JPH03115139A - Antireflection film and its formation - Google Patents

Antireflection film and its formation

Info

Publication number
JPH03115139A
JPH03115139A JP1251839A JP25183989A JPH03115139A JP H03115139 A JPH03115139 A JP H03115139A JP 1251839 A JP1251839 A JP 1251839A JP 25183989 A JP25183989 A JP 25183989A JP H03115139 A JPH03115139 A JP H03115139A
Authority
JP
Japan
Prior art keywords
film
antireflection film
substrate
reflection
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1251839A
Other languages
Japanese (ja)
Inventor
Kunihiko Watanabe
邦彦 渡邉
Masahiro Tanaka
政博 田中
Satoru Todoroki
轟 悟
Mitsuo Nakatani
中谷 光雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1251839A priority Critical patent/JPH03115139A/en
Publication of JPH03115139A publication Critical patent/JPH03115139A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily form an antireflection film on the surface of a substrate regardless of the kind of the substrate by etching a thin film consisting of plural materials formed on the substrate by microwave plasma CVD method to make it porous. CONSTITUTION:An antireflection film 1 is formed on a glass sheet (ns=1.53) as the substrate 2 as follows. Namely, the surface of the substrate 2 is ultrasonically cleaned by neutral detergent and acetone. The film of a mixture of SnO2 3 and SiO2 4 is then formed on the surface of the substrate 2 in about 1mum thickness by microwave plasma CVD method. The film forming conditions are shown in the table. The obtained sample is then etched by aqua regia for about 5min. In this case, the SnO2 3 having a high etching rate is progressively etched, but the SiO2 4 having a low etching rate is hardly etched. Consequently, a porous layer 5 is formed on the surface of the antireflection film 1 in about 0.9mum thickness.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は基材表面に形成する反射防止膜に係り、特に、
基材の種類によらずに、その表面に簡便に形成すること
のできる反射防止膜およびその形成方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an antireflection film formed on the surface of a substrate, and in particular,
The present invention relates to an antireflection film that can be easily formed on the surface of a substrate regardless of the type of the substrate, and a method for forming the same.

[従来の技術] ガラス表面は、通常、片面で3〜4%の反射率を有して
いるため、これを表面に持つブラウン管などの表示装置
、あるいは、カメラ、眼鏡などの光学機器においては、
その表面反射を低減するために反射防止処理を施してお
り、この処理は、最近では、表面反射によるエネルギー
ロスの低減の観点から、太陽電池や核融合用レーザー装
置などへの適用も検討されている。
[Prior Art] Glass surfaces usually have a reflectance of 3 to 4% on one side, so in display devices such as cathode ray tubes, or optical devices such as cameras and glasses that have this on their surfaces,
Anti-reflection treatment is applied to reduce surface reflection, and this treatment has recently been considered for application to solar cells, nuclear fusion laser equipment, etc. from the perspective of reducing energy loss due to surface reflection. There is.

反射防止処理の方法としては、薄膜界面での反射光の干
渉作用を利用する多層膜(単層膜を含む)法や、屈折率
を連続的に変化させて反射をなくす屈折率連続変化法な
どが知られている。これらの方法にはそれぞれに長所短
所があるが、特に大面積にわたって反射防止膜を形成す
る場合には、屈折率連続変化法が有利である。
Anti-reflection treatment methods include the multilayer film (including single-layer film) method, which utilizes the interference effect of reflected light at the thin film interface, and the continuous refractive index change method, which eliminates reflection by continuously changing the refractive index. It has been known. Each of these methods has advantages and disadvantages, but the continuous refractive index method is particularly advantageous when forming an antireflection film over a large area.

このように屈折率が膜厚方向に連続変化している膜を不
均質膜(層)と言い、その代表的なものとしてガラス表
面を多孔質化したものがあり、その形成方法として、例
えば特開昭57−166337号あるいは特開昭57−
170840号記載のように、ガラス表面をケイフッ化
水素酸のシリカ過飽和水溶液でエツチングする方法が提
案されている。この方法では、基材のガラス自体をエツ
チングするため、簡便かつ均一に多孔質化することがで
きる。
A film in which the refractive index continuously changes in the film thickness direction is called a heterogeneous film (layer).A typical example of such a film is one in which the glass surface is made porous. 166337-166337 or JP-A-57-
As described in No. 170,840, a method has been proposed in which a glass surface is etched with a silica supersaturated aqueous solution of hydrofluorosilicic acid. In this method, since the base glass itself is etched, it can be easily and uniformly made porous.

[発明が解決しようとする課題] しかしながら、上記従来技術は、多孔質化については考
慮しているが、その強度については必ずしも十分な配慮
がなされていないという問題があった。また、対象とす
る基材がガラスに限定されているため、プラスチックな
どの表面に反射防止膜を形成する場合には適用できなか
った。さらに、基材そのものをエツチングするため、エ
ツチング量の制御という問題があった。
[Problems to be Solved by the Invention] However, although the above-mentioned prior art takes into consideration porosity, there is a problem in that sufficient consideration is not necessarily given to the strength. Furthermore, since the target substrate is limited to glass, it cannot be applied to forming an antireflection film on the surface of plastic or the like. Furthermore, since the base material itself is etched, there is a problem of controlling the amount of etching.

本発明の目的は、上記従来技術の有していた課題を解決
して、基材の種類によることなく、基材表面に簡便に形
成することのできる反射防止膜およびその形成方法を提
供することにある。
An object of the present invention is to provide an antireflection film that can be easily formed on the surface of a substrate regardless of the type of substrate, and a method for forming the same, by solving the problems of the above-mentioned conventional techniques. It is in.

[課題を解決するための手段] 上記目的は電子サイクロトロン共鳴を利用したマイクロ
波プラズマCVD法により複数種の物質からなる薄膜を
基材上に形成し、次いで、該薄膜を選択的にエツチング
して多孔質化することによって達成することができる。
[Means for Solving the Problems] The above object is to form a thin film made of a plurality of substances on a base material by a microwave plasma CVD method using electron cyclotron resonance, and then selectively etch the thin film. This can be achieved by making it porous.

上記電子サイクロトロン共鳴を利用したマイクロ波プラ
ズマCVD法によれば、低温あるいは無加熱でも、強固
な薄膜を形成することができる。
According to the microwave plasma CVD method using electron cyclotron resonance, a strong thin film can be formed at low temperatures or without heating.

ただし、この反射防止膜については、その平均屈折率が
基材の屈折率よりも低いこと、可視光に対して透明であ
ることなどの制約があり、この条件にあわせて物質を選
択する必要がある。ここで、平均屈折率とは、薄膜(屈
折率nf、膜厚D)中に多孔質性の部分が厚さdだけ形
成されている場合、(1)式で表されるn meanで
ある。(空気の屈折率を1とする) D [作用コ 光の反射は屈折率の異なる界面で生ずるものであり、屈
折率を連続的に変化させることによって光学的界面がな
くなり、反射が生じなくなる。屈折率を連続的に変化さ
せる手段として、薄膜の表面を多孔質化する方法があり
、このようにすることによって、この部分での屈折率は
l (空気)からnf(薄膜物質)まで連続的に変化す
る。この場合に、薄膜と基材との界面で反射が生ずるが
、前述のように、薄膜の平均屈折率を基材の屈折率より
も小さいものとした場合には、反射が低減される。これ
は、該界面での反射がnfと基材の屈折率nsとの差の
関数であることによる。すなわち、nfがnsに近いほ
ど小さく、特に、薄膜を基材と同一物質で形成すれば、
最小となる。
However, there are restrictions on this anti-reflection film, such as its average refractive index being lower than the refractive index of the base material and that it be transparent to visible light, so it is necessary to select the material according to these conditions. be. Here, the average refractive index is n mean expressed by equation (1) when a porous portion with a thickness d is formed in a thin film (refractive index nf, film thickness D). (Assuming the refractive index of air is 1) D [Operation] Reflection of light occurs at interfaces with different refractive indexes; by continuously changing the refractive index, there are no optical interfaces and no reflection occurs. One way to continuously change the refractive index is to make the surface of the thin film porous.By doing this, the refractive index in this area is continuous from l (air) to nf (thin film material). Changes to In this case, reflection occurs at the interface between the thin film and the base material, but as described above, when the average refractive index of the thin film is made smaller than the refractive index of the base material, the reflection is reduced. This is because the reflection at the interface is a function of the difference between nf and the refractive index ns of the substrate. That is, the closer nf is to ns, the smaller it is, especially if the thin film is formed of the same material as the base material.
Minimum.

ところで、実用的には、基材としてガラス(融点〜18
0℃、ns−=1.5)やプラスチック樹脂(ガラス転
移点く100℃、ns〜1.5)などが用いられる場合
が多く、所望の屈折率に適合する物質は限られる。さら
に、実用的な基材は、上記のように、融点やガラス転移
点が概ね低いため、薄膜形成温度に制限がある。すなわ
ち、従来の真空蒸着法、熱CVD法、プラズマCVD法
などの適用不可な温度領域である。そこで、本発明では
、低温あるいは無加熱で薄膜を形成できる方法として、
マイクロ波プラズマCVD法を採用した。この方法は電
子サイクロトロン共鳴によりガスの分解効率を向上させ
て高密度プラズマを作り、それを用いて膜形成を行うの
で、低温あるいは無加熱で強固な薄膜を形成することが
可能である。
By the way, in practical use, glass (melting point ~18
0°C, ns-=1.5) or plastic resin (glass transition point: 100°C, ns-1.5) are often used, and materials that match the desired refractive index are limited. Furthermore, as mentioned above, practical base materials generally have low melting points and glass transition points, so there is a limit to the thin film forming temperature. That is, this is a temperature range to which conventional vacuum evaporation methods, thermal CVD methods, plasma CVD methods, etc. cannot be applied. Therefore, in the present invention, as a method for forming a thin film at low temperature or without heating,
A microwave plasma CVD method was adopted. This method uses electron cyclotron resonance to improve gas decomposition efficiency and create high-density plasma, which is used to form films, so it is possible to form strong thin films at low temperatures or without heating.

上記方法によって成膜した薄膜の多孔質化加工は、線膜
を構成する物質によってエツチング速度を異にするエツ
チング液を用いて膜表面をエッチンッグすることによっ
ておこなう。すなわち、エツチング速度の大きい物質が
まず選択的にエツチング除去され、エツチング速度の小
さい物質が残るため、結果として多孔質の反射防止膜が
形成されることになる。また、エツチング速度は孔の深
さが深くなるほど遅くなるため、孔形状が円錐状となり
、屈折率が滑らかに変化することになる。
The thin film formed by the above method is made porous by etching the film surface using an etching solution whose etching rate varies depending on the material forming the wire film. That is, the substance with a high etching rate is selectively etched away first, and the substance with a low etching rate remains, resulting in the formation of a porous antireflection film. Furthermore, the etching rate becomes slower as the depth of the hole increases, so the hole becomes conical in shape and the refractive index changes smoothly.

[実施例] 以下、本発明の反射防止膜およびその形成方法について
、実施例によって具体的に説明する。
[Example] Hereinafter, the antireflection film of the present invention and the method for forming the same will be specifically explained using Examples.

実施例 l 第1図は、基材2としてガラス板(ns=1゜53)を
用いた場合の反射防止膜lの形成の手順を示した図であ
る。すなわち、 (a)まず、基材2の表面を中性洗剤およびアセトン超
音波により洗浄した。
Example 1 FIG. 1 is a diagram showing the procedure for forming an antireflection film 1 when a glass plate (ns=1°53) is used as the base material 2. That is, (a) First, the surface of the base material 2 was cleaned using a neutral detergent and acetone ultrasonic waves.

(b)次いで、基材2の表面に、マイクロ波プラズマC
vD法によりSnO,3とSi0,4の混合物を約1μ
mの厚さで成膜した。成膜条件は下記のとうりである。
(b) Next, microwave plasma C is applied to the surface of the base material 2.
A mixture of SnO, 3 and Si0, 4 was prepared using the vD method to approximately 1 μm.
The film was formed to a thickness of m. The film forming conditions are as follows.

Si H,流量    1d/win SnC1,流量   1cnT/IWino3流量  
   10cn?/lll1n成膜温度    無加熱 マイクロ波パワ   100W 成膜圧力     0.133Pa (c)上記試料を硝酸:塩酸=1:3混合液(王水)を
用いて約5分間エツチングした。この場合、エツチング
速度の大きいSn0.3についてはエツチングが進行す
るが、エツチング速度の小さいSi0,4はほとんどエ
ツチングされない。
Si H, flow rate 1d/win SnC1, flow rate 1cnT/IWino3 flow rate
10cn? /lll1n Film forming temperature Non-heating microwave power 100 W Film forming pressure 0.133 Pa (c) The above sample was etched for about 5 minutes using a 1:3 mixture of nitric acid and hydrochloric acid (aqua regia). In this case, etching progresses for Sn0.3, which has a high etching rate, but Si0,4, which has a low etching rate, is hardly etched.

その結果、反射防止膜lの表面に約0.9μmの多孔質
層5が形成された。
As a result, a porous layer 5 of about 0.9 μm was formed on the surface of the antireflection film 1.

この場合、SnO,3は屈折率が〜2.0と高いが、エ
ツチングによってほとんど除去されており、また混入の
割合も少ないので、生成した反射防止膜1の組成はほぼ
Si0,4のみであると考えられる(nf〜1.45)
In this case, although SnO,3 has a high refractive index of ~2.0, most of it has been removed by etching, and the proportion of its inclusion is small, so the composition of the produced antireflection film 1 is almost exclusively Si0,4. It is considered that (nf ~ 1.45)
.

第2図に波長400〜700nmでの反射率測定結果を
示す。ここで、曲線6は反射防止膜lを形成する前の基
材2の反射率を、曲線7は片面に上記反射防止膜1を形
成した後の反射率を、曲線8は上記反射防止膜を両面に
形成した場合の反射率を、それぞれ、示したものである
。なお、上記例では反射防止膜lの成膜を無加熱で行っ
た場合について説明したが、基材の融点以下であれば、
加熱して行っても差し支えない。
FIG. 2 shows the results of reflectance measurements at wavelengths of 400 to 700 nm. Here, curve 6 is the reflectance of the base material 2 before forming the anti-reflection film 1, curve 7 is the reflectance after forming the above-mentioned anti-reflection film 1 on one side, and curve 8 is the reflectance after forming the above-mentioned anti-reflection film 1 on one side. The reflectance when formed on both sides is shown. In the above example, the case where the antireflection film l was formed without heating was explained, but if it is below the melting point of the base material,
There is no problem even if it is heated.

実施例 2 本実施例では、基材2としてプラスチック樹脂を用いた
場合について説明する。用いた樹脂はジエチレングリコ
ールビスアリルカーボネートで、樹脂状態で屈折率は約
1.5、平均透過率(400〜700nIl)は約92
%、平均反射率(400〜700nm)は約4%(片面
)のものである。
Example 2 In this example, a case will be described in which a plastic resin is used as the base material 2. The resin used was diethylene glycol bisallyl carbonate, which had a refractive index of about 1.5 and an average transmittance (400 to 700 nIl) of about 92 in the resin state.
%, and the average reflectance (400-700 nm) is about 4% (one side).

上記樹脂板に、実施例1の場合と同様の手順で、反射防
止膜を形成し、エツチングを行った。ただし、樹脂がエ
ツチング液で腐食する恐れがあるので、エツチング液と
しては約5%王水水溶液を用い、約15分間のエツチン
グを行った。
An antireflection film was formed on the resin plate and etched in the same manner as in Example 1. However, since there is a risk that the resin may be corroded by the etching solution, an approximately 5% aqua regia aqueous solution was used as the etching solution, and etching was performed for approximately 15 minutes.

その結果、外観に異常なく、反射防止膜を形成すること
ができた。また、この樹脂は屈折率が実施例1のガラス
の場合とほぼ等しいので、反射率もほぼ同程度であった
。なお、本実施例の場合は、基材2のガラス転移温度が
100℃程度であるので、反射防止膜の形成はガラス転
移温度以下の温度あるいは無加熱で行う必要がある。
As a result, the antireflection film could be formed without any abnormality in appearance. Furthermore, since the refractive index of this resin was approximately the same as that of the glass of Example 1, the reflectance was also approximately the same. In the case of this example, since the glass transition temperature of the base material 2 is about 100° C., the antireflection film must be formed at a temperature below the glass transition temperature or without heating.

実施例 3 本実施例は基材としてシリコンウェハ(鏡面研磨品、n
5=3,875、平均反射率的50%)を用いた場合の
例である。具体的には太陽電池やフォトセンサなどに応
用する場合の例で、この場合は、表面での眩しさを低減
するということではなく、光の反射を抑えることによっ
て効率良く光電変換を行うことを主目的とするものであ
る。
Example 3 This example uses a silicon wafer (mirror polished product, n
5=3,875, average reflectance 50%) is used. Specifically, this is an example of application to solar cells, photosensors, etc. In this case, the objective is not to reduce glare on the surface, but to efficiently perform photoelectric conversion by suppressing light reflection. This is the main purpose.

反射防止膜の材料としては、S i O,とSt。Materials for the anti-reflection film include SiO, and St.

N、の混合物を用いた。成膜条件を下表に示す。A mixture of N was used. The film forming conditions are shown in the table below.

なお、膜厚は約500nmとした。Note that the film thickness was approximately 500 nm.

SiH,流量   2crl/m1n N、流量     3cn?/m1n O8流量     3cI(/min 成膜温度    無加熱 マイクロ波パワ  100  W 成膜圧力     0.133Pa エツチング液としては5%HF水溶液を用いた。SiH, flow rate 2crl/m1n N, flow rate 3cn? /m1n O8 flow rate 3 cI (/min Film formation temperature: No heating Microwave power 100W Film forming pressure 0.133Pa A 5% HF aqueous solution was used as the etching solution.

該エツチング液にはSin、は溶けるがSi、N。Sin dissolves in the etching solution, but Si and N dissolve.

はあまり溶けないので、最終的にSi、N4からなる多
孔質層が形成され、反射防止効果を示した。
Since it does not dissolve much, a porous layer consisting of Si and N4 was finally formed and exhibited an antireflection effect.

なお、St、N4の屈折率は約2.0であるが、この場
合基材がシリコンであるため使用が可能である。
Note that although the refractive index of St and N4 is approximately 2.0, they can be used in this case because the base material is silicon.

実施例 4 本実施例は、代表的な表示素子であるブラウン管9の表
面に反射防止膜lを形成した場合の例をしめしたもので
ある。
Example 4 This example shows an example in which an antireflection film l is formed on the surface of a cathode ray tube 9, which is a typical display element.

第3図にブラウン管の断面を示す。ブラウン管9の表面
はガラスであるので、反射防止膜lの構成および形成工
程はは実施例1の場合と全く同様である。なお、反射防
止効果形成はブラウン管製造の最終工程でおこなわれる
Figure 3 shows a cross section of a cathode ray tube. Since the surface of the cathode ray tube 9 is glass, the structure and formation process of the antireflection film 1 are exactly the same as in the first embodiment. Incidentally, the formation of the antireflection effect is performed in the final step of manufacturing the cathode ray tube.

実施例 5 本実施例は、エレクトロルミネッセンスを利用した平面
表示装置に応用した場合の例である。
Example 5 This example is an example of application to a flat display device using electroluminescence.

この場合も、表面はガラスであるので、実施例1の場合
と同様の方法、工程で反射防止膜の形成が可能である。
In this case as well, since the surface is glass, the antireflection film can be formed using the same method and steps as in Example 1.

また、基材の材質により、反射防止膜を構成する物質と
エツチング液とを選択することによって液晶表示装置や
プラズマデイスプレィなどの平面表示装置にも応用でき
る。
Further, by selecting the substance constituting the antireflection film and the etching liquid depending on the material of the base material, the present invention can be applied to flat display devices such as liquid crystal displays and plasma displays.

第4図に液晶表示装置10に適用した場合の外観斜視図
を示す。
FIG. 4 shows a perspective view of the external appearance when applied to the liquid crystal display device 10.

実施例 6 本実施例は、光学機器の一種であるカメラのレンズおよ
び眼鏡のレンズに反射防止膜を応用した場合の例である
。第5図はカメラの外観で、11はカメラ本体、12は
レンズを示す。カメラレンズはガラス製であるので、実
施例1の場合と同様の方法、工程での反射防止膜の形成
が可能である。
Example 6 This example is an example in which an antireflection film is applied to a camera lens and an eyeglass lens, which are a type of optical equipment. FIG. 5 shows the appearance of the camera, with reference numeral 11 indicating the camera body and 12 indicating the lens. Since the camera lens is made of glass, the antireflection film can be formed using the same method and steps as in Example 1.

また、眼鏡レンズの場合、プラスツチツクレンズを使用
する場合には、実施例2の場合のように、エッチラング
液や成膜温度などに注意する必要がある。第6図に眼鏡
13に適用した場合の外観を示す。
Further, in the case of spectacle lenses, when using a plastic lens, it is necessary to pay attention to the etching solution, film forming temperature, etc., as in the case of Example 2. FIG. 6 shows the appearance when applied to eyeglasses 13.

以上の諸例で挙げたように、反射防止膜として使用する
物質は、基材より小さい屈折率を持っていること、40
0〜700nm程度の可視光領域で吸収を持たないこと
(透明なこと)の2点を満足していればよい。しかし、
実際には、基材の耐薬品性や基材との付着力などを考慮
して選択する必要がある。その代表的なものとして、S
 i O,、SnO,、TiO,などの金属酸化物や、
Si、N。
As mentioned in the above examples, the material used as the anti-reflection film must have a refractive index smaller than that of the base material,
It is sufficient that the material satisfies the following two requirements: not having absorption in the visible light region of approximately 0 to 700 nm (transparent). but,
In reality, it is necessary to select the material in consideration of the chemical resistance of the base material, the adhesive force with the base material, etc. As a representative example, S.
Metal oxides such as i O, SnO, TiO,
Si, N.

などの金属窒化物などを挙げることができる。Examples include metal nitrides such as.

[発明の効果] 以上述べてきたように、反射防止膜及びその形成方法を
本発明の反射防止膜およびその形成方法とすることによ
って、従来技術の有していた課題を解決して、基材の種
類によることなく、基材表面に簡便に形成することので
きる反射防止膜およびその形成方法を提供することがで
きた。
[Effects of the Invention] As described above, by using the anti-reflection film and the method for forming the same as the anti-reflection film and the method for forming the same of the present invention, the problems of the prior art can be solved and the substrate material It was possible to provide an antireflection film that can be easily formed on the surface of a substrate regardless of the type of the antireflection film, and a method for forming the same.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の反射防止膜の形成方法の手順を示す図
、第2図は本発明の反射防止膜の反射防止効果を示す特
性図、第3図は本発明の反射防止膜をブラウン管上に形
成した状態を示す断面図、第4図は本発明の反射防止膜
を液晶表示装置に適用した場合を示す一部破断面外観図
、第5図は本発明の反射防止膜をカメラレンズに適用し
た場合を示す一部破断面外観図、第6図は本発明の反射
防止膜を眼鏡レンズに適用した場合を示す外観図である
。 l・・・反射防止膜、  2・・・基材、3・・・Sn
Oい    4・・・SiOい5・・・多孔質層、 6・・・ガラス表面そのまま、 7・・・ガラスの片面に本発明の反射防止膜を設けた場
合、 8・・・ガラスの両面に本発明の反射防止膜を設けた場
合 9・・・ブラウン管、    10・・・液晶表示装置
、11・・・カメラ本体、    12・・・レンズ、
13・・・眼鏡 2 第1 図 00 00 00 00 ミ皮  表 nml 第2 図
Fig. 1 is a diagram showing the steps of the method for forming the antireflection film of the present invention, Fig. 2 is a characteristic diagram showing the antireflection effect of the antireflection film of the invention, and Fig. 3 is a diagram showing the antireflection film of the invention on a cathode ray tube. 4 is a partially broken external view showing the case where the anti-reflection film of the present invention is applied to a liquid crystal display device, and FIG. 5 is a cross-sectional view showing the state in which the anti-reflection film of the present invention is applied to a camera lens. FIG. 6 is a partially broken external view showing the case where the antireflection film of the present invention is applied to a spectacle lens. l...Antireflection film, 2...Base material, 3...Sn
O 4...SiO 5...Porous layer, 6...Glass surface as is, 7...When the anti-reflection film of the present invention is provided on one side of the glass, 8...Both sides of the glass When the antireflection film of the present invention is provided on 9... Braun tube, 10... Liquid crystal display device, 11... Camera body, 12... Lens,
13...Glasses 2 Fig. 1 00 00 00 00 Skin surface nml Fig. 2

Claims (1)

【特許請求の範囲】 1、光学的干渉作用を利用して基材表面の光学的反射を
低減させる目的で該基材上に形成する反射防止膜で、2
種以上の物質からなる膜をエッチングすることによって
多孔質化した膜であることを特徴とする反射防止膜。 2、上記2種以上の物質の1つがシリコン化合物である
ことを特徴とする特許請求の範囲第1項記載の反射防止
膜。 3、電子サイクロトロン共鳴を利用したマイクロ波プラ
ズマCVD法で複数種の物質からなる薄膜を形成する工
程と、該薄膜をエッチングにより多孔質化する工程とか
らなることを特徴とする反射防止膜の形成方法。 4、特許請求の範囲第1項記載の反射防止膜を表面に形
成したことを特徴とする表示装置。 5、特許請求の範囲第1項記載の反射防止膜を表面に形
成したことを特徴とする光学機器。
[Scope of Claims] 1. An antireflection film formed on a substrate for the purpose of reducing optical reflection on the surface of the substrate by utilizing optical interference, 2.
An antireflection film characterized by being a film made porous by etching a film made of more than one substance. 2. The antireflection film according to claim 1, wherein one of the two or more types of substances is a silicon compound. 3. Formation of an anti-reflection film characterized by the steps of forming a thin film made of a plurality of substances by a microwave plasma CVD method using electron cyclotron resonance, and making the thin film porous by etching. Method. 4. A display device comprising an antireflection film according to claim 1 formed on its surface. 5. An optical device comprising an antireflection film according to claim 1 formed on its surface.
JP1251839A 1989-09-29 1989-09-29 Antireflection film and its formation Pending JPH03115139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1251839A JPH03115139A (en) 1989-09-29 1989-09-29 Antireflection film and its formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1251839A JPH03115139A (en) 1989-09-29 1989-09-29 Antireflection film and its formation

Publications (1)

Publication Number Publication Date
JPH03115139A true JPH03115139A (en) 1991-05-16

Family

ID=17228694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1251839A Pending JPH03115139A (en) 1989-09-29 1989-09-29 Antireflection film and its formation

Country Status (1)

Country Link
JP (1) JPH03115139A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996026163A1 (en) * 1995-02-22 1996-08-29 Elf Atochem Vlissingen B.V. Process for producing a protecting coating on a surface of a glass or ceramic article
WO2001071394A1 (en) * 2000-03-21 2001-09-27 Asahi Glass Company, Limited Antireflection product and production method therefor
JP2006302484A (en) * 2004-07-22 2006-11-02 Hitachi Maxell Ltd Antireflection coating, optical pickup component, objective lens and method for manufacturing optical pickup component
JP2008096828A (en) * 2006-10-13 2008-04-24 Seiko Epson Corp Manufacturing method of optical article and its optical article
US7755998B2 (en) 2004-07-22 2010-07-13 Hitachi Maxell, Ltd. Optical pickup system, optical head, optical disk apparatus, and objective lens
WO2012029261A2 (en) 2010-08-31 2012-03-08 Canon Kabushiki Kaisha Porous glass and optical member
WO2013073106A1 (en) * 2011-11-18 2013-05-23 Canon Kabushiki Kaisha Method for manufacturing optical member and method for manufacturing image pickup apparatus
US9212088B2 (en) 2011-12-15 2015-12-15 Canon Kabushiki Kaisha Method for manufacturing optical member
US9487436B2 (en) 2011-11-18 2016-11-08 Canon Kabushiki Kaisha Optical member, image pickup apparatus, and method for manufacturing optical member

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996026163A1 (en) * 1995-02-22 1996-08-29 Elf Atochem Vlissingen B.V. Process for producing a protecting coating on a surface of a glass or ceramic article
WO2001071394A1 (en) * 2000-03-21 2001-09-27 Asahi Glass Company, Limited Antireflection product and production method therefor
JP2006302484A (en) * 2004-07-22 2006-11-02 Hitachi Maxell Ltd Antireflection coating, optical pickup component, objective lens and method for manufacturing optical pickup component
US7755998B2 (en) 2004-07-22 2010-07-13 Hitachi Maxell, Ltd. Optical pickup system, optical head, optical disk apparatus, and objective lens
KR101258921B1 (en) * 2004-07-22 2013-04-29 히다치 막셀 가부시키가이샤 Optical parts for optical pick-up, objective lens, anti-reflective coating and manufacturing method of optical parts for optical pick-up
JP2008096828A (en) * 2006-10-13 2008-04-24 Seiko Epson Corp Manufacturing method of optical article and its optical article
WO2012029261A2 (en) 2010-08-31 2012-03-08 Canon Kabushiki Kaisha Porous glass and optical member
US8993107B2 (en) 2010-08-31 2015-03-31 Canon Kabushiki Kaisha Porous glass and optical member
WO2013073106A1 (en) * 2011-11-18 2013-05-23 Canon Kabushiki Kaisha Method for manufacturing optical member and method for manufacturing image pickup apparatus
US9487436B2 (en) 2011-11-18 2016-11-08 Canon Kabushiki Kaisha Optical member, image pickup apparatus, and method for manufacturing optical member
US9517969B2 (en) 2011-11-18 2016-12-13 Canon Kabushiki Kaisha Method for manufacturing a porous glass film
US9212088B2 (en) 2011-12-15 2015-12-15 Canon Kabushiki Kaisha Method for manufacturing optical member

Similar Documents

Publication Publication Date Title
JP4689259B2 (en) Method for producing transparent element with invisible electrode
US6356694B1 (en) Process for producing planar waveguide structures as well as waveguide structure
KR100805260B1 (en) Method of manufacturing optical interference color display
JP3664174B2 (en) Optical waveguide and method for manufacturing the same
JP2002328222A (en) Polarizing element and method for manufacturing the same
JP4548245B2 (en) Tunable filter
JPH01196005A (en) Manufacture of light microguide
JP3905035B2 (en) Method for forming optical thin film
JPH03115139A (en) Antireflection film and its formation
US20060204197A1 (en) Optical waveguide and method for preparing the same
CN110184588A (en) A kind of coating process with double-layer reflection reducing coating eyeglass
US6160945A (en) Optical waveguide device for loss absorption and fabrication method thereof
JP3567483B2 (en) Method for producing antifouling low reflectance glass
CN100410695C (en) Multilayered structure and manufacturing method thereof
JPS5860701A (en) Reflection preventing film
JPS61170702A (en) Production of porous thin film
TWI267897B (en) Substrate with anti-reflection layer and its manufacturing method
JPH075307A (en) Production of optical part
US6541064B1 (en) Process for producing composite substrate material
US20040194507A1 (en) Coated optical components
JPH09222525A (en) Production of optical waveguide
JPH04234004A (en) Manufacture of integrated type optical part
JP2002372602A (en) Antireflection coating and optical element using the same
JP2012024917A (en) Microstructure with wall of determined optical property and method for making microstructure
JP2000275402A (en) Optical element with antireflection film