JP5167557B2 - Anti-counterfeit ink composition - Google Patents

Anti-counterfeit ink composition Download PDF

Info

Publication number
JP5167557B2
JP5167557B2 JP2008119390A JP2008119390A JP5167557B2 JP 5167557 B2 JP5167557 B2 JP 5167557B2 JP 2008119390 A JP2008119390 A JP 2008119390A JP 2008119390 A JP2008119390 A JP 2008119390A JP 5167557 B2 JP5167557 B2 JP 5167557B2
Authority
JP
Japan
Prior art keywords
ink
antimony
infrared
oxide
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008119390A
Other languages
Japanese (ja)
Other versions
JP2009269773A (en
Inventor
文人 小林
紗和子 木本
博昭 島根
清志 北原
厚 山田
幸夫 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyodo Printing Co Ltd
Original Assignee
Kyodo Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyodo Printing Co Ltd filed Critical Kyodo Printing Co Ltd
Priority to JP2008119390A priority Critical patent/JP5167557B2/en
Publication of JP2009269773A publication Critical patent/JP2009269773A/en
Application granted granted Critical
Publication of JP5167557B2 publication Critical patent/JP5167557B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、赤外線吸収機能を有する酸化化合物に関し、さらに詳しくは、赤外線吸収性を低下することなく、明度を改善した赤外線吸収機能を有する酸化化合物を用いた偽造防止用インキ組成物に関する。 The present invention relates to an oxidation compound having an infrared absorption function, and more particularly to an anti-counterfeit ink composition using an oxidation compound having an infrared absorption function with improved brightness without reducing infrared absorption.

紙幣等の有価証券の印刷には偽造防止を目的として赤外線を吸収するインキが使用されている。   For the printing of securities such as banknotes, ink that absorbs infrared rays is used for the purpose of preventing counterfeiting.

赤外線吸収顔料は、一般的には、カーボンブラックに代表されるような暗色系の色調を有する顔料やアンチモンドープ錫のような顔料が知られている。しかし、カーボンブラックの色は濃い黒色であり、アンチモンドープ錫は灰色を呈している。すなわち、カーボンブラックやアンチモンドープ錫を用いて、染料や顔料と混合して赤外線吸収インキを作製しても、色調を変えることは困難で、赤外線吸収インキも暗色系の色調となってしまう。
したがって、このような暗い色調のインキを用いて偽造防止を目的とした印刷物を作成する場合、偽造防止のデザインの部分だけが黒っぽい色調になってしまい、使用できる色が限られるので、デザイン上の制約を受けてしまう。
As the infrared absorbing pigment, a pigment having a dark color tone such as carbon black or a pigment such as antimony-doped tin is generally known. However, the color of carbon black is dark black and antimony-doped tin is gray. That is, even if carbon black or antimony-doped tin is mixed with a dye or pigment to produce an infrared absorbing ink, it is difficult to change the color tone, and the infrared absorbing ink also has a dark color tone.
Therefore, when creating printed matter for the purpose of preventing counterfeiting using such dark-colored ink, only the anti-counterfeiting design part becomes a blackish tone, and the usable colors are limited. It is subject to restrictions.

赤外線吸収インキを様々な色に対応可能なインキとするため、赤外線吸収顔料の使用量を減少させた赤外線吸収インキや、赤外線吸収顔料に酸化チタン、酸化亜鉛等の白色顔料を添加して赤外線吸収インキの着色性を改善している。また、特許文献1には無機粒子の表面をカーボンブラックで被覆して被覆顔料とすることが開示されている。   Infrared absorbing ink by reducing the amount of infrared absorbing pigment used and adding white pigments such as titanium oxide and zinc oxide to the infrared absorbing pigment to make the infrared absorbing ink compatible with various colors Improves ink colorability. Patent Document 1 discloses that the surface of inorganic particles is coated with carbon black to form a coated pigment.

しかし、赤外線吸収顔料の使用量を減らしたり、酸化チタン、酸化亜鉛等の白色顔料を混合したりすると、インキの赤外線吸収機能を阻害することになり、偽造防止用インキとしての機能に悪影響を及ぼすことになる。   However, reducing the amount of infrared absorbing pigment used or mixing white pigments such as titanium oxide and zinc oxide will inhibit the infrared absorbing function of the ink and adversely affect its function as an anti-counterfeit ink. It will be.

なお、有機系赤外線吸収染料で明度の高いものは存在するが、耐光性が弱く、紙幣等の有価証券の印刷には難がある。
特開2003−105229号公報
Although there are organic infrared absorbing dyes with high brightness, the light resistance is weak, and it is difficult to print securities such as banknotes.
JP 2003-105229 A

以上述べたように、赤外線吸収顔料は、染料や顔料と混合して様々な色調を有する赤外線吸収インキとするためにアンチモンドープ錫より淡い色調あるいは明度の高いものが求められている。   As described above, the infrared absorbing pigment is required to have a lighter color or higher brightness than antimony-doped tin in order to obtain an infrared absorbing ink having various colors by mixing with a dye or a pigment.

しかし、前述したように、淡い色調あるいは明度の高い赤外線吸収顔料は、近赤外域及び/又は赤外域の光の吸収が弱くなるため、明度の高さと赤外線吸収機能の維持という相反する性質が要求されている。   However, as described above, an infrared absorbing pigment having a light color tone or high brightness has a weak absorption of light in the near-infrared region and / or infrared region, and therefore has a contradictory property of maintaining a high lightness and an infrared absorption function. Has been.

本発明は、上記問題点に鑑み、赤外線吸収性を低下させることなく、明度の向上した赤外線吸収顔料を含有する偽造防止用インキ組成物を提供することを目的とする。 In view of the above problems, an object of the present invention is to provide an anti-counterfeit ink composition containing an infrared-absorbing pigment with improved brightness without reducing infrared absorptivity.

前記目的を達成するため、本発明者らはアンチモンドープ錫について鋭意研究を進めたところ、メタ錫酸と酸化アンチモンの焼成において、水酸化アルミニウムを添加すると明度が改善されることを見出し、本発明を完成するに至った。   In order to achieve the above object, the present inventors have conducted extensive research on antimony-doped tin. As a result, it was found that the brightness is improved by adding aluminum hydroxide in the firing of metastannic acid and antimony oxide. It came to complete.

すなわち、本発明はアルミニウム化合物、錫化合物及びアンチモン化合物を焼成して得られる、赤外線吸収機能を有する酸化化合物を顔料として含有する、偽造防止用インキ組成物を提供する。   That is, the present invention provides an anti-counterfeit ink composition containing, as a pigment, an oxide compound having an infrared absorption function, obtained by firing an aluminum compound, a tin compound, and an antimony compound.

この赤外線吸収機能を有する酸化化合物は、錫、アンチモン及びアルミニウムからなる酸化化合物であって、以下のX線回析パターンのピークを有する酸化化合物である。   The oxide compound having the infrared absorption function is an oxide compound composed of tin, antimony, and aluminum, and is an oxide compound having a peak of the following X-ray diffraction pattern.

2θ=26.61〜27.61
2θ=33.83〜34.83
2θ=37.91〜38.91
2θ=51.71〜52.71
2θ=54.69〜55.69
また、上記X線回析パターンのピークを有する赤外線吸収機能を有する酸化化合物は、錫:アンチモン:アルミニウムの組成比が重量比で66.0〜96.0:1.6〜19.6:1.9〜16.0の範囲である。
2θ = 26.61 to 27.61
2θ = 33.83 to 34.83
2θ = 37.91 to 38.91
2θ = 51.71 to 52.71
2θ = 54.69-55.69
The oxide compound having an infrared absorption function having a peak of the X-ray diffraction pattern has a composition ratio of tin: antimony: aluminum of 66.0 to 96.0: 1.6 to 19.6: 1 by weight. The range is from .9 to 16.0.

本発明により、赤外線吸収機能を低下させることなく、明度の向上した赤外線吸収機能を有する酸化化合物を得ることができるので、当該酸化化合物を用いて作成した赤外線吸収インキは、十分な赤外線吸収機能を有しながら明度が高いものである。具体的には実用的な赤外線吸収機能を発現する程度に当該酸化化合物を用いてインキ(ベースとなるインキ)を作成すると、被印刷物表面の地模様が透けて目視できる程度に明度が高く、淡い白色を呈したインキが得られ、様々な染料や顔料と組み合わせることで、色彩の豊富な赤外線吸収インキとすることもできる。ここで、ベースとなるインキが単なる無色透明ではなく、適度に白味を帯びていることは重要である。ベースとなるインキに色付けする際は、ベースとなるインキが無色透明であるよりも、適度に白色を帯びているほうが色付けしたい染料や顔料の色味の発色がよいからである。これは、透明のフィルムに絵を描くよりも、白い紙に絵を書いたほうが、色彩が鮮やかに見えることに似ている。   According to the present invention, an oxide compound having an infrared absorption function with improved brightness can be obtained without deteriorating the infrared absorption function. Therefore, an infrared absorption ink prepared using the oxidation compound has a sufficient infrared absorption function. It has high brightness while having it. Specifically, when an ink (base ink) is made using the oxidized compound to such an extent that a practical infrared absorption function is expressed, the lightness is high and light enough that the ground pattern on the surface of the printed material can be seen through. A white ink can be obtained, and by combining with various dyes and pigments, an infrared absorbing ink rich in color can be obtained. Here, it is important that the base ink is not simply colorless and transparent, but is moderately white. This is because, when coloring the base ink, the color of the dye or pigment to be colored is better when the base ink is appropriately white rather than colorless and transparent. This is similar to the fact that drawing on white paper looks more vivid than drawing on transparent film.

さらに、色彩の豊富な赤外線吸収のないインキ、すなわち、赤外線反射インキと組み合わせて、色彩の豊富なデザイン性のある偽造防止用印刷を行うことが可能となる。同色に調肉された赤外線吸収インキと赤外線反射インキによる偽造防止印刷物は、目視では赤外線吸収インキと赤外線反射インキを見分けることができないが、赤外線を照射したとき、赤外線吸収インキと赤外線反射インキ間のコントラストをIR検知器で確実に検知することができる。したがって、印刷物のデザイン性を損なうことなく偽造防止を図ることができる。   Furthermore, it is possible to perform anti-counterfeit printing having a rich design and a variety of colors in combination with abundant inks that do not absorb infrared rays, that is, infrared reflection inks. The anti-counterfeit printed matter with infrared absorbing ink and infrared reflecting ink that are prepared in the same color cannot be visually distinguished from infrared absorbing ink and infrared reflecting ink. Contrast can be reliably detected with an IR detector. Therefore, it is possible to prevent forgery without impairing the design of the printed matter.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

赤外線吸収機能を有する酸化化合物は、前述したように、錫、アンチモン及びアルミニウムからな、以下のX線回析パターンのピークを有する。 Oxidized compound having an infrared absorption function, as described above, a tin, Ri Do antimony and aluminum, the peak of the following X-ray diffraction pattern.

2θ=26.61〜27.61
2θ=33.83〜34.83
2θ=37.91〜38.91
2θ=51.71〜52.71
2θ=54.69〜55.69
ここで、錫:アンチモン:アルミニウムの組成比は、重量比で66.0〜96.0:1.6〜19.6:1.9〜16.0の範囲である。
2θ = 26.61 to 27.61
2θ = 33.83 to 34.83
2θ = 37.91 to 38.91
2θ = 51.71 to 52.71
2θ = 54.69-55.69
Here, the composition ratio of tin: antimony: aluminum ranges from 66.0 to 96.0: 1.6 to 19.6: 1.9 to 16.0 by weight.

赤外線吸収機能を有する酸化化合物は、アルミニウム化合物、錫化合物及びアンチモン化合物を焼成して得られる化合物であり、アルミニウム化合物は、水酸化アルミニウム、アルミン酸、ニオブ三アルミニウム、フッ化アルミニウム、ヨウ化アルミニウム、塩化アルミニウム、酸化アルミニウム、臭化アルミニウム、水酸化酸化アルミニウム、水酸化リチウムアルミニウム、窒化アルミニウム、硫酸アルミニウムを、錫化合物は、メタ錫酸、錫酸ナトリウム三水和物、ニオブ三錫、酸化フェンブタ錫、酸化錫、水素化錫を、アンチモン化合物は、酸化アンチモン、アンチモン化インジウム、スチビンを、それぞれ挙げることができる。好ましくは、水酸化アルミニウムとメタ錫酸と酸化アンチモンの組み合わせである。 The oxide compound having an infrared absorption function is a compound obtained by firing an aluminum compound, a tin compound, and an antimony compound, and the aluminum compound includes aluminum hydroxide, aluminate, niobium trialuminum, aluminum fluoride, aluminum iodide, Aluminum chloride, aluminum oxide, aluminum bromide, aluminum hydroxide oxide, lithium aluminum hydroxide, aluminum nitride, aluminum sulfate, tin compounds, metastannic acid, sodium stannate trihydrate, niobium tritin, fenbuta tin oxide Tin oxide, tin hydride, and antimony compounds can include antimony oxide, indium antimonide, and stibine, respectively. A combination of aluminum hydroxide, metastannic acid and antimony oxide is preferred.

焼成する錫化合物、アンチモン化合物、及びアルミニウム化合物の量は、モル比でSn:Sb:Al=22.0:0.5〜6.5:0.5〜10.0の範囲である。   The amounts of tin compound, antimony compound, and aluminum compound to be fired are Sn: Sb: Al = 22.0: 0.5 to 6.5: 0.5 to 10.0 in molar ratio.

例えば、メタ錫酸、酸化アンチモン、水酸化アルミニウムの場合を例に以下に説明する。メタ錫酸及び酸化アンチモンの混合比は重量比で80:20〜98:2の範囲であり、水酸化アルミニウムは、メタ錫酸及び酸化アンチモンの総量に対して1.5%〜20%の範囲である。好ましくはメタ錫酸:酸化アンチモンは95:5〜98:2であって、水酸化アルミニウムはメタ錫酸及び酸化アンチモンの総量に対して2%以上10%以下である。   For example, the case of metastannic acid, antimony oxide, and aluminum hydroxide will be described below. The mixing ratio of metastannic acid and antimony oxide ranges from 80:20 to 98: 2 by weight, and aluminum hydroxide ranges from 1.5% to 20% based on the total amount of metastannic acid and antimony oxide. It is. Preferably, metastannic acid: antimony oxide is 95: 5-98: 2, and aluminum hydroxide is 2% or more and 10% or less with respect to the total amount of metastannic acid and antimony oxide.

この配合比(重量比)のメタ錫酸、酸化アンチモン及び水酸化アルミニウムを100℃〜200℃で付着水分率が1%未満となるまで乾燥した後、一旦常温にまで戻す。その後、常温から温度を徐々に上げていき、最高温度を500℃〜1300℃の間で設定し20時間〜30時間焼成して本発明の赤外線吸収機能を有する酸化化合物を製造することができる。   After the metastannic acid, antimony oxide and aluminum hydroxide in this blending ratio (weight ratio) are dried at 100 ° C. to 200 ° C. until the moisture content becomes less than 1%, they are once returned to room temperature. Thereafter, the temperature is gradually raised from room temperature, the maximum temperature is set between 500 ° C. and 1300 ° C., and baking is performed for 20 hours to 30 hours, whereby the oxide compound having the infrared absorption function of the present invention can be produced.

赤外線吸収機能を有する酸化化合物は、錫、アンチモン及びアルミニウムからなる酸化物である。しかし、酸化アルミニウムのピークを含んでいないので、単にアンチモンドープ錫と酸化アルミニウムの混合物ではなく、アルミニウムがアンチモンドープ錫の結晶構造の中に入り込んでいるものと考えられる。このような結晶構造を構成するためには、酸化化合物の焼成にあたり、メタ錫酸と水酸化アルミニウムと酸化アンチモンとの組み合わせが大切である。 The oxide compound having an infrared absorption function is an oxide composed of tin, antimony, and aluminum. However, since the aluminum oxide peak is not included, it is considered that aluminum is not simply a mixture of antimony-doped tin and aluminum oxide, but aluminum is included in the crystal structure of antimony-doped tin. In order to construct such a crystal structure, a combination of metastannic acid, aluminum hydroxide, and antimony oxide is important in firing the oxidized compound.

なお、ここで、ピークとは、強度200Counts per Second(以下CPSという)以上であって、縦軸を強度、横軸を2θとしたときの線グラフにおいて上に凸な山の頂点を示す点のことをいう。   Here, the peak is a point indicating a peak of an upwardly convex mountain in a line graph when the intensity is 200 counts per second (hereinafter referred to as CPS) or more and the vertical axis is intensity and the horizontal axis is 2θ. That means.

以上のようにして得られた赤外線吸収機能を有する酸化化合物は、明度が高いため、インキ組成物とする場合にも、染料や顔料との組み合わせが限定されることはない。したがって、様々な染料や顔料と組み合わせ、色彩の豊かな赤外線吸収インキを作製することが可能である。   Since the oxide compound having an infrared absorption function obtained as described above has high brightness, the combination with dyes and pigments is not limited even when an ink composition is used. Therefore, it is possible to produce an infrared absorbing ink rich in color by combining with various dyes and pigments.

さらに、赤外線反射インキと併せて同色の赤外線吸収インキを使用する場合に、従来、赤外線反射インキと赤外線吸収インキとの色合わせが困難であったが、色彩のバリエーション豊かな赤外線吸収インキが作製可能となったため、色合わせを容易に行うことができる。   Furthermore, when using infrared absorbing ink of the same color in combination with infrared reflecting ink, it has been difficult to match the color of infrared reflecting ink and infrared absorbing ink, but it is possible to produce infrared absorbing ink with rich color variations. Therefore, color matching can be performed easily.

なお、酸化化合物を用いたインキの白色度はL*=85以上、好ましくは95以上であり、赤外線吸収性は反射率が75以下、好ましくは70以下の範囲である。   The whiteness of the ink using the oxidation compound is L * = 85 or more, preferably 95 or more, and the infrared absorptivity has a reflectance of 75 or less, preferably 70 or less.

以下、実験例及び実施例に基づき、本発明を説明する。
[実験例1]酸化化合物の製造
メタ錫酸:酸化アンチモン(重量比)95:5にメタ錫酸と酸化アンチモンの総量に対し2%重量の水酸化アルミニウムを添加し、約5時間かけて水と混合した。混合に使用するボールはジルコニア製のものを用いた。得られた混合物を約200℃で乾燥させた後、約1300℃で約5時間焼成した。焼成は耐熱レンガ製の窯を用いた。得られた酸化化合物を約5〜30時間かけて粉砕し粒径を調整した。
Hereinafter, the present invention will be described based on experimental examples and examples.
[Experimental Example 1] Production of Oxidized Compound 2% by weight of aluminum hydroxide was added to metastannic acid : antimony oxide (weight ratio) 95: 5 with respect to the total amount of metastannic acid and antimony oxide, and water was added over about 5 hours. Mixed with. The balls used for mixing were made of zirconia. The resulting mixture was dried at about 200 ° C. and then calcined at about 1300 ° C. for about 5 hours. Firing was performed using a heat-resistant brick kiln. The obtained oxidized compound was pulverized for about 5 to 30 hours to adjust the particle size.

得られた酸化化合物の組成比を以下の条件で測定した。   The composition ratio of the obtained oxide compound was measured under the following conditions.

蛍光X線分析装置:3370E(理学電気工業(株)製)
X線源/出力:Rh/50kV−50mA
測定径:20mm
Sn:Al:Sbを100%とした場合の組成比は、重量比で92.0:2.4:5.5であった。
X-ray fluorescence analyzer: 3370E (Rigaku Denki Kogyo Co., Ltd.)
X-ray source / output: Rh / 50kV-50mA
Measurement diameter: 20 mm
The composition ratio when Sn: Al: Sb was 100% was 92.0: 2.4: 5.5 by weight.

また、Sn:Al:Sb:Oを100%とした場合の組成比は、重量比で64.8:1.7:3.9:29.3であった。   The composition ratio when Sn: Al: Sb: O was 100% was 64.8: 1.7: 3.9: 29.3 by weight.

さらに、得られた酸化化合物のX線回析パターンを以下の方法で測定した。   Furthermore, the X-ray diffraction pattern of the obtained oxide compound was measured by the following method.

測定機:理学電気工業製MiniFlex
X線:Cu/30kV/15mA
スキャンスピード:4.0°/mm
サンプリング幅:0.020°
X線回析パターンの結果を表1及び図1に示す。なお、図1中で、本実験例1の結果は実線で示した。
Measuring machine: MiniFlex manufactured by Rigaku Denki Kogyo
X-ray: Cu / 30kV / 15mA
Scan speed: 4.0 ° / mm
Sampling width: 0.020 °
The results of the X-ray diffraction pattern are shown in Table 1 and FIG. In FIG. 1, the result of Experimental Example 1 is shown by a solid line.

Figure 0005167557
Figure 0005167557

ここで、ピークとは、強度200CPS以上の以下のものをいう。   Here, the peak means the following having an intensity of 200 CPS or more.

得られた酸化化合物は、酸化アルミニウム及びアンチモンドープ錫のX線回析パターンのピークのいずれとも異なっていた。   The obtained oxide compound was different from any of the peaks of the X-ray diffraction pattern of aluminum oxide and antimony-doped tin.

得られた酸化化合物の明度と赤外線吸収性を以下のように測定した。
(明度測定方法)
透明セル(S20 曲底標準セル UV、ジーエルサイエンス(株)製)に顔料を入れ、分光光度計(U−4000自記分光光度計、日立製作所製)を用いてL値を測定した。使用した波長範囲は380〜780nm、光源D65、視野角度2度とした。なお、透明セルに硫酸バリウムを入れたものをベースラインとして使用した。
(明度測定結果)
L値 L*=74.4
(赤外線吸収性測定方法)
透明セル(S20 曲底標準セル UV、ジーエルサイエンス(株)製)に顔料を入れ、分光光度計(U−4000自記分光光度計、日立製作所製)を用いて反射率を測定し、波長域800〜2500nmの反射率の平均値を赤外線吸収性として算出した。光源D65、視野角度2度とした。なお、透明セルに硫酸バリウムを入れたものをベースラインとして使用した。
(赤外線吸収性測定結果)
赤外線吸収性 11.7%
The brightness and infrared absorptivity of the obtained oxide compound were measured as follows.
(Lightness measurement method)
The pigment was put into a transparent cell (S20 curved bottom standard cell UV, manufactured by GL Sciences Inc.), and the L value was measured using a spectrophotometer (U-4000 autospectrophotometer, manufactured by Hitachi, Ltd.). The wavelength range used was 380 to 780 nm, the light source D65, and the viewing angle 2 degrees. In addition, what put barium sulfate in the transparent cell was used as a baseline.
(Brightness measurement result)
L value L * = 74.4
(Infrared absorption measurement method)
A pigment is put in a transparent cell (S20 curved bottom standard cell UV, manufactured by GL Sciences Inc.), and the reflectance is measured using a spectrophotometer (U-4000 recording spectrophotometer, manufactured by Hitachi, Ltd.). The average value of reflectance of ˜2500 nm was calculated as infrared absorptivity. The light source D65 and the viewing angle were 2 degrees. In addition, what put barium sulfate in the transparent cell was used as a baseline.
(Infrared absorption measurement result)
Infrared absorption 11.7%

実験例1で得られた酸化化合物をポリエステル樹脂及び溶剤と混合してインキ化して、明度と赤外線吸収性を測定した。
(インキ化での混合比率)
樹脂:ポリエステル樹脂 100g
溶剤:
MEK(メチルエチルケトン)とトルエンの1:1混合物 100g
実験例1で得られた酸化化合物 10g
得られたインキを普通紙(J、富士ゼロックス社製)に、バーコーターNo.18を使用してインキを1回塗布して乾燥させ、以下の条件でインキの明度と赤外線吸収性を測定した。
(インキの明度測定方法)
分光光度計(U−4000自記分光光度計、日立製作所製)を用いて、赤外線吸収顔料を塗布した領域のL値を測定した。使用した波長範囲は380〜780nm、光源D65、視野角度2度とした。なお、普通紙(J、富士ゼロックス社製)をベースラインとして使用した。
(インキの明度測定結果)
L値 L*=96.0
(インキの赤外線吸収性の測定方法)
分光光度計(U−4000自記分光光度計、日立製作所製)を用いて、赤外線吸収顔料を塗布した領域の反射率を測定し、波長域800〜2500nmの反射率の平均値を赤外線吸収性として算出した。光源D65、視野角度2度とした。なお、普通紙(J、富士ゼロックス社製)をベースラインとして使用した。
(インキの赤外線吸収性)
赤外線吸収性 59.1%
The oxidation compound obtained in Experimental Example 1 was mixed with a polyester resin and a solvent to form an ink, and the lightness and infrared absorption were measured.
(Mixing ratio in ink)
Resin: 100g polyester resin
solvent:
100 g of 1: 1 mixture of MEK (methyl ethyl ketone) and toluene
10 g of the oxidized compound obtained in Experimental Example 1
The obtained ink was applied to plain paper (J, manufactured by Fuji Xerox Co., Ltd.), a bar coater No. The ink was applied once and dried using No. 18, and the ink brightness and infrared absorptivity were measured under the following conditions.
(Ink brightness measurement method)
L value of the area | region which apply | coated the infrared absorption pigment was measured using the spectrophotometer (U-4000 self-recording spectrophotometer, Hitachi make). The wavelength range used was 380 to 780 nm, the light source D65, and the viewing angle 2 degrees. Note that plain paper (J, manufactured by Fuji Xerox Co., Ltd.) was used as the baseline.
(Ink brightness measurement results)
L value L * = 96.0
(Measurement method of infrared absorption of ink)
Using a spectrophotometer (U-4000 self-recording spectrophotometer, manufactured by Hitachi, Ltd.), the reflectance of the region where the infrared absorbing pigment is applied is measured, and the average value of the reflectance in the wavelength range of 800 to 2500 nm is taken as the infrared absorptivity. Calculated. The light source D65 and the viewing angle were 2 degrees. Note that plain paper (J, manufactured by Fuji Xerox Co., Ltd.) was used as the baseline.
(Infrared absorption of ink)
Infrared absorption 59.1%

下記条件で赤外線反射インキと赤外線吸収インキを作成し、色合わせを行った。   Infrared reflective ink and infrared absorbing ink were prepared under the following conditions, and color matching was performed.

(赤外線吸収インキ)
樹脂:ポリエステル樹脂 100g
溶剤:
MEK(メチルエチルケトン)とトルエンの1:1混合物 100g
実験例1で得られた酸化化合物 10g
マイクロリスブルー(桜宮化学製) 1g
(赤外線反射インキ)
樹脂:ポリエステル樹脂 100g
溶剤:
MEK(メチルエチルケトン)とトルエンの1:1混合物 100g
マイクロリスレッド(桜宮化学製) 0.3g
マイクロリスブルー(桜宮化学製) 1.2g
マイクロリスイエロー(桜宮化学製) 0.3g
得られたインキを普通紙(J、富士ゼロックス社製)に、バーコーターNo.18を使用してインキを1回塗布して乾燥させ、赤外線吸収インキと赤外線反射インキの色差を観察したところ、色ムラもなく、色合わせが容易であった。
(Infrared absorbing ink)
Resin: 100g polyester resin
solvent:
100 g of 1: 1 mixture of MEK (methyl ethyl ketone) and toluene
10 g of the oxidized compound obtained in Experimental Example 1
Microlith Blue (Sakuramiya Chemical) 1g
(Infrared reflective ink)
Resin: 100g polyester resin
solvent:
100 g of 1: 1 mixture of MEK (methyl ethyl ketone) and toluene
Micro Rethread (Sakuramiya Chemical) 0.3g
Microlith Blue (Sakuramiya Chemical) 1.2g
Microlith yellow (manufactured by Sakuramiya Chemical) 0.3g
The obtained ink was applied to plain paper (J, manufactured by Fuji Xerox Co., Ltd.), a bar coater No. The ink was applied once using 18 and dried, and when the color difference between the infrared absorbing ink and the infrared reflecting ink was observed, there was no color unevenness and color matching was easy.

〔比較例1〕
実験例1の比較として、以下のように水酸化アルミニウムを添加せずにアンチモンドープ錫を作製した。
[Comparative Example 1]
As a comparison with Experimental Example 1, antimony-doped tin was prepared without adding aluminum hydroxide as follows.

酸化錫:酸化アンチモン(重量比)95:5を約5時間かけて水と混合した。混合に使用するボールはジルコニア製のものを用いた。得られた混合物を約200℃で乾燥させた後、約1300℃で約5時間焼成して、アンチモンドープ酸化錫を作成した。なお、焼成は耐熱レンガ製の窯を用いた。得られたアンチモンドープ酸化錫を約5〜30時間かけ粉砕し粒径を調整した。   Tin oxide: antimony oxide (weight ratio) 95: 5 was mixed with water over about 5 hours. The balls used for mixing were made of zirconia. The obtained mixture was dried at about 200 ° C. and then fired at about 1300 ° C. for about 5 hours to prepare antimony-doped tin oxide. The firing was performed using a heat-resistant brick kiln. The obtained antimony-doped tin oxide was ground for about 5 to 30 hours to adjust the particle size.

実験例1と同様の条件で、得られたアンチモンドープ錫X線回析パターンを測定した。結果を表2に示す。また、図1に実験例1の結果とともに示す。なお、図1中で、本比較例1の結果は破線で示した。 The obtained antimony-doped tin X-ray diffraction pattern was measured under the same conditions as in Experimental Example 1. The results are shown in Table 2. Moreover, it shows with the result of Experimental example 1 in FIG. In FIG. 1, the result of Comparative Example 1 is indicated by a broken line.

Figure 0005167557
Figure 0005167557

表2及び図1から、アンチモンドープ錫は、本発明の酸化化合物に比べピークが低角度側にあることがわかる。   It can be seen from Table 2 and FIG. 1 that antimony-doped tin has a peak on the low angle side as compared with the oxide compound of the present invention.

アンチモンドープ錫の明度と赤外線吸収性を実験例1と同様にして調べた結果を以下に示す。 The results of examining the lightness and infrared absorption of antimony-doped tin in the same manner as in Experimental Example 1 are shown below.

L値 L*=60.2
赤外線吸収性 8.4%
アンチモンドープ錫は、本発明の酸化化合物に比べ明度と赤外線吸収性がともに劣っていることがわかる。
L value L * = 60.2
Infrared absorption 8.4%
It can be seen that antimony-doped tin is inferior in both brightness and infrared absorptivity as compared with the oxide compound of the present invention.

〔比較例2〕
ついで、比較例1で得たアンチモンドープ錫で赤外線吸収インキを作成した。
[Comparative Example 2]
Next, an infrared absorbing ink was prepared from the antimony-doped tin obtained in Comparative Example 1.

樹脂:ポリエステル樹脂 100g
溶剤:
MEK(メチルエチルケトン)とトルエンの1:1混合物 100g
アンチモンドープ酸化錫 5g
酸化アルミニウム 5g
インキの明度と赤外線吸収性を実施例と同様にして調べた結果を以下に示す。
Resin: 100g polyester resin
solvent:
100 g of 1: 1 mixture of MEK (methyl ethyl ketone) and toluene
Antimony-doped tin oxide 5g
5g of aluminum oxide
The results of examining the lightness and infrared absorption of the ink in the same manner as in Example 1 are shown below.

L値 L*=95.1
赤外線吸収性 60%
アンチモンドープ錫は、本発明の酸化化合物に比べ、明度と赤外線吸収性がともに劣っていることがわかる。
L value L * = 95.1
Infrared absorption 60%
It can be seen that antimony-doped tin is inferior in both brightness and infrared absorptivity as compared with the oxide compound of the present invention.

また、本発明の製造方法では、使用するアルミニウムの量も酸化アルミニウムを添加する場合に比べ、添加量が少なくて済むのでコストを低減することが可能である。   Further, in the production method of the present invention, the amount of aluminum to be used can be reduced as compared with the case where aluminum oxide is added, so that the cost can be reduced.

本発明の酸化化合物のX線回析パターンを示すグラフである。It is a graph which shows the X-ray diffraction pattern of the oxidation compound of this invention.

Claims (2)

錫、アンチモン及びアルミニウムからなる酸化化合物であって、赤外線吸収機能を有し、以下のX線回折パターンのピークを有する酸化化合物を顔料として含有する、偽造防止用インキ組成物。
2θ=26.61〜27.61
2θ=33.83〜34.83
2θ=37.91〜38.91
2θ=51.71〜52.71
2θ=54.69〜55.69
An ink composition for preventing forgery, comprising an oxide compound comprising tin, antimony and aluminum, having an infrared absorption function and having a peak of the following X-ray diffraction pattern as a pigment.
2θ = 26.61 to 27.61
2θ = 33.83 to 34.83
2θ = 37.91 to 38.91
2θ = 51.71 to 52.71
2θ = 54.69-55.69
請求項1記載の偽造防止用インキ組成物で印刷された、偽造防止印刷物。An anti-counterfeit printed matter printed with the anti-counterfeit ink composition according to claim 1.
JP2008119390A 2008-04-30 2008-04-30 Anti-counterfeit ink composition Expired - Fee Related JP5167557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008119390A JP5167557B2 (en) 2008-04-30 2008-04-30 Anti-counterfeit ink composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008119390A JP5167557B2 (en) 2008-04-30 2008-04-30 Anti-counterfeit ink composition

Publications (2)

Publication Number Publication Date
JP2009269773A JP2009269773A (en) 2009-11-19
JP5167557B2 true JP5167557B2 (en) 2013-03-21

Family

ID=41436681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008119390A Expired - Fee Related JP5167557B2 (en) 2008-04-30 2008-04-30 Anti-counterfeit ink composition

Country Status (1)

Country Link
JP (1) JP5167557B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812332A (en) * 1994-07-04 1996-01-16 Mitsubishi Materials Corp Electric conductive powder, its production, electric conductive dispersion liquid and electric conductive coating material
JP2002179947A (en) * 2000-12-11 2002-06-26 Nittetsu Mining Co Ltd Powder, process for producing it, and coloring material composition
JP4200424B2 (en) * 2001-09-27 2008-12-24 住友金属鉱山株式会社 Manufacturing method of solar shading material, coating liquid for forming solar shading film, solar shading film, and transparent base material for solar shading
JP4193036B2 (en) * 2002-10-29 2008-12-10 日産化学工業株式会社 Method for producing conductive tin oxide
JP2004149389A (en) * 2002-10-31 2004-05-27 Nippon Shokubai Co Ltd Process for manufacturing metal oxide particle
US8871335B2 (en) * 2005-08-31 2014-10-28 Kuraray America Inc. Solar control laminate

Also Published As

Publication number Publication date
JP2009269773A (en) 2009-11-19

Similar Documents

Publication Publication Date Title
JP5489031B2 (en) Infrared absorbing ink and printed matter for forgery prevention
JP5360644B2 (en) Infrared absorbing ink for anti-counterfeiting
JP5737523B2 (en) Black pigment, glaze and paint containing the same
CA2724691C (en) Perovskite-type infrared reflective material
JP5866434B2 (en) Composite oxide black pigment and method for producing the same
US10508208B2 (en) Process for printing multicoloured printed images
JP5245102B2 (en) Latent image printed matter
RU2020103502A (en) COATINGS TO INCREASE DISTANCE DETECTION TO AN OBJECT DETECTED BY ELECTROMAGNETIC RADIATION OF THE NEAR INFRARED RANGE
JP2002038048A (en) Pigment containing rare earth manganese oxide, coating or enamel composition containing the pigment, coated article, method for preparing the pigment, and method of coloring article
JP2002530712A (en) Color shifting thin film pigment
MXPA06013480A (en) Machine-readable security element for security products.
WO2017159175A1 (en) Fluorescent substance
JP5281773B2 (en) Ink composition
BR112013028635B1 (en) COMPOSITION OF ARCHITECTURAL INK REFLECTING INFRARED, CEILING OR OUTER WALL OF A CONSTRUCTION COATED WITH THE INK COMPOSITION AND METHOD OF REDUCING THE TEMPERATURE RISING OF A CEILING OR OUTER WALL OF A CONSTRUCTION
CN105273484B (en) Without nickel viridine green
Radhika et al. Rare earth doped cobalt aluminate blue as an environmentally benign colorant
CN101934225A (en) Titanium dioxide particles and process for producing the same
JP2011173943A (en) Ink using pearlescent pigment
CN102471087A (en) Composite particle, composition for forming coating film, printing ink, coating composition, coated article, and resin film with coating film
JP5167557B2 (en) Anti-counterfeit ink composition
JP2017534690A (en) Novel inorganic blue pigment from cobalt-doped magnesium with transition element oxide and its preparation method
JP2011153208A (en) Ink produced by using pearlescent pigment
JP6100665B2 (en) Thermal barrier pigment composition, article, and infrared shielding composition
CN1220684A (en) High-chroma orange pearl pigment
JP2010234595A (en) Packaging film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121207

R150 Certificate of patent or registration of utility model

Ref document number: 5167557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees