JPH04116502A - Conductive antireflection coat - Google Patents

Conductive antireflection coat

Info

Publication number
JPH04116502A
JPH04116502A JP2238661A JP23866190A JPH04116502A JP H04116502 A JPH04116502 A JP H04116502A JP 2238661 A JP2238661 A JP 2238661A JP 23866190 A JP23866190 A JP 23866190A JP H04116502 A JPH04116502 A JP H04116502A
Authority
JP
Japan
Prior art keywords
layer
oxide
film thickness
optical
lambda0
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2238661A
Other languages
Japanese (ja)
Inventor
Tatsuo Ota
達男 太田
Tomohito Nakano
智史 中野
Setsuo Tokuhiro
節夫 徳弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2238661A priority Critical patent/JPH04116502A/en
Publication of JPH04116502A publication Critical patent/JPH04116502A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the high antireflection effect stable to incident light of 400 to 850nm by forming the 2nd layer of an intermediate layer between a 1st layer and a 3rd layer of a layer which consists of a metal oxide having >=1.5 and <1.9 refractive index and has a specific film thickness. CONSTITUTION:The conductive antireflection coat is set at lambda0 design wavelength existing within the 400 to 850nm range and consists essentially of either of indium oxide and tin oxide or a mixture composed thereof or a mixture composed of the tin oxide and antimony oxide on the surface of optical part. The 1st layer 1 with which the optical film thickness defined by the product of the refractive index and the film thickness is within a (0.032+ or -0.010)lambda0 is formed. The 2nd layer 2 which consists essentially of the metal oxide having >=1.5 and <1.9 refractive index and has the optical film thickness within a (0.204+ or -0.061)lambda0 range is then formed. The 3rd layer 3 which consists of silicon oxide and has the optical film thickness within a (0.255+ or -0.077)lambda0 is formed. The high antireflection effect stable to the incident light of lambda0 wavelength is obtd. in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光学部品の表面に形成される導電性反射防止
コートに関し、レーザプリンタ、ファクシミリ、光ディ
スクや光磁気ディスクの記録再生装置等におけるレンズ
、ミラー プリズムあるいは光電変換素子等の光学部品
に対し特に好適に用いられる導電性反射防止コートに関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a conductive antireflection coating formed on the surface of an optical component, and relates to a lens used in a laser printer, a facsimile, a recording/reproducing device for an optical disk or a magneto-optical disk, etc. , relates to a conductive antireflection coating that is particularly suitably used for optical components such as mirror prisms or photoelectric conversion elements.

〔従来の技術〕[Conventional technology]

従来、光学部品上の第1層が設計入射光波長をλ。とじ
て屈折率と層厚との積で表される光学的膜厚λ。/4の
酸化インジューム(+n2oz)層、その上の第2層が
同゛様の光学的膜厚の弗化マグネシウム(MgFz)層
の2層から成る反射防止コートが、400〜700nm
の範囲にある波長λ。の入射光の反射および帯電による
埃やトナー等(以下、単に埃と言う)の付着が少ない導
電性反射防止コートとして、実公昭49−12614号
公報により知られており、また同じく第1層が光学的膜
厚λ。/4の酸化アルミニウム(Au、O,)または弗
化セリウム(CeFa)層、その上の第2層が適当な光
学的膜厚の酸化シリコン(Sin2乃至5in)層、そ
の上の第3層が光学的膜厚λ。/2のインジューム乃至
酸化インジューム層、その上の第4層が第2層と同様の
酸化シリコン層、その上の第5層が光学的膜厚λ。/4
の弗化マグネシウム層の5層から成る反射防止コートが
、同様の効果を有する導電性反射防止コートとして、特
公昭53−28214号公報により知られている。
Conventionally, the first layer on the optical component has a design incident light wavelength of λ. The optical film thickness λ is expressed as the product of the refractive index and the layer thickness. The anti-reflection coating consists of two layers: an indium oxide (+n2oz) layer of 400 nm to 700 nm, and a second layer on top of which is a magnesium fluoride (MgFz) layer with a similar optical thickness.
wavelength λ in the range of . It is known from Japanese Utility Model Publication No. 49-12614 as a conductive anti-reflection coating that reduces the adhesion of dust and toner (hereinafter simply referred to as dust) due to reflection of incident light and charging. Optical film thickness λ. /4 aluminum oxide (Au, O,) or cerium fluoride (CeFa) layer, the second layer thereon is a silicon oxide (Sin2 to 5 inch) layer with an appropriate optical thickness, and the third layer thereon is Optical film thickness λ. /2 indium or indium oxide layer, the fourth layer above it is a silicon oxide layer similar to the second layer, and the fifth layer above it has an optical thickness λ. /4
An antireflection coating consisting of five magnesium fluoride layers is known from Japanese Patent Publication No. 53-28214 as a conductive antireflection coating having similar effects.

しかし、実公昭49−12614号公報に記載の導電性
反射防止コートは、それを設けられる光学部品の表面部
分すなわち基体がアクリル系樹脂、ポリカーボネート系
樹脂、ポリスチレン系樹脂等の高分子物質から成る場゛
合、基体の耐熱性が低いことから、第1層や第2層を蒸
着する際の基体温度を20000以下にしなくてはなら
ず、そのために耐環境性特に、耐湿性に優れたMgF、
層を形成することが困難であり、導電性反射防止コート
の耐湿性が低いと言う問題がある。また、特公昭53−
28214号公報に記載の導電性反射防止コートは、上
述の問題のほか、構成層数が多くて生産性が低いと言う
問題、オヨび第3層がインジューム層の場合、吸収成分
が生じるために、その成分波長の光に対して光学特性が
劣ったものになると言う問題もある。
However, the conductive antireflection coating described in Japanese Utility Model Publication No. 12614/1983 is applicable only when the surface portion of the optical component on which it is applied, that is, the base, is made of a polymeric material such as acrylic resin, polycarbonate resin, or polystyrene resin. In this case, since the heat resistance of the substrate is low, the substrate temperature must be kept below 20,000 when depositing the first and second layers.
There are problems in that the layer is difficult to form and the moisture resistance of the conductive anti-reflective coating is low. In addition, special public service 53-
In addition to the above-mentioned problems, the conductive anti-reflection coating described in Publication No. 28214 has problems such as low productivity due to the large number of constituent layers, and the production of absorption components when the third layer is an indium layer. Another problem is that the optical properties are inferior to light of the component wavelengths.

なお、設計波長λ。は、その波長で反射防止コートの反
射率を極小にする波長を意味する。また、以下光学的膜
厚を単に膜厚とも言う。
In addition, the design wavelength λ. means the wavelength at which the reflectance of the antireflection coating is minimized. Further, hereinafter, the optical film thickness is also simply referred to as film thickness.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、上述のような導電性反射防止コートの問題を
解消するためになされたものであり、導電性反射防止コ
ートの構成層数が少なくて、生産性が高く、しかも光学
部品の基体が高分子物質から成るものであっても耐湿性
に優れて、剥がれが生じ難く、吸収成分の生じることが
なくて、少なくとも400〜850nmの範囲にある任
意の波長を設計波長λ。に設定することができて、λ0
の波長の入射光に対し安定して高い透光性すなわち反射
防止効果を与え、帯電による埃の付着も効果的に防止す
る導電性反射防止コートの提供を目的とする。
The present invention was made in order to solve the above-mentioned problems with conductive anti-reflection coatings, and the number of layers constituting the conductive anti-reflection coatings is small, productivity is high, and the substrate of optical components is The design wavelength λ is any wavelength in the range of at least 400 to 850 nm that has excellent moisture resistance, is difficult to peel off, and does not generate absorption components even if it is made of a polymeric substance. can be set to λ0
An object of the present invention is to provide a conductive antireflection coating that stably provides high transparency, that is, antireflection effect, to incident light having a wavelength of , and effectively prevents the adhesion of dust due to charging.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、光学部品の表面に形成される導電性反射防止
コートにおいて、導電性反射防止コートが、400〜8
50nmの範囲にある設計波長をλ0として、光学部品
表面上の酸化インジウムと酸化錫のいずれか一方もしく
は混合物または酸化錫と酸化アンチモンの混合物を主成
分とする、屈折率と層厚の積で定義される光学的膜厚が
(0,032±0.Q10)λ0の範囲にある第1層と
、その上の屈折率が1.5以上で1.9未満である金属
酸化物を主成分とする、光学的膜厚がC0,204±0
.061)λ。の範囲にある第2層と、その上の酸化シ
リコンを主成分とする、光学的膜厚が(0,255±0
.077)λ。の範囲にある第3層の3層から成ること
を特、徴とする導電性反射防止コートにあ゛す、この構
成によって前記目的を達成する。
The present invention provides a conductive anti-reflection coat formed on the surface of an optical component, in which the conductive anti-reflection coat has an anti-reflection coating of 400 to 80%.
Defined as the product of refractive index and layer thickness, with the design wavelength in the range of 50 nm being λ0, on the surface of an optical component whose main component is either one or a mixture of indium oxide and tin oxide, or a mixture of tin oxide and antimony oxide. The main components are a first layer whose optical thickness is in the range of (0,032±0.Q10)λ0, and a metal oxide on top of which the refractive index is 1.5 or more and less than 1.9. The optical film thickness is C0,204±0
.. 061)λ. The optical thickness is (0,255±0
.. 077) λ. The above object is achieved by this construction of a conductive anti-reflection coating characterized in that it consists of three layers with a third layer in the range of .

〔作用〕[Effect]

すなわち、本発明の導電性反射防止コートは、3層構成
であるから生産性が高く、その3層構成のうちの表層の
第3層を、屈折率が1.49程度と言ったように比較的
小さくて、基体温度が低くても蒸着により容易に耐湿性
に優れて剥がれにくい膜を形成し得る酸化シリコンの特
定の膜厚の層としているから、表面反射が少なくて、光
学部品の基体が高分子物質から成るものであっても耐湿
性に優れて剥がれが生じにくく、光学部品の基体上の第
1層を屈折率が1.9程度と言ったように大きくて、導
電性の優れる酸化インジウムと酸化錫のいずれか一方も
しくは混合物または酸化錫と酸化アンチモンの混合物の
特定の膜厚の層とし、第1層と第3層の間の中間層の第
2層を屈折率が1.5以上で1.9未満である金属酸化
物の特定の膜厚の層としているから、吸収成分が生じる
ことによる光学特性の劣化がなくて、表層の第3層が単
層ではIQ+20/口程度の高い表面電気抵抗を与える
酸化シリコンから成っていても帯電による埃付着を防止
し、全体として透光性に優れると言う性能を示す。
In other words, the conductive antireflection coating of the present invention has a three-layer structure, so productivity is high, and the third surface layer of the three-layer structure has a refractive index of about 1.49. The silicon oxide layer has a specific thickness and can be easily deposited to form a moisture-resistant and hard-to-peel film even when the substrate temperature is low, reducing surface reflections and making the substrate of optical components more stable. Even if it is made of a polymeric material, it has excellent moisture resistance and is difficult to peel off. The second layer of the intermediate layer between the first layer and the third layer has a refractive index of 1.5. As mentioned above, since the metal oxide layer has a specific thickness of less than 1.9, there is no deterioration of optical properties due to the generation of absorption components, and if the third surface layer is a single layer, the thickness is about IQ + 20/mouth. Even though it is made of silicon oxide, which provides high surface electrical resistance, it prevents dust from adhering to it due to charging, and exhibits excellent overall translucency.

〔実施例〕〔Example〕

以下、本発明を実施例によって説明する。 Hereinafter, the present invention will be explained by examples.

第1図は光学部品の基体上に本発明の導電性反射防止コ
ートを形成した状態を示す模式的断面図であり、0はア
クリル系樹脂、ポリカーボネート系樹脂、ポリスチレン
系樹脂、ポリスルフォン系樹脂、アモルファスポリオレ
フィン系樹脂等の高分子物質やガラス材料等の無機物質
から成る光学部品表面の透明基体、lはλ。を400〜
850nmの範囲にある値に設定した場合の、導電性反
射防止コートの酸化インジウムと酸化錫のいずれか一方
もしくは混合物または酸化錫と酸化アンチモンの混合物
を主成分とした膜厚が(0,032±0.010)λ。
FIG. 1 is a schematic cross-sectional view showing a state in which the conductive antireflection coating of the present invention is formed on the substrate of an optical component, and 0 is an acrylic resin, a polycarbonate resin, a polystyrene resin, a polysulfone resin, The transparent substrate on the surface of the optical component is made of a polymeric substance such as an amorphous polyolefin resin or an inorganic substance such as a glass material, and l is λ. 400~
When the conductive anti-reflection coating is set to a value in the range of 850 nm, the film thickness of the conductive anti-reflection coating mainly composed of one or a mixture of indium oxide and tin oxide or a mixture of tin oxide and antimony oxide is (0,032± 0.010)λ.

の範囲にある第1層、2は屈折率Nが1.5≦N〈1.
9である金属酸化物、好ましくは酸化セリウム、酸化ア
ルミニウム、酸化アルミニウムと酸化ジルコニウムの混
合物を主成分とした膜厚が(0,204壬0.061)
λ。の第2層、3は酸化シリコンを主成分とした膜厚が
(0,255±0.077)λ。の第3層である。
The first layer 2 has a refractive index N in the range of 1.5≦N<1.
9, preferably cerium oxide, aluminum oxide, or a mixture of aluminum oxide and zirconium oxide, the film thickness is (0.204 mm 0.061 mm).
λ. The second layer 3 is mainly composed of silicon oxide and has a thickness of (0,255±0.077)λ. This is the third layer.

第1層1は、好ましくは錫含有量5〜10重量%の酸化
インジウムと酸化錫の混合物ペレット、もしくはアンチ
モン含有量5〜lO重量%の酸化錫と酸化アンチモンの
混合物または酸化インジウムもしくは酸化錫を蒸着材料
とし、電子銃加熱の反応蒸着法により、基体0の温度を
材料に応じ20〜300℃の範囲の適当な温度に保ち、
酸素圧1〜4X 10−’Torrの酸素雰囲気、5〜
30人/secの蒸着速度の条件で、または、電子銃加
熱のイオン化蒸着法(例えば、特公昭56−40447
号に記載の方法)により、基体温度を上述と同様の温度
に保ち、高周波放電アンテナから例えば出力300Wで
13.56MHzの放電を行いながら、酸素圧1〜5 
X 10−’Torrの酸素雰囲気、5〜40人/se
cの蒸着速度の条件で、基体0上に蒸着材を蒸着するこ
とにより形成できる。第2Mは、酸化セリウム、酸化ア
ルミニウム、酸化アルミニウムと酸化ジルコニウムの混
合物等のNが1.5≦N < 1.9の金属酸化物を蒸
着材料とし、電子銃加熱のイオン化蒸着法により、蒸着
速度が10〜40人/secである以外は第1層形成と
同じ条件で第1層1上に蒸着材料を蒸着して形成できる
。第3層は、好ましくはSiO□もしくはそれにSiO
の混合した酸化シリコンの粒状物乃至はペレットを蒸着
材料とし、蒸着速度が10〜50人/seeである以外
は第2層形成と同じ条件で第2層2上に蒸着材料を蒸着
して形成できる。
The first layer 1 preferably consists of pellets of a mixture of indium oxide and tin oxide with a tin content of 5 to 10% by weight, or a mixture of tin oxide and antimony oxide with an antimony content of 5 to 10% by weight, or indium oxide or tin oxide. As a vapor deposition material, the temperature of the substrate 0 is maintained at an appropriate temperature in the range of 20 to 300 ° C. depending on the material by a reactive vapor deposition method using electron gun heating.
Oxygen atmosphere with oxygen pressure 1~4X 10-'Torr, 5~
Under the condition of a deposition rate of 30 people/sec, or by the ionization deposition method using electron gun heating (for example, Japanese Patent Publication No. 56-40447
1), the substrate temperature is maintained at the same temperature as above, and the oxygen pressure is 1 to 5 while discharging from a high frequency discharge antenna at 13.56 MHz with an output of 300 W, for example.
X 10-'Torr oxygen atmosphere, 5-40 people/se
It can be formed by depositing a deposition material on the substrate 0 at a deposition rate of c. The second M uses a metal oxide with N of 1.5≦N<1.9, such as cerium oxide, aluminum oxide, or a mixture of aluminum oxide and zirconium oxide, as a deposition material, and uses an ionization deposition method using electron gun heating to increase the deposition rate. The deposition material can be deposited on the first layer 1 under the same conditions as for forming the first layer, except that the rate is 10 to 40 people/sec. The third layer is preferably SiO□ or SiO
The evaporation material is formed by evaporating the evaporation material on the second layer 2 under the same conditions as for forming the second layer, except that the evaporation rate is 10 to 50 people/see, using a mixture of silicon oxide particles or pellets as the evaporation material. can.

以上のように基体0上に形成される本発明の反射防止コ
ートは、400〜850nmの範囲で安定してλ。
The antireflection coating of the present invention formed on the substrate 0 as described above has a stable λ in the range of 400 to 850 nm.

の入射光に対する反射率が低くて透光性に優れ、表層の
第3層3の表面電気抵抗が10100/口程度となって
帯電による埃付着を防止し、さらに60℃、90%RH
の環境に1週間放置後も膜剥がれや光学特性の劣化の発
生は見られないと言ったように耐環境性にも優れる。こ
の点をさらに以下の実施例と比較例で説明する。
has low reflectance to incident light and excellent translucency, and the surface electrical resistance of the third layer 3 is approximately 10100/mouth to prevent dust adhesion due to charging.
It also has excellent environmental resistance, as no film peeling or deterioration of optical properties was observed even after it was left in an environment for one week. This point will be further explained in the following examples and comparative examples.

実施例1 透明アクリル樹脂板を基体0とし、アンチモン含有量5
重量%の酸化錫と酸化アンチモンの混合物ペレットを蒸
着材料として、前述のイオン化蒸着法により、基体Oの
温度15〜40℃、高周波放電アンテナの放電電力30
0W、周波数13.56MHz、蒸着雰囲気酸素圧2 
X 10−’Torr、蒸着速度10人/secの条件
で基体0上に膜厚20nm (0,032λ。;但し、
設計波長λ。は632nmに設定)の第1mlを形成し
、次に酸化セリウムペレットを蒸着材料として、高周波
放電アンテナの放電電力200W、蒸着速度を15人/
secとした以外は第1層形成と同じ条件で第1層l上
に膜厚129nm (0,204λ。)の第2層2を形
成し、次に酸化シリコン(S10□)の粒状物を蒸着材
料として、蒸着雰囲気酸素圧I X 10−’Torr
、蒸着速度10A /secとした以外は第2層形成と
同じ条件で第2層2上に膜厚161nm (0,255
λ0)の第3層3を形成した。これによって得られた光
学部品は、入射された光の分光反射率が波長λ。で0.
2%以下(第2図の分光反射率グラフの曲線lに示す)
と言った優れた透光性を有する。また、第3層3の表面
電気抵抗が10”Ωた以下であり、帯電による埃付着の
防止効果も十分であった。さらに、60°C990%R
Hの環境に1週間放置した後も膜剥がれは認められなか
った。なお、表面電気抵抗はすべて、東亜電機製表面電
気抵抗測定器5M−10Eを用いて中央電極と周囲電極
間に100OVの電圧を印加する条件で測定した値であ
る。
Example 1 A transparent acrylic resin plate was used as the substrate, and the antimony content was 5.
Using pellets of a mixture of tin oxide and antimony oxide (wt%) as a vapor deposition material, the temperature of the substrate O was 15 to 40°C, and the discharge power of the high-frequency discharge antenna was 30°C, using the above-mentioned ionization vapor deposition method.
0W, frequency 13.56MHz, vapor deposition atmosphere oxygen pressure 2
A film thickness of 20 nm (0,032λ.; However,
Design wavelength λ. was set at 632 nm), and then using cerium oxide pellets as the evaporation material, the discharge power of the high frequency discharge antenna was 200 W, and the evaporation rate was set to 15 people/
A second layer 2 with a film thickness of 129 nm (0,204λ) was formed on the first layer l under the same conditions as the first layer except that sec was used, and then silicon oxide (S10□) granules were evaporated. As a material, the vapor deposition atmosphere oxygen pressure I x 10-'Torr
, a film thickness of 161 nm (0,255
A third layer 3 of λ0) was formed. The optical component thus obtained has a spectral reflectance of incident light at wavelength λ. So 0.
2% or less (as shown in curve l of the spectral reflectance graph in Figure 2)
It has excellent translucency. In addition, the surface electrical resistance of the third layer 3 was less than 10''Ω, and the effect of preventing dust adhesion due to charging was sufficient.
No peeling of the film was observed even after leaving it in the H environment for one week. All surface electrical resistances are values measured using a surface electrical resistance measuring device 5M-10E manufactured by Toa Denki under the condition of applying a voltage of 100 OV between the center electrode and the surrounding electrodes.

実施例2 第illの形成条件が錫含有量5重量%の酸化インジウ
ムと酸化錫の混合物ペレットを蒸着材料とし、蒸着雰囲
気酸素圧3 X 10−’Torr、蒸着速度8蒸着速
度8占/sec異なる以外は、実施例1と全く同様に、
第1層l−第3層3を形成した。得られた光学部品も実
施例1と変わらない分光反射率を示し、第3層3の表面
電気抵抗が10’Ω/口以下で、帯電による埃付着の防
止効果も十分であり、耐環境性も実施例1のものと同等
であった。
Example 2 Conditions for forming the ill were: pellets of a mixture of indium oxide and tin oxide with a tin content of 5% by weight were used as the evaporation material, the evaporation atmosphere was oxygen pressure 3 x 10-' Torr, and the evaporation rate was 8%/sec. Other than that, it is exactly the same as Example 1,
First layer 1-third layer 3 were formed. The obtained optical component also showed the same spectral reflectance as Example 1, the surface electrical resistance of the third layer 3 was 10'Ω/or less, the effect of preventing dust adhesion due to charging was sufficient, and the environmental resistance was improved. It was also the same as that of Example 1.

実施例3 第2層2の形成条件が酸化アルミニウムを蒸着材料とし
、高周波放電アンテナの放電電力250W。
Example 3 The second layer 2 was formed using aluminum oxide as the vapor deposition material, and the discharge power of the high frequency discharge antenna was 250W.

蒸着雰囲気酸素圧2.5X 10情Torr、蒸着速度
10人/sec、膜厚1100n (’0.16λ0)
とした点で実施例1と異なる以外は、実施例1と全く同
様に、第1層1〜第3層3を形成した。得られた光学部
品は、第2図に曲線2で示した分光反射率で、λ。の反
射率が略1%と言った優れた透光性を有し、帯電による
埃付者の防止効果および耐環境性も実施例1のものと同
様に良好であった。
Deposition atmosphere oxygen pressure 2.5X 10 Torr, deposition rate 10 people/sec, film thickness 1100n ('0.16λ0)
The first layer 1 to the third layer 3 were formed in exactly the same manner as in Example 1, except that the second layer was different from Example 1 in that the second layer was the same as that in Example 1. The obtained optical component had a spectral reflectance of λ as shown by curve 2 in FIG. It had excellent light transmittance with a reflectance of about 1%, and the effect of preventing dust from accumulating due to electrostatic charge and environmental resistance were also as good as those of Example 1.

実施例4 第2層の形成条件が酸化アルミニウムと酸化ジルコニウ
ムの重量混合割合1:1の混合物を蒸着材料とし、高周
波放電アンテナの放電電力250W。
Example 4 The second layer was formed using a mixture of aluminum oxide and zirconium oxide in a weight ratio of 1:1 as the deposition material, and the discharge power of the high frequency discharge antenna was 250 W.

蒸着雰囲気酸素圧2.5X 10”’Torr、蒸着速
度10人/sec、膜厚120nm (0,19λ。)
とした点、および第3層3の形成条件が膜厚156nm
 (0,25λ。)とした点で実施例2と異なる以外は
、実施例2と全く同様に、第1層1〜第3層3を形成し
た。得られた光学部品は、第2図に曲線3で示した分光
反射率で、λ0の反射率が0.5%の優れた透光性を有
し、帯電による埃付着の防止効果および耐環境性も実施
例1のものと同様に良好であった。
Vapor deposition atmosphere oxygen pressure 2.5X 10''' Torr, vapor deposition rate 10 people/sec, film thickness 120 nm (0.19λ.)
and the formation conditions for the third layer 3 were a film thickness of 156 nm.
The first layer 1 to the third layer 3 were formed in exactly the same manner as in Example 2, except that it was different from Example 2 in that (0,25λ.). The obtained optical component has excellent light transmittance with a spectral reflectance of 0.5% at λ0 as shown by curve 3 in Fig. 2, and is effective in preventing dust adhesion due to charging and environmental resistance. The properties were also as good as in Example 1.

比較例 上述の各実施例で各層1〜3を形成する際にいずれかの
層の膜厚を実施例1の膜厚より増加または減少させたと
ころ、得られた光学部品は膜厚の増加率または減少率が
30%以内では設計波長λ。
Comparative Example When forming each layer 1 to 3 in each of the above-mentioned Examples, the thickness of one of the layers was increased or decreased from the thickness of Example 1, and the resulting optical component showed a rate of increase in thickness. Or, if the reduction rate is within 30%, the design wavelength λ.

での反射率は5%以下で使用に耐える値であったが、そ
れを超えると反射率が5%を超えて使用に耐えられない
ものとなった。
The reflectance was 5% or less, which was a value that could be used, but when it exceeded that value, the reflectance exceeded 5% and became unusable.

〔発明の効果〕〔Effect of the invention〕

本発明の導電性反射防止コートは、構成層数が少なくて
生産性が高く、しかも光学部品の透明基体が高分子物質
から成るものであっても耐湿性に優れて、剥がれが生じ
難く、吸収成分の生じることがなくて、少なくとも40
0〜850nmの範囲にある任意の波長を設計波長λ。
The conductive anti-reflection coating of the present invention has a small number of constituent layers and high productivity, and even when the transparent substrate of an optical component is made of a polymer material, it has excellent moisture resistance, is difficult to peel off, and absorbs At least 40% without any components
The design wavelength λ is any wavelength in the range of 0 to 850 nm.

に設定することができ、λ。の波長の入射光に対し安定
して高い透光性すなわち反射防止効果を与え、帯電によ
る埃付着も効果的に防止する。
can be set to λ. It provides stable high transparency, that is, anti-reflection effect, to incident light with a wavelength of , and effectively prevents dust adhesion due to charging.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光学部品の基体上に本発明の導電性反射防止コ
ートを形成した状態を示す模式的断面図、第2図は本発
明の導電性反射防止コートの分光反射率の例を示す分光
反射率グラフである。 0・・・透明基体    l・・・第1層2・・・第2
層     3・・・第3層第1図
FIG. 1 is a schematic cross-sectional view showing the state in which the conductive anti-reflection coating of the present invention is formed on the substrate of an optical component, and FIG. 2 is a spectral diagram showing an example of the spectral reflectance of the conductive anti-reflection coating of the present invention. It is a reflectance graph. 0...Transparent substrate l...First layer 2...Second
Layer 3...Third layer Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)光学部品の表面に形成される導電性反射防止コー
トにおいて、導電性反射防止コートが、400〜850
nmの範囲にある設計波長をλ_0として、光学部品表
面上の酸化インジウムと酸化錫のいずれか一方もしくは
混合物または酸化錫と酸化アンチモンの混合物を主成分
とする、屈折率と層厚の積で定義される光学的膜厚が(
0.032±0.010)λ_0の範囲にある第1層と
、その上の屈折率が1.5以上で1.9未満である金属
酸化物を主成分とする、光学的膜厚が(0.204±0
.061)λ_0の範囲にある第2層と、その上の酸化
シリコンを主成分とする、光学的膜厚が(0.255±
0.077)λ_0の範囲にある第3層の3層から成る
ことを特徴とする導電性反射防止コート。
(1) In the conductive anti-reflection coat formed on the surface of the optical component, the conductive anti-reflection coat has a molecular weight of 400 to 850
Defined as the product of refractive index and layer thickness on the surface of an optical component whose main component is either one or a mixture of indium oxide and tin oxide, or a mixture of tin oxide and antimony oxide, with the design wavelength in the nm range being λ_0 The optical film thickness is (
0.032±0.010) The optical film thickness is ( 0.204±0
.. 061) The second layer is in the range of λ_0 and the optical film thickness is (0.255±
0.077) A conductive anti-reflection coating comprising three layers with a third layer in the range of λ_0.
(2)前記第2層の金属酸化物が酸化セリウムまたは酸
化アルミニウムまたは酸化アルミニウムと酸化ジルコニ
ウムの混合物である特許請求の範囲第1項記載の導電性
反射防止コート。
(2) The conductive antireflection coat according to claim 1, wherein the metal oxide of the second layer is cerium oxide, aluminum oxide, or a mixture of aluminum oxide and zirconium oxide.
JP2238661A 1990-09-06 1990-09-06 Conductive antireflection coat Pending JPH04116502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2238661A JPH04116502A (en) 1990-09-06 1990-09-06 Conductive antireflection coat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2238661A JPH04116502A (en) 1990-09-06 1990-09-06 Conductive antireflection coat

Publications (1)

Publication Number Publication Date
JPH04116502A true JPH04116502A (en) 1992-04-17

Family

ID=17033448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2238661A Pending JPH04116502A (en) 1990-09-06 1990-09-06 Conductive antireflection coat

Country Status (1)

Country Link
JP (1) JPH04116502A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9315997B2 (en) 2012-04-10 2016-04-19 Dirtt Environmental Solutions, Ltd Tamper evident wall cladding system
WO2023119773A1 (en) * 2021-12-22 2023-06-29 ホヤ レンズ タイランド リミテッド Method for manufacturing optical member, optical member, and eyeglasses
WO2024053124A1 (en) * 2022-09-09 2024-03-14 キヤノンオプトロン株式会社 Multilayer film, optical component, spectacles and method for producing multilayer film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9315997B2 (en) 2012-04-10 2016-04-19 Dirtt Environmental Solutions, Ltd Tamper evident wall cladding system
WO2023119773A1 (en) * 2021-12-22 2023-06-29 ホヤ レンズ タイランド リミテッド Method for manufacturing optical member, optical member, and eyeglasses
WO2024053124A1 (en) * 2022-09-09 2024-03-14 キヤノンオプトロン株式会社 Multilayer film, optical component, spectacles and method for producing multilayer film

Similar Documents

Publication Publication Date Title
JP3980643B2 (en) Method for coating substrate with titanium dioxide
US6896981B2 (en) Transparent conductive film and touch panel
JP3464785B2 (en) Improved anti-reflective composites
JP3708429B2 (en) Method for manufacturing vapor deposition composition, method for manufacturing optical component having vapor deposition composition and antireflection film
US4048372A (en) Coating of cadmium stannate films onto plastic substrates
JPS5860701A (en) Reflection preventing film
JPH03109503A (en) Antireflection film of optical parts made of plastic and formation thereof
JPS6034076A (en) Amorphous silicon solar cell
JPH04116502A (en) Conductive antireflection coat
JP3013099B2 (en) Optical component having conductive anti-reflection coating
JPH0634801A (en) Conductive antireflection film
JPH07263727A (en) Manufacture of photoelectric conversion device
JPS60130704A (en) Antireflection film for plastic substrate
JPH0450801A (en) Optical parts having conductive antireflection coat
JP2001074903A (en) Antireflection film and optical device
JPH04330401A (en) Optical parts having antireflection film
JP2746602B2 (en) Spectral filter
JPH10268107A (en) Synthetic resin lens with antireflection film
JPS62237401A (en) Antireflection film
TWI766688B (en) Optical multilayer film and use thereof
JPH116901A (en) Reflection preventing film
JPS59125669A (en) Solar battery
JPH0894802A (en) Optical element
JP2004300580A (en) Method for manufacturing vapor deposition composition, and method for manufacturing optical component having vapor deposition composition and reflection preventive film
JP2624827B2 (en) Half mirror