JP4349794B2 - Method for producing conductive transparent substrate with multilayer antireflection film - Google Patents

Method for producing conductive transparent substrate with multilayer antireflection film Download PDF

Info

Publication number
JP4349794B2
JP4349794B2 JP2002349583A JP2002349583A JP4349794B2 JP 4349794 B2 JP4349794 B2 JP 4349794B2 JP 2002349583 A JP2002349583 A JP 2002349583A JP 2002349583 A JP2002349583 A JP 2002349583A JP 4349794 B2 JP4349794 B2 JP 4349794B2
Authority
JP
Japan
Prior art keywords
film layer
dielectric
transparent substrate
refractive index
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002349583A
Other languages
Japanese (ja)
Other versions
JP2004184579A (en
Inventor
芳光 内田
雅義 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP2002349583A priority Critical patent/JP4349794B2/en
Publication of JP2004184579A publication Critical patent/JP2004184579A/en
Application granted granted Critical
Publication of JP4349794B2 publication Critical patent/JP4349794B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Liquid Crystal (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Position Input By Displaying (AREA)
  • Optical Filters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高透過率が得られる導電性を有する多層反射防止膜付透明基板に関する。
【0002】
【従来技術】
従来、ガラス板等の透明基板にインジウム錫酸化物(ITO)やSnO2等の透明導電膜を形成して、太陽電池などの光電変換素子の電極や液晶等の表示装置またはタッチパネルの電極、静電防止フィルターや電磁波カットフィルターとして利用するものが知られている。特にタッチパネル、静電防止フィルターや電磁波カットフィルター等で使用される場合、可視領域での高透過率を確保することが必要となってくる。ガラス基板の場合、さまざまな研究が行なわれ、最適な抵抗値を確保しながら高透過率を得ることができる多層膜が多数提案されているが、重く割れ易いという欠点を持つために、軽くて割れ難い透明のプラスチック基板に同じように多層膜を形成して利用することが多くなってきている。このため本出願人は特願2000−53642号にて、基板上に屈折率の異なる2層の透明誘電膜層を形成し、さらに最表面にITO等の透明導電体からなる透明導電膜層を形成することにより、プラスチック基板を用いても高透過率を得ることができる導電性を有する多層反射防止膜付透明基板を提案している。
【0003】
【発明が解決しようとする課題】
しかしながら、前述した膜構成では高透過率が得られるものの、可視領域(400nm〜700nm程度)にてフラットな透過率が得られ難く、透過光に黄色がかった色目(色相)がついてしまうという問題があった。
【0004】
本発明では上記従来技術の問題点に鑑み、高い透過率が得られるとともにその透過光を無色に近づけることのできる導電性を有する多層膜付透明基板を提供することを技術課題とする。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明は以下のような構成を備えることを特徴とする。
(1) 透明基板側から順に前記透明基板の屈折率より高い屈折率である透明誘電体からなる第1誘電膜層と,前記透明基板の屈折率より低い屈折率である透明誘電体からなる第2誘電膜層と,前記透明基板の屈折率より高い屈折率である透明誘電体からなる第3誘電膜層と,前記透明基板の屈折率より低い屈折率である透明誘電体からなる第4誘電膜層と,からなる反射防止層帯と、最外層に透明導電体の導電膜層と、を持つ導電性を有する多層反射防止膜付透明基板の製造方法において、
電気光学素子用,光電変換素子用,液晶用,タッチパネル用として所望する表面抵抗値が得られる前記導電膜層の光学膜厚を決定する第1ステップと、
該第1ステップにて決定された前記導電膜層の光学膜厚と前記透明基板の屈折率と各誘電膜層の屈折率とを考慮し,特定の染料または顔料を用いた補色用の着色層を用いることなくL*a*b*表色系による標準光Cに対するクロマティクネス指数a*、b*が−2.0〜2.0の範囲内及び視感度透過率が90%以上となるように,メリット関数を使用した最適化手法を用いて前記第1誘電膜層〜第4誘電膜層の各光学膜厚を決定する第2ステップと、
前記第1ステップ及び第2ステップにて決定された光学膜厚にて前記透明基板上に前記反射防止層帯及び導電膜層を形成する第3ステップと、
を有することを特徴とする。
【0006】
【発明の実施の形態】
以下、本発明の実施の形態における導電性を有する多層反射防止膜付透明基板について、図面を参照しながら説明する。
図1は本発明の実施の形態における導電性を有する多層反射防止膜付透明基板の積層構成を示す概略図である。
1は透明の基板である。基板1は通常に入手できるものであればよく、屈折率は1.48以上1.7以下程度のものを使用する。具体的に、基板材料としてはガラス類(屈折率1.48〜1.70)、プラスチック類(ポリカーボネイト(屈折率1.59)、ポリエチレンテレフタレート(屈折率1.63)等)が用いられ、光学的に透明であれば特に限定されない。また、本実施形態で述べる基板とは板状に限らず、フィルム基板を含むものとしている。
【0007】
2は基板1上に多層膜の成膜前に事前に形成される薄膜層である。この薄膜層2は、多層膜を成膜する前に基板1にコーティングすることにより、基板1の表面を硬化させ、傷等から保護するためや、基板1と多層膜との間の密着力を上げるために形成される層である(以下、ハードーコート層と記す)。一般的に、ハードコート層2においては、基板1の表面を保護するとともに、基板1と多層膜との間の密着力を上げることが可能なアクリル系ハードコートがよく利用される。
【0008】
また、基板1にハードコート層2を形成しないで、基板1上に直接多層膜を成膜することも可能であるが、前述したように多層膜の保護や密着力向上のために、基板1上に事前にハードコート処理を行なっておくことが好ましい。また、ハードコートではなく、単に基板1と多層膜との間での密着力向上のために真空蒸着等にて基板上にアンダーコートを行なうこともある。
何れの場合においても、ハードコート(アンダーコート)の膜厚は、光学的な阻害が起こらないように基板の屈折率と同程度の屈折率を有するようにしておくことが好ましい。
【0009】
3はハードコート層2上に屈折率の異なる透明誘電体からなる誘電膜層を複数積層することにより反射防止効果をもたせるための反射防止層帯である。本実施形態における反射防止層帯3は4つの誘電膜層3a〜3dにより形成されている。
3aは基板1の屈折率よりも高い屈折率をもつ透明誘電体からなる第1誘電膜層である。第1誘電膜層3aに使用される透明誘電体は、使用する基板1に応じて適宜選択されるが、基板1の屈折率よりも高い屈折率が必要なため、基板1の最低屈折率1.48より高い必要がある。また同時に、安価に入手可能でかつ安定した成膜が確認されているものが好ましいため、それらを考慮して屈折率が1.50以上2.50以下程度の範囲のものが使用される。具体的には、第1誘電膜層3aの主成分にはZrO2(屈折率1.9)や、TiO2(屈折率2.2)、Al23(屈折率1.6)等が挙げられる。第1誘電膜層3の光学的膜厚nd(以後、単に膜厚と記す)は10nm以上600nm以下が好ましく、より好ましくは50nm以上550nm以下である。
【0010】
3bは第1誘電膜層3a上に積層され、基板1の屈折率よりも低い屈折率をもつ透明誘電体からなる第2誘電膜層である。第2誘電膜層3bに使用される透明誘電体は、使用する基板1に応じて適宜選択されるが、基板1の屈折率よりも低い屈折率が必要なため、基板1の最高屈折率1.70より低くする必要がある。また同時に、安価に入手可能でかつ安定した成膜が確認されているものが好ましいため、それらを考慮して屈折率が屈折率1.35以上1.60以下程度の範囲のものが使用される。具体的には、第2誘電膜層3bの主成分にはSiO2(屈折率1.46)やMgF2(屈折率1.38)が挙げられる。また、第2誘電膜層3bの膜厚は10nm以上600nm以下が好ましく、より好ましくは50nm以上550nm以下である。膜厚がこれ以上薄くても厚くても、反射防止効果が得られにくい。
【0011】
3cは第2誘電膜層3b上に積層され、基板1の屈折率よりも高い屈折率をもつ透明誘電体からなる第3誘電膜層である。第3誘電膜層3cに使用される透明誘電体は、第1誘電膜層3aと基本的に同じ材料のものが使用可能であるが、反射防止効果を向上させるためには第1誘電膜層3aにて用いられる材料の屈折率と同じか、それより高い屈折率を有する材料を用いることが好ましい。第3誘電膜層3cの膜厚は10nm以上600nm以下が好ましく、より好ましくは50nm以上550nm以下である。
【0012】
3dは第3誘電膜層3c上に積層され、基板1の屈折率よりも低い屈折率をもつ透明誘電体からなる第4誘電膜層である。第4誘電膜層3dに使用される透明誘電体は、第2誘電膜層3bと基本的に同じ材料のものが使用可能である。また、第4誘電膜層3dの膜厚は10nm以上600nm以下が好ましく、より好ましくは50nm以上550nm以下である。
4は第4誘電膜層3d上に積層され、導電性を有する導電膜層である。導電膜層4の透明導電体にはITOやATO、SnO2、IZO等が挙げられる。
【0013】
また、表面抵抗値は使用目的に応じて適宜決定すれば良いが、電気光学素子用、光電変換素子用、液晶用、タッチパネル用等に用いるのであれば、好ましくは表面抵抗値が100Ω/□以上5000Ω/□以下であり、より好ましくは100Ω/□以上1000Ω/□以下である。
【0014】
また、各層の最適な膜厚は以下の方法により決定される。
初めに、用途に応じて必要な表面抵抗値が得られるような導電膜層の膜厚を決定させておく。次に反射防止層帯3(誘電体層3a〜3d)に使用する材料の屈折率を固定値とし、最適化アルゴリズムを用いながら誘電体層3a〜3dの物理膜厚を変化させていく。このような手法により、視野2°、標準光CにおけるL***表色系のクロマティクネス指数a*、b*を−2〜+2の範囲以内としつつ、このようなクロマティクネス指数a*、b*の範囲内において最も高い透過率若しくは最も低い反射率が得られるような各誘電体層3a〜3dの膜厚を求める。最適化アルゴリズムは例えば、Adaptive Random SearchやModified Gardient、Monte Carilo method、Simurated Annealing等、メリット関数を使用した様々な最適化手法を基に与えられる。
【0015】
上記で示した各薄膜層(導電膜層、誘電膜層)を基板1上に形成する方法としては、物理的気層成長方法(PVD)では真空蒸着方法やスパッタ方法、イオンプレーティング方法等が挙げられる。また、化学的気層成長方法(CVD)ではめっき方法や化学的気層成長方法等が挙げられる。これらの成膜方法は、本実施の形態としてすべて使用可能であるが、成膜に際して高温を伴うような方法では熱によるプラスチック基板の変形等が考えられるため、プラスチック基板での多層膜の成膜は高熱を必要としない真空蒸着方法やスパッタ方法が好適に用いられる。
【0016】
多層反射防止膜付透明基板において上述したような膜構成とすることにより、視感度透過率を90%以上に保ちつつ、視野2°、標準光CにおけるL***表色系のクロマティクネス指数a*、b*を−2〜+2の範囲以内とすることができる。したがって多層反射防止膜付透明基板を透過する光束を無色に近づけることができ、視認性が向上する。これにより例えばカラー表示のタッチパネル等にてより好適に用いることができる。
【0017】
<実施例1>
ハードコート付きポリカーボネイト基板(屈折率1.59)を用意し、真空蒸着法により、誘電膜層を基板上に4層形成した。第1誘電膜層としては、オプトロン社製ZrO2タブレットを使用し、アンダーコート層であるハードコート上にZrO2を主成分とする薄膜層を形成した。このときの第1誘電体層の膜厚(光学膜厚nd)は80nmとした。第2誘電膜層としては、オプトロン社製SiO2顆粒を使用し、第1誘電膜層上にSiO2を主成分とする薄膜層を形成した。このときの第2誘電膜層の膜厚は35nmとした。第3誘電膜層としては、オプトロン社製TiO2顆粒を使用し、第2誘電膜層上にTiO2を主成分とする薄膜層を形成した。このときの第3誘電膜層の膜厚は85nmとした。第4誘電膜層としては、オプトロン社製SiO2顆粒を使用し、第3誘電膜層上にSiO2を主成分とする薄膜層を形成した。このときの第4誘電膜層の膜厚は100nmとした。
【0018】
次に真空治金(株)製ITOターゲットを使用し、導電膜層としてITOを主成分とする薄膜層をスパッタ法により第4誘電膜層上に形成した。このときの導電膜層の膜厚は24nmとした。
【0019】
このようにして得られた導電性を有する多層膜付透明基板の視感度透過率を測定した。測定装置は朝日分光社製 視感度透過率計MODEL304を用いた。得られた視感透過率は94.1%であった。また、表面抵抗値は500Ω/□であった。また、2°の視野で標準光Cにおけるクロマティクネス指数a*、b*を測定した。測定装置は島津製作所製UV-2400PCを用いた。このときのクロマティクネス指数a*は-0.80、b*は0.70であった。
また、実施例1で得られる多層反射防止膜付透明基板の可視域の透過率を図2に、以上の結果を表1に示す。
【0020】
<実施例2>
第1誘電膜層の材料をTiO2とした以外は、実施例と同じ基板、膜構成として多層反射防止膜付透明基板を作成した。ただし、この条件にて多層膜付透明基板の透過率ができるだけ高く得られるように、最適化アルゴリズムを用いて各誘電膜層の膜厚を調整した。この結果、第1誘電膜層〜第4誘電膜層の各膜厚は順に55nm、32nm、130nm、88nmとした。最表面の導電膜層(ITO層)の膜厚は、実施例1と同様に24nmとし、表面抵抗値500Ω/□が得られるようにした。なお、実施例1と同様に誘電膜層の形成は真空蒸着法で行い、導電膜層の形成はスパッタ法にて行った。
【0021】
このようにして得られた導電性を有する多層膜付透明基板の視感度透過率は94.3%であった。また、クロマティクネス指数a*は-0.99、b*は0.82であった。
また、実施例2で得られる多層反射防止膜付透明基板の可視域の透過率を図3に、以上の結果を表1に示す。
【0022】
<比較例1>
実施例1と同一の基板を用い、第1誘電膜層をZrO2、第2誘電膜層をSiO2とし、第2誘電膜層の上にITOからなる導電膜層を1層形成した。最表面のITOの導電膜層の膜厚は、表面抵抗値500Ω/□が得られるように24nmとして成膜を行った。また、この条件にて多層膜付透明基板の透過率ができるだけ高く得られるように、最適化アルゴリズムを用いて各誘電膜層の膜厚を調整した。この結果、第1誘電膜層及び第2誘電膜層の各膜厚は順に140nm、90nmとした。なお、実施例1と同様に誘電膜層の形成は真空蒸着法で行い、導電膜層の形成はスパッタ法にて行った。
【0023】
このようにして得られた導電性を有する多層膜付透明基板の視感度透過率は92.9%であった。また、クロマティクネス指数a*は-2.80、b*は5.35であった。
また、実施例2で得られる多層反射防止膜付透明基板の可視域の透過率を図4に、以上の結果を表1に示す。
【0024】
<比較例2>
実施例1と同一の基板を用い、第1誘電膜層をTiO2、第2誘電膜層をSiO2とし、第2誘電膜層の上にITOからなる導電膜層を1層形成した。最表面のITOの導電膜層の膜厚は、表面抵抗値500Ω/□が得られるように24nmとして成膜を行った。また、この条件にて多層膜付透明基板の透過率ができるだけ高く得られるように、最適化アルゴリズムを用いて各誘電膜層の膜厚を調整した。この結果、第1誘電膜層及び第2誘電膜層の各膜厚は順に60nm、120nmとした。なお、実施例1と同様に誘電膜層の形成は真空蒸着法で行い、導電膜層の形成はスパッタ法にて行った。
【0025】
このようにして得られた導電性を有する多層膜付透明基板の視感度透過率は92.6%であった。また、クロマティクネス指数a*は-3.11、b*は5.63であった。
また、実施例2で得られる多層反射防止膜付透明基板の可視域の透過率を図5に、以上の結果を表1に示す。
【0026】
【表1】

Figure 0004349794
【0027】
<結果>
図2及び図3に示すように、実施例1、2の多層反射防止膜付透明基板においては、可視領域(400nm〜700nm程度)にてある程度の透過率が得られており、透過光は無色に近づいた色相となった。また、図4及び図5に示すように、比較例1、2の多層反射防止膜付透明基板においては、可視領域400nm〜450nm付近の透過率が極端に少ないため、その透過光は黄色味がついた色相となった。また、表1に示すように、実施例1、2では、非常に高い視感度透過率が得られているとともに、クロマティクネス指数は−1.0〜1.0の範囲内にあり、この結果においても無色に近い透過光が得られていることが示された。
【0028】
【発明の効果】
以上のように、本発明によれば高い透過率を有しながら、高い視認性が得られる。
【図面の簡単な説明】
【図1】本実施形態における膜構成を示した図である。
【図2】実施例1における透過率を示した図である。
【図3】実施例2における透過率を示した図である。
【図4】比較例1における透過率を示した図である。
【図5】比較例2における透過率を示した図である。
【符号の説明】
1 基板
2 ハードコート層
3 反射防止層帯
4 導電膜層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transparent substrate with a multilayer antireflective film having electrical conductivity that provides high transmittance.
[0002]
[Prior art]
Conventionally, a transparent conductive film such as indium tin oxide (ITO) or SnO 2 is formed on a transparent substrate such as a glass plate, and the electrodes of photoelectric conversion elements such as solar cells, liquid crystal display devices or touch panels, What is used as an antistatic filter or an electromagnetic wave cut filter is known. In particular, when used in touch panels, antistatic filters, electromagnetic wave cut filters, etc., it is necessary to ensure high transmittance in the visible region. In the case of glass substrates, various studies have been carried out, and many multilayer films that can obtain high transmittance while ensuring an optimum resistance value have been proposed. In many cases, a multilayer film is similarly formed and used on a transparent plastic substrate which is difficult to break. Therefore, in Japanese Patent Application No. 2000-53642, the present applicant forms two transparent dielectric film layers having different refractive indexes on a substrate, and further forms a transparent conductive film layer made of a transparent conductor such as ITO on the outermost surface. By forming, a transparent substrate with a multilayer antireflection film having conductivity that can obtain high transmittance even when a plastic substrate is used has been proposed.
[0003]
[Problems to be solved by the invention]
However, although the above-described film configuration provides high transmittance, it is difficult to obtain flat transmittance in the visible region (about 400 nm to 700 nm), and the transmitted light has a yellowish hue (hue). there were.
[0004]
In the present invention, in view of the above-mentioned problems of the prior art, it is an object of the present invention to provide a transparent substrate with a multilayer film that has high conductivity and can transmit the transmitted light to be colorless.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is characterized by having the following configuration.
(1) In order from the transparent substrate side, a first dielectric film layer made of a transparent dielectric material having a refractive index higher than that of the transparent substrate, and a transparent dielectric material made of a transparent dielectric material having a refractive index lower than that of the transparent substrate. A second dielectric film layer, a third dielectric film layer made of a transparent dielectric having a refractive index higher than that of the transparent substrate, and a fourth dielectric made of a transparent dielectric having a refractive index lower than that of the transparent substrate. In the method of manufacturing a transparent substrate with a multilayer antireflection film having conductivity, having an antireflection layer band comprising a film layer, and a conductive film layer of a transparent conductor as an outermost layer,
A first step of determining an optical film thickness of the conductive film layer for obtaining a desired surface resistance value for an electro-optical element, a photoelectric conversion element, a liquid crystal, and a touch panel;
In consideration of the optical film thickness of the conductive film layer determined in the first step, the refractive index of the transparent substrate, and the refractive index of each dielectric film layer, a colored layer for complementary color using a specific dye or pigment The chromaticness index a * and b * with respect to the standard light C according to the L * a * b * color system is not in the range of −2.0 to 2.0, and the luminous transmittance is 90% or more. And a second step of determining each optical film thickness of the first dielectric film layer to the fourth dielectric film layer using an optimization method using a merit function,
A third step of forming the antireflection layer band and the conductive layer on the transparent substrate with the optical film thickness determined in the first step and the second step;
It is characterized by having.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a transparent substrate with a multilayer antireflection film having conductivity according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view showing a laminated structure of a transparent substrate with a multilayer antireflection film having conductivity in an embodiment of the present invention.
Reference numeral 1 denotes a transparent substrate. The substrate 1 may be any substrate that is normally available and has a refractive index of about 1.48 or more and 1.7 or less. Specifically, glass (refractive index: 1.48 to 1.70), plastics (polycarbonate (refractive index: 1.59), polyethylene terephthalate (refractive index: 1.63), etc.) are used as the substrate material. If it is transparent, it will not be specifically limited. The substrate described in the present embodiment is not limited to a plate shape, and includes a film substrate.
[0007]
Reference numeral 2 denotes a thin film layer formed in advance on the substrate 1 before the multilayer film is formed. The thin film layer 2 is coated on the substrate 1 before the multilayer film is formed, so that the surface of the substrate 1 is cured and protected from scratches, and the adhesion between the substrate 1 and the multilayer film is increased. It is a layer formed for raising (hereinafter referred to as a hard coat layer). In general, in the hard coat layer 2, an acrylic hard coat that protects the surface of the substrate 1 and can increase the adhesion between the substrate 1 and the multilayer film is often used.
[0008]
Further, it is possible to form a multilayer film directly on the substrate 1 without forming the hard coat layer 2 on the substrate 1, but as described above, in order to protect the multilayer film and improve adhesion, the substrate 1 It is preferable to perform a hard coat treatment in advance. Further, instead of hard coating, an undercoat may be applied on the substrate simply by vacuum deposition or the like in order to improve the adhesion between the substrate 1 and the multilayer film.
In any case, it is preferable that the film thickness of the hard coat (undercoat) has a refractive index comparable to the refractive index of the substrate so that optical inhibition does not occur.
[0009]
Reference numeral 3 denotes an antireflection layer band for providing an antireflection effect by laminating a plurality of dielectric film layers made of transparent dielectric materials having different refractive indexes on the hard coat layer 2. The antireflection layer band 3 in this embodiment is formed by four dielectric film layers 3a to 3d.
Reference numeral 3 a denotes a first dielectric film layer made of a transparent dielectric having a refractive index higher than that of the substrate 1. The transparent dielectric used for the first dielectric film layer 3a is appropriately selected according to the substrate 1 to be used. However, since the refractive index higher than the refractive index of the substrate 1 is required, the minimum refractive index 1 of the substrate 1 is required. Need to be higher than .48. At the same time, it is preferable that the film is available at a low cost and has been confirmed to have a stable film formation. Therefore, a film having a refractive index in the range of about 1.50 to 2.50 is used in consideration of them. Specifically, ZrO 2 (refractive index 1.9), TiO 2 (refractive index 2.2), Al 2 O 3 (refractive index 1.6), etc. are the main components of the first dielectric film layer 3a. Can be mentioned. The optical film thickness nd (hereinafter simply referred to as film thickness) of the first dielectric film layer 3 is preferably 10 nm or more and 600 nm or less, and more preferably 50 nm or more and 550 nm or less.
[0010]
Reference numeral 3 b denotes a second dielectric film layer which is laminated on the first dielectric film layer 3 a and is made of a transparent dielectric having a refractive index lower than that of the substrate 1. The transparent dielectric used for the second dielectric film layer 3b is appropriately selected according to the substrate 1 to be used. However, since the refractive index lower than the refractive index of the substrate 1 is required, the highest refractive index 1 of the substrate 1 is required. Must be lower than 70. At the same time, it is preferable that the film is available at a low cost and has been confirmed to have a stable film formation. Therefore, a film having a refractive index in the range of about 1.35 to 1.60 is used in consideration of them. . Specifically, SiO 2 (refractive index 1.46) and MgF 2 (refractive index 1.38) are listed as main components of the second dielectric film layer 3b. The film thickness of the second dielectric film layer 3b is preferably 10 nm or more and 600 nm or less, more preferably 50 nm or more and 550 nm or less. Even if the film thickness is thinner or thicker than this, it is difficult to obtain the antireflection effect.
[0011]
Reference numeral 3 c denotes a third dielectric film layer which is laminated on the second dielectric film layer 3 b and is made of a transparent dielectric having a refractive index higher than that of the substrate 1. The transparent dielectric used for the third dielectric film layer 3c can be basically made of the same material as that of the first dielectric film layer 3a. To improve the antireflection effect, the first dielectric film layer is used. It is preferable to use a material having the same or higher refractive index than that of the material used in 3a. The film thickness of the third dielectric film layer 3c is preferably 10 nm or more and 600 nm or less, more preferably 50 nm or more and 550 nm or less.
[0012]
Reference numeral 3d denotes a fourth dielectric film layer which is laminated on the third dielectric film layer 3c and is made of a transparent dielectric having a refractive index lower than that of the substrate 1. The transparent dielectric used for the fourth dielectric film layer 3d can be made of basically the same material as the second dielectric film layer 3b. The thickness of the fourth dielectric film layer 3d is preferably 10 nm or more and 600 nm or less, more preferably 50 nm or more and 550 nm or less.
Reference numeral 4 denotes a conductive film layer laminated on the fourth dielectric film layer 3d and having conductivity. Examples of the transparent conductor of the conductive film layer 4 include ITO, ATO, SnO 2 , and IZO.
[0013]
Further, the surface resistance value may be appropriately determined according to the purpose of use, but when used for an electro-optical element, a photoelectric conversion element, a liquid crystal, a touch panel, etc., the surface resistance value is preferably 100Ω / □ or more. It is 5000Ω / □ or less, more preferably 100Ω / □ or more and 1000Ω / □ or less.
[0014]
Moreover, the optimal film thickness of each layer is determined by the following method.
First, the film thickness of the conductive film layer is determined so as to obtain a necessary surface resistance value according to the application. Next, the refractive index of the material used for the antireflection layer 3 (dielectric layers 3a to 3d) is set to a fixed value, and the physical film thickness of the dielectric layers 3a to 3d is changed using an optimization algorithm. By such a method, the chromaticness index a * and b * of the L * a * b * color system in the field of view 2 ° and the standard light C are set within the range of −2 to +2. The film thicknesses of the dielectric layers 3a to 3d are obtained so as to obtain the highest transmittance or the lowest reflectance within the range of * and b *. The optimization algorithm is given based on various optimization methods using merit functions such as Adaptive Random Search, Modified Gardient, Monte Carilo method, and Simulated Rated Annealing.
[0015]
As a method of forming each thin film layer (conductive film layer, dielectric film layer) on the substrate 1, the physical vapor deposition method (PVD) includes a vacuum deposition method, a sputtering method, an ion plating method, and the like. Can be mentioned. In addition, examples of the chemical vapor deposition method (CVD) include a plating method and a chemical vapor deposition method. Any of these film forming methods can be used as this embodiment mode. However, since a method involving a high temperature during film formation may cause deformation of the plastic substrate due to heat, the multilayer film is formed on the plastic substrate. A vacuum deposition method or sputtering method that does not require high heat is preferably used.
[0016]
By adopting the film configuration as described above in the transparent substrate with a multilayer antireflection film, the chromaticity of the L * a * b * color system in the standard light C with a visual field of 2 ° while maintaining the luminous transmittance at 90% or more. The Kness indices a * and b * can be set within the range of −2 to +2. Therefore, the light beam transmitted through the transparent substrate with a multilayer antireflection film can be made nearly colorless, and the visibility is improved. Thereby, it can be used more suitably in, for example, a color display touch panel.
[0017]
<Example 1>
A polycarbonate substrate with a hard coat (refractive index: 1.59) was prepared, and four dielectric film layers were formed on the substrate by vacuum deposition. As the first dielectric film layer, a ZrO 2 tablet manufactured by Optron was used, and a thin film layer mainly composed of ZrO 2 was formed on the hard coat as the undercoat layer. The film thickness (optical film thickness nd) of the first dielectric layer at this time was 80 nm. As the second dielectric film layer, SiO 2 granules made by Optron were used, and a thin film layer mainly composed of SiO 2 was formed on the first dielectric film layer. At this time, the thickness of the second dielectric film layer was set to 35 nm. As the third dielectric film layer, Optron TiO 2 granules were used, and a thin film layer mainly composed of TiO 2 was formed on the second dielectric film layer. The film thickness of the third dielectric film layer at this time was 85 nm. As the fourth dielectric film layer, SiO 2 granules made by Optron were used, and a thin film layer mainly composed of SiO 2 was formed on the third dielectric film layer. The film thickness of the fourth dielectric film layer at this time was 100 nm.
[0018]
Next, an ITO target manufactured by Vacuum Metallurgical Co., Ltd. was used, and a thin film layer mainly composed of ITO was formed on the fourth dielectric film layer as a conductive film layer by sputtering. The film thickness of the conductive film layer at this time was 24 nm.
[0019]
The visibility transmittance of the thus obtained transparent substrate with a multilayer film having electrical conductivity was measured. As a measuring apparatus, Asahi Spectroscopic Visibility Transmittance Model MODEL304 was used. The luminous transmittance obtained was 94.1%. The surface resistance value was 500Ω / □. Further, the chromaticness index a * and b * in the standard light C was measured with a visual field of 2 °. As a measuring device, UV-2400PC manufactured by Shimadzu Corporation was used. At this time, the chromaticness index a * was −0.80 and b * was 0.70.
Moreover, the transmittance | permeability of the visible region of the transparent substrate with a multilayer antireflection film obtained in Example 1 is shown in FIG.
[0020]
<Example 2>
Except that the material of the first dielectric film layer and TiO 2, the same substrate as in Example to prepare a transparent substrate with a multilayer antireflective film as a membrane structure. However, the film thickness of each dielectric film layer was adjusted using an optimization algorithm so that the transmittance of the transparent substrate with a multilayer film was obtained as high as possible under these conditions. As a result, the film thicknesses of the first dielectric film layer to the fourth dielectric film layer were 55 nm, 32 nm, 130 nm, and 88 nm in order. The film thickness of the outermost conductive film layer (ITO layer) was 24 nm as in Example 1 so that a surface resistance value of 500Ω / □ was obtained. As in Example 1, the dielectric film layer was formed by a vacuum deposition method, and the conductive film layer was formed by a sputtering method.
[0021]
The visibility transmittance of the transparent substrate with a multilayer film thus obtained was 94.3%. The chromaticness index a * was −0.99 and b * was 0.82.
Moreover, the transmittance | permeability of the visible region of the transparent substrate with a multilayer antireflection film obtained in Example 2 is shown in FIG.
[0022]
<Comparative Example 1>
Using the same substrate as in Example 1, the first dielectric film layer was ZrO 2 , the second dielectric film layer was SiO 2, and one conductive film layer made of ITO was formed on the second dielectric film layer. The film thickness of the outermost ITO conductive film layer was set to 24 nm so that a surface resistance value of 500Ω / □ was obtained. Moreover, the film thickness of each dielectric film layer was adjusted using an optimization algorithm so that the transmittance of the transparent substrate with a multilayer film could be obtained as high as possible under these conditions. As a result, the thicknesses of the first dielectric film layer and the second dielectric film layer were set to 140 nm and 90 nm, respectively. As in Example 1, the dielectric film layer was formed by a vacuum deposition method, and the conductive film layer was formed by a sputtering method.
[0023]
The visibility transmittance of the transparent substrate with a multilayer film thus obtained was 92.9%. The chromaticness index a * was -2.80 and b * was 5.35.
Moreover, the transmittance | permeability of the visible region of the transparent substrate with a multilayer antireflection film obtained in Example 2 is shown in FIG.
[0024]
<Comparative example 2>
Using the same substrate as in Example 1, the first dielectric film layer was TiO 2 , the second dielectric film layer was SiO 2, and one conductive film layer made of ITO was formed on the second dielectric film layer. The film thickness of the outermost ITO conductive film layer was set to 24 nm so that a surface resistance value of 500Ω / □ was obtained. Moreover, the film thickness of each dielectric film layer was adjusted using an optimization algorithm so that the transmittance of the transparent substrate with a multilayer film could be obtained as high as possible under these conditions. As a result, the film thicknesses of the first dielectric film layer and the second dielectric film layer were set to 60 nm and 120 nm, respectively. As in Example 1, the dielectric film layer was formed by a vacuum deposition method, and the conductive film layer was formed by a sputtering method.
[0025]
The visibility transmittance of the transparent substrate with a multilayer film thus obtained was 92.6%. The chromaticness index a * was −3.11 and b * was 5.63.
Moreover, the transmittance | permeability of the visible region of the transparent substrate with a multilayer antireflection film obtained in Example 2 is shown in FIG.
[0026]
[Table 1]
Figure 0004349794
[0027]
<Result>
As shown in FIGS. 2 and 3, in the transparent substrates with multilayer antireflection films of Examples 1 and 2, a certain degree of transmittance was obtained in the visible region (about 400 nm to 700 nm), and the transmitted light was colorless. It became a hue approaching. Further, as shown in FIGS. 4 and 5, in the transparent substrates with multilayer antireflection films of Comparative Examples 1 and 2, since the transmittance in the visible region of 400 nm to 450 nm is extremely small, the transmitted light is yellowish. It became a dark hue. As shown in Table 1, in Examples 1 and 2, a very high luminous transmittance was obtained, and the chromaticness index was in the range of -1.0 to 1.0. It was also shown that transmitted light almost colorless was obtained.
[0028]
【The invention's effect】
As described above, according to the present invention, high visibility can be obtained while having high transmittance.
[Brief description of the drawings]
FIG. 1 is a diagram showing a film configuration in the present embodiment.
2 is a graph showing the transmittance in Example 1. FIG.
3 is a graph showing the transmittance in Example 2. FIG.
4 is a graph showing the transmittance in Comparative Example 1. FIG.
5 is a graph showing the transmittance in Comparative Example 2. FIG.
[Explanation of symbols]
1 Substrate 2 Hard coat layer 3 Antireflection layer 4 Conductive film layer

Claims (1)

透明基板側から順に前記透明基板の屈折率より高い屈折率である透明誘電体からなる第1誘電膜層と,前記透明基板の屈折率より低い屈折率である透明誘電体からなる第2誘電膜層と,前記透明基板の屈折率より高い屈折率である透明誘電体からなる第3誘電膜層と,前記透明基板の屈折率より低い屈折率である透明誘電体からなる第4誘電膜層と,からなる反射防止層帯と、最外層に透明導電体の導電膜層と、を持つ導電性を有する多層反射防止膜付透明基板の製造方法において、
電気光学素子用,光電変換素子用,液晶用,タッチパネル用として所望する表面抵抗値が得られる前記導電膜層の光学膜厚を決定する第1ステップと、
該第1ステップにて決定された前記導電膜層の光学膜厚と前記透明基板の屈折率と各誘電膜層の屈折率とを考慮し,特定の染料または顔料を用いた補色用の着色層を用いることなくL*a*b*表色系による標準光Cに対するクロマティクネス指数a*、b*が−2.0〜2.0の範囲内及び視感度透過率が90%以上となるように,メリット関数を使用した最適化手法を用いて前記第1誘電膜層〜第4誘電膜層の各光学膜厚を決定する第2ステップと、
前記第1ステップ及び第2ステップにて決定された光学膜厚にて前記透明基板上に前記反射防止層帯及び導電膜層を形成する第3ステップと、
を有することを特徴とする導電性を有する多層反射防止膜付透明基板の製造方法。
A first dielectric film layer made of a transparent dielectric having a refractive index higher than that of the transparent substrate in order from the transparent substrate side, and a second dielectric film made of a transparent dielectric having a refractive index lower than the refractive index of the transparent substrate. A third dielectric film layer made of a transparent dielectric having a refractive index higher than that of the transparent substrate, and a fourth dielectric film layer made of a transparent dielectric having a refractive index lower than the refractive index of the transparent substrate; In the method of manufacturing a transparent substrate with a multilayer antireflection film having conductivity, having an antireflection layer band composed of, and a conductive film layer of a transparent conductor as an outermost layer,
A first step of determining an optical film thickness of the conductive film layer for obtaining a desired surface resistance value for an electro-optical element, a photoelectric conversion element, a liquid crystal, and a touch panel;
In consideration of the optical film thickness of the conductive film layer determined in the first step, the refractive index of the transparent substrate, and the refractive index of each dielectric film layer, a colored layer for complementary color using a specific dye or pigment The chromaticness index a * and b * with respect to the standard light C according to the L * a * b * color system is not in the range of −2.0 to 2.0, and the luminous transmittance is 90% or more. And a second step of determining each optical film thickness of the first dielectric film layer to the fourth dielectric film layer using an optimization method using a merit function,
A third step of forming the antireflection layer band and the conductive layer on the transparent substrate with the optical film thickness determined in the first step and the second step;
The manufacturing method of the transparent substrate with a multilayer antireflection film which has electroconductivity characterized by having.
JP2002349583A 2002-12-02 2002-12-02 Method for producing conductive transparent substrate with multilayer antireflection film Expired - Fee Related JP4349794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002349583A JP4349794B2 (en) 2002-12-02 2002-12-02 Method for producing conductive transparent substrate with multilayer antireflection film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002349583A JP4349794B2 (en) 2002-12-02 2002-12-02 Method for producing conductive transparent substrate with multilayer antireflection film

Publications (2)

Publication Number Publication Date
JP2004184579A JP2004184579A (en) 2004-07-02
JP4349794B2 true JP4349794B2 (en) 2009-10-21

Family

ID=32752080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002349583A Expired - Fee Related JP4349794B2 (en) 2002-12-02 2002-12-02 Method for producing conductive transparent substrate with multilayer antireflection film

Country Status (1)

Country Link
JP (1) JP4349794B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101802744B1 (en) 2015-08-28 2017-11-29 한국과학기술연구원 Asymmetric nano grid structure for ultra-slim silicon solar cells, the manufacturing method thereof

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006221142A (en) * 2005-01-14 2006-08-24 Sony Corp Optical element, lens barrel, image pick-up device and electronic equipment
JP4532316B2 (en) * 2005-03-22 2010-08-25 日本板硝子株式会社 Touch panel
JP5160325B2 (en) * 2008-07-16 2013-03-13 日東電工株式会社 Transparent conductive film and touch panel
JP5160329B2 (en) * 2008-07-24 2013-03-13 日東電工株式会社 Transparent conductive film and touch panel
JP5401981B2 (en) * 2008-12-26 2014-01-29 株式会社ニコン Visibility filter, light receiving device, and method of manufacturing visibility filter
JP4499180B1 (en) * 2009-05-13 2010-07-07 旭硝子株式会社 Substrate for liquid crystal projector, liquid crystal panel for liquid crystal projector using the same, and liquid crystal projector
JP2011060617A (en) * 2009-09-11 2011-03-24 Toppan Printing Co Ltd Transparent conductive laminate, method of manufacturing the same, and capacitance touch panel
US9836144B2 (en) 2010-07-30 2017-12-05 Lg Innotek Co., Ltd. Touch panel
KR101114028B1 (en) * 2010-07-30 2012-02-22 엘지이노텍 주식회사 Touch panel
KR101114024B1 (en) * 2010-07-30 2012-02-22 엘지이노텍 주식회사 Touch panel
JP2012058956A (en) * 2010-09-08 2012-03-22 Sony Corp Electrode film and coordinate detector
WO2012091410A2 (en) * 2010-12-27 2012-07-05 전자부품연구원 Touch panel using a metal thin film, and method for manufacturing same
JP5794013B2 (en) 2011-07-22 2015-10-14 セイコーエプソン株式会社 Electro-optical device and electronic apparatus
KR101786112B1 (en) 2011-11-18 2017-10-16 엘지이노텍 주식회사 Touch screen panel
WO2016067337A1 (en) * 2014-10-27 2016-05-06 リンテック株式会社 Film for lamination of transparent conductive layer, and transparent conductive film
CN106157581B (en) * 2015-04-14 2023-01-10 安徽精卓光显技术有限责任公司 Solar touch control remote controller
CN109164528A (en) * 2018-11-05 2019-01-08 无锡泓瑞航天科技有限公司 The optical film layer preparation method of Five-channel multi-color filter
CN112543563B (en) * 2020-11-27 2022-06-21 深圳市沃阳精密科技有限公司 Middle frame of electronic product, manufacturing method of middle frame, shell of electronic product and electronic product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101802744B1 (en) 2015-08-28 2017-11-29 한국과학기술연구원 Asymmetric nano grid structure for ultra-slim silicon solar cells, the manufacturing method thereof

Also Published As

Publication number Publication date
JP2004184579A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
JP4349794B2 (en) Method for producing conductive transparent substrate with multilayer antireflection film
JP5549216B2 (en) Transparent conductive laminate, method for producing the same, and touch panel
JP5585143B2 (en) Transparent conductive laminate, method for producing the same, and touch panel
TWI486973B (en) Transparent conductive multilayered film, producing method of the same, and touch panel containing the same
US7858194B2 (en) Extreme low resistivity light attenuation anti-reflection coating structure in order to increase transmittance of blue light and method for manufacturing the same
JP5617276B2 (en) Transparent conductive laminate and method for producing the same
JP2015115180A (en) Transparent conductive body
JP6292225B2 (en) Transparent conductor
CN101681069B (en) Transparent electrode
JP6319302B2 (en) Transparent conductor and method for producing the same
CN102152563A (en) Transparent conductive material
JP4406237B2 (en) A method for producing a transparent substrate with a multilayer film having conductivity.
KR20140070489A (en) Conducting substrate and method for preparing the same
US7655280B2 (en) Extreme low resistivity light attenuation anti-reflection coating structure and method for manufacturing the same
CN104850266B (en) Touch display panel and its manufacturing method and display device
US7851065B2 (en) Extreme low resistivity light attenuation anti-reflection coating structure in order to increase transmittance of blue light and method for manufacturing the same
JP4245339B2 (en) Method for producing conductive transparent substrate with multilayer film
JP4172049B2 (en) Transparent conductive film
JP4162425B2 (en) Transparent substrate with conductive anti-reflection coating
TWI483158B (en) Touch panel and touch display panel using the same
US20090092808A1 (en) Extreme low resistivity light attenuation anti-reflection coating structure and method for manufacturing the same
JP2016177940A (en) Method for producing transparent conductive body
WO2014188683A1 (en) Touch panel electrode substrate, touch panel including touch panel electrode substrate, and display panel
JP3915202B2 (en) Conductive antireflection film and method for producing the same
US7785714B2 (en) Extreme low resistivity light attenuation anti-reflection coating structure and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees