WO2006109586A1 - Substrate with conductive layer, display unit and process for producing substrate with conductive layer - Google Patents
Substrate with conductive layer, display unit and process for producing substrate with conductive layer Download PDFInfo
- Publication number
- WO2006109586A1 WO2006109586A1 PCT/JP2006/306752 JP2006306752W WO2006109586A1 WO 2006109586 A1 WO2006109586 A1 WO 2006109586A1 JP 2006306752 W JP2006306752 W JP 2006306752W WO 2006109586 A1 WO2006109586 A1 WO 2006109586A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- conductive layer
- layer
- liquid crystal
- film
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/1316—Methods for cleaning the liquid crystal cells, or components thereof, during manufacture: Materials therefor
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/50—Protective arrangements
Definitions
- the present invention relates to a substrate having a conductive layer, a display device, and a method for manufacturing a substrate having a conductive layer.
- the present invention relates to a substrate provided with a conductive layer that can be used for a display substrate such as an active matrix substrate or a color filter substrate, a display device, and a method for manufacturing a substrate provided with a conductive layer.
- liquid crystal display devices have features such as small size, thinness, low power consumption, and light weight, and are widely used in various electronic devices.
- an active matrix type liquid crystal display device having a switching element as an active element can provide display characteristics equivalent to those of a CRT (Cathode Ray Tube). Therefore, OA equipment such as a personal computer, AV equipment such as a television, and a portable device. Widely applied to telephones.
- liquid crystal display devices have been rapidly improved in quality, such as upsizing, higher definition, and improved pixel effective area ratio (higher aperture ratio).
- a liquid crystal panel of a liquid crystal display device typically has a structure in which an active matrix substrate and a color filter substrate are bonded to face the active matrix substrate, and liquid crystal is injected between the substrate and the substrate. Manufactured. Then, a liquid crystal display device is manufactured by connecting a driver or the like to the external lead terminal of the liquid crystal panel.
- An active matrix substrate which is a component of a liquid crystal display device that achieves the above-described object, has signal lines and scanning lines provided on an insulating substrate, and the signal lines and scanning lines cross each other. A switching element and a pixel electrode provided at the intersection are provided.
- a color filter substrate is bonded so as to face the active matrix substrate, and liquid crystal is injected between the substrates to manufacture a liquid crystal display device.
- the color filter substrate mentioned here for example, the color regions of R (red), G (green), and B (blue) are created so as to coincide with the pixel region on the active matrix substrate side.
- a substrate in which a black matrix (light-shielding film) is filled and a transparent electrode is formed on the black matrix can be cited.
- the active matrix substrate surface or color filter substrate of this MVA type liquid crystal display device has protrusions (protrusions for alignment control) for controlling the pretilt of liquid crystal molecules in order to bring out the above-mentioned performance.
- protrusions protrusions for alignment control
- FIG. 7 is a plan view showing one pixel in the active matrix substrate 130 of the MVA type display device and a part of the pixels located adjacent to the one pixel.
- the active matrix substrate 130 shown in FIG. 7 has a configuration including a thin film transistor array.
- a gate line (scanning line) 101 and a source line (signal line) 102 are arranged so as to cross each other.
- a switching element (thin film transistor, hereinafter referred to as TFT) 114 and a pixel electrode 103 are arranged at the intersecting portion.
- the switching element 114 is formed with a gate electrode 104 connected to the gate line 101, a source electrode 105 connected to the source line 102, a drain electrode 106a connected to the pixel electrode 103, and an island-shaped semiconductor layer 125.
- TFT thin film transistor
- a drain lead electrode 106b is connected to the pixel electrode 103 via a contact hole 109. Further, the drain extraction electrode 106b forms an auxiliary capacitance by facing the auxiliary capacitance line 107 with the gate insulating film 111 interposed therebetween.
- FIG. 8 is a cross-sectional view taken along line CI-C2 of the thin film transistor array shown in FIG.
- a gate line (scanning line) 101, a gate electrode 104, and an auxiliary capacitance line 107 are formed on a substrate 110 having a transparent insulating substrate force such as glass by film formation, photolithography, and etching. Form at the same time.
- a gate insulating film 111, an active semiconductor layer 112, a low-resistance semiconductor layer (eg, n-type amorphous silicon) 113 are formed thereon, and an island-shaped semiconductor layer 125 is photolithographically formed. And formed by etching.
- the source line 102, the source electrode 105, the drain electrode 106a, and the drain extraction electrode 106b are simultaneously formed by film formation, photolithography, and etching, and the n-type semiconductor layer 113 is continuously formed as the source Perform drain isolation etching.
- a lower interlayer insulating film 120 having a force such as SiNx (silicon nitride film) is formed so as to cover the entire surface.
- an upper organic interlayer insulating film 115 such as a photosensitive acrylic resin is formed, and a contact hole pattern is formed by photolithography at a position where a contact hole 109 is to be formed later.
- the lower interlayer insulating film 120 and the gate insulating film 111 are continuously formed using the upper organic interlayer insulating film 115 as a mask. And etch.
- a transparent conductive film such as ITO (Indium Tin Oxide) is formed so as to cover the contact hole 109, the gate line external lead terminal, and the source line external lead terminal, and the pixel electrode 103,
- ITO Indium Tin Oxide
- the gate line external lead terminal uppermost layer electrode and the source line external lead terminal uppermost layer electrode are formed by photolithography and etching.
- a slit pattern 150 is provided in the pixel electrode in order to control the alignment of the liquid crystal molecules.
- the contact hole 109 connects the TFT drain electrode 106a, the pixel electrode 103, and the force drain extraction electrode 106b.
- the source line 102 and the pixel electrode 103 can be separated with the interlayer insulating films 115 and 120 interposed therebetween.
- FIG. 9 is a plan view showing one pixel in the color filter substrate 210 of the MVA type display device and a part of the pixels located adjacent to the one pixel.
- FIG. 10 is a cross-sectional view of the color filter substrate 210 corresponding to the cross section taken along the line D1-D2 of FIG.
- the color filter substrate 210 typically has three primary colors (red, green, blue) on the transparent substrate 200.
- a coloring layer 220 and a black matrix layer (hereinafter referred to as BM) 221 such as a color filter layer 222 that has power, a counter electrode 223 such as ITO, an alignment film (not shown), and a protrusion 224 for alignment control .
- BM black matrix layer
- a negative type tantalum-based photosensitive resin solution in which carbon fine particles are dispersed is applied by spin coating, and then dried to form a black photosensitive resin layer. Subsequently, after the black photosensitive resin layer is exposed through a photomask, development is performed to form BM221. At this time, openings for the first colored layer are respectively formed in regions where the first colored layer (for example, red layer), the second colored layer (for example, green layer), and the third colored layer (for example, blue layer) are formed.
- the BM is formed so that the opening for the second colored layer and the opening for the third colored layer are formed. Each opening is formed to correspond to the pixel electrode of the active matrix substrate.
- the second color layer for example, the green layer
- the third color layer for example, the blue layer
- a transparent electrode 223 having a power such as ITO is formed by sputtering.
- a photosensitive positive type phenol novolak photosensitive resin solution is applied by spin coating, and then dried, exposed and developed using a photomask to form vertical alignment control protrusions 224. As a result, the color filter substrate is formed.
- a slit pattern is used to control the alignment of liquid crystal molecules in the same manner as the pixel electrode 103 of the active matrix substrate 130, instead of the vertical alignment control protrusion 224 provided on the MVA color filter substrate 210. May be provided.
- the same alignment control projection as that provided on the color filter substrate 210 may be provided.
- a transparent conductive film is an essential component, and ITO (indium oxide containing tin), IZO (indium oxide containing zinc). ) And other electrode materials.
- ITO indium oxide containing tin
- IZO indium oxide containing zinc
- other electrode materials such transparency Since the bright conductive film contains indium which is a rare metal, it is expensive and is likely to be insufficiently supplied. Therefore, there is a problem that the production of the color filter substrate and the active matrix substrate is hindered.
- zinc oxide hereinafter referred to as ZnO
- Patent Document 2 describes the use of ZnO as a transparent electrode.
- Patent Document 1 Japanese Patent Laid-Open No. 11-242225 (published on September 7, 1999)
- Patent Document 2 JP-A-62-124530 (published on June 5, 1987)
- a liquid crystal panel is formed by forming an alignment film on an active matrix substrate and a color filter substrate, and then injecting and sealing a liquid crystal material by bonding the substrates together.
- the panel yield and display quality will be reduced, such as liquid crystal alignment failure due to foreign matter and repelling of the alignment film due to substrate contamination.
- cleaning with an alkaline solution is performed before the two substrates are bonded together, but there is a problem that ZnO is eroded at this time.
- Such problems are caused by various display devices such as non-MVA liquid crystal display devices, EL (Electro Luminescence) display devices, plasma display devices, etc. It can occur on a substrate provided with a conductive layer of a transparent electrode that is subjected to a cleaning step using an alkaline solution, such as a photoelectric conversion device such as a battery or a touch panel.
- EL Electro Luminescence
- plasma display devices etc. It can occur on a substrate provided with a conductive layer of a transparent electrode that is subjected to a cleaning step using an alkaline solution, such as a photoelectric conversion device such as a battery or a touch panel.
- the present invention has been made to solve the above-described problems, and includes a substrate having a conductive layer in which zinc oxide is hardly eroded even when resource-rich zinc oxide is used. It is an object of the present invention to provide a manufacturing method of a substrate provided with a display device and a conductive layer.
- the present invention includes a laminated structure in which a plurality of conductive layers including at least a first conductive layer mainly composed of zinc oxide are stacked on a substrate, and a cleaning liquid is used in a cleaning step.
- the second conductive layer having a surface in contact with the conductive layer, wherein the material of the second conductive layer constituting the laminated structure is higher in erosion resistance against the cleaning liquid than zinc oxide. It is a board
- the first conductive layer mainly composed of zinc oxide, which is excellent in economic efficiency, is used, the first conductive layer is hardly eroded by the cleaning liquid by the laminated structure.
- the substrate provided with the conductive layer of the present invention is characterized in that the second conductive layer is made of ITO or IZO.
- a conventional manufacturing process similar to that in the case where the conductive layer is only ITO or IZO can be used, and a portion where the conventional manufacturing process can be used is as follows. New manufacturing process development is not required. Further, as a result of forming the first conductive layer mainly composed of zinc oxide, the amount of ITO used to form the second conductive layer can be adjusted.
- the substrate provided with the conductive layer of the present invention is characterized in that the first conductive layer is thicker than the second conductive layer.
- the amount of indium, which is a rare metal can be suppressed, and stable production and supply can be achieved without being affected by the supply amount of indium.
- the substrate provided with the conductive layer of the present invention is characterized in that the plurality of conductive layers serve as pixel electrodes and constitute an active matrix substrate.
- the layer mainly composed of zinc oxide is hardly eroded in the cleaning process. Therefore, good display quality can be obtained and the yield can be improved.
- the substrate provided with the conductive layer of the present invention is characterized in that the plurality of conductive layers serve as transparent electrodes to constitute a color filter substrate.
- the layer mainly composed of zinc oxide is hardly eroded in the cleaning process. Therefore, good display quality can be obtained and the yield can be improved.
- a substrate provided with the conductive layer of the present invention is characterized in that it has an alignment control protrusion on the second conductive layer side of the laminated structure.
- the wide viewing angle display device base used in the MVA liquid crystal display device is used.
- a board can be obtained.
- a substrate having a conductive layer according to the present invention is characterized in that a plurality of conductive layers including at least a first conductive layer mainly composed of zinc oxide have slits.
- a display device of the present invention is characterized by using a substrate including any one of the conductive layers described above.
- a conventional manufacturing process can be used by using the substrate including the conductive layer of the present invention for a display device.
- stable production can be secured at low cost, and a display device with a high aperture ratio, a wide viewing angle, and a high yield can be supplied.
- a method for producing a substrate provided with a conductive layer of the present invention includes a step of forming a conductive layer on the substrate, and a step of cleaning in a state where at least a part of the conductive layer of the substrate is exposed,
- the conductive layer forming step is a step of forming a conductive layer containing zinc oxide as a main component on a substrate and a conductive layer having a surface in contact with the cleaning liquid, and is resistant to erosion with respect to the cleaning liquid.
- the first conductive layer mainly composed of zinc oxide, which is excellent in economic efficiency is used, the first conductive layer is hardly eroded by the cleaning liquid during the cleaning process.
- erosion means that at least a part is removed by a liquid such as a cleaning liquid, and erosion resistance means resistance against such erosion.
- the second conductive layer having high erosion resistance to the cleaning liquid exists even when the first conductive layer mainly composed of zinc oxide, which is excellent in economic efficiency, is used,
- the conductive layer is not easily eroded by the cleaning solution. Therefore, it is possible to suppress the decrease in yield and quality, and to achieve substrate supply by stable production at low cost.
- FIG. 1 is a cross-sectional view showing a schematic structure of a first embodiment of a display device substrate (active matrix substrate) in a liquid crystal display device according to the present invention.
- FIG. 2 One pixel and its periphery in the active matrix substrate for display device of Embodiment 1. It is a top view which shows schematic structure of a side part.
- FIG. 3 is a cross-sectional view taken along line A1-A2 of the display device substrate shown in FIG.
- FIG. 4 is a cross-sectional view showing a schematic structure of Embodiment 2 of a display device substrate (color filter substrate) in a liquid crystal display device according to the present invention.
- FIG. 5 is a plan view showing a schematic structure of one pixel and its peripheral portion in the color filter substrate for display device of Embodiment 2.
- FIG. 6 is a cross-sectional view taken along line B1-B2 of the display device substrate shown in FIG.
- FIG. 7 is a plan view showing a conventional active matrix substrate for a display device.
- FIG. 8 is a cross-sectional view taken along line C1 C2 of the display device substrate shown in FIG.
- FIG. 9 is a plan view showing a conventional color filter substrate for a display device.
- FIG. 10 is a cross-sectional view taken along line D1-D2 of the display device substrate shown in FIG.
- Active matrix substrate Substrate with conductive layer, display device substrate
- Color filter layer
- Color filter substrate substrate with conductive layer, substrate for display device
- an active matrix substrate for a liquid crystal display device will be described as a specific example of the substrate for a display device.
- FIG. 1 is a cross-sectional view showing an example of a liquid crystal display device using the active matrix substrate of the present invention.
- the liquid crystal display device 40 includes an active matrix substrate 30 and a color filter substrate 33, and the substrates 30 and 33 sandwich a liquid crystal layer 32 made of liquid crystal such as vertical alignment type liquid crystal, for example.
- the active matrix substrate 30 includes a pixel electrode 3 (laminated structure) in which an oxide zinc (ZnO) layer 3b (first conductive layer) and an ITO layer 3a (second conductive layer) are stacked.
- ZnO oxide zinc
- ITO second conductive layer
- the color filter substrate 33 includes a color filter layer including a colored layer 34 and a light-shielding film 35, protrusions for controlling the pretilt of liquid crystal molecules that control liquid crystal alignment (protrusions for alignment control) 36, and transparent electrodes 37 etc.
- the transparent electrode 37 is preferably a laminated structure in which a ZnO layer 37b (first conductive layer) and an ITO layer 37a (second conductive layer) are laminated.
- the liquid crystal layer 32 is It is sandwiched between an alignment film (not shown) of the direction substrate (color filter substrate) 33 and an alignment film (not shown) of the active matrix substrate 30.
- FIG. 2 is a plan view showing one pixel in the active matrix substrate 30 (display device substrate) of the present invention and a part of the pixels located adjacent to the one pixel.
- a source line (signal line) 2 a gate line (scanning line) 1, and a pixel electrode 3 are stacked on an insulating substrate 10.
- the gate line 1 and the source line 2 are arranged so as to cross each other.
- a switching element (TFT) 14 and a pixel electrode 3 are provided at each intersection where they intersect.
- the insulating substrate 10 is located on the rearmost surface in FIG. 2, and is disposed at the position described in the cross-sectional view shown in FIG. 3 is a cross-sectional view taken along the line Al—A2 in FIG.
- the gate line 4 is connected to the gate line 1!
- a source electrode 5 is connected to the source line 2.
- the pixel electrode 3 is formed by stacking a ZnO layer 3b as a lower layer and an ITO layer 3a as an upper layer.
- the pixel electrode 3 is connected to the drain electrode 6a via the contact hole 9 provided in the interlayer insulating film 15 and the drain extraction electrode 6b.
- the pixel electrode 3 is provided with a slit 8 for controlling the alignment of the liquid crystal.
- the drain extraction electrode 6b is opposed to the auxiliary capacitance bus line 7 across the gate insulating film 11, thereby forming an auxiliary capacitance.
- a voltage is applied to the gate electrode 4.
- the current flowing between the source electrode 5 and the drain electrode 6a is controlled by the voltage applied to the gate electrode 4. That is, based on the signal transmitted from the source line 2, current flows from the source electrode 5 to the drain electrode 6a, and further from the drain electrode 6a to the pixel electrode 3 via the drain extraction electrode 6b. Flows. Thereby, the pixel electrode 3 applies a voltage to the liquid crystal layer 32 to perform a predetermined display.
- the auxiliary capacity bus line 7 is provided as an auxiliary to maintain a predetermined display.
- TiZAlZTi is formed on an insulating substrate 10 having a transparent insulating force such as glass.
- the laminated film is formed by sputtering, photolithography is performed, dry etching and resist peeling are performed, and the gate line 1, the gate electrode 4, and the auxiliary capacitance line 7 are formed simultaneously.
- the gate insulating film 11 is formed by using a mixed gas of SiH gas, NH gas, and N gas.
- the active semiconductor layer 12 uses a mixed gas of SiH gas and H gas, and further has an n-type low resistance.
- the semiconductor layer 13 uses a mixed gas of SiH gas, PH gas, and H gas.
- Films are continuously formed by chemical vapor deposition.
- a laminated film made of TiZAlZTi is formed by sputtering, photolithography is performed, and dry etching is performed to simultaneously form the source line 2, the source electrode 5, the drain electrode 6a, and the drain extraction electrode 6b. . Further, the n-type semiconductor layer 13 is continuously subjected to source / drain separation etching to remove the resist. At this time, a thin film transistor (TFT) is formed.
- TFT thin film transistor
- 1000 A to 5000 A @ i lower interlayer insulating film 20 made of SiN is formed by CVD using a mixed gas of SiH gas, NH gas, and N gas so as to cover the entire surface. .
- the upper organic layer insulating film 15 made of a positive photosensitive acrylic resin having a thickness of about 2 ⁇ m to 4 ⁇ m is formed on the contact hole 9 and the gate line external lead terminal contact pattern by photolithography. Also, it is formed so as to have a pattern for contact with the external lead terminal of the source line.
- the lower interlayer insulating film 20 and the gate insulating film 11 are formed using the upper organic layer insulating film 15 as a mask. Dry Ettin using mixed gas of CF gas and O gas
- a ZnO film and an ITO film are formed by sputtering so as to cover the contact hole 9 To do.
- the pixel electrode 3 is formed by peeling.
- an aqueous solution having a TMAH (hydroxyl tetramethylammonium) concentration of 10% or less is used as the developer.
- TMAH hydroxyl tetramethylammonium
- MEA monoethanolamine
- DMSO dimethyl sulfoxide
- the active matrix substrate 30 in the present embodiment is obtained.
- a liquid crystal panel is formed.
- both substrates are prepared and each is washed with an alkaline solution.
- alkaline hydrogen water (alkaline reduced water) having a pH power of about 12 to 12 was used as the cleaning liquid.
- Alkaline hydrogen water can be prepared by dissolving the hydrogen gas in pure water, it is obtained by the P H to Anorekari with ammonia or the like.
- an alignment film is formed on each substrate, and liquid crystal is injected and sealed between the substrates to form a liquid crystal panel, and a driver or the like is connected to an external lead terminal of the liquid crystal panel. More liquid crystal display devices are manufactured.
- TiZA lZTi is used as the material of the gate line 1 and the source line 2.
- the material for the gate line 1 and the source line 2 may be any metal that provides the desired line resistance.
- a metal such as tantalum (Ta), titanium (Ti), chromium (Cr), aluminum (A1), or an alloy of these metals may be used as the material for the gate line 1 and the source line 2.
- products such as TaNZTaZTaN It is also possible to use a film having a layer structure force as a material for the gate line 1 and the source line 2.
- a transparent conductive film such as ITO can be used, in addition to a general metal film.
- a slit is provided on the pixel electrode in order to control the pretilt of the liquid crystal molecules.
- it is similar to the alignment control protrusion provided on the color filter substrate.
- alignment control protrusions using a photosensitive resist may be provided. The details of the color filter substrate on which the orientation control protrusion is provided will be described later.
- phenol novolac resin is used for the photosensitive resist.
- an amorphous silicon thin film transistor is used as the switching element (TFT) 14.
- TFT switching element
- a microphone opening crystal silicon thin film transistor for example, a polysilicon thin film transistor, a CG silicon (continuous grain boundary crystal silicon) thin film transistor, a MIM (Metal Insulator Metal), and the like can be used similarly.
- the pixel electrode 3 uses a ZnO layer 3b as a lower layer and an ITO layer 3a as an upper layer as a laminated film.
- electrode materials such as IZO, InO, and TiO can be used for the upper layer of the laminated film instead of the ITO layer 3a as long as the lower ZnO layer 3b can be protected with the cleaning fluid force.
- the thickness of the ITO layer 3a is 200A
- the lower ZnO layer 3b may be thinner than 200A if the erosion power by the cleaning liquid can be protected.
- the pixel electrode 3 of the present embodiment may contain a different element such as A1 or Ga as a dopant in the force of using ZnO in the conductive layer mainly composed of zinc oxide. By doping these elements, etc., the effect of reducing the resistance is achieved.
- the pixel electrode 3 may be a laminated film of two or more layers, not only a laminated film composed of two layers.
- a positive acrylic photosensitive transparent resin was used for the upper interlayer insulating film 15.
- negative photosensitive resin and SiO acid key
- a material capable of obtaining a desired dielectric constant, transmittance, and etching selectivity between the lower interlayer insulating film 15 and the gate insulating film 11 can be used for the upper interlayer insulating film 15.
- a force positive type or negative type using SiN film by CVD method is used for the lower interlayer insulating film 20. May be used.
- the protective film may also be a photosensitive transparent resin made of only SiNjI or a SiO film.
- photosensitive transparent resin as photosensitive transparent resin,
- resin such as acrylic resin, epoxy resin, polyurethane resin, and polyimide resin.
- the cleaning liquid for the active matrix substrate is not limited to the alkaline hydrogen water of the present embodiment.
- the aqueous solution of sodium hydroxide, aqueous solution of tetraammonium hydroxide, aqueous solution of potassium hydroxide, A sodium salt aqueous solution of a fatty acid may be used.
- the “lower layer” is disposed on the insulating substrate 10 side, the layer is disposed on the liquid crystal layer 32 side, and the “upper layer” is disposed on the liquid crystal layer 32 side. Indicates the layer.
- the display device is not limited to the liquid crystal display device.
- the active matrix substrate 30 in the present embodiment and the color filter substrate 33 are arranged so as to face the active matrix substrate
- An organic EL display device can be configured by arranging an organic EL layer between the substrate and an organic EL panel, and connecting a driver to the external lead terminal of the panel.
- a color filter substrate 33 for a liquid crystal display device will be described as a specific example of the display device substrate.
- the present invention is applied to a power filter substrate provided with alignment control protrusions for dividing and controlling the alignment state (pretilt) of liquid crystal within a pixel.
- the present invention can also be applied to a configuration in which a force black matrix is not provided, which is described when a black matrix is provided on the color filter substrate 33.
- FIG. 4 is a cross-sectional view showing an example of the liquid crystal display device of the present invention.
- the liquid crystal display device 40 includes an active matrix substrate 30 and a color filter substrate 33, and the substrates 30 and 33 sandwich a liquid crystal layer 32 made of liquid crystal such as vertical alignment type liquid crystal, for example.
- the active matrix substrate 30 includes a pixel electrode 3 in which a ZnO layer 3b and an ITO layer 3a are stacked.
- the color filter substrate 33 includes a colored layer 34, a color filter layer of the light-shielding film 35, a protrusion (control for alignment control) 36 for controlling the pretilt of liquid crystal molecules for controlling the alignment of the liquid crystal, and a ZnO layer 37b.
- a transparent electrode 37 in which an ITO layer 37a is laminated.
- the liquid crystal layer 32 is sandwiched between an alignment film (not shown) of the counter substrate (color filter substrate) 33 and an alignment film (not shown) of the active matrix substrate 30.
- FIG. 5 is a plan view showing one pixel in the color filter substrate 33 of the present embodiment and a part of the pixels located adjacent to the one pixel.
- FIG. 6 is a cross-sectional view of the color filter substrate 33 corresponding to the cross section taken along line Bl-B2 of FIG.
- the color filter substrate 33 is formed on the transparent substrate 10, typically, a color filter layer 31 composed of three primary colors (red, green, and blue) 34 and BM35, a ZnO layer 37b, and an ITO layer.
- the transparent substrate 10 After applying a negative type tantalum-based photosensitive resin solution in which fine carbon particles are dispersed by spin coating, drying is performed to form a black photosensitive resin layer. Subsequently, the black photosensitive resin layer is exposed through a photomask and then developed to form 2. 35 ⁇ m of ⁇ 35. At this time, openings for the first colored layer are respectively formed in regions where the first colored layer (for example, red layer), the second colored layer (for example, green layer), and the third colored layer (for example, blue layer) are formed. B M35 is formed so that an opening for the second colored layer and an opening for the third colored layer are formed. Each opening is formed so as to correspond to the pixel electrode of the active matrix substrate.
- a negative type tantalum-based photosensitive resin solution in which fine carbon particles are dispersed by spin coating
- the second color layer for example, the green layer
- the third color layer for example, the blue layer
- the laminated transparent electrode 37 having the lower layer force ⁇ layer 37b and the upper layer made of the ITO layer 37a is scanned.
- a film is formed by a knotter.
- ⁇ 3: 1) is used to form a film at 900A.
- the ITO film was mixed with Ar, O, and H 2 O (Ar flow rate) at room temperature, power of 25 kW, and pressure of 1.2 Pa using a DC power source sputtering system.
- a liquid crystal panel is formed by bonding the color filter substrate 33 and the active matrix substrate 30 so as to face the color filter substrate 33.
- both substrates are prepared, and each is washed with an alkaline solution.
- alkaline hydrogen water alkaline reduced water
- an alignment film is formed on each substrate, and liquid crystal is injected and sealed between the substrates to form a liquid crystal panel, and a driver or the like is connected to an external lead terminal of the liquid crystal panel. More liquid crystal display devices are manufactured.
- the ITO layer 37a is separately formed on the ZnO layer 37b that forms the transparent electrode 37.
- the transparent electrode 37 that is not eroded is not eroded, and the display is not defective.
- a ZnO layer is used as a conductive layer mainly composed of zinc oxide, but different elements such as A1 and Ga may be contained in ZnO as a dopant.
- a low-resistance transparent electrode can be obtained by doping these elements.
- the cleaning liquid for the active matrix substrate 30 is not limited to the alkaline hydrogen water of the present embodiment.
- the aqueous solution of sodium hydroxide, aqueous solution of tetraammonium hydroxide, aqueous solution of potassium hydroxide and potassium hydroxide is used. It may be an aqueous sodium salt solution of fatty acid.
- lower layer refers to a layer disposed on the insulating substrate 10 side
- upper layer refers to a layer disposed on the liquid crystal layer 32 side.
- a slit pattern may be provided to control the orientation of the liquid crystal molecules in the same way as the active matrix pixel electrode.
- the slit can be formed in the transparent electrode 37 by the same method as the method of forming the slit 8 provided in the pixel electrode 3 of the active matrix substrate 30 shown in the first embodiment. That is, first, a ZnO film and an ITO film are formed by sputtering, a photosensitive resist is applied, the photosensitive resist is exposed by photolithography, and then developed with a developer and patterned.
- the deposited ZnO film and ITO film were patterned by wet etching using an etching solution consisting of phosphoric acid 'nitric acid' acetic acid, and then using a stripping solution.
- the transparent electrode 37 is formed by removing the resist.
- an aqueous solution having a TMAH (hydroxyl tetramethylammonium) concentration of 10% or less is used as the developer, and MEA (monoethanolamine) is used as the stripper.
- MEA monoethanolamine
- the same etchant is used to etch the gap between the ZnO film and the ITO film.
- the transparent electrode 37 uses a ZnO layer 37b as a lower layer and an ITO layer 37a as an upper layer as a laminated film.
- transparent pixel electrode materials such as IZO, InO, and TiO can also be used for the upper layer of the laminated film as long as the lower ZnO layer 37b can protect the erosion power by the cleaning liquid.
- the thickness of the ITO layer 37a is 200A, the lower ZnO layer 37b can be protected from the erosion by the cleaning solution, but it is thinner than 200A.
- the transparent electrode 37 may be a laminated film of three or more layers, not only a laminated film consisting of two layers.
- the active matrix substrate described in the first embodiment is used.
- a substrate made of an ITO single layer cover may be used as the pixel electrode 3.
- the display device is not limited to the liquid crystal display device.
- the color filter substrate 33 in the present embodiment and the active matrix substrate 30 are arranged so as to face the color filter substrate 33, and Yes, by placing an organic EL layer between the substrate
- it is also possible to configure an OLED display device by connecting it to the external lead terminal of the panel and connecting it with a driver.
- the power described above for the MVA type liquid crystal display device is not limited to this.
- the present invention can be applied to substrates including a transparent electrode conductive layer subjected to a cleaning process, such as various display devices such as plasma display devices, photoelectric conversion devices such as solar cells, and touch panels.
- this invention is realizable as the following structures.
- a substrate provided with a conductive film formed by laminating a plurality of conductive layers
- the conductive film is
- the second conductive layer is
- the substrate characterized by having higher erosion resistance to the detergent used for cleaning the substrate than the first conductive layer.
- the second conductive layer is
- the substrate according to the first structure which is made of ITO or IZO.
- the first conductive layer is
- the conductive film is
- the substrate according to the first structure which is used as a pixel electrode in an active matrix substrate.
- the substrate according to the first configuration which is used as a transparent electrode in a color filter substrate.
- the conductive film is
- the substrate according to the first configuration characterized in that an alignment control protrusion is provided on the surface.
- the conductive film is
- the substrate according to the first configuration wherein a slit is provided on the surface.
- First configuration force A display device comprising the substrate according to one configuration of the seventh configuration, the displacement force.
- the present invention can be effectively applied to a substrate provided with a conductive layer and to be cleaned in a manufacturing process.
- it can be suitably applied to a substrate provided with a pixel electrode or a transparent electrode used in a liquid crystal panel.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Liquid Crystal (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
Abstract
A substrate furnished with a conductive layer in which even in the use of resource-rich zinc oxide, the zinc oxide is resistant to corrosion; a relevant display unit; and a process for producing such a substrate with conductive layer. There is provided a substrate with conductive layer (active matrix substrate (30), color filter substrate (33)), characterized in that it has a laminate structure (picture electrode (3), transparent electrode (37)) having, superimposed on a substrate, multiple conductive layers including at least a first conductive layer (ZnO layer (3b), ZnO layer (37b)) composed mainly of zinc oxide, and that the material of second conductive layer (ITO layer (3a), ITO layer (37a)) of the laminate structure positioned on the surface brought into contact with washing liquid at the washing step exhibits a corrosion resistance to washing liquid higher than that of zinc oxide.
Description
導電層を備えた基板、表示装置および導電層を備えた基板の製造方法 技術分野 TECHNICAL FIELD The present invention relates to a substrate having a conductive layer, a display device, and a method for manufacturing a substrate having a conductive layer.
[0001] 本発明は、アクティブマトリクス基板やカラーフィルタ基板等の表示用基板に用いる ことができる導電層を備えた基板、表示装置および導電層を備えた基板の製造方法 に関するものである。 The present invention relates to a substrate provided with a conductive layer that can be used for a display substrate such as an active matrix substrate or a color filter substrate, a display device, and a method for manufacturing a substrate provided with a conductive layer.
背景技術 Background art
[0002] 現在、液晶表示装置は、小型、薄型、低消費電力、および軽量といった特徴を持ち 、各種電子機器に広く用いられるようになつている。特に、スイッチング素子を能動素 子として有するアクティブマトリクス型の液晶表示装置は、 CRT (Cathode Ray Tu be)と同等の表示特性が得られるため、ノ ソコン等の OA機器、テレビ等の AV機器 や携帯電話などに広く応用されている。また、近年、液晶表示装置は、大型化と、高 精細化、画素有効面積比率向上 (高開口率化)などの品位向上とが急速に進んでい る。液晶表示装置の液晶パネルは、典型的には、アクティブマトリクス基板と、ァクティ ブマトリクス基板と対向するようにカラーフィルタ基板を貼り合わせて、それら基板と基 板との間に液晶を注入することによって製造される。そして、液晶パネルの外部引き 出し端子にドライバ等を接続することにより、液晶表示装置は製造される。 [0002] Currently, liquid crystal display devices have features such as small size, thinness, low power consumption, and light weight, and are widely used in various electronic devices. In particular, an active matrix type liquid crystal display device having a switching element as an active element can provide display characteristics equivalent to those of a CRT (Cathode Ray Tube). Therefore, OA equipment such as a personal computer, AV equipment such as a television, and a portable device. Widely applied to telephones. In recent years, liquid crystal display devices have been rapidly improved in quality, such as upsizing, higher definition, and improved pixel effective area ratio (higher aperture ratio). A liquid crystal panel of a liquid crystal display device typically has a structure in which an active matrix substrate and a color filter substrate are bonded to face the active matrix substrate, and liquid crystal is injected between the substrate and the substrate. Manufactured. Then, a liquid crystal display device is manufactured by connecting a driver or the like to the external lead terminal of the liquid crystal panel.
[0003] 上記のような目的を達成する液晶表示装置の構成要素であるアクティブマトリクス 基板は、信号線と走査線とが絶縁性基板に設けられており、信号線と走査線とが交 差する交差部に設けられているスイッチング素子と画素電極とが設けられている。 [0003] An active matrix substrate, which is a component of a liquid crystal display device that achieves the above-described object, has signal lines and scanning lines provided on an insulating substrate, and the signal lines and scanning lines cross each other. A switching element and a pixel electrode provided at the intersection are provided.
[0004] また、上記のように、アクティブマトリクス基板と対向するようにカラーフィルタ基板を 貼り合わせて、それら基板と基板との間に液晶を注入することによって、液晶表示装 置は製造される。ここで言うカラーフィルタ基板としては、例えば、 R (赤)、 G (緑)、 B ( 青)の色領域が、アクティブマトリクス基板側の画素領域と一致するように作成されて おり、各画素領域以外の部分にはブラックマトリクス (遮光膜)が埋められ、それらの 上層に透明電極が形成された基板が挙げられる。 [0004] Further, as described above, a color filter substrate is bonded so as to face the active matrix substrate, and liquid crystal is injected between the substrates to manufacture a liquid crystal display device. As the color filter substrate mentioned here, for example, the color regions of R (red), G (green), and B (blue) are created so as to coincide with the pixel region on the active matrix substrate side. Other than the above, a substrate in which a black matrix (light-shielding film) is filled and a transparent electrode is formed on the black matrix can be cited.
[0005] さらに付け加えると、近年、特に大型 TVなどに用いられる液晶表示装置の性能とし
て、応答速度の向上と視角特性の改善 (広視野角化技術)とが強く求められる傾向に ある。そして、これらの要求を満たす技術を適用した垂直配向型液晶表示装置であ る、 MVA(Multi- Domain Vertical Alignment)型液晶表示装置が提案されて いる(例えば、特許文献 1参照)。 [0005] In addition, in recent years, the performance of liquid crystal display devices used particularly for large-sized TVs has been improved. Therefore, there is a strong demand for improvement in response speed and viewing angle characteristics (wide viewing angle technology). An MVA (Multi-Domain Vertical Alignment) type liquid crystal display device, which is a vertical alignment type liquid crystal display device that applies a technology that satisfies these requirements, has been proposed (for example, see Patent Document 1).
[0006] この MVA型液晶表示装置のアクティブマトリクス基板表面あるいはカラーフィルタ 基板には、上記性能を引き出すために、液晶分子のプレチルトを制御するための突 起 (配向制御用の突起)ある 、は電極スリットが設けられて!/、る。 [0006] The active matrix substrate surface or color filter substrate of this MVA type liquid crystal display device has protrusions (protrusions for alignment control) for controlling the pretilt of liquid crystal molecules in order to bring out the above-mentioned performance. There is a slit! /
[0007] 図 7は、 MVA型表示装置のアクティブマトリクス基板 130における 1画素と、その 1 画素の隣りに位置する画素の一部とを示す平面図である。なお、図 7に示すァクティ ブマトリクス基板 130は、薄膜トランジスタアレイを備えた構成である。図 7に示すよう に、アクティブマトリクス基板 130の 1画素において、ゲートライン (走査線) 101とソー スライン (信号線) 102とが、互いに交差するように配置されている。その交差する部 分には、スイッチング素子 (薄膜トランジスタ、以降 TFTと表記) 114と画素電極 103 とが配置されている。スイッチング素子 114は、ゲートライン 101に接続されたゲート 電極 104と、ソースライン 102に接続されたソース電極 105と、画素電極 103に接続 されたドレイン電極 106aおよび島状の半導体層 125と力 形成される。 FIG. 7 is a plan view showing one pixel in the active matrix substrate 130 of the MVA type display device and a part of the pixels located adjacent to the one pixel. Note that the active matrix substrate 130 shown in FIG. 7 has a configuration including a thin film transistor array. As shown in FIG. 7, in one pixel of the active matrix substrate 130, a gate line (scanning line) 101 and a source line (signal line) 102 are arranged so as to cross each other. A switching element (thin film transistor, hereinafter referred to as TFT) 114 and a pixel electrode 103 are arranged at the intersecting portion. The switching element 114 is formed with a gate electrode 104 connected to the gate line 101, a source electrode 105 connected to the source line 102, a drain electrode 106a connected to the pixel electrode 103, and an island-shaped semiconductor layer 125. The
[0008] 画素電極 103には、コンタクトホール 109を介して、ドレイン引き出し電極 106bが接 続されている。また、ドレイン引き出し電極 106bは、ゲート絶縁膜 111をはさんで補 助容量ライン 107と対向することによって補助容量を形成している。 [0008] A drain lead electrode 106b is connected to the pixel electrode 103 via a contact hole 109. Further, the drain extraction electrode 106b forms an auxiliary capacitance by facing the auxiliary capacitance line 107 with the gate insulating film 111 interposed therebetween.
[0009] 次に、薄膜トランジスタアレイの製造方法について、上記アクティブマトリクス基板 1 30を例として、図 7および図 8を用いて簡単に説明する。なお、図 8は、図 7に示す薄 膜トランジスタアレイの CI—C2線における矢視断面図である。 Next, a method for manufacturing a thin film transistor array will be briefly described with reference to FIGS. 7 and 8, taking the active matrix substrate 130 as an example. FIG. 8 is a cross-sectional view taken along line CI-C2 of the thin film transistor array shown in FIG.
[0010] まず、ガラス等の透明絶縁性基板力もなる基板 110上に、ゲートライン (走査線) 10 1と、ゲート電極 104と、補助容量ライン 107とを、成膜、フォトリソグラフィー、エツチン グにより同時に形成する。 [0010] First, a gate line (scanning line) 101, a gate electrode 104, and an auxiliary capacitance line 107 are formed on a substrate 110 having a transparent insulating substrate force such as glass by film formation, photolithography, and etching. Form at the same time.
[0011] 次に、それらの上に、ゲート絶縁膜 111、活性半導体層 112、低抵抗半導体層(例 えば n型アモルファスシリコン) 113を成膜し、島状の半導体層 125をフォトリソグラフ ィー、エッチングにより形成する。
[0012] さらに、ソースライン 102と、ソース電極 105と、ドレイン電極 106aと、ドレイン引出し 電極 106bを、成膜、フォトリソグラフィー、エッチングにより同時に形成し、さらに連続 して n型半導体層 113をソース ·ドレイン分離エッチングする。 [0011] Next, a gate insulating film 111, an active semiconductor layer 112, a low-resistance semiconductor layer (eg, n-type amorphous silicon) 113 are formed thereon, and an island-shaped semiconductor layer 125 is photolithographically formed. And formed by etching. [0012] Further, the source line 102, the source electrode 105, the drain electrode 106a, and the drain extraction electrode 106b are simultaneously formed by film formation, photolithography, and etching, and the n-type semiconductor layer 113 is continuously formed as the source Perform drain isolation etching.
[0013] その後、全面を覆うように、 SiNx (窒化ケィ素膜)など力もなる下層層間絶縁膜 120 を成膜する。続 、て感光性アクリル榭脂などカゝらなる上層有機層間絶縁膜 115を成 膜し、後にコンタクトホール 109を形成する位置に、フォトリソグラフィ一によりコンタク トホール用パターンを形成する。 [0013] Thereafter, a lower interlayer insulating film 120 having a force such as SiNx (silicon nitride film) is formed so as to cover the entire surface. Subsequently, an upper organic interlayer insulating film 115 such as a photosensitive acrylic resin is formed, and a contact hole pattern is formed by photolithography at a position where a contact hole 109 is to be formed later.
[0014] 次に、コンタクトホール 109とゲートライン外部引き出し端子とソースライン外部引出 し端子とを形成するため、上層有機層間絶縁膜 115をマスクとして下層層間絶縁膜 1 20およびゲート絶縁膜 111を連続してエッチングする。 Next, in order to form the contact hole 109, the gate line external lead terminal, and the source line external lead terminal, the lower interlayer insulating film 120 and the gate insulating film 111 are continuously formed using the upper organic interlayer insulating film 115 as a mask. And etch.
[0015] 次に、コンタクトホール 109およびゲートライン外部引き出し端子、ソースライン外部 引出し端子を被覆するように、 ITO (Indium Tin Oxide)などカゝらなる透明導電膜 を成膜し、画素電極 103、ゲートライン外部引き出し端子最上層電極およびソースラ イン外部引き出し端子最上層電極をフォトリソグラフィー、エッチングにより形成する。 Next, a transparent conductive film such as ITO (Indium Tin Oxide) is formed so as to cover the contact hole 109, the gate line external lead terminal, and the source line external lead terminal, and the pixel electrode 103, The gate line external lead terminal uppermost layer electrode and the source line external lead terminal uppermost layer electrode are formed by photolithography and etching.
[0016] なお、液晶分子の配向を制御するため、画素電極にスリットパターン 150を設けて ある。また、上記コンタクトホール 109により、 TFTのドレイン電極 106aと画素電極 10 3と力 ドレイン引出し電極 106bを介して接続される。 Note that a slit pattern 150 is provided in the pixel electrode in order to control the alignment of the liquid crystal molecules. The contact hole 109 connects the TFT drain electrode 106a, the pixel electrode 103, and the force drain extraction electrode 106b.
[0017] 上記製造方法により、アクティブマトリクス基板 130において、ソースライン 102と画 素電極 103とを、層間絶縁膜 115、 120を挟んで分離することができる。 With the above manufacturing method, in the active matrix substrate 130, the source line 102 and the pixel electrode 103 can be separated with the interlayer insulating films 115 and 120 interposed therebetween.
[0018] 上記のようにしてソースライン 102と画素電極 103とを分離する製造方法によって、 画素電極 103とソースライン 102との短絡による歩留まりの低下を防ぐことができる。 また、同時に、図 7に示すように、画素電極 103とソースライン 102とを、上から見た状 態で、重ね合わせることができるので、液晶表示装置の開口率を改善している。 [0018] By the manufacturing method in which the source line 102 and the pixel electrode 103 are separated as described above, a decrease in yield due to a short circuit between the pixel electrode 103 and the source line 102 can be prevented. At the same time, as shown in FIG. 7, the pixel electrode 103 and the source line 102 can be overlapped with each other as viewed from above, so that the aperture ratio of the liquid crystal display device is improved.
[0019] 次に、図 9、図 10を用いて MVA型表示装置のカラーフィルタ基板 210について説 明する。図 9は、 MVA型表示装置のカラーフィルタ基板 210における 1画素と、その 1画素の隣りに位置する画素の一部とを示す平面図である。図 10は、図 9の D1— D 2切断線による断面に対応する、カラーフィルタ基板 210の断面図である。 Next, the color filter substrate 210 of the MVA type display device will be described with reference to FIGS. 9 and 10. FIG. 9 is a plan view showing one pixel in the color filter substrate 210 of the MVA type display device and a part of the pixels located adjacent to the one pixel. FIG. 10 is a cross-sectional view of the color filter substrate 210 corresponding to the cross section taken along the line D1-D2 of FIG.
[0020] カラーフィルタ基板 210は、透明基板 200の上に典型的には 3原色 (赤、緑、青)の
着色層 220およびブラックマトリクス層(以降、 BMと表記) 221など力もなるカラーフィ ルタ層 222、 ITOなどカゝらなる対向電極 223、配向膜(図示せず)、および配向制御 用の突起 224を有する。 [0020] The color filter substrate 210 typically has three primary colors (red, green, blue) on the transparent substrate 200. A coloring layer 220 and a black matrix layer (hereinafter referred to as BM) 221 such as a color filter layer 222 that has power, a counter electrode 223 such as ITO, an alignment film (not shown), and a protrusion 224 for alignment control .
[0021] 透明基板 200上に、スピンコートによりカーボンの微粒子を分散したネガ型のアタリ ル系感光性榭脂液などを塗布した後、乾燥を行い、黒色感光性榭脂層を形成する。 続いてフォトマスクを介して黒色感光性榭脂層を露光した後、現像を行って、 BM22 1を形成する。このとき第 1着色層(例えば赤色層)、第 2着色層(例えば緑色層)、お よび第 3着色層(例えば青色層)が形成される領域に、それぞれ第 1着色層用の開口 部、第 2着色層用の開口部、第 3着色層用の開口部が形成されるように、 BMを形成 する。なお、それぞれの開口部は、アクティブマトリクス基板の画素電極に対応するよ うに形成される。 [0021] On the transparent substrate 200, a negative type tantalum-based photosensitive resin solution in which carbon fine particles are dispersed is applied by spin coating, and then dried to form a black photosensitive resin layer. Subsequently, after the black photosensitive resin layer is exposed through a photomask, development is performed to form BM221. At this time, openings for the first colored layer are respectively formed in regions where the first colored layer (for example, red layer), the second colored layer (for example, green layer), and the third colored layer (for example, blue layer) are formed. The BM is formed so that the opening for the second colored layer and the opening for the third colored layer are formed. Each opening is formed to correspond to the pixel electrode of the active matrix substrate.
[0022] 次に、スピンコートにより顔料を分散したネガ型のアクリル系感光性榭脂液を塗布し た後、乾燥を行い、フォトマスクを用いて露光および現像を行い、上記第 1着色層用 の開口部の位置に赤色層を形成する。 [0022] Next, after applying a negative acrylic photosensitive resin solution in which a pigment is dispersed by spin coating, drying is performed, and exposure and development are performed using a photomask, whereby the first colored layer is coated. A red layer is formed at the position of the opening.
[0023] その後、第 2色層用(例えば緑色層)、および第 3色層用(例えば青色層)について も同様に形成し、カラーフィルタ層 222が完成する。さらに、 ITOなど力もなる透明電 極 223をスパッタリングにより形成する。その後、スピンコートにより感光性のポジ型の フエノールノボラック系感光性榭脂液を塗布した後、乾燥を行い、フォトマスクを用い て露光および現像を行い垂直配向制御用突起 224を形成する。以上により、カラー フィルタ基板が形成される。 Thereafter, the second color layer (for example, the green layer) and the third color layer (for example, the blue layer) are similarly formed, and the color filter layer 222 is completed. Further, a transparent electrode 223 having a power such as ITO is formed by sputtering. After that, a photosensitive positive type phenol novolak photosensitive resin solution is applied by spin coating, and then dried, exposed and developed using a photomask to form vertical alignment control protrusions 224. As a result, the color filter substrate is formed.
[0024] なお、 MVA方式のカラーフィルタ基板 210に設けられている垂直配向制御用突起 224の力わりに、アクティブマトリクス基板 130の画素電極 103と同様に、液晶分子の 配向を制御するためにスリットパターンを設ける場合もある。一方、アクティブマトリク ス基板 130に設けられている画素電極 103にスリットパターン 150を形成するかわり に、カラーフィルタ基板 210に設けたものと同様な配向制御用突起を設けてもよい。 [0024] It should be noted that a slit pattern is used to control the alignment of liquid crystal molecules in the same manner as the pixel electrode 103 of the active matrix substrate 130, instead of the vertical alignment control protrusion 224 provided on the MVA color filter substrate 210. May be provided. On the other hand, instead of forming the slit pattern 150 on the pixel electrode 103 provided on the active matrix substrate 130, the same alignment control projection as that provided on the color filter substrate 210 may be provided.
[0025] ところで、上述のカラーフィルタ基板やアクティブマトリクス基板には、透明導電膜が 必須の構成要素となり、 ITO (錫を含有するインジウム酸化物)、 IZO (亜鉛を含有す るインジウム酸ィ匕物)などの電極材料を用いて作製されている。しかし、このような透
明導電膜は、希少金属であるインジウムを含有するため高価であり、かつ供給不足 が生じやすい。そのため、カラーフィルタ基板の生産およびアクティブマトリクス基板 の生産に、支障が生じる問題点がある。これに対して、酸ィ匕亜鉛 (以下、 ZnOと表記) は、資源的に豊富であるという利点があり、例えば特許文献 2に ZnOを透明電極とし て用いることが記載されて 、る。 By the way, in the above-described color filter substrate and active matrix substrate, a transparent conductive film is an essential component, and ITO (indium oxide containing tin), IZO (indium oxide containing zinc). ) And other electrode materials. However, such transparency Since the bright conductive film contains indium which is a rare metal, it is expensive and is likely to be insufficiently supplied. Therefore, there is a problem that the production of the color filter substrate and the active matrix substrate is hindered. In contrast, zinc oxide (hereinafter referred to as ZnO) has the advantage of being abundant in resources. For example, Patent Document 2 describes the use of ZnO as a transparent electrode.
特許文献 1:特開平 11― 242225号公報(1999年 9月 7日公開) Patent Document 1: Japanese Patent Laid-Open No. 11-242225 (published on September 7, 1999)
特許文献 2 :特開昭 62— 124530号公報(1987年 6月 5日公開) Patent Document 2: JP-A-62-124530 (published on June 5, 1987)
発明の開示 Disclosure of the invention
[0026] しカゝしながら、上記アクティブマトリクス基板およびカラーフィルタ基板の構成、製造 方法において、透明電極膜に ZnOを用いた場合、耐腐食性 (耐浸食性)が低いとい う問題点がある。 However, in the configuration and manufacturing method of the active matrix substrate and the color filter substrate, when ZnO is used for the transparent electrode film, there is a problem that the corrosion resistance (erosion resistance) is low. .
[0027] より具体的に説明すれば、以下のとおりである。液晶パネルは、アクティブマトリクス 基板とカラーフィルタ基板に配向膜を形成した後、両基板を貼り合わせて液晶材料 を注入'封止することにより形成される。しカゝしながら、この時、両基板に付着した異物 を充分に除去しておかなければ、異物による液晶配向不良や、基板の汚れによる配 向膜のはじきなど、パネル歩留まりおよび表示品位を低下させる原因となる。そこで、 両基板を貼り合せるより前に、アルカリ性溶液により洗浄を行うが、このとき ZnOが浸 食される問題点がある。 [0027] More specifically, it is as follows. A liquid crystal panel is formed by forming an alignment film on an active matrix substrate and a color filter substrate, and then injecting and sealing a liquid crystal material by bonding the substrates together. However, if the foreign matter adhering to both substrates is not sufficiently removed at this time, the panel yield and display quality will be reduced, such as liquid crystal alignment failure due to foreign matter and repelling of the alignment film due to substrate contamination. Cause it. Therefore, cleaning with an alkaline solution is performed before the two substrates are bonded together, but there is a problem that ZnO is eroded at this time.
[0028] このような問題点は、上述の MVA型の液晶表示装置だけでなぐ MVA方式以外 の液晶表示装置、 EL (Electro Luminescence)表示装置、プラズマ表示装置等 の各種表示装置を始めとして、太陽電池などの光電変換装置、タツチパネルなど、ァ ルカリ性溶液による洗浄工程が施される透明電極の導電層を備える基板に生じ得る ものである。 [0028] Such problems are caused by various display devices such as non-MVA liquid crystal display devices, EL (Electro Luminescence) display devices, plasma display devices, etc. It can occur on a substrate provided with a conductive layer of a transparent electrode that is subjected to a cleaning step using an alkaline solution, such as a photoelectric conversion device such as a battery or a touch panel.
[0029] 本発明は、上記のような課題を解決するためになされたものであって、資源的に豊 富な酸化亜鉛を使用しても酸化亜鉛が浸食され難い導電層を備えた基板、表示装 置および導電層を備えた基板の製造方法を提供することを目的とする。 [0029] The present invention has been made to solve the above-described problems, and includes a substrate having a conductive layer in which zinc oxide is hardly eroded even when resource-rich zinc oxide is used. It is an object of the present invention to provide a manufacturing method of a substrate provided with a display device and a conductive layer.
[0030] 本発明は、上記課題を解決するために、酸化亜鉛を主成分とする第 1導電層を少 なくとも含む複数の導電層を基板に積層した積層構造体を備え、洗浄工程で洗浄液
と接触する面を持つ第 2導電層であって、前記積層構造体を構成する第 2導電層の 材料は、前記洗浄液に対する耐浸食性が酸化亜鉛よりも高!ヽことを特徴とする導電 層を備えた基板であることを特徴として 、る。 [0030] In order to solve the above problems, the present invention includes a laminated structure in which a plurality of conductive layers including at least a first conductive layer mainly composed of zinc oxide are stacked on a substrate, and a cleaning liquid is used in a cleaning step. The second conductive layer having a surface in contact with the conductive layer, wherein the material of the second conductive layer constituting the laminated structure is higher in erosion resistance against the cleaning liquid than zinc oxide. It is a board | substrate provided with this.
[0031] 上記の発明によれば、経済性に優れる酸化亜鉛を主成分とする第 1導電層を使用 しても、上記積層構造体により、第 1導電層が洗浄液に浸食され難い。 [0031] According to the above invention, even when the first conductive layer mainly composed of zinc oxide, which is excellent in economic efficiency, is used, the first conductive layer is hardly eroded by the cleaning liquid by the laminated structure.
[0032] また、本発明の導電層を備えた基板は、前記第 2導電層が ITOまたは IZOカゝらなる ことを特徴としている。 [0032] Further, the substrate provided with the conductive layer of the present invention is characterized in that the second conductive layer is made of ITO or IZO.
[0033] 上記構成によれば、導電層が ITOまたは IZOのみであった場合と同様の従来の製 造プロセスを用いることができ、従来の製造プロセスを用いることができる部分にっ ヽ ては、新たな製造プロセス開発が不要となる。また、酸化亜鉛を主成分とする第 1導 電層を形成する結果、第 2導電層を形成する ITOの使用量を調節できる。 [0033] According to the above configuration, a conventional manufacturing process similar to that in the case where the conductive layer is only ITO or IZO can be used, and a portion where the conventional manufacturing process can be used is as follows. New manufacturing process development is not required. Further, as a result of forming the first conductive layer mainly composed of zinc oxide, the amount of ITO used to form the second conductive layer can be adjusted.
[0034] さらに、本発明の導電層を備えた基板は、前記第 1導電層は、前記第 2導電層より 膜厚が厚 、ことを特徴として 、る。 Furthermore, the substrate provided with the conductive layer of the present invention is characterized in that the first conductive layer is thicker than the second conductive layer.
[0035] 上記構成によれば、希少金属であるインジウムの使用量を抑え、インジウムの供給 量に左右されることの少な 、安定した生産、供給が可能となる。 [0035] According to the above configuration, the amount of indium, which is a rare metal, can be suppressed, and stable production and supply can be achieved without being affected by the supply amount of indium.
[0036] 本発明の導電層を備えた基板は、前記複数の導電層が画素電極となり、アクティブ マトリクス基板を構成することを特徴として 、る。 The substrate provided with the conductive layer of the present invention is characterized in that the plurality of conductive layers serve as pixel electrodes and constitute an active matrix substrate.
[0037] 上記の発明によれば、経済性に優れる酸化亜鉛を主成分とする層を画素電極に使 用しても、洗浄工程において、酸ィ匕亜鉛を主成分とする層が浸食され難くなるため、 良好な表示品位を得られるとともに歩留まりを向上することができる。 [0037] According to the above invention, even if a layer mainly composed of zinc oxide, which is economical, is used for the pixel electrode, the layer mainly composed of zinc oxide is hardly eroded in the cleaning process. Therefore, good display quality can be obtained and the yield can be improved.
[0038] 本発明の導電層を備えた基板は、前記複数の導電層が透明電極となり、カラーフィ ルタ基板を構成することを特徴として 、る。 [0038] The substrate provided with the conductive layer of the present invention is characterized in that the plurality of conductive layers serve as transparent electrodes to constitute a color filter substrate.
[0039] 上記の発明によれば、経済性に優れる酸化亜鉛を主成分とする層を透明電極に使 用しても、洗浄工程において、酸ィ匕亜鉛を主成分とする層が浸食され難くなるため、 良好な表示品位を得られるとともに歩留まりを向上することができる。 [0039] According to the above invention, even when a layer mainly composed of zinc oxide, which is excellent in economic efficiency, is used for the transparent electrode, the layer mainly composed of zinc oxide is hardly eroded in the cleaning process. Therefore, good display quality can be obtained and the yield can be improved.
[0040] 本発明の導電層を備えた基板は、前記積層構造体の第 2導電層側には、配向制 御用突起を有することを特徴として ヽる。 [0040] A substrate provided with the conductive layer of the present invention is characterized in that it has an alignment control protrusion on the second conductive layer side of the laminated structure.
[0041] 上記構成によれば、 MVA型液晶表示装置に用いられる広視野角表示装置用基
板を得ることができる。 [0041] According to the above configuration, the wide viewing angle display device base used in the MVA liquid crystal display device is used. A board can be obtained.
[0042] 本発明の導電層を備えた基板は、前記酸化亜鉛を主成分とする第 1導電層を少な くとも含む複数の導電層にスリットを有することを特徴として 、る。 [0042] A substrate having a conductive layer according to the present invention is characterized in that a plurality of conductive layers including at least a first conductive layer mainly composed of zinc oxide have slits.
[0043] 上記構成によれば、 MVA型液晶表示装置に用いられる広視野角表示装置用基 板を得ることができる。 [0043] According to the above configuration, a substrate for a wide viewing angle display device used in an MVA liquid crystal display device can be obtained.
[0044] 本発明の表示装置は、上記のいずれかの導電層を備えた基板を用いたことを特徴 としている。 [0044] A display device of the present invention is characterized by using a substrate including any one of the conductive layers described above.
[0045] 上記構成によれば、本発明の導電層を備えた基板を表示装置用として用いること で、従来の製造プロセスを用いることができる。これにより、低コストで安定した生産が 確保でき、高開口率、広視野角、高歩留まりの表示装置を供給することができる。 [0045] According to the above configuration, a conventional manufacturing process can be used by using the substrate including the conductive layer of the present invention for a display device. As a result, stable production can be secured at low cost, and a display device with a high aperture ratio, a wide viewing angle, and a high yield can be supplied.
[0046] 本発明の導電層を備えた基板の製造方法は、基板に導電層を形成する工程と、前 記基板の導電層の少なくとも一部が露出する状態で洗浄する工程とを含み、前記導 電層形成工程は、基板に酸化亜鉛を主成分とする導電層を形成する工程と、前記洗 浄液と接触する面を有する導電層であって、前記洗浄液に対する耐浸食性が酸ィ匕 亜鉛よりも高い材料の導電層を形成する工程とを少なくとも含むことを特徴としている [0046] A method for producing a substrate provided with a conductive layer of the present invention includes a step of forming a conductive layer on the substrate, and a step of cleaning in a state where at least a part of the conductive layer of the substrate is exposed, The conductive layer forming step is a step of forming a conductive layer containing zinc oxide as a main component on a substrate and a conductive layer having a surface in contact with the cleaning liquid, and is resistant to erosion with respect to the cleaning liquid. And a step of forming a conductive layer made of a material higher than zinc.
[0047] 上記の発明によれば、経済性に優れる酸化亜鉛を主成分とする第 1導電層を使用 しても、洗浄工程の際に、第 1導電層が洗浄液によって浸食され難い。 [0047] According to the above invention, even when the first conductive layer mainly composed of zinc oxide, which is excellent in economic efficiency, is used, the first conductive layer is hardly eroded by the cleaning liquid during the cleaning process.
[0048] なお、本明細書において、浸食とは、洗浄液等の液体によって少なくとも一部が除 去されるようなことを意味し、耐浸食性とはそのような浸食に対する耐性を意味する。 In the present specification, erosion means that at least a part is removed by a liquid such as a cleaning liquid, and erosion resistance means resistance against such erosion.
[0049] 本発明によれば、経済性に優れる酸化亜鉛を主成分とする第 1導電層を使用して も、洗浄液に対して耐浸食性の高い第 2導電層が存在するので、第 1導電層は、洗 浄液によって浸食され難い。それゆえ、歩留まりおよび品位の低下を抑制し、低コスト で、安定した生産による基板供給が可能となるという効果を奏する。 [0049] According to the present invention, since the second conductive layer having high erosion resistance to the cleaning liquid exists even when the first conductive layer mainly composed of zinc oxide, which is excellent in economic efficiency, is used, The conductive layer is not easily eroded by the cleaning solution. Therefore, it is possible to suppress the decrease in yield and quality, and to achieve substrate supply by stable production at low cost.
図面の簡単な説明 Brief Description of Drawings
[0050] [図 1]本発明による液晶表示装置における表示装置用基板 (アクティブマトリクス基板 )の実施の形態 1の概略構造を示す断面図である。 FIG. 1 is a cross-sectional view showing a schematic structure of a first embodiment of a display device substrate (active matrix substrate) in a liquid crystal display device according to the present invention.
[図 2]実施の形態 1の表示装置用アクティブマトリクス基板における 1画素及びその周
辺部分の概略構造を示す平面図である。 [FIG. 2] One pixel and its periphery in the active matrix substrate for display device of Embodiment 1. It is a top view which shows schematic structure of a side part.
[図 3]図 2に示す表示装置用基板の A1— A2線における矢視断面図である。 3 is a cross-sectional view taken along line A1-A2 of the display device substrate shown in FIG.
[図 4]本発明による液晶表示装置における表示装置用基板 (カラーフィルター基板) の実施の形態 2の概略構造を示す断面図である。 FIG. 4 is a cross-sectional view showing a schematic structure of Embodiment 2 of a display device substrate (color filter substrate) in a liquid crystal display device according to the present invention.
[図 5]実施の形態 2の表示装置用カラーフィルタ基板における 1画素及びその周辺部 分の概略構造を示す平面図である。 FIG. 5 is a plan view showing a schematic structure of one pixel and its peripheral portion in the color filter substrate for display device of Embodiment 2.
[図 6]図 5に示す表示装置用基板の、 B1— B2線における矢視断面図である。 6 is a cross-sectional view taken along line B1-B2 of the display device substrate shown in FIG.
[図 7]従来の表示装置用アクティブマトリクス基板を示す平面図である。 FIG. 7 is a plan view showing a conventional active matrix substrate for a display device.
[図 8]図 7に示す表示装置用基板の C1 C2線における矢視断面図である。 8 is a cross-sectional view taken along line C1 C2 of the display device substrate shown in FIG.
[図 9]従来の表示装置用カラーフィルタ基板を示す平面図である。 FIG. 9 is a plan view showing a conventional color filter substrate for a display device.
[図 10]図 9に示す表示装置用基板の D1— D2線における矢視断面図である。 10 is a cross-sectional view taken along line D1-D2 of the display device substrate shown in FIG.
符号の説明 Explanation of symbols
1 ゲートライン(走査線) 1 Gate line (scanning line)
2 ソースライン (信号線) 2 Source line (signal line)
3 画素電極 (積層構造体) 3 Pixel electrode (laminated structure)
3a 上層画素電極 (第 2導電層、 ITO層) 3a Upper pixel electrode (second conductive layer, ITO layer)
3b 下層画素電極 (第 1導電層、 ZnO層) 3b Lower layer pixel electrode (first conductive layer, ZnO layer)
4 ゲート電極 4 Gate electrode
5 ソース電極 5 Source electrode
6a ドレイン電極 6a Drain electrode
6b ドレイン引出し配線 6b Drain lead wiring
7 補助容量ライン 7 Auxiliary capacity line
8 配向制御用スリット 8 Orientation control slit
9 コンタクトホーノレ 9 Contact Honoré
10 絶縁性基板 10 Insulating substrate
11 ゲート絶縁膜 11 Gate insulation film
12 活性半導体層 12 Active semiconductor layer
13 低抵抗半導体層
14 スイッチング素子 13 Low resistance semiconductor layer 14 Switching elements
15 上層層間絶縁膜 15 Upper interlayer insulation film
20 下層層間絶縁膜 20 Lower interlayer insulation film
30 アクティブマトリクス基板 (導電層を備えた基板、表示装置用基板) 31 カラーフィルタ層 30 Active matrix substrate (Substrate with conductive layer, display device substrate) 31 Color filter layer
33 カラーフィルタ基板 (導電層を備えた基板、表示装置用基板) 33 Color filter substrate (substrate with conductive layer, substrate for display device)
34 着色層 34 Colored layer
35 遮光層(BM) 35 Shading layer (BM)
36 配向制御用突起 36 Protrusion for orientation control
37 透明電極 (積層構造体) 37 Transparent electrode (laminated structure)
37a 上層透明電極 (第 2導電層、 ITO層) 37a Upper transparent electrode (second conductive layer, ITO layer)
37b 下層透明電極 (第 1導電層、 ZnO層) 37b Lower transparent electrode (first conductive layer, ZnO layer)
40 液晶表示装置 40 Liquid crystal display
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0052] 〔実施の形態 1〕 [Embodiment 1]
本発明の実施の一形態について、図 1〜図 3に基づいて説明する。 An embodiment of the present invention will be described with reference to FIGS.
[0053] なお、本実施の形態にお!、ては、表示装置用基板の具体例として、液晶表示装置 用のアクティブマトリクス基板について説明する。 In this embodiment, an active matrix substrate for a liquid crystal display device will be described as a specific example of the substrate for a display device.
[0054] 図 1は、本発明のアクティブマトリクス基板を用いた液晶表示装置の一例を示す断 面図である。液晶表示装置 40は、アクティブマトリクス基板 30とカラーフィルタ基板 3 3とを有しており、それら基板 30· 33は、例えば、垂直配向型液晶等の液晶からなる 液晶層 32を挟んでいる。アクティブマトリクス基板 30は、酸ィ匕亜鉛 (ZnO)層 3b (第 1 導電層)と ITO層 3a (第 2導電層)とが積層された画素電極 3 (積層構造体)などを有 する。カラーフィルタ基板 33は、着色層 34と遮光膜 35とで構成されるカラーフィルタ 層、液晶の配向を制御する液晶分子のプレチルトを制御するための突起 (配向制御 用の突起) 36、および透明電極 37などを有する。 FIG. 1 is a cross-sectional view showing an example of a liquid crystal display device using the active matrix substrate of the present invention. The liquid crystal display device 40 includes an active matrix substrate 30 and a color filter substrate 33, and the substrates 30 and 33 sandwich a liquid crystal layer 32 made of liquid crystal such as vertical alignment type liquid crystal, for example. The active matrix substrate 30 includes a pixel electrode 3 (laminated structure) in which an oxide zinc (ZnO) layer 3b (first conductive layer) and an ITO layer 3a (second conductive layer) are stacked. The color filter substrate 33 includes a color filter layer including a colored layer 34 and a light-shielding film 35, protrusions for controlling the pretilt of liquid crystal molecules that control liquid crystal alignment (protrusions for alignment control) 36, and transparent electrodes 37 etc.
[0055] なお、透明電極 37は、図 4に示すように、 ZnO層 37b (第 1導電層)と ITO層 37a ( 第 2導電層)とが積層された積層構造体であることが好ましい。また、液晶層 32は、対
向基板 (カラーフィルタ基板) 33の配向膜 (不図示)と、アクティブマトリクス基板 30の 配向膜 (不図示)との間に挟まれて 、る。 As shown in FIG. 4, the transparent electrode 37 is preferably a laminated structure in which a ZnO layer 37b (first conductive layer) and an ITO layer 37a (second conductive layer) are laminated. The liquid crystal layer 32 is It is sandwiched between an alignment film (not shown) of the direction substrate (color filter substrate) 33 and an alignment film (not shown) of the active matrix substrate 30.
[0056] 図 2は、本発明のアクティブマトリクス基板 30 (表示装置用基板)における 1画素と、 その 1画素の隣りに位置する画素の一部とを示す平面図である。図 2および図 3に示 すように、ソースライン (信号線) 2とゲートライン (走査線) 1と画素電極 3とが、絶縁性 基板 10上に積層されている。そのゲートライン 1とソースライン 2とは、互いに交差す るように配置されている。そして、それらが交差する交差部毎に、スイッチング素子 (T FT) 14と画素電極 3が設けられている。なお、絶縁性基板 10は、図 2で言えば最背 面に位置し、図 3に示す断面図に記載の位置に配置されている。なお、図 3は、図 2 における Al—A2線における矢視断面図である。 FIG. 2 is a plan view showing one pixel in the active matrix substrate 30 (display device substrate) of the present invention and a part of the pixels located adjacent to the one pixel. As shown in FIGS. 2 and 3, a source line (signal line) 2, a gate line (scanning line) 1, and a pixel electrode 3 are stacked on an insulating substrate 10. The gate line 1 and the source line 2 are arranged so as to cross each other. A switching element (TFT) 14 and a pixel electrode 3 are provided at each intersection where they intersect. Note that the insulating substrate 10 is located on the rearmost surface in FIG. 2, and is disposed at the position described in the cross-sectional view shown in FIG. 3 is a cross-sectional view taken along the line Al—A2 in FIG.
[0057] 上記ゲートライン 1には、ゲート電極 4が接続されて!、る。ソースライン 2には、ソース 電極 5が接続されている。また、図 3において、画素電極 3は、 ZnO層 3bを下層、 IT O層 3aを上層とした積層により構成されている。画素電極 3は、層間絶縁膜 15に設 けられたコンタクトホール 9、および、ドレイン引出し電極 6bを介して、ドレイン電極 6a と接続されている。そして、画素電極 3には、液晶の配向制御用にスリット 8が設けら れている。また、ドレイン引出し電極 6bはゲート絶縁膜 11をはさんで補助容量バスラ イン 7と対向しており、これによつて補助容量が形成されている。 The gate line 4 is connected to the gate line 1! A source electrode 5 is connected to the source line 2. Further, in FIG. 3, the pixel electrode 3 is formed by stacking a ZnO layer 3b as a lower layer and an ITO layer 3a as an upper layer. The pixel electrode 3 is connected to the drain electrode 6a via the contact hole 9 provided in the interlayer insulating film 15 and the drain extraction electrode 6b. The pixel electrode 3 is provided with a slit 8 for controlling the alignment of the liquid crystal. Further, the drain extraction electrode 6b is opposed to the auxiliary capacitance bus line 7 across the gate insulating film 11, thereby forming an auxiliary capacitance.
[0058] 次に、電流および電圧の制御について、簡単に説明する。ゲートライン 1が選択さ れると、ゲート電極 4に電圧が印加される。このゲート電極 4に印加される電圧によつ て、ソース電極 5とドレイン電極 6aとの間を流れる電流が制御される。つまり、ソースラ イン 2から伝送された信号に基づ!/、て、ソース電極 5力もドレイン電極 6aへと電流が 流れ、さらに、ドレイン電極 6aからドレイン引出し電極 6bを介して画素電極 3へと電流 が流れる。これにより、画素電極 3は、液晶層 32に電圧を印加し所定の表示を行うよ うになつている。補助容量バスライン 7は、所定の表示を維持するために補助的に設 置される。 Next, current and voltage control will be briefly described. When the gate line 1 is selected, a voltage is applied to the gate electrode 4. The current flowing between the source electrode 5 and the drain electrode 6a is controlled by the voltage applied to the gate electrode 4. That is, based on the signal transmitted from the source line 2, current flows from the source electrode 5 to the drain electrode 6a, and further from the drain electrode 6a to the pixel electrode 3 via the drain extraction electrode 6b. Flows. Thereby, the pixel electrode 3 applies a voltage to the liquid crystal layer 32 to perform a predetermined display. The auxiliary capacity bus line 7 is provided as an auxiliary to maintain a predetermined display.
[0059] 次に、上記アクティブマトリクス基板 30の製造方法について、図 2、図 3を用いて説 明する。 Next, a method for manufacturing the active matrix substrate 30 will be described with reference to FIGS.
[0060] まず、ガラス等の透明な絶縁体力もなる絶縁性基板 10上に、 TiZAlZTiからなる
積層膜をスパッタにより成膜、フォトリソグラフィーを行い、ドライエッチングおよびレジ スト剥離を行うことでゲートライン 1、ゲート電極 4、および補助容量ライン 7を同時に形 成する。 [0060] First, TiZAlZTi is formed on an insulating substrate 10 having a transparent insulating force such as glass. The laminated film is formed by sputtering, photolithography is performed, dry etching and resist peeling are performed, and the gate line 1, the gate electrode 4, and the auxiliary capacitance line 7 are formed simultaneously.
[0061] 次に、それらの表面に、 3000A〜5000A SiN (窒化ケィ素膜)カゝらなるゲ ート絶縁膜 11と、 1500 A〜3000 A程度のアモルファスシリコン力もなる活性半導体 層 12と、リンをドープした 500 A〜 1000 A程度の n型低抵抗半導体層 13とを成膜し 、フォトリソグラフィー、ドライエッチングおよびレジスト剥離を行い島状の半導体層 25 を形成する。 [0061] Next, on those surfaces, a gate insulating film 11 made of 3000A to 5000A SiN (silicon nitride film), an active semiconductor layer 12 having an amorphous silicon force of about 1500A to 3000A, and An n-type low-resistance semiconductor layer 13 of about 500 A to 1000 A doped with phosphorus is formed, and photolithography, dry etching, and resist stripping are performed to form an island-shaped semiconductor layer 25.
[0062] ここで、ゲート絶縁膜 11は SiHガスと NHガスと Nガスとの混合ガスを用いて、ま [0062] Here, the gate insulating film 11 is formed by using a mixed gas of SiH gas, NH gas, and N gas.
4 3 2 4 3 2
た、活性半導体層 12は SiHガスと Hガスとの混合ガスを用いて、さらに、 n型低抵抗 The active semiconductor layer 12 uses a mixed gas of SiH gas and H gas, and further has an n-type low resistance.
4 2 4 2
半導体層 13は SiHガスと PHガスと Hガスとの混合ガスを用いて、いずれも CVD ( The semiconductor layer 13 uses a mixed gas of SiH gas, PH gas, and H gas.
4 3 2 4 3 2
Chemical Vapor Deposition)により、連続して成膜される。 Films are continuously formed by chemical vapor deposition.
[0063] さらに、 TiZAlZTiからなる積層膜をスパッタにより成膜、フォトリソグラフィーを行 い、ドライエッチングすることでソースライン 2と、ソース電極 5と、ドレイン電極 6aとドレ イン引出し電極 6bを同時に形成する。さらに連続して、 n型半導体層 13をソース'ド レイン分離エッチングし、レジストを剥離する。この時、薄膜トランジスタ (TFT)が形成 される。 [0063] Further, a laminated film made of TiZAlZTi is formed by sputtering, photolithography is performed, and dry etching is performed to simultaneously form the source line 2, the source electrode 5, the drain electrode 6a, and the drain extraction electrode 6b. . Further, the n-type semiconductor layer 13 is continuously subjected to source / drain separation etching to remove the resist. At this time, a thin film transistor (TFT) is formed.
[0064] 次に、全面を覆うように、 1000A~5000A@i ( SiNからなる下層層間絶縁膜 2 0を、 SiHガスと NHガスと Nガスとの混合ガスを用い、 CVDにて成膜する。 Next, 1000 A to 5000 A @ i (lower interlayer insulating film 20 made of SiN is formed by CVD using a mixed gas of SiH gas, NH gas, and N gas so as to cover the entire surface. .
4 3 2 4 3 2
[0065] その後、 2 μ m〜4 μ m程度のポジ型感光性アクリル榭脂からなる上層有機層絶縁 膜 15を、フォトリソグラフィ一により、コンタクトホール 9、とゲートライン外部引出し端子 コンタクト用パターン、およびソースライン外部引出し端子コンタクト用パターンを有す るように形成する。 [0065] After that, the upper organic layer insulating film 15 made of a positive photosensitive acrylic resin having a thickness of about 2 μm to 4 μm is formed on the contact hole 9 and the gate line external lead terminal contact pattern by photolithography. Also, it is formed so as to have a pattern for contact with the external lead terminal of the source line.
[0066] 次に、コンタクトホール 9、とゲートライン外部引出し端子、およびソースライン外部 引出し端子を形成するため、上層有機層絶縁膜 15をマスクとして、下層層間絶縁膜 20およびゲート絶縁膜 11を、 CFガスと Oガスとの混合ガスを用いたドライエツチン [0066] Next, in order to form the contact hole 9, the gate line external lead terminal, and the source line external lead terminal, the lower interlayer insulating film 20 and the gate insulating film 11 are formed using the upper organic layer insulating film 15 as a mask. Dry Ettin using mixed gas of CF gas and O gas
4 2 4 2
グにより連続してエッチングする。 Etch continuously by etching.
[0067] その後、コンタクトホール 9を被覆するように、 ZnO膜と ITO膜をスパッタにより成膜
する。まず、 ZnO膜を、 RF電源方式のスパッタ装置により、パワー 15kW、基板温度 210°C、圧力 1. 2Paにて、 Arと Oとの混合ガス(Ar流量: O流量 = 2〜3 : 1)を用い [0067] Thereafter, a ZnO film and an ITO film are formed by sputtering so as to cover the contact hole 9 To do. First, a ZnO film is mixed with Ar and O using an RF power source sputtering system with a power of 15 kW, a substrate temperature of 210 ° C, and a pressure of 1.2 Pa (Ar flow rate: O flow rate = 2-3: 1) Using
2 2 twenty two
て、 900Aに成膜する。次に、 ITO膜を、 DC電源方式のスパッタ装置により、常温、 パワー 25kW、圧力 1. 2Paにて、 Arと Oと H Oとの混合ガス(Ar流量: O流量: H To 900A. Next, a mixed gas of Ar, O, and H 2 O (Ar flow rate: O flow rate: H) is applied to the ITO film at room temperature, power of 25 kW, and pressure of 1.2 Pa using a DC power source sputtering system.
2 2 2 2 2 2 2 2
O流量 = 20 : 1 : 1〜2)を用いて、 200 Aに成膜する。そして、感光性レジストを塗布 し、フォトリソグラフィ一にて感光性レジストを露光した後に、現像液で現像してパター ユングする。さらに、パターユングによって形成されたパターンをマスクとして、リン酸' 硝酸 ·酢酸力もなるエッチング液を用いるウエットエッチングにより、成膜した ZnO膜と ITO膜をパターユングした後、剥離液を用いてレジストを剥離することにより画素電極 3が形成される。なお、本実施形態においては、現像液には TMAH (水酸ィ匕テトラメ チルアンモ-ゥム)の濃度が 10%以下の水溶液を用いる。また、剥離液には MEA( モノエタノールァミン)と DMSO (ジメチルスルホキシド)との混合液(混合比 MEA: D MSO = 2〜3 : l)を用いた。また、このエッチング工程においては、同一エツチャント を用いて同一のエッチング工程で、 ZnO膜と ITO膜の 、ずれもエッチングする。 The film is formed at 200 A using O flow rate = 20: 1: 1 to 2). Then, a photosensitive resist is applied, the photosensitive resist is exposed by photolithography, and then developed with a developer and patterned. Furthermore, using the pattern formed by patterning as a mask, the deposited ZnO film and ITO film are patterned by wet etching using an etching solution that also has phosphoric acid, nitric acid and acetic acid, and then the resist is removed using a stripping solution. The pixel electrode 3 is formed by peeling. In this embodiment, an aqueous solution having a TMAH (hydroxyl tetramethylammonium) concentration of 10% or less is used as the developer. As the stripping solution, a mixed solution of MEA (monoethanolamine) and DMSO (dimethyl sulfoxide) (mixing ratio MEA: DMSO = 2 to 3: 1) was used. In this etching process, the same etchant is used to etch the gap between the ZnO film and the ITO film.
[0068] 以上により、本実施形態におけるアクティブマトリクス基板 30を得る。このアクティブ マトリクス基板 30と、アクティブマトリクス基板 30と対向するようにカラーフィルタ基板 3 3とを貼り合わせることによって、液晶パネルが形成される。このとき、まず、両基板を 準備し、それぞれをアルカリ性溶液で洗浄する。本実施形態では、洗浄液として、 pH 力 ¾〜12程度のアルカリ水素水(アルカリ還元水)を用いた。アルカリ水素水は、純水 に水素ガスを溶解し、アンモニア等で PHをァノレカリにしたものである。洗浄後、各々 の基板に配向膜を形成、それら基板と基板との間に液晶を注入'封止することによつ て液晶パネルとし、液晶パネルの外部引き出し端子にドライバ等を接続することによ り液晶表示装置は製造される。 As described above, the active matrix substrate 30 in the present embodiment is obtained. By bonding the active matrix substrate 30 and the color filter substrate 33 so as to face the active matrix substrate 30, a liquid crystal panel is formed. At this time, first, both substrates are prepared and each is washed with an alkaline solution. In this embodiment, alkaline hydrogen water (alkaline reduced water) having a pH power of about 12 to 12 was used as the cleaning liquid. Alkaline hydrogen water can be prepared by dissolving the hydrogen gas in pure water, it is obtained by the P H to Anorekari with ammonia or the like. After cleaning, an alignment film is formed on each substrate, and liquid crystal is injected and sealed between the substrates to form a liquid crystal panel, and a driver or the like is connected to an external lead terminal of the liquid crystal panel. More liquid crystal display devices are manufactured.
[0069] 本実施の形態において、ゲートライン 1およびソースライン 2の材料としては、 TiZA lZTiを使用している。しかし、ゲートライン 1およびソースライン 2の材料としては、所 望のライン抵抗が得られる金属であればよい。例えばタンタル (Ta)、チタン (Ti)、ク ロム(Cr)、アルミニウム(A1)等の金属およびこれらの金属の合金などを、ゲートライン 1およびソースライン 2の材料として使用してもよい。また、 TaNZTaZTaNなどの積
層構造体力もなる膜を、ゲートライン 1およびソースライン 2の材料として用いることも 可能である。さらにソースライン 2の材料としては、一般的な金属膜だけでなぐ例え ば、 ITOなどの透明導電性膜を使用することもできる。 In the present embodiment, TiZA lZTi is used as the material of the gate line 1 and the source line 2. However, the material for the gate line 1 and the source line 2 may be any metal that provides the desired line resistance. For example, a metal such as tantalum (Ta), titanium (Ti), chromium (Cr), aluminum (A1), or an alloy of these metals may be used as the material for the gate line 1 and the source line 2. In addition, products such as TaNZTaZTaN It is also possible to use a film having a layer structure force as a material for the gate line 1 and the source line 2. Furthermore, as a material for the source line 2, for example, a transparent conductive film such as ITO can be used, in addition to a general metal film.
[0070] 本実施形態にぉ 、ては、液晶分子のプレチルトを制御するために画素電極にスリツ トを設けたが、スリットを設ける代わりに、カラーフィルタ基板に設ける配向制御用突 起と同様に、感光性レジストを用いた配向制御用突起を設けても構わない。なお、配 向制御用突起を設けるカラーフィルタ基板ついては、詳細を後述する。なお、感光性 レジストには、フエノールノボラック系榭脂などを使用する。 In this embodiment, a slit is provided on the pixel electrode in order to control the pretilt of the liquid crystal molecules. However, instead of providing a slit, it is similar to the alignment control protrusion provided on the color filter substrate. Alternatively, alignment control protrusions using a photosensitive resist may be provided. The details of the color filter substrate on which the orientation control protrusion is provided will be described later. For the photosensitive resist, phenol novolac resin is used.
[0071] また、本実施の形態において、スイッチング素子 (TFT) 14には、アモルファスシリ コン薄膜トランジスタを用いた。しかし、スイッチング素子 14としては、例えば、マイク 口クリスタルシリコン薄膜トランジスタ、ポリシリコン薄膜トランジスタ、 CGシリコン (連続 粒界結晶シリコン)薄膜トランジスタ、 MIM (Metal Insulator Metal)なども、同様 に用いることができる。 In this embodiment, an amorphous silicon thin film transistor is used as the switching element (TFT) 14. However, as the switching element 14, for example, a microphone opening crystal silicon thin film transistor, a polysilicon thin film transistor, a CG silicon (continuous grain boundary crystal silicon) thin film transistor, a MIM (Metal Insulator Metal), and the like can be used similarly.
[0072] さらに、画素電極 3は、積層膜として下層に ZnO層 3bを、上層に ITO層 3aを用いた 。し力し、下層の ZnO層 3bを洗浄液力 保護することができればよぐ IZOや InO、 T iOなどの電極材料を、 ITO層 3aに代えて積層膜の上層に用いることもできる。また、 I TO層 3aの厚さを 200Aとした力 下層の ZnO層 3bを洗浄液による浸食力も保護す ることができるのであれば、 200 Aより薄い厚さとしてもよい。また、本実施形態の画 素電極 3は、酸ィ匕亜鉛を主成分とする導電層に ZnOを用いた力 ZnOに A1や Gaな どの異種元素をドーパントとして含有しても構わな 、。これらの元素等をドープするこ とで低抵抗となる効果を奏する。 Furthermore, the pixel electrode 3 uses a ZnO layer 3b as a lower layer and an ITO layer 3a as an upper layer as a laminated film. However, electrode materials such as IZO, InO, and TiO can be used for the upper layer of the laminated film instead of the ITO layer 3a as long as the lower ZnO layer 3b can be protected with the cleaning fluid force. Further, if the thickness of the ITO layer 3a is 200A, the lower ZnO layer 3b may be thinner than 200A if the erosion power by the cleaning liquid can be protected. Further, the pixel electrode 3 of the present embodiment may contain a different element such as A1 or Ga as a dopant in the force of using ZnO in the conductive layer mainly composed of zinc oxide. By doping these elements, etc., the effect of reducing the resistance is achieved.
[0073] 加えて、画素電極 3は 2層からなる積層膜だけでなぐ 2層以上の積層膜でも構わな い。 [0073] In addition, the pixel electrode 3 may be a laminated film of two or more layers, not only a laminated film composed of two layers.
[0074] また、上層層間絶縁膜 15には、ポジ型のアクリル系感光性透明榭脂を用いた。し かし、これに限定されることはない。例えば、ネガ型の感光性榭脂や、 SiO (酸ィ匕ケィ In addition, a positive acrylic photosensitive transparent resin was used for the upper interlayer insulating film 15. However, it is not limited to this. For example, negative photosensitive resin and SiO (acid key)
2 素膜)など、所望の誘電率、透過率、および下層層間絶縁膜 15とゲート絶縁膜 11と のエッチング選択比が得られる材料を、上層層間絶縁膜 15に用いることもできる。さ らに、下層層間絶縁膜 20には、 CVD法による SiN膜を用いた力 ポジ型やネガ型
の感光性透明榭脂を用いてもよい。さらに、保護膜についても同様に SiNjIだけで なぐ感光性透明榭脂や、 SiO膜を用いてもよい。なお、感光性透明榭脂としては、 A material capable of obtaining a desired dielectric constant, transmittance, and etching selectivity between the lower interlayer insulating film 15 and the gate insulating film 11 can be used for the upper interlayer insulating film 15. In addition, for the lower interlayer insulating film 20, a force positive type or negative type using SiN film by CVD method is used. May be used. Furthermore, the protective film may also be a photosensitive transparent resin made of only SiNjI or a SiO film. In addition, as photosensitive transparent resin,
2 2
例えば、アクリル系榭脂、エポキシ系榭脂、ポリウレタン系榭脂、ポリイミド系榭脂など の榭脂が挙げられる。 For example, there may be mentioned resin such as acrylic resin, epoxy resin, polyurethane resin, and polyimide resin.
[0075] また、アクティブマトリクス基板の洗浄液としては、本実施形態のアルカリ水素水に 限定されず、たとえば水酸ィ匕ナトリウム水溶液、水酸ィ匕テトラアンモニゥム水溶液、水 酸ィ匕カリウム水溶液、脂肪酸のナトリウム塩水溶液等でも構わな 、。 [0075] Further, the cleaning liquid for the active matrix substrate is not limited to the alkaline hydrogen water of the present embodiment. For example, the aqueous solution of sodium hydroxide, aqueous solution of tetraammonium hydroxide, aqueous solution of potassium hydroxide, A sodium salt aqueous solution of a fatty acid may be used.
[0076] なお、上記画素電極 3および層間絶縁膜において、「下層」とは絶縁性基板 10側 に配置されて 、る層を 、 、、「上層」とは液晶層 32側に配置されて 、る層を示す。 In the pixel electrode 3 and the interlayer insulating film, the “lower layer” is disposed on the insulating substrate 10 side, the layer is disposed on the liquid crystal layer 32 side, and the “upper layer” is disposed on the liquid crystal layer 32 side. Indicates the layer.
[0077] また、表示装置は液晶表示装置に限定されるものではなぐ例えば、本実施形態に おけるアクティブマトリクス基板 30と、アクティブマトリクス基板と対向するようにカラー フィルタ基板 33を配置し、それら基板と基板との間に有機 EL層を配置することで有 機 ELパネルとし、パネルの外部引き出し端子にドライバ等を接続することによって、 有機 EL表示装置を構成することも可能である。 Further, the display device is not limited to the liquid crystal display device. For example, the active matrix substrate 30 in the present embodiment and the color filter substrate 33 are arranged so as to face the active matrix substrate, An organic EL display device can be configured by arranging an organic EL layer between the substrate and an organic EL panel, and connecting a driver to the external lead terminal of the panel.
[0078] 〔実施の形態 2〕 [Embodiment 2]
本発明における他の実施の形態について、図 4〜図 6に基づいて説明すれば、以 下の通りである。なお、本実施の形態においては、表示装置用基板の具体例として、 液晶表示装置用のカラーフィルタ基板 33について説明する。本実施形態 2では、画 素内で液晶の配向状態 (プレチルト)を分割制御するため配向制御突起を設けた力 ラーフィルタ基板に、本発明を適用した例について説明する。なお、本実施形態では 、カラーフィルタ基板 33にブラックマトリクスを設けた場合について説明する力 ブラ ックマトリックスを設けない構成についても本発明は適用可能である。なお、説明の便 宜上、図 1の図面に示した部材と同一の機能を有する部材については、同一の符号 を付す。 The following will describe another embodiment of the present invention with reference to FIGS. In the present embodiment, a color filter substrate 33 for a liquid crystal display device will be described as a specific example of the display device substrate. In the second embodiment, an example will be described in which the present invention is applied to a power filter substrate provided with alignment control protrusions for dividing and controlling the alignment state (pretilt) of liquid crystal within a pixel. In the present embodiment, the present invention can also be applied to a configuration in which a force black matrix is not provided, which is described when a black matrix is provided on the color filter substrate 33. For convenience of explanation, members having the same functions as those shown in the drawing of FIG.
[0079] 図 4は、本発明の液晶表示装置の一例を示す断面図である。液晶表示装置 40は、 アクティブマトリクス基板 30と、カラーフィルタ基板 33とを有しており、それら基板 30· 33は、例えば、垂直配向型液晶等の液晶からなる液晶層 32を挟んでいる。ァクティ ブマトリクス基板 30は、 ZnO層 3bと ITO層 3aの積層された画素電極 3などを有する。
また、カラーフィルタ基板 33は、着色層 34、遮光膜 35のカラーフィルタ層、液晶の配 向を制御する液晶分子のプレチルトを制御するための突起 (配向制御用の突起) 36 、および ZnO層 37bと ITO層 37aの積層された透明電極 37などを有する。なお、液 晶層 32は、対向基板 (カラーフィルタ基板) 33の配向膜 (不図示)と、アクティブマトリ タス基板 30の配向膜 (不図示)との間に挟まれて 、る。 FIG. 4 is a cross-sectional view showing an example of the liquid crystal display device of the present invention. The liquid crystal display device 40 includes an active matrix substrate 30 and a color filter substrate 33, and the substrates 30 and 33 sandwich a liquid crystal layer 32 made of liquid crystal such as vertical alignment type liquid crystal, for example. The active matrix substrate 30 includes a pixel electrode 3 in which a ZnO layer 3b and an ITO layer 3a are stacked. The color filter substrate 33 includes a colored layer 34, a color filter layer of the light-shielding film 35, a protrusion (control for alignment control) 36 for controlling the pretilt of liquid crystal molecules for controlling the alignment of the liquid crystal, and a ZnO layer 37b. And a transparent electrode 37 in which an ITO layer 37a is laminated. The liquid crystal layer 32 is sandwiched between an alignment film (not shown) of the counter substrate (color filter substrate) 33 and an alignment film (not shown) of the active matrix substrate 30.
[0080] 図 5は、本実施形態のカラーフィルタ基板 33における 1画素と、その 1画素の隣りに 位置する画素の一部とを示す平面図である。図 6は、図 5の Bl— B2線における断面 に対応する、カラーフィルタ基板 33の断面図である。 FIG. 5 is a plan view showing one pixel in the color filter substrate 33 of the present embodiment and a part of the pixels located adjacent to the one pixel. FIG. 6 is a cross-sectional view of the color filter substrate 33 corresponding to the cross section taken along line Bl-B2 of FIG.
[0081] カラーフィルタ基板 33は、透明基板 10の上に、典型的には、 3原色 (赤、緑、青)の 着色層 34と BM35などからなるカラーフィルタ層 31、 ZnO層 37bと ITO層 37aの積 層された対向電極 (透明電極) 37、配向膜 (図示せず)、および配向制御用の突起 3 6を有する。なお、透明基板 10は、図 5で言えば最背面に位置し、図 6に示す断面図 に記載の位置に配置されて 、る。 [0081] The color filter substrate 33 is formed on the transparent substrate 10, typically, a color filter layer 31 composed of three primary colors (red, green, and blue) 34 and BM35, a ZnO layer 37b, and an ITO layer. A counter electrode (transparent electrode) 37 on which layers 37a are stacked, an alignment film (not shown), and a protrusion 36 for alignment control. Note that the transparent substrate 10 is located at the rearmost surface in FIG. 5, and is disposed at the position described in the cross-sectional view shown in FIG.
[0082] 以下、本実施形態におけるカラーフィルタ基板 33の製造方法について説明する。 Hereinafter, a method for manufacturing the color filter substrate 33 in the present embodiment will be described.
[0083] 透明基板 10上に、スピンコートによりカーボンの微粒子を分散したネガ型のアタリ ル系感光性榭脂液などを塗布した後、乾燥を行い、黒色感光性榭脂層を形成する。 続いてフォトマスクを介して黒色感光性榭脂層を露光した後、現像を行って、 2. Ο μ mの ΒΜ35を形成する。このとき第 1着色層(例えば赤色層)、第 2着色層(例えば緑 色層)、および第 3着色層(例えば青色層)が形成される領域に、それぞれ第 1着色 層用の開口部、第 2着色層用の開口部、第 3着色層用の開口部が形成されるように B M35を形成する。なお、それぞれの開口部は、アクティブマトリクス基板の画素電極 に対応するように形成される。 On the transparent substrate 10, after applying a negative type tantalum-based photosensitive resin solution in which fine carbon particles are dispersed by spin coating, drying is performed to form a black photosensitive resin layer. Subsequently, the black photosensitive resin layer is exposed through a photomask and then developed to form 2. 35 μm of ΒΜ35. At this time, openings for the first colored layer are respectively formed in regions where the first colored layer (for example, red layer), the second colored layer (for example, green layer), and the third colored layer (for example, blue layer) are formed. B M35 is formed so that an opening for the second colored layer and an opening for the third colored layer are formed. Each opening is formed so as to correspond to the pixel electrode of the active matrix substrate.
[0084] 次に、スピンコートにより顔料を分散したネガ型のアクリル系感光性榭脂液を塗布し た後、乾燥を行い、フォトマスクを用いて露光および現像を行い、 2. の赤色層 を形成する。 [0084] Next, after applying a negative acrylic photosensitive resin solution in which a pigment is dispersed by spin coating, drying is performed, and exposure and development are performed using a photomask. Form.
[0085] その後、第 2色層用(例えば緑色層)、および第 3色層用(例えば青色層)について も同様に形成し、カラーフィルタ層 31が完成する。 [0085] Thereafter, the second color layer (for example, the green layer) and the third color layer (for example, the blue layer) are similarly formed, and the color filter layer 31 is completed.
[0086] さらに、下層力 ηθ層 37b、上層が ITO層 37aからなる積層された透明電極 37をス
ノッタにより成膜する。まず、 ZnO膜を RF電源方式のスパッタ装置により、パワー 15 kW、基板温度 210°C、圧力 1. 2Paにて、 Arと Oとの混合ガス(Ar流量: O流量 = 2 [0086] Further, the laminated transparent electrode 37 having the lower layer force ηθ layer 37b and the upper layer made of the ITO layer 37a is scanned. A film is formed by a knotter. First, a ZnO film was sputtered using an RF power source system at a power of 15 kW, a substrate temperature of 210 ° C, a pressure of 1.2 Pa, and a mixed gas of Ar and O (Ar flow rate: O flow rate = 2
2 2 twenty two
〜3 : 1)を用いて、 900Aに成膜する。次に ITO膜を、 DC電源方式のスパッタ装置 により、常温、パワー 25kW、圧力 1. 2Paにて、 Arと Oと H Oとの混合ガス(Ar流量 ~ 3: 1) is used to form a film at 900A. Next, the ITO film was mixed with Ar, O, and H 2 O (Ar flow rate) at room temperature, power of 25 kW, and pressure of 1.2 Pa using a DC power source sputtering system.
2 2 twenty two
: 0流量: H O流量 = 20 : 1 : 1〜2)を用いて、 200 : 0 flow rate: H 2 O flow rate = 20: 1: 1-2), 200
2 2 Aに成膜する。 2 2 A film is formed.
[0087] 次に、スピンコートにより感光性のポジ型のフエノールノボラック系感光性榭脂液を 塗布した後、乾燥を行い、フォトマスクを用いて露光し、 TMAH現像液を用いて現像 を行い、 1. 5 mの垂直配向制御用突起 36を形成する。以上により、カラーフィルタ 基板 33が形成される。 [0087] Next, after applying a photosensitive positive type phenol novolak photosensitive resin solution by spin coating, drying, exposure using a photomask, development using a TMAH developer, 1. Form a 5 m vertical alignment control protrusion 36. As a result, the color filter substrate 33 is formed.
[0088] このカラーフィルタ基板 33と、カラーフィルタ基板 33と対向するようにアクティブマト リクス基板 30を貼り合わせることによって、液晶パネルが形成される。このとき、まず、 両基板を準備し、それぞれをアルカリ性溶液で洗浄する。本実施形態では、洗浄液 として、 pHが 8〜12程度のアルカリ水素水(アルカリ還元水)を用いた。洗浄後、各 々の基板に配向膜を形成、それら基板と基板との間に液晶を注入'封止することによ つて液晶パネルとし、液晶パネルの外部引き出し端子にドライバ等を接続することに より液晶表示装置は製造される。 A liquid crystal panel is formed by bonding the color filter substrate 33 and the active matrix substrate 30 so as to face the color filter substrate 33. At this time, first, both substrates are prepared, and each is washed with an alkaline solution. In this embodiment, alkaline hydrogen water (alkaline reduced water) having a pH of about 8 to 12 was used as the cleaning liquid. After cleaning, an alignment film is formed on each substrate, and liquid crystal is injected and sealed between the substrates to form a liquid crystal panel, and a driver or the like is connected to an external lead terminal of the liquid crystal panel. More liquid crystal display devices are manufactured.
[0089] 以上の構成とすることにより、図 6に示す通り、本実施形態 2によれば、透明電極 37 を形成する ZnO層 37b上に、別途 ITO層 37aを形成するので、 ZnOは洗浄液により 浸食されることなぐ透明電極 37が浸食されず、表示不良とならない効果を奏する。 With the above configuration, as shown in FIG. 6, according to the second embodiment, the ITO layer 37a is separately formed on the ZnO layer 37b that forms the transparent electrode 37. The transparent electrode 37 that is not eroded is not eroded, and the display is not defective.
[0090] 本形態の透明電極 37には、酸ィ匕亜鉛を主成分とする導電層に ZnO層を用いたが 、 ZnOに A1や Gaなどの異種元素をドーパントとして含有しても構わない。これらの元 素等をドープすることで低抵抗な透明電極を得ることができる。 In the transparent electrode 37 of this embodiment, a ZnO layer is used as a conductive layer mainly composed of zinc oxide, but different elements such as A1 and Ga may be contained in ZnO as a dopant. A low-resistance transparent electrode can be obtained by doping these elements.
[0091] また、アクティブマトリクス基板 30の洗浄液としては、本実施形態のアルカリ水素水 に限定されず、たとえば水酸ィ匕ナトリウム水溶液、水酸ィ匕テトラアンモニゥム水溶液、 水酸ィ匕カリウム水溶液、脂肪酸のナトリウム塩水溶液等でも構わな 、。 Further, the cleaning liquid for the active matrix substrate 30 is not limited to the alkaline hydrogen water of the present embodiment. For example, the aqueous solution of sodium hydroxide, aqueous solution of tetraammonium hydroxide, aqueous solution of potassium hydroxide and potassium hydroxide is used. It may be an aqueous sodium salt solution of fatty acid.
[0092] なお、上記透明電極 37において、「下層」とは絶縁性基板 10側に配置されている 層を 、 、、「上層」とは液晶層 32側に配置されて 、る層を示す。 In the transparent electrode 37, “lower layer” refers to a layer disposed on the insulating substrate 10 side, and “upper layer” refers to a layer disposed on the liquid crystal layer 32 side.
[0093] また、 MVA方式のカラーフィルタ基板 33に設けられている垂直配向制御用突起 3
6のかわりに、アクティブマトリクスの画素電極と同様に液晶分子の配向を制御するた めに、スリットパターンを設ける場合もある。この場合、実施形態 1に示したアクティブ マトリクス基板 30の画素電極 3に設けられたスリット 8を形成する方法と同様の方法に より、透明電極 37にスリットを形成することができる。すなわち、まず、 ZnO膜および I TO膜をスパッタリングにて成膜した後、感光性レジストを塗布し、フォトリソグラフィー にて感光性レジストを露光した後に現像液で現像してパターユングする。さらに、パタ 一ユングによって形成されたパターンをマスクとして、リン酸 '硝酸'酢酸力 なるエツ チング液を用いるウエットエッチングにより、成膜した ZnO膜と ITO膜をパターユング した後、剥離液を用いてレジストを剥離することにより透明電極 37が形成される。な お、本実施形態 2においても、現像液には TMAH (水酸ィ匕テトラメチルアンモ-ゥム) の濃度が 10%以下の水溶液を用い、剥離液には MEA (モノエタノールァミン)と DM SO (ジメチルスルホキシド)との混合液(混合比 MEA: DMSO = 2〜3: 1)を用いた 。また、上述のエッチング工程においては、同一エツチャントを用いて同一のエツチン グ工程で、 ZnO膜と ITO膜の 、ずれもエッチングする。 Further, the vertical alignment control protrusion 3 provided on the MVA type color filter substrate 33. Instead of 6, a slit pattern may be provided to control the orientation of the liquid crystal molecules in the same way as the active matrix pixel electrode. In this case, the slit can be formed in the transparent electrode 37 by the same method as the method of forming the slit 8 provided in the pixel electrode 3 of the active matrix substrate 30 shown in the first embodiment. That is, first, a ZnO film and an ITO film are formed by sputtering, a photosensitive resist is applied, the photosensitive resist is exposed by photolithography, and then developed with a developer and patterned. Furthermore, using the pattern formed by patterning as a mask, the deposited ZnO film and ITO film were patterned by wet etching using an etching solution consisting of phosphoric acid 'nitric acid' acetic acid, and then using a stripping solution. The transparent electrode 37 is formed by removing the resist. In Embodiment 2 as well, an aqueous solution having a TMAH (hydroxyl tetramethylammonium) concentration of 10% or less is used as the developer, and MEA (monoethanolamine) is used as the stripper. A mixed solution with DMSO (dimethyl sulfoxide) (mixing ratio MEA: DMSO = 2 to 3: 1) was used. Moreover, in the above-described etching process, the same etchant is used to etch the gap between the ZnO film and the ITO film.
[0094] さらに、透明電極 37は、積層膜として下層に ZnO層 37bを、上層に ITO層 37aを用 いた。しかし、下層の ZnO層 37bを洗浄液による浸食力も保護することができればよ ぐ IZOや InO、 TiOなどの透明画素電極材料を、積層膜の上層に用いることもでき る。また、 ITO層 37aの厚さを 200Aとした力 下層の ZnO層 37bを洗浄液による浸 食力も保護することができるのであれば、 200 Aより薄 、厚さとしてもょ 、。 Further, the transparent electrode 37 uses a ZnO layer 37b as a lower layer and an ITO layer 37a as an upper layer as a laminated film. However, transparent pixel electrode materials such as IZO, InO, and TiO can also be used for the upper layer of the laminated film as long as the lower ZnO layer 37b can protect the erosion power by the cleaning liquid. Also, if the thickness of the ITO layer 37a is 200A, the lower ZnO layer 37b can be protected from the erosion by the cleaning solution, but it is thinner than 200A.
[0095] カロえて、透明電極 37は 2層からなる積層膜だけでなぐ 3層以上の積層膜でも構わ ない。 [0095] In addition, the transparent electrode 37 may be a laminated film of three or more layers, not only a laminated film consisting of two layers.
[0096] また、本実施形態 2では、アクティブマトリクス基板として、上記実施形態 1で説明し たものを用いたが、例えば画素電極 3として ITO単層カゝらなる基板を用いも良い。し かし、本発明による効果が両基板側で得られるので、本実施形態 2のように、本発明 を両方の基板に適用する方が好まし 、。 In the second embodiment, the active matrix substrate described in the first embodiment is used. However, for example, a substrate made of an ITO single layer cover may be used as the pixel electrode 3. However, since the effects of the present invention can be obtained on both substrates, it is preferable to apply the present invention to both substrates as in the second embodiment.
[0097] なお、表示装置は液晶表示装置に限定されるものではなぐ例えば、本実施形態 におけるカラーフィルタ基板 33と、カラーフィルタ基板 33と対向するようにアクティブ マトリクス基板 30を配置し、それら基板と基板との間に有機 EL層を配置することで有
機 ELパネルとし、パネルの外部引き出し端子にドライバ等を接続することによって、 有機 EL表示装置を構成することも可能である。 Note that the display device is not limited to the liquid crystal display device. For example, the color filter substrate 33 in the present embodiment and the active matrix substrate 30 are arranged so as to face the color filter substrate 33, and Yes, by placing an organic EL layer between the substrate It is also possible to configure an OLED display device by connecting it to the external lead terminal of the panel and connecting it with a driver.
[0098] また、上記実施形態 1、 2では、 MVA型の液晶表示装置にっ 、て説明した力 本 発明はこれに限定されるものではなぐ MVA方式以外の液晶表示装置、 EL表示装 置、プラズマ表示装置等の各種表示装置を始めとして、太陽電池などの光電変換装 置、タツチパネルなど、洗浄工程が施される透明電極の導電層を備える基板に適用 可能なものである。 [0098] In the first and second embodiments, the power described above for the MVA type liquid crystal display device is not limited to this. A liquid crystal display device other than the MVA system, an EL display device, The present invention can be applied to substrates including a transparent electrode conductive layer subjected to a cleaning process, such as various display devices such as plasma display devices, photoelectric conversion devices such as solar cells, and touch panels.
[0099] (その他の構成) [0099] (Other configurations)
なお、本発明は、以下の構成として実現できる。 In addition, this invention is realizable as the following structures.
[0100] (第 1の構成) [0100] (First configuration)
複数の導電層が積層して成る導電膜を備えた基板であって、 A substrate provided with a conductive film formed by laminating a plurality of conductive layers,
上記導電膜は、 The conductive film is
少なくとも、酸化亜鉛を主成分とする第 1導電層と、第 1導電層に対して基板の反対 側に積層される第 2導電層とによって構成され、 At least a first conductive layer mainly composed of zinc oxide and a second conductive layer stacked on the opposite side of the substrate with respect to the first conductive layer,
上記第 2導電層は、 The second conductive layer is
上記基板を洗浄するために用いられる洗剤に対する耐浸食性が第 1導電層よりも 高 、ことを特徴として 、る基板。 The substrate characterized by having higher erosion resistance to the detergent used for cleaning the substrate than the first conductive layer.
[0101] (第 2の構成) [0101] (Second configuration)
上記第 2導電層は、 The second conductive layer is
ITOまたは IZOカゝらなることを特徴とする第 1の構成に記載の基板。 The substrate according to the first structure, which is made of ITO or IZO.
[0102] (第 3の構成) [0102] (Third configuration)
上記第 1導電層は、 The first conductive layer is
上記第 2導電層より膜厚が厚いことを特徴とする第 1の構成に記載の基板。 2. The substrate according to the first configuration, wherein the substrate is thicker than the second conductive layer.
[0103] (第 4の構成) [0103] (Fourth configuration)
上記導電膜は、 The conductive film is
アクティブマトリクス基板における画素電極として用いられることを特徴とする第 1の 構成に記載の基板。 The substrate according to the first structure, which is used as a pixel electrode in an active matrix substrate.
[0104] (第 5の構成)
上記導電膜は、 [0104] (Fifth configuration) The conductive film is
カラーフィルタ基板における透明電極として用いられることを特徴とする第 1の構成 に記載の基板。 The substrate according to the first configuration, which is used as a transparent electrode in a color filter substrate.
[0105] (第 6の構成) [0105] (Sixth configuration)
上記導電膜は、 The conductive film is
表面に配向制御用突起を備えていることを特徴とする第 1の構成に記載の基板。 (第 7の構成) The substrate according to the first configuration, characterized in that an alignment control protrusion is provided on the surface. (Seventh configuration)
上記導電膜は、 The conductive film is
表面にスリットを備えていることを特徴とする第 1の構成に記載の基板。 The substrate according to the first configuration, wherein a slit is provided on the surface.
[0106] (第 8の構成) [0106] (Eighth configuration)
第 1の構成力 第 7の構成の 、ずれ力 1つの構成に記載の基板を備えて 、る表示 装置。 First configuration force A display device comprising the substrate according to one configuration of the seventh configuration, the displacement force.
[0107] (第 9の構成) [0107] (Ninth Configuration)
複数の導電層が積層して成る導電膜を備えた基板の製造方法であって、 上記導電膜を構成する、酸化亜鉛を主成分とする第 1導電層を形成する第 1導電 層形成工程と、 A method for manufacturing a substrate having a conductive film formed by laminating a plurality of conductive layers, the first conductive layer forming step forming a first conductive layer comprising zinc oxide as a main component and constituting the conductive film; ,
上記導電膜を加工するために施される化学的な処理に用いられる物質に対する耐 浸食性が上記第 1導電層よりも高い第 2導電層であって、上記第 1導電層に対して基 板の反対側に積層される、上記第 2導電層を形成する第 2導電層形成工程と、 上記第 1導電層形成工程および上記第 2導電層形成工程によって導電膜が形成さ れた基板を洗浄する洗浄工程とを含んでおり、 A second conductive layer having higher erosion resistance than the first conductive layer with respect to a substance used for a chemical treatment applied to process the conductive film, and the substrate with respect to the first conductive layer. A second conductive layer forming step for forming the second conductive layer, and a substrate on which the conductive film is formed by the first conductive layer forming step and the second conductive layer forming step. Cleaning process,
上記第 2導電層は、上記洗浄工程において用いられる洗剤に対する耐浸食性が高 V、ことを特徴とする基板の製造方法。 The method for manufacturing a substrate, wherein the second conductive layer has a high V erosion resistance to a detergent used in the cleaning step.
産業上の利用の可能性 Industrial applicability
[0108] 本発明は、導電層を備えた基板であって、製造工程において洗浄される基板に対 して有効に適用することができる。特に、液晶パネルに用いられる、画素電極や透明 電極を備えた基板に好適に適用できる。
The present invention can be effectively applied to a substrate provided with a conductive layer and to be cleaned in a manufacturing process. In particular, it can be suitably applied to a substrate provided with a pixel electrode or a transparent electrode used in a liquid crystal panel.
Claims
[1] 酸化亜鉛を主成分とする第 1導電層を少なくとも含む複数の導電層を基板に積層 した積層構造体を備え、 [1] A laminated structure in which a plurality of conductive layers including at least a first conductive layer mainly composed of zinc oxide is laminated on a substrate,
洗浄工程で洗浄液と接触する面に位置する前記積層構造の第 2導電層の材料は 、前記洗浄液に対する耐浸食性が酸化亜鉛よりも高!ヽことを特徴とする導電層を備 えた基板。 A substrate provided with a conductive layer, wherein the material of the second conductive layer of the laminated structure located on the surface in contact with the cleaning liquid in the cleaning step has higher erosion resistance to the cleaning liquid than zinc oxide.
[2] 前記第 2導電層が ITOまたは IZO力 なることを特徴とする請求項 1に記載の導電 層を備えた基板。 2. The substrate having a conductive layer according to claim 1, wherein the second conductive layer has an ITO or IZO force.
[3] 前記第 1導電層は、前記第 2導電層より膜厚が厚いことを特徴とする請求項 1また は 2に記載の導電層を備えた基板。 [3] The substrate having a conductive layer according to claim 1 or 2, wherein the first conductive layer is thicker than the second conductive layer.
[4] 前記複数の導電層が画素電極となり、アクティブマトリクス基板を構成することを特 徴とする請求項 1から 3のいずれか 1項に記載の導電層を備えた基板。 4. The substrate provided with the conductive layer according to claim 1, wherein the plurality of conductive layers serve as pixel electrodes and constitute an active matrix substrate.
[5] 前記複数の導電層が透明電極となり、カラーフィルタ基板を構成することを特徴と する請求項 1から 3のいずれか 1項に記載の導電層を備えた基板。 5. The substrate provided with the conductive layer according to any one of claims 1 to 3, wherein the plurality of conductive layers serve as transparent electrodes and constitute a color filter substrate.
[6] 前記積層構造体の第 2導電層側には、配向制御用突起を有することを特徴とする 請求項 1から 5のいずれか 1項に記載の導電層を備えた基板。 6. The substrate provided with the conductive layer according to any one of claims 1 to 5, wherein an alignment control protrusion is provided on the second conductive layer side of the multilayer structure.
[7] 前記複数の導電層は、スリットを有することを特徴とする請求項 1から 6のいずれか 1 項に記載の導電層を備えた基板。 7. The substrate having a conductive layer according to claim 1, wherein the plurality of conductive layers have slits.
[8] 請求項 1から 7のいずれ力 1項に記載の導電層を備えた基板を用いた表示装置。 [8] A display device using a substrate comprising the conductive layer according to any one of [1] to [7].
[9] 基板に導電層を形成する工程と、 [9] forming a conductive layer on the substrate;
前記基板の導電層の少なくとも一部が露出する状態で洗浄する工程とを含み、 前記導電層形成工程は、基板に酸化亜鉛を主成分とする導電層を形成する工程と Washing with at least a portion of the conductive layer of the substrate exposed, and the conductive layer forming step includes forming a conductive layer mainly composed of zinc oxide on the substrate;
、前記洗浄液と接触する面に前記洗浄液に対する耐浸食性が酸化亜鉛よりも高!ヽ材 料の導電層を形成する工程とを少なくとも含むことを特徴とする導電層を備えた基板 の製造方法。
And a step of forming a conductive layer of a material having a higher erosion resistance to the cleaning liquid than zinc oxide on a surface in contact with the cleaning liquid.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005110376 | 2005-04-06 | ||
JP2005-110376 | 2005-04-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006109586A1 true WO2006109586A1 (en) | 2006-10-19 |
Family
ID=37086867
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/306752 WO2006109586A1 (en) | 2005-04-06 | 2006-03-30 | Substrate with conductive layer, display unit and process for producing substrate with conductive layer |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2006109586A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010111896A (en) * | 2008-11-05 | 2010-05-20 | Tosoh Corp | Laminated transparent conductive film and method for production thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6264005A (en) * | 1985-09-17 | 1987-03-20 | 松下電器産業株式会社 | Transparent conducting film and formation thereof |
JPH03212612A (en) * | 1990-01-17 | 1991-09-18 | Nippondenso Co Ltd | Production of liquid crystal display element of perpendicular orientation type |
JPH09221340A (en) * | 1996-02-09 | 1997-08-26 | Nippon Sheet Glass Co Ltd | Substrate with transparent conductive film |
JP2005047178A (en) * | 2003-07-30 | 2005-02-24 | Nidek Co Ltd | Transparent substrate with multi-layer film having conductivity |
JP2005072255A (en) * | 2003-08-25 | 2005-03-17 | Asahi Glass Co Ltd | Electromagnetic wave shielding sheet for plasma display and method of manufacturing the same |
-
2006
- 2006-03-30 WO PCT/JP2006/306752 patent/WO2006109586A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6264005A (en) * | 1985-09-17 | 1987-03-20 | 松下電器産業株式会社 | Transparent conducting film and formation thereof |
JPH03212612A (en) * | 1990-01-17 | 1991-09-18 | Nippondenso Co Ltd | Production of liquid crystal display element of perpendicular orientation type |
JPH09221340A (en) * | 1996-02-09 | 1997-08-26 | Nippon Sheet Glass Co Ltd | Substrate with transparent conductive film |
JP2005047178A (en) * | 2003-07-30 | 2005-02-24 | Nidek Co Ltd | Transparent substrate with multi-layer film having conductivity |
JP2005072255A (en) * | 2003-08-25 | 2005-03-17 | Asahi Glass Co Ltd | Electromagnetic wave shielding sheet for plasma display and method of manufacturing the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010111896A (en) * | 2008-11-05 | 2010-05-20 | Tosoh Corp | Laminated transparent conductive film and method for production thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8148727B2 (en) | Display device having oxide thin film transistor and fabrication method thereof | |
US8507916B2 (en) | Thin film transistor substrate, LCD device including the same, and method for manufacturing thin film transistor substrate | |
KR101325053B1 (en) | Thin film transistor substrate and manufacturing method thereof | |
US9515028B2 (en) | Array substrate, method of manufacturing the same and display device | |
US7319239B2 (en) | Substrate for display device having a protective layer provided between the pixel electrodes and wirings of the active matrix substrate, manufacturing method for same, and display device | |
US20160043102A1 (en) | Array Substrate and Method for Manufacturing the Same, and Display Device | |
US7995162B2 (en) | Liquid crystal display device and method for manufacturing the same | |
US20120307173A1 (en) | Display device and method for fabricating the same | |
WO2015027632A1 (en) | Array substrate, display device, and method for manufacturing the array substrate | |
WO2015192595A1 (en) | Array substrate and manufacturing method thereof, and display device | |
KR20120107269A (en) | Liquid crystal display device and method for fabricating the same | |
TW200809365A (en) | Liquid crystal display device and manufacturing method thereof | |
JP2001188252A (en) | Tft array substrate, its production method, and liquid crystal display device using same | |
WO2013143291A1 (en) | Array substrate, manufacturing method thereof and display device | |
JP4954868B2 (en) | Method for manufacturing substrate having conductive layer | |
US9230995B2 (en) | Array substrate, manufacturing method thereof and display device | |
WO2018137441A1 (en) | Array substrate, manufacturing method thereof, and display panel | |
US9224824B2 (en) | Display device substrate and display device equipped with same | |
TW200404185A (en) | Liquid crystal display apparatus and manufacture method of same | |
US7763480B2 (en) | Method for manufacturing thin film transistor array substrate | |
WO2011161875A1 (en) | Substrate for display device and process for production thereof, and display device | |
US7864283B2 (en) | Liquid crystal display | |
CN101330061B (en) | Method for preparing pixel structure | |
WO2006109586A1 (en) | Substrate with conductive layer, display unit and process for producing substrate with conductive layer | |
US11037962B2 (en) | Thin-film transistor array substrate and display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06730700 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |