelength of 400 to 600 nm, a minimum value at a wavelength of 700 to 1100 nm, and a visible light transmittance of 20% or more and less than 80%. The solar radiation shielding resin material according to claim 1, wherein the difference between the maximum value and the minimum value is 30 points or more in percentage. Si、Al、Zr、Tiの群から選択されたいずれかの元素を含む化合物で上記三酸化レニウム微粒子が被覆されていることを特徴とする請求項1または2記載の日射遮蔽樹脂材料。   The solar radiation shielding resin material according to claim 1 or 2, wherein the rhenium trioxide fine particles are coated with a compound containing any element selected from the group consisting of Si, Al, Zr, and Ti. 上記樹脂成分が、ポリカーボネート樹脂、アクリル樹脂、フッ素樹脂、ポリエステル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、エチレン−酢酸ビニル共重合体樹脂のいずれかであることを特徴とする請求項1〜3のいずれかに記載の日射遮蔽樹脂材料。   The resin component is any one of polycarbonate resin, acrylic resin, fluororesin, polyester resin, polyvinyl acetal resin, polyvinyl butyral resin, and ethylene-vinyl acetate copolymer resin. The solar shading resin material according to the above. 請求項1〜4のいずれかに記載の日射遮蔽樹脂材料を平面若しくは立体形状に成形して成ることを特徴とする日射遮蔽樹脂基材。   A solar radiation-shielding resin base material formed by molding the solar radiation-shielding resin material according to any one of claims 1 to 4 into a flat or three-dimensional shape. 請求項1〜4のいずれかに記載の日射遮蔽樹脂材料をシート状に成形した日射遮蔽樹脂基材とこの日射遮蔽樹脂基材の両面に貼り合わされた一対の板状ガラスとで構成されるか、請求項1〜4のいずれかに記載の日射遮蔽樹脂材料をシート状に成形した日射遮蔽樹脂基材とこの日射遮蔽樹脂基材に貼り合わされた1以上の他の樹脂板とで構成されることを特徴とする日射遮蔽複合基材。   Whether the solar radiation shielding resin material according to any one of claims 1 to 4 is composed of a solar radiation shielding resin base material formed into a sheet shape and a pair of plate glasses bonded to both surfaces of the solar radiation shielding resin base material. The solar radiation shielding resin material according to any one of claims 1 to 4 is formed into a sheet shape and one or more other resin plates bonded to the solar radiation shielding resin substrate. A solar-shielding composite substrate characterized by that. 請求項1〜4のいずれかに記載の日射遮蔽樹脂材料を製造するために使用される日射遮蔽用微粒子分散体において、
有機溶剤および/または可塑剤と、請求項1〜3のいずれかに記載の三酸化レニウム微粒子より成る日射遮蔽用微粒子と、この日射遮蔽用微粒子を分散させる高分子系分散剤とを主成分とし、かつ、日射遮蔽用微粒子と高分子系分散剤との混合割合が日射遮蔽用微粒子1重量部に対し高分子系分散剤0.3重量部以上10重量部未満であることを特徴とする日射遮蔽用微粒子分散体。
In the solar radiation shielding fine particle dispersion used for producing the solar radiation shielding resin material according to any one of claims 1 to 4,
The main component is an organic solvent and / or a plasticizer, solar shading fine particles comprising the rhenium trioxide fine particles according to any one of claims 1 to 3, and a polymer dispersant that disperses the solar shading fine particles. In addition, the mixing ratio of the solar shielding fine particles and the polymer dispersant is not less than 0.3 parts by weight and less than 10 parts by weight of the polymer dispersant with respect to 1 part by weight of the solar shielding fine particles. Fine particle dispersion for shielding.
請求項1〜4のいずれかに記載の日射遮蔽樹脂材料を製造するために使用される日射遮蔽用微粒子分散体において、
請求項1〜3のいずれかに記載の三酸化レニウム微粒子より成る日射遮蔽用微粒子とこの日射遮蔽用微粒子を分散させる高分子系分散剤とを含有し、かつ、日射遮蔽用微粒子と高分子系分散剤との混合割合が日射遮蔽用微粒子1重量部に対し高分子系分散剤0.3重量部以上10重量部未満であると共に、溶液成分を実質的に含まないことを特徴とする日射遮蔽用微粒子分散体。

In the solar radiation shielding fine particle dispersion used for producing the solar radiation shielding resin material according to any one of claims 1 to 4,
A solar radiation shielding fine particle comprising the rhenium trioxide fine particles according to any one of claims 1 to 3 and a polymer dispersant for dispersing the solar radiation shielding fine particle, and the solar radiation shielding fine particle and the polymer system. Solar radiation shielding, characterized in that the mixing ratio with the dispersing agent is not less than 0.3 parts by weight and less than 10 parts by weight of the polymeric dispersant with respect to 1 part by weight of the solar radiation shielding fine particles and does not substantially contain a solution component. Fine particle dispersion.

JP2003422859A 2003-12-19 2003-12-19 Insolation-screening resin material and particulate dispersion for insolation screening used for production of insolation-screening resin material, and insolation-screening resin base material and insolation-screening composite material obtained by using insolation-screening resin material Pending JP2005179521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003422859A JP2005179521A (en) 2003-12-19 2003-12-19 Insolation-screening resin material and particulate dispersion for insolation screening used for production of insolation-screening resin material, and insolation-screening resin base material and insolation-screening composite material obtained by using insolation-screening resin material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003422859A JP2005179521A (en) 2003-12-19 2003-12-19 Insolation-screening resin material and particulate dispersion for insolation screening used for production of insolation-screening resin material, and insolation-screening resin base material and insolation-screening composite material obtained by using insolation-screening resin material

Publications (1)

Publication Number Publication Date
JP2005179521A true JP2005179521A (en) 2005-07-07

Family

ID=34783597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003422859A Pending JP2005179521A (en) 2003-12-19 2003-12-19 Insolation-screening resin material and particulate dispersion for insolation screening used for production of insolation-screening resin material, and insolation-screening resin base material and insolation-screening composite material obtained by using insolation-screening resin material

Country Status (1)

Country Link
JP (1) JP2005179521A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108010602A (en) * 2017-11-29 2018-05-08 华东理工大学 A kind of preparation process of Nano glass powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108010602A (en) * 2017-11-29 2018-05-08 华东理工大学 A kind of preparation process of Nano glass powder

Similar Documents

Publication Publication Date Title
US7666930B2 (en) Master batch containing heat radiation shielding component, and heat radiation shielding transparent resin form and heat radiation shielding transparent laminate for which the master batch has been used
JP4998781B2 (en) UV / NIR light shielding dispersion for windows and UV / NIR light shielding for windows
US7238418B2 (en) Heat radiation shielding component dispersion, process for its preparation and heat radiation shielding film forming coating liquid, heat radiation shielding film and heat radiation shielding resin form which are obtained using the dispersion
EP2360220B1 (en) Infrared blocking particle, method for producing the same, infrared blocking particle dispersion using the same, and infrared blocking base
JP4626284B2 (en) Method for producing tungsten oxide fine particles for forming solar shield, and tungsten oxide fine particles for forming solar shield
AU2007360455B2 (en) Masterbatch with high heat resistance, heat-ray-shielding transparent molded resin, and heat-ray-shielding transparent layered product
KR101213864B1 (en) Solar-radiation-shielding material for vehicle window and window for vehicle
JP4182357B2 (en) Heat ray shielding resin sheet material, heat ray shielding resin sheet material laminate, and building structure using them
JP5050470B2 (en) Solar radiation shielding dispersion, solar radiation shielding body, and manufacturing method thereof
JP2008044609A (en) Sunshine screen for vehicle window and vehicle window
JP2008044609A5 (en)
WO2013080859A1 (en) Heat-ray-shielding film, combined heat ray shielding and transparent substrate, vehicle equipped with heat-ray-shielding transparent laminated substrate as window material, and building using heat-ray-shielding transparent laminated substrate as window material
JP2022041986A (en) Manufacturing method of infrared absorbing particle
JP6879127B2 (en) Heat ray shielding particles, manufacturing method of heat ray shielding particles, heat ray shielding particle dispersion liquid, manufacturing method of heat ray shielding particle dispersion liquid, heat ray shielding particle dispersion, heat ray shielding laminated transparent base material, heat ray shielding transparent base material
JP4289145B2 (en) Solar shading fine particles, solar shading resin material in which these fine particles are dispersed in a resin component, and solar shading fine particle dispersion used for manufacturing solar shading resin material and solar shading resin material And solar shading composite base material
JP2012082326A (en) Master batch containing high heat-resistant heat ray shielding component, production method of the master batch, high heat-resistant heat ray shielding transparent resin molded article, and high heat-resistant heat ray shielding transparent laminate
JP5257381B2 (en) Near-infrared shielding polyester resin composition, molded article thereof, and laminate thereof
JP5775349B2 (en) Heat ray shielding laminated glass interlayer film and heat ray shielding laminated glass
JP2005179521A (en) Insolation-screening resin material and particulate dispersion for insolation screening used for production of insolation-screening resin material, and insolation-screening resin base material and insolation-screening composite material obtained by using insolation-screening resin material
JP5614586B2 (en) Heat ray shielding polycarbonate sheet, heat ray shielding polycarbonate sheet laminate, and method for producing heat ray shielding polycarbonate sheet
JP2018077301A (en) Near-infrared absorptive optical member and image display device using the same
JP2016164123A (en) Heat-ray shielding membrane, heat-ray shielding sheet or film, heat-ray shielding particulate dispersion, and heat-ray shielding particulate dispersion powder
JP2019020708A (en) Anti-glare sheet and anti-glare laminated glass
JP2012082109A (en) Method for producing tungsten oxide fine particle for forming highly heat-resistant heat ray-shielding material, tungsten oxide fine particle for forming highly heat-resistant heat ray-shielding material and dispersion for forming highly heat-resistant heat ray-shielding material, and highly heat-resistant heat ray-shielding material
JP2009235303A (en) Antimony-doped tin oxide fine particles dispersion for addition to polycarbonate resin, its manufacturing method, and antimony-doped tin oxide dispersed polycarbonate resin molded product