WO2019221255A1 - Method of forming surface microstructure, and article provided with surface microstructure - Google Patents

Method of forming surface microstructure, and article provided with surface microstructure Download PDF

Info

Publication number
WO2019221255A1
WO2019221255A1 PCT/JP2019/019602 JP2019019602W WO2019221255A1 WO 2019221255 A1 WO2019221255 A1 WO 2019221255A1 JP 2019019602 W JP2019019602 W JP 2019019602W WO 2019221255 A1 WO2019221255 A1 WO 2019221255A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface microstructure
substance
article
oxide
precursor layer
Prior art date
Application number
PCT/JP2019/019602
Other languages
French (fr)
Japanese (ja)
Inventor
孝洋 伊東
Original Assignee
ジオマテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジオマテック株式会社 filed Critical ジオマテック株式会社
Priority to KR1020207035573A priority Critical patent/KR20210011396A/en
Priority to CN201980033091.XA priority patent/CN112136063A/en
Publication of WO2019221255A1 publication Critical patent/WO2019221255A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present invention relates to a method for forming a surface microstructure and an article having the surface microstructure.
  • the surface of window glass and mirrors has hydrophilicity, but dirt such as dust, dust, and oil adheres to it, and the dirt and hydrophilicity decrease, resulting in cloudiness and loss of transparency.
  • a technique for imparting antifouling property and antifogging property by coating a surface such as titanium oxide on a surface of a window glass, a mirror or the like with a super hydrophilic property is known. .
  • display surfaces of various display devices such as liquid crystal display devices and organic EL display devices, optical members of optical devices such as lenses, imaging devices such as windows and showcases, outdoor surveillance cameras, and protective covers for solar cells
  • a low reflection film is provided on the surface of glass or plastic which is a transparent substrate.
  • a method of forming a surface microporous structure For the purpose of imparting antifouling properties, antifogging properties, hydrophilicity, low reflectivity, etc., as a method of forming a surface microporous structure, a method using a sol-gel method, a material dissolved using a strong acid or a strong base Various production methods such as a treatment method and a method using a pore-forming substance such as a surfactant have been proposed.
  • Patent Document 1 discloses that a porous silica precursor solution containing an inorganic-containing material and a surfactant is applied to a substrate, and is fired in a vacuum and in an inert gas atmosphere to thereby form porous silica on the substrate.
  • a technique for forming an ultra-low refractive index film is described.
  • Patent Document 2 a diluted solution of liquid glass diluted with an alcohol having 1 to 6 carbon atoms is applied on a glass substrate by a spin coating method or a roll coating method, and the temperature is 70 to 500 ° C. in an air atmosphere.
  • a technique for producing an antireflection film having a nanoporous structure by drying is described.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a microstructure on the surface of an article easily and at low cost under mild conditions and without using strong chemicals or pore-forming substances. It is an object of the present invention to provide a method for forming a surface microstructure capable of forming a surface. Another object of the present invention is to extend the object of treatment to articles that have been difficult to form a fine structure on the surface from the viewpoint of heat resistance, chemical resistance, etc. The object is to provide an article with a reflective surface microstructure.
  • the object is to prepare an object to be processed, and a precursor containing a first substance and a second substance on the object to be processed.
  • a microstructure can be formed on the surface of the article by a simple method of immersing a precursor layer containing the first substance and the second substance in the treatment liquid.
  • the precursor layer stacking step is preferably performed using a method selected from a sputtering method, an ion plating method, a vacuum deposition method, and a chemical vapor deposition method.
  • a method selected from a sputtering method, an ion plating method, a vacuum deposition method, and a chemical vapor deposition method According to the above configuration, in the precursor laminating process, it is not necessary to use special substances such as chemicals or heating at high temperature, so that it is possible to reduce labor and cost and to expand the target of the object to be processed. Become.
  • the precursor layer is stacked on the object to be processed using a target material or a vapor deposition material containing the first substance and the second substance. It is. According to the above configuration, when preparing a target material or a vapor deposition material in which a first substance that is a base material of a fine structure and a second substance that is a readily soluble material are prepared, by adjusting the ratio mixing, It is possible to control the porosity of the surface microstructure.
  • the precursor layer stacking step is preferably performed at 80 ° C. or lower. According to the above configuration, since heating at a high temperature is not required, the object to be processed can be extended to an object to be processed that contains a material that is weak against heat.
  • the treatment liquid used in the treatment step is preferably water. According to the above configuration, since water that is not a special solvent or a strong chemical is used, the object to be processed can be extended to an object to be processed that contains a material that is weak to the special solvent or the chemical.
  • the water used in the treatment step has a temperature of 10 ° C. or more and 100 ° C. or less and a pH of 6 or more and 8 or less. According to the above configuration, since water having a mild temperature and pH is used, it is possible to extend the processing target to an object to be processed that contains a material that is weak against heat, strong acid, strong base, or the like.
  • the first substance is insoluble or hardly soluble in the treatment liquid used in the treatment step, and the second substance is easily soluble in the treatment liquid used in the treatment step. It is. According to the above configuration, the second substance is selectively dissolved in the treatment step and the first substance remains, so that a surface fine structure is formed by the first substance.
  • the first substance is one or more selected from the group including silicon oxide (SiO 2 ), magnesium fluoride (MgF 2 ), titanium oxide (TiO 2 ), and tantalum oxide (Ta 2 O 5 ).
  • a substance is preferred. According to the above configuration, the surface fine structure can be formed by a substance having high stability and excellent durability and optical characteristics.
  • the second substance is selected from the group including germanium oxide (GeO x ), molybdenum oxide (MoO x ), tungsten oxide (WO 3 ), zinc oxide (ZnO), and sodium chloride (NaCl). It is preferable that the substance is one or more substances. According to the above configuration, since a substance such as an inorganic oxide that dissolves in water that is not a strong acidic or strong basic aqueous solution at a temperature around room temperature is used, a special solvent or strong chemical is used as a treatment liquid. In addition, since the second substance can be dissolved with water, the object to be processed can be extended to an object to be processed that contains a material weak to heat, a special solvent, a chemical, or the like.
  • the object to be processed contains one or more substances selected from the group including resin, glass, metal, alloy, and ceramics (metal oxide, metal nitride, metal oxynitride).
  • the method for forming a surface microstructure of the present invention can be applied to an object to be processed that includes various substances.
  • the object to be processed contains a resin.
  • the method for forming a surface microstructure of the present invention can be applied to an object to be processed that includes a resin.
  • the object to be processed is an article selected from a group including a lens, a half mirror, a touch panel, and a display device.
  • the method for forming a surface microstructure of the present invention can be applied to an object to be processed which includes various substances, and thus can be applied to various articles.
  • the object includes an article, an antireflection film formed on the article, and a microstructure formed on the antireflection film.
  • An article with a surface microstructure characterized by: With the above configuration, it is possible to achieve hydrophilicity and lower reflectivity in an article including an antireflection film.
  • the microstructure is formed of one or more substances selected from the group including silicon oxide (SiO 2 ), magnesium fluoride (MgF 2 ), titanium oxide (TiO 2 ), and tantalum oxide (Ta 2 O 5 ). Preferably it is formed. According to the above configuration, it is possible to provide an article having a surface microstructure having high stability and excellent durability and optical characteristics.
  • the article contains one or more substances selected from the group including resin, glass, metal, alloy, ceramics (metal oxide, metal nitride, metal oxynitride).
  • goods provided with a surface fine structure can be provided in the articles
  • the article preferably contains a resin.
  • goods provided with a surface fine structure can be provided in the articles
  • the article is preferably an article selected from a group including a lens, a half mirror, a touch panel, and a display device. According to the above configuration, an article having a surface microstructure can be provided in various articles.
  • the reflectance of the surface is 10% or less. According to the said structure, the article
  • the water contact angle on the surface is preferably 10 ° or less. According to the above configuration, an article having a low water contact angle and excellent in antifouling property and hydrophilicity can be provided.
  • the method for forming a surface microstructure of the present invention it is possible to form a microstructure on the surface of an article easily and at low cost under mild conditions and without using strong chemicals or pore-forming substances. .
  • surface fineness that extends the object of processing to articles that have been difficult to form a fine structure on the surface and has hydrophilicity and / or low reflectivity. It is possible to provide an article comprising a structure. Furthermore, in an article provided with an antireflection film, it is possible to achieve hydrophilicity and lower reflectivity.
  • 3 is a graph showing the transmittance at 400 to 700 nm of a glass substrate having the surface microstructure of Example 1 and Comparative Example 1.
  • 4 is a graph showing the reflectance at 400 to 700 nm of a glass substrate having the surface microstructure of Example 1 and Comparative Example 1.
  • 3 is a graph showing the absorptance at 400 to 700 nm of a glass substrate having the surface microstructure of Example 1 and Comparative Example 1. It is a figure which shows the result of the contact angle measurement of the sample of Example 2 before and behind dissolving a germanium oxide in a process process. It is a SEM photograph of the sample of Example 2 before and after dissolving germanium oxide in a processing process.
  • 6 is a graph showing refractive indexes (n) at 300 to 800 nm of glass substrates having surface microstructures of Examples 3 to 7 and Example 2 after dissolving germanium oxide in the treatment step.
  • 6 is a graph showing extinction coefficients (k) at 300 to 800 nm of glass substrates having surface microstructures of Examples 3 to 7 and Example 2 after germanium oxide is dissolved in the treatment step.
  • 6 is a graph showing refractive indices (n) at 550 nm and 633 nm of glass substrates having surface microstructures of Examples 3 to 7 and Example 2 after dissolving germanium oxide in the treatment step.
  • 7 is a graph showing extinction coefficients (k) at 550 nm and 633 nm of glass substrates having surface microstructures of Examples 3 to 7 and Example 2 after dissolving germanium oxide in the treatment process.
  • the article 1 having the surface microstructure of the present embodiment is formed by laminating a workpiece 10 and a surface microstructure 20 formed on the workpiece 10.
  • an object 10 (article 10) that is a target for forming a surface microstructure is an object to which functions such as antifouling properties, antifogging properties, and low reflectivity are imparted.
  • the article is not particularly limited.
  • the object to be processed 10 include various display devices such as smartphones, tablet terminals, liquid crystal displays, organic EL displays, various computers, televisions, plasma display panels, touch panels and displays thereof, and outdoor surveillance cameras.
  • Various optical lenses such as scanning optical systems used for laser beam printers, projection optical systems used for projection devices such as liquid crystal projectors, observation optical systems such as binoculars, imaging optical systems using them, liquid crystal projectors, etc.
  • An optical member such as a cover of an instrument, a
  • the workpiece 10 has a workpiece surface 10a, but the shape of the workpiece surface 10a is not limited to a flat surface, but is a curved shape such as a curved surface, a complicated shape, or an inner surface of a hollow member. There may be.
  • the method for forming the surface microstructure of the present embodiment does not require the use of a special solvent, strong acid, or strong base under mild conditions.
  • Any material such as glass, metal, alloy, semiconductor, ceramics (metal oxide, metal nitride, metal oxynitride) can be selected.
  • a process for processing at a high temperature is not required, and therefore, it can be suitably applied to an object to be processed 10 containing a substance (material) that is weak against heat, such as a resin. is there.
  • the resin contained in the object to be processed may be either a thermoplastic resin or a thermosetting resin, for example, polyethylene (high density, medium density or low density), polypropylene (isotactic type or syndiotactic type).
  • Polyolefins such as polybutene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer (EVA), ethylene-propylene-butene copolymer, cyclic polyolefin, modified polyolefin, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyamide , Polyimide, polyamideimide, polycarbonate, poly- (4-methylbenten-1), ionomer, acrylic resin, polymethyl methacrylate, polybutyl (meth) acrylate, methyl (meth) acrylate-butyl (meth) acrylate copolymer, Chill (meth) acrylate-styrene copo
  • Examples of the glass contained in the object to be treated include silicate glass (quartz glass), alkali silicate glass, soda lime glass, potash lime glass, lead (alkali) glass, barium glass, and borosilicate glass.
  • Examples of the metal contained in the workpiece include gold, chromium, silver, copper, platinum, indium, palladium, iron, titanium, nickel, manganese, zinc, tin, tungsten, tantalum, and aluminum.
  • stainless steels such as SUS316L, shape memory alloys such as Ti—Ni alloys or Cu—Al—Mn alloys, Cu—Zn alloys, Ni—Al alloys, titanium alloys, tantalum alloys, platinum alloys, which are alloys of the above metals.
  • an alloy such as a tungsten alloy can be used.
  • An alloy is obtained by adding one or more metal elements or non-metal elements to the metal element.
  • the alloy structure includes eutectic alloys in which the component elements become separate crystals, solid solutions in which the component elements are completely dissolved, and those in which the component elements form an intermetallic compound or a compound of a metal and a nonmetal. Although there is, it is not necessarily limited to this.
  • Examples of the ceramic contained in the object to be processed include oxides (for example, aluminum oxide, zinc oxide, titanium oxide, silicon oxide, zirconia, barium titanate), nitrides (for example, silicon nitride, boron nitride), carbides ( Examples thereof include silicon carbide) and oxynitrides. A mixture of these can also be used.
  • oxides for example, aluminum oxide, zinc oxide, titanium oxide, silicon oxide, zirconia, barium titanate
  • nitrides for example, silicon nitride, boron nitride
  • carbides Examples thereof include silicon carbide
  • oxynitrides A mixture of these can also be used.
  • Examples of the metal oxide contained in the object to be processed include an oxide containing, for example, aluminum, copper, gold, silver, platinum, indium, palladium, iron, nickel, titanium, chromium, manganese, zinc, tin, tungsten, or the like as a metal. , Indium tin oxide (ITO), aluminum oxide (Al 2 O 3 ), titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), tin oxide (SnO 2 , SnO), iron oxide (Fe 2 O 3 , Fe 3 O 4 ), composite oxides having a perovskite structure, a spinel structure, and an ilmenite structure, but are not necessarily limited thereto.
  • ITO Indium tin oxide
  • Al 2 O 3 aluminum oxide
  • TiO 2 titanium oxide
  • silicon oxide SiO 2
  • tin oxide SnO 2 , SnO
  • iron oxide Fe 2 O 3 , Fe 3 O 4
  • composite oxides having a perovskite structure,
  • Examples of the metal nitride contained in the workpiece include titanium nitride (TiN), zirconium nitride (ZrN), vanadium nitride (VN), niobium nitride (NbN), tantalum nitride (TaN), and chromium nitride (CrN, Cr 2 N ) And hafnium nitride (HfN), but are not necessarily limited thereto.
  • the surface fine structure 20 (surface porous structure 20) is a layer having fine pores laminated on the surface 10a of the object 10 (article 10) or the antireflection film 30 of the object 10 to be processed. It is.
  • the surface fine structure 20 is formed by dissolving the second substance contained in the precursor layer 40 with a treatment liquid in the method for forming a surface fine structure according to the present embodiment.
  • the surface microstructure 20 is composed of a base material (first substance), and includes silicon oxide (SiO 2 ), magnesium fluoride (MgF 2 ), titanium oxide (TiO 2 ), and tantalum oxide (Ta 2 O 5 ).
  • first substance silicon oxide
  • MgF 2 magnesium fluoride
  • TiO 2 titanium oxide
  • Ta 2 O 5 tantalum oxide
  • One or more substances selected from the group containing can be used, but the present invention is not limited to these substances.
  • silicon oxide is a chemically stable and low-cost substance and has a Mohs hardness of 7, the surface microstructure is highly stable and durable when used as a base material (first substance). 20 can be constructed.
  • Magnesium fluoride (MgF 2 ) has a wide wavelength transmission region from the ultraviolet light region of 0.11 ⁇ m to 7.5 ⁇ m to the infrared light region.
  • the thickness of the surface microstructure 20 may be appropriately selected according to the shape and application of the object to be processed 10, and is preferably several nm or more and several ⁇ m or less, more preferably several nm or more and 30 ⁇ m or less, and more The thickness is preferably several nm to 10 ⁇ m, more preferably 10 nm to 5.0 ⁇ m, and still more preferably 10 nm to 1.0 ⁇ m. If the surface microstructure 20 is too thin, it is not preferable from the viewpoint of durability. On the other hand, if the surface microstructure 20 is too thick, it may not be preferable from the viewpoints of a decrease in transmittance, a decrease in flexibility, a reduction in weight, a cost, and the like depending on the use of the workpiece 10.
  • the article 1 having a surface microstructure has a reduced surface reflectance due to the lamination of the surface microstructure 20, and the reflectance at a wavelength of 400 to 700 nm (for example, 550 nm) of the surface is 20% or less. Preferably, it is 15% or less, more preferably 10% or less, still more preferably 7% or less, and particularly preferably 5% or less. Since the reflectance value of the surface is in the above range, it is possible to suppress the reflection of the surface of the workpiece 10.
  • the article 1 having a surface microstructure has improved surface hydrophilicity by laminating the surface microstructure 20, and the water contact angle of the surface is 10 ° or less, preferably 8 ° or less, more preferably 5 ° or less. Since the water contact angle on the surface of the surface microstructure 20 is in the above range, it has high wettability with respect to water, and attached dirt and foreign matter can be easily removed by washing with water. It is possible to prevent fogging.
  • the article provided with the surface microstructure of the present embodiment is formed on the object to be processed 10, the antireflection film 30 formed on the article, and the antireflection film 30, as shown in FIG. 1B.
  • An article 1A in which the surface microstructure 20 thus formed is laminated may be used.
  • the antireflection film 30 has a reflectance of 10% or less, preferably 8% or less, more preferably 7% or less, still more preferably 6% or less, laminated on the surface 10a of the object 10 (article 10). Particularly preferably, it is a layer having a low reflectance of 5% or less, such as silicon oxide (SiO 2 ), magnesium fluoride (MgF 2 ), titanium oxide (TiO 2 ), tantalum oxide (Ta 2 O 5 ), etc. It is formed by the substance.
  • the antireflection film may be a single layer or a multilayer of two or more layers.
  • FIG. 1B shows an example in which the antireflection film 30 includes two layers of a first antireflection film 30a and a second antireflection film 30b.
  • the antireflection film 30 is regarded as a part of the workpiece 10 (article 10). Specifically, the workpiece 10 (article 10) on which the antireflection film 30 is laminated is regarded as a workpiece (article), and the surface of the antireflection film 30 is regarded as the surface of the workpiece.
  • the surface microstructure 20 of the articles 1 and 1A having the surface microstructure according to the present embodiment is formed by processing the precursor layer 40 with a processing liquid according to the method for forming the surface microstructure according to the present embodiment.
  • the precursor layer 40 includes a base material (first substance) and a readily soluble substance (on the object surface 10a of the object 10 (article 10) or the antireflection film 30 of the object 10 to be processed).
  • a layer containing a second substance in the method for forming a surface microstructure according to this embodiment, the precursor layer 40 is a layer that becomes the surface microstructure 20 by dissolving the second substance with a treatment liquid.
  • the precursor layer 40 may be a single layer as shown in FIG. 1C, but is not limited to this, and may have a multilayer structure in which a plurality of precursor layers are stacked.
  • FIG. 1D the first precursor layer 40a, the second precursor layer 40b, and the third precursor layer 40c are sequentially laminated on the workpiece surface 10a of the workpiece 10 (article 10).
  • the layer structure is shown.
  • the plurality of precursor layers may contain a base material (first substance) and a readily soluble substance (second substance) in the same or different ratio.
  • the base material (first substance) that constitutes the precursor layer 40 is a substance that is insoluble or hardly soluble in the treatment liquid used in the treatment step, and is an object to be treated together with a readily soluble substance (second substance). There is no particular limitation as long as it is a substance that can be formed on the surface 10a.
  • first substance for example, a kind selected from the group including silicon oxide (SiO 2 ), magnesium fluoride (MgF 2 ), titanium oxide (TiO 2 ), and tantalum oxide (Ta 2 O 5 )
  • SiO 2 silicon oxide
  • MgF 2 magnesium fluoride
  • TiO 2 titanium oxide
  • Ta 2 O 5 tantalum oxide
  • the base material When a water-insoluble inorganic substance such as silicon oxide (SiO 2 ) or magnesium fluoride (MgF 2 ) is used as the base material (first substance), water can be used as a treatment liquid in the treatment step. Is preferred. Further, the surface microstructure according to this embodiment formed using silicon oxide (SiO 2 ) or magnesium fluoride (MgF 2 ) as a base material is preferable because it is transparent in a specific wavelength region and has a low reflectance. It is.
  • silicon oxide SiO 2
  • MgF 2 magnesium fluoride
  • the easily soluble substance (second substance) constituting the precursor layer 40 is a substance that dissolves in the treatment liquid used in the treatment step, and is formed on the surface 10a to be treated together with the base material (first substance). There is no particular limitation as long as it is a possible substance.
  • Examples of the readily soluble substance include germanium oxide (GeO x ), molybdenum oxide (MoO x ), tungsten oxide (WO 3 ), zinc oxide (ZnO), and sodium chloride (NaCl).
  • germanium oxide (GeO x ) germanium oxide (GeO x ), molybdenum oxide (MoO x ), tungsten oxide (WO 3 ), zinc oxide (ZnO), and sodium chloride (NaCl).
  • germanium oxide GeO x
  • MoO x molybdenum oxide
  • WO 3 tungsten oxide
  • ZnO zinc oxide
  • NaCl sodium chloride
  • One or more substances selected from the group can be used, but are not limited to these substances.
  • water-soluble inorganic substance such as a water-soluble metal oxide
  • the readily soluble substance (second substance) constituting the precursor layer 40 is preferably a substance that dissolves in water at 10 to 50 ° C. and pH 4.0 to 10.0 in the bulk state. Even if it is water-insoluble, it may be any substance that dissolves in water at 10 to 50 ° C. and pH 4.0 to 10.0 when it is formed to a film thickness of several tens nm to several ⁇ m.
  • the value of x indicates the charge balance between the metal ion and the oxide ion.
  • the value that becomes zero is normal, but it may be a value of x where the electrification balance of metal ions and oxide ions slightly deviates from zero.
  • the solubility of the metal oxide in water is 0.14 g / 100 mL (20 ° C.) for MoO 3 which is a molybdenum oxide, and 0.447 g / 100 mL for hexagonal GeO 2 which is a germanium oxide.
  • MoO 3 which is a tungsten oxide, it is less than 0.46 g / 100 mL.
  • the thickness of the precursor layer 40 may be appropriately selected according to the thickness of the surface microstructure formed on the workpiece 10, and is preferably several nm or more and several ⁇ m or less, more preferably several nm or more. It is 30 ⁇ m or less, more preferably several nm to 10 ⁇ m, further preferably 10 nm to 5.0 ⁇ m, and further preferably 10 nm to 1.0 ⁇ m. If the thickness of the precursor layer 40 becomes too thin, it is not preferable from the viewpoint of the durability of the formed surface microstructure. On the other hand, if the precursor layer 40 is too thick, it is not preferable because it may take a long time until the easily soluble substance (second substance) is dissolved in the treatment liquid in the treatment step, or it may not be sufficiently dissolved. .
  • the method for forming the precursor layer 40 on the workpiece 10 may be a physical vapor deposition method such as a vacuum vapor deposition method, a sputtering method, or an ion plating method, or a chemical vapor deposition method, but is not limited thereto.
  • a chemical method such as a sol-gel method can also be used depending on the material constituting the workpiece 10 and the material of the precursor layer.
  • Article 1 provided with the surface microstructure of the present embodiment is manufactured by the following method for forming the surface microstructure as shown in FIG.
  • the surface microstructure forming method of the present embodiment includes a processing object preparation step (step S1) for preparing a processing object (article) 10, and a first substance on the processing object 10. And a precursor layer laminating step (step S2) for laminating the precursor layer 40 containing the second substance, and the precursor layer 40 obtained in the precursor layer laminating step is immersed in a treatment liquid, And a processing step (step S3) for dissolving the substance.
  • a processing object 10 (article 10) to be processed is prepared.
  • pretreatment is performed in advance to improve the film formability (stackability) of the precursor layer 40, such as cleaning the surface 10a of the object 10 to be processed or charging. May be.
  • the precursor layer 40 including the first substance and the second substance is laminated on the workpiece surface 10Aa of the workpiece 10 prepared in the workpiece preparation process. To do.
  • the precursor layer stacking step can be performed using a method such as a sputtering method, an ion plating method, a vacuum deposition method, or a chemical vapor deposition method depending on the material of the object to be processed 10 or the precursor layer 40.
  • a method such as a sol-gel method may be employed.
  • the precursor layer 40 is preferably stacked using a target material or a vapor deposition material containing a base material (first substance) and a readily soluble substance (second substance).
  • first substance silicon oxide
  • germanium oxide is used as the easily soluble substance
  • a mixed target or mixed vapor deposition material in which silicon oxide and germanium oxide are mixed may be used.
  • the precursor layer laminating step is performed at 80 ° C. or lower using a sputtering method, an ion plating method, a vacuum vapor deposition method, a chemical vapor deposition method or the like, an object to be processed containing a heat-sensitive substance (material) such as a resin. 10 can be suitably applied.
  • a plurality of precursor layers containing the base material (first substance) and the readily soluble substance (second substance) in the same or different ratios can be laminated.
  • step S3 the precursor layer 40 laminated on the workpiece surface 10Aa of the workpiece 10 obtained in the precursor layer laminating step is immersed in the treatment liquid to dissolve the second substance. To do.
  • water capable of selectively dissolving the easily soluble substance (second substance) without dissolving the base material (first substance).
  • the water used here only needs to be able to dissolve a readily soluble substance (second substance) without affecting the base material (first substance), and has a temperature of 0 to 100 ° C., preferably 10 to 100 ° C.
  • Water more preferably water at 10 to 60 ° C., still more preferably water at 20 to 50 ° C., particularly preferably water at 30 to 50 ° C.
  • Water having a temperature of 20 ° C. or more and 50 ° C. or less is preferable because a long-time heat treatment is unnecessary even when a large amount of water is required, and water as a treatment liquid can be easily prepared. .
  • the pH of the water may be within a range in which the easily soluble substance (second substance) can be selectively dissolved without dissolving the base material (first substance), preferably pH 4 to 10, and preferably pH 5 to 9, more preferably pH 6-8. If pH is 6 or more and 8 or less, it is possible to process the water after peeling as waste water without adjusting the pH. In the treatment step, it is more preferable to use neutral water as a treatment solution at a temperature of 20 to 50 ° C. and a pH of 6 to 8 near room temperature.
  • water from which various metal ions and impurities are removed such as distilled water, pure water, and ultrapure water, but is not limited thereto, and tap water, industrial water, well water It is also possible to use water such as.
  • Distilled water is water having an electric conductivity of about 1 to 10 ⁇ S / cm, which is heated to water vapor and then returned to a liquid by cooling.
  • Pure water is high-purity water having an electrical conductivity of 1 ⁇ S / cm or less from which impurities such as ions, fine particles, microorganisms, and organic substances are removed.
  • Ultrapure water is extremely high-purity water having a higher purity than that of pure water removed from suspended substances, dissolved substances, and high efficiency in an ultrapure water production apparatus, and has an electric conductivity of less than 0.055 ⁇ Scm.
  • an inorganic oxide that dissolves in water at 10 to 50 ° C. and pH 4.0 to 10.0 is selected as a base material (first substance), an acidic aqueous solution such as an aqueous hydrochloric acid solution or an aqueous nitric acid solution,
  • an acidic aqueous solution such as an aqueous hydrochloric acid solution or an aqueous nitric acid solution
  • second substance an easily soluble substance
  • the easily soluble substance (second substance) dissolves within 60 minutes, for example, by immersing the object 10 on which the precursor layer 40 is laminated in the treatment liquid. More preferably. It is particularly preferable that the readily soluble substance (second substance) dissolves immediately after being immersed in the treatment liquid. Moreover, it is also possible to perform ultrasonic irradiation or stirring with a stirrer with respect to the precursor layer 40 immersed in water in order to promote dissolution of the readily soluble substance (second substance) in water.
  • the surface microstructure forming method and the article provided with the surface microstructure according to the present invention have been mainly described.
  • said embodiment is only an example for making an understanding of this invention easy, and does not limit this invention.
  • the present invention can be changed and improved without departing from the gist thereof, and the present invention includes the equivalents thereof.
  • Sputtering device Carousel type batch type sputtering device Target: ⁇ 150, thickness 6mm
  • Example 1 Germanium oxide (GeO 2 ) 50 vol% / silicon oxide (SiO 2 ) 50 vol% mixed target Comparative
  • Example 1 Germanium oxide (GeO 2 ) 100 vol% Sputtering method: RF sputtering Exhaust device: Turbo molecular pump Ultimate vacuum: 5 ⁇ 10 ⁇ 4 Pa
  • Substrate temperature 25 ° C. (room temperature)
  • Sputtering power 1.2 kW Film thickness of precursor layer: 100 ⁇ 10 nm Ar flow rate: 120 sccm
  • Substrate used Glass substrate (1.0 mm thick)
  • FIGS. 3A to 3C The results of the spectroscopic measurement are shown in FIGS. 3A to 3C.
  • the absorption rate was almost zero, and it was found that all the precursor layers were dissolved.
  • the reflectance of the sample of Example 1 was lower than that of the sample of Comparative Example 1. From the test A1, it was suggested that in the sample of Example 1, germanium oxide contained in the precursor layer was dissolved, thereby forming a surface microstructure and lowering the reflectance.
  • Sputtering device Carousel type batch type sputtering device Target: ⁇ 150, thickness 6mm
  • Example 2 Germanium oxide (GeO 2 ) 20 vol% / silicon oxide (SiO 2 ) 80 vol% mixed target
  • Example 3 Germanium oxide (GeO 2 ) 40 vol% / silicon oxide (SiO 2 ) 60 vol% mixed target
  • Example 4 Germanium oxide (GeO 2 ) 60 vol% / silicon oxide (SiO 2 ) 40 vol% mixed target
  • Example 5 Germanium oxide (GeO 2 ) 80 vol% / silicon oxide (SiO 2 ) 20 vol% mixed target Comparative Example 2: Germanium oxide (GeO) 2 ) 100 vol% Sputtering method: RF sputtering Exhaust device: Turbo molecular pump Ultimate vacuum: 5 ⁇ 10 ⁇ 4 Pa Substrate temperature: 25 ° C.
  • Test B1 spectroscopic measurement The reflectance, transmittance, and absorptivity of the glass substrates provided with the surface microstructures of Examples 2 to 5 before and after dissolving germanium oxide in the treatment process were measured. The measurement was performed using a spectrophotometer (U-4100, manufactured by Hitachi High-Technologies Corporation) in a wavelength region of 400 nm to 700 nm.
  • Test B2 contact angle measurement The water contact angle of the glass substrate provided with the surface microstructures of Examples 2 to 5 after dissolving germanium oxide in the treatment step was measured (Table 2: after treatment). The measurement was performed at 25 ° C. using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., model number FACE CA-X type). As a reference, the water contact angle of the sample before dissolving germanium oxide in the treatment step was measured (Table 2: before treatment).
  • Example 6 Formation of Surface Microstructure According to Example 6> (C-1. Precursor layer forming step) Under the following conditions, the precursor layer according to Example 6 was laminated on a glass substrate as an object to be processed. The precursor layer of Example 6 is obtained by stacking four layers (layers 1 to 4) having different ratios of silicon oxide and germanium oxide.
  • Sputtering device Carousel type batch type sputtering device Target: ⁇ 150, thickness 6mm
  • Sputtering method RF sputtering Exhaust device: Turbo molecular pump Ultimate vacuum: 5 ⁇ 10 ⁇ 4 Pa Substrate temperature: 25 ° C.
  • Test C1 contact angle measurement The water contact angle of the glass substrate provided with the surface microstructure of Example 2 after dissolving germanium oxide in the treatment step was measured (Table 1: after water treatment). The measurement was performed at 25 ° C. using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., model number FACE CA-X type). As a reference, the water contact angle of the sample before dissolving germanium oxide in the treatment step was measured (Table 3: before water treatment).
  • the water contact angle was 47.18 ° on average, indicating water repellency.
  • the water contact angle was reduced to 5.04 ° on average, indicating super hydrophilicity.
  • FIGS. 6A to 6D and Table 4 Results of optical constant measurement are shown in FIGS. 6A to 6D and Table 4.
  • 6A is a graph showing the refractive index (n) at 300 to 800 nm
  • FIG. 6B is a graph showing the extinction coefficient (k) at 300 to 800 nm
  • FIG. 6C shows the refractive index (n) at 50 nm and 633 nm
  • FIG. 6D is a graph showing the extinction coefficient (k) at 550 nm and 633 nm.
  • a precursor layer having a film thickness of 100 to 500 nm is formed using a target having a volume ratio of germanium oxide (GeO 2 ): silicon oxide (SiO 2 ) of 50:50 to 60:40. Then, it was found that the refractive index is small and reflection is suppressed in the visible light region. Further, it was found that the extinction coefficient was zero in the visible light region, and good visible light transmittance was exhibited.
  • Sputtering device Carousel type batch type sputtering device Target: ⁇ 150, thickness 6mm
  • Example 12 Aluminum oxide (Al 2 O 3 ) 55 vol% / germanium oxide (GeO 2 ) 45 vol% mixed target
  • Example 13 Aluminum oxide (Al 2 O 3 ) 55 vol% / Zinc oxide (ZnO) 45 vol% mixed target
  • Sputtering Method RF sputtering
  • Exhaust device Turbo molecular pump Ultimate vacuum: 5 ⁇ 10 ⁇ 4 Pa Substrate temperature: 25 ° C.
  • Test E1 spectroscopic measurement The reflectance, transmittance, and absorptance of the glass substrate having the surface microstructure of Examples 12 and 13 before and after the treatment process were measured. The measurement was performed using a spectrophotometer (U-4100, manufactured by Hitachi High-Technologies Corporation) in a wavelength region of 400 nm to 700 nm. The results of the spectroscopic measurement are shown in Table 5. In Table 5, the values of transmittance, reflectance, and absorptance before and after treatment at a wavelength of 550 nm are shown together with the amount of change. In both Example 12 and Example 13, the change in reflectance was small.
  • Test E2 contact angle measurement The water contact angle of the glass substrate provided with the surface microstructure of Examples 12 and 13 before and after the treatment process was measured. The measurement was performed at 25 ° C. using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., model number FACE CA-X type). The results of contact angle measurement are shown in Table 6. It was found that the water contact angle was lowered and the hydrophilicity was improved after the treatment step.
  • Example 14 Formation of Surface Microstructure According to Example 14> (F-1. Precursor layer forming step)
  • the precursor layer according to Example 14 was laminated on a glass substrate as an object to be processed under the following conditions.
  • the precursor layer of Example 14 is obtained by laminating a layer (layer 4) containing silicon oxide and germanium oxide on a multilayer structure (layers 1 to 3) of titanium oxide and silicon oxide.
  • Test F1 spectroscopic measurement The reflectance, transmittance, and absorptance of the glass substrate having the surface microstructure of Example 14 before and after the treatment process were measured. The measurement was performed using a spectrophotometer (U-4100, manufactured by Hitachi High-Technologies Corporation) in a wavelength region of 400 nm to 700 nm. Table 7 shows the results of the spectroscopic measurement. In Table 7, the values of transmittance, reflectance, and absorption before and after treatment at a wavelength of 550 nm are shown together with the amount of change.
  • Test F2 contact angle measurement The water contact angle of the glass substrate provided with the surface microstructure of Example 14 before and after the treatment step was measured. The measurement was performed at 25 ° C. using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., model number FACE CA-X type). The results of contact angle measurement are shown in Table 8. It was found that the water contact angle was lowered and the hydrophilicity was improved after the treatment step.
  • Sputtering device Carousel type batch type sputtering device Target: ⁇ 150, thickness 6mm
  • Example 15 Zinc oxide (ZnO) 45 vol% / silicon oxide (SiO 2 ) 55 vol% mixed target
  • Examples 16 and 17 Molybdenum oxide (MoO 3 ) 45 vol% / silicon oxide (SiO 2 ) 55 vol% mixed target
  • Example 18 Germanium oxide (GeO 2 ) 45 vol% / silicon oxide (SiO 2 ) 55 vol% mixed target
  • Comparative Example 3 germanium oxide (GeO 2 ) 45 vol% / tantalum oxide (Ta 2 O 5 ) 55 vol%
  • Sputtering method RF sputtering (SiO 2, ZnO, GeO 2 , Ta 2 O 5), DC sputtering (MoO 3)
  • Exhaust device Turbo molecular pump Ultimate vacuum: 5
  • Example 15 The reflectance, transmittance, and absorptivity of the glass substrates having the surface microstructures of Examples 15 to 18 and Comparative Example 3 before and after the treatment process were measured. The measurement was performed using a spectrophotometer (U-4100, manufactured by Hitachi High-Technologies Corporation) in a wavelength region of 400 nm to 700 nm. Table 9 shows the results of the spectroscopic measurement. In Table 9, the values of transmittance, reflectance, and absorption before and after treatment at a wavelength of 550 nm are shown together with the amount of change. In Example 15, it was found that zinc oxide (ZnO) can be selectively dissolved by dipping in weak acid (dilute hydrochloric acid). In Comparative Example 3, there was no change in reflectivity before and after immersion in pure water, and there was a possibility that a composite oxide was generated between tantalum oxide (Ta 2 O 5 ) and germanium oxide (GeO 2 ).
  • ZnO zinc oxide
  • Comparative Example 3 there was no change in reflect
  • Test G2 contact angle measurement The water contact angles of the glass substrates having the surface microstructures of Examples 16 to 18 and Comparative Example 3 before and after the treatment process were measured. The measurement was performed at 25 ° C. using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., model number FACE CA-X type). Table 10 shows the results of the contact angle measurement. It was found that the water contact angle was lowered and the hydrophilicity was improved after the treatment step.
  • Table 11 shows the results of the surface roughness measurement.
  • Ra is the arithmetic average roughness
  • Rz is the maximum height (JIS B 0601: 2001). It was found that the arithmetic average roughness (Ra) and the maximum height (Rz) were lowered after the treatment step. From this result, it was shown that the surface microstructure having very high surface smoothness and hydrophilicity and low reflectivity can be formed by the method for forming the surface microstructure according to the present invention.
  • the arithmetic average roughness (Ra) is 2.0 nm or less (the thickness of the surface microstructure, 50 nm or more and 500 nm or less), 1.5 nm or less ( Since the thickness of the surface microstructure is 50 nm or more and 250 nm or less) and 1.0 nm or less (thickness of the surface microstructure, 50 nm or more and 100 nm or less), the thickness of the surface microstructure is 50 nm or more and 500 nm or less. It was shown that a surface microstructure having an average roughness (Ra) of 10 nm or less can be formed.

Abstract

Provided is a method of forming a surface microstructure with which it is possible to form, under mild conditions and without using strong chemicals or hole forming substances, a microstructure on a surface of an article simply and at low cost. Also, extending the object of processing even to articles on a surface of which it has been difficult to form a microstructure from the viewpoint of heat resistance, chemical resistance or the like, there is provided an article which is provided with a surface microstructure having hydrophilicity and/or low reflectance. The method of forming a surface microstructure is characterized by comprising: an item to be processed preparing step of preparing an item to be processed; a precursor layer stacking step of stacking over the item to be processed a precursor layer including a first substance and a second substance; and a processing step of dissolving the second substance by immersing the precursor layer obtained in the precursor layer stacking step in a processing solution.

Description

表面微細構造の形成方法及び表面微細構造を備える物品Method for forming surface microstructure and article having surface microstructure
 本発明は、表面微細構造の形成方法及び表面微細構造を備える物品に関する。 The present invention relates to a method for forming a surface microstructure and an article having the surface microstructure.
 防汚性、防曇性、親水性、低反射性などを付与することを目的として、ガラスやプラスチックなどの透明基材の表面や、ディスプレイや光学材料などの表面に、機能性材料をコーティングすることが行われている。 For the purpose of imparting antifouling properties, antifogging properties, hydrophilicity, low reflectivity, etc., functional materials are coated on the surface of transparent substrates such as glass and plastic, and surfaces such as displays and optical materials. Things have been done.
 通常、窓ガラスや鏡の表面は、親水性を有しているが、ホコリや塵、油などの汚れが付着して汚れ、親水性が低下し、曇りが生じて透過性が損なわれてしまうことがある。そのような現象を防止するために、窓ガラスや鏡などの表面に、酸化チタンなど超親水性を示す物質をコーティングすることで、防汚性、防曇性を付与する技術が知られている。 Normally, the surface of window glass and mirrors has hydrophilicity, but dirt such as dust, dust, and oil adheres to it, and the dirt and hydrophilicity decrease, resulting in cloudiness and loss of transparency. Sometimes. In order to prevent such a phenomenon, a technique for imparting antifouling property and antifogging property by coating a surface such as titanium oxide on a surface of a window glass, a mirror or the like with a super hydrophilic property is known. .
 超親水性コーティングを施すと、表面に塵や油などの汚れが付着した場合であっても、水が接触することで、表面と汚れの間に水が浸入して、汚れを除去するセルフクリーニング効果を発揮することが知られている。超親水性コーティングによれば、汚れの定着を防止することができる(防汚性)とともに、表面に付着した水分が濡れ広がるため、水滴が形成されず、材料の曇りを防ぐことができる(防曇性)。 When super hydrophilic coating is applied, even when dirt such as dust or oil adheres to the surface, self-cleaning that removes dirt by water entering between the surface and dirt by contact with water It is known to be effective. According to the super hydrophilic coating, it is possible to prevent soil from being fixed (antifouling property) and to spread the moisture adhering to the surface. Cloudiness).
 また、反射防止の観点から、液晶表示機器、有機EL表示機器など各種表示機器の表示面、レンズ等光学機器の光学部材、窓やショーケース、屋外監視カメラ等の撮像装置、太陽電池の保護カバー等において、透明基材であるガラスやプラスチックの表面に低反射膜を設けることが行われている。 Also, from the viewpoint of antireflection, display surfaces of various display devices such as liquid crystal display devices and organic EL display devices, optical members of optical devices such as lenses, imaging devices such as windows and showcases, outdoor surveillance cameras, and protective covers for solar cells For example, a low reflection film is provided on the surface of glass or plastic which is a transparent substrate.
 表示機器や窓、ショーケース等では、ガラスやプラスチック等の透明基材の表面反射を抑制しない場合、反射した像が映り込み、視認性が悪くなるため、低反射性の付与が必要である。また、屋外監視カメラや車載カメラの保護ガラス、太陽電池の保護カバーガラスなどには、受光効率や撮像性の観点から、低反射性及び高い光透過率、耐久性や耐候性等が必要である。さらに、光学機器に用いられるレンズのレンズ面における反射光量が多い場合、透過光量の損失が多いのみならず、レンズ内又はレンズ間での多重反射に起因するフレアやゴーストが生じ易く、コントラストが低くなってしまうため、反射を抑制する対策が必要である。 In the case of display devices, windows, showcases, etc., if the surface reflection of a transparent base material such as glass or plastic is not suppressed, the reflected image is reflected and the visibility deteriorates, so it is necessary to impart low reflectivity. In addition, protective glasses for outdoor surveillance cameras and in-vehicle cameras, protective cover glasses for solar cells, etc. require low reflectivity, high light transmittance, durability, weather resistance, etc. from the viewpoint of light receiving efficiency and image pickup performance. . Furthermore, when the amount of reflected light on the lens surface of a lens used in an optical device is large, not only is there a large loss of transmitted light, but flare and ghosting due to multiple reflections within or between lenses is likely to occur, and the contrast is low. Therefore, it is necessary to take measures to suppress reflection.
 防汚性、防曇性、親水性、低反射性などの付与を目的とした、表面微細多孔性構造の形成方法として、ゾル-ゲル法を用いる方法、強酸や強塩基を用いて材料を溶解処理する方法、界面活性剤等の空孔形成性物質を用いる方法など、様々な製法が提案されている。 For the purpose of imparting antifouling properties, antifogging properties, hydrophilicity, low reflectivity, etc., as a method of forming a surface microporous structure, a method using a sol-gel method, a material dissolved using a strong acid or a strong base Various production methods such as a treatment method and a method using a pore-forming substance such as a surfactant have been proposed.
 例えば、特許文献1には、基板に無機含有材料及び界面活性剤を含む多孔質シリカ前駆体溶液を塗布し、真空中及び不活性ガス雰囲気中で焼成することにより、基板上に多孔質シリカからなる超低屈折率膜を形成する技術が記載されている。
 また、特許文献2には、炭素数1~6のアルコールで希釈した液体ガラスの希釈溶液をスピンコーティング法又はロールコーティング法によりガラス基板上に塗布し、大気雰囲気下、70~500℃の温度で乾燥することにより、ナノポーラス構造を有する反射防止膜を製造する技術が記載されている。
For example, Patent Document 1 discloses that a porous silica precursor solution containing an inorganic-containing material and a surfactant is applied to a substrate, and is fired in a vacuum and in an inert gas atmosphere to thereby form porous silica on the substrate. A technique for forming an ultra-low refractive index film is described.
In Patent Document 2, a diluted solution of liquid glass diluted with an alcohol having 1 to 6 carbon atoms is applied on a glass substrate by a spin coating method or a roll coating method, and the temperature is 70 to 500 ° C. in an air atmosphere. A technique for producing an antireflection film having a nanoporous structure by drying is described.
特開2006-350025号公報JP 2006-350025 A 特開2016-157108号公報JP 2016-157108 A
 従来の微細多孔性構造の形成方法は、高温プロセスや、強酸や強塩基などの強い薬品を使用するため、処理対象となる物質が耐久性・耐熱性の高いガラス等の材料に限られてしまうという課題があった。 Conventional methods for forming a microporous structure use high-temperature processes and strong chemicals such as strong acids and strong bases, so that the substances to be treated are limited to materials such as glass with high durability and heat resistance. There was a problem.
 本発明は、上記課題に鑑みてなされたものであり、本発明の目的は、温和な条件で、強い薬品や空孔形成性物質を用いることなく、簡便かつ低コストに物品の表面に微細構造を形成することが可能な表面微細構造の形成方法を提供することにある。
 本発明の別の目的は、耐熱性や、耐薬品性等の観点から、表面に微細構造を形成することが困難であった物品にも、処理の対象を拡張し、親水性及び/又は低反射性を有する表面微細構造を備える物品を提供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a microstructure on the surface of an article easily and at low cost under mild conditions and without using strong chemicals or pore-forming substances. It is an object of the present invention to provide a method for forming a surface microstructure capable of forming a surface.
Another object of the present invention is to extend the object of treatment to articles that have been difficult to form a fine structure on the surface from the viewpoint of heat resistance, chemical resistance, etc. The object is to provide an article with a reflective surface microstructure.
 前記課題は、本発明の表面微細構造の形成方法によれば、被処理物を用意する被処理物用意工程と、前記被処理物の上に第1の物質と第2の物質を含む前駆体層を積層する前駆体層積層工程と、前記前駆体層積層工程で得られた前記前駆体層を処理液に浸漬して前記第2の物質を溶解する処理工程と、を行うこと、により解決される。
 上記構成により、第1の物質と第2の物質を含む前駆体層を処理液に浸漬するという、簡便な方法で、物品の表面に微細構造を形成することが可能となる。
According to the method for forming a surface fine structure of the present invention, the object is to prepare an object to be processed, and a precursor containing a first substance and a second substance on the object to be processed. A precursor layer laminating step for laminating a layer, and a treatment step for dissolving the second substance by immersing the precursor layer obtained in the precursor layer laminating step in a treatment liquid. Is done.
With the above configuration, a microstructure can be formed on the surface of the article by a simple method of immersing a precursor layer containing the first substance and the second substance in the treatment liquid.
 このとき、前記前駆体層積層工程はスパッタリング法、イオンプレーティング法、真空蒸着法、化学蒸着法から選択される方法を用いて行われると好適である。
 上記構成によれば、前駆体積層工程において、特殊な薬品などの物質や、高温での加熱を必要としないため、手間やコストを削減できるとともに、被処理物の対象を拡張することが可能となる。
At this time, the precursor layer stacking step is preferably performed using a method selected from a sputtering method, an ion plating method, a vacuum deposition method, and a chemical vapor deposition method.
According to the above configuration, in the precursor laminating process, it is not necessary to use special substances such as chemicals or heating at high temperature, so that it is possible to reduce labor and cost and to expand the target of the object to be processed. Become.
 このとき、前記前駆体層積層工程において、前記第1の物質及び前記第2の物質を含有するターゲット材料又は蒸着材料を用いて前記前駆体層が前記被処理物の上に積層されると好適である。
 上記構成によれば、微細構造の母材となる第1の物質と、易溶性材料である第2の物質を混合したターゲット材料又は蒸着材料を用意する際に、割合混合を調整することで、表面微細構造の空隙率などの制御が可能となる。
At this time, in the precursor layer stacking step, it is preferable that the precursor layer is stacked on the object to be processed using a target material or a vapor deposition material containing the first substance and the second substance. It is.
According to the above configuration, when preparing a target material or a vapor deposition material in which a first substance that is a base material of a fine structure and a second substance that is a readily soluble material are prepared, by adjusting the ratio mixing, It is possible to control the porosity of the surface microstructure.
 このとき、前記前駆体層積層工程は80℃以下で行われると好適である。
 上記構成によれば、高温での加熱を必要としないため、熱に弱い材料を含有する被処理物にも、処理の対象を拡張することが可能となる。
At this time, the precursor layer stacking step is preferably performed at 80 ° C. or lower.
According to the above configuration, since heating at a high temperature is not required, the object to be processed can be extended to an object to be processed that contains a material that is weak against heat.
 このとき、前記処理工程で用いる処理液は水であると好適である。
 上記構成によれば、特殊な溶媒や強い薬品ではない水を用いるため、特殊な溶媒や薬品等に弱い材料を含有する被処理物にも、処理の対象を拡張することが可能となる。
At this time, the treatment liquid used in the treatment step is preferably water.
According to the above configuration, since water that is not a special solvent or a strong chemical is used, the object to be processed can be extended to an object to be processed that contains a material that is weak to the special solvent or the chemical.
 このとき、前記処理工程で用いる前記水は、温度が10℃以上100℃以下、pHが6以上8以下であると好適である。
 上記構成によれば、温和な温度かつpHの水を用いるため、熱や強酸、強塩基等に弱い材料を含有する被処理物にも、処理の対象を拡張することが可能となる。
At this time, it is preferable that the water used in the treatment step has a temperature of 10 ° C. or more and 100 ° C. or less and a pH of 6 or more and 8 or less.
According to the above configuration, since water having a mild temperature and pH is used, it is possible to extend the processing target to an object to be processed that contains a material that is weak against heat, strong acid, strong base, or the like.
 このとき、前記第1の物質は、前記処理工程で用いる処理液に対して不溶性又は難溶性であり、前記第2の物質は、前記処理工程で用いる処理液に対して易溶性であると好適である。
 上記構成によれば、処理工程で第2の物質が選択的に溶解し、第1の物質が残存するため、第1の物質によって表面微細構造が形成される。
At this time, it is preferable that the first substance is insoluble or hardly soluble in the treatment liquid used in the treatment step, and the second substance is easily soluble in the treatment liquid used in the treatment step. It is.
According to the above configuration, the second substance is selectively dissolved in the treatment step and the first substance remains, so that a surface fine structure is formed by the first substance.
 このとき、前記第1の物質は、酸化ケイ素(SiO)、フッ化マグネシウム(MgF)、酸化チタン(TiO)、酸化タンタル(Ta)を含む群より選択される一種以上の物質であると好適である。
 上記構成によれば、安定性が高く、耐久性や光学特性に優れた物質によって、表面微細構造を形成することが可能となる。
At this time, the first substance is one or more selected from the group including silicon oxide (SiO 2 ), magnesium fluoride (MgF 2 ), titanium oxide (TiO 2 ), and tantalum oxide (Ta 2 O 5 ). A substance is preferred.
According to the above configuration, the surface fine structure can be formed by a substance having high stability and excellent durability and optical characteristics.
 このとき、前記第2の物質は、ゲルマニウム酸化物(GeO)、モリブデン酸化物(MoO)、タングステン酸化物(WO)、酸化亜鉛(ZnO)、塩化ナトリウム(NaCl)を含む群より選択される一種以上の物質であると好適である。
 上記構成によれば、室温付近の温度で、強い酸性や強い塩基性の水溶液ではない水に溶解する無機酸化物等の物質を用いているため、処理液として特殊な溶媒や強い薬品を用いることなく、水で第2の物質を溶解することができるため、熱や特殊な溶媒や薬品等に弱い材料を含有する被処理物にも、処理の対象を拡張することが可能となる。
At this time, the second substance is selected from the group including germanium oxide (GeO x ), molybdenum oxide (MoO x ), tungsten oxide (WO 3 ), zinc oxide (ZnO), and sodium chloride (NaCl). It is preferable that the substance is one or more substances.
According to the above configuration, since a substance such as an inorganic oxide that dissolves in water that is not a strong acidic or strong basic aqueous solution at a temperature around room temperature is used, a special solvent or strong chemical is used as a treatment liquid. In addition, since the second substance can be dissolved with water, the object to be processed can be extended to an object to be processed that contains a material weak to heat, a special solvent, a chemical, or the like.
 このとき、前記被処理物は、樹脂、ガラス、金属、合金、セラミクス(金属酸化物、金属窒化物、金属酸窒化物)を含む群より選択される一種以上の物質を含有すると好適である。
 このように、本発明の表面微細構造の形成方法は、被処理物の対象として、様々な物質を含有するものにも適用可能である。
At this time, it is preferable that the object to be processed contains one or more substances selected from the group including resin, glass, metal, alloy, and ceramics (metal oxide, metal nitride, metal oxynitride).
As described above, the method for forming a surface microstructure of the present invention can be applied to an object to be processed that includes various substances.
 このとき、前記被処理物は、樹脂を含有すると好適である。
 このように、本発明の表面微細構造の形成方法は、被処理物の対象として、樹脂を含有するものにも適用可能である。
At this time, it is preferable that the object to be processed contains a resin.
Thus, the method for forming a surface microstructure of the present invention can be applied to an object to be processed that includes a resin.
 このとき、前記被処理物は、レンズ、ハーフミラー、タッチパネル、表示機器を含む群より選択される物品であると好適である。
 このように、本発明の表面微細構造の形成方法は、被処理物の対象として、様々な物質を含有するものにも適用可能であるため、多様な物品に適用可能である。
At this time, it is preferable that the object to be processed is an article selected from a group including a lens, a half mirror, a touch panel, and a display device.
As described above, the method for forming a surface microstructure of the present invention can be applied to an object to be processed which includes various substances, and thus can be applied to various articles.
 前記課題は、本発明の表面微細構造を備える物品によれば、物品と、該物品の上に形成された反射防止膜と、該反射防止膜の上に形成された微細構造と、を備えることを特徴とする表面微細構造を備える物品により解決される。
 上記構成により、反射防止膜を備える物品において、親水性や、より低い反射性を実現することが可能となる。
According to an article having a surface microstructure of the present invention, the object includes an article, an antireflection film formed on the article, and a microstructure formed on the antireflection film. An article with a surface microstructure characterized by:
With the above configuration, it is possible to achieve hydrophilicity and lower reflectivity in an article including an antireflection film.
 このとき、前記微細構造は、酸化ケイ素(SiO)、フッ化マグネシウム(MgF)、酸化チタン(TiO)、酸化タンタル(Ta)を含む群より選択される一種以上の物質によって形成されていると好適である。
 上記構成によれば、安定性が高く、耐久性や光学特性に優れた表面微細構造を備える物品を提供することができる。
At this time, the microstructure is formed of one or more substances selected from the group including silicon oxide (SiO 2 ), magnesium fluoride (MgF 2 ), titanium oxide (TiO 2 ), and tantalum oxide (Ta 2 O 5 ). Preferably it is formed.
According to the above configuration, it is possible to provide an article having a surface microstructure having high stability and excellent durability and optical characteristics.
 このとき、前記物品は、樹脂、ガラス、金属、合金、セラミクス(金属酸化物、金属窒化物、金属酸窒化物)を含む群より選択される一種以上の物質を含有すると好適である。
 上記構成によれば、様々な物質を含有する物品において、表面微細構造を備える物品を提供することができる。
At this time, it is preferable that the article contains one or more substances selected from the group including resin, glass, metal, alloy, ceramics (metal oxide, metal nitride, metal oxynitride).
According to the said structure, the articles | goods provided with a surface fine structure can be provided in the articles | goods containing various substances.
 このとき、前記物品は、樹脂を含有すると好適である。
 上記構成によれば、樹脂を含有する物品において、表面微細構造を備える物品を提供することができる。
At this time, the article preferably contains a resin.
According to the said structure, the articles | goods provided with a surface fine structure can be provided in the articles | goods containing resin.
 このとき、前記物品は、レンズ、ハーフミラー、タッチパネル、表示機器を含む群より選択される物品であると好適である。
 上記構成によれば、多様な物品において、表面微細構造を備える物品を提供することができる。
At this time, the article is preferably an article selected from a group including a lens, a half mirror, a touch panel, and a display device.
According to the above configuration, an article having a surface microstructure can be provided in various articles.
 このとき、表面の反射率が10%以下であると好適である。
 上記構成によれば、低い反射率を備え、表面の反射が抑制された物品を提供することができる。
At this time, it is preferable that the reflectance of the surface is 10% or less.
According to the said structure, the article | item provided with the low reflectance and the reflection of the surface was suppressed can be provided.
 このとき、表面の水接触角が10°以下であると好適である。
 上記構成によれば、低い水接触角を備え、防汚性、親水性に優れた物品を提供することができる。
At this time, the water contact angle on the surface is preferably 10 ° or less.
According to the above configuration, an article having a low water contact angle and excellent in antifouling property and hydrophilicity can be provided.
 本発明の表面微細構造の形成方法によれば、温和な条件で、強い薬品や空孔形成性物質を用いることなく、簡便かつ低コストに物品の表面に微細構造を形成することが可能である。
 また、耐熱性や、耐薬品性等の観点から、表面に微細構造を形成することが困難であった物品にも、処理の対象を拡張し、親水性及び/又は低反射性を有する表面微細構造を備える物品を提供することが可能である。
 さらに、反射防止膜を備える物品において、親水性や、より低い反射性を実現することが可能である。
According to the method for forming a surface microstructure of the present invention, it is possible to form a microstructure on the surface of an article easily and at low cost under mild conditions and without using strong chemicals or pore-forming substances. .
In addition, from the viewpoints of heat resistance, chemical resistance, etc., surface fineness that extends the object of processing to articles that have been difficult to form a fine structure on the surface and has hydrophilicity and / or low reflectivity. It is possible to provide an article comprising a structure.
Furthermore, in an article provided with an antireflection film, it is possible to achieve hydrophilicity and lower reflectivity.
本発明の一実施形態に係る表面微細構造を備える物品を示す模式断面図である。It is a schematic cross section showing an article provided with a surface microstructure according to an embodiment of the present invention. 本発明の一実施形態に係る反射防止膜の上に積層された表面微細構造を備える物品を示す模式断面図である。It is a schematic cross section which shows the article | item provided with the surface microstructure laminated | stacked on the antireflection film which concerns on one Embodiment of this invention. 本発明の一実施形態に係る前駆体層を積層した被処理物を示す模式断面図である。It is a schematic cross section which shows the to-be-processed object which laminated | stacked the precursor layer which concerns on one Embodiment of this invention. 本発明の一実施形態に係る前駆体層を複数層積層した被処理物を示す模式断面図である。It is a schematic cross section which shows the to-be-processed object which laminated | stacked the precursor layer which concerns on one Embodiment of this invention in multiple layers. 本発明の一実施形態に係る表面微細構造の形成方法のフロー図である。It is a flow figure of the formation method of the surface fine structure concerning one embodiment of the present invention. 実施例1及び比較例1の表面微細構造を備えるガラス基板の400~700nmにおける透過率を示すグラフである。3 is a graph showing the transmittance at 400 to 700 nm of a glass substrate having the surface microstructure of Example 1 and Comparative Example 1. 実施例1及び比較例1の表面微細構造を備えるガラス基板の400~700nmにおける反射率を示すグラフである。4 is a graph showing the reflectance at 400 to 700 nm of a glass substrate having the surface microstructure of Example 1 and Comparative Example 1. 実施例1及び比較例1の表面微細構造を備えるガラス基板の400~700nmにおける吸収率を示すグラフである。3 is a graph showing the absorptance at 400 to 700 nm of a glass substrate having the surface microstructure of Example 1 and Comparative Example 1. 処理工程において酸化ゲルマニウムを溶解させる前後の、実施例2の試料の接触角測定の結果を示す図である。It is a figure which shows the result of the contact angle measurement of the sample of Example 2 before and behind dissolving a germanium oxide in a process process. 処理工程において酸化ゲルマニウムを溶解させる前後の、実施例2の試料のSEM写真である。It is a SEM photograph of the sample of Example 2 before and after dissolving germanium oxide in a processing process. 処理工程において酸化ゲルマニウムを溶解させた後の、実施例3~7、実施例2の表面微細構造を備えるガラス基板の300~800nmにおける屈折率(n)を示すグラフである。6 is a graph showing refractive indexes (n) at 300 to 800 nm of glass substrates having surface microstructures of Examples 3 to 7 and Example 2 after dissolving germanium oxide in the treatment step. 処理工程において酸化ゲルマニウムを溶解させた後の、実施例3~7、実施例2の表面微細構造を備えるガラス基板の300~800nmにおける消衰係数(k)を示すグラフである。6 is a graph showing extinction coefficients (k) at 300 to 800 nm of glass substrates having surface microstructures of Examples 3 to 7 and Example 2 after germanium oxide is dissolved in the treatment step. 処理工程において酸化ゲルマニウムを溶解させた後の、実施例3~7、実施例2の表面微細構造を備えるガラス基板の550nm及び633nmにおける屈折率(n)を示すグラフである。6 is a graph showing refractive indices (n) at 550 nm and 633 nm of glass substrates having surface microstructures of Examples 3 to 7 and Example 2 after dissolving germanium oxide in the treatment step. 処理工程において酸化ゲルマニウムを溶解させた後の、実施例3~7、実施例2の表面微細構造を備えるガラス基板の550nm及び633nmにおける消衰係数(k)を示すグラフである。7 is a graph showing extinction coefficients (k) at 550 nm and 633 nm of glass substrates having surface microstructures of Examples 3 to 7 and Example 2 after dissolving germanium oxide in the treatment process.
 以下、本発明の一実施形態(以下、本実施形態という)に係る表面微細構造の形成方法及び表面微細構造を備える物品について図1A乃至6Dを参照して説明する。
 本実施形態の表面微細構造を備える物品1は、図1Aに示すように、被処理物10と、被処理物10の上に形成された表面微細構造20とが積層されてなる。
Hereinafter, a method for forming a surface microstructure and an article having the surface microstructure according to an embodiment of the present invention (hereinafter referred to as the present embodiment) will be described with reference to FIGS. 1A to 6D.
As shown in FIG. 1A, the article 1 having the surface microstructure of the present embodiment is formed by laminating a workpiece 10 and a surface microstructure 20 formed on the workpiece 10.
<被処理物10>
 本実施形態の表面微細構造の形成方法において、表面微細構造を形成する対象となる被処理物10(物品10)は、防汚性、防曇性、低反射性などの機能性を付与する対象の物品であり、特に限定されるものではない。
<Processing object 10>
In the method for forming a surface microstructure according to this embodiment, an object 10 (article 10) that is a target for forming a surface microstructure is an object to which functions such as antifouling properties, antifogging properties, and low reflectivity are imparted. The article is not particularly limited.
 処理対象となる被処理物10の具体的な例としては、スマートフォン、タブレット端末、液晶ディスプレイ、有機ELディスプレイ、各種コンピュータ、テレビ、プラズマディスプレイパネル等の各種表示機器やそのタッチパネルやディスプレイ、屋外監視カメラ(防犯カメラ)や人感センサーなどのレンズや窓部材(保護ガラス)、自動車、電車、航空機等の乗物の窓ガラスやミラー、住宅などの建築物の窓ガラス、車載カメラのレンズや窓部材(保護ガラス)、反射防止シート(反射防止フィルム)、防汚シート(防汚フィルム)、防曇シート(防曇フィルム)、液晶表示装置に用いる偏光板、透明プラスチック類からなるメガネレンズ、サングラスレンズ、カメラ用ファインダーレンズ、プリズム、フライアイレンズ、トーリックレンズなどの光学部材、さらにはそれらを用いた撮影光学系、双眼鏡などの観察光学系、液晶プロジェクタなど投影装置に用いる投射光学系、レーザービームプリンターなどに用いる走査光学系等の各種光学レンズ、各種計器のカバーなどの光学部材、太陽電池パネル(太陽電池の保護カバーガラス)などが挙げられるが、これらの物品に限定されるものではない。 Specific examples of the object to be processed 10 include various display devices such as smartphones, tablet terminals, liquid crystal displays, organic EL displays, various computers, televisions, plasma display panels, touch panels and displays thereof, and outdoor surveillance cameras. (Security cameras) and human sensor lenses and window members (protective glass), window glass and mirrors for vehicles such as automobiles, trains and aircraft, window glass for buildings such as houses, lenses and window members for vehicle cameras ( Protective glass), antireflection sheet (antireflection film), antifouling sheet (antifouling film), antifogging sheet (antifogging film), polarizing plate used for liquid crystal display devices, eyeglass lenses made of transparent plastics, sunglasses lenses, Camera viewfinder lens, prism, fly-eye lens, toric lens Various optical lenses such as scanning optical systems used for laser beam printers, projection optical systems used for projection devices such as liquid crystal projectors, observation optical systems such as binoculars, imaging optical systems using them, liquid crystal projectors, etc. An optical member such as a cover of an instrument, a solar cell panel (solar cell protective cover glass), and the like may be mentioned, but it is not limited to these articles.
 被処理物10は、被処理物表面10aを有するが、その被処理物表面10aの形状は、平面に限定されるものではなく、曲面など湾曲した形状や複雑な形状、中空部材の内部表面であってもよい。 The workpiece 10 has a workpiece surface 10a, but the shape of the workpiece surface 10a is not limited to a flat surface, but is a curved shape such as a curved surface, a complicated shape, or an inner surface of a hollow member. There may be.
 本実施形態の表面微細構造の形成方法は、後述するように、温和な条件で、特殊な溶媒や、強酸や強塩基を用いる必要がないため、被処理物10を構成する材料は、樹脂、ガラス、金属、合金、半導体、セラミクス(金属酸化物、金属窒化物、金属酸窒化物)など、任意の材料を選択することが可能である。 As will be described later, the method for forming the surface microstructure of the present embodiment does not require the use of a special solvent, strong acid, or strong base under mild conditions. Any material such as glass, metal, alloy, semiconductor, ceramics (metal oxide, metal nitride, metal oxynitride) can be selected.
 本実施形態の表面微細構造の形成方法では、高温で処理を行うプロセスが不要であるため、樹脂など熱に弱い物質(材料)を含有する被処理物10にも好適に適用することが可能である。 In the method for forming a surface microstructure according to the present embodiment, a process for processing at a high temperature is not required, and therefore, it can be suitably applied to an object to be processed 10 containing a substance (material) that is weak against heat, such as a resin. is there.
 被処理物に含まれる樹脂としては、熱可塑性樹脂又は熱硬化性樹脂のいずれでもよく、例えば、ポリエチレン(高密度、中密度又は低密度)、ポロプロピレン(アイソタクチック型又はシンジオタクチック型)、ポリブテン、エチレン-プレピレン共重合体、エチレン-酢酸ビニル共重合体(EVA)、エチレン-プロピレン-ブテン共重合体等のポリオレフィン、環状ポリオレフィン、変性ポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリアミド、ポリイミド、ポリアミドイミド、ポリカーボネート、ポリ-(4-メチルベンテン-1)、アイオノマー、アクリル系樹脂、ポリメチルメタクリレート、ポリブチル(メタ)アクリレート、メチル(メタ)アクリレート-ブチル(メタ)アクリレート共重合体、メチル(メタ)アクリレート-スチレン共重合体、アクリル-スチレン共重合体(AS樹脂)、ブタジエン-スチレン共重合体、ポリオ共重合体(EVOH)、ポリエチレンテレフタレート(PET)、ポリプチレンテレフタレート(PBT)、エチレン-テレフタレート-イソフタレート共重合体、ポリエチレンナフタレート、プリシクロヘキサンテレフタレート(PCT)等のポリエステル、ポリエーテル、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド、ポリアセタール(POM)、ポリフェニレンオキシド、変性ポリフェニレンオキシド、ポリアリレート、芳香族ポリエステル(液晶ポリマー)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン、その他フッ素系樹脂、スチレン系、ポリオレフィン系、ポリ塩化ビニル系、ポリウレタン系、フッ素ゴム系、塩素化ポリエチレン系等の各種熱可塑性エラストマー、エボキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、不飽和ポリエステル、シリコーン樹脂、ポリウレタン、ナイロン、ニトロセルロース、酢酸セルロース、セルロースアセテートプロピオネート等のセルロース系樹脂等、又はこれらを主とする共重合体、ブレンド体、ポリマーアロイ等が挙げられ、これらのうちの1種又は2種以上を組み合わせた(例えば2層以上の積層体としたもの)であってもよい。 The resin contained in the object to be processed may be either a thermoplastic resin or a thermosetting resin, for example, polyethylene (high density, medium density or low density), polypropylene (isotactic type or syndiotactic type). Polyolefins such as polybutene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer (EVA), ethylene-propylene-butene copolymer, cyclic polyolefin, modified polyolefin, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyamide , Polyimide, polyamideimide, polycarbonate, poly- (4-methylbenten-1), ionomer, acrylic resin, polymethyl methacrylate, polybutyl (meth) acrylate, methyl (meth) acrylate-butyl (meth) acrylate copolymer, Chill (meth) acrylate-styrene copolymer, acrylic-styrene copolymer (AS resin), butadiene-styrene copolymer, polio copolymer (EVOH), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), Polyethylene such as ethylene-terephthalate-isophthalate copolymer, polyethylene naphthalate, precyclohexane terephthalate (PCT), polyether, polyetherketone (PEK), polyetheretherketone (PEEK), polyetherimide, polyacetal (POM) , Polyphenylene oxide, modified polyphenylene oxide, polyarylate, aromatic polyester (liquid crystal polymer), polytetrafluoroethylene (PTFE), polyvinylidene fluoride, other fluorine-based Various thermoplastic elastomers such as fat, styrene, polyolefin, polyvinyl chloride, polyurethane, fluororubber, chlorinated polyethylene, ethoxy resin, phenol resin, urea resin, melamine resin, unsaturated polyester, silicone resin, Cellulose resins such as polyurethane, nylon, nitrocellulose, cellulose acetate, cellulose acetate propionate, etc., or copolymers, blends, polymer alloys, etc. mainly comprising these, and one or two of these A combination of two or more species (for example, a laminate having two or more layers) may be used.
 被処理物に含まれるガラスとしては、例えば、ケイ酸ガラス(石英ガラス)、ケイ酸アルカリガラス、ソーダ石灰ガラス、カリ石灰ガラス、鉛(アルカリ)ガラス、バリウムガラス、ホウケイ酸ガラス等が挙げられる。 Examples of the glass contained in the object to be treated include silicate glass (quartz glass), alkali silicate glass, soda lime glass, potash lime glass, lead (alkali) glass, barium glass, and borosilicate glass.
 被処理物に含まれる金属としては、例えば、金、クロム、銀、銅、白金、インジウム、パラジウム、鉄、チタン、ニッケル、マンガン、亜鉛、錫、タングステン、タンタル、アルミニウム等が挙げられる。
 また、上記金属の合金である、SUS316L等のステンレス鋼、Ti-Ni合金若しくはCu-Al-Mn合金等の形状記憶合金、Cu-Zn合金、Ni-Al合金、チタン合金、タンタル合金、プラチナ合金又はタングステン合金等の合金を用いることもできる。
 なお、合金とは、前記金属元素に1種以上の金属元素または非金属元素を加えたものである。合金の組織には、成分元素が別個の結晶となる共晶合金、成分元素が完全に溶け合っている固溶体、成分元素が金属間化合物または金属と非金属との化合物を形成しているものなどがあるが、必ずしもこれに限定されるものではない。
Examples of the metal contained in the workpiece include gold, chromium, silver, copper, platinum, indium, palladium, iron, titanium, nickel, manganese, zinc, tin, tungsten, tantalum, and aluminum.
Further, stainless steels such as SUS316L, shape memory alloys such as Ti—Ni alloys or Cu—Al—Mn alloys, Cu—Zn alloys, Ni—Al alloys, titanium alloys, tantalum alloys, platinum alloys, which are alloys of the above metals. Alternatively, an alloy such as a tungsten alloy can be used.
An alloy is obtained by adding one or more metal elements or non-metal elements to the metal element. The alloy structure includes eutectic alloys in which the component elements become separate crystals, solid solutions in which the component elements are completely dissolved, and those in which the component elements form an intermetallic compound or a compound of a metal and a nonmetal. Although there is, it is not necessarily limited to this.
 被処理物に含まれるセラミックとしては、例えば、酸化物(例えば、酸化アルミニウム、酸化亜鉛、酸化チタン、酸化ケイ素、ジルコニア、チタン酸バリウム)、窒化物(例えば、窒化ケイ素、窒化ホウ素)、炭化物(例えば、炭化ケイ素)、酸窒化物等が挙げられる。また、これらの混合物を用いることもできる。 Examples of the ceramic contained in the object to be processed include oxides (for example, aluminum oxide, zinc oxide, titanium oxide, silicon oxide, zirconia, barium titanate), nitrides (for example, silicon nitride, boron nitride), carbides ( Examples thereof include silicon carbide) and oxynitrides. A mixture of these can also be used.
 被処理物に含まれる金属酸化物としては、例えば、アルミニウム、銅、金、銀、白金、インジウム、パラジウム、鉄、ニッケル、チタン、クロム、マンガン、亜鉛、錫、タングステンなどを金属として含有する酸化物、酸化インジウムスズ(ITO)、酸化アルミニウム(Al)、酸化チタン(TiO)、酸化ケイ素(SiO)、酸化スズ(SnO、SnO)、酸化鉄(Fe、Fe)や、ぺロブスカイト構造、スピネル構造、イルメナイト構造を有する複合酸化物などがあるが、必ずしもこれに限定されるものではない。 Examples of the metal oxide contained in the object to be processed include an oxide containing, for example, aluminum, copper, gold, silver, platinum, indium, palladium, iron, nickel, titanium, chromium, manganese, zinc, tin, tungsten, or the like as a metal. , Indium tin oxide (ITO), aluminum oxide (Al 2 O 3 ), titanium oxide (TiO 2 ), silicon oxide (SiO 2 ), tin oxide (SnO 2 , SnO), iron oxide (Fe 2 O 3 , Fe 3 O 4 ), composite oxides having a perovskite structure, a spinel structure, and an ilmenite structure, but are not necessarily limited thereto.
 被処理物に含まれる金属窒化物としては、窒化チタン(TiN)、窒化ジルコニウム(ZrN)、窒化バナジウム(VN)、窒化ニオブ(NbN)、窒化タンタル(TaN)、窒化クロム(CrN、CrN)、窒化ハフニウム(HfN)などがあるが、必ずしもこれに限定されるものではない。 Examples of the metal nitride contained in the workpiece include titanium nitride (TiN), zirconium nitride (ZrN), vanadium nitride (VN), niobium nitride (NbN), tantalum nitride (TaN), and chromium nitride (CrN, Cr 2 N ) And hafnium nitride (HfN), but are not necessarily limited thereto.
<表面微細構造20>
 表面微細構造20(表面ポーラス構造20)は、被処理物10(物品10)の被処理物表面10aまたは、被処理物10の反射防止膜30の上に積層された微細な細孔を有する層である。表面微細構造20は、本実施形態に係る表面微細構造の形成方法において、処理液によって前駆体層40に含まれる第2の物質を溶解することで形成される。
<Surface microstructure 20>
The surface fine structure 20 (surface porous structure 20) is a layer having fine pores laminated on the surface 10a of the object 10 (article 10) or the antireflection film 30 of the object 10 to be processed. It is. The surface fine structure 20 is formed by dissolving the second substance contained in the precursor layer 40 with a treatment liquid in the method for forming a surface fine structure according to the present embodiment.
 表面微細構造20は、母材(第1の物質)によって構成されており、酸化ケイ素(SiO)、フッ化マグネシウム(MgF)、酸化チタン(TiO)、酸化タンタル(Ta)を含む群より選択される一種以上の物質を用いることが可能であるが、これらの物質に限定されるものではない。 The surface microstructure 20 is composed of a base material (first substance), and includes silicon oxide (SiO 2 ), magnesium fluoride (MgF 2 ), titanium oxide (TiO 2 ), and tantalum oxide (Ta 2 O 5 ). One or more substances selected from the group containing can be used, but the present invention is not limited to these substances.
 酸化ケイ素(SiO)は、屈折率がn=1.53514であり、0.147μm~4.5μmの紫外光領域からから赤外光領域にかけて、広い波長透過領域を有している。
 また、酸化ケイ素は、化学的に安定な低コストな物質であるとともに、モース硬度が7と硬いため、母材(第1の物質)として利用した場合、安定性及び耐久性の高い表面微細構造20を構築することが可能となる。
Silicon oxide (SiO 2 ) has a refractive index of n 0 = 1.53514, and has a wide wavelength transmission region from the ultraviolet region of 0.147 μm to 4.5 μm to the infrared region.
In addition, since silicon oxide is a chemically stable and low-cost substance and has a Mohs hardness of 7, the surface microstructure is highly stable and durable when used as a base material (first substance). 20 can be constructed.
 フッ化マグネシウム(MgF)は、0.11μm~7.5μmの紫外光領域からから赤外光領域にかけて、広い波長透過領域を有している。また、フッ化マグネシウム(MgF)は、超低屈折率(n=1.38359)の光学膜材料として、ガラスに蒸着されて反射防止膜として利用されている。また、フッ化マグネシウムは、モース硬度が6と硬いため、母材(第1の物質)として利用した場合、耐久性の高い超低反射な表面微細構造20を構築することが可能となる。 Magnesium fluoride (MgF 2 ) has a wide wavelength transmission region from the ultraviolet light region of 0.11 μm to 7.5 μm to the infrared light region. Magnesium fluoride (MgF 2 ) is used as an antireflection film by being deposited on glass as an optical film material having an ultra-low refractive index (n 0 = 1.38359). Further, since magnesium fluoride has a Mohs hardness as high as 6, when used as a base material (first substance), it is possible to construct a highly durable and ultra-low reflection surface microstructure 20.
 本実施形態に係る表面微細構造20を構成する母材(第1の物質)を適切に選択することで、紫外領域(10nm~380nm)、可視光領域(380~800nm)、赤外光領域(800nm~1000μm)などの所望の波長領域において、低反射性を示す表面微細構造20を構築することが可能である。 By appropriately selecting a base material (first substance) constituting the surface microstructure 20 according to this embodiment, an ultraviolet region (10 nm to 380 nm), a visible light region (380 to 800 nm), an infrared light region ( In a desired wavelength region such as 800 nm to 1000 μm, it is possible to construct a surface microstructure 20 that exhibits low reflectivity.
 表面微細構造20の厚さは、被処理物10の形状や用途などに応じて、適宜選択すればよく、数nm以上数μm以下とすることが好ましく、より好ましくは数nm以上30μm以下、より好ましくは数nm以上10μm以下、更に好ましくは10nm以上5.0μm以下、更に好ましくは10nm以上1.0μm以下であるとよい。表面微細構造20の厚さが薄くなりすぎると、耐久性の観点から好ましくない。一方、表面微細構造20が厚すぎると、被処理物10の用途によっては、透過率の低下、柔軟性の低下、軽量化、コスト面などの観点から好ましくないことがある。 The thickness of the surface microstructure 20 may be appropriately selected according to the shape and application of the object to be processed 10, and is preferably several nm or more and several μm or less, more preferably several nm or more and 30 μm or less, and more The thickness is preferably several nm to 10 μm, more preferably 10 nm to 5.0 μm, and still more preferably 10 nm to 1.0 μm. If the surface microstructure 20 is too thin, it is not preferable from the viewpoint of durability. On the other hand, if the surface microstructure 20 is too thick, it may not be preferable from the viewpoints of a decrease in transmittance, a decrease in flexibility, a reduction in weight, a cost, and the like depending on the use of the workpiece 10.
 表面微細構造を備える物品1は、表面微細構造20を積層したことにより、表面の反射率が低下しており、その表面の波長400~700nm(例えば、550nm)における反射率が20%以下であり、好ましくは15%以下、より好ましくは10%以下、更に好ましくは7%以下、特に好ましくは5%以下である。表面の反射率の値が上記の範囲であるため、被処理物10の表面の反射を抑制することが可能である。 The article 1 having a surface microstructure has a reduced surface reflectance due to the lamination of the surface microstructure 20, and the reflectance at a wavelength of 400 to 700 nm (for example, 550 nm) of the surface is 20% or less. Preferably, it is 15% or less, more preferably 10% or less, still more preferably 7% or less, and particularly preferably 5% or less. Since the reflectance value of the surface is in the above range, it is possible to suppress the reflection of the surface of the workpiece 10.
 表面微細構造を備える物品1は、表面微細構造20を積層したことにより、表面の親水性が向上しており、表面の水接触角が10°以下であり、好ましくは8°以下、より好ましくは5°以下である。表面微細構造20の表面の水接触角が上記の範囲であるため、水に対して高い濡れ性を有し、付着した汚れや異物を水洗によって容易に除去することができ、また、水滴付着による曇りを防ぐことが可能である。 The article 1 having a surface microstructure has improved surface hydrophilicity by laminating the surface microstructure 20, and the water contact angle of the surface is 10 ° or less, preferably 8 ° or less, more preferably 5 ° or less. Since the water contact angle on the surface of the surface microstructure 20 is in the above range, it has high wettability with respect to water, and attached dirt and foreign matter can be easily removed by washing with water. It is possible to prevent fogging.
<反射防止膜30>
 また、本実施形態の表面微細構造を備える物品は、図1Bに示すように、被処理物10と、該物品の上に形成された反射防止膜30と、該反射防止膜30の上に形成された表面微細構造20とが積層された物品1Aであってもよい。
<Antireflection film 30>
Moreover, the article provided with the surface microstructure of the present embodiment is formed on the object to be processed 10, the antireflection film 30 formed on the article, and the antireflection film 30, as shown in FIG. 1B. An article 1A in which the surface microstructure 20 thus formed is laminated may be used.
 反射防止膜30は、被処理物10(物品10)の被処理物表面10aに積層された反射率が10%以下、好ましくは8%以下、より好ましくは7%以下、更に好ましくは6%以下、特に好ましくは5%以下の低反射率を有する層であり、例えば、酸化ケイ素(SiO)、フッ化マグネシウム(MgF)、酸化チタン(TiO)、酸化タンタル(Ta)などの物質によって形成されている。反射防止膜は、1層であっても2層以上の多層であってもよい。図1Bでは、反射防止膜30が、第一の反射防止膜30aと第二の反射防止膜30bの2層で構成された例を示している。 The antireflection film 30 has a reflectance of 10% or less, preferably 8% or less, more preferably 7% or less, still more preferably 6% or less, laminated on the surface 10a of the object 10 (article 10). Particularly preferably, it is a layer having a low reflectance of 5% or less, such as silicon oxide (SiO 2 ), magnesium fluoride (MgF 2 ), titanium oxide (TiO 2 ), tantalum oxide (Ta 2 O 5 ), etc. It is formed by the substance. The antireflection film may be a single layer or a multilayer of two or more layers. FIG. 1B shows an example in which the antireflection film 30 includes two layers of a first antireflection film 30a and a second antireflection film 30b.
 本明細書において、反射防止膜30を被処理物10(物品10)の一部とみなす。具体的には、反射防止膜30を積層した被処理物10(物品10)を被処理物(物品)とみなし、反射防止膜30の表面を被処理物表面とみなす。 In this specification, the antireflection film 30 is regarded as a part of the workpiece 10 (article 10). Specifically, the workpiece 10 (article 10) on which the antireflection film 30 is laminated is regarded as a workpiece (article), and the surface of the antireflection film 30 is regarded as the surface of the workpiece.
<前駆体層40>
 本実施形態に係る表面微細構造を備える物品1,1Aの表面微細構造20は、本実施形態に係る表面微細構造の形成方法に従って、前駆体層40を処理液によって処理することで形成される。
<Precursor layer 40>
The surface microstructure 20 of the articles 1 and 1A having the surface microstructure according to the present embodiment is formed by processing the precursor layer 40 with a processing liquid according to the method for forming the surface microstructure according to the present embodiment.
 前駆体層40は、被処理物10(物品10)の被処理物表面10aまたは、被処理物10の反射防止膜30の上に積層された母材(第1の物質)及び易溶性物質(第2の物質)を含む層である。前駆体層40は、本実施形態に係る表面微細構造の形成方法において、処理液によって第2の物質を溶解することで、表面微細構造20となる層である。 The precursor layer 40 includes a base material (first substance) and a readily soluble substance (on the object surface 10a of the object 10 (article 10) or the antireflection film 30 of the object 10 to be processed). A layer containing a second substance). In the method for forming a surface microstructure according to this embodiment, the precursor layer 40 is a layer that becomes the surface microstructure 20 by dissolving the second substance with a treatment liquid.
 前駆体層40は、図1Cに示すように単層であってもよいが、これに限定されるものではなく、複数の前駆体層を積層した複数層構成であってもよい。図1Dには、被処理物10(物品10)の被処理物表面10aに、第一の前駆体層40a、第二の前駆体層40b、第三の前駆体層40cを順番に積層した3層構成を示している。 The precursor layer 40 may be a single layer as shown in FIG. 1C, but is not limited to this, and may have a multilayer structure in which a plurality of precursor layers are stacked. In FIG. 1D, the first precursor layer 40a, the second precursor layer 40b, and the third precursor layer 40c are sequentially laminated on the workpiece surface 10a of the workpiece 10 (article 10). The layer structure is shown.
 ここで、複数の前駆体層は、それぞれの層が母材(第1の物質)及び易溶性物質(第2の物質)を、同一又は異なる割合で含有するものであってもよい。 Here, the plurality of precursor layers may contain a base material (first substance) and a readily soluble substance (second substance) in the same or different ratio.
(母材-第1の物質)
 前駆体層40を構成する母材(第1の物質)としては、処理工程で用いる処理液に非溶解性又は難溶性である物質であり、易溶性物質(第2の物質)とともに被処理物表面10aに成膜可能な物質であれば、特に限定されるものではない。
(Base material-first substance)
The base material (first substance) that constitutes the precursor layer 40 is a substance that is insoluble or hardly soluble in the treatment liquid used in the treatment step, and is an object to be treated together with a readily soluble substance (second substance). There is no particular limitation as long as it is a substance that can be formed on the surface 10a.
 母材(第1の物質)として、例えば、酸化ケイ素(SiO)、フッ化マグネシウム(MgF)、酸化チタン(TiO)、酸化タンタル(Ta)を含む群より選択される一種以上の物質を用いることが可能であるが、これらの物質に限定されるものではない。 As a base material (first substance), for example, a kind selected from the group including silicon oxide (SiO 2 ), magnesium fluoride (MgF 2 ), titanium oxide (TiO 2 ), and tantalum oxide (Ta 2 O 5 ) The above substances can be used, but are not limited to these substances.
 母材(第1の物質)として、水不溶性の無機物、例えば、酸化ケイ素(SiO)、フッ化マグネシウム(MgF)を用いると、処理工程における処理液として水を採用することが可能となり、好適である。
 また、酸化ケイ素(SiO)やフッ化マグネシウム(MgF)を母材として形成される本実施形態に係る表面微細構造は、特定の波長領域で透明であり、低反射率を有するため、好適である。
When a water-insoluble inorganic substance such as silicon oxide (SiO 2 ) or magnesium fluoride (MgF 2 ) is used as the base material (first substance), water can be used as a treatment liquid in the treatment step. Is preferred.
Further, the surface microstructure according to this embodiment formed using silicon oxide (SiO 2 ) or magnesium fluoride (MgF 2 ) as a base material is preferable because it is transparent in a specific wavelength region and has a low reflectance. It is.
(易溶性物質-第2の物質)
 前駆体層40を構成する易溶性物質(第2の物質)としては、処理工程で用いる処理液に溶解する物質であって、母材(第1の物質)とともに被処理物表面10aに成膜可能な物質であれば、特に限定されるものではない。
(Easily soluble substance-second substance)
The easily soluble substance (second substance) constituting the precursor layer 40 is a substance that dissolves in the treatment liquid used in the treatment step, and is formed on the surface 10a to be treated together with the base material (first substance). There is no particular limitation as long as it is a possible substance.
 易溶性物質(第2の物質)として、例えば、ゲルマニウム酸化物(GeO)、モリブデン酸化物(MoO)、タングステン酸化物(WO)、酸化亜鉛(ZnO)、塩化ナトリウム(NaCl)を含む群より選択される一種以上の物質を用いることが可能であるが、これらの物質に限定されるものではない。 Examples of the readily soluble substance (second substance) include germanium oxide (GeO x ), molybdenum oxide (MoO x ), tungsten oxide (WO 3 ), zinc oxide (ZnO), and sodium chloride (NaCl). One or more substances selected from the group can be used, but are not limited to these substances.
 易溶性物質(第2の物質)として、水溶性の無機物、例えば、水溶性の金属酸化物を用いると、処理工程における処理液として水を採用することが可能となり、好適である。
 水溶性の金属酸化物としては、例えば、モリブデン酸化物(MoO、x=化学量論比、2≦x≦3)、ゲルマニウム酸化物(GeO、x=化学量論比、1≦x≦2)、タングステン酸化物(WO)などが挙げられるが、これらに限定されるものではない。
When a water-soluble inorganic substance such as a water-soluble metal oxide is used as the easily soluble substance (second substance), water can be used as a treatment liquid in the treatment process, which is preferable.
Examples of the water-soluble metal oxide include molybdenum oxide (MoO x , x = stoichiometric ratio, 2 ≦ x ≦ 3), germanium oxide (GeO x , x = stoichiometric ratio, 1 ≦ x ≦ 2), tungsten oxide (WO 3 ), and the like, but are not limited thereto.
 前駆体層40を構成する易溶性物質(第2の物質)は、バルクの状態で10~50℃、pH4.0~10.0の水に溶解する物質であることが好ましく、バルクの状態で水不溶性であっても、数十nm以上数μm以下の膜厚に成膜したした場合に、10~50℃、pH4.0~10.0の水に溶解する物質であればよい。 The readily soluble substance (second substance) constituting the precursor layer 40 is preferably a substance that dissolves in water at 10 to 50 ° C. and pH 4.0 to 10.0 in the bulk state. Even if it is water-insoluble, it may be any substance that dissolves in water at 10 to 50 ° C. and pH 4.0 to 10.0 when it is formed to a film thickness of several tens nm to several μm.
 また、易溶性物質として金属酸化物を用いる場合、一般式MO(M=金属、x=化学量論比)で表した際に、xの値は、金属イオンと酸化物イオンの電荷バランスがゼロになる値が通常であるが、金属イオンと酸化物イオンの電化バランスがゼロから多少乖離したxの値であってもよい。 In addition, when a metal oxide is used as the readily soluble substance, when expressed by the general formula MO x (M = metal, x = stoichiometric ratio), the value of x indicates the charge balance between the metal ion and the oxide ion. The value that becomes zero is normal, but it may be a value of x where the electrification balance of metal ions and oxide ions slightly deviates from zero.
 上記の金属酸化物の水に対する溶解度は、モリブデン酸化物であるMoOでは、0.14g/100mL(20℃)であり、ゲルマニウム酸化物である六方晶系のGeOでは、0.447g/100mL(25℃)であり、タングステン酸化物であるWOでは、0.46g/100mL未満である。 The solubility of the metal oxide in water is 0.14 g / 100 mL (20 ° C.) for MoO 3 which is a molybdenum oxide, and 0.447 g / 100 mL for hexagonal GeO 2 which is a germanium oxide. In WO 3 which is a tungsten oxide, it is less than 0.46 g / 100 mL.
 前駆体層40の厚さは、被処理物10に形成する表面微細構造の厚さに応じて、適宜選択すればよく、数nm以上数μm以下とすることが好ましく、より好ましくは数nm以上30μm以下、より好ましくは数nm以上10μm以下、更に好ましくは10nm以上5.0μm以下、更に好ましくは10nm以上1.0μm以下であるとよい。前駆体層40の厚さが薄くなりすぎると、形成される表面微細構造の耐久性の観点から好ましくない。一方、前駆体層40が厚すぎると、処理工程において易溶性物質(第2の物質)が処理液に溶解するまでの時間が長くなる可能性や、十分に溶解しない可能性があるため好ましくない。 The thickness of the precursor layer 40 may be appropriately selected according to the thickness of the surface microstructure formed on the workpiece 10, and is preferably several nm or more and several μm or less, more preferably several nm or more. It is 30 μm or less, more preferably several nm to 10 μm, further preferably 10 nm to 5.0 μm, and further preferably 10 nm to 1.0 μm. If the thickness of the precursor layer 40 becomes too thin, it is not preferable from the viewpoint of the durability of the formed surface microstructure. On the other hand, if the precursor layer 40 is too thick, it is not preferable because it may take a long time until the easily soluble substance (second substance) is dissolved in the treatment liquid in the treatment step, or it may not be sufficiently dissolved. .
 被処理物10の上に前駆体層40を形成する方法は、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理蒸着法や、化学蒸着法を利用することができるが、これに限定されるものではなく、被処理物10を構成する材料や前駆体層の材料によっては、ゾル‐ゲル法などの化学的方法も利用することができる。 The method for forming the precursor layer 40 on the workpiece 10 may be a physical vapor deposition method such as a vacuum vapor deposition method, a sputtering method, or an ion plating method, or a chemical vapor deposition method, but is not limited thereto. However, a chemical method such as a sol-gel method can also be used depending on the material constituting the workpiece 10 and the material of the precursor layer.
<表面微細構造の形成方法>
 本実施の形態の表面微細構造を備える物品1は、図2に示すように、以下の表面微細構造の形成方法によって製造される。
<Method for forming surface microstructure>
Article 1 provided with the surface microstructure of the present embodiment is manufactured by the following method for forming the surface microstructure as shown in FIG.
 具体的には、本実施形態の表面微細構造の形成方法は、被処理物(物品)10を用意する被処理物用意工程(ステップS1)と、前記被処理物10の上に第1の物質と第2の物質を含む前駆体層40を積層する前駆体層積層工程(ステップS2)と、前記前駆体層積層工程で得られた前記前駆体層40を処理液に浸漬して前記第2の物質を溶解する処理工程(ステップS3)と、を行うことを特徴とする。 Specifically, the surface microstructure forming method of the present embodiment includes a processing object preparation step (step S1) for preparing a processing object (article) 10, and a first substance on the processing object 10. And a precursor layer laminating step (step S2) for laminating the precursor layer 40 containing the second substance, and the precursor layer 40 obtained in the precursor layer laminating step is immersed in a treatment liquid, And a processing step (step S3) for dissolving the substance.
 以上のステップS1~S3で、表面微細構造を備える物品1を得ることができる。
 以下、各ステップについて、詳細に説明をする。
Through the above steps S1 to S3, the article 1 having a surface microstructure can be obtained.
Hereinafter, each step will be described in detail.
(被処理物用意工程)
 被処理物用意工程(ステップS1)では、処理の対象となる被処理物10(物品10)を用意する。このとき、事前に、被処理物10の被処理物表面10aを洗浄したり、帯電処理をしたりするなど、前駆体層40の成膜性(積層性)を向上させるような前処理を行ってもよい。
(Process preparation process)
In the processing object preparation step (step S1), a processing object 10 (article 10) to be processed is prepared. At this time, pretreatment is performed in advance to improve the film formability (stackability) of the precursor layer 40, such as cleaning the surface 10a of the object 10 to be processed or charging. May be.
(前駆体層積層工程)
 前駆体層積層工程(ステップS2)では、被処理物用意工程で用意した被処理物10の被処理物表面10Aaの上に、第1の物質と第2の物質を含む前駆体層40を積層する。
(Precursor layer lamination process)
In the precursor layer laminating step (step S2), the precursor layer 40 including the first substance and the second substance is laminated on the workpiece surface 10Aa of the workpiece 10 prepared in the workpiece preparation process. To do.
 前駆体層積層工程は、被処理物10や前駆体層40の材料などに応じて、スパッタリング法、イオンプレーティング法、真空蒸着法、化学蒸着法などの方法を用いて行うことが可能であるが、これらの方法に限定されるものではない。被処理物10を構成する材料や前駆体層の材料によっては、ゾル-ゲル法などの方法を採用することも可能である。 The precursor layer stacking step can be performed using a method such as a sputtering method, an ion plating method, a vacuum deposition method, or a chemical vapor deposition method depending on the material of the object to be processed 10 or the precursor layer 40. However, it is not limited to these methods. Depending on the material constituting the object to be processed 10 and the material of the precursor layer, a method such as a sol-gel method may be employed.
 前駆体層40の積層は、母材(第1の物質)及び易溶性物質(第2の物質)を含有するターゲット材料又は蒸着材料を用いて行うと好適である。
 具体的には、母材として酸化ケイ素を用い、易溶性物質として酸化ゲルマニウムを用いる場合、酸化ケイ素と酸化ゲルマニウムを混合した混合ターゲット又は混合蒸着材料を用いるとよい。
 なお、母材や易溶性物質の原料となる物質、例えば、ケイ素とゲルマニウムを含有するターゲットを用い、酸素ガスを供給する反応性スパッタ法を用いることも可能である。
The precursor layer 40 is preferably stacked using a target material or a vapor deposition material containing a base material (first substance) and a readily soluble substance (second substance).
Specifically, when silicon oxide is used as the base material and germanium oxide is used as the easily soluble substance, a mixed target or mixed vapor deposition material in which silicon oxide and germanium oxide are mixed may be used.
Note that it is also possible to use a reactive sputtering method in which an oxygen gas is supplied using a target material containing a base material or a readily soluble material, for example, a target containing silicon and germanium.
 前駆体層積層工程はスパッタリング法、イオンプレーティング法、真空蒸着法、化学蒸着法などの方法を用いて80℃以下で行われると、樹脂など熱に弱い物質(材料)を含有する被処理物10にも好適に適用することが可能である。 When the precursor layer laminating step is performed at 80 ° C. or lower using a sputtering method, an ion plating method, a vacuum vapor deposition method, a chemical vapor deposition method or the like, an object to be processed containing a heat-sensitive substance (material) such as a resin. 10 can be suitably applied.
 前駆体層積層工程では、母材(第1の物質)及び易溶性物質(第2の物質)を、同一又は異なる割合で含有する前駆体層を、複数層積層することも可能である。 In the precursor layer lamination step, a plurality of precursor layers containing the base material (first substance) and the readily soluble substance (second substance) in the same or different ratios can be laminated.
(処理工程)
 処理工程(ステップS3)では、前駆体層積層工程で得られた被処理物10の被処理物表面10Aa上に積層された前駆体層40を、処理液に浸漬して第2の物質を溶解する。
(Processing process)
In the processing step (step S3), the precursor layer 40 laminated on the workpiece surface 10Aa of the workpiece 10 obtained in the precursor layer laminating step is immersed in the treatment liquid to dissolve the second substance. To do.
 処理工程では、母材(第1の物質)を溶解させないで、易溶性物質(第2の物質)を選択的に溶解させることが可能な処理液として、水を用いること好ましい。ここで用いる水は、母材(第1の物質)に影響を与えずに易溶性物質(第2の物質)を溶解できればよく、温度が0~100℃の水、好ましくは10~100℃の水、より好ましくは10~60℃の水、更に好ましくは20~50℃の水、特に好ましくは30~50℃の水であるとよい。20℃以上、50℃以下の温度の水であれば、多くの水が必要な場合であっても、長時間の加熱処理が不要であり、処理液としての水を簡易に用意出来るため、好ましい。 In the treatment step, it is preferable to use water as a treatment liquid capable of selectively dissolving the easily soluble substance (second substance) without dissolving the base material (first substance). The water used here only needs to be able to dissolve a readily soluble substance (second substance) without affecting the base material (first substance), and has a temperature of 0 to 100 ° C., preferably 10 to 100 ° C. Water, more preferably water at 10 to 60 ° C., still more preferably water at 20 to 50 ° C., particularly preferably water at 30 to 50 ° C. Water having a temperature of 20 ° C. or more and 50 ° C. or less is preferable because a long-time heat treatment is unnecessary even when a large amount of water is required, and water as a treatment liquid can be easily prepared. .
 水のpHは、母材(第1の物質)を溶解させないで、易溶性物質(第2の物質)を選択的に溶解できる範囲内であればよく、pH4~10がよく、好ましくはpH5~9、より好ましくはpH6~8であるとよい。pHが6以上8以下であれば、剥離後の水を、pHの調整を行わずに排水として処理することが可能である。
 処理工程では、処理液として、20~50℃、pH6~8の室温付近の温度で中性の水を用いることがより好ましい。
The pH of the water may be within a range in which the easily soluble substance (second substance) can be selectively dissolved without dissolving the base material (first substance), preferably pH 4 to 10, and preferably pH 5 to 9, more preferably pH 6-8. If pH is 6 or more and 8 or less, it is possible to process the water after peeling as waste water without adjusting the pH.
In the treatment step, it is more preferable to use neutral water as a treatment solution at a temperature of 20 to 50 ° C. and a pH of 6 to 8 near room temperature.
 また、水として、蒸留水、純水、超純水など、種々の金属イオンや不純物が除去された水を用いることが望ましいが、これに限定されるものではなく、水道水、工業用水、井戸水等の水を用いることも可能である。
 蒸留水は、水を加熱して水蒸気にしてから冷却により液体に戻した、電気伝導度が1~10μS/cm程度の水である。
 純水は、イオン、微粒子、微生物、有機物などの不純物を除去した電気伝導率が1μS/cm以下の高純度の水である。
 超純水は、超純水製造装置により水中の懸濁物質、溶解物質及び高効率に取り除いた純水よりさらに純度の高い極めて高純度の水であり、電気伝導率が0.055μScmより小さい。
In addition, it is desirable to use water from which various metal ions and impurities are removed, such as distilled water, pure water, and ultrapure water, but is not limited thereto, and tap water, industrial water, well water It is also possible to use water such as.
Distilled water is water having an electric conductivity of about 1 to 10 μS / cm, which is heated to water vapor and then returned to a liquid by cooling.
Pure water is high-purity water having an electrical conductivity of 1 μS / cm or less from which impurities such as ions, fine particles, microorganisms, and organic substances are removed.
Ultrapure water is extremely high-purity water having a higher purity than that of pure water removed from suspended substances, dissolved substances, and high efficiency in an ultrapure water production apparatus, and has an electric conductivity of less than 0.055 μScm.
 本実施形態では、母材(第1の物質)として、10~50℃、pH4.0~10.0の水に溶解する無機酸化物を選択すると、塩酸水溶液や硝酸水溶液等の酸性水溶液や、水酸化ナトリウム水溶液等の塩基性水溶液を用いることなく、易溶性物質(第2の物質)を溶解させることが可能であるという利点を有する。 In this embodiment, when an inorganic oxide that dissolves in water at 10 to 50 ° C. and pH 4.0 to 10.0 is selected as a base material (first substance), an acidic aqueous solution such as an aqueous hydrochloric acid solution or an aqueous nitric acid solution, There is an advantage that an easily soluble substance (second substance) can be dissolved without using a basic aqueous solution such as an aqueous sodium hydroxide solution.
 処理工程では、前駆体層40を積層した被処理物10を処理液に浸漬することで、易溶性物質(第2の物質)が例えば60分以内に溶解することが好ましく、10分以内に溶解することがより好ましい。処理液に浸漬した直後に、易溶性物質(第2の物質)が全て溶解することが特に好ましい。また、易溶性物質(第2の物質)の水への溶解を促すために水に浸漬した状態の前駆体層40に対して、超音波照射や撹拌器による撹拌を行うことも可能である。 In the treatment step, it is preferable that the easily soluble substance (second substance) dissolves within 60 minutes, for example, by immersing the object 10 on which the precursor layer 40 is laminated in the treatment liquid. More preferably. It is particularly preferable that the readily soluble substance (second substance) dissolves immediately after being immersed in the treatment liquid. Moreover, it is also possible to perform ultrasonic irradiation or stirring with a stirrer with respect to the precursor layer 40 immersed in water in order to promote dissolution of the readily soluble substance (second substance) in water.
 本実施形態では、主として本発明に係る表面微細構造の形成方法及び表面微細構造を備える物品について説明した。
 ただし、上記の実施形態は、本発明の理解を容易にするための一例に過ぎず、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物が含まれることは勿論である。
In the present embodiment, the surface microstructure forming method and the article provided with the surface microstructure according to the present invention have been mainly described.
However, said embodiment is only an example for making an understanding of this invention easy, and does not limit this invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes the equivalents thereof.
 以下、本発明の表面微細構造の形成方法及び表面微細構造を備える物品の具体的実施例について説明するが、本発明は、これに限定されるものではない。 Hereinafter, specific examples of the method for forming the surface microstructure and the article having the surface microstructure of the present invention will be described, but the present invention is not limited thereto.
<A.実施例1及び比較例1に係る表面微細構造の形成>
(A-1.前駆体層形成工程)
 以下の条件で、被処理物としてのガラス基材上に、実施例1及び比較例1に係る前駆体層を積層した。
 スパッタ装置 :カルーセル型バッチ式スパッタ装置
 ターゲット  :φ150、厚さ6mm
  実施例1:酸化ゲルマニウム(GeO)50vol%/酸化ケイ素(SiO)50vol%混合ターゲット
  比較例1:酸化ゲルマニウム(GeO)100vol%
 スパッタ方式 :RFスパッタ
 排気装置   :ターボ分子ポンプ
 到達真空度  :5×10-4Pa
 基材温度   :25℃(室温)
 スパッタ電力 :1.2kW
 前駆体層の膜厚:100±10nm
 Ar流量   :120sccm
 酸素流量   :0sccm
 使用基材   :ガラス基材(1.0mm厚)
<A. Formation of Surface Microstructure According to Example 1 and Comparative Example 1>
(A-1. Precursor layer forming step)
On the following conditions, the precursor layer which concerns on Example 1 and Comparative Example 1 was laminated | stacked on the glass base material as a to-be-processed object.
Sputtering device: Carousel type batch type sputtering device Target: φ150, thickness 6mm
Example 1: Germanium oxide (GeO 2 ) 50 vol% / silicon oxide (SiO 2 ) 50 vol% mixed target Comparative Example 1: Germanium oxide (GeO 2 ) 100 vol%
Sputtering method: RF sputtering Exhaust device: Turbo molecular pump Ultimate vacuum: 5 × 10 −4 Pa
Substrate temperature: 25 ° C. (room temperature)
Sputtering power: 1.2 kW
Film thickness of precursor layer: 100 ± 10 nm
Ar flow rate: 120 sccm
Oxygen flow rate: 0 sccm
Substrate used: Glass substrate (1.0 mm thick)
(A-2.処理工程)
 実施例1及び比較例1の前駆体層が積層されたガラス基板を、室温(25℃)において、純水(栗田工業社のマクエースKN型で製造、pH7.0)に浸漬をし、前駆体層に含まれる酸化ゲルマニウムを溶解させた。
(A-2. Processing step)
The glass substrate on which the precursor layers of Example 1 and Comparative Example 1 were laminated was immersed in pure water (manufactured by Mac Ace KN type, Kurita Kogyo Co., Ltd., pH 7.0) at room temperature (25 ° C.), and the precursor The germanium oxide contained in the layer was dissolved.
(試験A1 分光測定)
 処理工程において酸化ゲルマニウムを溶解させた後の、実施例1及び比較例1の表面微細構造を備えるガラス基板の反射率、透過率、吸収率を測定した。測定は、分光光度計((株)日立ハイテクノロジーズ製、U-4100)を用い、400nmから700nmの波長領域で測定した。
(Test A1 spectroscopic measurement)
After the germanium oxide was dissolved in the treatment step, the reflectance, transmittance, and absorption rate of the glass substrate provided with the surface microstructure of Example 1 and Comparative Example 1 were measured. The measurement was performed using a spectrophotometer (U-4100, manufactured by Hitachi High-Technologies Corporation) in a wavelength region of 400 nm to 700 nm.
 分光測定の結果を図3A~3Cに示す。
 比較例1の試料では、吸収率がほぼゼロであり、前駆体層が全て溶解したことがわかった。一方、実施例1の試料では、反射率が比較例1の試料よりも低下していた。試験A1から、実施例1の試料では、前駆体層に含まれる酸化ゲルマニウムが溶解することで、表面微細構造が形成され、反射率が低下したことが示唆された。
The results of the spectroscopic measurement are shown in FIGS. 3A to 3C.
In the sample of Comparative Example 1, the absorption rate was almost zero, and it was found that all the precursor layers were dissolved. On the other hand, the reflectance of the sample of Example 1 was lower than that of the sample of Comparative Example 1. From the test A1, it was suggested that in the sample of Example 1, germanium oxide contained in the precursor layer was dissolved, thereby forming a surface microstructure and lowering the reflectance.
<B.実施例2乃至5及び比較例2に係る表面微細構造の形成>
(B-1.前駆体層形成工程)
 以下の条件で、被処理物としてのガラス基材上に、実施例2乃至5及び比較例2に係る前駆体層を積層した。
 スパッタ装置 :カルーセル型バッチ式スパッタ装置
 ターゲット  :φ150、厚さ6mm
  実施例2:酸化ゲルマニウム(GeO)20vol%/酸化ケイ素(SiO)80vol%混合ターゲット
  実施例3:酸化ゲルマニウム(GeO)40vol%/酸化ケイ素(SiO)60vol%混合ターゲット
  実施例4:酸化ゲルマニウム(GeO)60vol%/酸化ケイ素(SiO)40vol%混合ターゲット
  実施例5:酸化ゲルマニウム(GeO)80vol%/酸化ケイ素(SiO)20vol%混合ターゲット
  比較例2:酸化ゲルマニウム(GeO)100vol%
 スパッタ方式 :RFスパッタ
 排気装置   :ターボ分子ポンプ
 到達真空度  :5×10-4Pa
 基材温度   :25℃(室温)
 スパッタ電力 :1.2kW(実施例2~4)、0.42kW(実施例5)
 前駆体層の膜厚:50±5nm
 Ar流量   :120sccm
 酸素流量   :0sccm
 使用基材   :ガラス基材(1.0mm厚)
<B. Formation of Surface Microstructure According to Examples 2 to 5 and Comparative Example 2>
(B-1. Precursor layer forming step)
Under the following conditions, the precursor layers according to Examples 2 to 5 and Comparative Example 2 were laminated on a glass substrate as an object to be processed.
Sputtering device: Carousel type batch type sputtering device Target: φ150, thickness 6mm
Example 2: Germanium oxide (GeO 2 ) 20 vol% / silicon oxide (SiO 2 ) 80 vol% mixed target Example 3: Germanium oxide (GeO 2 ) 40 vol% / silicon oxide (SiO 2 ) 60 vol% mixed target Example 4: Germanium oxide (GeO 2 ) 60 vol% / silicon oxide (SiO 2 ) 40 vol% mixed target Example 5: Germanium oxide (GeO 2 ) 80 vol% / silicon oxide (SiO 2 ) 20 vol% mixed target Comparative Example 2: Germanium oxide (GeO) 2 ) 100 vol%
Sputtering method: RF sputtering Exhaust device: Turbo molecular pump Ultimate vacuum: 5 × 10 −4 Pa
Substrate temperature: 25 ° C. (room temperature)
Sputtering power: 1.2 kW (Examples 2 to 4), 0.42 kW (Example 5)
Film thickness of precursor layer: 50 ± 5 nm
Ar flow rate: 120 sccm
Oxygen flow rate: 0 sccm
Substrate used: Glass substrate (1.0 mm thick)
(B-2.処理工程)
 実施例2乃至5の前駆体層が積層されたガラス基板を、室温(25℃)において、純水(栗田工業社のマクエースKN型で製造、pH7.0)に浸漬をし、前駆体層に含まれる酸化ゲルマニウムを溶解させた。
(B-2. Processing step)
The glass substrate on which the precursor layers of Examples 2 to 5 were laminated was immersed in pure water (manufactured by Mac Ace KN type, Kurita Kogyo Co., Ltd., pH 7.0) at room temperature (25 ° C.) to form a precursor layer. The germanium oxide contained was dissolved.
(試験B1 分光測定)
 処理工程において酸化ゲルマニウムを溶解させる前後の、実施例2乃至5の表面微細構造を備えるガラス基板の反射率、透過率、吸収率を測定した。測定は、分光光度計((株)日立ハイテクノロジーズ製、U-4100)を用い、400nmから700nmの波長領域で測定した。
(Test B1 spectroscopic measurement)
The reflectance, transmittance, and absorptivity of the glass substrates provided with the surface microstructures of Examples 2 to 5 before and after dissolving germanium oxide in the treatment process were measured. The measurement was performed using a spectrophotometer (U-4100, manufactured by Hitachi High-Technologies Corporation) in a wavelength region of 400 nm to 700 nm.
(試験B2 接触角測定)
 処理工程において酸化ゲルマニウムを溶解させた後の、実施例2乃至5の表面微細構造を備えるガラス基板の水接触角を測定した(表2:処理後)。測定は、接触角計(協和界面科学製社製、型番FACE CA-X型)を用いて25℃の条件で測定した。参照として、処理工程において酸化ゲルマニウムを溶解させる前の試料の水接触角を測定した(表2:処理前)。
(Test B2 contact angle measurement)
The water contact angle of the glass substrate provided with the surface microstructures of Examples 2 to 5 after dissolving germanium oxide in the treatment step was measured (Table 2: after treatment). The measurement was performed at 25 ° C. using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., model number FACE CA-X type). As a reference, the water contact angle of the sample before dissolving germanium oxide in the treatment step was measured (Table 2: before treatment).
(試験B3 電子顕微鏡観察)
 処理工程において酸化ゲルマニウムを溶解させる前と後の、実施例2乃至5の表面微細構造を備えるガラス基板の表面及び断面の状態を電界放出形走査電子顕微鏡(FE-SEM、(株)日立ハイテクノロジーズ製、S-4300)を用いて観察した。
(Test B3 electron microscope observation)
Field emission scanning electron microscope (FE-SEM, Hitachi High-Technologies Corporation) shows the state of the surface and cross section of the glass substrate having the surface microstructure of Examples 2 to 5 before and after dissolving germanium oxide in the treatment process. And S-4300).
(結果B1 分光測定)
 分光測定の結果を表1に示す。表1では、波長550nmにおける処理前後の透過率、反射率、吸収率の値を、変化量と共に示している。
 実施例3乃至5の試料では、反射率が低下しており、前駆体層に含まれる酸化ゲルマニウムが溶解することで表面微細構造が形成されたことが示唆された。
(Result B1 spectroscopic measurement)
The results of the spectroscopic measurement are shown in Table 1. In Table 1, the values of transmittance, reflectance, and absorptance before and after treatment at a wavelength of 550 nm are shown together with the amount of change.
In the samples of Examples 3 to 5, the reflectance was lowered, suggesting that the surface microstructure was formed by the dissolution of germanium oxide contained in the precursor layer.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(結果B2 接触角測定)
 接触角測定の結果を表2に示す。酸化ゲルマニウムを溶解する前において、水接触角は45.3°~48.5°であり、撥水性を示した。処理工程において酸化ゲルマニウムを溶解させた後では、水接触角が4.7°~5.3°まで低下し、超親水性を示した。
(Result B2 Contact angle measurement)
The results of contact angle measurement are shown in Table 2. Before the germanium oxide was dissolved, the water contact angle was 45.3 ° to 48.5 °, indicating water repellency. After the germanium oxide was dissolved in the treatment step, the water contact angle decreased from 4.7 ° to 5.3 °, indicating super hydrophilicity.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(結果B3 電子顕微鏡観察)
 処理前後において、電子顕微鏡画像の変化はなかった。
(Result B3: Observation with an electron microscope)
There was no change in the electron microscope image before and after the treatment.
<C.実施例6に係る表面微細構造の形成>
(C-1.前駆体層形成工程)
 以下の条件で、被処理物としてのガラス基材上に、実施例6に係る前駆体層を積層した。
 実施例6の前駆体層は、酸化ケイ素と酸化ゲルマニウムの割合が異なる4つの層(層1~層4)を積層したものである。
 スパッタ装置 :カルーセル型バッチ式スパッタ装置
 ターゲット  :φ150、厚さ6mm
  層1:酸化ケイ素(SiO):酸化ゲルマニウム(GeO)=80vol%:20vol%の混合ターゲット
  層2:酸化ケイ素(SiO):酸化ゲルマニウム(GeO)=60vol%:40vol%
  層3:酸化ケイ素(SiO):酸化ゲルマニウム(GeO)=40vol%:60vol%
  層4:酸化ケイ素(SiO):酸化ゲルマニウム(GeO)=20vol%:80vol%
 スパッタ方式 :RFスパッタ
 排気装置   :ターボ分子ポンプ
 到達真空度  :5×10-4Pa
 基材温度   :25℃(室温)
 スパッタ電力 :1.2、1.2、1.2、0.42kW(SiO):0.1、0.24、0.5、0.5kW(GeO
 前駆体層の膜厚:400±40nm
  層1:100±10nm
  層2:100±10nm
  層3:100±10nm
  層4:100±10nm
 Ar流量   :120sccm
 酸素流量   :0sccm
 使用基材   :ガラス基材(1.0mm厚)
<C. Formation of Surface Microstructure According to Example 6>
(C-1. Precursor layer forming step)
Under the following conditions, the precursor layer according to Example 6 was laminated on a glass substrate as an object to be processed.
The precursor layer of Example 6 is obtained by stacking four layers (layers 1 to 4) having different ratios of silicon oxide and germanium oxide.
Sputtering device: Carousel type batch type sputtering device Target: φ150, thickness 6mm
Layer 1: Silicon oxide (SiO 2 ): Germanium oxide (GeO 2 ) = 80 vol%: 20 vol% mixed target Layer 2: Silicon oxide (SiO 2 ): Germanium oxide (GeO 2 ) = 60 vol%: 40 vol%
Layer 3: Silicon oxide (SiO 2 ): Germanium oxide (GeO 2 ) = 40 vol%: 60 vol%
Layer 4: Silicon oxide (SiO 2 ): Germanium oxide (GeO 2 ) = 20 vol%: 80 vol%
Sputtering method: RF sputtering Exhaust device: Turbo molecular pump Ultimate vacuum: 5 × 10 −4 Pa
Substrate temperature: 25 ° C. (room temperature)
Sputtering power: 1.2, 1.2, 1.2, 0.42 kW (SiO 2 ): 0.1, 0.24, 0.5, 0.5 kW (GeO 2 )
Film thickness of precursor layer: 400 ± 40 nm
Layer 1: 100 ± 10 nm
Layer 2: 100 ± 10 nm
Layer 3: 100 ± 10 nm
Layer 4: 100 ± 10 nm
Ar flow rate: 120 sccm
Oxygen flow rate: 0 sccm
Substrate used: Glass substrate (1.0 mm thick)
(C-2.処理工程)
 実施例6の前駆体層が積層されたガラス基板を、室温(25℃)において、純水(栗田工業社のマクエースKN型で製造、pH7.0)に浸漬をし、前駆体層に含まれる酸化ゲルマニウムを溶解させた。
(C-2. Processing step)
The glass substrate on which the precursor layer of Example 6 was laminated was immersed in pure water (manufactured by Mac Ace KN type, Kurita Kogyo Co., Ltd., pH 7.0) at room temperature (25 ° C.) and contained in the precursor layer. Germanium oxide was dissolved.
(試験C1 接触角測定)
 処理工程において酸化ゲルマニウムを溶解させた後の、実施例2の表面微細構造を備えるガラス基板の水接触角を測定した(表1:水処理後)。測定は、接触角計(協和界面科学製社製、型番FACE CA-X型)を用いて25℃の条件で測定した。参照として、処理工程において酸化ゲルマニウムを溶解させる前の試料の水接触角を測定した(表3:水処理前)。
(Test C1 contact angle measurement)
The water contact angle of the glass substrate provided with the surface microstructure of Example 2 after dissolving germanium oxide in the treatment step was measured (Table 1: after water treatment). The measurement was performed at 25 ° C. using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., model number FACE CA-X type). As a reference, the water contact angle of the sample before dissolving germanium oxide in the treatment step was measured (Table 3: before water treatment).
 接触角測定の結果を図4及び表3に示す。 The results of contact angle measurement are shown in FIG.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 酸化ゲルマニウムを溶解する前において、水接触角は平均で47.18°であり、撥水性を示した。処理工程において酸化ゲルマニウムを溶解させた実施例6の試料では、水接触角が平均で5.04°まで低下し、超親水性を示した。 Before the germanium oxide was dissolved, the water contact angle was 47.18 ° on average, indicating water repellency. In the sample of Example 6 in which germanium oxide was dissolved in the treatment step, the water contact angle was reduced to 5.04 ° on average, indicating super hydrophilicity.
(試験C2 電子顕微鏡観察)
 処理工程において酸化ゲルマニウムを溶解させる前と後の、実施例6の表面微細構造を備えるガラス基板の表面及び断面の状態を電界放出形走査電子顕微鏡(FE-SEM、(株)日立ハイテクノロジーズ製、S-4300)を用いて観察した。
(Test C2 electron microscope observation)
Before and after dissolving germanium oxide in the treatment step, the surface and cross-sectional state of the glass substrate having the surface microstructure of Example 6 were measured with a field emission scanning electron microscope (FE-SEM, manufactured by Hitachi High-Technologies Corporation) S-4300).
 結果を図5に示す。酸化ゲルマニウムを溶解させた後の使用では、ナノレベルの細孔が形成されていることがわかった。実施例6の試料において、前駆体層に含まれる酸化ゲルマニウムが溶解することで、残存する酸化ケイ素によって表面微細構造が形成されることがわかった。 The results are shown in FIG. It was found that nano-scale pores were formed after use after dissolving germanium oxide. In the sample of Example 6, it was found that the surface microstructure was formed by the remaining silicon oxide by dissolving germanium oxide contained in the precursor layer.
<D.実施例7乃至11に係る表面微細構造の形成>
(D-1.前駆体層形成工程)
 以下の条件で、被処理物としてのガラス基材上に、実施例7乃至11に係る前駆体層を積層した。
 スパッタ装置 :カルーセル型バッチ式スパッタ装置
 ターゲット  :φ150、厚さ6mm
  実施例7~9:酸化ゲルマニウム(GeO)40vol%/酸化ケイ素(SiO)60vol%混合ターゲット
  実施例10:酸化ゲルマニウム(GeO)45vol%/酸化ケイ素(SiO)55vol%混合ターゲット
  実施例11:酸化ゲルマニウム(GeO)50vol%/酸化ケイ素(SiO)50vol%混合ターゲット
 スパッタ方式 :RFスパッタ
 排気装置   :ターボ分子ポンプ
 到達真空度  :5×10-4Pa
 基材温度   :25℃(室温)
 スパッタ電力 :0.26、0.32(GeO)kW:1.2、1.2(SiO
 前駆体層の膜厚
  実施例7:500±50nm
  実施例8:250±25nm
  実施例9:100±10nm
  実施例10:100±10nm
  実施例11:100±10nm
 Ar流量   :120sccm
 酸素流量   :0sccm
 使用基材   :ガラス基材(1.0mm厚)
<D. Formation of Surface Microstructure According to Examples 7 to 11>
(D-1. Precursor layer forming step)
Under the following conditions, the precursor layers according to Examples 7 to 11 were laminated on a glass substrate as an object to be processed.
Sputtering device: Carousel type batch type sputtering device Target: φ150, thickness 6mm
Examples 7 to 9: Germanium oxide (GeO 2 ) 40 vol% / silicon oxide (SiO 2 ) 60 vol% mixed target Example 10: Germanium oxide (GeO 2 ) 45 vol% / silicon oxide (SiO 2 ) 55 vol% mixed target 11: Germanium oxide (GeO 2 ) 50 vol% / silicon oxide (SiO 2 ) 50 vol% mixed target Sputtering method: RF sputtering Exhaust device: Turbo molecular pump Ultimate vacuum: 5 × 10 −4 Pa
Substrate temperature: 25 ° C. (room temperature)
Sputtering power: 0.26, 0.32 (GeO 2 ) kW: 1.2, 1.2 (SiO 2 )
Film thickness of precursor layer Example 7: 500 ± 50 nm
Example 8: 250 ± 25 nm
Example 9: 100 ± 10 nm
Example 10: 100 ± 10 nm
Example 11: 100 ± 10 nm
Ar flow rate: 120 sccm
Oxygen flow rate: 0 sccm
Substrate used: Glass substrate (1.0 mm thick)
(D-2.処理工程)
 実施例7~11の前駆体層が積層されたガラス基板を、室温(25℃)において、純水(栗田工業社のマクエースKN型で製造、pH7.0)に14時間浸漬をし、前駆体層に含まれる酸化ゲルマニウムを溶解させた。
(D-2. Processing step)
The glass substrate on which the precursor layers of Examples 7 to 11 were laminated was immersed in pure water (manufactured by Mac Ace KN type, Kurita Kogyo Co., Ltd., pH 7.0) at room temperature (25 ° C.) for 14 hours. The germanium oxide contained in the layer was dissolved.
(試験D1 光学定数測定)
 処理工程において酸化ゲルマニウムを溶解させた後の、実施例7~11、実施例6の表面微細構造を備えるガラス基板の光学定数を測定した。光学定数は、分光エリプソメータ(日本分光株式会社製、M-220)を用いで測定した。
(Test D1 Optical constant measurement)
The optical constants of the glass substrates having the surface microstructures of Examples 7 to 11 and Example 6 after dissolving germanium oxide in the treatment step were measured. The optical constant was measured using a spectroscopic ellipsometer (manufactured by JASCO Corporation, M-220).
 光学定数測定の結果を図6A~6D及び表4に示す。図6Aは300~800nmにおける屈折率(n)を示すグラフであり、図6Bは300~800nmにおける消衰係数(k)を示すグラフであり、図6Cは50nm及び633nmにおける屈折率(n)を示すグラフであり、図6Dは550nm及び633nmにおける消衰係数(k)を示すグラフである。 Results of optical constant measurement are shown in FIGS. 6A to 6D and Table 4. 6A is a graph showing the refractive index (n) at 300 to 800 nm, FIG. 6B is a graph showing the extinction coefficient (k) at 300 to 800 nm, and FIG. 6C shows the refractive index (n) at 50 nm and 633 nm. FIG. 6D is a graph showing the extinction coefficient (k) at 550 nm and 633 nm.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 光学定数測定の結果から、酸化ゲルマニウム(GeO):酸化ケイ素(SiO)の体積比が50:50~60:40のターゲットを用いて、膜厚が100~500nmの前駆体層を成膜すると、可視光領域において、屈折率が小さく、反射が抑制されることがわかった。また、可視光領域において、消衰係数がゼロであり、良好な可視光透過性を示すことがわかった。 From the results of optical constant measurement, a precursor layer having a film thickness of 100 to 500 nm is formed using a target having a volume ratio of germanium oxide (GeO 2 ): silicon oxide (SiO 2 ) of 50:50 to 60:40. Then, it was found that the refractive index is small and reflection is suppressed in the visible light region. Further, it was found that the extinction coefficient was zero in the visible light region, and good visible light transmittance was exhibited.
<E.実施例12及び13に係る表面微細構造の形成>
(E-1.前駆体層形成工程)
 以下の条件で、被処理物としてのガラス基材上に、実施例12及び13に係る前駆体層を積層した。
 スパッタ装置 :カルーセル型バッチ式スパッタ装置
 ターゲット  :φ150、厚さ6mm
  実施例12:酸化アルミニウム(Al)55vol%/酸化ゲルマニウム(GeO)45vol%混合ターゲット
  実施例13:酸化アルミニウム(Al)55vol%/酸化亜鉛(ZnO)45vol%混合ターゲット
 スパッタ方式 :RFスパッタ
 排気装置   :ターボ分子ポンプ
 到達真空度  :5×10-4Pa
 基材温度   :25℃(室温)
 スパッタ電力 :1.20kW(Al)、0.11kW(GeO)、0.27kW(ZnO)
 前駆体層の膜厚
  実施例12:100±10nm
  実施例13:100±10nm
 Ar流量   :120sccm
 酸素流量   :0sccm
 使用基材   :ガラス基材(1.0mm厚)
<E. Formation of Surface Microstructure According to Examples 12 and 13>
(E-1. Precursor layer forming step)
On the following conditions, the precursor layer which concerns on Example 12 and 13 was laminated | stacked on the glass base material as a to-be-processed object.
Sputtering device: Carousel type batch type sputtering device Target: φ150, thickness 6mm
Example 12: Aluminum oxide (Al 2 O 3 ) 55 vol% / germanium oxide (GeO 2 ) 45 vol% mixed target Example 13: Aluminum oxide (Al 2 O 3 ) 55 vol% / Zinc oxide (ZnO) 45 vol% mixed target Sputtering Method: RF sputtering Exhaust device: Turbo molecular pump Ultimate vacuum: 5 × 10 −4 Pa
Substrate temperature: 25 ° C. (room temperature)
Sputtering power: 1.20 kW (Al 2 O 3 ), 0.11 kW (GeO 2 ), 0.27 kW (ZnO)
Film thickness of precursor layer Example 12: 100 ± 10 nm
Example 13: 100 ± 10 nm
Ar flow rate: 120 sccm
Oxygen flow rate: 0 sccm
Substrate used: Glass substrate (1.0 mm thick)
(E-2.処理工程)
 実施例12及び13の前駆体層が積層されたガラス基板を、室温(25℃)において、純水(栗田工業社のマクエースKN型で製造、pH7.0)に浸漬をし、前駆体層に含まれる酸化ゲルマニウム又は酸化亜鉛を溶解させた。
(E-2. Processing step)
The glass substrate on which the precursor layers of Examples 12 and 13 were laminated was immersed in pure water (manufactured by Mac Ace KN type, Kurita Kogyo Co., Ltd., pH 7.0) at room temperature (25 ° C.). The contained germanium oxide or zinc oxide was dissolved.
(試験E1 分光測定)
 処理工程前後の、実施例12及び13の表面微細構造を備えるガラス基板の反射率、透過率、吸収率を測定した。測定は、分光光度計((株)日立ハイテクノロジーズ製、U-4100)を用い、400nmから700nmの波長領域で測定した。
 分光測定の結果を表5に示す。表5では、波長550nmにおける処理前後の透過率、反射率、吸収率の値を、変化量と共に示している。実施例12及び実施例13の両方で、反射率の変化は小さいものであった。
(Test E1 spectroscopic measurement)
The reflectance, transmittance, and absorptance of the glass substrate having the surface microstructure of Examples 12 and 13 before and after the treatment process were measured. The measurement was performed using a spectrophotometer (U-4100, manufactured by Hitachi High-Technologies Corporation) in a wavelength region of 400 nm to 700 nm.
The results of the spectroscopic measurement are shown in Table 5. In Table 5, the values of transmittance, reflectance, and absorptance before and after treatment at a wavelength of 550 nm are shown together with the amount of change. In both Example 12 and Example 13, the change in reflectance was small.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(試験E2 接触角測定)
 処理工程前後の、実施例12及び13の表面微細構造を備えるガラス基板の水接触角を測定した。測定は、接触角計(協和界面科学製社製、型番FACE CA-X型)を用いて25℃の条件で測定した。
 接触角測定の結果を表6に示す。処理工程後において、水接触角が低下し、親水性が向上することがわかった。
(Test E2 contact angle measurement)
The water contact angle of the glass substrate provided with the surface microstructure of Examples 12 and 13 before and after the treatment process was measured. The measurement was performed at 25 ° C. using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., model number FACE CA-X type).
The results of contact angle measurement are shown in Table 6. It was found that the water contact angle was lowered and the hydrophilicity was improved after the treatment step.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
<F.実施例14に係る表面微細構造の形成>
(F-1.前駆体層形成工程)
 以下の条件で、被処理物としてのガラス基材上に、実施例14に係る前駆体層を積層した。
 実施例14の前駆体層は、酸化チタンと酸化ケイ素の多層構造(層1~層3)に、酸化ケイ素及び酸化ゲルマニウムを含む層(層4)を積層したものである。
 スパッタ装置 :カルーセル型バッチ式スパッタ装置
 ターゲット  :φ150、厚さ6mm
  層1:酸化チタン(TiO)100vol%
  層2:酸化ケイ素(SiO)100vol%
  層3:酸化チタン(TiO)100vol%
  層4:酸化ケイ素(SiO):酸化ゲルマニウム(GeO)=55vol%:45vol%
 スパッタ方式 :DCスパッタ(TiO)、RFスパッタ(SiO、GeO
 排気装置   :ターボ分子ポンプ
 到達真空度  :5×10-4Pa
 基材温度   :25℃(室温)
 スパッタ電力 :0.80kW(TiO)、1.20kW(SiO)、0.26kW(GeO
 前駆体層の膜厚:250±25nm
  層1:12±1nm
  層2:35±4nm
  層3:115±12nm
  層4:88±9nm
 Ar流量   :120sccm
 酸素流量   :5sccm
 使用基材   :ガラス基材(1.0mm厚)
<F. Formation of Surface Microstructure According to Example 14>
(F-1. Precursor layer forming step)
The precursor layer according to Example 14 was laminated on a glass substrate as an object to be processed under the following conditions.
The precursor layer of Example 14 is obtained by laminating a layer (layer 4) containing silicon oxide and germanium oxide on a multilayer structure (layers 1 to 3) of titanium oxide and silicon oxide.
Sputtering device: Carousel type batch type sputtering device Target: φ150, thickness 6mm
Layer 1: Titanium oxide (TiO) 100 vol%
Layer 2: Silicon oxide (SiO 2 ) 100 vol%
Layer 3: Titanium oxide (TiO) 100 vol%
Layer 4: Silicon oxide (SiO 2 ): Germanium oxide (GeO 2 ) = 55 vol%: 45 vol%
Sputtering method: DC sputtering (TiO), RF sputtering (SiO 2 , GeO 2 )
Exhaust device: Turbo molecular pump Ultimate vacuum: 5 × 10 −4 Pa
Substrate temperature: 25 ° C. (room temperature)
Sputtering power: 0.80 kW (TiO 2 ), 1.20 kW (SiO 2 ), 0.26 kW (GeO 2 )
Film thickness of precursor layer: 250 ± 25 nm
Layer 1: 12 ± 1 nm
Layer 2: 35 ± 4 nm
Layer 3: 115 ± 12 nm
Layer 4: 88 ± 9 nm
Ar flow rate: 120 sccm
Oxygen flow rate: 5 sccm
Substrate used: Glass substrate (1.0 mm thick)
(F-2.処理工程)
 実施例14の前駆体層が積層されたガラス基板を、室温(25℃)において、純水(栗田工業社のマクエースKN型で製造、pH7.0)に浸漬をし、前駆体層に含まれる酸化ゲルマニウムを溶解させた。
(F-2. Processing step)
The glass substrate on which the precursor layer of Example 14 was laminated was immersed in pure water (manufactured by Mac Ace KN type, Kurita Kogyo Co., Ltd., pH 7.0) at room temperature (25 ° C.) and contained in the precursor layer. Germanium oxide was dissolved.
(試験F1 分光測定)
 処理工程前後の、実施例14の表面微細構造を備えるガラス基板の反射率、透過率、吸収率を測定した。測定は、分光光度計((株)日立ハイテクノロジーズ製、U-4100)を用い、400nmから700nmの波長領域で測定した。
 分光測定の結果を表7に示す。表7では、波長550nmにおける処理前後の透過率、反射率、吸収率の値を、変化量と共に示している。
(Test F1 spectroscopic measurement)
The reflectance, transmittance, and absorptance of the glass substrate having the surface microstructure of Example 14 before and after the treatment process were measured. The measurement was performed using a spectrophotometer (U-4100, manufactured by Hitachi High-Technologies Corporation) in a wavelength region of 400 nm to 700 nm.
Table 7 shows the results of the spectroscopic measurement. In Table 7, the values of transmittance, reflectance, and absorption before and after treatment at a wavelength of 550 nm are shown together with the amount of change.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(試験F2 接触角測定)
 処理工程前後の、実施例14の表面微細構造を備えるガラス基板の水接触角を測定した。測定は、接触角計(協和界面科学製社製、型番FACE CA-X型)を用いて25℃の条件で測定した。
 接触角測定の結果を表8に示す。処理工程後において、水接触角が低下し、親水性が向上することがわかった。
(Test F2 contact angle measurement)
The water contact angle of the glass substrate provided with the surface microstructure of Example 14 before and after the treatment step was measured. The measurement was performed at 25 ° C. using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., model number FACE CA-X type).
The results of contact angle measurement are shown in Table 8. It was found that the water contact angle was lowered and the hydrophilicity was improved after the treatment step.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
<G.実施例15乃至18及び比較例3に係る表面微細構造の形成>
(G-1.前駆体層形成工程)
 以下の条件で、被処理物としてのガラス基材上に、実施例15乃至18及び比較例3に係る前駆体層を積層した。
 スパッタ装置 :カルーセル型バッチ式スパッタ装置
 ターゲット  :φ150、厚さ6mm
  実施例15:酸化亜鉛(ZnO)45vol%/酸化ケイ素(SiO)55vol%混合ターゲット
  実施例16及び17:酸化モリブデン(MoO)45vol%/酸化ケイ素(SiO)55vol%混合ターゲット
  実施例18:酸化ゲルマニウム(GeO)45vol%/酸化ケイ素(SiO)55vol%混合ターゲット
  比較例3:酸化ゲルマニウム(GeO)45vol%/酸化タンタル(Ta)55vol%
 スパッタ方式 :RFスパッタ(SiO、ZnO、GeO、Ta)、DCスパッタ(MoO
 排気装置   :ターボ分子ポンプ
 到達真空度  :5×10-4Pa
 基材温度   :25℃(室温)
 スパッタ電力 :1.2kw(SiO)、0.27kw(ZnO)、0.21kw(実施例16、MoO)、0.17kw(実施例17、MoO)、0.11kW(GeO)、0.67kw(Ta
 前駆体層の膜厚
  実施例15~18:100±10nm
  比較例3:100±10nm
 Ar流量   :120sccm
 酸素流量   :0sccm(実施例15及び18)
         50sccm(実施例16)
         40sccm(実施例17)
         10sccm(比較例3)
 使用基材   :ガラス基材(1.0mm厚)
<G. Formation of Surface Microstructure According to Examples 15 to 18 and Comparative Example 3>
(G-1. Precursor layer forming step)
On the following conditions, the precursor layers according to Examples 15 to 18 and Comparative Example 3 were laminated on the glass substrate as the object to be processed.
Sputtering device: Carousel type batch type sputtering device Target: φ150, thickness 6mm
Example 15: Zinc oxide (ZnO) 45 vol% / silicon oxide (SiO 2 ) 55 vol% mixed target Examples 16 and 17: Molybdenum oxide (MoO 3 ) 45 vol% / silicon oxide (SiO 2 ) 55 vol% mixed target Example 18 : Germanium oxide (GeO 2 ) 45 vol% / silicon oxide (SiO 2 ) 55 vol% mixed target Comparative Example 3: germanium oxide (GeO 2 ) 45 vol% / tantalum oxide (Ta 2 O 5 ) 55 vol%
Sputtering method: RF sputtering (SiO 2, ZnO, GeO 2 , Ta 2 O 5), DC sputtering (MoO 3)
Exhaust device: Turbo molecular pump Ultimate vacuum: 5 × 10 −4 Pa
Substrate temperature: 25 ° C. (room temperature)
Sputtering power: 1.2 kW (SiO 2 ), 0.27 kW (ZnO), 0.21 kW (Example 16, MoO 3 ), 0.17 kW (Example 17, MoO 3 ), 0.11 kW (GeO 2 ), 0.67 kw (Ta 2 O 5 )
Film thickness of precursor layer Examples 15 to 18: 100 ± 10 nm
Comparative Example 3: 100 ± 10 nm
Ar flow rate: 120 sccm
Oxygen flow rate: 0 sccm (Examples 15 and 18)
50 sccm (Example 16)
40 sccm (Example 17)
10 sccm (Comparative Example 3)
Substrate used: Glass substrate (1.0 mm thick)
(G-2.処理工程)
 実施例15の前駆体層が積層されたガラス基板を、室温(25℃)において、弱酸(希塩酸)に浸漬をした。
 実施例16~18、比較例3の前駆体層が積層されたガラス基板を、室温(25℃)において、純水(栗田工業社のマクエースKN型で製造、pH7.0)に浸漬をした。
(G-2. Treatment process)
The glass substrate on which the precursor layer of Example 15 was laminated was immersed in a weak acid (dilute hydrochloric acid) at room temperature (25 ° C.).
The glass substrate on which the precursor layers of Examples 16 to 18 and Comparative Example 3 were laminated was immersed in pure water (manufactured by Mac Ace KN type, Kurita Kogyo Co., Ltd., pH 7.0) at room temperature (25 ° C.).
(試験G1 分光測定)
 処理工程前後の、実施例15~18、比較例3の表面微細構造を備えるガラス基板の反射率、透過率、吸収率を測定した。測定は、分光光度計((株)日立ハイテクノロジーズ製、U-4100)を用い、400nmから700nmの波長領域で測定した。
 分光測定の結果を表9に示す。表9では、波長550nmにおける処理前後の透過率、反射率、吸収率の値を、変化量と共に示している。
 実施例15では酸化亜鉛(ZnO)を弱酸(希塩酸)浸漬で選択的に溶解することが可能であることがわかった。
 比較例3では、純水に浸漬する前後で反射率の変化がなく、酸化タンタル(Ta)と酸化ゲルマニウム(GeO)との間で複合酸化物が生成した可能性ある。
(Test G1 spectroscopic measurement)
The reflectance, transmittance, and absorptivity of the glass substrates having the surface microstructures of Examples 15 to 18 and Comparative Example 3 before and after the treatment process were measured. The measurement was performed using a spectrophotometer (U-4100, manufactured by Hitachi High-Technologies Corporation) in a wavelength region of 400 nm to 700 nm.
Table 9 shows the results of the spectroscopic measurement. In Table 9, the values of transmittance, reflectance, and absorption before and after treatment at a wavelength of 550 nm are shown together with the amount of change.
In Example 15, it was found that zinc oxide (ZnO) can be selectively dissolved by dipping in weak acid (dilute hydrochloric acid).
In Comparative Example 3, there was no change in reflectivity before and after immersion in pure water, and there was a possibility that a composite oxide was generated between tantalum oxide (Ta 2 O 5 ) and germanium oxide (GeO 2 ).
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
(試験G2 接触角測定)
 処理工程前後の、実施例16~18、比較例3の表面微細構造を備えるガラス基板の水接触角を測定した。測定は、接触角計(協和界面科学製社製、型番FACE CA-X型)を用いて25℃の条件で測定した。
 接触角測定の結果を表10に示す。処理工程後において、水接触角が低下し、親水性が向上することがわかった。
(Test G2 contact angle measurement)
The water contact angles of the glass substrates having the surface microstructures of Examples 16 to 18 and Comparative Example 3 before and after the treatment process were measured. The measurement was performed at 25 ° C. using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., model number FACE CA-X type).
Table 10 shows the results of the contact angle measurement. It was found that the water contact angle was lowered and the hydrophilicity was improved after the treatment step.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
(試験G3 電子顕微鏡観察)
 処理工程前後の、実施例15~18、比較例3の表面微細構造を備えるガラス基板の表面及び断面の状態を電界放出形走査電子顕微鏡(FE-SEM、(株)日立ハイテクノロジーズ製、S-4300)を用いて観察した。処理工程の前後において、電子顕微鏡画像の変化はなかった。
(Test G3 electron microscope observation)
The surface and cross-sectional states of the glass substrates having the surface microstructures of Examples 15 to 18 and Comparative Example 3 before and after the treatment process were measured with a field emission scanning electron microscope (FE-SEM, manufactured by Hitachi High-Technologies Corporation, S- 4300). There was no change in the electron microscope image before and after the treatment step.
<H.実施例及び比較例に係る表面微細構造の表面粗さの測定>
(試験H1 表面粗さ測定)
 処理工程前後の、実施例2,3,5,8~11,15,16、比較例2の表面微細構造を備えるガラス基板の表面粗さを測定した。測定は、原子間力顕微鏡(AFM、Bruker AXS K.K.製、Innova)を用いて以下の条件で測定した。
 測定モード:Tapping
 Input Gain:×20
 Target Tapping Signal:2V
 Scan Range:3μm×3μm
 Scan Rate:0.5Hz
 Line:256
 ClsedLoop:ON
 測定温度:25℃
<H. Measurement of Surface Roughness of Surface Microstructures According to Examples and Comparative Examples>
(Test H1 surface roughness measurement)
The surface roughness of the glass substrate having the surface microstructure of Examples 2, 3, 5, 8 to 11, 15, 16 and Comparative Example 2 before and after the treatment step was measured. The measurement was performed under the following conditions using an atomic force microscope (AFM, manufactured by Bruker AXS KK, Innova).
Measurement mode: Tapping
Input Gain: × 20
Target Tapping Signal: 2V
Scan Range: 3μm × 3μm
Scan Rate: 0.5Hz
Line: 256
ClsedLoop: ON
Measurement temperature: 25 ° C
 表面粗さの測定の結果を表11に示す。
 表11において、Raは算術平均粗さであり、Rzは最大高さである(JIS B 0601:2001)。
 処理工程後において、算術平均粗さ(Ra)及び最大高さ(Rz)が低下していることがわかった。
 この結果から、本発明に係る表面微細構造の形成方法によって、表面の平滑性が非常に高い親水性や低反射性を有する表面微細構造を形成可能であることが示された。より詳細には、本発明に係る表面微細構造の形成方法によれば、算術平均粗さ(Ra)が2.0nm以下(表面微細構造の厚さ、50nm以上500nm以下)、1.5nm以下(表面微細構造の厚さ、50nm以上250nm以下)、1.0nm以下(表面微細構造の厚さ、50nm以上100nm以下)であることから、表面微細構造の厚さが50nm以上500nm以下の範囲において算術平均粗さ(Ra)が10nm以下の表面微細構造を形成可能であることが示された。
Table 11 shows the results of the surface roughness measurement.
In Table 11, Ra is the arithmetic average roughness, and Rz is the maximum height (JIS B 0601: 2001).
It was found that the arithmetic average roughness (Ra) and the maximum height (Rz) were lowered after the treatment step.
From this result, it was shown that the surface microstructure having very high surface smoothness and hydrophilicity and low reflectivity can be formed by the method for forming the surface microstructure according to the present invention. More specifically, according to the method for forming a surface microstructure according to the present invention, the arithmetic average roughness (Ra) is 2.0 nm or less (the thickness of the surface microstructure, 50 nm or more and 500 nm or less), 1.5 nm or less ( Since the thickness of the surface microstructure is 50 nm or more and 250 nm or less) and 1.0 nm or less (thickness of the surface microstructure, 50 nm or more and 100 nm or less), the thickness of the surface microstructure is 50 nm or more and 500 nm or less. It was shown that a surface microstructure having an average roughness (Ra) of 10 nm or less can be formed.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
1,1A 表面微細構造を備える物品
10 被処理物(物品)
 10a 被処理物表面
20 表面微細構造(表面ポーラス構造)
30 反射防止膜
 30a 第一の反射防止膜
 30b 第二の反射防止膜
2,2A 前駆体層を備える物品
40 前駆体層
 40a 第一の前駆体層
 40b 第二の前駆体層
 40c 第三の前駆体層
1,1A Article 10 with surface microstructure Structure to be processed (article)
10a Surface of workpiece 20 Surface microstructure (surface porous structure)
DESCRIPTION OF SYMBOLS 30 Antireflection film 30a 1st antireflection film 30b 2nd antireflection film 2,2A Article 40 provided with precursor layer 40 precursor layer 40a 1st precursor layer 40b 2nd precursor layer 40c 3rd precursor Body layer

Claims (19)

  1.  被処理物を用意する被処理物用意工程と、
     前記被処理物の上に第1の物質と第2の物質を含む前駆体層を積層する前駆体層積層工程と、
     前記前駆体層積層工程で得られた前記前駆体層を処理液に浸漬して前記第2の物質を溶解する処理工程と、
     を行うことを特徴とする表面微細構造の形成方法。
    A processing object preparation step of preparing a processing object;
    A precursor layer laminating step of laminating a precursor layer containing a first substance and a second substance on the workpiece;
    A treatment step of immersing the precursor layer obtained in the precursor layer lamination step in a treatment liquid to dissolve the second substance;
    And forming a surface microstructure.
  2.  前記前駆体層積層工程はスパッタリング法、イオンプレーティング法、真空蒸着法、化学蒸着法から選択される方法を用いて行われることを特徴とする請求項1に記載の表面微細構造の形成方法。 The method for forming a surface microstructure according to claim 1, wherein the precursor layer stacking step is performed using a method selected from a sputtering method, an ion plating method, a vacuum deposition method, and a chemical vapor deposition method.
  3.  前記前駆体層積層工程において、前記第1の物質及び前記第2の物質を含有するターゲット材料又は蒸着材料を用いて前記前駆体層が前記被処理物の上に積層されることを特徴とする請求項1又は2に記載の表面微細構造の形成方法。 In the precursor layer stacking step, the precursor layer is stacked on the object to be processed using a target material or a vapor deposition material containing the first substance and the second substance. The method for forming a surface microstructure according to claim 1 or 2.
  4.  前記前駆体層積層工程は80℃以下で行われることを特徴とする請求項1乃至3のいずれか一項に記載の表面微細構造の形成方法。 The method for forming a surface microstructure according to any one of claims 1 to 3, wherein the precursor layer laminating step is performed at 80 ° C or lower.
  5.  前記処理工程で用いる処理液は水であることを特徴とする請求項1乃至4のいずれか一項に記載の表面微細構造の形成方法。 The method for forming a surface microstructure according to any one of claims 1 to 4, wherein the treatment liquid used in the treatment step is water.
  6.  前記処理工程で用いる前記水は、温度が10℃以上100℃以下、pHが6以上8以下であることを特徴とする請求項5に記載の表面微細構造の形成方法。 The method for forming a surface microstructure according to claim 5, wherein the water used in the treatment step has a temperature of 10 ° C to 100 ° C and a pH of 6 to 8.
  7.  前記第1の物質は、前記処理工程で用いる処理液に対して不溶性又は難溶性であり、
     前記第2の物質は、前記処理工程で用いる処理液に対して易溶性であることを特徴とする請求項1乃至6のいずれか一項に記載の表面微細構造の形成方法。
    The first substance is insoluble or hardly soluble in the treatment liquid used in the treatment step,
    The method for forming a surface microstructure according to any one of claims 1 to 6, wherein the second substance is easily soluble in a processing solution used in the processing step.
  8.  前記第1の物質は、酸化ケイ素(SiO)、フッ化マグネシウム(MgF)、酸化チタン(TiO)、酸化タンタル(Ta)を含む群より選択される一種以上の物質であることを特徴とする請求項7に記載の表面微細構造の形成方法。 The first substance is one or more substances selected from the group including silicon oxide (SiO 2 ), magnesium fluoride (MgF 2 ), titanium oxide (TiO 2 ), and tantalum oxide (Ta 2 O 5 ). The method for forming a surface microstructure according to claim 7.
  9.  前記第2の物質は、ゲルマニウム酸化物(GeO)、モリブデン酸化物(MoO)、タングステン酸化物(WO)、酸化亜鉛(ZnO)、塩化ナトリウム(NaCl)を含む群より選択される一種以上の物質であることを特徴とする請求項7又は8に記載の表面微細構造の形成方法。 The second substance is a kind selected from the group including germanium oxide (GeO x ), molybdenum oxide (MoO x ), tungsten oxide (WO 3 ), zinc oxide (ZnO), and sodium chloride (NaCl). The method for forming a surface microstructure according to claim 7 or 8, wherein the material is the above-mentioned substance.
  10.  前記被処理物は、樹脂、ガラス、金属、合金、セラミクス(金属酸化物、金属窒化物、金属酸窒化物)を含む群より選択される一種以上の物質を含有することを特徴とする請求項1乃至9のいずれか一項に記載の表面微細構造の形成方法。 The said to-be-processed object contains 1 or more types of substances selected from the group containing resin, glass, a metal, an alloy, and ceramics (metal oxide, metal nitride, metal oxynitride), The method for forming a surface microstructure according to any one of 1 to 9.
  11.  前記被処理物は、樹脂を含有することを特徴とする請求項1乃至10のいずれか一項に記載の表面微細構造の形成方法。 The method for forming a surface microstructure according to any one of claims 1 to 10, wherein the object to be processed contains a resin.
  12.  前記被処理物は、レンズ、ハーフミラー、タッチパネル、表示機器を含む群より選択される物品であることを特徴とする請求項1乃至11のいずれか一項に記載の表面微細構造の形成方法。 The method for forming a surface microstructure according to any one of claims 1 to 11, wherein the object to be processed is an article selected from a group including a lens, a half mirror, a touch panel, and a display device.
  13.  物品と、
     該物品の上に形成された反射防止膜と、
     該反射防止膜の上に形成された微細構造と、
     を備えることを特徴とする表面微細構造を備える物品。
    Goods,
    An antireflective coating formed on the article;
    A microstructure formed on the antireflection film;
    An article comprising a surface microstructure characterized by comprising:
  14.  前記微細構造は、酸化ケイ素(SiO)、フッ化マグネシウム(MgF)、酸化チタン(TiO)、酸化タンタル(Ta)を含む群より選択される一種以上の物質によって形成されていることを特徴とする請求項13に記載の表面微細構造を備える物品。 The microstructure is formed of one or more materials selected from the group including silicon oxide (SiO 2 ), magnesium fluoride (MgF 2 ), titanium oxide (TiO 2 ), and tantalum oxide (Ta 2 O 5 ). An article comprising a surface microstructure according to claim 13.
  15.  前記物品は、樹脂、ガラス、金属、合金、セラミクス(金属酸化物、金属窒化物、金属酸窒化物)を含む群より選択される一種以上の物質を含有することを特徴とする請求項13又は14に記載の表面微細構造を備える物品。 The said article contains 1 or more types of substances selected from the group containing resin, glass, a metal, an alloy, and ceramics (metal oxide, metal nitride, metal oxynitride), or characterized by the above-mentioned. 14. An article comprising the surface microstructure of item 14.
  16.  前記物品は、樹脂を含有することを特徴とする請求項13乃至15のいずれか一項に記載の表面微細構造を備える物品。 The article comprising a surface microstructure according to any one of claims 13 to 15, wherein the article contains a resin.
  17.  前記物品は、レンズ、ハーフミラー、タッチパネル、表示機器を含む群より選択される物品であることを特徴とする請求項13乃至16のいずれか一項に記載の表面微細構造を備える物品。 The article having a surface microstructure according to any one of claims 13 to 16, wherein the article is an article selected from a group including a lens, a half mirror, a touch panel, and a display device.
  18.  表面の反射率が10%以下であることを特徴とする請求項13乃至17のいずれか一項に記載の表面微細構造を備える物品。 The article having a surface microstructure according to any one of claims 13 to 17, wherein the reflectance of the surface is 10% or less.
  19.  表面の水接触角が10°以下であることを特徴とする請求項13乃至18のいずれか一項に記載の表面微細構造を備える物品。 The article having a surface microstructure according to any one of claims 13 to 18, wherein the water contact angle of the surface is 10 ° or less.
PCT/JP2019/019602 2018-05-18 2019-05-17 Method of forming surface microstructure, and article provided with surface microstructure WO2019221255A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207035573A KR20210011396A (en) 2018-05-18 2019-05-17 Method of forming surface microstructure and article having surface microstructure
CN201980033091.XA CN112136063A (en) 2018-05-18 2019-05-17 Method for forming surface microstructure and article having surface microstructure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-095918 2018-05-18
JP2018095918A JP2019200369A (en) 2018-05-18 2018-05-18 Method for forming surface fine structure and article having surface fine structure

Publications (1)

Publication Number Publication Date
WO2019221255A1 true WO2019221255A1 (en) 2019-11-21

Family

ID=68539764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019602 WO2019221255A1 (en) 2018-05-18 2019-05-17 Method of forming surface microstructure, and article provided with surface microstructure

Country Status (5)

Country Link
JP (1) JP2019200369A (en)
KR (1) KR20210011396A (en)
CN (1) CN112136063A (en)
TW (1) TW202003413A (en)
WO (1) WO2019221255A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053124A1 (en) * 2022-09-09 2024-03-14 キヤノンオプトロン株式会社 Multilayer film, optical component, spectacles and method for producing multilayer film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170702A (en) * 1985-01-25 1986-08-01 Kunio Yoshida Production of porous thin film
JP2005195625A (en) * 2003-12-26 2005-07-21 Pentax Corp Antireflection coating and optical element having the antireflection coating
JP2017182065A (en) * 2016-03-29 2017-10-05 リコーイメージング株式会社 Optical element and manufacturing method of the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5002135B2 (en) 2005-06-16 2012-08-15 株式会社アルバック Method for producing ultra-low refractive index film
US8399349B2 (en) * 2006-04-18 2013-03-19 Air Products And Chemicals, Inc. Materials and methods of forming controlled void
JP2008258488A (en) * 2007-04-06 2008-10-23 Oki Electric Ind Co Ltd Method of manufacturing semiconductor device
JP2016157108A (en) 2015-02-24 2016-09-01 国立大学法人岐阜大学 Anti-reflection film and manufacturing method therefor
WO2016170727A1 (en) * 2015-04-20 2016-10-27 富士フイルム株式会社 Manufacturing method for structure
WO2016204003A1 (en) * 2015-06-18 2016-12-22 旭硝子株式会社 Glass article and method for producing same
JP6784969B2 (en) * 2015-10-22 2020-11-18 天馬微電子有限公司 Thin film device and its manufacturing method
JP6768422B2 (en) * 2016-09-05 2020-10-14 ジオマテック株式会社 Thin film with base material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170702A (en) * 1985-01-25 1986-08-01 Kunio Yoshida Production of porous thin film
JP2005195625A (en) * 2003-12-26 2005-07-21 Pentax Corp Antireflection coating and optical element having the antireflection coating
JP2017182065A (en) * 2016-03-29 2017-10-05 リコーイメージング株式会社 Optical element and manufacturing method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024053124A1 (en) * 2022-09-09 2024-03-14 キヤノンオプトロン株式会社 Multilayer film, optical component, spectacles and method for producing multilayer film

Also Published As

Publication number Publication date
KR20210011396A (en) 2021-02-01
CN112136063A (en) 2020-12-25
JP2019200369A (en) 2019-11-21
TW202003413A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
EP2687875B1 (en) Method for producing optical member
JP4182236B2 (en) Optical member and optical member manufacturing method
CN100595608C (en) Optical transparent member and optical system using the same
JP2006259711A (en) Optical transparent member and optical system using the same
CN103376480A (en) Optical member, method for manufacturing optical member, and optical film of optical member
JP6903994B2 (en) Optical element and its manufacturing method
JP2012255984A (en) Antireflection film, optical system and optical apparatus
JP5523066B2 (en) Method for manufacturing optical article
JP2010231174A (en) Optical article and method for producing the same
WO2019221255A1 (en) Method of forming surface microstructure, and article provided with surface microstructure
Kim et al. Design of a thin film for optical applications, consisting of high and low refractive index multilayers, fabricated by a layer-by-layer self-assembly method
US11091830B2 (en) Moth-eye transfer mold, method of manufacturing moth-eye transfer mold, and method of transferring moth-eye structure
CN113167928A (en) Dielectric multilayer film, method for producing same, and optical member using same
JP6948369B2 (en) Manufacturing method of moth-eye transfer type and moth-eye transfer type
WO2018110017A1 (en) Optical product
JP2008162181A (en) Laminated film, optical element having the same laminated film and manufacturing method of laminated film
JP2018039133A (en) Thin film with substrate
WO2018216540A1 (en) Lens having hydrophilic anti-reflection film and production method therefor
JP2000075104A (en) Antifogging optical article and its production
US20140186640A1 (en) Anti-adhesion transparent thin film and method for forming the same
WO2024053124A1 (en) Multilayer film, optical component, spectacles and method for producing multilayer film
Keerthana Nanoparticle Embedded Acrylic Polymer Coating for Enhanced Optical Transmittance
WO2024053125A1 (en) Multilayer film, optical member including multilayer film, and method for producing multilayer film
JP5292137B2 (en) Antireflection film and optical element
JP2020190710A (en) Antireflection film and optical element having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207035573

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19803177

Country of ref document: EP

Kind code of ref document: A1