JP4406237B2 - A method for producing a transparent substrate with a multilayer film having conductivity. - Google Patents

A method for producing a transparent substrate with a multilayer film having conductivity. Download PDF

Info

Publication number
JP4406237B2
JP4406237B2 JP2003282518A JP2003282518A JP4406237B2 JP 4406237 B2 JP4406237 B2 JP 4406237B2 JP 2003282518 A JP2003282518 A JP 2003282518A JP 2003282518 A JP2003282518 A JP 2003282518A JP 4406237 B2 JP4406237 B2 JP 4406237B2
Authority
JP
Japan
Prior art keywords
film
layer
dielectric
conductive film
transparent substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003282518A
Other languages
Japanese (ja)
Other versions
JP2005047178A (en
Inventor
芳光 内田
雅義 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP2003282518A priority Critical patent/JP4406237B2/en
Publication of JP2005047178A publication Critical patent/JP2005047178A/en
Application granted granted Critical
Publication of JP4406237B2 publication Critical patent/JP4406237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Non-Insulated Conductors (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は導電性を有する多層膜付透明基板に関する。   The present invention relates to a transparent substrate with a multilayer film having conductivity.

従来より、ガラス板やプラスチック板(プラスチックフィルム)等の透明基板にインジウム錫酸化物(ITO)やSnO2等の透明導電膜を形成して、太陽電池などの光電変換素子の電極や液晶等の表示装置またはタッチパネルの電極、静電防止フィルターや電磁波カットフィルターとして利用するものが知られている。特にタッチパネルとして使用される場合、耐擦傷性(タッチパネルにおいては耐ペン摺動性)に優れた導電性を有する多層膜付透明基板が望まれるようになっている。 Conventionally, a transparent conductive film such as indium tin oxide (ITO) or SnO 2 is formed on a transparent substrate such as a glass plate or a plastic plate (plastic film), and an electrode of a photoelectric conversion element such as a solar cell or a liquid crystal What is used as an electrode of a display device or a touch panel, an antistatic filter or an electromagnetic wave cut filter is known. In particular, when used as a touch panel, a transparent substrate with a multilayer film having conductivity excellent in scratch resistance (pen sliding resistance in a touch panel) has been desired.

このような背景において、基板上にハードコート層を設けるとともに最表面に透明導電膜を形成させることにより、導電性を有する多層膜付透明基板の耐ペン摺動性の向上を図ろうとする技術が知られている(例えば、特許文献1、特許文献2参照)。
特開2001−216842号公報 特開2002−122703号公報
In such a background, there is a technique for improving the pen sliding resistance of a transparent substrate with a multilayer film having conductivity by providing a hard coat layer on the substrate and forming a transparent conductive film on the outermost surface. Known (for example, refer to Patent Document 1 and Patent Document 2).
JP 2001-216842 A JP 2002-122703 A

しかしながら、上述したような基板上にハードコート層を形成するだけでは現在要望されている耐ペン摺動性を満足することが困難である。また、このような導電性を有する透明基板に電極を形成する場合、電極と最外層との密着性を向上させることが必要となる。
本発明では上記従来技術の問題点に鑑み、耐擦傷性(耐ペン摺動性)及び密着性が高い導電性を有する多層膜付透明基板を提供することを技術課題とする。
However, it is difficult to satisfy the currently required pen slidability simply by forming a hard coat layer on the substrate as described above. Moreover, when forming an electrode on such a transparent substrate having conductivity, it is necessary to improve the adhesion between the electrode and the outermost layer.
In the present invention, in view of the above-mentioned problems of the prior art, it is an object of the present invention to provide a transparent substrate with a multilayer film having high scratch resistance (pen slidability) and high adhesion.

(1) 透明基板上に透明導電体の薄膜を積層する導電性を有する多層膜付透明基板の製造方法において、最外層としてITO,SnO2,IZO,ICO,ATO,FTOから選ばれる透明導電体からなる第1導電膜と,該第1導電膜の下層に形成され主成分として酸化亜鉛を含有する透明導電体からなる第2導電膜とからなる導電膜層の全体の膜厚を用途に応じて必要な表面抵抗値が得られるように決定する第1ステップであって,前記第2導電膜の膜厚は前記第1導電膜の膜厚に対して薄い膜厚として決定する第1ステップと、前記透明基板上に反射防止膜用として形成される1層または2層からなる誘電膜層(誘電膜層が1層の場合はSiO 2 を、2層の場合はSiO 2 とZrO 2 とを使用する)の各膜厚を決定する第2ステップであって,前記第1ステップにて決定された前記導電膜層の膜厚及び前記誘電膜層に用いられる誘電体の屈折率を固定値として視野2°,標準光Cにおけるクロマティクネス指数a*,b*を−2〜+2の範囲内において90%以上の視感度透過率が得られるようにメリット関数を使用した最適化アルゴリズムを用いて前記誘電体の膜厚を決定する第2ステップと、前記第1ステップにて決定された前記第1導電膜及び第2導電膜の膜厚,並びに前記第2ステップにて決定された前記誘電体の膜厚となるように真空蒸着方法またはスパッタ方法を用いて前記透明基板上に前記誘電膜層を形成し次いで前記導電膜層を形成させる(なお、前記誘電膜層が2層の場合には、基板側からZrO 2 からなる誘電膜とSiO 2 からなる誘電膜とを順に形成させる)ことを特徴とする。

(1) A transparent conductor selected from ITO, SnO 2 , IZO, ICO, ATO, and FTO as the outermost layer in a method for producing a transparent substrate with a multilayer film having conductivity, in which a thin film of a transparent conductor is laminated on a transparent substrate The total film thickness of the conductive film made of the first conductive film made of and a second conductive film made of a transparent conductor containing zinc oxide as a main component formed under the first conductive film depends on the application. A first step for determining a required surface resistance value, wherein the thickness of the second conductive film is determined to be smaller than the thickness of the first conductive film; the SiO 2 in the case of one layer or two layers dielectric layer (dielectric layer is one layer is formed as anti-reflection film on the transparent substrate, in the case of two layers of SiO 2 and ZrO 2 a second step of determining the respective film thicknesses of the use), the first Thickness of the conductive layer which is determined by step and the field of view 2 ° the refractive index of the dielectric material used in the dielectric layer as a fixed value, the chromaticness indices a in the standard light C *, -2 to the b * In the second step of determining the film thickness of the dielectric using an optimization algorithm using a merit function so that a luminous transmittance of 90% or more is obtained within the range of +2, and determined in the first step The first conductive film and the second conductive film are formed on the transparent substrate using a vacuum deposition method or a sputtering method so as to have a film thickness of the dielectric determined in the second step. Form the dielectric film layer, and then form the conductive film layer. (If the dielectric film layer has two layers, a dielectric film made of ZrO 2 and a dielectric film made of SiO 2 are formed in this order from the substrate side. It is characterized by that) .

本発明によれば、高い透過率と耐ペン摺動性が得られるとともに、電極と膜との密着性に優れた導電性を有する多層膜付透明基板を得ることができる。
According to the present invention, it is possible to obtain a transparent substrate with a multilayer film having high transmittance and pen sliding resistance, and having conductivity excellent in adhesion between an electrode and a film.

以下、本発明の実施の形態における導電性を有する多層膜付透明基板について、図面を参照しながら説明する。なお、本実施形態では、基板上に反射防止効果をもたせるための薄膜層帯を設けておき、その上に導電性を有する導電膜層を設けた導電性を有する多層膜付透明基板を例にとり、説明する。   Hereinafter, a transparent substrate with a multilayer film having conductivity according to an embodiment of the present invention will be described with reference to the drawings. In this embodiment, a thin film layer band for providing an antireflection effect is provided on the substrate, and a conductive transparent film substrate with a conductive film layer provided thereon is taken as an example. ,explain.

図1は本発明の実施の形態における導電性を有する多層膜付透明基板の積層構成を示す概略図である。
1は透明の基板である。基板1は通常に入手できるものであればよく、屈折率は1.48以上1.7以下程度のものを使用する。具体的に、基板材料としてはガラス類(屈折率1.48〜1.70)、プラスチック類(ポリカーボネイト(屈折率1.59)、ポリエチレンテレフタレート(屈折率1.63)等)が用いられ、光学的に透明であれば特に限定されない。また、本実施形態で述べる基板とは板状に限らず、フィルム基板を含むものとしている。
FIG. 1 is a schematic view showing a laminated structure of a transparent substrate with a multilayer film having conductivity in an embodiment of the present invention.
Reference numeral 1 denotes a transparent substrate. The substrate 1 may be any substrate that is normally available and has a refractive index of about 1.48 or more and 1.7 or less. Specifically, glass (refractive index: 1.48 to 1.70), plastics (polycarbonate (refractive index: 1.59), polyethylene terephthalate (refractive index: 1.63), etc.) are used as the substrate material. If it is transparent, it will not be specifically limited. The substrate described in the present embodiment is not limited to a plate shape, and includes a film substrate.

2は基板1上に多層膜の成膜前に事前に形成される薄膜層である。この薄膜層2は、多層膜を成膜する前に基板1にコーティングすることにより、基板1の表面を硬化させ、傷等から保護するためや、基板1と多層膜との間の密着力を上げるために形成される層である(以下、ハードーコート層と記す)。一般的に、ハードコート層2においては、基板1の表面を保護するとともに、基板1と多層膜との間の密着力を上げることが可能なアクリル系ハードコートがよく利用される。   Reference numeral 2 denotes a thin film layer formed in advance on the substrate 1 before the multilayer film is formed. The thin film layer 2 is coated on the substrate 1 before the multilayer film is formed, so that the surface of the substrate 1 is cured and protected from scratches, and the adhesion between the substrate 1 and the multilayer film is increased. It is a layer formed for raising (hereinafter referred to as a hard coat layer). In general, in the hard coat layer 2, an acrylic hard coat that protects the surface of the substrate 1 and can increase the adhesion between the substrate 1 and the multilayer film is often used.

また、基板1にハードコート層2を形成しないで、基板1上に直接多層膜を成膜することも可能であるが、前述したように多層膜の保護や密着力向上のために、基板1上に事前にハードコート処理を行なっておくことが好ましい。また、ハードコートではなく、単に基板1と多層膜との間での密着力向上のために真空蒸着等にて基板上にアンダーコートを行なうこともある。
何れの場合においても、ハードコート(アンダーコート)の膜厚は、光学的な阻害が起こらないように基板の屈折率と同程度の屈折率を有するようにしておくことが好ましい。
Further, it is possible to form a multilayer film directly on the substrate 1 without forming the hard coat layer 2 on the substrate 1, but as described above, in order to protect the multilayer film and improve adhesion, the substrate 1 It is preferable to perform a hard coat treatment in advance. Further, instead of hard coating, an undercoat may be applied on the substrate simply by vacuum deposition or the like in order to improve the adhesion between the substrate 1 and the multilayer film.
In any case, it is preferable that the film thickness of the hard coat (undercoat) has a refractive index comparable to the refractive index of the substrate so that optical inhibition does not occur.

3は反射防止効果をもたせるためにハードコート層2上に形成される反射防止膜層(誘電膜層)である。本実施形態における誘電膜層3は、基板の屈折率より低い屈折率をもつ透明誘電体から形成される。誘電体層として用いられる透明誘電体は、使用する基板1に応じて適宜選択されるが、基板1の屈折率よりも低い屈折率が必要なため、基板1の最高屈折率1.70より低くする必要がある。また同時に、安価に入手可能でかつ安定した成膜が確認されているものが好ましいため、それらを考慮して屈折率が屈折率1.35以上1.60以下程度の範囲のものが使用される。具体的には、誘電膜層3の主成分にはSiO2(屈折率1.46)やMgF2(屈折率1.38)が挙げられる。また、誘電膜層3の光学的膜厚(以下、単に膜厚と記す)は、10nm以上600nm以下が好ましく、より好ましくは50nm以上550nm以下である。膜厚がこれ以上薄くても厚くても、反射防止効果が得られにくい。なお、本実施形態では誘電膜層を1層のみとしているがこれに限るものではない、屈折率の異なる透明誘電体層を順に積層させることによって反射防止効果を得るようにしてもよい。 Reference numeral 3 denotes an antireflection film layer (dielectric film layer) formed on the hard coat layer 2 in order to have an antireflection effect. The dielectric film layer 3 in this embodiment is formed of a transparent dielectric having a refractive index lower than that of the substrate. The transparent dielectric used as the dielectric layer is appropriately selected according to the substrate 1 to be used. However, since a refractive index lower than the refractive index of the substrate 1 is required, it is lower than the maximum refractive index 1.70 of the substrate 1. There is a need to. At the same time, it is preferable that the film is available at a low cost and has been confirmed to have a stable film formation. Therefore, a film having a refractive index in the range of about 1.35 to 1.60 is used in consideration of them. . Specifically, the main component of the dielectric film layer 3 includes SiO 2 (refractive index 1.46) and MgF 2 (refractive index 1.38). Further, the optical film thickness (hereinafter simply referred to as film thickness) of the dielectric film layer 3 is preferably 10 nm or more and 600 nm or less, and more preferably 50 nm or more and 550 nm or less. Even if the film thickness is thinner or thicker than this, it is difficult to obtain the antireflection effect. In this embodiment, only one dielectric film layer is used. However, the present invention is not limited to this. An antireflection effect may be obtained by sequentially laminating transparent dielectric layers having different refractive indexes.

4は誘電膜層3上に積層され、導電性を有する第2導電膜層である。第2導電膜層4の透明導電体には、酸化亜鉛、AZO(アルミニウムドープ酸化亜鉛)やGZO(ガリウムドープ酸化亜鉛)等の酸化亜鉛を主成分とする材料を用いることができる。5は第2導電膜層4上に積層され、最表面となる導電性を有する第1導電膜層である。第1導電膜層5の透明導電体にはITO(スズドープ酸化インジウム)、SnO2(酸化スズ)、IZO(亜鉛ドープ酸化インジウム)、ICO(セリウムドープ酸化インジウム)、ATO(アンチモンドープ酸化スズ)、FTO(フッ素ドープ酸化スズ)等の酸化亜鉛を主成分としない透明かつ導電性を有する材料が挙げられる。 Reference numeral 4 denotes a second conductive film layer that is laminated on the dielectric film layer 3 and has conductivity. For the transparent conductor of the second conductive film layer 4, a material mainly composed of zinc oxide such as zinc oxide, AZO (aluminum-doped zinc oxide) or GZO (gallium-doped zinc oxide) can be used. Reference numeral 5 denotes a first conductive film layer that is laminated on the second conductive film layer 4 and has conductivity as an outermost surface. The transparent conductor of the first conductive layer 5 includes ITO (tin doped indium oxide), SnO 2 (tin oxide), IZO (zinc doped indium oxide), ICO (cerium doped indium oxide), ATO (antimony doped tin oxide), Examples thereof include a transparent and conductive material that does not contain zinc oxide as a main component, such as FTO (fluorine-doped tin oxide).

このように、ITO等からなる第1導電膜層5の直下に酸化亜鉛を主成分とする第2導電膜層4を形成することにより、従来の導電性を有する多層膜付透明基板に比べ、耐ペン摺動性の性能が格段に向上する。また、このような構成を有する多層膜付透明基板に対して図2に示すように第1導電膜層5の上に電極6を形成した場合、導電膜層と電極との密着性が向上する。   Thus, by forming the second conductive film layer 4 mainly composed of zinc oxide immediately below the first conductive film layer 5 made of ITO or the like, compared to the conventional transparent substrate with a multilayer film having conductivity, Pen sliding resistance performance is greatly improved. Further, when the electrode 6 is formed on the first conductive film layer 5 as shown in FIG. 2 for the transparent substrate with a multilayer film having such a configuration, the adhesion between the conductive film layer and the electrode is improved. .

また、このような構成を有する多層膜付透明基板における表面抵抗値は、第1導電膜層5と第2導電膜層4とを合わせた膜厚により表面抵抗値が決定される。したがって、表面抵抗値を低抵抗値に設定する場合には、一方の膜厚或いは両方の膜厚を厚くすればよい。また、表面抵抗値を高抵抗値に設定する場合には一方の膜厚或いは両方の膜厚を薄くすればよい。なお、第1導電膜層5にITO等の抵抗率が良い(低い)材料を用いた場合、第2導電膜層4の膜厚の増減に対して、第1導電膜層5の膜厚を増減させる方が、表面抵抗値の値が大きく変動する。このため、所望する表面抵抗値を得るために主として第1導電膜層5の膜厚を増減させることにより、導電膜層全体の膜厚を薄くさせることができるため、透過率の向上が期待できる。   Further, the surface resistance value in the transparent substrate with a multilayer film having such a configuration is determined by the film thickness of the first conductive film layer 5 and the second conductive film layer 4 combined. Accordingly, when the surface resistance value is set to a low resistance value, one film thickness or both film thicknesses may be increased. When the surface resistance value is set to a high resistance value, one film thickness or both film thicknesses may be reduced. When a material having a good (low) resistivity such as ITO is used for the first conductive film layer 5, the film thickness of the first conductive film layer 5 is changed with respect to increase / decrease in the film thickness of the second conductive film layer 4. Increasing or decreasing the value greatly varies the surface resistance value. For this reason, since the film thickness of the whole electrically conductive film layer can be made thin by mainly increasing / decreasing the film thickness of the 1st electrically conductive film layer 5 in order to obtain the desired surface resistance value, the improvement of the transmittance | permeability can be anticipated. .

また、表面抵抗値は使用目的に応じて適宜決定すれば良いが、電気光学素子用、光電変換素子用、液晶用、タッチパネル用等に用いるのであれば、好ましくは表面抵抗値が100Ω/□以上5000Ω/□以下であり、より好ましくは100Ω/□以上1000Ω/□以下である。また、表面抵抗値と対応する第1導電膜層5と第2導電膜層4との合計の膜厚は10nm以上1000nm以下が好ましく、より好ましくは15nm以上100nm以下である。   Further, the surface resistance value may be appropriately determined according to the purpose of use, but when used for an electro-optical element, a photoelectric conversion element, a liquid crystal, a touch panel, etc., the surface resistance value is preferably 100Ω / □ or more. It is 5000Ω / □ or less, more preferably 100Ω / □ or more and 1000Ω / □ or less. The total film thickness of the first conductive film layer 5 and the second conductive film layer 4 corresponding to the surface resistance value is preferably 10 nm to 1000 nm, more preferably 15 nm to 100 nm.

また、各層の最適な膜厚は以下の方法により決定される。
初めに、用途に応じて必要な表面抵抗値が得られるような導電膜層(ここでは第1導電膜層5及び第2導電膜層4)の膜厚を決定させておく。次に誘電膜層3に使用する材料の屈折率を固定値とし、最適化アルゴリズムを用いながら誘電膜層3の膜厚を変化させていく。このような手法により、視野2°、標準光CにおけるL*a*b*表色系のクロマティクネス指数a*、b*を−2〜+2の範囲以内としつつ、このようなクロマティクネス指数a*、b*の範囲内において最も高い透過率若しくは最も低い反射率が得られるような誘電体層膜厚を求める。最適化アルゴリズムは例えば、Adaptive Random SearchやModified Gardient、Monte Carilo method、Simurated Annealing等、メリット関数を使用した様々な最適化手法を基に与えられる。
Moreover, the optimal film thickness of each layer is determined by the following method.
First, the film thicknesses of the conductive film layers (here, the first conductive film layer 5 and the second conductive film layer 4) that can obtain a necessary surface resistance value in accordance with the application are determined. Next, the refractive index of the material used for the dielectric film layer 3 is set to a fixed value, and the film thickness of the dielectric film layer 3 is changed using an optimization algorithm. By such a method, the chromaticness index a is set such that the chromaticness index a * and b * of the L * a * b * color system in the field of view 2 ° and the standard light C is within the range of −2 to +2. The dielectric layer thickness is determined so as to obtain the highest transmittance or the lowest reflectance within the range of * and b *. The optimization algorithm is given based on various optimization methods using merit functions such as Adaptive Random Search, Modified Gardient, Monte Carilo method, and Simulated Rated Annealing.

上記で示した各薄膜層(導電膜層、誘電膜層)を基板1上に形成する方法としては、物理的気層成長方法(PVD)では真空蒸着方法やスパッタ方法、イオンプレーティング方法等が挙げられる。また、化学的気層成長方法(CVD)ではめっき方法や化学的気層成長方法等が挙げられる。これらの成膜方法は、本実施の形態としてすべて使用可能であるが、成膜に際して高温を伴うような方法では熱によるプラスチック基板の変形等が考えられるため、プラスチック基板での多層膜の成膜は高熱を必要としない真空蒸着方法やスパッタ方法が好適に用いられる。   As a method of forming each thin film layer (conductive film layer, dielectric film layer) on the substrate 1, the physical vapor deposition method (PVD) includes a vacuum deposition method, a sputtering method, an ion plating method, and the like. Can be mentioned. In addition, examples of the chemical vapor deposition method (CVD) include a plating method and a chemical vapor deposition method. Any of these film forming methods can be used as this embodiment mode. However, since a method involving a high temperature during film formation may cause deformation of the plastic substrate due to heat, the multilayer film is formed on the plastic substrate. A vacuum deposition method or sputtering method that does not require high heat is preferably used.

なお、前述の実施形態では1層からなる反射防止層帯の上に導電膜層を2層積層するものとしているが、これに限るものではない。例えば、導電性を有する多層膜付透明基板の透過率(反射率)を考慮する必要がなければ、このような反射防止層帯を設けなくとも良い。また、反射防止層帯を形成する場合であっても前述したように1層に限るものではなく、所望する透過率(反射率)が得られるような多層構造(例えば2層〜6層等)を形成すればよい。   In the above-described embodiment, the two conductive film layers are laminated on the antireflection belt made of one layer. However, the present invention is not limited to this. For example, if it is not necessary to consider the transmittance (reflectance) of a transparent substrate with a multilayer film having conductivity, such an antireflection layer band may not be provided. Further, even when the antireflection layer is formed, it is not limited to one layer as described above, but a multilayer structure (for example, two to six layers) that can obtain a desired transmittance (reflectance). May be formed.

以下に実施例、及び比較例を挙げる。
<実施例1>
ハードコート付きポリカーボネイト基板(屈折率1.59)を用意し、真空蒸着法により、誘電膜層を基板上に形成した。第1誘電膜層としては、オプトロン社製SiO2顆粒を使用し、アンダーコート層であるハードコート上にSiO2を主成分とする薄膜層を形成した。このときの誘電膜層の膜厚は60nmとした。
次に住友金属鉱山(株)製AZOターゲットを使用し、第2導電膜層として誘電膜層上にAZOの薄膜層をスパッタ法により形成した。このときの第2導電膜層の膜厚は5nmとした。また、最表面となる第1導電膜層としては、真空治金(株)製ITOターゲットを使用し、第1導電膜層としてITOを主成分とする薄膜層をスパッタ法により形成した。このときの第1導電膜層の膜厚は25nmとした。
Examples and comparative examples are given below.
<Example 1>
A hard-coated polycarbonate substrate (refractive index: 1.59) was prepared, and a dielectric film layer was formed on the substrate by vacuum deposition. As the first dielectric film layer, SiO 2 granules made by Optron were used, and a thin film layer mainly composed of SiO 2 was formed on the hard coat as the undercoat layer. The thickness of the dielectric film layer at this time was 60 nm.
Next, an AZO target manufactured by Sumitomo Metal Mining Co., Ltd. was used, and a thin film layer of AZO was formed as a second conductive film layer on the dielectric film layer by sputtering. The thickness of the second conductive film layer at this time was 5 nm. In addition, as the first conductive film layer serving as the outermost surface, an ITO target manufactured by Vacuum Metallurgical Co., Ltd. was used, and a thin film layer mainly composed of ITO was formed as a first conductive film layer by a sputtering method. The film thickness of the first conductive film layer at this time was 25 nm.

このようにして得られた導電性を有する多層膜付透明基板の視感度透過率を測定した。測定装置は朝日分光社製 視感度透過率計MODEL304を用いた。得られた視感透過率は90.3%であった。また、表面抵抗値は500Ω/□であった。
次に、物理膜厚188μmのITO付のPET(ポリエチレンテレフタレート)フィルムのITO形成面側と作成した多層膜付透明基板の膜形成面側とを張り合わせた後、耐ペン摺動性評価を行った。耐ペン摺動性評価は、張り合わせたPETフィルムのITO電極面の裏面より、ポリアセタール製のペン(先端形状は、0.8mmR)に250gの荷重を掛け、往復10万回の摺動試験を行うことにより評価した。往復10万回の摺動試験を行っても、目視にて多層膜付基板上に白濁が見られなければ○、白濁が生じていれば×とした。
The visibility transmittance of the thus obtained transparent substrate with a multilayer film having electrical conductivity was measured. As a measuring apparatus, Asahi Spectroscopic Visibility Transmittance Model MODEL304 was used. The luminous transmittance obtained was 90.3%. The surface resistance value was 500Ω / □.
Next, after sticking the ITO forming surface side of the PET (polyethylene terephthalate) film with ITO having a physical film thickness of 188 μm and the film forming surface side of the prepared transparent substrate with a multilayer film, pen sliding resistance was evaluated. . The pen sliding resistance evaluation is performed by applying a load of 250 g to a polyacetal pen (tip shape: 0.8 mmR) from the back surface of the ITO electrode surface of the laminated PET film, and performing a sliding test of 100,000 round trips. It was evaluated by. Even if a sliding test was performed 100,000 times in a reciprocating manner, it was evaluated as “◯” if no white turbidity was observed on the multilayer film-coated substrate, and “X” if white turbidity occurred.

また、得られた導電性を有する多層膜付透明基板の表面に電極を形成し、電極の密着性について評価を行った。電極の形成は第1導電膜層の表面に銀ペーストを塗布し、温度90°にて30分加熱することによって形成した。電極の形成後、多層膜付透明基板を温度60℃、湿度95%の雰囲気中に12時間置いた後、カッターを用いて電極に1mm間隔でマス目を100個作り、セロハン粘着テープによる剥離試験(クロスカットテープ試験)を3回行い残ったマス目の数を調べた。マス目が全て残っていれば(一つも剥がれていなければ)○とし、マス目が一つでも剥がれていれば×とした。また、2°の視野で標準光Cにおけるクロマティクネス指数a*、b*を測定した。測定装置は島津製作所製UV-2400PCを用いた。このときのクロマティクネス指数a*は-0.25、b*は1.40であった。
以上の結果を表1に示す。
Moreover, the electrode was formed in the surface of the obtained transparent substrate with a multilayer film which has electroconductivity, and the adhesiveness of the electrode was evaluated. The electrode was formed by applying a silver paste to the surface of the first conductive film layer and heating at a temperature of 90 ° for 30 minutes. After the electrode is formed, the transparent substrate with a multilayer film is placed in an atmosphere of 60 ° C. and 95% humidity for 12 hours, and then 100 squares are made on the electrode at 1 mm intervals using a cutter, and a peel test using a cellophane adhesive tape. (Cross cut tape test) was performed three times to check the number of remaining squares. If all the squares remain (if none of them are peeled off), it is marked as ◯, and if even one square is peeled off, it is marked as x. Further, the chromaticness index a * and b * in the standard light C was measured with a visual field of 2 °. As a measuring device, UV-2400PC manufactured by Shimadzu Corporation was used. At this time, the chromaticness index a * was −0.25, and b * was 1.40.
The results are shown in Table 1.

<実施例2>
実施例2では、第2導電膜層をAZOからGZOに変えた以外は、すべて実施例1と同じ条件にて導電性を有する多層膜付透明基板を得た。なお、第2導電膜層に用いたGZOは、住友金属鉱山(株)製GZOターゲットを使用してスパッタ法により形成した。得られた導電性を有する多層膜付透明基板の視感度透過率は、90.4%であった。また、表面抵抗値は500Ω/□であった。
また、実施例1と同様に摺動試験及び密着性の評価を行った。また、クロマティクネス指数a*は-0.23、b*は1.30であった。その結果を表1に示す。
<Example 2>
In Example 2, a transparent substrate with a multilayer film having conductivity was obtained under the same conditions as in Example 1 except that the second conductive film layer was changed from AZO to GZO. The GZO used for the second conductive film layer was formed by sputtering using a GZO target manufactured by Sumitomo Metal Mining Co., Ltd. The visibility transmittance of the obtained transparent substrate with a multilayer film having electrical conductivity was 90.4%. The surface resistance value was 500Ω / □.
Further, the sliding test and the adhesion evaluation were performed in the same manner as in Example 1. The chromaticness index a * was −0.23 and b * was 1.30. The results are shown in Table 1.

<実施例3>
実施例3では、第2導電膜層をAZOからZnOに変えた以外は、すべて実施例1と同じ条件にて導電性を有する多層膜付透明基板を得た。なお、第2導電膜層に用いたZnOは、三和研磨工業(株)製ZnOタブレットを使用して真空蒸着方法により形成した。得られた導電性を有する多層膜付透明基板の視感度透過率は、90.3%であった。また、表面抵抗値は500Ω/□であった。
また、実施例1と同様に摺動試験及び密着性の評価を行った。また、クロマティクネス指数a*は-0.24、b*は1.35であった。その結果を表1に示す。
<Example 3>
In Example 3, a transparent substrate with a multilayer film having conductivity was obtained under the same conditions as in Example 1 except that the second conductive film layer was changed from AZO to ZnO. In addition, ZnO used for the 2nd electrically conductive film layer was formed with the vacuum evaporation method using the Sanwa Abrasive Industry Co., Ltd. ZnO tablet. The visibility transmittance | permeability of the obtained transparent substrate with a multilayer film which has electroconductivity was 90.3%. The surface resistance value was 500Ω / □.
Further, the sliding test and the adhesion evaluation were performed in the same manner as in Example 1. The chromaticness index a * was −0.24 and b * was 1.35. The results are shown in Table 1.

<比較例1>
比較例1では、第2導電膜層をAZOからITOに変えた以外は、すべて実施例1と同じ条件にて導電性を有する多層膜付透明基板を得た。得られた導電性を有する多層膜付透明基板の視感度透過率は、90.2%であった。また、表面抵抗値は500Ω/□であった。
また、実施例1と同様に摺動試験及び密着性の評価を行った。また、クロマティクネス指数a*は-0.28、b*は1.31であった。その結果を表1に示す。
<Comparative Example 1>
In Comparative Example 1, a transparent substrate with a multilayer film having conductivity was obtained under the same conditions as in Example 1 except that the second conductive film layer was changed from AZO to ITO. The visibility transmittance of the obtained transparent substrate with a multilayer film having electrical conductivity was 90.2%. The surface resistance value was 500Ω / □.
Further, the sliding test and the adhesion evaluation were performed in the same manner as in Example 1. The chromaticness index a * was −0.28 and b * was 1.31. The results are shown in Table 1.

<比較例2>
比較例2では、第1導電膜層をAZO(膜厚5nm)、第2導電膜層をITO(膜厚25nm)に変えた以外は、すべて実施例1と同じ条件にて導電性を有する多層膜付透明基板を得た。得られた導電性を有する多層膜付透明基板の視感度透過率は、90.4%であった。また、表面抵抗値は500Ω/□であった。
また、実施例1と同様に摺動試験及び密着性の評価を行った。また、クロマティクネス指数a*は-0.22、b*は1.31であった。その結果を表1に示す。
<Comparative example 2>
In Comparative Example 2, a multilayer having conductivity under the same conditions as in Example 1 except that the first conductive film layer was changed to AZO (film thickness 5 nm) and the second conductive film layer was changed to ITO (film thickness 25 nm). A transparent substrate with a film was obtained. The visibility transmittance of the obtained transparent substrate with a multilayer film having electrical conductivity was 90.4%. The surface resistance value was 500Ω / □.
Further, the sliding test and the adhesion evaluation were performed in the same manner as in Example 1. The chromaticness index a * was −0.22 and b * was 1.31. The results are shown in Table 1.

Figure 0004406237
Figure 0004406237

<結果>
表1に示すように、実施例1〜3の導電性を有する多層膜付透明基板においては、何れも視感度透過率が90%以上と高透過率を示すとともに、クロマティクネス指数は-1.5〜1.5の範囲内にあり、無色に近い透過光が得られていることが示された。また、ペン摺動による白濁も無く、高い耐ペン摺動性を有することが確認された。また、剥離試験による電極の剥がれも無く、密着性も良好であった。なお、比較例2の導電性を有する多層膜付透明基板においては摺動試験は良好であったものの、剥離試験においては電極の剥がれが生じてしまい、密着性が悪い結果となった。
<Result>
As shown in Table 1, in the transparent substrates with a multilayer film having conductivity of Examples 1 to 3, all showed a high transmittance of 90% or more, and a chromaticness index was -1.5 to It was in the range of 1.5, and it was shown that transmitted light almost colorless was obtained. Moreover, it was confirmed that there was no cloudiness by pen sliding and it had high pen sliding resistance. Moreover, there was no peeling of the electrode by a peeling test, and the adhesiveness was also good. In addition, although the sliding test was favorable in the transparent substrate with a multilayer film having conductivity of Comparative Example 2, the peeling of the electrode occurred in the peeling test, resulting in poor adhesion.

次に、反射防止層帯を1層ではなく、2層とした例を以下に挙げる。
<実施例4>
実施例4では、基板側から順にZrO2からなる誘電層(第1層)を膜厚55nm、SiO2からなる誘電層(第2層)を膜厚100nm積層して反射防止層帯とし、さらにこの上にAZOからなる導電層(第2導電層)を5nm、ITOからなる導電層(第1導電層)を25nm積層することにより、導電性を有する多層膜付透明基板を得た。得られた導電性を有する多層膜付透明基板の視感度透過率は、91.2%であった。また、表面抵抗値は500Ω/□であった。
また、実施例1と同様に摺動試験及び密着性の評価を行った。また、クロマティクネス指数a*は-0.99、b*は0.07であった。その結果を表2に示す。
Next, an example in which the antireflection layer band is not one layer but two layers will be described below.
<Example 4>
In Example 4, a dielectric layer (first layer) made of ZrO 2 and a dielectric layer (second layer) made of SiO 2 with a thickness of 55 nm and 100 nm are laminated in order from the substrate side to form an antireflection layer, A conductive layer (second conductive layer) made of AZO was laminated thereon with a thickness of 5 nm, and a conductive layer made of ITO (first conductive layer) was laminated with a thickness of 25 nm, thereby obtaining a transparent substrate with a multilayer film having conductivity. The visibility transmittance of the obtained transparent substrate with a multilayer film having electrical conductivity was 91.2%. The surface resistance value was 500Ω / □.
Further, the sliding test and the adhesion evaluation were performed in the same manner as in Example 1. The chromaticness index a * was −0.99, and b * was 0.07. The results are shown in Table 2.

<実施例5>
実施例5では、第2導電層をGZOとした以外は、すべて実施例4と同じ条件にて導電性を有する多層膜付透明基板を得た。得られた導電性を有する多層膜付透明基板の視感度透過率は、91.1%であった。また、表面抵抗値は500Ω/□であった。
また、実施例1と同様に摺動試験及び密着性の評価を行った。また、クロマティクネス指数a*は-0.91、b*は0.13であった。その結果を表2に示す。
<Example 5>
In Example 5, a transparent substrate with a multilayer film having conductivity was obtained under the same conditions as in Example 4 except that the second conductive layer was GZO. The visibility transmittance of the obtained transparent substrate with a multilayer film having electrical conductivity was 91.1%. The surface resistance value was 500Ω / □.
Further, the sliding test and the adhesion evaluation were performed in the same manner as in Example 1. The chromaticness index a * was −0.91 and b * was 0.13. The results are shown in Table 2.

<実施例6>
実施例6では、第2導電層をZnOとした以外は、すべて実施例4と同じ条件にて導電性を有する多層膜付透明基板を得た。得られた導電性を有する多層膜付透明基板の視感度透過率は、91.0%であった。また、表面抵抗値は500Ω/□であった。
また、実施例1と同様に摺動試験及び密着性の評価を行った。また、クロマティクネス指数a*は-1.11、b*は0.53であった。その結果を表2に示す。
<Example 6>
In Example 6, a transparent substrate with a multilayer film having conductivity was obtained under the same conditions as in Example 4 except that the second conductive layer was ZnO. The visibility transmittance | permeability of the obtained transparent substrate with a multilayer film which has electroconductivity was 91.0%. The surface resistance value was 500Ω / □.
Further, the sliding test and the adhesion evaluation were performed in the same manner as in Example 1. The chromaticness index a * was −1.11 and b * was 0.53. The results are shown in Table 2.

<比較例3>
比較例3では、第2導電層をITOとした以外は、すべて実施例4と同じ条件にて導電性を有する多層膜付透明基板を得た。得られた導電性を有する多層膜付透明基板の視感度透過率は、91.2%であった。また、表面抵抗値は500Ω/□であった。
また、実施例1と同様に摺動試験及び密着性の評価を行った。また、クロマティクネス指数a*は-1.03、b*は0.23であった。その結果を表2に示す。
<Comparative Example 3>
In Comparative Example 3, a transparent substrate with a multilayer film having conductivity was obtained under the same conditions as in Example 4 except that the second conductive layer was ITO. The visibility transmittance of the obtained transparent substrate with a multilayer film having electrical conductivity was 91.2%. The surface resistance value was 500Ω / □.
Further, the sliding test and the adhesion evaluation were performed in the same manner as in Example 1. The chromaticness index a * was -1.03, and b * was 0.23. The results are shown in Table 2.

<比較例4>
比較例4では、第1導電膜層をAZO(膜厚5nm)、第2導電膜層をITO(膜厚25nm)に変えた以外は、すべて実施例4と同じ条件にて導電性を有する多層膜付透明基板を得た。得られた導電性を有する多層膜付透明基板の視感度透過率は、91.2%であった。また、表面抵抗値は500Ω/□であった。
また、実施例1と同様に摺動試験及び密着性の評価を行った。また、クロマティクネス指数a*は-1.03、b*は0.15であった。その結果を表2に示す。
<Comparative example 4>
In Comparative Example 4, a multilayer having conductivity under the same conditions as in Example 4 except that the first conductive film layer was changed to AZO (film thickness 5 nm) and the second conductive film layer was changed to ITO (film thickness 25 nm). A transparent substrate with a film was obtained. The visibility transmittance of the obtained transparent substrate with a multilayer film having electrical conductivity was 91.2%. The surface resistance value was 500Ω / □.
Further, the sliding test and the adhesion evaluation were performed in the same manner as in Example 1. The chromaticness index a * was -1.03, and b * was 0.15. The results are shown in Table 2.

Figure 0004406237
Figure 0004406237

<結果>
表2に示すように、実施例4〜6の導電性を有する多層膜付透明基板においては、透過率及びクロマティクネス指数ともに実施例1〜3よりも良い結果が得られた。また、ペン摺動による白濁も無く、高い耐ペン摺動性を有することが確認された。また、剥離試験による電極の剥がれも無く、密着性も良好であった。なお、比較例4の導電性を有する多層膜付透明基板においては摺動試験は良好であったものの、剥離試験においては電極の剥がれが生じてしまい、密着性が悪い結果となった。
<Result>
As shown in Table 2, in the transparent substrate with a multilayer film having conductivity of Examples 4 to 6, both the transmittance and the chromaticness index were better than those of Examples 1 to 3. Moreover, it was confirmed that there was no cloudiness by pen sliding and it had high pen sliding resistance. Moreover, there was no peeling of the electrode by a peeling test, and the adhesiveness was also good. In addition, although the sliding test was favorable in the transparent substrate with a multilayer film having the conductivity of Comparative Example 4, in the peeling test, the electrode peeled off, resulting in poor adhesion.

本実施形態における多層膜付透明基板の膜構成を示した図である。It is the figure which showed the film | membrane structure of the transparent substrate with a multilayer film in this embodiment. 本実施形態における多層膜付透明基板に電極を形成した状態を示した図である。It is the figure which showed the state which formed the electrode in the transparent substrate with a multilayer film in this embodiment.

符号の説明Explanation of symbols

1 透明基板
2 薄膜層
3 誘電膜層
4 第2導電膜層
5 第1導電膜層



DESCRIPTION OF SYMBOLS 1 Transparent substrate 2 Thin film layer 3 Dielectric film layer 4 2nd electrically conductive film layer 5 1st electrically conductive film layer



Claims (1)

透明基板上に透明導電体の薄膜を積層する導電性を有する多層膜付透明基板の製造方法において、
最外層としてITO,SnO2,IZO,ICO,ATO,FTOから選ばれる透明導電体からなる第1導電膜と,該第1導電膜の下層に形成され主成分として酸化亜鉛を含有する透明導電体からなる第2導電膜とからなる導電膜層の全体の膜厚を用途に応じて必要な表面抵抗値が得られるように決定する第1ステップであって,前記第2導電膜の膜厚は前記第1導電膜の膜厚に対して薄い膜厚として決定する第1ステップと、前記透明基板上に反射防止膜用として形成される1層または2層からなる誘電膜層(誘電膜層が1層の場合はSiO 2 を、2層の場合はSiO 2 とZrO 2 とを使用する)の各膜厚を決定する第2ステップであって,前記第1ステップにて決定された前記導電膜層の膜厚及び前記誘電膜層に用いられる誘電体の屈折率を固定値として視野2°,標準光Cにおけるクロマティクネス指数a*,b*を−2〜+2の範囲内において90%以上の視感度透過率が得られるようにメリット関数を使用した最適化アルゴリズムを用いて前記誘電体の膜厚を決定する第2ステップと、前記第1ステップにて決定された前記第1導電膜及び第2導電膜の膜厚,並びに前記第2ステップにて決定された前記誘電体の膜厚となるように真空蒸着方法またはスパッタ方法を用いて前記透明基板上に前記誘電膜層を形成し次いで前記導電膜層を形成させる(なお、前記誘電膜層が2層の場合には、基板側からZrO 2 からなる誘電膜とSiO 2 からなる誘電膜とを順に形成させる)ことを特徴とする導電性を有する多層膜付透明基板の製造方法。
In the method for producing a transparent substrate with a multilayer film having conductivity, a thin film of a transparent conductor is laminated on a transparent substrate,
A first conductive film made of a transparent conductor selected from ITO, SnO 2 , IZO, ICO, ATO, and FTO as an outermost layer, and a transparent conductor containing zinc oxide as a main component formed under the first conductive film A first step of determining the entire film thickness of the conductive film layer made of the second conductive film so as to obtain a necessary surface resistance value according to the application, wherein the film thickness of the second conductive film is A first step of determining a thin film thickness with respect to the film thickness of the first conductive film, and a dielectric film layer (dielectric film layer having one or two layers) formed on the transparent substrate for an antireflection film. In the second step of determining the film thickness of SiO 2 for one layer and SiO 2 and ZrO 2 for two layers ) , the conductive film determined in the first step The film thickness of the layer and the refractive index of the dielectric used for the dielectric film layer are fixed values. Using an optimization algorithm using a merit function so that a luminosity transmittance of 90% or more can be obtained when the chromaticness index a * , b * in the field of view 2 ° and the standard light C is within the range of −2 to +2. A second step of determining a film thickness of the dielectric; a film thickness of the first conductive film and the second conductive film determined in the first step; and a thickness of the dielectric determined in the second step. The dielectric film layer is formed on the transparent substrate using a vacuum deposition method or a sputtering method so as to have a film thickness, and then the conductive film layer is formed (in the case where the dielectric film layer has two layers, A dielectric film made of ZrO 2 and a dielectric film made of SiO 2 are formed in this order from the substrate side ) .
JP2003282518A 2003-07-30 2003-07-30 A method for producing a transparent substrate with a multilayer film having conductivity. Expired - Fee Related JP4406237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003282518A JP4406237B2 (en) 2003-07-30 2003-07-30 A method for producing a transparent substrate with a multilayer film having conductivity.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003282518A JP4406237B2 (en) 2003-07-30 2003-07-30 A method for producing a transparent substrate with a multilayer film having conductivity.

Publications (2)

Publication Number Publication Date
JP2005047178A JP2005047178A (en) 2005-02-24
JP4406237B2 true JP4406237B2 (en) 2010-01-27

Family

ID=34267708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003282518A Expired - Fee Related JP4406237B2 (en) 2003-07-30 2003-07-30 A method for producing a transparent substrate with a multilayer film having conductivity.

Country Status (1)

Country Link
JP (1) JP4406237B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016028013A1 (en) * 2014-08-21 2016-02-25 (주)솔라세라믹 Glass lamination structure having high transparency and conductive surface, and method for producing same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101219038B1 (en) 2004-10-26 2013-01-07 삼성디스플레이 주식회사 Thin film transistor array panel and manufacturing method thereof
WO2006109586A1 (en) * 2005-04-06 2006-10-19 Sharp Kabushiki Kaisha Substrate with conductive layer, display unit and process for producing substrate with conductive layer
JP2007163995A (en) * 2005-12-15 2007-06-28 Geomatec Co Ltd Substrate with transparent conductive film and manufacturing method thereof
JP4967529B2 (en) * 2006-08-23 2012-07-04 凸版印刷株式会社 Transparent conductive laminate
JP2009238416A (en) * 2008-03-26 2009-10-15 Toppan Printing Co Ltd Substrate with transparent conductive film and its manufacturing method
JPWO2010004937A1 (en) * 2008-07-09 2012-01-05 株式会社アルバック Touch panel manufacturing method and film forming apparatus
JP2012114041A (en) * 2010-11-26 2012-06-14 Asahi Glass Co Ltd Radio wave transmitting member, dimming element and dimming window material
JP5794013B2 (en) 2011-07-22 2015-10-14 セイコーエプソン株式会社 Electro-optical device and electronic apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016028013A1 (en) * 2014-08-21 2016-02-25 (주)솔라세라믹 Glass lamination structure having high transparency and conductive surface, and method for producing same

Also Published As

Publication number Publication date
JP2005047178A (en) 2005-02-24

Similar Documents

Publication Publication Date Title
JP4349794B2 (en) Method for producing conductive transparent substrate with multilayer antireflection film
CN203658697U (en) Conducting support for vitrage with variable scattering characteristic of liquid crystal medium and vitrage
JP5549216B2 (en) Transparent conductive laminate, method for producing the same, and touch panel
TWI546197B (en) Transparent conductive film
KR101407877B1 (en) Transparent conductivity film with excellent electric property and touch panel using the same
US10175397B2 (en) Optical film including an infrared absorption layer
JP2015115180A (en) Transparent conductive body
JP6292225B2 (en) Transparent conductor
JP4406237B2 (en) A method for producing a transparent substrate with a multilayer film having conductivity.
JP6319302B2 (en) Transparent conductor and method for producing the same
KR101504840B1 (en) Conducting substrate and method for preparing the same
JP2010212085A (en) Transparent conductive thin film
CN111883284A (en) Double-sided conductive film, film coating method and touch screen
WO2015068738A1 (en) Transparent conductive body
CN111446024A (en) Transparent conductive film and touch screen
CN111446028A (en) Transparent conductive film and touch screen
JP4245339B2 (en) Method for producing conductive transparent substrate with multilayer film
CN212516601U (en) Transparent conductive film and touch screen
CN111739678A (en) Conducting film and touch screen
JP6446209B2 (en) Transparent electrode pattern laminate and touch screen panel provided with the same
WO2015159805A1 (en) Laminate, conductive laminate, and electronic device
WO2014196460A1 (en) Transparent conductor and method for producing same
CN214152473U (en) Double-sided conductive film and touch screen
JP6447943B2 (en) Conductive structure and electronic device including the same
CN212907126U (en) Conducting film and touch screen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees