JP2005231974A - Solar radiation screening material, solar radiation screening composite material, and dispersing liquid used for preparing solar radiation screening material or solar radiation screening composite material - Google Patents

Solar radiation screening material, solar radiation screening composite material, and dispersing liquid used for preparing solar radiation screening material or solar radiation screening composite material Download PDF

Info

Publication number
JP2005231974A
JP2005231974A JP2004046016A JP2004046016A JP2005231974A JP 2005231974 A JP2005231974 A JP 2005231974A JP 2004046016 A JP2004046016 A JP 2004046016A JP 2004046016 A JP2004046016 A JP 2004046016A JP 2005231974 A JP2005231974 A JP 2005231974A
Authority
JP
Japan
Prior art keywords
solar radiation
radiation shielding
fine particles
reo
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004046016A
Other languages
Japanese (ja)
Inventor
Takeshi Naganami
武 長南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2004046016A priority Critical patent/JP2005231974A/en
Publication of JP2005231974A publication Critical patent/JP2005231974A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new standard required for a solar radiation screening material to which rhenium trioxide is applied, a solar radiation screening material and a solar radiation screening composite material satisfying the standard, and a dispersing liquid used for preparing the solar radiation screening material or the solar radiation screening composite material. <P>SOLUTION: The solar radiation screening material containing rhenium trioxide (ReO<SB>3</SB>microparticles) has such a transmittance that the maximum value exists in a wavelength range of 380-650 nm and the minimum value exists in a wavelength range of >650 nm and ≤1,700 nm, and has a solar radiation screening characteristic satisfying the equation (1) at 35%≤VLT≤80%:P/B+0.0525×VLT≥5.3 (wherein the maximum value of the transmittance is P; the minimum value is B; and a visible light transmittance is VLT). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、車両、ビル、事務所、一般住宅等の窓材や、電話ボックス、ショーウィンドー、照明用ランプ、透明ケース等に使用される単板ガラス、合わせガラス、プラスチックス等の日射遮蔽体と日射遮蔽複合体に係り、特に、所定の日射遮蔽特性要件を具備する日射遮蔽体と日射遮蔽複合体およびこれ等日射遮蔽体または日射遮蔽複合体の製造に適用される分散液に関するものである。   The present invention is a solar shading material such as a single plate glass, laminated glass, and plastics used in window materials for vehicles, buildings, offices, ordinary houses, telephone boxes, show windows, lighting lamps, transparent cases, etc. In particular, the present invention relates to a solar shading body and a solar shading composite having predetermined solar shading characteristics requirements and a dispersion applied to the production of these solar shading bodies or solar shading composites. .

太陽光や電球等の外部光源から熱成分を除去・減少する方法として、従来、ガラス表面に赤外線を反射する材料からなる被膜を形成して熱線反射ガラスとすることが行われていた。そして、その材料にはFeOx、CoOx、CrOx、TiOx等の金属酸化物や、Ag、Au、Cu、Ni、Al等の金属材料が選択されてきた。   As a method for removing and reducing a heat component from an external light source such as sunlight or a light bulb, a heat ray reflective glass has been conventionally formed by forming a film made of a material that reflects infrared rays on the glass surface. As the material, metal oxides such as FeOx, CoOx, CrOx, and TiOx, and metal materials such as Ag, Au, Cu, Ni, and Al have been selected.

ところで、これ等の材料には熱効果に大きく寄与する赤外線以外に可視光も同時に反射若しくは吸収する性質があるため、可視光透過率が低下してしまう問題があった。特に、建材、乗り物、電話ボックス等に用いられる基材においては可視光領域で高い透過率が必要とされることから、上記金属酸化物等の材料を利用する場合にその膜厚を非常に薄くしなければならなかった。このため、スプレー焼付けやCVD法、あるいはスパッタ法や真空蒸着法等の物理製膜法を用いて10nmレベルの薄膜に製膜して用いる方法が採られている。   By the way, since these materials have the property of reflecting or absorbing visible light at the same time in addition to infrared rays that greatly contribute to the thermal effect, there has been a problem that the visible light transmittance is lowered. In particular, base materials used for building materials, vehicles, telephone boxes, etc. require high transmittance in the visible light region, so that the film thickness is very thin when using materials such as the above metal oxides. Had to do. For this reason, a method of forming a thin film of 10 nm level using a physical film forming method such as spray baking, CVD method, sputtering method or vacuum vapor deposition method is employed.

しかし、これ等の製膜方法は大がかりな装置や真空設備を必要とし、生産性や大面積化に難点があり、膜の製造コストが高くなる欠点がある。また、これ等の材料で日射遮蔽特性を高くしようとすると可視光領域の反射率も同時に高くなってしまう傾向があり、鏡のようなギラギラした外観を与えて美観を損ねてしまう欠点もあった。更に、これ等の材料で製膜された膜は、抵抗が比較的低くなって電波に対する反射が高くなり、例えば、携帯電話やテレビ、ラジオ等の電波を反射して受信不能になったり、周辺地域に電波障害を引き起こしたりする等の欠点もあった。   However, these film forming methods require a large-scale apparatus and vacuum equipment, and are disadvantageous in productivity and increase in area, and have a drawback that the manufacturing cost of the film becomes high. In addition, if it is attempted to increase the solar shading characteristics with these materials, the reflectance in the visible light region tends to increase at the same time, and there is also a drawback that the appearance is deteriorated by giving a glaring appearance like a mirror. . Furthermore, a film formed of these materials has a relatively low resistance and a high reflection of radio waves. For example, the radio waves of a mobile phone, a TV, a radio, etc. are reflected and cannot be received. There were also drawbacks such as causing radio interference in the area.

このような欠点を改善するためには、膜の物理特性として、可視光領域の光の反射率が低くて赤外線領域の反射率が高く、かつ、膜の表面抵抗値が概ね106Ω/□以上に制御可能な膜である必要があった。 In order to improve such a defect, as the physical properties of the film, the reflectance of light in the visible light region is low, the reflectance in the infrared region is high, and the surface resistance of the film is approximately 10 6 Ω / □. The film must be controllable as described above.

尚、可視光透過率が高く、しかも優れた日射遮蔽機能を持つ材料としては、従来、アンチモン錫酸化物(以下、ATOと略す)やインジウム錫酸化物(以下、ITOと略す)が知られている。   In addition, antimony tin oxide (hereinafter abbreviated as ATO) and indium tin oxide (hereinafter abbreviated as ITO) are known as materials having high visible light transmittance and excellent solar radiation shielding function. Yes.

そして、これ等の材料は可視光反射率が比較的低いためギラギラした外観を与えることはない。但し、プラズマ周波数が近赤外線領域にあるために、可視光により近い近赤外域において反射・吸収効果が未だ十分でなかった。更に、これ等の材料は、単位重量当たりの日射遮蔽力が低いため、高遮蔽機能を得るにはその使用量が多くなってコストが割高となるという問題を有していた。   And since these materials have a relatively low visible light reflectance, they do not give a glaring appearance. However, since the plasma frequency is in the near infrared region, the reflection / absorption effect is still not sufficient in the near infrared region closer to visible light. Furthermore, since these materials have a low solar radiation shielding power per unit weight, there is a problem that the amount used is increased and the cost is expensive in order to obtain a high shielding function.

このような技術的背景の下、本出願人は主に熱線反射特性を示す成分として三酸化レニウムを見出し、この三酸化レニウム微粒子の製造方法およびこの三酸化レニウム微粒子を適用した日射遮蔽体としての熱線反射膜等に関する発明を既に提案している(特許文献1と特許文献2参照)。
特開平9−142846号公報 特開平9−157554号公報
Under such a technical background, the present applicant has found rhenium trioxide as a component mainly exhibiting heat ray reflection characteristics, a method for producing the rhenium trioxide fine particles, and a solar radiation shield to which the rhenium trioxide fine particles are applied. The invention regarding a heat ray reflective film | membrane etc. has already been proposed (refer patent document 1 and patent document 2).
Japanese Patent Laid-Open No. 9-142846 JP-A-9-157554

本発明は、主に熱線反射・吸収特性を示す三酸化レニウム微粒子が適用される上述の発明を更に改良したもので、可視光透過率の興味の範囲である35%〜80%において日射遮蔽体に要求される新規な基準を提供し、かつ、この基準(すなわち日射遮蔽特性要件)を満たした日射遮蔽体と日射遮蔽複合体およびこれ等日射遮蔽体または日射遮蔽複合体の製造に適用される分散液を提供することにある。   The present invention is a further improvement of the above-described invention in which rhenium trioxide fine particles mainly exhibiting heat ray reflection / absorption characteristics are applied, and the solar radiation shielding body is in the range of 35% to 80%, which is an interesting range of visible light transmittance. Applied to the manufacture of solar shields and solar shield composites and these solar shields or solar shield composites that provide the new standards required for and that meet this standard (ie, the requirements for solar shield properties) It is to provide a dispersion.

すなわち、請求項1に係る発明は、
ReO3微粒子を含有する日射遮蔽体を前提とし、
その透過率が、波長380nm以上650nm以下の範囲に極大値を持ちかつ波長650nmを超え1700nm以下の範囲に極小値を持つと共に、透過率の極大値をP、極小値をB、可視光透過率をVLTとしたとき、35%≦VLT≦80%において以下の数式(1)を満たす日射遮蔽特性を有することを特徴とする。
That is, the invention according to claim 1
Assuming a solar shield containing ReO 3 fine particles,
The transmittance has a maximum value in the wavelength range of 380 nm to 650 nm and has a minimum value in the range of more than 650 nm to 1700 nm, and the maximum value of the transmittance is P, the minimum value is B, and the visible light transmittance When VLT is VLT, it has a solar radiation shielding characteristic satisfying the following formula (1) in 35% ≦ VLT ≦ 80%.

P/B+0.0525×VLT≧5.3 (1)
また、請求項2に係る発明は、
請求項1記載の発明に係る日射遮蔽体を前提とし、
ガラス若しくはプラスチックの透明基材とこの上に製膜されたReO3微粒子を含有する日射遮蔽膜とで構成されることを特徴とし、
請求項3に係る発明は、
請求項1記載の発明に係る日射遮蔽体を前提とし、
ReO3微粒子が分散された成形用樹脂母材を平面若しくは立体形状に成形した日射遮蔽成形体により構成されることを特徴とし、
請求項4に係る発明は、
請求項1〜3のいずれかに記載の発明に係る日射遮蔽体を前提とし、
結晶子径が150nm以下、格子定数3.6911〜3.7511の立方晶系の結晶構造を有し、L***表色系における粉体色L*が30〜50、a*が−5〜15、b*が−10〜5である三酸化レニウムにより上記ReO3微粒子が構成されていることを特徴とする。
P / B + 0.0525 × VLT ≧ 5.3 (1)
The invention according to claim 2
On the premise of the solar radiation shield according to the invention of claim 1,
It is composed of a transparent substrate made of glass or plastic and a solar shading film containing ReO 3 fine particles formed thereon,
The invention according to claim 3
On the premise of the solar radiation shield according to the invention of claim 1,
It is characterized by being constituted by a solar shading molded body obtained by molding a molding resin base material in which ReO 3 fine particles are dispersed into a flat or three-dimensional shape,
The invention according to claim 4
On the premise of the solar radiation shield according to any one of claims 1 to 3,
It has a cubic crystal structure with a crystallite diameter of 150 nm or less and a lattice constant of 3.6911 to 3.7511, a powder color L * in the L * a * b * color system of 30 to 50, and a * is The above-mentioned ReO 3 fine particles are composed of rhenium trioxide having −5 to 15 and b * of −10 to 5.

次に、請求項5に係る発明は、
日射遮蔽複合体を前提とし、
請求項2記載の日射遮蔽膜とこれを挟み込む上記ガラス若しくはプラスチックの透明基材と他の基材とで構成され、または、請求項3記載の日射遮蔽成形体とこれを挟み込む一対の基材とで構成されることを特徴とし、
請求項6に係る発明は、
請求項5記載の発明に係る日射遮蔽複合体を前提とし、
結晶子径が150nm以下、格子定数3.6911〜3.7511の立方晶系の結晶構造を有し、L***表色系における粉体色L*が30〜50、a*が−5〜15、b*が−10〜5である三酸化レニウムにより上記ReO3微粒子が構成されていることを特徴とする。
Next, the invention according to claim 5 is:
Assuming a solar shading complex,
The solar radiation shielding film according to claim 2 and the glass or plastic transparent base material sandwiching the solar radiation shielding film and another base material, or the solar radiation shielding molded body according to claim 3 and a pair of base materials sandwiching the solar radiation shielding molded body. It is composed of
The invention according to claim 6
Based on the solar radiation shielding complex according to the invention of claim 5,
It has a cubic crystal structure with a crystallite diameter of 150 nm or less and a lattice constant of 3.6911 to 3.7511, a powder color L * in the L * a * b * color system of 30 to 50, and a * is The above-mentioned ReO 3 fine particles are composed of rhenium trioxide having −5 to 15 and b * of −10 to 5.

また、請求項7に係る発明は、
溶媒とこの溶媒に分散された三酸化レニウム微粒子とを含有し、請求項4記載の日射遮蔽体または請求項6記載の日射遮蔽複合体の製造に適用される分散液を前提とし、
溶媒に分散された三酸化レニウム微粒子の分散粒子径が150nm以下であることを特徴とし、
請求項8に係る発明は、
請求項7記載の発明に係る分散液を前提とし、
インジウム錫酸化物微粒子および/またはアンチモン錫酸化物微粒子が添加されていることを特徴とし、
請求項9に係る発明は、
請求項7または8記載の発明に係る分散液を前提とし、
無機バインダー若しくは樹脂バインダーが含まれていることを特徴とする。
The invention according to claim 7
It contains a solvent and rhenium trioxide fine particles dispersed in the solvent, and presupposes a dispersion applied to the production of the solar radiation shielding body according to claim 4 or the solar radiation shielding composite according to claim 6,
The dispersion particle diameter of the rhenium trioxide fine particles dispersed in the solvent is 150 nm or less,
The invention according to claim 8 provides:
Based on the dispersion according to the invention of claim 7,
Indium tin oxide fine particles and / or antimony tin oxide fine particles are added,
The invention according to claim 9 is:
Based on the dispersion according to the invention of claim 7 or 8,
An inorganic binder or a resin binder is included.

請求項1〜6記載の日射遮蔽体または日射遮蔽複合体によれば、
その透過率が、波長380nm以上650nm以下の範囲に極大値を持ちかつ波長650nmを超え1700nm以下の範囲に極小値を持つと共に、透過率の極大値をP、極小値をB、可視光透過率をVLTとしたとき、35%≦VLT≦80%において以下の数式(1)を満たす日射遮蔽特性を有しているため、可視光を有効に透過しそれ以外の熱線を有効に反射・吸収する効果を有している。
According to the solar radiation shielding body or the solar radiation shielding complex according to claim 1,
The transmittance has a maximum value in the wavelength range of 380 nm to 650 nm and has a minimum value in the range of more than 650 nm to 1700 nm, and the maximum value of the transmittance is P, the minimum value is B, and the visible light transmittance When VLT is VLT, it has solar radiation shielding characteristics satisfying the following formula (1) in 35% ≦ VLT ≦ 80%, so that it effectively transmits visible light and effectively reflects and absorbs other heat rays. Has an effect.

P/B+0.0525×VLT≧5.3 (1)
また、請求項7〜9記載の分散液によれば、
結晶子径が150nm以下、格子定数3.6911〜3.7511の立方晶系の結晶構造を有し、L***表色系における粉体色L*が30〜50、a*が−5〜15、b*が−10〜5である三酸化レニウムにより上記ReO3微粒子が構成され、かつ、溶媒に分散されたこの三酸化レニウム微粒子の分散粒子径が150nm以下であるため、上記日射遮蔽体または日射遮蔽複合体を簡便かつ確実に製造できる効果を有している。
P / B + 0.0525 × VLT ≧ 5.3 (1)
Moreover, according to the dispersion liquid of Claims 7-9,
It has a cubic crystal structure with a crystallite diameter of 150 nm or less and a lattice constant of 3.6911 to 3.7511, a powder color L * in the L * a * b * color system of 30 to 50, and a * is Since the ReO 3 fine particles are composed of rhenium trioxide having −5 to 15 and b * of −10 to 5, and the dispersed particle diameter of the rhenium trioxide fine particles dispersed in the solvent is 150 nm or less, the above It has the effect that a solar radiation shielding body or a solar radiation shielding complex can be manufactured easily and reliably.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

まず、本発明に係る日射遮蔽体若しくは日射遮蔽複合体は、上述したようにその透過率が、波長380nm以上650nm以下の範囲に極大値を持ちかつ波長650nmを超え1700nm以下の範囲に極小値を持つと共に、透過率の極大値をP、極小値をB、可視光透過率をVLTとしたとき、35%≦VLT≦80%において以下の数式(1)を満たす日射遮蔽特性を有することを特徴とするものである。   First, as described above, the solar radiation shielding body or solar radiation shielding composite according to the present invention has a maximum value in the wavelength range of 380 nm to 650 nm and a minimum value in the range of more than 650 nm to 1700 nm. In addition, when the maximum value of transmittance is P, the minimum value is B, and the visible light transmittance is VLT, it has solar radiation shielding characteristics satisfying the following formula (1) when 35% ≦ VLT ≦ 80%. It is what.

P/B+0.0525×VLT≧5.3 (1)
ここで、可視光透過率VLTは可視光透過率算出法(JIS A 5759)に基づき算出されるもので、具体的には、分光光度計を用いて波長380nm〜780nm間において10nm間隔で各波長の分光透過率τ(λ)を測定し、以下の数式(2)により算出した値である。
P / B + 0.0525 × VLT ≧ 5.3 (1)
Here, the visible light transmittance VLT is calculated based on the visible light transmittance calculation method (JIS A 5759), and specifically, each wavelength at intervals of 10 nm between wavelengths 380 nm to 780 nm using a spectrophotometer. The spectral transmittance τ (λ) is measured and calculated by the following formula (2).

Figure 2005231974
ここで、τvは可視光透過率VLT、DλはCIE昼光色D65における分光分布の値(JIS A 5759の添付表参照)、VλはCIE明順応標準比視感度、τ(λ)は分光透過率である。尚、CIEは国際照明委員会の略称である。
Figure 2005231974
Here, τv is a visible light transmittance VLT, Dλ is a spectral distribution value in the CIE daylight color D 65 (see the attached table of JIS A 5759), Vλ is a CIE light adaptation standard relative luminous efficiency, and τ (λ) is a spectral transmittance. It is. CIE is an abbreviation for the International Lighting Commission.

また、上記数式(1)は以下の測定手順に従い得られるものである。すなわち、基準となる分散液(ReO3微粒子、樹脂バインダー若しくは無機バインダーおよび有機溶媒を主成分とする本発明に係る分散液)を適用し、例えば厚さ3mmの透明ガラス若しくは厚さ50μmの透明PETフィルム等の透明基材と、上記分散液により形成された膜厚10μm以下の日射遮蔽膜とでその日射遮蔽特性が合格基準を示す日射遮蔽体を構成し、分光光度計で測定される上記日射遮蔽体の透過プロファイルから透過率の極大値Pと透過率の極小値Bを求めて(極大値P/極小値B)の比を求め、かつ、この値(P/B)を可視光透過率(VLT)に対してプロットする。同様の手順で、上記日射遮蔽膜の膜厚を変化させ(すなわち、膜厚の変化に伴いそのVLTも異なる)かつ日射遮蔽特性が合格基準を示す日射遮蔽体を繰返し複数作成して各々の透過プロファイルを測定すると共に、同様の手順で求めた(極大値P/極小値B)の比を可視光透過率(VLT)に対してプロットし、これ等プロットを直線近似して得られた直線から得ることができる。 Moreover, the said Numerical formula (1) is obtained according to the following measurement procedures. That is, a reference dispersion (ReO 3 fine particles, a resin binder or an inorganic binder, and a dispersion according to the present invention mainly composed of an organic solvent) is applied, for example, a transparent glass having a thickness of 3 mm or a transparent PET having a thickness of 50 μm. The above-mentioned solar radiation measured by a spectrophotometer comprising a transparent base material such as a film and a solar radiation shielding film having a film thickness of 10 μm or less formed of the above dispersion liquid and having a solar radiation shielding characteristic indicating an acceptance criterion. The maximum value P of the transmittance and the minimum value B of the transmittance are obtained from the transmission profile of the shield, the ratio of (maximum value P / minimum value B) is obtained, and this value (P / B) is obtained as the visible light transmittance. Plot against (VLT). In the same procedure, the film thickness of the solar radiation shielding film is changed (that is, the VLT varies with the film thickness change), and a plurality of solar radiation shielding bodies whose solar radiation shielding characteristics show acceptance criteria are repeatedly created and transmitted through each of them. While measuring the profile, the ratio (maximum value P / minimum value B) obtained by the same procedure was plotted against the visible light transmittance (VLT), and these plots were obtained from straight lines obtained by linear approximation. Can be obtained.

尚、膜厚10μm以下の上記被膜のバインダーとしては、UV硬化樹脂やシリケート系バインダーを用いることができるが、可視光領域で透明なものであれば特に限定されるものでない。   In addition, as a binder of the said film with a film thickness of 10 micrometers or less, although UV curable resin and a silicate type | system | group binder can be used, if it is transparent in a visible light area | region, it will not specifically limit.

そして、日射遮蔽体における被膜透過率の極大値と極小値との比(P/B)は、この値が大きいほど日射遮蔽特性が優れる。これは、ReO3微粒子の透過プロファイルは、波長380nm以上650nm以下の範囲に極大値を持ちかつ波長650nmを超え1700nm以下の範囲に極小値を持っており、可視光波長域が380nm〜780nmで、視感度が550nm付近をピークとする釣鐘型であることを考慮すれば明らかである。すなわち、この透過特性から、可視光を有効に透過しそれ以外の熱線を有効に反射・吸収することが理解される。 And as for the ratio (P / B) of the maximum value and the minimum value of the film transmittance in the solar radiation shielding body, the solar radiation shielding characteristics are more excellent as this value is larger. This is because the transmission profile of the ReO 3 fine particles has a maximum value in the wavelength range of 380 nm to 650 nm and a minimum value in the range of more than 650 nm to 1700 nm, and the visible light wavelength range is 380 nm to 780 nm. It is clear considering that the visibility is a bell-shaped peak having a peak near 550 nm. That is, it is understood from this transmission characteristic that visible light is effectively transmitted and other heat rays are effectively reflected and absorbed.

例えば、結晶子径が80nm、格子定数3.74778の立方晶系の結晶構造を有し、L***表色系における粉体色L*が37.8562、a*が13.7497、b*が3.0684で、かつ、分散粒子径が100nmのReO3微粒子、UV硬化樹脂およびシクロペンタノンとトルエンの混合液とを主成分とする基準となる分散液を適用し、可視光透過率(VLT)が異なりかつ日射遮蔽特性が互いに合格基準を示す複数の上記日射遮蔽体を作成すると共に、作成した各日射遮蔽体から(P/B)の値をそれぞれ求め、横軸をVLT、縦軸を(P/B)としてプロットした実験結果によると、日射遮蔽特性が合格基準を示す各日射遮蔽体における透過率の極大値と極小値の比(P/B)は図1の○印で示すように可視光透過率(VLT)の値に伴ってパラボリックに変化する傾向がある。但し、日射遮蔽体として興味の範囲である35%≦VLT≦80%においては十分な精度で直線(数式1)近似が可能である。 For example, it has a cubic crystal structure with a crystallite diameter of 80 nm and a lattice constant of 3.747778, and the powder color L * in the L * a * b * color system is 37.8562, and a * is 13.7497. A reference dispersion mainly composed of ReO 3 fine particles having a b * of 3.0684 and a dispersed particle diameter of 100 nm, a UV curable resin, and a mixed liquid of cyclopentanone and toluene, and visible light A plurality of the above-mentioned solar shields having different transmittances (VLT) and the solar shading characteristics exhibit acceptance criteria are created, and the value of (P / B) is obtained from each created solar shield, and the horizontal axis is VLT. According to the experimental results plotted with the vertical axis as (P / B), the ratio between the maximum value and the minimum value (P / B) of the transmittance in each solar shielding body whose solar radiation shielding characteristics indicate acceptance criteria is shown in FIG. Visible light transmittance (VLT) ) Tends to change in a parabolic manner. However, in the range of 35% ≦ VLT ≦ 80%, which is a range of interest as a solar radiation shield, a straight line (Equation 1) approximation can be performed with sufficient accuracy.

そして、上述した実験で確認されている日射遮蔽特性が合格基準を示す日射遮蔽体における透過率の極大値と極小値の比(P/B)は上記数式(1)の等号で表される直線上に存在するため、日射遮蔽体における透過率の極大値と極小値の比(P/B)が数式(1)の等号で表される直線上の値と同一であるか、その値よりも大きいときはその日射遮蔽体が充分な日射遮蔽特性を具備していることを示している。すなわち、日射遮蔽体およびこの日射遮蔽体を含む日射遮蔽複合体が良好な日射遮蔽特性具備しているためには、数式(1)を満たしていることが必要である。   Then, the ratio (P / B) between the maximum value and the minimum value of the transmittance in the solar radiation shielding body in which the solar radiation shielding characteristics confirmed in the above-described experiment indicates an acceptance criterion is represented by the equal sign of the above formula (1). Since it exists on a straight line, the ratio (P / B) between the maximum value and the minimum value of the transmittance in the solar radiation shield is the same as or equal to the value on the straight line represented by the equal sign of Equation (1) Is larger than that, the solar shading body has sufficient solar shading characteristics. That is, in order for the solar radiation shielding body and the solar radiation shielding composite including this solar radiation shielding body to have good solar radiation shielding characteristics, it is necessary to satisfy the formula (1).

次に、本発明で適用されるReO3微粒子は、結晶子径が150nm以下、格子定数3.6911〜3.7511の立方晶系の結晶構造を有し、L***表色系における粉体色L*が30〜50、a*が−5〜15、b*が−10〜5である三酸化レニウムにより構成することができる。 Next, the ReO 3 fine particles applied in the present invention have a cubic crystal structure with a crystallite diameter of 150 nm or less and a lattice constant of 3.691 to 3.7511, and an L * a * b * color system. Powder color L * is 30-50, a * is -5-15, and b * is -10-5.

ここで、結晶子径は、Sherrer法で求めた値である。また、ReO3微粒子は、例えば、アルコール還元法で製造することができる。但し、上記粉体特性を具備するものであればこの製造方法に限定されるものでない。以下、上記アルコール還元法によるReO3微粒子の製造方法を説明する。 Here, the crystallite diameter is a value obtained by the Sherrer method. The ReO 3 fine particles can be produced, for example, by an alcohol reduction method. However, it is not limited to this manufacturing method as long as it has the above powder characteristics. Hereinafter, a method for producing ReO 3 fine particles by the alcohol reduction method will be described.

まず、レニウム化合物(例えば、過レニウム酸)に還元剤としてアルコールを添加し、これ等をアルコールの沸点以上に加熱し、添加したアルコールを全て除去した後、更に、ReO3が分解する温度以下で熱処理して結晶子径が150nm以下のReO3微粒子を得ることができる。 First, an alcohol as a reducing agent is added to a rhenium compound (for example, perrhenic acid), these are heated to the boiling point or higher of the alcohol, and all the added alcohol is removed, and further, at a temperature lower than the temperature at which ReO 3 decomposes. ReO 3 fine particles having a crystallite diameter of 150 nm or less can be obtained by heat treatment.

次に、ReO3微粒子は、国際照明委員会(CIE)が推奨しているL***表色系(JIS Z8729)における粉体色L*が30〜60、a*が−5〜15、b*が−10〜5の範囲内にあるものが適用される。尚、適用されるReO3微粒子は、結晶としての完全性が高いほど大きい日射遮蔽効果が得られる。但し、結晶性が低くX線回折で極めてブロート゛な回折ピークを生じるようなものであっても、結晶子径が150nm以下、格子定数3.6911〜3.7511の立方晶系の結晶構造を有し、L***表色系における粉体色L*が30〜50、a*が−5〜15、b*が−10〜5の範囲内であるならば所望の日射遮蔽効果を発現することが可能である。 Next, the ReO 3 fine particles have a powder color L * of 30-60 in the L * a * b * color system (JIS Z8729) recommended by the International Commission on Illumination (CIE), and a * of -5. 15, those with b * in the range of -10 to 5 are applied. The applied ReO 3 fine particles have a higher solar shielding effect as the crystal perfection is higher. However, even if the crystallinity is low and an extremely broad diffraction peak is generated by X-ray diffraction, it has a cubic crystal structure with a crystallite diameter of 150 nm or less and a lattice constant of 3.6911 to 3.7511. If the powder color L * in the L * a * b * color system is 30 to 50, a * is -5 to 15, and b * is -10 to 5, the desired solar radiation shielding effect is obtained. It is possible to express.

また、耐湿性を向上させるためには、Si、Ti、Al、Zr等を含有する表面処理剤でReO3微粒子を予め被覆することが好ましい。このときのSiを含有するシラン表面処理剤は疎水性を発揮するものであれば特に限定されず、例えばアルコキシシラン、シラザン、クロロシラン等が挙げられる。 In order to improve moisture resistance, it is preferable to coat ReO 3 fine particles in advance with a surface treatment agent containing Si, Ti, Al, Zr or the like. The Si-containing silane surface treating agent at this time is not particularly limited as long as it exhibits hydrophobicity, and examples thereof include alkoxysilane, silazane, chlorosilane and the like.

次に、本発明に係る日射遮蔽体は、ガラス若しくはプラスチック等の透明基材と、上記ReO3微粒子が溶媒に分散された分散液を透明基材上に塗布して形成された日射遮蔽膜とで構成されたり、あるいは、ReO3微粒子が分散された成形用樹脂母材(ReO3微粒子が分散されたポリカーボネート樹脂、アクリル樹脂、フッ素樹脂、ポリエステル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、エチレン−酢酸ビニル共重合体樹脂等の樹脂母材、あるいは、上記樹脂材料にReO3微粒子が分散された上記分散液を配合させた樹脂母材が例示される)を平面若しくは立体形状に成形した日射遮蔽成形体により構成される。また、本発明に係る日射遮蔽複合体は、上記日射遮蔽膜とこれを挟み込む上記ガラス若しくはプラスチック等の透明基材と他の基材とで構成されたり、あるいは、上記日射遮蔽成形体とこれを挟み込む一対の基材とで構成される。 Next, the solar radiation shielding body according to the present invention includes a transparent base material such as glass or plastic, and a solar radiation shielding film formed by applying a dispersion liquid in which the ReO 3 fine particles are dispersed in a solvent on the transparent base material. in or configured, or, ReO 3 particles molding resin matrix dispersed (ReO 3 particles dispersed polycarbonate resin, acrylic resin, fluorine resin, polyester resin, polyvinyl acetal resins, polyvinyl butyral resins, ethylene - acetate Solar shielding molding in which a resin base material such as a vinyl copolymer resin, or a resin base material in which the above-mentioned dispersion material in which ReO 3 fine particles are dispersed is mixed is formed into a flat or three-dimensional shape. Consists of the body. Further, the solar radiation shielding composite according to the present invention is composed of the solar radiation shielding film and the transparent base material such as glass or plastic sandwiching the solar radiation shielding film and another base material, or the solar radiation shielding molded body and the same. It is comprised with a pair of base material pinched | interposed.

そして、上記溶媒中に分散されるReO3微粒子の分散粒子径が150nm以下まで十分細かく、かつ、均一に分散した分散液を適用することにより上記数式(1)の要件を満たす日射遮蔽体若しくは日射遮蔽複合体を得ることができる。 Then, by applying a dispersion liquid in which the dispersion particle diameter of the ReO 3 fine particles dispersed in the solvent is sufficiently fine and uniformly dispersed to 150 nm or less, a solar radiation shielding body or solar radiation that satisfies the requirements of the above formula (1) A shielding complex can be obtained.

ここで、上記分散粒子径とは、溶媒中のReO3微粒子の凝集粒子径を意味するものであり、市販されている種々の粒度分布計で測定することができる。例えば、ReO3微粒子の凝集体も存在する状態でReO3微粒子が溶媒中に分散された分散液からサンプリングを行い、動的光散乱法を原理とした大塚電子(株)社製ELS−800を用いて測定することができる。上記ReO3微粒子の分散粒径は150nm以下であることが望ましい。150nmを超えて粒径が大きくなると、上記数式(1)の要件を満たすことが難しくなり、単調に透過率の減少した灰色系の日射遮蔽膜や日射遮蔽成形体(板、シート等)になってしまう場合があるからである。また、凝集した粗大粒子が多く含まれると光散乱源となって日射遮蔽膜や日射遮蔽成形体(板、シート等)にしたときに曇り(ヘイズ)が大きくなり、可視光透過率が減少する原因となることがある場合がある。 Here, the dispersed particle size means the aggregated particle size of ReO 3 fine particles in a solvent, and can be measured by various commercially available particle size distribution analyzers. For example, sampling is performed ReO 3 fine particles from the dispersion liquid dispersed in a solvent in the presence also aggregates of ReO 3 particulates, Otsuka Electronics Co., Ltd. ELS-800 were the principle of dynamic light scattering method Can be measured. The dispersed particle diameter of the ReO 3 fine particles is desirably 150 nm or less. When the particle diameter is larger than 150 nm, it becomes difficult to satisfy the requirement of the above formula (1), and it becomes a gray solar shading film or a solar shading molded body (plate, sheet, etc.) having a monotonously reduced transmittance. This is because there are cases in which In addition, when a large amount of aggregated coarse particles is contained, clouding (haze) increases when a sunscreen film or a sunscreen molded body (plate, sheet, etc.) is formed as a light scattering source, and the visible light transmittance decreases. May be the cause.

尚、ReO3微粒子の溶媒への分散方法は、分散液中に均一に分散する方法であれば限定されず、例えば、ビーズミル、ボールミル、サンドミル、ペイントシェーカー、超音波ホモジナイザー等が挙げられる。これ等器材を用いた分散処理条件によって、ReO3微粒子の溶媒中への分散と同時にReO3粒子同士の衝突等による微粒子化も進行し、ReO3粒子をより微粒子化させて分散させることができる(すなわち、粉砕・分散処理される)。 The method of dispersing the ReO 3 fine particles in the solvent is not limited as long as it is a method of uniformly dispersing in the dispersion, and examples thereof include a bead mill, a ball mill, a sand mill, a paint shaker, and an ultrasonic homogenizer. Thereby such distributed processing conditions using equipment, even micronized proceeds by collision of simultaneously ReO 3 grains dispersed and to ReO 3 fine particles in the solvent, it can be dispersed by finer particles the ReO 3 particles (That is, pulverized and dispersed).

次に、上記分散液は、上述したようにReO3微粒子を溶媒中に分散させたものであるが、溶媒は特に限定されるものではなく、塗布条件、塗布環境、および、必要に応じて配合されるバインダーの種類等に合わせて適宜選択すればよい。例えば、水や、エタノール、プロパノール、ブタノール、イソプロピルアルコール、イソブチルアルコール、ジアセトンアルコール等のアルコール類、メチルエーテル、エチルエーテル、プロピルエーテル等のエーテル類、エステル類、アセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノン、イソブチルケトン等のケトン類といった各種の有機溶媒が使用可能であり、必要に応じて酸やアルカリを添加してpH調整してもよい。更に、分散液中の微粒子の分散安定性を一層向上させるためには、各種の界面活性剤、カップリング剤等の添加も勿論可能である。 Next, the dispersion liquid is obtained by dispersing ReO 3 fine particles in a solvent as described above. However, the solvent is not particularly limited, and is blended according to coating conditions, coating environment, and if necessary. What is necessary is just to select suitably according to the kind of binder etc. which are made. For example, water, alcohols such as ethanol, propanol, butanol, isopropyl alcohol, isobutyl alcohol, diacetone alcohol, ethers such as methyl ether, ethyl ether, propyl ether, esters, acetone, methyl ethyl ketone, diethyl ketone, cyclohexanone, Various organic solvents such as ketones such as isobutyl ketone can be used. If necessary, the pH may be adjusted by adding an acid or alkali. Furthermore, in order to further improve the dispersion stability of the fine particles in the dispersion, various surfactants, coupling agents and the like can of course be added.

また、分散液に無機バインダーや樹脂バインダーを配合する場合、バインダーの種類は特に限定されるものではない。無機バインダーとして、例えば、珪素、ジルコニウム、チタン若しくはアルミニウムの金属アルコキシドやこれ等の部分加水分解縮重合物、あるいはオルガノシラザン等が挙げられ、また、樹脂バインダーとして、アクリル樹脂等の熱可塑性樹脂、エポキシ樹脂等の熱硬化性樹脂等が挙げられる。   Moreover, when mix | blending an inorganic binder and a resin binder with a dispersion liquid, the kind of binder is not specifically limited. Examples of the inorganic binder include metal alkoxides of silicon, zirconium, titanium, or aluminum, partially hydrolyzed polycondensation products thereof, or organosilazanes. The resin binder may be a thermoplastic resin such as an acrylic resin, epoxy. Examples thereof include thermosetting resins such as resins.

また、上記分散液を用いてガラス若しくはプラスチック等の透明基材上に日射遮蔽膜を形成したときの膜の導電性は、ReO3微粒子の接触箇所を経由した導電パスに沿って得られるため、例えば、界面活性剤やカップリング剤の量を加減することで導電パスを部分的に切断することにより、106Ω/□以上の表面抵抗値にしてその導電性を低下させることは容易である。また、無機バインダーあるいは樹脂バインダーの含有量の加減によっても導電性を制御することができる。 Moreover, since the conductivity of the film when a solar radiation shielding film is formed on a transparent substrate such as glass or plastic using the above dispersion liquid is obtained along a conductive path via the contact location of the ReO 3 fine particles, For example, by partially cutting the conductive path by adjusting the amount of the surfactant or coupling agent, it is easy to reduce the conductivity to a surface resistance value of 10 6 Ω / □ or more. . Further, the conductivity can be controlled by adjusting the content of the inorganic binder or the resin binder.

次に、本発明に係る日射遮蔽体がガラス若しくはプラスチック等の透明基材とこの上に形成された日射遮蔽膜とで構成される場合、上記分散液に含まれる樹脂バインダーまたは無機バインダーは、塗布、硬化後に上記ReO3微粒子の基材への密着性を向上させ、更に膜の硬度を向上させる効果がある。 Next, when the solar radiation shielding body according to the present invention is composed of a transparent base material such as glass or plastic and a solar radiation shielding film formed thereon, the resin binder or inorganic binder contained in the dispersion is applied. After curing, there is an effect of improving the adhesion of the ReO 3 fine particles to the substrate and further improving the hardness of the film.

また、このようにして得られた日射遮蔽膜上に、更に珪素、ジルコニウム、チタン、若しくはアルミニウムの金属アルコキシド、これ等の部分加水分解縮重合物からなる被膜を第2層として被着し、珪素、ジルコニウム、チタン、若しくはアルミニウムの酸化物膜を形成することで、上記日射遮蔽膜の基材に対する結着力や膜の硬度、耐候性を一層向上させることができる。   Further, a film made of a metal alkoxide of silicon, zirconium, titanium, or aluminum, or a partially hydrolyzed polycondensation product thereof is applied as a second layer on the solar radiation shielding film thus obtained. By forming an oxide film of zirconium, titanium, or aluminum, it is possible to further improve the binding force of the solar radiation shielding film to the base material, the hardness of the film, and the weather resistance.

また、上記樹脂バインダーまたは無機バインダーを含まない分散液により形成される日射遮蔽膜は、ガラス若しくはプラスチック等の透明基材上に上記ReO3微粒子のみが堆積した膜構造になる。そして、このままでも日射遮蔽効果を示すが、この膜上に、珪素、ジルコニウム、チタン、若しくはアルミニウムの金属アルコキシドやこれ等の部分加水分解縮重合物等で構成される無機バインダーまたは樹脂バインダーを含む塗布液を塗布して多層膜構造とするとよい。このようにすることにより、塗布液成分が第1層のReO3微粒子の間隙を埋めるため、膜のヘイズが低減して可視光透過率が向上し、また、上記微粒子の透明基材への結着性が向上する。 Further, the solar radiation shielding film formed from the dispersion containing no resin binder or inorganic binder has a film structure in which only the ReO 3 fine particles are deposited on a transparent substrate such as glass or plastic. And although it shows the solar radiation shielding effect as it is, the coating containing an inorganic binder or a resin binder composed of a metal alkoxide of silicon, zirconium, titanium, or aluminum or a partially hydrolyzed polycondensate of these on the film. A liquid is preferably applied to form a multilayer film structure. By doing so, the coating liquid component fills the gap between the ReO 3 fine particles in the first layer, so that the haze of the film is reduced and the visible light transmittance is improved, and the fine particles are bonded to the transparent substrate. Wearability is improved.

また、ガラス若しくはプラスチック等の透明基材上への分散液の塗布方法は任意であり、スピンコート法、バーコート法、スプレーコート法、ディップコート法、スクリーン印刷法、ロールコート法、流し塗り等、上記分散液を平坦かつ薄く均一に塗布できる方法であればいずれの方法でもよい。   In addition, the method of applying the dispersion onto a transparent substrate such as glass or plastic is arbitrary, such as spin coating, bar coating, spray coating, dip coating, screen printing, roll coating, flow coating, etc. Any method can be used as long as the dispersion can be applied flatly, thinly and uniformly.

また、珪素、ジルコニウム、チタン、若しくはアルミニウムの金属アルコキシドやこれ等の部分加水分解縮重合物等で構成される無機バインダーを含む分散液の塗布後における透明基材の加熱温度は100℃以上が好ましく、より好ましくは分散液中の溶媒の沸点以上で加熱を行うことが望ましい。100℃未満では塗膜中に含まれるアルコキシドまたはその加水分解重合物の重合反応が未完結で残る場合が多く、また水や有機溶媒が膜中に残留して加熱後の膜の可視光透過率の低減の原因となるからである。   Further, the heating temperature of the transparent substrate after application of a dispersion containing an inorganic binder composed of a metal alkoxide of silicon, zirconium, titanium, or aluminum or a partially hydrolyzed condensation polymer thereof is preferably 100 ° C. or higher. More preferably, the heating is performed at a temperature equal to or higher than the boiling point of the solvent in the dispersion. When the temperature is lower than 100 ° C., the polymerization reaction of the alkoxide contained in the coating film or its hydrolyzed polymer often remains incomplete, and the visible light transmittance of the film after heating with water or an organic solvent remaining in the film. It is because it becomes a cause of reduction of this.

また、樹脂バインダーを使用した場合は、それぞれの樹脂の硬化方法に従って硬化させればよい。例えば、紫外線硬化樹脂であれば紫外線を適宜照射すればよく、また常温硬化樹脂であれば塗布後そのまま放置しておけばよい。このため、既存の窓ガラス等への現場での塗布が可能である。   Moreover, what is necessary is just to harden according to the hardening method of each resin, when a resin binder is used. For example, if it is an ultraviolet curable resin, it may be irradiated with ultraviolet rays as appropriate, and if it is a room temperature curable resin, it may be left as it is after application. For this reason, the application | coating in the field to the existing window glass etc. is possible.

そして、本発明に係る日射遮蔽体が、例えば、ガラス若しくはプラスチック等の透明基材とこの上に形成された日射遮蔽膜とで構成される場合、ReO3微粒子が上記日射遮蔽膜内に適度に分散しているため、結晶が緻密に埋めた鏡面状表面をもつ物理製膜法による酸化物薄膜に比べて可視光領域での反射が少なく、ギラギラした外観を呈する弊害を回避することができる。その一方で、可視域から近赤外域にプラズマ周波数をもつため、これに伴うプラズマ反射が近赤外域で大きくなる。尚、可視光領域の反射を更に抑制したい場合には、ReO3微粒子が分散された日射遮蔽膜の上にSiO2やMgF2のような低屈折率の膜を製膜することにより容易に視感反射率1%以下の多層膜を得ることができる。 The solar radiation-shielding body according to the present invention, for example, if composed of a transparent substrate and a solar radiation shielding film formed on this, such as glass or plastic, moderately ReO 3 particles in the solar radiation shielding film Since it is dispersed, reflection in the visible light region is less than that of an oxide thin film formed by a physical film-forming method having a mirror-like surface in which crystals are densely filled, and an adverse effect of a glaring appearance can be avoided. On the other hand, since there is a plasma frequency from the visible region to the near infrared region, the plasma reflection associated therewith increases in the near infrared region. If it is desired to further suppress the reflection in the visible light region, a low refractive index film such as SiO 2 or MgF 2 is easily formed on the solar radiation shielding film in which the ReO 3 fine particles are dispersed. A multilayer film having a reflectance of 1% or less can be obtained.

次に、本発明に係る日射遮蔽体が、上記成形用樹脂母材を平面若しくは立体形状に成形した日射遮蔽成形体により構成される場合について説明する。   Next, the case where the solar radiation shielding body according to the present invention is constituted by a solar radiation shielding molded body obtained by molding the molding resin base material into a flat or three-dimensional shape will be described.

まず、ReO3微粒子が分散された上記成形用樹脂母材は、ポリカーボネート樹脂、アクリル樹脂、フッ素樹脂、ポリエステル樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、エチレン−酢酸ビニル共重合体樹脂等の樹脂材料中に上記ReO3微粒子が均一に分散されて成るもので、ReO3微粒子と上記樹脂材料とを一般的なリボンブレンダー、タンブラー、ナウターミキサー、ヘンシェルミキサー等の混合機、および、バンバリーミキサー、ニーダー、ロール、一軸押出機、二軸押出機等の混練機で均一に溶融混合する方法により得ることができる。尚、上記樹脂材料に本発明に係る分散液を直接練り込んで得ることも可能である。 First, the molding resin base material in which ReO 3 fine particles are dispersed is a resin material such as a polycarbonate resin, an acrylic resin, a fluororesin, a polyester resin, a polyvinyl acetal resin, a polyvinyl butyral resin, or an ethylene-vinyl acetate copolymer resin. The ReO 3 fine particles are uniformly dispersed, and the ReO 3 fine particles and the resin material are mixed with a general ribbon blender, tumbler, nauter mixer, Henschel mixer, etc., and a Banbury mixer, a kneader, It can be obtained by a method of uniformly melting and mixing with a kneader such as a roll, a single screw extruder, a twin screw extruder or the like. Note that the dispersion according to the present invention can be directly kneaded into the resin material.

そして、このようにして得られた成形用樹脂母材を、射出成形、押出成形、圧縮成形等の公知の成形方法によって平面状や曲面状(すなわち、平面若しくは立体形状)に成形することにより上記日射遮蔽成形体を製造することができる。また、上記樹脂材料中にReO3微粒子が均一に分散した混合物を造粒装置により一旦ペレット化し、このペレットを樹脂中に添加混合し、上記方法と同様の成形方法により日射遮蔽成形体を製造することもできる。尚、日射遮蔽成形体の厚さは板状から薄いフィルム状まで必要に応じて任意の厚さに調整することが可能である。 The molding resin base material thus obtained is molded into a planar shape or a curved surface shape (that is, a planar shape or a three-dimensional shape) by a known molding method such as injection molding, extrusion molding, or compression molding. A solar shading compact can be produced. Further, the mixture in which the ReO 3 fine particles are uniformly dispersed in the resin material is once pelletized by a granulating apparatus, and the pellet is added and mixed in the resin, and a solar shading molded article is manufactured by a molding method similar to the above method. You can also. In addition, the thickness of a solar radiation shielding molded object can be adjusted to arbitrary thickness from a plate shape to a thin film shape as needed.

次に、本発明に係る日射遮蔽複合体として、上記日射遮蔽成形体とこれを挟み込む一対の基材とで構成される場合を例に挙げて説明すると、シート状に成形された日射遮蔽成形体を中間膜としてこれを2枚のガラス板で挟み込み、オートクレーブで圧着して製造することができる。   Next, as an example of the solar radiation shielding composite according to the present invention, the solar radiation shielding molded body and a pair of base materials sandwiching the solar radiation shielding molded body will be described as an example. Can be produced by sandwiching the film between two glass plates and crimping with an autoclave.

更に、本発明に係る日射遮蔽体若しくは日射遮蔽複合体に紫外線遮蔽機能を付与させるため、無機系の酸化チタンや酸化亜鉛、酸化セリウム等の粒子、有機系のベンゾフェノンやベンゾトリアゾール等の1種若しくは2種以上を添加してもよい。また、透過率を向上させるため、ATO、ITO、アルミニウム添加酸化亜鉛(以下、AZOと略す)等の粒子を更に混合してもよい。これ等の透明粒子は、添加量を増すと750nm付近の透過率が増加し、近赤外線を遮蔽するため可視光透過率が高く、かつ、日射遮蔽特性のより高い日射遮蔽体若しくは日射遮蔽複合体が得られる。ATO、ITO、AZO等の粒子が分散した分散液に本発明に係る上記分散液を添加すれば、ReO3の膜色は青色なため、形成された膜が着色すると同時にその日射遮蔽効果を補助することもできる。この場合、主体となるATOやITO等に対してほんの僅かの添加量で日射遮蔽効果を補助でき、ATOやITOの必要量の大幅な減少が図れ、分散液コストを低減できる。 Further, in order to impart an ultraviolet shielding function to the solar radiation shielding body or the solar radiation shielding complex according to the present invention, particles of inorganic titanium oxide, zinc oxide, cerium oxide, etc., one kind of organic benzophenone, benzotriazole, or the like Two or more kinds may be added. In order to improve the transmittance, particles such as ATO, ITO, and aluminum-added zinc oxide (hereinafter abbreviated as AZO) may be further mixed. When these transparent particles are added, the transmittance near 750 nm increases, the near-infrared rays are shielded, the visible light transmittance is high, and the solar radiation shielding body or solar radiation shielding composite having higher solar radiation shielding characteristics. Is obtained. If the dispersion liquid according to the present invention is added to a dispersion liquid in which particles such as ATO, ITO, and AZO are dispersed, the film color of ReO 3 is blue, so that the formed film is colored and at the same time assists the solar radiation shielding effect. You can also In this case, the solar radiation shielding effect can be assisted with only a small addition amount with respect to ATO or ITO as a main component, the required amount of ATO or ITO can be greatly reduced, and the dispersion cost can be reduced.

また、本発明に係る分散液は、焼成時の熱による液体成分の分解あるいは化学反応を利用して目的の日射遮蔽体を形成するものではないため、特性の安定した日射遮蔽体を形成することができる。   Further, the dispersion according to the present invention does not form the desired solar shading body by utilizing the decomposition or chemical reaction of the liquid component due to the heat at the time of firing, and therefore forms the solar shading body with stable characteristics. Can do.

また、日射遮蔽効果を発揮する上記ReO3微粒子は無機材料であるため、有機材料と比べて耐候性に優れており、例えば、太陽光線(紫外線)の当たる部位に使用しても色や諸機能の劣化はほとんど生じない。 In addition, since the ReO 3 fine particles exhibiting a solar radiation shielding effect are inorganic materials, they are superior in weather resistance compared to organic materials. For example, even if they are used in a part exposed to sunlight (ultraviolet rays), colors and functions Almost no deterioration occurs.

以下、本発明について実施例を挙げて具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples.

各実施例並びに比較例1において適用されている微粒子a〜lの粉体色(標準光源D65、10°視野)、および、各微粒子が分散された分散液を用いて得られた日射遮蔽体(日射遮蔽複合体)A〜Lの光学特性については、日立製作所(株)製の分光光度計U−4000を用いて測定した。   The powder color (standard light source D65, 10 ° field of view) of the fine particles a to 1 applied in each example and comparative example 1, and a solar radiation shield obtained using a dispersion liquid in which each fine particle is dispersed ( The optical characteristics of the solar radiation shielding composites A to L were measured using a spectrophotometer U-4000 manufactured by Hitachi, Ltd.

また、日射遮蔽特性については、各日射遮蔽体(日射遮蔽複合体)の透過プロファイルから透過率の極大値P、極小値Bおよび可視光透過率VLTを求めると共に、得られた各数値から上述した数式(1)「P/B+0.0525×VLT≧5.3」の左辺の値として求めている。   Further, regarding the solar radiation shielding characteristics, the maximum value P, the minimum value B, and the visible light transmittance VLT of the transmittance are obtained from the transmission profile of each solar radiation shielding body (solar radiation shielding complex), and the above-described numerical values are described above. It is calculated as the value on the left side of Equation (1) “P / B + 0.0525 × VLT ≧ 5.3”.

尚、各実施例の可視光透過率VLTは、日射遮蔽膜、日射遮蔽成形体の膜厚で制御したり、あるいは、上記日射遮蔽成形体が日射遮蔽複合体の一部を構成する中間膜の場合にはこの中間膜中に分散させるフィラー量で制御している。   The visible light transmittance VLT of each example is controlled by the film thickness of the solar radiation shielding film and the solar radiation shielding molded body, or the solar radiation shielding molded body is an intermediate film constituting a part of the solar radiation shielding composite. In some cases, the amount of filler dispersed in the intermediate film is controlled.

過レニウム酸水溶液(ReO3換算で60%含有)39.9gとメタノール58.5gを500mlのセパラブルフラスコ入れて混合し、攪拌しながら窒素雰囲気下110℃で加熱した。加熱途中でメタノール175.5gを3回に分けて追加した後、溶媒を蒸発させた。その後、250℃で2時間更に加熱して溶媒を完全に蒸発させ、ReO3微粒子を得た。該微粒子の粉体色は、L*が34.6700、a*が4.9827、b*が−1.7658で、格子定数が3.74904で、結晶子径は50.5nmであった。 39.9 g of a perrhenic acid aqueous solution (containing 60% in terms of ReO 3 ) and 58.5 g of methanol were mixed in a 500 ml separable flask, and heated at 110 ° C. in a nitrogen atmosphere while stirring. During the heating, 175.5 g of methanol was added in three portions, and then the solvent was evaporated. Thereafter, the mixture was further heated at 250 ° C. for 2 hours to completely evaporate the solvent, thereby obtaining ReO 3 fine particles. The fine particles had a powder color of L * of 34.6700, a * of 4.9827, b * of −1.7658, a lattice constant of 3.74904, and a crystallite diameter of 50.5 nm.

次に、該ReO3微粒子5重量%、高分子系分散剤5重量%、メチルイソブチルケトン90重量%を直径0.3mmのZrO2ビーズを入れたペイントシェーカーで8時間粉砕・分散処理することによってReO3の分散液(A液)を調製した。ここで、分散液(A液)内におけるReO3粒子の分散粒子径は、粉砕・分散処理によって表1に示されているように71nmであった。 Next, 5% by weight of the ReO 3 fine particles, 5% by weight of a polymeric dispersant, and 90% by weight of methyl isobutyl ketone were pulverized and dispersed for 8 hours in a paint shaker containing 0.3 mm diameter ZrO 2 beads. A dispersion (Resolution A) of ReO 3 was prepared. Here, the dispersion particle diameter of the ReO 3 particles in the dispersion liquid (liquid A) was 71 nm as shown in Table 1 by pulverization / dispersion treatment.

次に、得られたReO3の分散液(A液)0.5gと、UV硬化樹脂0.8g(樹脂固形分50%、残トルエン)とをよく混合・攪拌して分散液(B液)を調製した。 Next, 0.5 g of the obtained ReO 3 dispersion (liquid A) and 0.8 g of UV curable resin (resin solid content 50%, residual toluene) were mixed and stirred well to obtain a dispersion (liquid B). Was prepared.

次に、この分散液(B液)をバーNo4のバーコーターを用いて厚さ50μmのPET(ポリエチレンテレフタレート)フィルム上へ塗布した後、70℃、1分の条件で高圧水銀ランプを照射し、実施例1に係る日射遮蔽体Aを得た。   Next, this dispersion (liquid B) was applied onto a 50 μm thick PET (polyethylene terephthalate) film using a bar coater of No. 4 bar, and then irradiated with a high pressure mercury lamp at 70 ° C. for 1 minute. A solar shading body A according to Example 1 was obtained.

得られた日射遮蔽体Aの透過プロファイルを図2に示す。   The transmission profile of the obtained solar shield A is shown in FIG.

得られた透過プロファイルから透過率の極大値P、極小値Bを求め、かつ、上述した可視光透過率の算出法(JIS A 5759)により可視光透過率VLTの値を求めると共に、これ等数値を上記数式(1)に代入して日射遮蔽特性を求めたところ、以下の表1に示すように5.3%であった。   The maximum value P and minimum value B of the transmittance are obtained from the obtained transmission profile, and the value of the visible light transmittance VLT is obtained by the above-described method for calculating the visible light transmittance (JIS A 5759). Was substituted into the above formula (1) to determine the solar radiation shielding characteristics, and as shown in Table 1 below, it was 5.3%.

すなわち、実施例1に係る日射遮蔽体Aは数式(1)「P/B+0.0525×VLT≧5.3」の要件を満たしており良好な日射遮蔽特性を具備していた。   That is, the solar radiation shielding body A according to Example 1 satisfied the requirement of Formula (1) “P / B + 0.0525 × VLT ≧ 5.3”, and had good solar radiation shielding characteristics.

バーNo8のバーコーターを用いて塗布した以外は実施例1と同様にして実施例2に係る日射遮蔽体Bを得た。   A solar radiation shield B according to Example 2 was obtained in the same manner as in Example 1 except that coating was performed using a bar coater of bar No. 8.

そして、実施例1と同様にして透過率の極大値P、極小値Bおよび可視光透過率VLTの値を求めた後、上記数式(1)に代入して日射遮蔽特性を求めたところ、以下の表1に示すように5.5%であった。   And after calculating | requiring the value of the maximum value P of the transmittance | permeability, the value B of the visible light transmittance | permeability VLT like Example 1, and substituting into the said Numerical formula (1), the solar radiation shielding characteristic was calculated | required, As shown in Table 1, it was 5.5%.

すなわち、実施例2に係る日射遮蔽体Bも数式(1)「P/B+0.0525×VLT≧5.3」の要件を満たしており良好な日射遮蔽特性を具備していた。   That is, the solar shading body B according to Example 2 also satisfied the requirement of the formula (1) “P / B + 0.0525 × VLT ≧ 5.3” and had good solar shading characteristics.

バーNo24のバーコーターを用いて塗布した以外は実施例1と同様にして実施例3に係る日射遮蔽体Cを得た。   A solar shading body C according to Example 3 was obtained in the same manner as in Example 1 except that coating was performed using a bar coater of bar No. 24.

そして、実施例1と同様にして透過率の極大値P、極小値Bおよび可視光透過率VLTの値を求めた後、上記数式(1)に代入して日射遮蔽特性を求めたところ、以下の表1に示すように7.4%であった。   And after calculating | requiring the value of the maximum value P of the transmittance | permeability, the value B of the visible light transmittance | permeability VLT like Example 1, and substituting into the said Numerical formula (1), the solar radiation shielding characteristic was calculated | required, As shown in Table 1, it was 7.4%.

すなわち、実施例3に係る日射遮蔽体Cも数式(1)「P/B+0.0525×VLT≧5.3」の要件を満たしており良好な日射遮蔽特性を具備していた。   That is, the solar radiation shielding body C according to Example 3 also satisfied the requirement of the formula (1) “P / B + 0.0525 × VLT ≧ 5.3” and had good solar radiation shielding characteristics.

ReO3微粒子を求める際の250℃で2時間の加熱処理に代え、150℃で2時間とした以外は実施例1と同様にして実施例4に係る日射遮蔽体Dを得た。 A solar shading body D according to Example 4 was obtained in the same manner as in Example 1 except that the heat treatment was performed at 250 ° C. for 2 hours at the time of obtaining ReO 3 fine particles, except that 150 ° C. was set for 2 hours.

そして、実施例1と同様にして透過率の極大値P、極小値Bおよび可視光透過率VLTの値を求めた後、上記数式(1)に代入して日射遮蔽特性を求めたところ、以下の表1に示すように5.3%であった。   And after calculating | requiring the value of the maximum value P of the transmittance | permeability, the value B of the visible light transmittance | permeability VLT like Example 1, and substituting into the said Numerical formula (1), the solar radiation shielding characteristic was calculated | required, As shown in Table 1, it was 5.3%.

すなわち、実施例4に係る日射遮蔽体Dも数式(1)「P/B+0.0525×VLT≧5.3」の要件を満たしており良好な日射遮蔽特性を具備していた。   That is, the solar shading body D according to Example 4 also satisfied the requirement of the formula (1) “P / B + 0.0525 × VLT ≧ 5.3” and had good solar shading characteristics.

ReO3微粒子を求める際の250℃で2時間の加熱処理に代え、310℃で2時間とした以外は実施例1と同様にして実施例5に係る日射遮蔽体Eを得た。 A solar radiation shield E according to Example 5 was obtained in the same manner as in Example 1 except that the heat treatment was performed at 250 ° C. for 2 hours at the time of obtaining the ReO 3 fine particles, and that the temperature was 310 ° C. for 2 hours.

そして、実施例1と同様にして透過率の極大値P、極小値Bおよび可視光透過率VLTの値を求めた後、上記数式(1)に代入して日射遮蔽特性を求めたところ、以下の表1に示すように5.4%であった。   And after calculating | requiring the value of the maximum value P of the transmittance | permeability, the value B of the visible light transmittance | permeability VLT like Example 1, and substituting into the said Numerical formula (1), the solar radiation shielding characteristic was calculated | required, As shown in Table 1, it was 5.4%.

すなわち、実施例5に係る日射遮蔽体Eも数式(1)「P/B+0.0525×VLT≧5.3」の要件を満たしており良好な日射遮蔽特性を具備していた。   That is, the solar radiation shielding body E according to Example 5 also satisfied the requirement of the formula (1) “P / B + 0.0525 × VLT ≧ 5.3” and had good solar radiation shielding characteristics.

ReO3微粒子を求める際の250℃で2時間の加熱処理に代え、150℃で2時間とした以外は実施例1と同様にしてReO3微粒子を求め、かつ、実施例3と同様にバーNo24のバーコーターを用いて塗布した以外は実施例1と同様にして実施例6に係る日射遮蔽体Fを得た。 ReO 3 fine particles were obtained in the same manner as in Example 1 except that the heat treatment was performed at 250 ° C. for 2 hours instead of the heat treatment at 250 ° C. for obtaining ReO 3 fine particles. The solar radiation shielding body F which concerns on Example 6 was obtained like Example 1 except having apply | coated using the bar coater.

そして、実施例1と同様にして透過率の極大値P、極小値Bおよび可視光透過率VLTの値を求めた後、上記数式(1)に代入して日射遮蔽特性を求めたところ、以下の表1に示すように5.5%であった。   And after calculating | requiring the value of the maximum value P of the transmittance | permeability, the value B of the visible light transmittance | permeability VLT like Example 1, and substituting into the said Numerical formula (1), the solar radiation shielding characteristic was calculated | required, As shown in Table 1, it was 5.5%.

すなわち、実施例6に係る日射遮蔽体Fも数式(1)「P/B+0.0525×VLT≧5.3」の要件を満たしており良好な日射遮蔽特性を具備していた。   That is, the solar shading body F according to Example 6 also satisfied the requirement of the formula (1) “P / B + 0.0525 × VLT ≧ 5.3” and had good solar shading characteristics.

ReO3微粒子を求める際の250℃で2時間の加熱処理に代え、310℃で2時間とした以外は実施例1と同様にしてReO3微粒子を求め、かつ、実施例3と同様にバーNo24のバーコーターを用いて塗布した以外は実施例1と同様にして実施例7に係る日射遮蔽体Gを得た。 ReO 3 fine particles were obtained in the same manner as in Example 1 except that the heat treatment was performed at 250 ° C. for 2 hours instead of 250 ° C. for obtaining ReO 3 fine particles, and bar No. 24 was obtained in the same manner as in Example 3. The solar radiation shielding body G which concerns on Example 7 was obtained like Example 1 except having apply | coated using the bar coater.

そして、実施例1と同様にして透過率の極大値P、極小値Bおよび可視光透過率VLTの値を求めた後、上記数式(1)に代入して日射遮蔽特性を求めたところ、以下の表1に示すように8.8%であった。   And after calculating | requiring the value of the maximum value P of the transmittance | permeability, the value B of the visible light transmittance | permeability VLT like Example 1, and substituting into the said Numerical formula (1), the solar radiation shielding characteristic was calculated | required, As shown in Table 1, it was 8.8%.

すなわち、実施例7に係る日射遮蔽体Gも数式(1)「P/B+0.0525×VLT≧5.3」の要件を満たしており良好な日射遮蔽特性を具備していた。   That is, the solar radiation shielding body G according to Example 7 also satisfied the requirement of the mathematical formula (1) “P / B + 0.0525 × VLT ≧ 5.3” and had good solar radiation shielding characteristics.

実施例1におけるReO3の分散液(A液)を樹脂材料としてのポリビニルブチラールに添加し、かつ、可塑剤としてトリエチレングリコール−ジ−2−エチルブチレートを加え、ReO3微粒子濃度が0.0164重量%、ポリビニルブチラール濃度が71.1重量%となるように調製して中間膜用組成物を得た。 Dispersion of ReO 3 in Example 1 (A solution) was added to a polyvinyl butyral as a resin material, and triethylene glycol as a plasticizer - di-2-ethyl butyrate was added, ReO 3 particle concentration is 0. An intermediate film composition was obtained by preparing such that 0164% by weight and the polyvinyl butyral concentration was 71.1% by weight.

次に、この組成物をロールで混練して厚さ0.76mmのシート状に成形し中間膜を作製した後、厚さ約2mmで寸法100mm×100mmの2枚のグリーンガラス基板の間に上記中間膜を挟み込み、80℃に加熱して仮接着し、更に、140℃、14Kg/cm2のオートクレーブにより本接着を行って実施例8に係る日射遮蔽複合体Hすなわち合わせガラスHを作製した。 Next, the composition was kneaded with a roll and formed into a sheet having a thickness of 0.76 mm to produce an intermediate film, and then the above-mentioned between two green glass substrates having a thickness of about 2 mm and a size of 100 mm × 100 mm. The intermediate film was sandwiched, heated to 80 ° C. and temporarily bonded, and further subjected to main bonding by an autoclave at 140 ° C. and 14 Kg / cm 2 to prepare a solar radiation shielding composite H according to Example 8, that is, laminated glass H.

そして、実施例1と同様にして透過率の極大値P、極小値Bおよび可視光透過率VLTの値を求めた後、上記数式(1)に代入して日射遮蔽特性を求めたところ、以下の表1に示すように6.1%であった。   And after calculating | requiring the value of the maximum value P of the transmittance | permeability, the value B of the visible light transmittance | permeability VLT like Example 1, and substituting into the said Numerical formula (1), the solar radiation shielding characteristic was calculated | required, As shown in Table 1, it was 6.1%.

すなわち、実施例8に係る日射遮蔽複合体Hも数式(1)「P/B+0.0525×VLT≧5.3」の要件を満たしており良好な日射遮蔽特性を具備していた。   That is, the solar radiation shielding composite H according to Example 8 also satisfied the requirement of the mathematical formula (1) “P / B + 0.0525 × VLT ≧ 5.3” and had good solar radiation shielding characteristics.

比表面積77.6m2/gのインジウム錫酸化物(ITO)微粒子30重量%、イソブチルアルコール56重量%、分散剤14重量%を混合し、直径0.15mmのガラスビーズと共に容器に充填した後、1時間のビーズミル分散処理を施してITO分散液(C液)を調製した。 After mixing 30% by weight of indium tin oxide (ITO) fine particles having a specific surface area of 77.6 m 2 / g, 56% by weight of isobutyl alcohol, and 14% by weight of a dispersant, and filling the container with glass beads having a diameter of 0.15 mm, An ITO dispersion liquid (C liquid) was prepared by performing a bead mill dispersion treatment for 1 hour.

そして、実施例1におけるReO3の分散液(A液)とこのC液をよく混合し、希釈剤としてメチルイソブチルケトンを添加し、ReO3濃度0.0106重量%、ITO濃度0.14重量%の分散液を調製した以外は実施例8と同様にして中間膜用組成物と中間膜を作製し、実施例9に係る日射遮蔽複合体Iすなわち合わせガラスIを得た。 Then, the ReO 3 dispersion (liquid A) in Example 1 and this liquid C were mixed well, methyl isobutyl ketone was added as a diluent, and the ReO 3 concentration was 0.0106 wt% and the ITO concentration was 0.14 wt%. An intermediate film composition and an intermediate film were produced in the same manner as in Example 8 except that the dispersion liquid of No. 1 was prepared, and a solar radiation shielding composite I, that is, a laminated glass I according to Example 9 was obtained.

そして、実施例1と同様にして透過率の極大値P、極小値Bおよび可視光透過率VLTの値を求めた後、上記数式(1)に代入して日射遮蔽特性を求めたところ、以下の表1に示すように6.1%であった。   And after calculating | requiring the value of the maximum value P of the transmittance | permeability, the value B of the visible light transmittance | permeability VLT like Example 1, and substituting into the said Numerical formula (1), the solar radiation shielding characteristic was calculated | required, As shown in Table 1, it was 6.1%.

すなわち、実施例9に係る日射遮蔽複合体Iも数式(1)「P/B+0.0525×VLT≧5.3」の要件を満たしており良好な日射遮蔽特性を具備していた。   That is, the solar radiation shielding complex I according to Example 9 also satisfied the requirement of the formula (1) “P / B + 0.0525 × VLT ≧ 5.3” and had good solar radiation shielding characteristics.

比表面積43.7m2/gのアンチモン錫酸化物(ATO)微粒子30重量%、イソブチルアルコール55重量%、分散剤15重量を混合し、直径0.15mmのガラスビーズと共に容器に充填した後、1.5時間のビーズミル分散処理を施してATO分散液(D液)を調製した。 After mixing 30% by weight of antimony tin oxide (ATO) fine particles having a specific surface area of 43.7 m 2 / g, 55% by weight of isobutyl alcohol, and 15% by weight of a dispersant, the mixture was filled into a container together with glass beads having a diameter of 0.15 mm. A bead mill dispersion treatment was performed for 5 hours to prepare an ATO dispersion liquid (liquid D).

そして、実施例1におけるReO3の分散液(A液)とこのD液をよく混合し、希釈剤としてメチルイソブチルケトンを添加し、ReO3濃度0.0168重量%、ATO微粒子濃度0.14重量%の分散液を調製した以外は実施例8と同様にして中間膜用組成物と中間膜を作製し、実施例10に係る日射遮蔽複合体Jすなわち合わせガラスJを得た。 Then, the ReO 3 dispersion (liquid A) in Example 1 and this liquid D were mixed well, methyl isobutyl ketone was added as a diluent, the ReO 3 concentration was 0.0168 wt%, and the ATO fine particle concentration was 0.14 wt. An intermediate film composition and an interlayer film were produced in the same manner as in Example 8 except that a% dispersion liquid was prepared, and a solar radiation shielding composite J, that is, a laminated glass J according to Example 10, was obtained.

そして、実施例1と同様にして透過率の極大値P、極小値Bおよび可視光透過率VLTの値を求めた後、上記数式(1)に代入して日射遮蔽特性を求めたところ、以下の表1に示すように6.4%であった。   And after calculating | requiring the value of the maximum value P of the transmittance | permeability, the value B of the visible light transmittance | permeability VLT like Example 1, and substituting into the said Numerical formula (1), the solar radiation shielding characteristic was calculated | required, As shown in Table 1, it was 6.4%.

すなわち、実施例10に係る日射遮蔽複合体Jも数式(1)「P/B+0.0525×VLT≧5.3」の要件を満たしており良好な日射遮蔽特性を具備していた。   That is, the solar radiation shielding composite J according to Example 10 also satisfied the requirement of the formula (1) “P / B + 0.0525 × VLT ≧ 5.3” and had good solar radiation shielding characteristics.

ReO3微粒子を求める際、過レニウム酸に代えてReとRe27とを適用し、かつ、ReとRe27とを1:1で混合した後、250℃で3時間熱処理した以外は実施例1と同様にしてReO3微粒子を得、このReO3微粒子を用い実施例1と同様にして実施例11に係る日射遮蔽体Kを得た。尚、ReO3微粒子を求める際、ペイントシェーカーでの粉砕・分散処理時間は4時間とした。 When obtaining ReO 3 fine particles, except that Re and Re 2 O 7 were applied instead of perrhenic acid, and Re and Re 2 O 7 were mixed at 1: 1, followed by heat treatment at 250 ° C. for 3 hours. It is to give the ReO 3 fine particles in the same manner as in example 1 to obtain a solar radiation-shielding body K according to example 11 in the same manner as in example 1 using the ReO 3 particles. When obtaining the ReO 3 fine particles, the pulverizing / dispersing time in the paint shaker was 4 hours.

そして、実施例1と同様にして透過率の極大値P、極小値Bおよび可視光透過率VLTの値を求めた後、上記数式(1)に代入して日射遮蔽特性を求めたところ、以下の表1に示すように5.5%であった。   And after calculating | requiring the value of the maximum value P of the transmittance | permeability, the value B of the visible light transmittance | permeability VLT like Example 1, and substituting into the said Numerical formula (1), the solar radiation shielding characteristic was calculated | required, As shown in Table 1, it was 5.5%.

すなわち、実施例11に係る日射遮蔽体Kも数式(1)「P/B+0.0525×VLT≧5.3」の要件を満たしており良好な日射遮蔽特性を具備していた。
[比較例1]
実施例1において、ペイントシェーカーで4分間粉砕・分散処理し、ReO3微粒子の分散粒子径を177nmとした点を除き実施例1と同様にして比較例1に係る日射遮蔽体Lを得た。
That is, the solar shading body K according to Example 11 also satisfied the requirement of the formula (1) “P / B + 0.0525 × VLT ≧ 5.3” and had good solar shading characteristics.
[Comparative Example 1]
In Example 1, the solar shading body L according to Comparative Example 1 was obtained in the same manner as in Example 1 except that the dispersion was performed for 4 minutes with a paint shaker and the dispersion particle diameter of the ReO 3 fine particles was changed to 177 nm.

そして、実施例1と同様にして透過率の極大値P、極小値Bおよび可視光透過率VLTの値を求めた後、上記数式(1)に代入して日射遮蔽特性を求めたところ、以下の表1に示すように4.7%であった。   And after calculating | requiring the value of the maximum value P of the transmittance | permeability, the value B of the visible light transmittance | permeability VLT like Example 1, and substituting into the said Numerical formula (1), the solar radiation shielding characteristic was calculated | required, As shown in Table 1, it was 4.7%.

すなわち、比較例1に係る日射遮蔽体Lは数式(1)「P/B+0.0525×VLT≧5.3」の要件を満たしておらず、各実施例と較べてその日射遮蔽特性が劣っていることが確認された。   That is, the solar shading body L according to the comparative example 1 does not satisfy the requirement of the mathematical formula (1) “P / B + 0.0525 × VLT ≧ 5.3”, and the solar shading characteristics are inferior compared with the respective examples. It was confirmed that

尚、比較例1に係る日射遮蔽体Lの日射遮蔽特性が劣っている原因は、分散液(A液)内におけるReO3粒子の分散粒子径が150nmを越えたためである。 In addition, the reason that the solar shading property of the solar shading body L according to Comparative Example 1 is inferior is that the dispersed particle diameter of the ReO 3 particles in the dispersion (liquid A) exceeds 150 nm.

Figure 2005231974
Figure 2005231974

以上のように、本発明に係る日射遮蔽体並びに日射遮蔽複合体は日射遮蔽特性に優れるため、車両、ビル、事務所、一般住宅などの窓材や、電話ボックス、ショーウィンドー、照明用ランプ、透明ケースなどに使用される単板ガラス、合わせガラス、プラスチックスなど日射遮蔽特性が要求される可視光透過資材に用いるのに適している。   As described above, the solar radiation shielding body and the solar radiation shielding composite according to the present invention are excellent in the solar radiation shielding characteristics. Therefore, the window material of a vehicle, a building, an office, a general house, a telephone box, a show window, and an illumination lamp. It is suitable for use in visible light transmitting materials that require solar radiation shielding properties such as single plate glass, laminated glass, and plastics used in transparent cases.

基準となる分散液を用いて作成した日射遮蔽体のVLTとP/Bとの関係を示すグラフ図。The graph which shows the relationship between VLT and P / B of the solar radiation shield produced using the dispersion liquid used as a reference | standard. 実施例1に係る日射遮蔽体の透過プロファイルを示すグラフ図。The graph which shows the permeation | transmission profile of the solar radiation shield which concerns on Example 1. FIG.

Claims (9)

ReO3微粒子を含有する日射遮蔽体において、
その透過率が、波長380nm以上650nm以下の範囲に極大値を持ちかつ波長650nmを超え1700nm以下の範囲に極小値を持つと共に、透過率の極大値をP、極小値をB、可視光透過率をVLTとしたとき、35%≦VLT≦80%において以下の数式(1)を満たす日射遮蔽特性を有することを特徴とする日射遮蔽体。
P/B+0.0525×VLT≧5.3 (1)
In the solar shield containing ReO 3 fine particles,
The transmittance has a maximum value in the wavelength range of 380 nm to 650 nm and has a minimum value in the range of more than 650 nm to 1700 nm, and the maximum value of the transmittance is P, the minimum value is B, and the visible light transmittance The solar shading body is characterized by having solar shading characteristics satisfying the following formula (1) when 35% ≦ VLT ≦ 80%.
P / B + 0.0525 × VLT ≧ 5.3 (1)
ガラス若しくはプラスチックの透明基材とこの上に製膜されたReO3微粒子を含有する日射遮蔽膜とで構成されることを特徴とする請求項1記載の日射遮蔽体。 The solar shading body according to claim 1, comprising a transparent base material made of glass or plastic and a solar shading film containing ReO 3 fine particles formed thereon. ReO3微粒子が分散された成形用樹脂母材を平面若しくは立体形状に成形した日射遮蔽成形体により構成されることを特徴とする請求項1記載の日射遮蔽体。 The solar radiation shielding body according to claim 1, wherein the solar radiation shielding body is constituted by a solar radiation shielding molded body obtained by molding a molding resin base material in which ReO 3 fine particles are dispersed into a flat or three-dimensional shape. 結晶子径が150nm以下、格子定数3.6911〜3.7511の立方晶系の結晶構造を有し、L***表色系における粉体色L*が30〜50、a*が−5〜15、b*が−10〜5である三酸化レニウムにより上記ReO3微粒子が構成されていることを特徴とする請求項1〜3のいずれかに記載の日射遮蔽体。 It has a cubic crystal structure with a crystallite diameter of 150 nm or less and a lattice constant of 3.6911 to 3.7511, a powder color L * in the L * a * b * color system of 30 to 50, and a * is The solar radiation shield according to any one of claims 1 to 3, wherein the ReO 3 fine particles are composed of rhenium trioxide having -5 to 15 and b * of -10 to 5. 請求項2記載の日射遮蔽膜とこれを挟み込む上記ガラス若しくはプラスチックの透明基材と他の基材とで構成され、または、請求項3記載の日射遮蔽成形体とこれを挟み込む一対の基材とで構成されることを特徴とする日射遮蔽複合体。   The solar radiation shielding film according to claim 2 and the glass or plastic transparent base material sandwiching the solar radiation shielding film and another base material, or the solar radiation shielding molded body according to claim 3 and a pair of base materials sandwiching the solar radiation shielding molded body. A solar radiation shielding complex characterized by comprising: 結晶子径が150nm以下、格子定数3.6911〜3.7511の立方晶系の結晶構造を有し、L***表色系における粉体色L*が30〜50、a*が−5〜15、b*が−10〜5である三酸化レニウムにより上記ReO3微粒子が構成されていることを特徴とする請求項5記載の日射遮蔽複合体。 It has a cubic crystal structure with a crystallite diameter of 150 nm or less and a lattice constant of 3.6911 to 3.7511, a powder color L * in the L * a * b * color system of 30 to 50, and a * is 6. The solar radiation shielding composite according to claim 5, wherein the ReO 3 fine particles are composed of rhenium trioxide having −5 to 15 and b * of −10 to 5. 溶媒とこの溶媒に分散された三酸化レニウム微粒子とを含有し、請求項4記載の日射遮蔽体または請求項6記載の日射遮蔽複合体の製造に適用される分散液において、
溶媒に分散された三酸化レニウム微粒子の分散粒子径が150nm以下であることを特徴とする分散液。
A dispersion liquid containing a solvent and rhenium trioxide fine particles dispersed in the solvent, and applied to the production of the solar radiation shielding body according to claim 4 or the solar radiation shielding composite according to claim 6,
A dispersion liquid, wherein the dispersion particle diameter of rhenium trioxide fine particles dispersed in a solvent is 150 nm or less.
インジウム錫酸化物微粒子および/またはアンチモン錫酸化物微粒子が添加されていることを特徴とする請求項7記載の分散液。   8. The dispersion liquid according to claim 7, wherein indium tin oxide fine particles and / or antimony tin oxide fine particles are added. 無機バインダー若しくは樹脂バインダーが含まれていることを特徴とする請求項7または8記載の分散液。
The dispersion liquid according to claim 7 or 8, wherein an inorganic binder or a resin binder is contained.
JP2004046016A 2004-02-23 2004-02-23 Solar radiation screening material, solar radiation screening composite material, and dispersing liquid used for preparing solar radiation screening material or solar radiation screening composite material Pending JP2005231974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004046016A JP2005231974A (en) 2004-02-23 2004-02-23 Solar radiation screening material, solar radiation screening composite material, and dispersing liquid used for preparing solar radiation screening material or solar radiation screening composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004046016A JP2005231974A (en) 2004-02-23 2004-02-23 Solar radiation screening material, solar radiation screening composite material, and dispersing liquid used for preparing solar radiation screening material or solar radiation screening composite material

Publications (1)

Publication Number Publication Date
JP2005231974A true JP2005231974A (en) 2005-09-02

Family

ID=35015317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004046016A Pending JP2005231974A (en) 2004-02-23 2004-02-23 Solar radiation screening material, solar radiation screening composite material, and dispersing liquid used for preparing solar radiation screening material or solar radiation screening composite material

Country Status (1)

Country Link
JP (1) JP2005231974A (en)

Similar Documents

Publication Publication Date Title
JP4626284B2 (en) Method for producing tungsten oxide fine particles for forming solar shield, and tungsten oxide fine particles for forming solar shield
JP2005226008A (en) Dispersion for forming solar radiation-shielding body, and solar radiation-shielding body and method for producing the same
US20090216492A1 (en) Solar radiation shielding member and solar radiation shielding member forming fluid dispersion
JP2022041986A (en) Manufacturing method of infrared absorbing particle
JP3262098B2 (en) Heat ray shielding material, heat ray shielding equipment using the same, coating liquid and heat ray shielding film
JP2007269523A (en) Heat ray shielding glass and its manufacturing method
JP2003176132A (en) Antimony-tin oxide particle for shielding insolation, coating solution for forming insolation shielding film and insolation shielding film
JP3744188B2 (en) Heat ray shielding film forming coating solution and heat ray shielding film
US7247371B2 (en) Antimony tin oxide fine particles for sunlight shielding, and disperse liquid for formation of sunlight shielding solid, sunlight shielding solid, and transparent substrate for sunlight shielding using thereof
EP1967495B1 (en) Manufacturing method for antimony-containing tin oxide fine particles for forming solar radiation shielding body, dispersion for forming solar radiation shielding body, solar radiation sheilding body, and solar radiation shielding base material
JP2008230954A (en) Manufacturing method for antimony-containing tin oxide fine particles for forming solar radiation shielding body, dispersion for forming solar radiation shielding body, solar radiation shielding body, and solar radiation shielding base material
JP4487787B2 (en) Solar-shielding boride fine particles, solar-shielding-body-forming dispersion liquid and solar-light shielding body using the boride-fine particles, method for producing solar-shielding boride fine particles, and method for producing solar-shielding body-forming dispersion liquid
JP2002194291A (en) Method for preparing coating fluid for forming insolation shielding film
JP4289145B2 (en) Solar shading fine particles, solar shading resin material in which these fine particles are dispersed in a resin component, and solar shading fine particle dispersion used for manufacturing solar shading resin material and solar shading resin material And solar shading composite base material
JP2003215328A (en) Fine particles for sun protection, coating liquid for forming sun protection film containing the same and sun protection film
JP4120887B2 (en) In4Sn3O12 composite oxide fine particles for solar radiation shielding, method for producing the same, coating liquid for solar radiation shielding film formation, solar radiation shielding film, and solar radiation shielding substrate
JP4200424B2 (en) Manufacturing method of solar shading material, coating liquid for forming solar shading film, solar shading film, and transparent base material for solar shading
JP3915880B2 (en) Method for producing fine particles for solar radiation shielding film formation
JP2005232399A (en) Sunlight-screening fine particle, sunlight-screening material and sunlight-screening composite material containing the same, and dispersion used for producing sunlight-screening material or sunlight-screening composite material
JP2005231974A (en) Solar radiation screening material, solar radiation screening composite material, and dispersing liquid used for preparing solar radiation screening material or solar radiation screening composite material
JP6575443B2 (en) Heat ray shielding film and heat ray shielding glass
JP2012082109A (en) Method for producing tungsten oxide fine particle for forming highly heat-resistant heat ray-shielding material, tungsten oxide fine particle for forming highly heat-resistant heat ray-shielding material and dispersion for forming highly heat-resistant heat ray-shielding material, and highly heat-resistant heat ray-shielding material
JP4737419B2 (en) Boride particles, production method thereof, boride fine particle dispersion using the boride particles, and solar shield
WO2022209712A1 (en) Infrared absorbing particles, infrared-absorbing particle dispersion liquid, infrared-absorbing particle dispersion material, infrared-absorbing laminate transparent substrate, and infrared-absorbing transparent substrate
JP2002201027A (en) Ito microparticle for daylight screening, method for producing the same, and coating liquid and daylight screening film using the same