JP2662986B2 - The method of manufacturing a tungsten or tungsten oxide ultrafine particles - Google Patents

The method of manufacturing a tungsten or tungsten oxide ultrafine particles

Info

Publication number
JP2662986B2
JP2662986B2 JP15486888A JP15486888A JP2662986B2 JP 2662986 B2 JP2662986 B2 JP 2662986B2 JP 15486888 A JP15486888 A JP 15486888A JP 15486888 A JP15486888 A JP 15486888A JP 2662986 B2 JP2662986 B2 JP 2662986B2
Authority
JP
Grant status
Grant
Patent type
Prior art keywords
tungsten
ultrafine particles
plasma
method
tungsten oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15486888A
Other languages
Japanese (ja)
Other versions
JPH026339A (en )
Inventor
正道 宇高
誠二 横田
Original Assignee
高周波熱錬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
    • B22F1/00Special treatment of metallic powder, e.g. to facilitate working, to improve properties; Metallic powders per se, e.g. mixtures of particles of different composition
    • B22F1/0003Metallic powders per se; Mixtures of metallic powders; Metallic powders mixed with a lubricating or binding agent
    • B22F1/0007Metallic powder characterised by its shape or structure, e.g. fibre structure
    • B22F1/0011Metallic powder characterised by size or surface area only
    • B22F1/0018Nanometer sized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高温プラブマを用いてタングステン粉末原料からタングステン超微粒子を,また酸化タングステン粉末原料から酸化タングステン・タングステン混在超微粒子を連続的に製造する方法に関する。 DETAILED DESCRIPTION OF THE INVENTION (INDUSTRIAL FIELD) The present invention is a tungsten ultrafine particles of tungsten powder raw material, also the continuous preparation of tungsten oxide-tungsten mixed ultrafine tungsten oxide powder raw material using a high temperature Purabuma a method for.

(従来の技術および問題点) 超微粒子はそれが有する顕著な特性に注目され、各種成分系超微粒子の製造法が研究・開発されつつある。 (Prior Art and Problems) ultrafine particles be noted remarkable properties it has various component ultrafine particles production method are being studied and developed. タングステン超微粒子も例えば焼結材への添加成分等としての需要が見込まれ、また酸化タングステン超微粒子も還元法により容易にタングステン超微粒子とすることが可能であるので、前段階物質として同様である。 Tungsten ultrafine particles also e.g. demand for additive component such as to the sintered material is expected, also because the tungsten oxide fine particles also can be easily and tungsten ultrafine particles by reduction method is the same before as phase material .

ところで、超微粒子を得るための方法は種々あるが、 Incidentally, a method for obtaining ultrafine particles are various,
バルクや通常粒径粉末のタングステン(以下元素記号のWを用いる)ないし酸化タングステン(以下化合物記号のWO 3を用いる)から超微粒子を得んとする場合、Wが特に高融点金属として知られているところから、直ちに高温プラズマを用いる方法が好ましいと想到される。 If you from the bulk or regular grains径粉powder tungsten (hereinafter used W elemental symbols) to (using WO 3 below Compound symbol) tungsten oxide and does give the ultrafine particles, W is known especially as a refractory metal from where you are, it is contemplated immediately method using a high-temperature plasma is preferred.

而して高温プラズマを発生させ、当該高温プラズマを用いて素材から超微粒子を生成可能な従来法としては、 Thus it was thus generating high-temperature plasma, the conventional method that can generate ultrafine particles from the material with the high-temperature plasma,
アークプラズマ法,高周波プラズマ法,直流プラズマジエツト法,あるいはハイプリツドプラズマ法等が挙げられる。 Arc plasma method, a high frequency plasma method, a DC plasma jet method, or High Priestess each time the plasma method and the like. これらの方法は周知の如く常圧(大気圧)状態下で高温プラズマを発生させ得るが、以下に概要を述べるとともに、従来技術をそのままWやWO 3の超微粒子化に用いた場合に生ずる問題点を指摘する。 These methods may generate a high temperature plasma at atmospheric pressure under (atmospheric pressure) conditions as is well known, together with the outlined below, the problem arising when using the ultrafine particles of the prior art as it is W or WO 3 to point out the point.

アークプラズマ法は,第2図(a)に示す如く,水冷銅ハースH上に被溶解材バルクBを載置して陽極とし、その上方所定間隙を隔てて陰極である棒状電極CA Arc plasma method, as shown in FIG. 2 (a), a water-cooled copper hearth by placing the object to be dissolved material bulk B as an anode on the H, rod electrode CA is a cathode at a thereabove predetermined gap
の先端を位置させ、両極間に電圧を印加して高温のアークプラズマP 1を発生させ、当該アークプラズマP 1によつてバルクBを溶融・蒸発せしめ、発生する蒸気を冷却して超微粒子を得るようにしている。 The tip is positioned, and to generate an arc plasma P 1 of high temperature by applying a voltage between the electrodes, the arc plasma P 1 to allowed melting and evaporating the Yotsute bulk B, and by cooling the steam generated ultrafine particles It is get way.

同法に従つてWO 3超微粒子を製造する場合には、WO 3のバルクBとWからなる棒状電極CAとで両極を構成し、常圧下で酸素ガスのアークプラズマP 1によりWO 3超微粒子を生成させることができる。 When manufacturing the Supporting connexion WO 3 ultrafine particles law, constitutes a bipolar with a rod electrode CA consisting of bulk B and W of WO 3, oxygen gas under normal pressure arc plasma P 1 by WO 3 ultrafine particles it can be generated. また、WのバルクBと棒状電極CAとを用い、水素ガスのアークプラズマP 1によりW Further, using the bulk B and the rod-shaped electrode CA of W, W by arc plasma P 1 of hydrogen gas
超微粒子を生成可能である。 It is possible to produce the ultra-fine particles. 然し乍ら、アークプラズマ法は発生するアークプラズマP 1の直径が極めて小さく、 However, the arc plasma method is extremely small diameter of the arc plasma P 1 occurring,
生成率が極度に低く工業的生産には程遠いという欠点があるとともに、バルクBが蒸発し尽くせば生産は停止され、さらには棒状電極CAも消耗するので、連続生産には不向きという欠点がある。 Together with the generated ratio is the disadvantage that far from extremely low industrial production, the production if Tsukuse bulk B evaporates is stopped, since and even bar electrode CA consumed, there is a disadvantage that not suitable for continuous production.

高周波プラズマ法は,第2図(b)に示す如く,所定雰囲気かつ常圧を維持する反応室CH、当該反応室CHに開口するプラズマトーチT、当該プラズマトーチTの外周を巻回する高周波コイルC、および当該高周波コイルC RF plasma method, as shown in FIG. 2 (b), the high-frequency coil for winding the outer periphery of the reaction chamber CH, the plasma torch T, the plasma torch T which is open to the reaction chamber CH to maintain a predetermined atmosphere and normal pressure C, and the high-frequency coil C
へ給電する高周波電源Eを備えた装置を用いる。 A device with a high-frequency power source E to supply power to use. プラズマトーチT内へ供給されるコアガス(プラズマの生成に供されるガスを云う)Gを高周波電磁エネルギーにより高温プラズマP 2化し、当該高温プラズマフレームP 2中へ粉末原料をキヤリヤガスCGにのせて連続供給し、粉末原料をプラズマフレームP 2内で溶融・蒸発させ、かつ雰囲気ガスと反応させる。 Continuous plasma torch core gas supplied into the T (referred gas used for generating plasma) G-temperature plasma P 2 turned into a high-frequency electromagnetic energy, by placing the powder material in Kiyariyagasu CG to the high temperature plasma flame P 2 in supplied, the powder raw material was melted and vaporized in the plasma flame P 2, and is reacted with the atmospheric gas. 反応により生成した粒子はプラズマフレームP 2外に移行する過程で凝集して超微粒子となつて雰囲気ガス中に浮遊するので、雰囲気ガス排出路上に設けた回収器に捕集するようにしている。 Since particles produced by the reaction is suspended in atmospheric gas aggregate during the process of transition to the outer plasma flame P 2 Te summer and ultrafine particles, so that collecting the collector provided in the atmospheric gas discharge path.

本発明者は、本発明をなすに先立つて同法に従つてW The present inventors have, in the law and prior to the form of the present invention follow connexion W
ないしWO 3粉末原料を超微粒子化せんとする実験を行つた。 To KoTsuta experiments to St. micronized of WO 3 powder material. 当該実験ではアルゴン等の不活性ガスをコアガスG Core gas G with inert gas such as argon is in the experiment
とし、粉末原料をコアガスGと同質のキヤリヤガスCGにのせてプラズマフレームP 2の中間位置へ向けて供給するようにしたが、殆ど超微粒子化されないという実験結果に終わつた。 And then, but put the powder material in Kiyariyagasu CG core gas G the same quality and to supply toward the intermediate position of the plasma flame P 2, Owa almost experimental results that are not ultrafine particles ivy.

また、上記実験の不首尾が粉末原料をプラズマフレームP 2の低温域plに供給する設定としたため、Wの高融点・高沸点特性(融点:3387℃,沸点:5927℃)やプラズマ領域内での滞留時間の短かさに起因するやも知れぬと想定し、コアガスGに粉末原料をのせてプラズマフレーム Further, failure of the experiment for the powder raw material was supplied set to a low temperature region pl of plasma flame P 2, high melting and high-boiling characteristics of W (melting point: 3387 ° C., boiling point: 5927 ° C.) and in the plasma region assume unexpected could. and to due to shortness of residence time, the plasma flame topped with powdered raw material core gas G
P 2中心高温域ph(10000K)に送り込むようにしたが、その供給量を極度に僅少としない限り,高温プラズマフレームP 2が不安定となるという実験結果が得られ、当該試みも失敗に終わつた。 Was as fed into P 2 around the high temperature zone ph (10000K), unless insignificant the supply quantity to extreme, the experimental results that the high temperature plasma flame P 2 becomes unstable is obtained, the attempt also Owa failed ivy.

直流プラズマジエツト法は、第3図(c)に示す如く,水冷陰極CAと水冷陽極AN、コアガスGの供給路T 1 DC plasma jet method, as shown in FIG. 3 (c), supply path T 1 of the water-cooled cathode CA and water-cooled anode AN, core gas G,
および粉末原料をのせるキヤリヤガスCGの供給路T 2を備えたプラズマジエツトガンPGを用いて高温プラズマP 3を発生させるもので、通常は肉盛り,熔接等に使用される。 And the supply path T 2 of the Kiyariyagasu CG placing the powder material by using a plasma jet gun PG with those which generate high temperature plasma P 3, usually padding is used for welding or the like. 同法はプラズマフレームP 3の高温域phに粉末原料を送り込んでもプラズマP 3の不安定を招来しないという利点がある。 Law has the advantage be fed to the powder material to a high temperature range ph plasma frame P 3 is not lead to instability of the plasma P 3.

同法に従つてWないしWO 3粉末原料を超微粒子化せんとして、陰極CAをW材製,陽極ANを銅材製とし、コアガスGおよびキヤリヤガスCGに不活性ガスを用いて実験してみたが、プラズマP 3の流速があまりにも高速のため、 As micronized plugs the WO 3 powder material to not follow connexion W to the law, the cathode CA the W material made, the anode AN is made of copper material, have been to experiment with an inert gas into the core gas G and Kiyariyagasu CG , because of the high speed the flow velocity of the plasma P 3 is too,
粉末原料がプラズマフレームP 3の中心高温域phを通過するにも拘わらず、充分に溶融・蒸発する暇なくプラズマフレームP 3外に排出され、超微粒子化するに到らなかつた。 Powder source despite passing through the center hot zone ph plasma frame P 3, are sufficiently melted and discharged leisure without outer plasma flame P 3 evaporates, has failed lead to super fine particles.

ハイプリツドプラズマ法は図示を省略するが、上記高周波プラズマ法と直流プラズマジエツト法とを組合せたもので、プラズマジエツトの流速が高速のため、直流プラズマジエツト法における場合と同様にWないしWO 3の超微粒子化には不適であつた。 High Priestess each time the plasma method is not shown, in which a combination of a high-frequency plasma method and a DC plasma jet method, since the flow velocity of the plasma jet is high, to no W as in DC plasma jet method It has been made unsuitable for ultra-fine particles of WO 3.

(発明の目的) 本発明はW超微粒子もしくはWO 3超微粒子を製造する場合、高温プラズマが得られる各従来法に存する上述の問題点を解決するためになされたもので、粉末原料がW If INVENTION An object of the present invention is to produce a W ultrafine particles or WO 3 ultrafine particles, which has been made to solve the above problems existing in the prior art high temperature plasma is obtained, the powder material is W
ならばW超微粒子,WO 3ならばWO 3・W混在超微粒子を100 If W ultra-fine particles, the WO 3 if WO 3 · W mixed ultrafine particles 100
%生成率で連続生産可能とするタングステンもしくは酸化タングステン超微粒子の製造方法を提供することを目的とする。 And to provide a tungsten or manufacturing method of the tungsten oxide ultrafine particles to enable continuous production in% production rate.

(発明の構成) 本発明の構成は、 (1)100%窒素ガス,もしくは主成分が窒素ガスでアルゴンを添加したコアガスならびに雰囲気ガスを用い、 (2)微減圧雰囲気中に高温プラズマを発生せしめ、 (3)当該プラズマフレーム中へタングステン,もしくは酸化タングステンの粉末原料を上記ガスと同質のキヤリヤガスにのせて連続供給することにより、 (4)上記粉末原料から超微粒子を生成せしめ、 (5)上記微減圧雰囲気を維持するために吸引される雰囲気ガス流中に浮遊する超微粒子を連続的に捕集・回収するようにした ことを特徴とするタングステンもしくは酸化タングステン超微粒子の製造方法にある。 Of the present invention (structure of the invention) configuration, (1) with 100% nitrogen gas core gas and the atmospheric gas or the main component was added and argon with nitrogen gas, by which the high temperature plasma in slightly reduced pressure atmosphere (2) , (3) tungsten into the plasma flame, or powder raw material tungsten oxide by continuously fed placed on Kiyariyagasu of the gas of the same quality, yielding ultrafine particles (4) above powder raw material, (5) the in tungsten or manufacturing method of the tungsten oxide ultrafine particles, characterized in that as the ultrafine particles suspended in the atmosphere gas stream is continuously collected and recovered is sucked in order to maintain the slightly reduced pressure atmosphere.

(発明の作用) 本発明法の特徴は、窒素ガス(以下分子記号N 2と記す)をコアガス,キヤリヤガスおよび雰囲気ガスとして使用し、当該窒素ガスをa,超微粒子化反応に関与させるとともに、b,プラズマの流速を不活性ガス使用時の場合のそれより抑制するようにし、常圧で高温プラズマを発生可能,かつ連続生産を可能とする従来法,即ち高周波プラズマ法,直流プラズマジエツト法,あるいはハイブリツドプラズマ法等におけるプラズマフレームを敢えて微減圧した反応容器内で発生させることにより、上記aとの相乗効果でプラズマフレーム領域,特に尾炎部領域を拡大させるようにした点にある。 Feature of the present invention method (the action of the invention), nitrogen gas (hereinafter referred to as molecular symbol N 2) a core gas, used as Kiyariyagasu and atmospheric gas, the nitrogen gas a, together with to participate in micronized reaction, b , the conventional method of plasma flow rate so as to suppress than that of the case when using an inert gas, can generate a high temperature plasma at atmospheric pressure, and to enable continuous production, i.e. a high-frequency plasma method, a DC plasma jet method, or by generating the plasma flame in hybrid each time the plasma method dare at slightly reduced pressure reaction vessel, in point so as to expand in synergy with the a plasma flame region, in particular Oen region.

上記構成によつて、プラズマフレームは高エンタルピー化され、N 2分子の解離により活性化した単原子となつたNが供給される粉末原料の溶融・蒸発を促進し、さらにはNが拡大したプラズマフレーム領域内でWないしWO Yotsute to the above configuration, a plasma flame is high enthalpy of, promoting melting and vaporization of the powder material monoatomic and summer were N activated by dissociation of N 2 molecules is supplied, further expanded N plasma It is no W in the frame in the region WO
3蒸気と会合して超微粒子化反応をするに充分な時間を確保し得る作用を発揮することとなる。 3 in association with steam becomes possible to exert an effect capable of ensuring a sufficient time to ultrafine particles reaction.

この場合の微減圧は、実験結果から少なくとも700tor Slightly reduced pressure in this case, at least 700tor experimental results
r以下ならばプラズマフレームの領域拡大作用を齎す。 If r below bring the region growing effect of the plasma frame.

また、粉末原料がWである場合にはW超微粒子が、WO Further, W ultra-fine particles when the powder raw material is W has, WO
3である場合にはWO 3・W混在超微粒子が生成され、その生成率はいずれの場合でも供給原料の100%である。 If it is 3 WO 3 · W mixed ultrafine particles are produced, the production rate is 100% of the feedstock either case.

プラズマフレーム領域内での化学反応式は現時点で同定されないが、以下のように推定される。 Although the chemical reaction formula in the plasma flame regions are not identified at this time it is estimated as follows. 即ち,例えば供給粉末原料がWの場合には、高温域でN 2から解離した単原子NがW蒸気と結合し、一時的に大きさが原子ないし分子レベルのWN 2 ,もしくはWN等の中間生成物蒸気となる。 That is, for example, when the supply powder material is W is a single atom N dissociated from N 2 at high temperatures are bonded to W steam, intermediate WN 2 or WN or the like, temporarily magnitude atoms or molecular level the product vapors. 当該中間生成物蒸気は不定性であるので,3000K以下の低温域でNのN 2への結合力が中間生成物結合力に勝り、N 2となると同時にWが解離されるものと思われる。 Since the intermediate product vapor is ambiguity, binding force of the N 2 of N in the following low temperature range 3000K overcomes the intermediate product binding force, N 2 become simultaneously W is believed to be dissociated.
また、供給粉末原料がWO 3の場合には、中間生成物蒸気の組成は不明なるも、少なくとも低温域でNのN 2への結合力がWとOとの結合力に勝ることが実験結果から明確にされるところである。 Further, when the supply powder material is WO 3 is the composition of the intermediate product vapor yet a unknown, it is the experimental results over avidity of binding strength between W and O to N 2 of N at least low temperature range from is where to be clarified.

而して、WないしWO 3の超微粒子化にはN 2の高温プラズマが奏功するが、本発明者が本発明に先立つて行つたアルゴン(Ar)100%の高温プラズマを用いた実験では超微粒子化に失敗しており、少なくとも単原子Nの分子 And Thus, although the high temperature plasma N 2 is successful in micronized of from W WO 3, in the experiments by the present inventors using a high-temperature plasma KoTsuta argon (Ar) 100% in prior to the present invention ultra has failed the fine particles, at least monatomic N molecules
N 2への再結合が超微粒子化に寄与するとする推定が当を得ていることを裏付けしている。 Recombination of the N 2 is confirming that estimated to contribute to micronized are getting equivalent.

(実施例) 本発明を例えば直流プラズマジエツト法に実施した場合を第1図に示す。 It shows the case where the implement (Example) The present invention, for example, in a DC plasma jet method in Figure 1.

図において、1は直流電源、2は第2図(c)に示した同様な構造からなる上記直流電源1に接続するプラズマジエツトガン、3は上記プラズマジエツトガン2の先端が挿入状態で配置されている反応容器、4は粉末原料供給装置、5および6はN 2およびArの供給源、7は反応容器3に一方端が開口し,外周を冷却水Waで冷却される水冷導管、8は上記水冷導管7の他方端が接続され,例えば超微粒子を捕捉可能なメツシユのフイルタを備えた回収器、9は上記回収器8に連接配置されたポンプである。 In the figure, reference numeral 1 denotes a DC power source, two plasma jet gun that is connected to the DC power source 1 consisting of the same structure shown in FIG. 2 (c), 3 the tip of the plasma jet gun 2 is in the inserted state arranged to have the reaction vessel 4 is a powder material supply device, 5 and 6 are N 2 and Ar sources, 7 open at one end into the reaction vessel 3, water cooling conduits to cool the outer periphery with cooling water Wa, 8 is connected to the other end of the water cooling pipe 7, for example, recovery equipped with a filter of trappable mesh screen ultrafine particles, 9 is a pump which is connected arranged in the collector 8.

上記プラズマジエツトガン2には、管路T 1を介して例えばN 2・Ar混合ガスがコアガスGとして供給され、また管路T 2を介して粉末原料供給装置4から単位時間当たり所定量の粉末原料がN 2・Ar混合ガスからなるキヤリヤガスCGにのせられて供給される。 The aforementioned plasma jet gun 2, for example, N 2 · Ar mixed gas via line T 1 is supplied as the core gas G, also the conduit T 2 the powder material supply device a predetermined amount per unit time 4 via powder source is supplied mounted on a Kiyariyagasu CG consisting N 2 · Ar mixed gas.

上記構成からなる装置により超微粒子を製造する場合を以下に述べる。 The case of producing the ultrafine particles by an apparatus having the above arrangement will be described below.

まず、ポンプ9を始動させて反応容器3,水冷導管7,および回収器8それぞれのエア抜きをするとともに、管路 First, the reaction vessel 3 to start the pump 9, water cooling conduits 7, and collector 8 with the respective air vent, duct
T 1を介してコアガスGを反応容器3内に流入させてエア雰囲気をコアガスG雰囲気に置換し、次いでコアガスG Via T 1 allowed to flow into the core gas G into the reaction vessel 3 to replace the air atmosphere core gas G atmosphere, then core gas G
の流入量とポンプ9の吸引力との関係において反応容器3内の圧力が700torr以下の所定圧を維持する如く制御・調整のうえ、プラズマジエツトガン2を点火する。 The pressure in the reaction vessel 3 in relation to the suction force of the inflow and pump 9 of upon as control and adjustment to maintain a constant pressure below at 700 torr, to ignite a plasma jet gun 2. プラズマジエツトガン2の反応容器3内に位置する先端開口から発生するプラズマフレームPは、N 2もしくは主成分がN 2のコアガスを用い,かつ反応容器3内が微減圧状態としてあるので、従来法に比べてプラズマの流速は抑制されるとともに、プラズマフレーム領域,特に低温域 Plasma frame P generated from the distal end opening located in the reaction vessel 3 of the plasma jet gun 2, N 2 or main component using a core gas of N 2, and since the reaction container 3 are a slightly reduced pressure state, prior with the flow rate of the plasma is suppressed as compared with the law, the plasma frame area, in particular low temperature range
plが広範囲に拡大している。 pl it is expanding extensively. この状態において管路T 2を開とし、粉末原料をキヤリヤガスCGにのせて供給する。 The conduit T 2 is opened in this state, supplies topped with powdered raw material Kiyariyagasu CG.
粉末原料は前掲作用の項で述べたとおりプラズマフレームP内で蒸気となり、当該蒸気は活性化したNと反応したのち、凝集しつつ超微粒子となつてプラズマフレームP外へ移行し、反応容器3内の雰囲気ガス中に浮遊する。 Powder source becomes steam in the plasma frame P as described in the section of the supra action, the vapor then reacted with activated N, and proceeds with aggregate Te summer and ultrafine particles to the plasma flame P out, the reaction vessel 3 floating in the atmosphere in the gas of the internal. 反応容器3の雰囲気ガスは順次導管7を介して回収器8へと導かれるので、雰囲気ガス中に浮遊する超微粒子は回収器8内のフイルタに捕捉され、回収される。 Since the atmospheric gas in the reaction vessel 3 is directed into the collection vessel 8 via sequential conduit 7, ultrafine particles suspended in the atmosphere gas is trapped in the filter of the collection vessel 8 and recovered.

(実験例) 本発明者が上記装置を用いて行つた多数の実験中の一例を以下に開示する。 (Experimental Example) The present inventors have disclosed hereinafter an example in a number of experiments having conducted using the above apparatus.

○実験条件 *粉末原料:WO 3平均粒径……20μm *プラズマガス(コアガス,キヤリヤガス) 成分および流量:N 2 ……15/min Ar…… 5/min *プラズマ入力:電圧…… 60V 電流……100V ○実験結果 上記条件に従つて超微粒子を得た。 ○ Experimental conditions * powder material: WO 3 average particle size ...... 20μm * plasma gas (the core gas, Kiyariyagasu) component and flow: N 2 ...... 15 / min Ar ...... 5 / min * Plasma Input: Voltage ...... 60V current ... obtained the Supporting go-between ultra-fine particles to ... 100V ○ experimental results the above-mentioned conditions. その結果を下記する。 The results are below.

*超微粒子粒径……0.05μm *超微粒子化率……100% *超微粒子組成: WO 3 ……90% W ……10% 尚、得られた超微粒子をX線回折検査に付し、超微粒子中にNの存在,即ちWN 2ないしWNの生成の有無を調査した。 * Ultrafine particle size ...... 0.05 .mu.m * micronized rate ...... 100% * ultrafine particle composition: WO 3 ...... 90% W ...... 10% Note that given the ultra-fine particles obtained in X-ray diffraction examination, the presence of N in the ultra-fine particles, that is to WN 2 not to investigate the presence or absence of the generation of WN. 当該検査で、Nは全く検出されなかつた。 In the test, N is the never to have been detected at all.

上記実験結果は本発明方法がWO 3超微粒子製造に画期的に奏功することを立証した。 The above experimental results the present invention a method is established that remarkably successful in WO 3 ultrafine particles produced.

また、上記装置を使用して粉末原料をWとした実験例ではW超微粒子が生成され、その超微粒子化率も100% Also, in the experimental examples using the above device to the powder raw material W W ultrafine particles are produced 100 percent its ultrafine rate
であり、X線回折検査でもNの存在は皆無であることが確認されている。 , And the it has been confirmed that the presence of N is none in X-ray diffraction examination.

(他の実施例) 上記実施例および開示実施例では、プラズマガスとしてN 2・Ar混合ガスであつたが、Arはプラズマ安定用であり、例えば点火時にArを少量混入し、プラズマが安定したら順次Arの供給を絞つてゆき、N 2のみを供給するようにしてもよい。 (Other embodiments) In the above Examples and disclosure embodiment, been filed with N 2 · Ar mixed gas as a plasma gas, Ar is a plasma stable, for example a small amount mixed with Ar during ignition, when the plasma is stabilized sequentially Yuki and Shibotsu the supply of Ar, may be supplied only N 2. この場合でも超微粒子の生成に何等の支障も生じない。 This does not occur trouble of anything, such as in the production of ultra-fine particles even in the case.

また、上記実施例はプラズマジエツトガン2を用いて高温プラズマを発生させる直流プラズマジエツト法に本発明法を適用した場合であつたが、本発明法は高周波プラズマ法やハイブリツドプラズマ法により高温プラズマを発生させる場合にも適用可能である。 Further, the above embodiment but was filed in the case of applying the present invention method to a DC plasma jet method for generating a high temperature plasma with a plasma jet gun 2, the present invention method is a high temperature by high-frequency plasma method and hybridized whenever plasma method it is also applicable to a case of generating a plasma. ただし、高周波プラズマ法に適用する場合には、キヤリヤガスCGを可及的にプラズマの根本部に近い位置に吹き込む設定とし、 However, when applied to a high-frequency plasma method, a set of blowing in a position close to the base portion of the as much as possible plasma Kiyariyagasu CG,
高融点,高沸点特性を有する粉末原料がプラズマフレームの中心高温域ph内を確実に通過する如く供給する配慮が必要である。 Refractory, it is necessary to consider as supplying the powder raw material having a high boiling point profile to reliably pass through the center high-temperature region within the ph of the plasma flame.

(発明の効果) 本発明法は、粉末原料がWならばW超微粒子を,WO 3ならばWO 3・W混在超微粒子を100%の生成率で極めて容易に連続生産し得るので、WもしくWO 3超微粒子の需要に対し工業的生産規模,即ち大量かつ廉価で応ずることが可能となり、本発明法が齎す効果は甚大である。 The present invention method (Effect of the invention), the powder raw material W if W ultrafine particles, since it can be very easily continuously produced in WO 3 if WO 3 · W mixed ultrafine particles 100% production rate, W also industrial production scale to the demand of WO 3 ultrafine particles as, that is a large amount and it becomes possible to comply with low-cost, the effect of the method of the present invention is bring is enormous.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

第1図は本発明法の一実施例概要を示す正面図、第2図(a)〜(c)はそれぞれ高温プラズマを発生し得る従来法による装置例の正面図ないし断面正面図である。 Figure 1 is a front view showing an embodiment outline of the method of the present invention, FIG. 2 (a) ~ (c) is a front view to a cross-sectional front view of an apparatus example according to the respective conventional methods capable of generating high-temperature plasma.

Claims (4)

    (57)【特許請求の範囲】 (57) [the claims]
  1. 【請求項1】100%窒素ガス,もしくは主成分が窒素ガスでアルゴンを添加したコアガスならびに雰囲気ガスを用い、微減圧雰囲気中に高温プラズマを発生せしめ、当該プラズマフレーム中へタングステン,もしくは酸化タングステンの粉末原料を上記ガスと同質のキヤリヤガスにのせて連続供給することにより、上記粉末原料から超微粒子を生成せしめ、上記微減圧雰囲気を維持するために吸引される雰囲気ガス流中に浮遊する超微粒子を連続的に捕集・回収するようにしたことを特徴とするタングステンもしくは酸化タングステン超微粒子の製造方法。 [Claim 1] with 100% nitrogen gas core gas and the atmospheric gas or the main component was added and argon with nitrogen gas, by which the high temperature plasma in slightly reduced pressure atmosphere, the tungsten or tungsten oxide, into the plasma flame the powder raw material by continuously supplying put on Kiyariyagasu of the gas of the same quality, yielding ultrafine particles from the powder material, the ultrafine particles suspended in the atmosphere gas stream is sucked in order to maintain the slightly reduced atmosphere tungsten or manufacturing method of the tungsten oxide ultrafine particles is characterized in that so as to continuously collected and recovered.
  2. 【請求項2】微減圧が少なくとも700torr以下である請求項1記載のタングステンもしくは酸化タングステン超微粒子の製造方法。 2. A slightly reduced pressure is at least 700torr less is claim 1 tungsten or manufacturing method of the tungsten oxide ultrafine particles according.
  3. 【請求項3】粉末原料がタングステンである場合にはタングステン超微粒子が生成される請求項1記載のタングステンもしくは酸化タングステン超微粒子の製造方法。 3. The method for producing a tungsten or tungsten oxide ultrafine particles according to claim 1, wherein the powder raw material to tungsten ultrafine particles in the case of tungsten is produced.
  4. 【請求項4】粉末原料が酸化タングステンである場合には酸化タングステン・タングステン混在超微粒子が生成される請求項1記載のタングステンもしくは酸化タングステン超微粒子の製造方法。 4. A powder raw material manufacturing method of the tungsten or tungsten oxide ultrafine particles according to claim 1, wherein the tungsten oxide-tungsten mixed ultrafine particles are produced in the case of tungsten oxide.
JP15486888A 1988-06-24 1988-06-24 The method of manufacturing a tungsten or tungsten oxide ultrafine particles Expired - Fee Related JP2662986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15486888A JP2662986B2 (en) 1988-06-24 1988-06-24 The method of manufacturing a tungsten or tungsten oxide ultrafine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15486888A JP2662986B2 (en) 1988-06-24 1988-06-24 The method of manufacturing a tungsten or tungsten oxide ultrafine particles

Publications (2)

Publication Number Publication Date
JPH026339A true JPH026339A (en) 1990-01-10
JP2662986B2 true JP2662986B2 (en) 1997-10-15

Family

ID=15593679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15486888A Expired - Fee Related JP2662986B2 (en) 1988-06-24 1988-06-24 The method of manufacturing a tungsten or tungsten oxide ultrafine particles

Country Status (1)

Country Link
JP (1) JP2662986B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101782173B1 (en) 2009-07-07 2017-10-23 바스프 에스이 Potassium cesium tungsten bronze particles

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3411497B2 (en) 1998-03-25 2003-06-03 株式会社東芝 W ultrafine particles and manufacturing method thereof, and w nanocrystalline films
JP4626284B2 (en) * 2003-12-05 2011-02-02 住友金属鉱山株式会社 The method of manufacturing for forming a solar radiation-shielding body of tungsten oxide microparticles, and for forming a solar radiation-shielding body of tungsten oxide microparticles
JP4949657B2 (en) * 2004-11-09 2012-06-13 大研化学工業株式会社 And high wear zirconia microspheres manufacturing method thereof
JP4921806B2 (en) * 2006-02-13 2012-04-25 住友金属鉱山株式会社 Tungsten ultrafine and manufacturing method thereof
JP5306181B2 (en) * 2007-03-23 2013-10-02 株式会社東芝 The method of manufacturing the tungsten trioxide powder photocatalyst, photocatalytic tungsten trioxide powder and photocatalytic product
US8893651B1 (en) 2007-05-11 2014-11-25 SDCmaterials, Inc. Plasma-arc vaporization chamber with wide bore
KR101611627B1 (en) * 2007-11-05 2016-04-11 바스프 에스이 Heat shielding additives
WO2009031316A1 (en) * 2007-09-05 2009-03-12 Kabushiki Kaisha Toshiba Visible-light-responsive photocatalyst powder, and visible-light-responsive photocatalyst material, photocatalytic coating material, and photocatalytic product each containing the same
US9598584B2 (en) 2007-09-05 2017-03-21 Kabushiki Kaisha Toshiba Visible-light-responsive photocatalyst powder, method of manufacturing the same, and visible-light-responsive photocatalytic material, photocatalytic coating material and photocatalytic product each using the same
US8575059B1 (en) 2007-10-15 2013-11-05 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
JP5115209B2 (en) * 2008-01-21 2013-01-09 東ソー株式会社 Method of manufacturing the surface is smooth ceramic beads
JP5957175B2 (en) * 2008-03-04 2016-07-27 株式会社東芝 Antibacterial film and antibacterial member
JP5343697B2 (en) * 2009-05-15 2013-11-13 住友金属鉱山株式会社 The method of manufacturing composite tungsten oxide fine particles
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9039916B1 (en) 2009-12-15 2015-05-26 SDCmaterials, Inc. In situ oxide removal, dispersal and drying for copper copper-oxide
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
WO2015013545A1 (en) 2013-07-25 2015-01-29 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters
CA2926135A1 (en) 2013-10-22 2015-04-30 SDCmaterials, Inc. Compositions of lean nox trap
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
JP6342251B2 (en) * 2014-07-25 2018-06-13 国立大学法人北海道大学 Production process and thereby obtain fine particles of tungsten oxide and tungsten metal particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101782173B1 (en) 2009-07-07 2017-10-23 바스프 에스이 Potassium cesium tungsten bronze particles

Also Published As

Publication number Publication date Type
JPH026339A (en) 1990-01-10 application

Similar Documents

Publication Publication Date Title
US6398125B1 (en) Process and apparatus for the production of nanometer-sized powders
US5851507A (en) Integrated thermal process for the continuous synthesis of nanoscale powders
US3791852A (en) High rate deposition of carbides by activated reactive evaporation
US20010050219A1 (en) Method of manufacturing carbon nanotubes and/or fullerenes, and manufacturing apparatus for the same
US7261779B2 (en) System, method, and apparatus for continuous synthesis of single-walled carbon nanotubes
US20080006954A1 (en) Process and Apparatus for Producing Fine Particles
US6261532B1 (en) Method of producing carbon
US5876684A (en) Methods and apparati for producing fullerenes
US6755886B2 (en) Method for producing metallic microparticles
US20050118090A1 (en) Plasma synthesis of hollow nanostructures
US20050258149A1 (en) Method and apparatus for manufacture of nanoparticles
US5370855A (en) Conversion of fullerenes to diamond
Venkatramani Industrial plasma torches and applications
US5821548A (en) Beam source for production of radicals and metastables
US6669823B1 (en) Process for preparing nanostructured materials of controlled surface chemistry
US5120567A (en) Low frequency plasma spray method in which a stable plasma is created by operating a spray gun at less than 1 mhz in a mixture of argon and helium gas
US4913731A (en) Process of making prealloyed tungsten alloy powders
US20080220175A1 (en) Nanoparticles wtih grafted organic molecules
JP2002336688A (en) Method for treating powder, method for manufacturing inorganic powder and apparatus for treating object to be treated
US20020127351A1 (en) Method for preparing nano-carbon and nano-carbon prepared by such method and composite material or mixed material containing nano-carbon and metal fine particle, apparatus for preparing nano-carbon, method for patterning nano-carbon and nano carbon base material patterned by the use of such method, as well as electron emission source using such patterned nano-carbon base material
US4731110A (en) Hydrometallurigcal process for producing finely divided spherical precious metal based powders
US4974544A (en) Vapor deposition apparatus
US6689192B1 (en) Method for producing metallic nanoparticles
Sugai et al. Production of fullerenes and single-wall carbon nanotubes by high-temperature pulsed arc discharge
US4376740A (en) Process for production fine metal particles

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees