TWI766688B - Optical multilayer film and use thereof - Google Patents

Optical multilayer film and use thereof Download PDF

Info

Publication number
TWI766688B
TWI766688B TW110117637A TW110117637A TWI766688B TW I766688 B TWI766688 B TW I766688B TW 110117637 A TW110117637 A TW 110117637A TW 110117637 A TW110117637 A TW 110117637A TW I766688 B TWI766688 B TW I766688B
Authority
TW
Taiwan
Prior art keywords
multilayer film
layer
optical multilayer
substrate
conductive layer
Prior art date
Application number
TW110117637A
Other languages
Chinese (zh)
Other versions
TW202246050A (en
Inventor
詹子厚
唐謙仁
Original Assignee
大永真空設備股份有限公司
逢甲大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大永真空設備股份有限公司, 逢甲大學 filed Critical 大永真空設備股份有限公司
Priority to TW110117637A priority Critical patent/TWI766688B/en
Application granted granted Critical
Publication of TWI766688B publication Critical patent/TWI766688B/en
Publication of TW202246050A publication Critical patent/TW202246050A/en

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

An optical multilayer film includes a substrate, a first coupling layer, a conductive layer and a second coupling layer. The first coupling layer is disposed on the second surface of the substrate. The conductive layer is disposed on the first coupling layer. The second coupling layer is disposed on the conductive layer. The first coupling layer is located between the substrate and the conductive layer.

Description

光學多層膜及其用途Optical multilayer film and its use

本發明是有關於一種光學多層膜,且特別是有關於一種可抗反射、加熱除霧以及加熱除霜的光學多層膜。The present invention relates to an optical multilayer film, and more particularly, to an optical multilayer film capable of anti-reflection, heat defogging, and heat defrosting.

因應車輛自動駕駛的功能興起,車身周圍的偵測鏡頭與光達系統的需求增加,藉以提高距離偵測與物體辨識等能力,故偵測鏡頭需要非常良好的高光學特性。然而,當車輛於極端氣候時,例如下雪、濃霧、大雨等天氣時,偵測鏡頭則可能會因為結霜或露珠凝結而失去對物體能精確辨識的功能。In response to the rise of automatic driving functions of vehicles, the demand for detection lenses and lidar systems around the vehicle body has increased to improve the capabilities of distance detection and object recognition. Therefore, detection lenses require very good high optical characteristics. However, when the vehicle is in extreme weather, such as snow, dense fog, heavy rain, etc., the detection lens may lose its ability to accurately identify objects due to frost or dew condensation.

本發明提供一種光學多層膜,同時具有可抗反射、加熱除霧以及加熱除霜的效果。The invention provides an optical multi-layer film, which has the effects of anti-reflection, heating defogging and heating defrosting at the same time.

本發明的光學多層膜包括基材、第一耦合層、導電層以及第二耦合層。第一耦合層設置於基材上。導電層設置於第一耦合層上。第二耦合層設置於導電層上。第一耦合層位於基材與導電層之間。The optical multilayer film of the present invention includes a substrate, a first coupling layer, a conductive layer, and a second coupling layer. The first coupling layer is disposed on the substrate. The conductive layer is disposed on the first coupling layer. The second coupling layer is disposed on the conductive layer. The first coupling layer is located between the substrate and the conductive layer.

在本發明的一實施例中,上述的基材具有第一表面以及與第一表面相對的第二表面。上述的光學多層膜更包括抗反射膜,設置於基材的第一表面上。第一耦合層、導電層以及第二耦合層設置於基材的第二表面上。In an embodiment of the present invention, the above-mentioned substrate has a first surface and a second surface opposite to the first surface. The above-mentioned optical multilayer film further includes an anti-reflection film, which is disposed on the first surface of the substrate. The first coupling layer, the conductive layer and the second coupling layer are disposed on the second surface of the substrate.

在本發明的一實施例中,上述的導電層的片電阻值為10 Ω/□至250 Ω/□。In an embodiment of the present invention, the sheet resistance of the conductive layer is 10 Ω/□ to 250 Ω/□.

在本發明的一實施例中,上述的導電層的片電阻值為10 Ω/□至30 Ω/□。In an embodiment of the present invention, the sheet resistance of the conductive layer is 10 Ω/□ to 30 Ω/□.

在本發明的一實施例中,上述的導電層的厚度大於50奈米且小於等於400奈米。In an embodiment of the present invention, the thickness of the above-mentioned conductive layer is greater than 50 nm and less than or equal to 400 nm.

在本發明的一實施例中,上述的光學多層膜在波長為400奈米至700奈米時的反射率為0.1%至5%。In an embodiment of the present invention, the above-mentioned optical multilayer film has a reflectivity of 0.1% to 5% when the wavelength is 400 nm to 700 nm.

在本發明的一實施例中,上述的光學多層膜在波長為400奈米至700奈米時的反射率為0.1%至1%。In an embodiment of the present invention, the above-mentioned optical multilayer film has a reflectance of 0.1% to 1% when the wavelength is 400 nm to 700 nm.

在本發明的一實施例中,上述的基材的形式為非平面。In an embodiment of the present invention, the form of the above-mentioned substrate is non-planar.

在本發明的一實施例中,上述的基材的第一表面為凸面,且第二表面為凹面。In an embodiment of the present invention, the first surface of the substrate is convex, and the second surface is concave.

在本發明的一實施例中,上述的導電層的材料為透明導電材料。In an embodiment of the present invention, the material of the above-mentioned conductive layer is a transparent conductive material.

在本發明的光學多層膜的用途,其可用於抗反射、加熱除霧以及加熱除霜。In the use of the optical multilayer film of the present invention, it can be used for anti-reflection, heating defogging and heating defrosting.

基於上述,在本發明的實施例的光學多層膜中,藉由將第一耦合層設置於基材與導電層之間,並將導電層設置於第一耦合層與第二耦合層之間,可提升本實施例的光學多層膜的光學規格,並使光學多層膜具有抗反射的效果。Based on the above, in the optical multilayer film of the embodiment of the present invention, by disposing the first coupling layer between the substrate and the conductive layer, and disposing the conductive layer between the first coupling layer and the second coupling layer, The optical specification of the optical multilayer film of this embodiment can be improved, and the optical multilayer film can have an anti-reflection effect.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, the following embodiments are given and described in detail with the accompanying drawings as follows.

圖1繪示為本發明第一實施例的光學多層膜的剖面示意圖。圖2為本發明第一實施例的光學多層膜的製作方法的流程圖。圖3繪示為真空鍍膜設備的上視示意圖。FIG. 1 is a schematic cross-sectional view of an optical multilayer film according to a first embodiment of the present invention. FIG. 2 is a flow chart of the manufacturing method of the optical multilayer film according to the first embodiment of the present invention. FIG. 3 is a schematic top view of the vacuum coating equipment.

請參照圖1,本實施例的光學多層膜100包括基材110、抗反射膜120、第一耦合層130、導電層140以及第二耦合層150。其中,基材110具有第一表面111以及與第一表面111相對的第二表面112。基材110可包括玻璃或透明有機材料,但不以此為限。舉例來說,玻璃可包括高度透明玻璃B270,透明有機材料可包括聚甲基丙烯酸甲脂(polymethyl methacrylate,PMMA)或其他合適的透明有機材料。此外,在本實施例中,基材110的形式可例如是平面,但不以此為限。在一些實施例中,基材110的形式也可以為非平面,如圖4所示。Referring to FIG. 1 , the optical multilayer film 100 of this embodiment includes a substrate 110 , an anti-reflection film 120 , a first coupling layer 130 , a conductive layer 140 and a second coupling layer 150 . The substrate 110 has a first surface 111 and a second surface 112 opposite to the first surface 111 . The substrate 110 may include glass or transparent organic material, but is not limited thereto. For example, the glass may include highly transparent glass B270, and the transparent organic material may include polymethyl methacrylate (PMMA) or other suitable transparent organic materials. In addition, in this embodiment, the form of the substrate 110 may be, for example, a plane, but not limited thereto. In some embodiments, the form of the substrate 110 may also be non-planar, as shown in FIG. 4 .

抗反射膜120設置於基材110的第一表面111上。抗反射膜120包括至少一第一介電材料層121與至少一第二介電材料層122。第一介電材料層121與第二介電材料層122可互相推疊成多層結構,且該多層結構的層數可視需要而調整。第一介電材料層121的材料可例如是高折射率材料,第二介電材料層122的材料可例如是低折射率材料,但不以此為限。因此,在本實施例中,抗反射膜120可以是由高折射率材料與低折射率材料互相推疊而成的多層結構,藉此可降低光學多層膜100的反射率。在本實施例中,高折射率材料可包括二氧化鈦(TiO 2)、五氧化二鉭(Ta 2O 5)、五氧化二鈮(Nb 2O 5)、氮化鋁(AlN)或氮氧化鋁(AlON),低折射率材料可包括氟化鎂(MgF 2)、二氧化矽(SiO 2)或三氧化二鋁(Al 2O 3),但不以此為限。 The anti-reflection film 120 is disposed on the first surface 111 of the substrate 110 . The anti-reflection film 120 includes at least one first dielectric material layer 121 and at least one second dielectric material layer 122 . The first dielectric material layer 121 and the second dielectric material layer 122 can be stacked on each other to form a multi-layer structure, and the number of layers in the multi-layer structure can be adjusted as required. The material of the first dielectric material layer 121 may be, for example, a high refractive index material, and the material of the second dielectric material layer 122 may be, for example, a low refractive index material, but not limited thereto. Therefore, in this embodiment, the anti-reflection film 120 may be a multilayer structure formed by stacking a high refractive index material and a low refractive index material, thereby reducing the reflectivity of the optical multilayer film 100 . In this embodiment, the high refractive index material may include titanium dioxide (TiO 2 ), tantalum pentoxide (Ta 2 O 5 ), niobium pentoxide (Nb 2 O 5 ), aluminum nitride (AlN), or aluminum oxynitride (AlON), the low refractive index material may include magnesium fluoride (MgF 2 ), silicon dioxide (SiO 2 ) or aluminum oxide (Al 2 O 3 ), but not limited thereto.

第一耦合層130設置於基材110的第二表面112上。第一耦合層130與抗反射膜120分別位於基材110的相對兩側。第一耦合層130位於基材110與導電層140之間。第一耦合層130包括至少一第一介電材料層131與至少一第二介電材料層132。第一介電材料層131與第二介電材料層132可互相推疊成多層結構,且該多層結構的層數可視需要而調整。其中,第一介電材料層131與第二介電材料層132的材料可以相同或相似於抗反射膜120中的第一介電材料層121與第二介電材料層132的材料,故於此不再贅述。具體來說,第一耦合層130可以為多層結構(圖1示意地繪示為3層,但不以此為限),例如是三明治結構。其中,三明治結構中的最上層與最下層皆為第一介電材料層131,且中間層為第二介電材料層132。因此,在本實施例中,第一耦合層130可以是由高折射率材料與低折射率材料互相推疊而成的多層結構,藉此可降低光學多層膜100的反射率。The first coupling layer 130 is disposed on the second surface 112 of the substrate 110 . The first coupling layer 130 and the anti-reflection film 120 are respectively located on opposite sides of the substrate 110 . The first coupling layer 130 is located between the substrate 110 and the conductive layer 140 . The first coupling layer 130 includes at least one first dielectric material layer 131 and at least one second dielectric material layer 132 . The first dielectric material layer 131 and the second dielectric material layer 132 can be stacked on each other to form a multi-layer structure, and the number of layers in the multi-layer structure can be adjusted as required. Wherein, the materials of the first dielectric material layer 131 and the second dielectric material layer 132 may be the same or similar to the materials of the first dielectric material layer 121 and the second dielectric material layer 132 in the anti-reflection film 120 , so the This will not be repeated here. Specifically, the first coupling layer 130 may be a multi-layer structure (three layers are schematically shown in FIG. 1 , but not limited thereto), such as a sandwich structure. The uppermost layer and the lowermost layer in the sandwich structure are both the first dielectric material layer 131 , and the middle layer is the second dielectric material layer 132 . Therefore, in this embodiment, the first coupling layer 130 may be a multi-layer structure formed by stacking a high refractive index material and a low refractive index material, thereby reducing the reflectivity of the optical multilayer film 100 .

導電層140設置於基材110的第二表面112上且設置於第一耦合層130上。導電層140與基材110分別位於第一耦合層130的相對兩側。導電層140設置於第一耦合層130與第二耦合層150之間。在本實施例中,由於導電層140的片電阻值可例如是10 Ω/□(ohm/square)至250 Ω/□,且導電層140的厚度T1可例如是大於50奈米(nm)且小於等於400奈米(即50 nm<T≦400 nm),因而使得導電層140可透過外加的低電壓(例如3V至10V,但不以此為限)而具有導電與加熱的功能,進而使得本實施例的光學多層膜100可具有加熱除霧與加熱除霜的效果。The conductive layer 140 is disposed on the second surface 112 of the substrate 110 and on the first coupling layer 130 . The conductive layer 140 and the substrate 110 are respectively located on opposite sides of the first coupling layer 130 . The conductive layer 140 is disposed between the first coupling layer 130 and the second coupling layer 150 . In this embodiment, since the sheet resistance value of the conductive layer 140 can be, for example, 10 Ω/□ (ohm/square) to 250 Ω/□, and the thickness T1 of the conductive layer 140 can be, for example, greater than 50 nanometers (nm) and less than or equal to 400 nm (ie, 50 nm<T≦400 nm), so that the conductive layer 140 can pass through the applied low voltage (such as 3V to 10V, but not limited to) and have the functions of conduction and heating, thereby making The optical multilayer film 100 of this embodiment can have the effects of heating defogging and heating defrosting.

詳細來說,當片電阻值大於250 Ω/□和/或導電層140的厚度T1小於50奈米時,會要功率較強的電源方能提供足夠的電流來發熱,因而會有耗能過大的問題。當片電阻值小於10 Ω/□時,會造成導電層140的厚度T1過厚,因而會造成穿透率明顯下降,甚至會影響抗反射的效果。當導電層140的厚度T1大於400奈米時,會造成穿透率明顯下降,並影響抗反射的效果。此外,在一些實施例中,導電層140的片電阻值也可以為10 Ω/□至100 Ω/□。在一些實施例中,導電層140的片電阻值也可以為10 Ω/□至30 Ω/□,以使含有導電層140的光學多層膜100可具有較佳地加熱除霧與加熱除霜的效果。在一些實施例中,導電層140的厚度T1也可以大於100奈米且小於等於300奈米(即100 nm<T≦300nm)。此外,導電層140的設置也可使光學多層膜100具有抗電磁干擾的效果。In detail, when the sheet resistance value is greater than 250 Ω/□ and/or the thickness T1 of the conductive layer 140 is less than 50 nm, a power source with strong power will be required to provide enough current to generate heat, thus resulting in excessive energy consumption. The problem. When the sheet resistance value is less than 10 Ω/□, the thickness T1 of the conductive layer 140 will be too thick, which will cause the transmittance to decrease significantly, and even affect the anti-reflection effect. When the thickness T1 of the conductive layer 140 is greater than 400 nm, the transmittance will be significantly reduced, and the anti-reflection effect will be affected. In addition, in some embodiments, the sheet resistance value of the conductive layer 140 may also be 10 Ω/□ to 100 Ω/□. In some embodiments, the sheet resistance of the conductive layer 140 can also be 10 Ω/□ to 30 Ω/□, so that the optical multilayer film 100 containing the conductive layer 140 can have better heating defogging and heating defrosting properties. Effect. In some embodiments, the thickness T1 of the conductive layer 140 may also be greater than 100 nm and less than or equal to 300 nm (ie, 100 nm<T≦300 nm). In addition, the disposition of the conductive layer 140 can also enable the optical multilayer film 100 to have an anti-electromagnetic interference effect.

此外,在本實施例中,導電層140的材料可包括透明導電材料(transparent conducting oxide,TCO),但不以此為限。舉例來說,透明導電材料可例如是氧化銦錫(indium tin oxide,ITO)或其他合適的透明導電材料。藉此,可使導電層140除了有導電能力之外,也可具有較佳光學特性,例如是抗反射與可透光的特性。In addition, in this embodiment, the material of the conductive layer 140 may include transparent conducting oxide (TCO), but not limited thereto. For example, the transparent conductive material can be, for example, indium tin oxide (ITO) or other suitable transparent conductive materials. In this way, the conductive layer 140 can have better optical properties, such as anti-reflection and light-transmitting properties, in addition to the electrical conductivity.

第二耦合層150設置於基材110的第二表面112上且設置於導電層140上。第二耦合層150與第一耦合層130分別位於導電層140的相對兩側。第二耦合層150包括至少一第一介電材料層151與至少一第二介電材料層152。第一介電材料層151與第二介電材料層152可互相推疊成多層結構,且該多層結構的層數可視需要而調整。其中,第一介電材料層151與第二介電材料層152的材料可以相同或相似於抗反射膜120中的第一介電材料層121與第二介電材料層132的材料,故於此不再贅述。因此,在本實施例中,第二耦合層150可以是由高折射率材料與低折射率材料互相推疊而成的多層結構,藉此可降低光學多層膜100的反射率。The second coupling layer 150 is disposed on the second surface 112 of the substrate 110 and on the conductive layer 140 . The second coupling layer 150 and the first coupling layer 130 are respectively located on opposite sides of the conductive layer 140 . The second coupling layer 150 includes at least one first dielectric material layer 151 and at least one second dielectric material layer 152 . The first dielectric material layer 151 and the second dielectric material layer 152 can be stacked on each other to form a multi-layer structure, and the number of layers in the multi-layer structure can be adjusted as required. The materials of the first dielectric material layer 151 and the second dielectric material layer 152 may be the same or similar to the materials of the first dielectric material layer 121 and the second dielectric material layer 132 in the anti-reflection film 120, so the This will not be repeated here. Therefore, in this embodiment, the second coupling layer 150 may be a multi-layer structure formed by stacking a high refractive index material and a low refractive index material, thereby reducing the reflectivity of the optical multilayer film 100 .

在本實施例中,藉由將第一耦合層130設置於基材110與導電層140之間,並將導電層140設置於第一耦合層130與第二耦合層150之間,可使導電層140不會直接接觸基材110,並可提升光學多層膜100的光學規格,例如可使本實施例的光學多層膜100在波長為400奈米至700奈米時的反射率可例如是0.1%至5%,並具有抗反射的效果。在一些實施例中,光學多層膜100在波長為400奈米至700奈米時的反射率也可以為0.1%至1%,以使光學多層膜100可具有較佳的抗反射的效果。In this embodiment, by disposing the first coupling layer 130 between the substrate 110 and the conductive layer 140, and disposing the conductive layer 140 between the first coupling layer 130 and the second coupling layer 150, the conduction can be achieved The layer 140 does not directly contact the substrate 110, and can improve the optical specification of the optical multilayer film 100, for example, the reflectivity of the optical multilayer film 100 of this embodiment can be, for example, 0.1 when the wavelength is 400 nm to 700 nm % to 5%, and has an anti-reflection effect. In some embodiments, the reflectivity of the optical multilayer film 100 at a wavelength of 400 nm to 700 nm can also be 0.1% to 1%, so that the optical multilayer film 100 can have a better anti-reflection effect.

雖然本實施例的光學多層膜100的反射率(例如是0.1%至5%,或0.1%至1%)的波長範圍為400奈米至700奈米,但本發明並不對反射率的波長範圍加以限制。也就是說,在一些實施例中,所述波長範圍也可以視需要而調整。舉例來說,所述波長範圍也可以為380奈米至680奈米、420奈米至780奈米、或800奈米至1100奈米,但不以此為限。Although the wavelength range of the reflectance (eg, 0.1% to 5%, or 0.1% to 1%) of the optical multilayer film 100 of the present embodiment is 400 nm to 700 nm, the present invention does not affect the wavelength range of the reflectivity. be restricted. That is, in some embodiments, the wavelength range can also be adjusted as needed. For example, the wavelength range may also be 380 nm to 680 nm, 420 nm to 780 nm, or 800 nm to 1100 nm, but not limited thereto.

雖然本實施例的光學多層膜100可包括抗反射膜120、第一耦合層130、導電層140以及第二耦合層150,但抗反射膜120是可以視需要才選擇配置的。也就是說,在一些實施例中,光學多層膜也可不需設置抗反射膜,如圖5A所示。Although the optical multilayer film 100 of the present embodiment may include the anti-reflection film 120 , the first coupling layer 130 , the conductive layer 140 and the second coupling layer 150 , the anti-reflection film 120 can be selected as needed. That is, in some embodiments, the optical multilayer film may not need to be provided with an anti-reflection film, as shown in FIG. 5A .

然後,請同時參照圖2與圖3,以下將舉例說明本實施例的光學多層膜100的製作方法及其製作過程中所使用的真空鍍膜設備200,但不以此為限。2 and 3 at the same time, the manufacturing method of the optical multilayer film 100 of the present embodiment and the vacuum coating equipment 200 used in the manufacturing process will be illustrated below, but not limited thereto.

首先,請先參照圖3,本實施例的真空鍍膜設備200可包括真空反應腔體210、濺鍍靶座220、薄膜反應源230、真空系統240、電漿電源(未繪示)以及設備控制料件(未繪示)。其中,真空反應腔體210為光學多層膜的製備處。濺鍍靶座220為薄膜材料的來源,可生成金屬膜221。薄膜反應源230為介電膜231的生成來源。真空系統240由各類真空幫浦組合而成,可用來製造真空。電漿電源的形式可為直流、中頻、射頻、高功率磁控脈衝等,可作為產生電漿的動力。設備控制料件可以為工業電腦、可程式控制器、無熔絲開關、電磁開關等組件。First, referring to FIG. 3 , the vacuum coating apparatus 200 of this embodiment may include a vacuum reaction chamber 210 , a sputtering target base 220 , a thin film reaction source 230 , a vacuum system 240 , a plasma power supply (not shown), and an equipment control parts (not shown). The vacuum reaction chamber 210 is where the optical multilayer film is prepared. The sputtering target 220 is the source of the thin film material, and the metal film 221 can be formed. The thin film reaction source 230 is a source for the formation of the dielectric film 231 . The vacuum system 240 is composed of various types of vacuum pumps, which can be used to create a vacuum. The form of plasma power supply can be DC, intermediate frequency, radio frequency, high-power magnetron pulse, etc., which can be used as the power to generate plasma. Equipment control materials can be industrial computers, programmable controllers, fuseless switches, electromagnetic switches and other components.

接著,請同時參照圖1、圖2以及圖3,在本實施例的光學多層膜100的製作方法中,先利用真空鍍膜設備200中的真空系統240對真空反應腔體210抽真空。接著,形成抗反射膜120於基材110的第一表面111上。接著,形成第一耦合層130於基材110的第二表面112上。接著,形成導電層140於第一耦合層130上,以使第一耦合層130位於基材110與導電層140之間。然後,形成第二耦合層150於導電層140上。至此,已製作完成本實施例的光學多層膜100。Next, please refer to FIG. 1 , FIG. 2 and FIG. 3 at the same time, in the manufacturing method of the optical multilayer film 100 of the present embodiment, the vacuum reaction chamber 210 is evacuated by the vacuum system 240 in the vacuum coating apparatus 200 first. Next, an anti-reflection film 120 is formed on the first surface 111 of the substrate 110 . Next, a first coupling layer 130 is formed on the second surface 112 of the substrate 110 . Next, a conductive layer 140 is formed on the first coupling layer 130 , so that the first coupling layer 130 is located between the substrate 110 and the conductive layer 140 . Then, a second coupling layer 150 is formed on the conductive layer 140 . So far, the optical multilayer film 100 of this embodiment has been fabricated.

在本實施例中,形成抗反射膜120、第一耦合層130、導電層140以及第二耦合層150的原理為物理氣相沉積鍍膜(physical vapor deposition,PVD),而採用的方式例如是濺鍍(sputtering),並藉由電感耦合電漿源(inductively-coupled plasma,ICP)反應沉積之金屬來生成光學設計之高折射率材料與低折射率材料。In this embodiment, the principle of forming the anti-reflection film 120 , the first coupling layer 130 , the conductive layer 140 and the second coupling layer 150 is physical vapor deposition (PVD), and the method used is sputtering, for example. High-refractive index materials and low-refractive index materials of optical design are generated by sputtering and reactively depositing metals by inductively-coupled plasma (ICP).

以下將列舉其他實施例以作為說明。在此必須說明的是,下述實施例沿用前述實施例的元件標號與部分內容,其中採用相同的標號來表示相同或近似的元件,並且省略了相同技術內容的說明。關於省略部分的說明可參考前述實施例,下述實施例不再重複贅述。Other examples are listed below for illustration. It must be noted here that the following embodiments use the element numbers and part of the contents of the previous embodiments, wherein the same numbers are used to represent the same or similar elements, and the description of the same technical contents is omitted. For the description of the omitted part, reference may be made to the foregoing embodiments, and repeated descriptions in the following embodiments will not be repeated.

圖4繪示為本發明第二實施例的光學多層膜的剖面示意圖。請同時參照圖1與圖4,本實施例的光學多層膜100a與圖1中的光學多層膜100相似,惟二者主要差異之處在於:基材110a的形式。4 is a schematic cross-sectional view of an optical multilayer film according to a second embodiment of the present invention. Please refer to FIG. 1 and FIG. 4 at the same time. The optical multilayer film 100a of this embodiment is similar to the optical multilayer film 100 in FIG. 1, but the main difference between the two lies in the form of the substrate 110a.

具體來說,請參照圖4,在本實施例的光學多層膜100a中,基材110a的形式為非平面,例如是曲面,但不以此為限。其中,基材110a的第一表面111a可以為凸面,且第二表面112a可以為凹面,但不以此為限。在一些實施例中,基材110a的第一表面111a也可以為凹面,且第二表面112a也可以為凸面(未繪示)。換言之,本實施例的光學多層膜100a可應用於凸透鏡或凹透鏡的鏡頭、或應用於凸面鏡或凹面鏡的鏡面。Specifically, referring to FIG. 4 , in the optical multilayer film 100a of the present embodiment, the form of the substrate 110a is non-planar, such as a curved surface, but not limited thereto. Wherein, the first surface 111a of the substrate 110a may be a convex surface, and the second surface 112a may be a concave surface, but not limited thereto. In some embodiments, the first surface 111a of the substrate 110a may also be concave, and the second surface 112a may also be convex (not shown). In other words, the optical multilayer film 100a of the present embodiment can be applied to a lens of a convex lens or a concave lens, or to a mirror surface of a convex mirror or a concave mirror.

圖5A繪示為本發明第三實施例的光學多層膜的剖面示意圖。圖5B為圖5A的第三實施例的光學多層膜在不同波長時的反射率及穿透率。請同時參照圖1與圖5A,本實施例的光學多層膜100b與圖1中的光學多層膜100相似,惟二者主要差異之處在於:本實施例的光學多層膜100b沒有抗反射膜,且本實施例的光學多層膜100b的第一耦合層130b的層數與第二耦合層150b的層數不同於光學多層膜100。5A is a schematic cross-sectional view of an optical multilayer film according to a third embodiment of the present invention. FIG. 5B shows the reflectance and transmittance of the optical multilayer film of the third embodiment of FIG. 5A at different wavelengths. 1 and 5A at the same time, the optical multilayer film 100b of this embodiment is similar to the optical multilayer film 100 in FIG. 1, but the main difference between the two is that the optical multilayer film 100b of this embodiment does not have an anti-reflection film, In addition, the number of layers of the first coupling layer 130b and the number of layers of the second coupling layer 150b of the optical multilayer film 100b of the present embodiment are different from those of the optical multilayer film 100 .

具體來說,請先參照圖5A,本實施例的光學多層膜100b包括基材110、第一耦合層130b、導電層140以及第二耦合層150b,且不包括抗反射膜。第一耦合層130b、導電層140以及第二耦合層150b依序設置於基材110的第二表面112上。第一耦合層130b位於基材110與導電層140之間。在本實施例中,第一耦合層130b例如是包括4層的第一介電材料層131和4層的第二介電材料層132,且第二介電材料層132與第一介電材料層131依序堆疊於基材110上。第二耦合層150b例如是包括1層的第一介電材料層151和1層的第二介電材料層152,且第一介電材料層151與第二介電材料層152依序堆疊於導電層140上。Specifically, please refer to FIG. 5A first, the optical multilayer film 100b of this embodiment includes the substrate 110, the first coupling layer 130b, the conductive layer 140 and the second coupling layer 150b, and does not include the anti-reflection film. The first coupling layer 130 b , the conductive layer 140 and the second coupling layer 150 b are sequentially disposed on the second surface 112 of the substrate 110 . The first coupling layer 130b is located between the substrate 110 and the conductive layer 140 . In this embodiment, the first coupling layer 130b includes, for example, four layers of the first dielectric material layer 131 and four layers of the second dielectric material layer 132, and the second dielectric material layer 132 and the first dielectric material layer The layers 131 are sequentially stacked on the substrate 110 . The second coupling layer 150b, for example, includes a first dielectric material layer 151 and a second dielectric material layer 152, and the first dielectric material layer 151 and the second dielectric material layer 152 are sequentially stacked on on the conductive layer 140 .

在本實施例中,基材110的材料例如是玻璃,第一介電材料層131與第一介電材料層151的材料例如是氮化鋁,第二介電材料層132與第二介電材料層152的材料例如是二氧化矽,導電層140的材料例如是氧化銦錫,但不以此為限。此外,在本實施例中,第一耦合層130b的厚度T2例如是約580奈米至590奈米,導電層140的厚度T1例如是約250奈米,且第二耦合層150b的厚度T3例如是約170奈米至175奈米,但不以此為限。在本實施例中,導電層140的片電阻值例如是約25 Ω/□,但不以此為限。In this embodiment, the material of the substrate 110 is, for example, glass, the material of the first dielectric material layer 131 and the first dielectric material layer 151 is, for example, aluminum nitride, and the material of the second dielectric material layer 132 and the second dielectric material The material of the material layer 152 is, for example, silicon dioxide, and the material of the conductive layer 140 is, for example, indium tin oxide, but not limited thereto. In addition, in this embodiment, the thickness T2 of the first coupling layer 130b is, for example, about 580 nm to 590 nm, the thickness T1 of the conductive layer 140 is, for example, about 250 nm, and the thickness T3 of the second coupling layer 150b is, for example, about 250 nm. is about 170 nm to 175 nm, but not limited thereto. In this embodiment, the sheet resistance of the conductive layer 140 is, for example, about 25 Ω/□, but not limited thereto.

接著,根據圖5B中測量光學多層膜100b在不同波長時的反射率及穿透率的結果可知,在波長為420奈米至700奈米時,光學多層膜100b的反射率的變化不大且大致上為0.1%至0.5%。在波長為500奈米至700奈米時,光學多層膜100b的穿透率的變化不大且大致上為97.5%至98.5%。Next, according to the results of measuring the reflectance and transmittance of the optical multilayer film 100b at different wavelengths in FIG. 5B, it can be seen that when the wavelength is from 420 nm to 700 nm, the reflectivity of the optical multilayer film 100b does not change much and Roughly 0.1% to 0.5%. When the wavelength is 500 nm to 700 nm, the transmittance of the optical multilayer film 100b does not change much and is approximately 97.5% to 98.5%.

圖6A繪示為對照實施例的光學多層膜的剖面示意圖。圖6B為圖6A的對照實施例的光學多層膜在不同波長時的反射率及穿透率。請同時參照圖5A與圖6A,本對照實施例的光學多層膜100c與圖5A中的光學多層膜100b相似,惟二者主要差異之處在於:本對照實施例的光學多層膜100c沒有第一耦合層,且本對照實施例的光學多層膜100c的第二耦合層150c的層數不同於光學多層膜100b。FIG. 6A is a schematic cross-sectional view of an optical multilayer film of a comparative example. FIG. 6B shows the reflectance and transmittance of the optical multilayer film of the comparative example of FIG. 6A at different wavelengths. 5A and FIG. 6A at the same time, the optical multilayer film 100c of this comparative embodiment is similar to the optical multilayer film 100b of FIG. 5A, but the main difference between the two is that the optical multilayer film 100c of this comparative embodiment does not have the first The number of layers of the second coupling layer 150c of the optical multilayer film 100c of the present comparative example is different from that of the optical multilayer film 100b.

具體來說,請先參照圖6A,本對照實施例的光學多層膜100c包括基材110、導電層140以及第二耦合層150c,且不包括第一耦合層。導電層140以及第二耦合層150c依序設置於基材110的第二表面112上。導電層140可直接接觸基材110,且導電層140與基材110之間沒有其他的膜層。在本對照實施例中,第二耦合層150c例如是包括3層的第一介電材料層151和4層的第二介電材料層152,且第二介電材料層152與第一介電材料層151依序堆疊於導電層140上。Specifically, referring to FIG. 6A , the optical multilayer film 100 c of the present comparative embodiment includes the substrate 110 , the conductive layer 140 and the second coupling layer 150 c , and does not include the first coupling layer. The conductive layer 140 and the second coupling layer 150c are sequentially disposed on the second surface 112 of the substrate 110 . The conductive layer 140 can directly contact the substrate 110 , and there is no other film layer between the conductive layer 140 and the substrate 110 . In the present comparative embodiment, the second coupling layer 150c includes, for example, three layers of the first dielectric material layer 151 and four layers of the second dielectric material layer 152, and the second dielectric material layer 152 is connected to the first dielectric material layer 152. The material layers 151 are sequentially stacked on the conductive layer 140 .

在本對照實施例中,基材110的材料例如是玻璃,第一介電材料層151的材料例如是氮化鋁,第二介電材料層152的材料例如是二氧化矽,導電層140的材料例如是氧化銦錫,但不以此為限。此外,在本對照實施例中,導電層140的厚度T1例如是約250奈米,且第二耦合層150c的厚度T3例如是約360奈米至370奈米,但不以此為限。In this comparative embodiment, the material of the substrate 110 is glass, for example, the material of the first dielectric material layer 151 is, for example, aluminum nitride, the material of the second dielectric material layer 152 is, for example, silicon dioxide, and the material of the conductive layer 140 is The material is for example, but not limited to, indium tin oxide. In addition, in the present comparative embodiment, the thickness T1 of the conductive layer 140 is, for example, about 250 nm, and the thickness T3 of the second coupling layer 150 c is, for example, about 360 nm to 370 nm, but not limited thereto.

接著,根據圖6B中測量光學多層膜100c在不同波長時的反射率及穿透率的結果可知,在波長為420奈米至700奈米時,光學多層膜100b的反射率的變化大且大致上為0.1%至2%。在波長為500奈米至700奈米時,光學多層膜100c的穿透率的變化大且大致上為95.5%至99%。Next, according to the results of measuring the reflectivity and transmittance of the optical multilayer film 100c at different wavelengths in FIG. 6B, it can be seen that when the wavelength is from 420 nm to 700 nm, the change of the reflectivity of the optical multilayer film 100b is large and approximately 0.1% to 2% above. When the wavelength is 500 nm to 700 nm, the transmittance of the optical multilayer film 100c varies greatly and is approximately 95.5% to 99%.

因此,根據圖5A與圖6A的結構以及圖5B與圖6B的測量結果可知,相較於沒有第一耦合層的光學多層膜100c,光學多層膜100b具有設置在導電層140與基材110之間的第一耦合層130b,因而使得光學多層膜100b的反射率較小且較穩定,並使得光學多層膜100b的穿透率較穩定。此外,當光從一具有特定折射率的介質傳播進入另一不同折射率的介質時,在兩個不同介質間的介面會發生反射,如圖6A所示,在光學多層膜100c的基材110和導電層140之間的介面會有反射發生。然而,不同於圖6A的光學多層膜100c的結構設計,圖5A的光學多層膜100b可透過第一耦合層130b的設置來降低不同介質間的介面的反射現象,進而達到抗反射效果。Therefore, according to the structures of FIGS. 5A and 6A and the measurement results of FIGS. 5B and 6B , compared with the optical multilayer film 100c without the first coupling layer, the optical multilayer film 100b has a structure disposed between the conductive layer 140 and the substrate 110 . Therefore, the reflectivity of the optical multilayer film 100b is smaller and more stable, and the transmittance of the optical multilayer film 100b is more stable. In addition, when light propagates from a medium with a specific refractive index into another medium with a different refractive index, reflection will occur at the interface between the two different media. As shown in FIG. 6A , in the substrate 110 of the optical multilayer film 100c Reflection occurs at the interface with the conductive layer 140 . However, different from the structural design of the optical multilayer film 100c in FIG. 6A , the optical multilayer film 100b in FIG. 5A can reduce the reflection phenomenon at the interface between different media through the arrangement of the first coupling layer 130b, thereby achieving the anti-reflection effect.

綜上所述,在本發明的實施例的光學多層膜中,藉由將第一耦合層130設置於基材110與導電層140之間,並將導電層140設置於第一耦合層130與第二耦合層150之間,可提升本實施例的光學多層膜100的光學規格,並使光學多層膜100具有抗反射的效果。此外,藉由使導電層140的片電阻值為10 Ω/□至250Ω/□,且導電層140的厚度T1大於50奈米且小於等於400奈米,可使導電層140具有導電與加熱的功能,並使本實施例的光學多層膜100具有加熱除霧與加熱除霜的效果。藉此,可使本實施例的光學多層膜的用途可同時具有可抗反射、加熱除霧以及加熱除霜的效果。To sum up, in the optical multilayer film of the embodiment of the present invention, the first coupling layer 130 is disposed between the substrate 110 and the conductive layer 140, and the conductive layer 140 is disposed between the first coupling layer 130 and the conductive layer 140. Between the second coupling layers 150 , the optical specification of the optical multilayer film 100 of this embodiment can be improved, and the optical multilayer film 100 can have an anti-reflection effect. In addition, by setting the sheet resistance of the conductive layer 140 to be 10 Ω/□ to 250 Ω/□, and the thickness T1 of the conductive layer 140 is greater than 50 nm and less than or equal to 400 nm, the conductive layer 140 can be electrically conductive and heated. function, and make the optical multilayer film 100 of this embodiment have the effects of heating defogging and heating defrosting. In this way, the application of the optical multi-layer film of this embodiment can have the effects of anti-reflection, heating defogging and heating defrosting at the same time.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed above by the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention shall be determined by the scope of the appended patent application.

100、100a、100b、100c:光學多層膜100, 100a, 100b, 100c: Optical multilayer films

110、110a:基材110, 110a: Substrate

111、111a:第一表面111, 111a: first surface

112、112a:第二表面112, 112a: second surface

120:抗反射膜120: Anti-reflection film

121、131、151:第一介電材料層121, 131, 151: the first dielectric material layer

122、132、152:第二介電材料層122, 132, 152: the second dielectric material layer

130、130b:第一耦合層130, 130b: the first coupling layer

140:導電層140: Conductive layer

150、150b、150c:第二耦合層150, 150b, 150c: second coupling layer

200:真空鍍膜設備200: Vacuum coating equipment

210:真空反應腔體210: Vacuum reaction chamber

220:濺鍍靶座220: Sputtering target base

221:金屬膜221: Metal Film

230:薄膜反應源230: Thin Film Reactor

231:介電膜231: Dielectric film

240:真空系統240: Vacuum System

T1、T2、T3:厚度T1, T2, T3: Thickness

圖1繪示為本發明第一實施例的光學多層膜的剖面示意圖。 圖2為本發明第一實施例的光學多層膜的製作方法的流程圖。 圖3繪示為真空鍍膜設備的上視示意圖。 圖4繪示為本發明第二實施例的光學多層膜的剖面示意圖。 圖5A繪示為本發明第三實施例的光學多層膜的剖面示意圖。 圖5B為圖5A的第三實施例的光學多層膜在不同波長時的反射率及穿透率。 圖6A繪示為對照實施例的光學多層膜的剖面示意圖。 圖6B為圖6A的對照實施例的光學多層膜在不同波長時的反射率及穿透率。 FIG. 1 is a schematic cross-sectional view of an optical multilayer film according to a first embodiment of the present invention. FIG. 2 is a flow chart of the manufacturing method of the optical multilayer film according to the first embodiment of the present invention. FIG. 3 is a schematic top view of the vacuum coating equipment. 4 is a schematic cross-sectional view of an optical multilayer film according to a second embodiment of the present invention. 5A is a schematic cross-sectional view of an optical multilayer film according to a third embodiment of the present invention. FIG. 5B shows the reflectance and transmittance of the optical multilayer film of the third embodiment of FIG. 5A at different wavelengths. FIG. 6A is a schematic cross-sectional view of an optical multilayer film of a comparative example. FIG. 6B shows the reflectance and transmittance of the optical multilayer film of the comparative example of FIG. 6A at different wavelengths.

100:光學多層膜 100: Optical multilayer film

110:基材 110: Substrate

111:第一表面 111: First surface

112:第二表面 112: Second Surface

120:抗反射膜 120: Anti-reflection film

121、131、151:第一介電材料層 121, 131, 151: the first dielectric material layer

122、132、152:第二介電材料層 122, 132, 152: the second dielectric material layer

130:第一耦合層 130: first coupling layer

140:導電層 140: Conductive layer

150:第二耦合層 150: Second coupling layer

T1:厚度 T1: Thickness

Claims (11)

一種光學多層膜,包括:一基材;一第一耦合層,設置於該基材上,包括:至少一第一介電材料層與至少一第二介電材料層,該第一介電材料層與該第二介電材料層互相推疊成多層結構,其中該第一介電材料層的材料包括二氧化鈦、五氧化二鉭、五氧化二鈮、氮化鋁或氮氧化鋁,且該該第二介電材料層的材料包括氟化鎂、二氧化矽或三氧化二鋁;一導電層,設置於該第一耦合層上;以及一第二耦合層,設置於該導電層上,其中該第一耦合層位於該基材與該導電層之間。 An optical multilayer film, comprising: a substrate; a first coupling layer disposed on the substrate, comprising: at least one first dielectric material layer and at least one second dielectric material layer, the first dielectric material The layer and the second dielectric material layer are stacked on each other to form a multi-layer structure, wherein the material of the first dielectric material layer includes titanium dioxide, tantalum pentoxide, niobium pentoxide, aluminum nitride or aluminum oxynitride, and the The material of the second dielectric material layer includes magnesium fluoride, silicon dioxide or aluminum oxide; a conductive layer disposed on the first coupling layer; and a second coupling layer disposed on the conductive layer, wherein The first coupling layer is located between the substrate and the conductive layer. 如請求項1所述的光學多層膜,其中該基材具有一第一表面以及與該第一表面相對的一第二表面,且該光學多層膜更包括:一抗反射膜,設置於該基材的該第一表面上,其中該第一耦合層、該導電層以及該第二耦合層設置於該基材的該第二表面上。 The optical multilayer film of claim 1, wherein the substrate has a first surface and a second surface opposite to the first surface, and the optical multilayer film further comprises: an anti-reflection film disposed on the base on the first surface of the substrate, wherein the first coupling layer, the conductive layer and the second coupling layer are disposed on the second surface of the substrate. 如請求項1所述的光學多層膜,其中該導電層的片電阻值為10Ω/□至250Ω/□。 The optical multilayer film of claim 1, wherein the conductive layer has a sheet resistance value of 10Ω/□ to 250Ω/□. 如請求項1所述的光學多層膜,其中該導電層的片電阻值為10Ω/□至30Ω/□。 The optical multilayer film of claim 1, wherein the sheet resistance value of the conductive layer is 10Ω/□ to 30Ω/□. 如請求項1所述的光學多層膜,其中該導電層的厚度大於50奈米且小於等於400奈米。 The optical multilayer film of claim 1, wherein the thickness of the conductive layer is greater than 50 nanometers and less than or equal to 400 nanometers. 如請求項1所述的光學多層膜,其中該光學多層膜在波長為400奈米至700奈米時的反射率為0.1%至5%。 The optical multilayer film of claim 1, wherein the optical multilayer film has a reflectance of 0.1% to 5% at a wavelength of 400 nm to 700 nm. 如請求項1所述的光學多層膜,其中該光學多層膜在波長為400奈米至700奈米時的反射率為0.1%至1%。 The optical multilayer film of claim 1, wherein the optical multilayer film has a reflectance of 0.1% to 1% at a wavelength of 400 nm to 700 nm. 如請求項1所述的光學多層膜,其中該基材的形式為非平面。 The optical multilayer film of claim 1, wherein the form of the substrate is non-planar. 如請求項8所述的光學多層膜,其中該基材具有一第一表面以及與該第一表面相對的一第二表面,該基材的該第一表面為凸面,且該第二表面為凹面。 The optical multilayer film of claim 8, wherein the substrate has a first surface and a second surface opposite to the first surface, the first surface of the substrate is convex, and the second surface is Concave. 如請求項1所述的光學多層膜,其中該導電層的材料為透明導電材料。 The optical multilayer film according to claim 1, wherein the material of the conductive layer is a transparent conductive material. 一種如請求項1所述的光學多層膜的用途,其係用於抗反射、加熱除霧以及加熱除霜。A use of the optical multilayer film according to claim 1, which is used for anti-reflection, heating defogging and heating defrosting.
TW110117637A 2021-05-17 2021-05-17 Optical multilayer film and use thereof TWI766688B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110117637A TWI766688B (en) 2021-05-17 2021-05-17 Optical multilayer film and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110117637A TWI766688B (en) 2021-05-17 2021-05-17 Optical multilayer film and use thereof

Publications (2)

Publication Number Publication Date
TWI766688B true TWI766688B (en) 2022-06-01
TW202246050A TW202246050A (en) 2022-12-01

Family

ID=83103686

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110117637A TWI766688B (en) 2021-05-17 2021-05-17 Optical multilayer film and use thereof

Country Status (1)

Country Link
TW (1) TWI766688B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200831942A (en) * 2007-01-29 2008-08-01 Innovation & Infinity Global Low resistivity light attenuation anti-reflection coating with transparent surface conductive layer
CN102795793A (en) * 2012-09-11 2012-11-28 福耀玻璃工业集团股份有限公司 Electrically-heatable low-emissivity coated laminated glass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200831942A (en) * 2007-01-29 2008-08-01 Innovation & Infinity Global Low resistivity light attenuation anti-reflection coating with transparent surface conductive layer
CN102795793A (en) * 2012-09-11 2012-11-28 福耀玻璃工业集团股份有限公司 Electrically-heatable low-emissivity coated laminated glass

Also Published As

Publication number Publication date
TW202246050A (en) 2022-12-01

Similar Documents

Publication Publication Date Title
US7968185B1 (en) Transparent conductive laminated body
CN212515117U (en) Optical filter
TWI486973B (en) Transparent conductive multilayered film, producing method of the same, and touch panel containing the same
JP6314463B2 (en) Transparent conductor
Chiou et al. Antireflective coating for ITO films deposited on glass substrate
JP4349794B2 (en) Method for producing conductive transparent substrate with multilayer antireflection film
JP6292225B2 (en) Transparent conductor
JP6319302B2 (en) Transparent conductor and method for producing the same
CN1858620A (en) Coated optical element
TWI766688B (en) Optical multilayer film and use thereof
JPS5860701A (en) Reflection preventing film
WO2015068738A1 (en) Transparent conductive body
JP2004361662A (en) Conductive transparent layered body
CN115373055A (en) Optical multilayer film and use thereof
US9643386B2 (en) Low emissivity film and window having the same
CN221199978U (en) Red light anti-reflection and anti-reflection film system
US3421811A (en) Coated optical devices
CN117970538A (en) Red light anti-reflection and anti-reflection film system
KR970000382B1 (en) Low-reflection coating glass and its process
KR102422120B1 (en) Colorless silver reflective film and Manufacturing method thereof
WO2015025525A1 (en) Transparent conductive body
CN216979338U (en) Ultra-wideband optical absorber based on multiple transition metal layers
CN221049430U (en) Heating anti-frost low-reflection window glass of vehicle-mounted photoelectric sensing system
WO2015053371A1 (en) Transparent conductor
WO2024197999A1 (en) Porous high-transparency ar film