JPH03218821A - Heat ray reflective glass - Google Patents

Heat ray reflective glass

Info

Publication number
JPH03218821A
JPH03218821A JP1224492A JP22449289A JPH03218821A JP H03218821 A JPH03218821 A JP H03218821A JP 1224492 A JP1224492 A JP 1224492A JP 22449289 A JP22449289 A JP 22449289A JP H03218821 A JPH03218821 A JP H03218821A
Authority
JP
Japan
Prior art keywords
film
refractive index
glass
low refractive
heat ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1224492A
Other languages
Japanese (ja)
Other versions
JP2576637B2 (en
Inventor
Hidekazu Ando
英一 安藤
Junichi Ebisawa
海老沢 純一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP1224492A priority Critical patent/JP2576637B2/en
Publication of JPH03218821A publication Critical patent/JPH03218821A/en
Application granted granted Critical
Publication of JP2576637B2 publication Critical patent/JP2576637B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To manufacture heat ray reflective glass of superior durability, high visual beam transmittance and heat ray reflectance by providing high refraction index films or low refraction index films forming an air side outermost layer composed mainly of an oxide containing at least one of Zr, Ti, Hf, Sn, Ta, Bi, Zn and In and at least one of B, Si and P. CONSTITUTION:A heat ray reflective glass is formed by laminating alternately high refractive index films 2, 4 and 6 and low refractive index films 3, 5 and 7 on a transparent base 1. The transparent base 1 is composed of glass, plastic or the like. It is preferable that the high refractive index films 2, 4 and 6 are mainly composed of an oxide containing at least one of Zr, Ti, Hf, Sn, Ta, Bi, Zn and In and at least one of B, Si and P, and in the case that the high refractive index film is not forming an air side outermost layer, the same can be composed of ZrO2, TiO2, HfO2, SnO2, Ta2O5, Bi2O3, ZnO, In2O3 or the like stabilized by ZrO2 and Y2O3. The material for the low refractive index films 3, 5 and 7 is not limited, and particularly an air side outermost layer 7 should be composed of low refractive index films containing at least one of Zr, Ti, Hf, Sn, Ta, Zn, In and Bi and at least one of B, Si and P.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、熱線反射ガラスに関するものであり、特に耐
久性に優れ、且つ高い可視光線透過率と高い熱線反射率
を有する熱線反射ガラスに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a heat ray reflective glass, and particularly to a heat ray reflective glass that is excellent in durability and has high visible light transmittance and high heat ray reflectance. It is.

[従来の技術〕 熱線反射ガラスは、建築のビル用に多く使われている。[Conventional technology] Heat-reflecting glass is widely used in architectural buildings.

最近ではデザイン面から2〜4層程度の多層コーティン
グが主流になってきており、大面積で光学設計のできる
スパッタリング法が採用されている。また色調重視から
積極的に光学的な干渉を利用している。その構成は熱反
膜としてCr,Ti,SOSなどのメタル膜あるいはT
iN, ZrNなどの窒化膜が主に用いられる。干渉を
利用するために、TiO■, SnO■などの屈折率の
高い透明酸化膜が用いられる。これらを組合せて所望の
反射率、透過率、色調を有する熱線反射ガラスが作られ
る。
Recently, from a design standpoint, multilayer coatings of about 2 to 4 layers have become mainstream, and sputtering methods that allow optical design over large areas have been adopted. Also, with an emphasis on color tone, optical interference is actively utilized. Its composition is a metal film such as Cr, Ti, SOS, etc. or T as a heat reaction film.
Nitride films such as iN and ZrN are mainly used. In order to utilize interference, a transparent oxide film with a high refractive index such as TiO■ or SnO■ is used. By combining these materials, a heat-reflecting glass having desired reflectance, transmittance, and color tone is produced.

[発明の解決しようとする問題点] ビル用の熱線反射ガラスは、一般に反射率が高く、透過
率が低く反射の色調も鮮やかである。
[Problems to be Solved by the Invention] Heat-reflecting glass for buildings generally has a high reflectance, a low transmittance, and a vivid color tone of reflection.

最近では快適性向上の面から乗用車用の熱線反射ガラス
の要望も急速に高まってきた。しかし、乗用車用では法
規制の面で可視光線透過率TV70%以上である必要が
あり、反射率が低く且つニュートラルな反射色調が望ま
れている。
Recently, demand for heat-reflecting glass for passenger cars has rapidly increased in order to improve comfort. However, for passenger cars, legal regulations require that the visible light transmittance be 70% or higher, and low reflectance and neutral reflective color tone are desired.

この要求を満たすものとしてガラスの上に熱線反射膜、
保護コートの2層膜を形成したもの、あるいは熱線反射
膜を透明酸化膜でサンドイッチした3層膜構成のものが
知られている。前者は保護コートの透明酸化膜を薄くす
ることで光の干渉効果を低下させニュートラルな反射色
調を得ることができる。しかし、一方で干渉を利用しな
いことから、透過率の点で不利であり、熱線反射膜を厚
くできない。従って可視光線と熱線の選択的透過率の差
が大きくできない、云い換えれば熱線遮断性能がそれ程
良くならないという問題を有していた。後者の3層構成
の熱線反射ガラスは、干渉を利用するため透過率的に有
利であり、従って熱線反射膜を厚くできる。即ち、可視
光線と熱線透過率の差を太き《でき、熱線反射ガラスと
しての機能の優れたものを得ることができる。しかし干
渉を利用することで反射色調は淡いピンク色を呈し、完
全なニュートラルな反射色を得ることができないという
問題点を有していた。
To meet this requirement, we use a heat ray reflective film on the glass.
A two-layer protective coating or a three-layer structure in which a heat ray reflecting film is sandwiched between transparent oxide films are known. In the former case, by thinning the transparent oxide film of the protective coat, the light interference effect can be reduced and a neutral reflective color tone can be obtained. However, since it does not utilize interference, it is disadvantageous in terms of transmittance, and the heat ray reflective film cannot be made thick. Therefore, there was a problem in that the difference in selective transmittance between visible light and heat rays could not be made large, or in other words, the heat ray blocking performance could not be improved that much. The latter three-layer heat-reflecting glass is advantageous in terms of transmittance because it utilizes interference, and therefore the heat-reflecting film can be made thicker. That is, the difference between visible light and heat ray transmittance can be increased, and a glass with excellent function as a heat ray reflective glass can be obtained. However, due to the use of interference, the reflected color tone appears pale pink, and there is a problem in that it is not possible to obtain a completely neutral reflected color.

高屈折率と低屈折率の透過酸化膜を交互に積層して多層
膜構成とした干渉フィルタータイプの熱線反射ガラスは
、ニュートラルな反射色調が得られるのみならず、高可
視光透過率を保ったまま、近赤外域の反射率を飛躍的に
高めることができるので、自動車用の熱線反射ガラスと
しては、現在のところ最も優れたものである。
The interference filter type heat-reflective glass, which has a multilayer structure by alternately laminating high-refractive index and low-refractive-index transparent oxide films, not only provides a neutral reflective color tone, but also maintains high visible light transmittance. Furthermore, it is currently the best heat-reflecting glass for automobiles because it can dramatically increase the reflectance in the near-infrared region.

この干渉フィルタータイプの熱線反射ガラスは、通常真
空蒸着法を用いて成膜される。真空蒸着法では、成膜速
度が速いため短時間で成膜できる利点を有するが、蒸発
源が点とみなされる程小さいため均一な膜分布を得るた
めには基体を自公転させる必要がある。また自動車用ガ
ラスのように基体が大きい場合は、このようなことは不
可能なため蒸着源を複数にして、且つ膜厚補正板などを
設置することが必要となる。
This interference filter type heat ray reflective glass is usually formed into a film using a vacuum evaporation method. The vacuum evaporation method has the advantage of being able to form a film in a short time due to its fast film formation speed, but since the evaporation source is so small that it can be regarded as a point, it is necessary to rotate the substrate in order to obtain a uniform film distribution. Furthermore, when the substrate is large, such as automobile glass, this is not possible, so it is necessary to use a plurality of evaporation sources and to install a film thickness correction plate.

更に成膜速度を一定にするのが一般に困難であり、光学
モニターによる制御を併用しなければならない。また良
好な膜質を得るためには通常300℃以上に基体を加熱
しなければならない。
Furthermore, it is generally difficult to keep the film formation rate constant, and control using an optical monitor must be used in combination. Further, in order to obtain good film quality, it is usually necessary to heat the substrate to 300° C. or higher.

このため実際上自動車用のような大きなガラスに適用す
るのは極めて困難である。
For this reason, it is extremely difficult to apply it to large glass such as those used in automobiles.

一方、スパッタリング法は、ターゲットのコロージョン
領域が広い。この広い領域全面からスバッタされた粒子
が基体に付着するので原理的に真空蒸着法より膜厚の均
一性に優れている。また各粒子の持つエネルギーが真空
蒸着の場合に比べて極めて大きいため、膜の基体への密
着性に優れ、また基体加熱をしなくても耐久性のある膜
が容易に得られるという特徴を有している。スパッタリ
ング法には高周波放電と直流放電を利用した2種類があ
る。前者は絶縁体ターゲットも使用可能で、成膜できる
材料の選択が広いという利点があるが、マッチング回路
が必要であり、自動車や建築用のような大面積ガラスの
コーティング装置としては適さない。
On the other hand, the sputtering method has a wide target corrosion area. Since the particles spattered from the entire surface of this wide area adhere to the substrate, the film thickness is theoretically more uniform than the vacuum evaporation method. In addition, since the energy possessed by each particle is extremely large compared to vacuum evaporation, the film has excellent adhesion to the substrate, and a durable film can be easily obtained without heating the substrate. are doing. There are two types of sputtering methods, one using high frequency discharge and the other using direct current discharge. The former has the advantage of being able to use an insulator target and allowing a wide selection of materials to be formed into films, but requires a matching circuit and is not suitable as a coating device for large-area glass such as those used in automobiles or architecture.

後者はマッチング回路が不要であり、大面積のコーティ
ング装置として数多《用いられているが、導電性のター
ゲットが必要であり成膜できる膜材料に制約がある。干
渉フィルタータイプの熱線反射ガラスをつくる場合、透
明で屈折率の高いもの低いものの2種類が必要不可欠で
あり、現在のところ低屈折率で安定に直流スバッタでき
る材料は見当たらない。このようなことから大面積で高
透過、低反射、ニュートラルな反射色を有し、且つ、熱
線反射性能に優れたものは得られていない。
The latter does not require a matching circuit and is widely used as a large-area coating device, but it requires a conductive target and there are restrictions on the film materials that can be formed. When making interference filter-type heat-reflecting glass, two types of glass are essential: one that is transparent and one that has a high refractive index and one that has a low refractive index.Currently, there is no material that can be stably sputtered with low refractive index. For these reasons, it has not been possible to obtain a material that has a large area, high transmittance, low reflection, neutral reflective color, and excellent heat ray reflection performance.

[問題点を解決するための手段] 本発明は前述の問題点を解決すべくなされたものであり
、透明基体上に高屈折率膜と低屈折率膜を交互に多層積
層してなる干渉フィルター型の熱線反射ガラスであって
、空気側最外層となっている高屈折率膜又は低屈折率膜
が、Zr,Ti, Hf, Sn, Ta, Bi, 
Zn, Inのうち少なくとも1種とB, Si, P
のうち少なくとも1種を含む酸化物を主成分とする非晶
質膜であることを特徴とする熱線反射ガラスを提供する
ものである。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems, and provides an interference filter in which multiple layers of high refractive index films and low refractive index films are alternately laminated on a transparent substrate. The high refractive index film or low refractive index film that is the outermost layer on the air side is made of Zr, Ti, Hf, Sn, Ta, Bi,
At least one of Zn, In and B, Si, P
The present invention provides a heat ray reflective glass characterized by being an amorphous film mainly composed of an oxide containing at least one of the above.

第1図は、本発明の実施例を示す断面図である。■は透
明基体であり、ガラス、プラスチックなどからなる。基
体は、通常のソーダライムガラスの他、ブルー、ブロン
ズ、グレー、グリーンなどに着色し、透過率を落とした
ガラスでも良い。特に自動車用などの場合、干渉膜自体
では太陽エネルギー反射率R,はガラス自体よりかなり
向上するが、まだ太陽エネルギー透過率TEの絶対値は
高めなので、これらの吸収ガラスを用いるとトータルと
しての遮熱性能は向上するので好ましい。あるいは透明
膜2〜7以外に吸収性の膜を基体上、或いは眉間に形成
して全体の透過率を調整しても良い。2,4.6は高屈
折率膜であり、Zr.Ti,Hf,Sn,Ta.Bi,
Zn,?nのうち少なくとも1種とB, SL, Pの
うち少なくとも1種を含む酸化物を主成分とする高屈折
率膜からなるのが好ましいが、高屈折率膜が空気側最外
層でない場合はこの他にZrO*. Y2kgで安定化
したZrOa,TiOa,Hf02.SnOi,TaJ
s.Bi20s,ZnO, InJxなどからなってい
ても良く、特に限定されない。高屈折率膜としてB, 
Si, Pのうち少なくとも1種を含む酸化物を用いる
場合、あまりB,Si,Pの含有量が多いと屈折率が低
くなりすぎるため好ましくない。通常ZrO■.Ti0
2.HfO■.SnO. Tag’s, Biass,
 ZnO, IniOaなどの1種以上からなる酸化物
を主成分とする膜において、ZrOi+Til■, H
fOx, Sno2,Taxes, Bit’s, Z
nO, IniOaがら選ばれた酸化物の合計100部
に対して、B20.,SiOaから選ばれた酸化物の合
計がモル比で0から100部,好ましくは0〜70部、
特に0〜50部の範囲にあるのが良い。しかしながら、
膜の屈折率はBass. SiO■の含有量が増加する
につれ低下するので、光学的に必要な屈折率を基にして
硼素や珪素の含有量を選択すれば良い。高屈折?膜が空
気側最外層であり、かつ単板で使用する場合は、膜の非
晶質化に伴う耐擦傷性向上のために少な《ともB, S
i, Pのうち1種以上の合計は、ZrO■,TiO■
,Hf02,SnO。,TatOs.BiJs.ZnO
,InzLなどの酸化物を主成分とする膜において, 
 ZrL.丁iL,HfOz,SnOx.Ta20g,
BizOs.ZnO,Inz03から選ばれた酸化物の
合計100部に対して、B20x,SiO■から選ばれ
た酸化物の合計がモル比で5〜100部、好ましくは1
0〜70部、特に20〜50部含まれているのが良い。
FIG. 1 is a sectional view showing an embodiment of the present invention. ■ is a transparent base made of glass, plastic, etc. In addition to ordinary soda lime glass, the substrate may be glass colored blue, bronze, gray, green, etc. to reduce transmittance. Particularly in the case of automobiles, the solar energy reflectance R, of the interference film itself is much higher than that of the glass itself, but the absolute value of the solar energy transmittance TE is still high, so using these absorbing glasses will reduce the total shielding. This is preferable because thermal performance is improved. Alternatively, in addition to the transparent films 2 to 7, an absorbent film may be formed on the base or between the eyebrows to adjust the overall transmittance. 2, 4.6 are high refractive index films, and Zr. Ti, Hf, Sn, Ta. Bi,
Zn,? It is preferable that the high refractive index film is composed mainly of an oxide containing at least one of n and at least one of B, SL, and P. However, if the high refractive index film is not the outermost layer on the air side, In addition, ZrO*. ZrOa, TiOa, Hf02 stabilized with Y2kg. SnOi, TaJ
s. It may be made of Bi20s, ZnO, InJx, etc., and is not particularly limited. B as a high refractive index film,
When using an oxide containing at least one of Si and P, it is not preferable if the content of B, Si, and P is too large because the refractive index becomes too low. Usually ZrO■. Ti0
2. HfO ■. SnO. Tag's, Biass,
In a film whose main component is an oxide consisting of one or more types such as ZnO and IniOa, ZrOi+Til■, H
fOx, Sno2, Taxes, Bit's, Z
B20. , a total of oxides selected from SiOa in a molar ratio of 0 to 100 parts, preferably 0 to 70 parts,
In particular, it is preferably in the range of 0 to 50 parts. however,
The refractive index of the film is Bass. Since the content of SiO2 decreases as it increases, the content of boron or silicon may be selected based on the optically required refractive index. High refraction? When the membrane is the outermost layer on the air side and is used as a single plate, it is necessary to have at least B, S
The total of one or more of i and P is ZrO■, TiO■
, Hf02, SnO. , TatOs. BiJs. ZnO
, In a film whose main component is an oxide such as InzL,
ZrL. DingiL, HfOz, SnOx. Ta20g,
BizOs. The total molar ratio of oxides selected from B20x and SiO is 5 to 100 parts, preferably 1 to 100 parts in total of oxides selected from ZnO and Inz03.
It is preferably contained in an amount of 0 to 70 parts, particularly 20 to 50 parts.

またベース酸化膜としては、上述のZrO■, TiO
a等のうち、Zr02が成膜速度、擦傷性の点で特に好
ましく、非晶質化のための添加物としてはSi, B、
特にSiが耐久性の点で良い。高屈折率膜の屈折率とし
ては1.7以上、特に2.0以上がよい。
In addition, as the base oxide film, the above-mentioned ZrO■, TiO
Among a, etc., Zr02 is particularly preferable in terms of film formation rate and scratch resistance, and as additives for amorphization, Si, B,
In particular, Si is good in terms of durability. The refractive index of the high refractive index film is preferably 1.7 or more, particularly 2.0 or more.

第1図の3.5.7は、低屈折率膜であり、特に材料は
限定されないが、特に空気側最外層7についでは、Zr
, Ti, Hf, Sn, Ta, Zn, In,
 8iのうち少なくとも1種とB, Si. Pのうち
少なくとも1種を含む低屈折率酸化膜よりなるのが好ま
し?。B,Si,Pの含有量はあまり少なすぎると低屈
折率酸化膜にならず、また、逆に多すぎると反応性直流
スパッタリングが困難になり、且つ膜自体の化学的耐久
性も低下するため好ましくない。このような理由で、通
常ZrO■. Y*Osで安定化したZrOz.TiO
*,HfOz,SnOa.TaJi.BLOs.ZnO
,InaOs等のうち1種以上の酸化物を含む膜におい
て、ZrOz.TiOz.HfOz,SnO.TazO
s.BigOi,ZnO,InaOxから選ばれた酸化
物の合計100部に対して、B20i,SiOzから選
ばれた酸化物の合計がモル比で100部から1900部
、好ましくは200部から1900部、特に300部か
ら1900部が良い。このような組成であれば、B, 
Si, P等のガラス構成元素が十分含まれているため
に膜は非晶質になっているため耐擦傷性に優れ、空気側
最外層としても十分な耐久性を有している。耐久性が特
に要求される用途には、ZrO2,TiO.TatOs
のうちから少なくとも1種とSiftの組み合せが良く
,この中でもZrO■とSiOaの組み合せが特に好ま
しい。低屈折率膜の屈折率としては1.7以下、特に1
.6以下が好ましい。
3.5.7 in FIG. 1 is a low refractive index film, and the material is not particularly limited, but especially for the outermost layer 7 on the air side, Zr
, Ti, Hf, Sn, Ta, Zn, In,
8i and B, Si. Preferably, the film is made of a low refractive index oxide film containing at least one type of P. . If the content of B, Si, and P is too small, a low refractive index oxide film will not be obtained, and if it is too large, reactive DC sputtering becomes difficult and the chemical durability of the film itself decreases. Undesirable. For this reason, ZrO■. ZrOz. stabilized with Y*Os. TiO
*, HfOz, SnOa. TaJi. BLOs. ZnO
, InaOs, etc., in a film containing one or more oxides such as ZrOz. TiOz. HfOz, SnO. TazO
s. The total molar ratio of the oxides selected from B20i and SiOz to 100 parts in total of the oxides selected from BigOi, ZnO, and InaOx is 100 to 1900 parts, preferably 200 to 1900 parts, particularly 300 parts. 1900 copies is good. With such a composition, B,
Since the film is amorphous due to the sufficient content of glass constituent elements such as Si and P, it has excellent scratch resistance and has sufficient durability as the outermost layer on the air side. For applications where durability is particularly required, ZrO2, TiO. TatOs
A combination of at least one of these and Sift is preferred, and among these, a combination of ZrO■ and SiOa is particularly preferred. The refractive index of the low refractive index film is 1.7 or less, especially 1.
.. 6 or less is preferable.

表1は、具体的に本発明の高屈折率膜や低屈折率膜に最
適な各種非晶質酸化物膜の性質を示したものである。そ
れぞれ表に挙げた組成のターゲットを用いて、反応性ス
パッタリングにより製膜したものである。結晶性は、薄
膜X線回折により観測した。又、耐擦傷性は、砂消しゴ
ムによる擦り試験の結果で、Oは傷が殆どつかなかった
もの、Xは容易に傷が生じたものである。
Table 1 specifically shows the properties of various amorphous oxide films suitable for the high refractive index film and the low refractive index film of the present invention. Films were formed by reactive sputtering using targets with the compositions listed in the table. Crystallinity was observed by thin film X-ray diffraction. Furthermore, the scratch resistance is the result of a rubbing test using a sand eraser, where O indicates that there were almost no scratches, and X indicates that scratches occurred easily.

耐摩耗性は、テーバー試験(摩耗輪CS−10F、加重
500g、1000回転)の結果、ヘイズ4%以内のも
のを○、ヘイズ4%超のものを×とした。耐酸性はO.
IN  I{2SO4中に240時間浸漬した結果、T
V (可視光透過率).R,(可視光反射率)の浸漬前
に対する変化率が1%以内のものを○、1〜4%のもの
を△、膜が溶解して消滅してしまったものを×とした。
The abrasion resistance was determined by the Taber test (wearing wheel CS-10F, load 500 g, 1000 rotations), and the results were rated ○ if the haze was within 4%, and × if the haze exceeded 4%. Acid resistance is O.
As a result of immersion in IN I{2SO4 for 240 hours, T
V (visible light transmittance). A case where the change rate of R, (visible light reflectance) with respect to before immersion was within 1% was rated as ◯, a case of 1 to 4% was △, and a case where the film had dissolved and disappeared was rated as ×.

耐アルカリ性はO.lN NaOH中に240時間浸漬
した結果、TV,Rvの浸漬前に対する変化率が1%以
内のものをO、膜が溶解してしまったものを×とした。
Alkali resistance is O. As a result of immersion in 1N NaOH for 240 hours, those whose TV and Rv changed within 1% from before immersion were rated O, and those whose membranes had dissolved were rated ×.

煮沸テストは、1気圧下、100℃の水に2時間浸漬し
た後、TV,Rvの浸漬前に対する変化率が1%以内で
あるとき○、1%超のとき×とした。
In the boiling test, after 2 hours of immersion in water at 100° C. under 1 atm, the TV and Rv were rated ○ if the rate of change from before immersion was within 1%, and × if it was over 1%.

ZrB*Oy膜に関しては、表1から明らかなように、
膜中のBが少ないと結晶性の膜ができ、Bが多いと非晶
質の膜ができる傾向があることがわかる。そして、結晶
性の膜は耐擦傷性及び耐摩耗性が劣るのに対して非晶質
の膜は優れていることがわかる。これは非晶質の膜は、
表面が平滑である為であると考えられる。従って、Zr
BxO,膜(膜中のZrに対するBの原子比Xが0.1
(1<x)の膜は耐擦傷性、耐摩耗性に優れている。B
203膜は吸湿性で空気中の水分を吸収して溶けてしま
うので、ZrB*Oy膜においてX≦3程度が好ましい
Regarding the ZrB*Oy film, as is clear from Table 1,
It can be seen that when the amount of B in the film is small, a crystalline film tends to be formed, and when the amount of B is large, an amorphous film tends to be formed. It can be seen that the crystalline film has poor scratch resistance and abrasion resistance, whereas the amorphous film has excellent scratch resistance and abrasion resistance. This is an amorphous film.
This is thought to be due to the smooth surface. Therefore, Zr
BxO, film (atomic ratio X of B to Zr in the film is 0.1
A film with (1<x) has excellent scratch resistance and abrasion resistance. B
Since the 203 film is hygroscopic and absorbs moisture in the air and dissolves, it is preferable that X≦3 for the ZrB*Oy film.

ZrBxOy膜中のZrに対するO(酸素)の原子比は
特に限定されないが、多すぎると膜構造が咀になりボソ
ボソの膜になってしまうこと、又、?まり少ないと膜が
金属的になり透過率が低下したり膜の耐擦傷性が低下す
る傾向があることなどの理由によりZrO■とB203
の複合系となる量程度であることが好ましい。即ち、複
合酸化物をZrOz+ X BO+. *と表すと、B
がZrに対して原子比でX含まれる時に、3’=2+1
.5x程度であることが好ましい。
The atomic ratio of O (oxygen) to Zr in the ZrBxOy film is not particularly limited, but if it is too large, the film structure will become chewy and the film will become lumpy. If the amount of ZrO and B203 is too low, the film becomes metallic and the transmittance decreases, and the scratch resistance of the film tends to decrease.
It is preferable that the amount is such that a composite system of . That is, the composite oxide is ZrOz+XBO+. When expressed as *, B
When X is included in the atomic ratio to Zr, 3'=2+1
.. It is preferable that it is about 5x.

又、表1より、ZrBxOy膜中のBの量が増えるにつ
れ、膜の屈折率が低下する傾向があることがわかる。膜
の組成と屈折率nとの関係を第2図(a)に示す。膜中
のBを増やすことにより、屈折率nは2.0ぐらいから
1.5程度まで低下する。
Furthermore, from Table 1, it can be seen that as the amount of B in the ZrBxOy film increases, the refractive index of the film tends to decrease. The relationship between the composition of the film and the refractive index n is shown in FIG. 2(a). By increasing the amount of B in the film, the refractive index n decreases from about 2.0 to about 1.5.

従って0.10<x≦3.2<y≦6.5のlrBx%
膜は良好な耐擦傷性及び耐摩耗性を有し、かつ、Bの量
によって自由に屈折率を選択できる本発明の目的に好適
な非晶質酸化物膜である。
Therefore, lrBx% of 0.10<x≦3.2<y≦6.5
The film is an amorphous oxide film suitable for the purpose of the present invention, which has good scratch resistance and abrasion resistance, and whose refractive index can be freely selected depending on the amount of B.

さらに、表1に示したように、膜中のBの含有量が増え
るにつれ、耐酸性、耐アルカリ性が劣化する傾向がある
。X≧2.3で耐酸性が悪く?り、x>4で耐アルカリ
性の低下及び煮沸テストで劣化を示すようになる。従っ
て、空気中で露出した状態で使用される用途には、Zr
BxOy(x<2.3)の非晶質酸化物膜が好ましい。
Furthermore, as shown in Table 1, as the content of B in the film increases, the acid resistance and alkali resistance tend to deteriorate. Is the acid resistance bad when X≧2.3? When x>4, the alkali resistance decreases and deterioration occurs in the boiling test. Therefore, Zr
An amorphous oxide film of BxOy (x<2.3) is preferred.

以上のように、ZrOz膜に酸化硼素B203を加えた
ことにより、膜が非晶質化し、表面が平滑化し、これが
耐摩耗性及び耐擦傷性の向上に寄与していると考えられ
る。又、Bの量で屈折率の調節が可能となり、さらに、
ZrO■膜と比べて、内部応力が小さいため、接する膜
との密着性の点で有利である。これは特に厚い膜を形成
する場合に有利である。
As described above, by adding boron oxide B203 to the ZrOz film, the film becomes amorphous and the surface becomes smooth, which is thought to contribute to improvement in wear resistance and scratch resistance. In addition, the refractive index can be adjusted by adjusting the amount of B, and furthermore,
Compared to the ZrO2 film, the internal stress is smaller, so it is advantageous in terms of adhesion with the adjacent film. This is especially advantageous when forming thick films.

次に、ZrSizOy膜に関しては、やはりアモルファ
スであり、耐擦傷性,耐摩耗性の高い膜が得られる。
Next, regarding the ZrSizOy film, it is also amorphous, and a film with high scratch resistance and abrasion resistance can be obtained.

屈折率については、Zr02 ( n = 2. 15
)とSin2( n = 1.46)の間でその組成割
合によって上下する(第2図(b)参照)。さらに詳し
くは、ZrSizOy膜において、0.05≦Z(膜中
のZrに対するSiの原子比)≦19であることが好ま
しい。
For the refractive index, Zr02 (n = 2.15
) and Sin2 (n = 1.46) depending on the composition ratio (see Fig. 2(b)). More specifically, in the ZrSizOy film, it is preferable that 0.05≦Z (atomic ratio of Si to Zr in the film)≦19.

z<0.05だと、膜が非晶質化せず、十分な物理的耐
久性が得られない。又、z>19だと、耐アルカリ性が
悪くなる。又、y (ZrSi.0う膜中のZrに対す
るOの原子比)は、ZrBxOy膜について述べたのと
同様の理由により、SiがZrに対して原子比でZ含ま
れる時に、y=2+2z程度であることが好ましい。
If z<0.05, the film will not become amorphous and sufficient physical durability will not be obtained. Moreover, when z>19, alkali resistance deteriorates. Also, y (the atomic ratio of O to Zr in the ZrSi.0 film) is approximately y=2+2z when the atomic ratio of Si to Zr is Z for the same reason as described for the ZrBxOy film. It is preferable that

又、ZrB.SiiOy膜も本発明の目的に合った膜で
ある。かかる膜中のZrに対するBの原子比x.Siの
原子比Z、0の原子比yは、x+z≧0.05であれば
膜が非晶質化し、耐擦傷性及び耐摩耗性の高い膜となる
ので好ましい。
Also, ZrB. The SiiOy film is also a suitable film for the purposes of the present invention. The atomic ratio of B to Zr in such a film x. The atomic ratio Z of Si and the atomic ratio y of 0 are preferably x+z≧0.05 because the film becomes amorphous and has high scratch resistance and wear resistance.

又、X+Z≦19であれば耐アルカリ性も良好であるの
で、ZrBxSizO,膜においては、0. 05≦X
+Z≦19であるのが好ましい。ただし、上述のように
、B203は吸湿性で空気中の水分を吸収して溶けてし
まうため、ZrB.SiエOy膜中にあまり多く含有さ
れない方がよい。具体的には、膜中において、ZrO2
< 25mo1%かっSiCh< 25mol%で残り
が8203となる程B203が含まれていると?学的耐
久性が不十分となる。即ち、ZrBJxiOy膜中のZ
r:B:Si(原子比)を1:x:zとすると、1/ 
(1 +x+z) <0.25かツz/(1+ x +
 z ) <0.25、即ち、x+z−3>Oかつx−
3z+1>Oの組成は化学的耐久性が好ましくない。y
は、ZrBmOyの場合に述べたのと同様の理由により
この膜をZrOa + 820m + SLO■の複合
系と考えて、yは2+1.5 x+ 2z程度であるこ
とが好ましい。よってほぼ2<y<40程度であること
が好ましい。BやSLの含有量が多い程ZrB.Siz
O,膜の屈折率は低下する。
In addition, if X+Z≦19, the alkali resistance is also good, so in the case of ZrBxSizO, 0. 05≦X
It is preferable that +Z≦19. However, as mentioned above, B203 is hygroscopic and absorbs moisture in the air and dissolves, so ZrB. It is better not to contain too much in the SiOy film. Specifically, in the film, ZrO2
B203 is included so much that SiCh is <25mol% and the rest is 8203? Scientific durability becomes insufficient. That is, Z in the ZrBJxiOy film
When r:B:Si (atomic ratio) is 1:x:z, 1/
(1 +x+z) <0.25kz/(1+x+
z) <0.25, i.e. x+z-3>O and x-
A composition in which 3z+1>O is unfavorable in terms of chemical durability. y
Considering this film as a composite system of ZrOa + 820m + SLO■ for the same reason as stated in the case of ZrBmOy, y is preferably about 2+1.5x+2z. Therefore, it is preferable that approximately 2<y<40. The higher the content of B and SL, the higher the ZrB. Size
O, the refractive index of the film decreases.

ZrB+SizO,膜の例を第2図(C)に示す。An example of a ZrB+SizO film is shown in FIG. 2(C).

Zr以外の金属、即ち、Ti, Hf, Sn, Ta
, In  と、BとSiのうち少なくとも1種とを含
む酸化物も同様に非晶質となり、十分な耐擦傷性、及び
耐摩耗性が得られる。TiSizO,膜を表1のサンプ
ル15に一例として示した。
Metals other than Zr, i.e. Ti, Hf, Sn, Ta
, In, and at least one of B and Si also becomes amorphous, providing sufficient scratch resistance and wear resistance. A TiSizO film is shown as sample 15 in Table 1 as an example.

以上、ZrBxOy系、ZrSitO,系、ZrBxS
lxOy系等の膜において、上述の高屈折率膜、低屈折
率膜として必要な屈折率を有するように、BやStの添
加量を調節すれば良い。
Above, ZrBxOy system, ZrSitO, system, ZrBxS
The amount of B or St added may be adjusted in the lxOy-based film or the like so that the film has a refractive index necessary for the above-mentioned high refractive index film or low refractive index film.

高屈折率及び低屈折率膜の膜厚は、光学的膜厚で設計波
長λ。に対してえ。/4にするのが好ましい。空気側最
外層は、反射を下げるためにλo/8にするのが好まし
い。
The film thicknesses of the high refractive index and low refractive index films are the optical film thickness and the design wavelength λ. Against. It is preferable to set it to /4. The outermost layer on the air side is preferably λo/8 to reduce reflection.

最外層は、高屈折率膜、低屈折率膜どちらでも良いが、
反射率をより下げたい場合は、低屈折率膜のほうが好ま
しい。従って基体にソーダライムガラスなどのように低
屈折率膜を用いる場合は、基体側に高屈折率膜を形成し
、その上に低/高/低/高の順に膜を積層し、最後は低
屈折率膜を形成する。
The outermost layer may be either a high refractive index film or a low refractive index film, but
If it is desired to further lower the reflectance, a low refractive index film is preferable. Therefore, when using a low refractive index film such as soda lime glass for the substrate, a high refractive index film is formed on the substrate side, and the films are laminated in the order of low/high/low/high, and finally the low refractive index film. Form a refractive index film.

設計波長λ。は900〜1100nmの範囲が好ましい
。これより短くなると反射の立ち上がりが可視域の方に
入ってくるため熱線反射性能は向上するが、反射に色か
つ《。一方これより長くなると熱線反射性能が悪化する
Design wavelength λ. is preferably in the range of 900 to 1100 nm. If it is shorter than this, the heat ray reflection performance will improve because the rise of the reflection will be in the visible range, but the reflection will be colored and 《. On the other hand, if the length is longer than this, the heat ray reflection performance will deteriorate.

膜の暦数は特に限定されないが、あまり少ないと近赤外
線領域での反射が小さくなること、またこの立ち上がり
がなだらかになり、熱線反射性能が低下し、又、可視域
での反射率のリップルが大きくなるので好まし《ない。
There is no particular limit to the number of epochs of the film, but if it is too small, the reflection in the near-infrared region will be small, the rise will be gradual, the heat ray reflection performance will deteriorate, and the ripple in the reflectance in the visible region will increase. I don't like it because it gets bigger.

通常は4層以上、好ましくは6層以上が良い。暦数の多
い方は特に限定はなく、必要な性能から決めれば良いが
、あまり多くなると生産性が低下すること、使用する膜
材料にもよるが、応力による膜の耐久性なども低下し、
これらを考慮すると自動車用などでは14層もあれば十
分である。
Usually 4 or more layers, preferably 6 or more layers. There is no particular limit to the number of calendars, and it can be determined based on the required performance, but if the number is too large, productivity will decrease, and depending on the membrane material used, the durability of the membrane due to stress will also decrease.
Taking these into consideration, 14 layers are sufficient for automobiles and the like.

成膜方法としては、特に限定はない。蒸着法、イオンブ
レーティング法、スパッタリング法いずれでも良いが、
大面積の用途には低屈折率用のターゲットとしてZrと
Siの合金ターゲットを用いた直流反応性スパッタリン
グが好ましい。蒸着法、イオンブレーティングの場合は
、蒸発源として混合酸化物をベレット化したものなどを
用いれば良い。
There are no particular limitations on the film forming method. Any of the vapor deposition method, ion blating method, and sputtering method may be used,
For large area applications, DC reactive sputtering using an alloy target of Zr and Si as a low refractive index target is preferred. In the case of vapor deposition or ion blating, a pelletized mixed oxide may be used as the evaporation source.

[作 用] 高屈折率膜と低屈折率膜の光学的な干渉を用いることで
可視光線には高透過で低反射、近赤外線には高い反射特
性を持つ熱線反射ガラスを可能にする。設計波長λ0を
適当に選択することでこの反射の立ち上がり波長を選べ
る。膜の層数は少ないとこの立ち上がりがなだらかにな
り、又、近赤外域の反射率自体も小さくなるので熱線反
射性能は低下する。層数を増加すると近赤外域の反射率
も高くなり反射の立ち上がりも急峻になり、又可視域の
反射のリップルも小さくなるので、見る角度により反射
に色がつくことなどが抑えられるので好ましい。
[Function] By using optical interference between a high refractive index film and a low refractive index film, it is possible to create a heat-reflective glass that has high transmission and low reflection for visible light and high reflection for near-infrared rays. The rising wavelength of this reflection can be selected by appropriately selecting the design wavelength λ0. If the number of layers in the film is small, this rise will be gradual, and the reflectance itself in the near-infrared region will also be low, resulting in a decrease in heat ray reflection performance. When the number of layers is increased, the reflectance in the near-infrared region increases, the rise of the reflection becomes steeper, and the ripple in the reflection in the visible region also becomes smaller, which is preferable because it prevents the reflection from being colored depending on the viewing angle.

空気側の最外層は、設計波長のえ。/8にすることで可
視域の反射を下げる作用があり、またリップルも小さく
するために形成される。この目的のために低屈折率層が
、最外層にくるようにした方が効果的である。
The outermost layer on the air side is at the design wavelength. /8 has the effect of lowering reflection in the visible range, and is also formed to reduce ripple. For this purpose, it is more effective to place the low refractive index layer as the outermost layer.

[実施例] ブロンズ色の厚さ4 mmmのガラス基体を真空槽にセ
ットし、l X 10−’Torrまで排気した。アル
ゴンと酸素の混合ガスを導入して2 X 10−3To
rrに調節した後、ジルコニウムと硼素の合金ターゲッ
ト(原子比でZr 70%、8 30%)をスパッタリ
ングして高屈折率膜としてZrBxOy膜(A膜、屈折
率2.1)を1190人形成した。次にジルコニウムと
珪素の合金ターゲット(原子比でZr 10%, Si
 90%》をスパッタリングして低屈折率膜としてZr
Siウ0,(B膜、屈折率1.5)を1670人形成し
た。更に同様にA膜を1190人、B膜を1670人、
A膜を1190人、B膜を835人形成して6層の熱線
反射ガラスを作製した。
[Example] A bronze-colored glass substrate with a thickness of 4 mm was set in a vacuum chamber, and the vacuum chamber was evacuated to l x 10-'Torr. Introducing a mixed gas of argon and oxygen to 2 x 10-3To
After adjusting to rr, a ZrBxOy film (A film, refractive index 2.1) was formed as a high refractive index film by sputtering a zirconium and boron alloy target (atomic ratio Zr 70%, 830%). . Next, an alloy target of zirconium and silicon (Zr 10%, Si
Zr as a low refractive index film by sputtering
1,670 Si films (B film, refractive index 1.5) were formed. Similarly, 1190 people received A film, 1670 people received B film,
Film A was formed by 1190 people and film B was formed by 835 people to produce a 6-layer heat-reflecting glass.

このようにして作った熱線反射ガラスの可視光線透過率
TV、太陽光線透過率TE、ガラス面可視光線反射率R
 VG、コート面可視光線反射率Rvr、ガラス面太陽
光線反射率REG、コート面可視光線反射率R tvは
以下のようであった。
Visible light transmittance TV, solar light transmittance TE, and glass surface visible light reflectance R of the heat-reflecting glass made in this way
VG, coated surface visible light reflectance Rvr, glass surface sunlight reflectance REG, and coated surface visible light reflectance Rtv were as follows.

TV=74.6%, T, =56.9%, Rv.=
10.7%.RVF=11.9%, R..=14.9
%, REF=26.0%。
TV=74.6%, T, =56.9%, Rv. =
10.7%. RVF=11.9%, R. .. =14.9
%, REF=26.0%.

反射色調はCIE表示であらわすとガラス面でx = 
0.298, y = 0.322 .  コート面で
x = 0.293,y= 0.319であった。素板
のガラスのT,は約69%、REは約6.6%であるの
で、熱線遮断、反射性能が大幅に向上したものが得られ
た。また特に問題となる反射色調についてもニュートラ
ルであった。
The reflected color tone is expressed in CIE display as x =
0.298, y = 0.322. On the coated surface, x = 0.293, y = 0.319. Since the T of the base glass is about 69% and the RE is about 6.6%, a product with significantly improved heat ray blocking and reflection performance was obtained. In addition, the reflected color tone, which is a particular problem, was also neutral.

[発明の効果] 干渉フィルター型多層膜を用いた熱線反射ガラスは、可
視域の透過率を下げることなく、近赤外域の反射を飛躍
的に高くできる。また層数と設計波長、各膜厚を適切に
選ぶことにより可視の反射を抑え、且つ反射の色調をニ
ュートラルにすることができる。
[Effects of the Invention] A heat-reflecting glass using an interference filter type multilayer film can dramatically increase reflection in the near-infrared region without lowering transmittance in the visible region. In addition, by appropriately selecting the number of layers, design wavelength, and thickness of each film, visible reflection can be suppressed and the color tone of reflection can be made neutral.

低屈折率膜として本発明のZrOa, Y20sで安定
化したZrOz.TazOs,Sn02,Bfz03な
どの1種とSi, B, Pなどの酸化物のI種からな
る複合酸化膜を用いることで機械的にも化学的にも耐久
性のある熱線反射ガラスが可能となる。
ZrOa, ZrOz. stabilized with Y20s of the present invention is used as a low refractive index film. By using a composite oxide film consisting of one type of oxide such as TazOs, Sn02, Bfz03, etc. and type I oxide of Si, B, P, etc., it is possible to create heat-reflective glass that is mechanically and chemically durable. .

高屈折率膜として低屈折率膜と同一元素を含む酸化膜を
用いることで各層間の密着力を高め、また膜の非晶質化
により耐擦傷性の優れたものが得られる。
By using an oxide film containing the same element as the low refractive index film as the high refractive index film, the adhesion between each layer is increased, and by making the film amorphous, a film with excellent scratch resistance can be obtained.

干渉を利用することで、近紫外域の反射も同時に高くで
きるので自動車用などでは、車内の内装材料の紫外線劣
化、退色などを防げる。
By using interference, reflection in the near-ultraviolet region can be increased at the same time, so in applications such as automobiles, it can prevent UV deterioration and discoloration of car interior materials.

大面積ガラスのコーティングなどでは直流スパッタリン
グが適するが、このとき特にSiにZr, Ta, T
iなどを含む合金ターゲットを用いることでスパッタリ
ングの安定性、成膜速度向上も同時に達成できる。
Direct current sputtering is suitable for coating large areas of glass, but in this case, especially when Si is coated with Zr, Ta, T, etc.
By using an alloy target containing i or the like, sputtering stability and film formation speed can be improved at the same time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の熱線反射ガラスの一例の断面図である
。 第2図(a)はZrBxOy膜中のBの含有量と膜の屈
折率nとの関係を示した図である。第2図(b)はZr
Si.0,膜中のSLの含有量とnとの関係を、第2図
(C)はZrBo. zgsizOy膜中のSiの含有
量とnとの関係を示した図、第2図(d)はTiSiエ
0,膜中のSiの含有量とnとの関係図である。 1:透明基体 2.4,6:高屈折率膜 3,5,7:低屈折率膜 7:空気側最外層 第 1 図 B203 Er医内服中の     Cモル≠っ Zγ01+Bx03 第 2 図 (a) 第 2 図 Cb) 54アじ= S.xO1ハ)(−? のS:Ox zrchすS:(h (七1しブ,) 第 2 図 (C) Si O2 TrS:20け8東中の     C七ルヅ・)丁’+
(h+sr(h 第2図(cl)
FIG. 1 is a sectional view of an example of the heat ray reflective glass of the present invention. FIG. 2(a) is a diagram showing the relationship between the content of B in the ZrBxOy film and the refractive index n of the film. Figure 2(b) shows Zr
Si. 0, Figure 2 (C) shows the relationship between the SL content in the film and n. A diagram showing the relationship between the Si content in the zgsizOy film and n, and FIG. 2(d) is a diagram showing the relationship between the Si content in the TiSiOy film and n. 1: Transparent substrate 2.4, 6: High refractive index film 3, 5, 7: Low refractive index film 7: Air side outermost layer 1 Figure B203 C mole≠Zγ01+Bx03 during medical administration of Er Figure 2 (a) Figure 2 Cb) 54 horse mackerel = S. xO1c) (-? S: Ox zrchS: (h (71shibu,) Fig. 2 (C) Si O2 TrS: 20ke8 east middle C7ruzu・)ding'+
(h+sr(h Figure 2 (cl)

Claims (2)

【特許請求の範囲】[Claims] (1)透明基体上に高屈折率膜と低屈折率膜を交互に多
層積層してなる干渉フィルター型の熱線反射ガラスであ
って、空気側最外層となっている高屈折率膜又は低屈折
率膜が、Zr、Ti、Hf、Sn、Ta、Bi、Zn、
Inのうち少なくとも1種とB、Si、Pのうち少なく
とも1種を含む酸化物を主成分とする非晶質膜であるこ
とを特徴とする熱線反射ガラス。
(1) An interference filter-type heat-reflecting glass made by alternately laminating high refractive index films and low refractive index films on a transparent substrate, with the high refractive index film or low refractive index film serving as the outermost layer on the air side. The rate film is Zr, Ti, Hf, Sn, Ta, Bi, Zn,
A heat ray reflective glass characterized in that it is an amorphous film mainly composed of an oxide containing at least one type of In and at least one type of B, Si, and P.
(2)透明基体上に高屈折率膜と低屈折率膜を交互に多
層積層してなる干渉フィルター型の熱線反射ガラスであ
って、空気側最外層が低屈折率膜であってかつ、Zr、
Ti、Hf、Sn、Ta、Bi、Zn、Inのうち少な
くとも1種とB、Si、Pのうち少なくとも1種を含む
酸化物を主成分とする非晶質膜であることを特徴とする
熱線反射ガラス。
(2) An interference filter-type heat-reflecting glass formed by alternately laminating multiple layers of high refractive index films and low refractive index films on a transparent substrate, in which the outermost layer on the air side is a low refractive index film, and the outermost layer on the air side is a low refractive index film, and ,
A hot wire characterized by being an amorphous film mainly composed of an oxide containing at least one of Ti, Hf, Sn, Ta, Bi, Zn, and In and at least one of B, Si, and P. reflective glass.
JP1224492A 1989-03-07 1989-09-01 Heat ray reflective glass Expired - Fee Related JP2576637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1224492A JP2576637B2 (en) 1989-03-07 1989-09-01 Heat ray reflective glass

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5300989 1989-03-07
JP1-53009 1989-03-07
JP1224492A JP2576637B2 (en) 1989-03-07 1989-09-01 Heat ray reflective glass

Publications (2)

Publication Number Publication Date
JPH03218821A true JPH03218821A (en) 1991-09-26
JP2576637B2 JP2576637B2 (en) 1997-01-29

Family

ID=26393698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1224492A Expired - Fee Related JP2576637B2 (en) 1989-03-07 1989-09-01 Heat ray reflective glass

Country Status (1)

Country Link
JP (1) JP2576637B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0852266A1 (en) * 1995-08-23 1998-07-08 Asahi Glass Company Ltd. Target, process for production thereof, and method of forming highly refractive film
JP2003522088A (en) * 1999-03-18 2003-07-22 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Process for producing low haze coatings and coatings and coated articles produced thereby
JP2007290360A (en) * 2006-03-31 2007-11-08 Toray Ind Inc Resin sheet
JP2010231172A (en) * 2009-03-04 2010-10-14 Seiko Epson Corp Optical article and method for producing the same
KR102130320B1 (en) * 2019-01-03 2020-07-08 청주대학교 산학협력단 Multilayered color filter having an amorphous oxide layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761553A (en) * 1980-09-25 1982-04-14 Toray Industries Laminated film
JPS61167546A (en) * 1985-12-25 1986-07-29 東レ株式会社 Laminated film
JPH02289339A (en) * 1989-02-14 1990-11-29 Asahi Glass Co Ltd Infrared reflecting article
JPH03134157A (en) * 1989-10-17 1991-06-07 Nippon Sheet Glass Co Ltd Wear resistant transparent parts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5761553A (en) * 1980-09-25 1982-04-14 Toray Industries Laminated film
JPS61167546A (en) * 1985-12-25 1986-07-29 東レ株式会社 Laminated film
JPH02289339A (en) * 1989-02-14 1990-11-29 Asahi Glass Co Ltd Infrared reflecting article
JPH03134157A (en) * 1989-10-17 1991-06-07 Nippon Sheet Glass Co Ltd Wear resistant transparent parts

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0852266A1 (en) * 1995-08-23 1998-07-08 Asahi Glass Company Ltd. Target, process for production thereof, and method of forming highly refractive film
EP0852266A4 (en) * 1995-08-23 2000-09-27 Asahi Glass Co Ltd Target, process for production thereof, and method of forming highly refractive film
US6193856B1 (en) 1995-08-23 2001-02-27 Asahi Glass Company Ltd. Target and process for its production, and method for forming a film having a highly refractive index
US6440278B1 (en) 1995-08-23 2002-08-27 Asahi Glass Company Ltd. Target and process for its production, and method for forming a film having a high refractive index
US6743343B2 (en) 1995-08-23 2004-06-01 Asahi Glass Ceramics Co., Ltd. Target and process for its production, and method of forming a film having a high refractive index
EP1452622A3 (en) * 1995-08-23 2004-09-29 Asahi Glass Ceramics Co., Ltd. Target and process for its production, and method for forming a film having a high refractive index
JP2003522088A (en) * 1999-03-18 2003-07-22 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Process for producing low haze coatings and coatings and coated articles produced thereby
JP2010260050A (en) * 1999-03-18 2010-11-18 Ppg Industries Ohio Inc Method of producing coating with low haze, and coating and coated article produced thereby
JP2007290360A (en) * 2006-03-31 2007-11-08 Toray Ind Inc Resin sheet
JP2010231172A (en) * 2009-03-04 2010-10-14 Seiko Epson Corp Optical article and method for producing the same
KR102130320B1 (en) * 2019-01-03 2020-07-08 청주대학교 산학협력단 Multilayered color filter having an amorphous oxide layer

Also Published As

Publication number Publication date
JP2576637B2 (en) 1997-01-29

Similar Documents

Publication Publication Date Title
US5952084A (en) Transparent substrate provided with a thin-film coating
US5728456A (en) Methods and apparatus for providing an absorbing, broad band, low brightness, antireflection coating
CA2366406C (en) Double silver low-emissivity and solar control coatings
KR900003979B1 (en) High transmittances low emissivity articles and process for making
US7534497B2 (en) Temperable high shading performance coatings
JP4836376B2 (en) Protective layer for sputter coated articles
US7122252B2 (en) High shading performance coatings
JPH029731A (en) Matter of high gray color-permeability and low radioactivity and method for its manufacture
JPH08336928A (en) Plate made from translucent material and manufacture thereof
JPS5931147A (en) Visible-ray transmitting heat wave shielding membrane and its manufacture
JP2000129464A (en) Transparent substrate provided with thin-film stack
WO1991002102A1 (en) Film based on silicon dioxide and production thereof
JP6853486B2 (en) Solar shielding member
EP0283923B1 (en) Sputtered titanium oxynitride films
JP4013329B2 (en) Laminate and glass laminate for window
JP2024105441A (en) Coated glass plate
JP2017151409A (en) Infrared transmission film, optical film, antireflection film, optical component, optical system and imaging device
JP2720919B2 (en) target
JPH03218821A (en) Heat ray reflective glass
JP2022543004A (en) Material comprising substrate with stack having thermal properties for head-up display
JPH03162943A (en) Lens with antireflection film
JP2906524B2 (en) Infrared reflective article
JPH03187955A (en) Permselective article and production thereof
JPH03218822A (en) Ultraviolet screening glass
JPH02901A (en) Optical body having excellent durability

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees