JP4245339B2 - Method for producing conductive transparent substrate with multilayer film - Google Patents

Method for producing conductive transparent substrate with multilayer film Download PDF

Info

Publication number
JP4245339B2
JP4245339B2 JP2002347236A JP2002347236A JP4245339B2 JP 4245339 B2 JP4245339 B2 JP 4245339B2 JP 2002347236 A JP2002347236 A JP 2002347236A JP 2002347236 A JP2002347236 A JP 2002347236A JP 4245339 B2 JP4245339 B2 JP 4245339B2
Authority
JP
Japan
Prior art keywords
film
layer
conductive
film layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002347236A
Other languages
Japanese (ja)
Other versions
JP2004175074A (en
Inventor
芳光 内田
雅義 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP2002347236A priority Critical patent/JP4245339B2/en
Publication of JP2004175074A publication Critical patent/JP2004175074A/en
Application granted granted Critical
Publication of JP4245339B2 publication Critical patent/JP4245339B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は導電性を有する多層膜付透明基板に関する。
【0002】
【従来技術】
従来より、ガラス板やプラスチック板(プラスチックフィルム)等の透明基板にインジウム錫酸化物(ITO)やSnO2等の透明導電膜を形成して、太陽電池などの光電変換素子の電極や液晶等の表示装置またはタッチパネルの電極、静電防止フィルターや電磁波カットフィルターとして利用するものが知られている。特にタッチパネルとして使用される場合、耐擦傷性(タッチパネルにおいては耐ペン摺動性)に優れた導電性を有する多層膜付透明基板が望まれるようになっている。
このような背景において、基板上にハードコート層を設けるとともに最表面に透明導電膜を形成させることにより、導電性を有する多層膜付透明基板の耐ペン摺動性の向上を図ろうとする技術が知られている(例えば、特許文献1、特許文献2参照)。
【0003】
【特許文献1】
特開2001−216842号公報
【特許文献2】
特開2002−122703号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上述したような基板上にハードコート層を形成するだけでは現在要望されている耐ペン摺動性を満足することが困難である。
【0005】
本発明では上記従来技術の問題点に鑑み、高い耐擦傷性(耐ペン摺動性)を有する導電性を有する多層膜付透明基板を提供することを技術課題とする。
【0006】
【課題を解決するための手段】
上記課題を解決するために、本発明は以下のような構成を備えることを特徴とする。
(1) 透明基板上に該基板の屈折率より高い屈折率となる透明誘電膜層と前記基板より低い屈折率となる透明誘電膜層とを交互に積層することによりなる反射防止層と,該反射防止層の上に透明導電体の薄膜からなる導電層とを積層してなる導電性を有する多層膜付透明基板の製造方法において、前記導電層は最外層に主成分として酸化亜鉛を含有する透明導電体からなる第1導電膜と該第1導電膜の下層に形成され前記酸化亜鉛を主成分としない透明導電体からなる第2導電膜とからなり,前記導電層に対して電気光学素子用,光電変換素子用,液晶用,タッチパネル用として必要な表面抵抗値が得られるとともに前記第1導電膜の膜厚に対して前記第2導電膜の膜厚が厚くなるように前記第1及び第2導電膜層の膜厚を決定する第1ステップと、該第1ステップにより決定された前記第1導電膜と第2導電膜の膜厚及び屈折率と,前記反射防止層に用いられる薄膜形成材料の屈折率とを固定値としてメリット関数を使用した最適化アルゴリズムを用いながら前記反射防止層を形成するための各誘電膜層の膜厚を決定する第2ステップと、前記第1及び第2ステップで決定された前記第1及び第2導電膜層,並びに各誘電膜層の膜厚となるように前記基板上に前記複数の誘電膜層からなる反射防止層と前記第1及び第2導電膜層からなる導電層とを形成することを特徴とする。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態における導電性を有する多層膜付透明基板について、図面を参照しながら説明する。なお、本実施形態では、基板上に反射防止効果をもたせるための薄膜層帯を設けておき、その上に導電性を有する導電膜層を設けた導電性を有する多層膜付透明基板を例にとり、説明する。
【0008】
図1は本発明の実施の形態における導電性を有する多層膜付透明基板の積層構成を示す概略図である。
1は透明の基板である。基板1は通常に入手できるものであればよく、屈折率は1.48以上1.7以下程度のものを使用する。具体的に、基板材料としてはガラス類(屈折率1.48〜1.70)、プラスチック類(ポリカーボネイト(屈折率1.59)、ポリエチレンテレフタラート(屈折率1.63)等)が用いられ、光学的に透明であれば特に限定されない。また、本実施形態で述べる基板とは板状に限らず、フィルム基板を含むものとしている。
【0009】
2は基板1上に多層膜の成膜前に事前に形成される薄膜層である。この薄膜層2は、多層膜を成膜する前に基板1にコーティングすることにより、基板1の表面を硬化させ、傷等から保護するためや、基板1と多層膜との間の密着力を上げるために形成される層である(以下、ハードーコート層と記す)。一般的に、ハードコート層2においては、基板1の表面を保護するとともに、基板1と多層膜との間の密着力を上げることが可能なアクリル系ハードコートがよく利用される。
【0010】
また、基板1にハードコート層2を形成しないで、基板1上に直接多層膜を成膜することも可能であるが、前述したように多層膜の保護や密着力向上のために、基板1上に事前にハードコート処理を行なっておくことが好ましい。また、ハードコートではなく、単に基板1と多層膜との間での密着力向上のために真空蒸着等にて基板上にアンダーコートを行なうこともある。
何れの場合においても、ハードコート(アンダーコート)の膜厚は、光学的な阻害が起こらないように基板の屈折率と同程度の屈折率を有するようにしておくことが好ましい。
【0011】
3はハードコート層2上に屈折率の異なる透明誘電体からなる誘電膜層を複数積層することにより反射防止効果をもたせるための反射防止層帯である。本実施形態における反射防止層帯3は4つの誘電膜層3a〜3dにより形成されている。
3aは基板1の屈折率よりも高い屈折率をもつ透明誘電体からなる第1誘電膜層である。第1誘電膜層3aに使用される透明誘電体は、使用する基板1に応じて適宜選択されるが、基板1の屈折率よりも高い屈折率が必要なため、基板1の最低屈折率1.48より高い必要がある。また同時に、安価に入手可能でかつ安定した成膜が確認されているものが好ましいため、それらを考慮して屈折率が1.50以上2.50以下程度の範囲のものが使用される。具体的には、第1誘電膜層3aの主成分にはZrO2(屈折率1.9)や、TiO2(屈折率2.2)、Al23(屈折率1.6)等が挙げられる。第1誘電膜層3の光学的膜厚nd(以後、単に膜厚と記す)は10nm以上600nm以下が好ましく、より好ましくは50nm以上550nm以下である。
【0012】
3bは第1誘電膜層3a上に積層され、基板1の屈折率よりも低い屈折率をもつ透明誘電体からなる第2誘電膜層である。第2誘電膜層3bに使用される透明誘電体は、使用する基板1に応じて適宜選択されるが、基板1の屈折率よりも低い屈折率が必要なため、基板1の最高屈折率1.70より低くする必要がある。また同時に、安価に入手可能でかつ安定した成膜が確認されているものが好ましいため、それらを考慮して屈折率が屈折率1.35以上1.60以下程度の範囲のものが使用される。具体的には、第2誘電膜層3bの主成分にはSiO2(屈折率1.46)やMgF2(屈折率1.38)が挙げられる。また、第2誘電膜層3bの膜厚は10nm以上600nm以下が好ましく、より好ましくは50nm以上550nm以下である。膜厚がこれ以上薄くても厚くても、反射防止効果が得られにくい。
【0013】
3cは第2誘電膜層3b上に積層され、基板1の屈折率よりも高い屈折率をもつ透明誘電体からなる第3誘電膜層である。第3誘電膜層3cに使用される透明誘電体は、第1誘電膜層3aと基本的に同じ材料のものが使用可能であるが、反射防止効果を向上させるためには第1誘電膜層3aにて用いられる材料の屈折率と同じか、それより高い屈折率を有する材料を用いることが好ましい。第3誘電膜層3cの膜厚は10nm以上600nm以下が好ましく、より好ましくは50nm以上550nm以下である。
【0014】
3dは第3誘電膜層3c上に積層され、基板1の屈折率よりも低い屈折率をもつ透明誘電体からなる第4誘電膜層である。第4誘電膜層3dに使用される透明誘電体は、第2誘電膜層3bと基本的に同じ材料のものが使用可能である。また、第4誘電膜層3dの膜厚は10nm以上600nm以下が好ましく、より好ましくは50nm以上550nm以下である。
【0015】
4は第4誘電膜層3d上に積層され、導電性を有する第2導電膜層である。第2導電膜層4の透明導電体にはITOやATO、SnO2、IZO等の酸化亜鉛を主成分としない透明かつ導電性を有する材料が挙げられる。5は第2導電膜層4上に積層され、最表面となる導電性を有する第1導電膜層である。第1導電膜層5の透明導電体には、酸化亜鉛、AZO(アルミニウムドープ酸化亜鉛)やGZO(ガリウムドープ酸化亜鉛)等の酸化亜鉛を主成分とする材料を用いることができる。
このように、ITO等からなる第2導電膜層4の上に酸化亜鉛を主成分とする第1導電膜層5を形成することにより、従来の導電性を有する多層膜付透明基板に比べ、耐ペン摺動性の性能が格段に向上する。
【0016】
また、第1導電膜層5と第2導電膜層4とを合わせた膜厚により表面抵抗値が決定される。したがって、表面抵抗値を低抵抗値に設定する場合には、一方の膜厚或いは両方の膜厚を厚くすればよい。また、表面抵抗値を高抵抗値に設定する場合には一方の膜厚或いは両方の膜厚を薄くすればよい。なお、第2導電膜層にITO等の抵抗率の良い材料を用いた場合、第1導電膜層5の膜厚の増減に対して、第2導電膜層4の膜厚を増減させる方が、表面抵抗値の値が大きく変動する。このため、所望する表面抵抗値を得るために主として第2導電膜層4の膜厚を増減させることにより、導電膜層全体の膜厚を薄くさせることができるため、透過率の向上が期待できる。
【0017】
また、表面抵抗値は使用目的に応じて適宜決定すれば良いが、電気光学素子用、光電変換素子用、液晶用、タッチパネル用等に用いるのであれば、好ましくは表面抵抗値が100Ω/□以上5000Ω/□以下であり、より好ましくは100Ω/□以上1000Ω/□以下である。また、表面抵抗値と対応する第1導電膜層5と第2導電膜層4との合計の膜厚は10nm以上1000nm以下が好ましく、より好ましくは15nm以上100nm以下である。
【0018】
また、各層の最適な膜厚は以下の方法により決定される。
初めに、用途に応じて必要な表面抵抗値が得られるような導電膜層(ここでは第1導電膜層5及び第2導電膜層4)の膜厚を決定させておく。次に反射防止層帯3(誘電体層3a〜3d)に使用する材料の屈折率を固定値とし、最適化アルゴリズムを用いながら誘電体層3a〜3dの物理膜厚を変化させていく。このような手法により、最も高い透過率若しくは最も低い反射率が得られるような各誘電体層3a〜3dの膜厚を求める。最適化アルゴリズムは例えば、Adaptive Random SearchやModified Gardient、Monte Carilo method、Simurated Annealing等、メリット関数を使用した様々な最適化手法を基に与えられる。
【0019】
上記で示した各薄膜層(導電膜層、誘電膜層)を基板1上に形成する方法としては、物理的気層成長方法(PVD)では真空蒸着方法やスパッタ方法、イオンプレーティング方法等が挙げられる。また、化学的気層成長方法(CVD)ではめっき方法や化学的気層成長方法等が挙げられる。これらの成膜方法は、本実施の形態としてすべて使用可能であるが、成膜に際して高温を伴うような方法では熱によるプラスチック基板の変形等が考えられるため、プラスチック基板での多層膜の成膜は高熱を必要としない真空蒸着方法やスパッタ方法が好適に用いられる。
【0020】
なお、前述の実施形態では4層からなる反射防止層帯3の上に導電膜層を2層積層するものとしているが、これに限るものではない。例えば、導電性を有する多層膜付透明基板の透過率(反射率)を考慮する必要がなければ、このような反射防止層帯3を設けなくとも良い。また、反射防止層帯3を形成する場合であっても4層に限るものではなく、所望する透過率(反射率)が得られるような多層構造(例えば1層〜6層等)を形成すればよい。
【0021】
<実施例1>
ハードコート付きポリカーボネイト基板(屈折率1.59)を用意し、真空蒸着法により、誘電膜層を基板上に4層形成した。第1誘電膜層としては、オプトロン社製ZrO2タブレットを使用し、アンダーコート層であるハードコート上にZrO2を主成分とする薄膜層を形成した。このときの第1誘電体層の膜厚(光学膜厚nd)は70nmとした。第2誘電膜層としては、オプトロン社製SiO2顆粒を使用し、第1誘電膜層上にSiO2を主成分とする薄膜層を形成した。このときの第2誘電膜層の膜厚は35nmとした。第3誘電膜層としては、オプトロン社製TiO2顆粒を使用し、第2誘電膜層上にTiO2を主成分とする薄膜層を形成した。このときの第3誘電膜層の膜厚は95nmとした。第4誘電膜層としては、オプトロン社製SiO2顆粒を使用し、第3誘電膜層上にSiO2を主成分とする薄膜層を形成した。このときの第4誘電膜層の膜厚は65nmとした。
【0022】
次に真空治金(株)製ITOターゲットを使用し、第2導電膜層としてITOを主成分とする薄膜層をスパッタ法により第4誘電膜層上に形成した。このときの第2導電膜層の膜厚は20nmとした。最表面となる第1導電膜層としては、住友金属鉱山(株)製AZOターゲットを使用し、第2導電膜層上にAZOの薄膜層を形成した。このときの第1導電膜層の膜厚は30nmとした。
【0023】
このようにして得られた導電性を有する多層膜付透明基板の視感度透過率を測定した。測定装置は朝日分光社製 視感度透過率計MODEL304を用いた。得られた視感透過率は92.1%であった。また、表面抵抗値は500Ω/□であった。
【0024】
次に、物理膜厚188μmのITO付のPET(ポリエチレンテレフタレート)フィルムのITO形成面側と作成した多層膜付透明基板の膜形成面側とを張り合わせた後、耐ペン摺動性評価を行った。耐ペン摺動性評価は、張り合わせたPETフィルムのITO電極面の裏面より、ポリアセタール製のペン(先端形状は、0.8mmR)に250gの荷重を掛け、往復10万回の摺動試験を行うことにより評価した。往復10万回の摺動試験を行っても、目視にて多層膜付基板上に白濁が見られなければ○、白濁が生じていれば×とした。
以上の結果を表1に示す。
【0025】
<実施例2>
基板、膜構成及び成膜材料を実施例1と同一条件にて多層膜付透明基板を作成した。ただし、第1導電膜層の膜厚を15nmに変えて成膜を行った。なお、得られる表面抵抗値を実施例1と同じ500Ω/□とするために、第2導電膜層の膜厚を23nmとした。また、この条件にて多層膜付透明基板の透過率ができるだけ高く得られるように、最適化アルゴリズムを用いて各誘電膜層の膜厚を調整した。この結果、第1誘電膜層〜第4誘電膜層の各膜厚は順に75nm、35nm、90nm、80nmとした。なお、実施例1と同様に誘電膜層の形成は真空蒸着法で行い、導電膜層の形成はスパッタ法にて行った。
【0026】
このようにして得られた導電性を有する多層膜付透明基板の視感度透過率は93.3%であった。また、摺動性試験では白濁は見られなかった。以上の結果を表1に示す。
【0027】
<実施例3>
基板、膜構成及び成膜材料を実施例1と同一条件にて多層膜付透明基板を作成した。ただし、第1導電膜層の膜厚を5nmに変えて成膜を行った。なお、得られる表面抵抗値を実施例1と同じ500Ω/□とするために、第2導電膜層の膜厚を23.5nmとした。また、この条件にて多層膜付透明基板の透過率ができるだけ高く得られるように、最適化アルゴリズムを用いて各誘電膜層の膜厚を調整した。この結果、第1誘電膜層〜第4誘電膜層の各膜厚は順に75nm、35nm、86nm、91nmとした。なお、実施例1と同様に誘電膜層の形成は真空蒸着法で行い、導電膜層の形成はスパッタ法にて行った。
【0028】
このようにして得られた導電性を有する多層膜付透明基板の視感度透過率は93.9%であった。また、摺動性試験では白濁は見られなかった。以上の結果を表1に示す。
【0029】
<実施例4>
基板、膜構成を実施例1と同一条件にて多層膜付透明基板を作成した。ただし、第1導電膜層の成膜材料をGZO(膜厚15nm)として成膜を行った。なお、得られる表面抵抗値を実施例1と同じ500Ω/□とするために、第2導電膜層の膜厚を23nmとした。また、この条件にて多層膜付透明基板の透過率ができるだけ高く得られるように、最適化アルゴリズムを用いて各誘電膜層の膜厚を調整した。この結果、第1誘電膜層〜第4誘電膜層の各膜厚は順に75nm、35nm、90nm、80nmとした。なお、実施例1と同様に誘電膜層の形成は真空蒸着法で行い、導電膜層の形成はスパッタ法にて行った。
【0030】
このようにして得られた導電性を有する多層膜付透明基板の視感度透過率は93.3%であった。また、摺動性試験では白濁は見られなかった。以上の結果を表1に示す。
【0031】
<実施例5>
実施例1と同一基板を用い、この基板上にZrO2からなる第1誘電膜層とSiO2からなる第2誘電膜層を形成した後、第2誘電膜層上にITOからなる第2導電膜層とAZOからなる第1導電膜層とを順次積層し、多層膜付透明基板を作成した。第1導電膜層の膜厚は15nmとし、表面抵抗値を実施例1と同じ500Ω/□とするために、第2導電膜層の膜厚を23nmとした。また、この条件にて多層膜付透明基板の透過率ができるだけ高く得られるように、最適化アルゴリズムを用いて各誘電膜層の膜厚を調整した。この結果、第1誘電膜層及び第2誘電膜層の各膜厚は順に140nm、90nmとした。なお、実施例1と同様に誘電膜層の形成は真空蒸着法で行い、導電膜層の形成はスパッタ法にて行った。
このようにして得られた導電性を有する多層膜付透明基板の視感度透過率は92.5%であった。また、摺動性試験では白濁は見られなかった。以上の結果を表1に示す。
【0032】
<比較例1>
導電膜層をITOの1層とした以外は、基板、誘電膜層の膜構成及び成膜材料は実施例1と同一条件として多層膜付透明基板を作成した。ただし、最表面のITOの導電膜層(表1では第2導電膜層としている)の膜厚は、表面抵抗値500Ω/□が得られるように24nmとして成膜を行った。また、この条件にて多層膜付透明基板の透過率ができるだけ高く得られるように、最適化アルゴリズムを用いて各誘電膜層の膜厚を調整した。この結果、第1誘電膜層〜第4誘電膜層の各膜厚は順に80nm、35nm、85nm、100nmとした。なお、実施例1と同様に誘電膜層の形成は真空蒸着法で行い、導電膜層の形成はスパッタ法にて行った。
【0033】
このようにして得られた導電性を有する多層膜付透明基板の視感度透過率は94.1%であった。また、摺動性試験では白濁が生じていた。以上の結果を表1に示す。
【0034】
<比較例2>
実施例1と同一基板を用い、この基板上にZrO2からなる第1誘電膜層とSiO2からなる第2誘電膜層を形成した後、第2誘電膜層上にITOからなる導電膜層を形成し、多層膜付透明基板を作成した。ただし、最表面のITOの導電膜層(表1では第2導電膜層としている)の膜厚は、表面抵抗値500Ω/□が得られるように24nmとして成膜を行った。また、この条件にて多層膜付透明基板の透過率ができるだけ高く得られるように、最適化アルゴリズムを用いて各誘電膜層の膜厚を調整した。この結果、第1誘電膜層及び第2誘電膜層の各膜厚は順に140nm、90nmとした。なお、実施例1と同様に誘電膜層の形成は真空蒸着法で行い、導電膜層の形成はスパッタ法にて行った。
【0035】
このようにして得られた導電性を有する多層膜付透明基板の視感度透過率は92.9%であった。また、摺動性試験では白濁が生じていた。以上の結果を表1に示す。
【0036】
【表1】

Figure 0004245339
【0037】
<結果>
表1に示すように、実施例1〜5の多層膜付透明基板では、何れも視感度透過率が90%と高透過率を示すとともに摺動性試験にて白濁が生じず、高い耐ペン摺動性を有することが確認された。
【0038】
【発明の効果】
以上のように、本発明によれば高い耐擦傷性(耐ペン摺動性)を有する導電性を有する多層膜付透明基板を得ることができる。
【図面の簡単な説明】
【図1】本実施形態における膜構成を示した図である。
【符号の説明】
1 基板
2 ハードコート層
3 反射防止層帯
4 第2導電膜層
5 第1導電膜層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a transparent substrate with a multilayer film having conductivity.
[0002]
[Prior art]
Conventionally, a transparent conductive film such as indium tin oxide (ITO) or SnO 2 is formed on a transparent substrate such as a glass plate or a plastic plate (plastic film), and an electrode of a photoelectric conversion element such as a solar cell or a liquid crystal What is used as an electrode of a display device or a touch panel, an antistatic filter or an electromagnetic wave cut filter is known. In particular, when used as a touch panel, a transparent substrate with a multilayer film having conductivity excellent in scratch resistance (pen sliding resistance in a touch panel) has been desired.
In such a background, there is a technique for improving the pen sliding resistance of a transparent substrate with a multilayer film having conductivity by providing a hard coat layer on the substrate and forming a transparent conductive film on the outermost surface. Known (for example, refer to Patent Document 1 and Patent Document 2).
[0003]
[Patent Document 1]
JP 2001-216842 A [Patent Document 2]
Japanese Patent Laid-Open No. 2002-122703
[Problems to be solved by the invention]
However, it is difficult to satisfy the currently required pen slidability simply by forming a hard coat layer on the substrate as described above.
[0005]
In the present invention, in view of the above-mentioned problems of the prior art, it is an object of the present invention to provide a transparent substrate with a multilayer film having high scratch resistance (pen slidability) and having conductivity.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is characterized by having the following configuration.
(1) An antireflection layer formed by alternately laminating a transparent dielectric film layer having a refractive index higher than that of the substrate and a transparent dielectric film layer having a refractive index lower than that of the substrate on the transparent substrate, In the method for manufacturing a transparent substrate with a multilayer film having conductivity, in which a conductive layer made of a transparent conductor thin film is laminated on an antireflection layer, the conductive layer contains zinc oxide as a main component in the outermost layer. An electro-optic element comprising: a first conductive film made of a transparent conductor; and a second conductive film made of a transparent conductor not containing zinc oxide as a main component and formed under the first conductive film. The first and the second conductive films have a surface resistance value required for use in a photoelectric conversion element, a liquid crystal display, and a touch panel, and the second conductive film is thicker than the first conductive film. A first step for determining the film thickness of the second conductive film layer. And the merit function with fixed values of the film thickness and refractive index of the first conductive film and the second conductive film determined in the first step, and the refractive index of the thin film forming material used for the antireflection layer. a second step of determining the thickness of each dielectric layer for forming the antireflection layer while using an optimization algorithm using the said determined first and second steps the first and second Forming an antireflection layer made of the plurality of dielectric film layers and a conductive layer made of the first and second conductive film layers on the substrate so as to have a film thickness of the conductive film layer and each dielectric film layer; It is characterized by.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a transparent substrate with a multilayer film having conductivity according to an embodiment of the present invention will be described with reference to the drawings. In this embodiment, a thin film layer band for providing an antireflection effect is provided on the substrate, and a conductive transparent film substrate with a conductive film layer provided thereon is taken as an example. ,explain.
[0008]
FIG. 1 is a schematic view showing a laminated structure of a transparent substrate with a multilayer film having conductivity in an embodiment of the present invention.
Reference numeral 1 denotes a transparent substrate. The substrate 1 may be any substrate that is normally available and has a refractive index of about 1.48 or more and 1.7 or less. Specifically, as the substrate material, glass (refractive index: 1.48 to 1.70), plastics (polycarbonate (refractive index: 1.59), polyethylene terephthalate (refractive index: 1.63), etc.) are used. There is no particular limitation as long as it is optically transparent. The substrate described in the present embodiment is not limited to a plate shape, and includes a film substrate.
[0009]
Reference numeral 2 denotes a thin film layer formed in advance on the substrate 1 before the multilayer film is formed. The thin film layer 2 is coated on the substrate 1 before the multilayer film is formed, so that the surface of the substrate 1 is cured and protected from scratches, and the adhesion between the substrate 1 and the multilayer film is increased. It is a layer formed for raising (hereinafter referred to as a hard coat layer). In general, in the hard coat layer 2, an acrylic hard coat that protects the surface of the substrate 1 and can increase the adhesion between the substrate 1 and the multilayer film is often used.
[0010]
Further, it is possible to form a multilayer film directly on the substrate 1 without forming the hard coat layer 2 on the substrate 1, but as described above, in order to protect the multilayer film and improve adhesion, the substrate 1 It is preferable to perform a hard coat treatment in advance. Further, instead of hard coating, an undercoat may be applied on the substrate simply by vacuum deposition or the like in order to improve the adhesion between the substrate 1 and the multilayer film.
In any case, it is preferable that the film thickness of the hard coat (undercoat) has a refractive index comparable to the refractive index of the substrate so that optical inhibition does not occur.
[0011]
Reference numeral 3 denotes an antireflection layer band for providing an antireflection effect by laminating a plurality of dielectric film layers made of transparent dielectric materials having different refractive indexes on the hard coat layer 2. The antireflection layer band 3 in this embodiment is formed by four dielectric film layers 3a to 3d.
Reference numeral 3 a denotes a first dielectric film layer made of a transparent dielectric having a refractive index higher than that of the substrate 1. The transparent dielectric used for the first dielectric film layer 3a is appropriately selected according to the substrate 1 to be used. However, since the refractive index higher than the refractive index of the substrate 1 is required, the minimum refractive index 1 of the substrate 1 is required. Need to be higher than .48. At the same time, it is preferable that the film is available at a low cost and has been confirmed to have a stable film formation. Therefore, a film having a refractive index in the range of about 1.50 to 2.50 is used in consideration of them. Specifically, ZrO 2 (refractive index 1.9), TiO 2 (refractive index 2.2), Al 2 O 3 (refractive index 1.6), etc. are the main components of the first dielectric film layer 3a. Can be mentioned. The optical film thickness nd (hereinafter simply referred to as film thickness) of the first dielectric film layer 3 is preferably 10 nm or more and 600 nm or less, and more preferably 50 nm or more and 550 nm or less.
[0012]
Reference numeral 3 b denotes a second dielectric film layer which is laminated on the first dielectric film layer 3 a and is made of a transparent dielectric having a refractive index lower than that of the substrate 1. The transparent dielectric used for the second dielectric film layer 3b is appropriately selected according to the substrate 1 to be used. However, since the refractive index lower than the refractive index of the substrate 1 is required, the highest refractive index 1 of the substrate 1 is required. Must be lower than 70. At the same time, it is preferable that the film is available at a low cost and has been confirmed to have a stable film formation. Therefore, a film having a refractive index in the range of about 1.35 to 1.60 is used in consideration of them. . Specifically, SiO 2 (refractive index 1.46) and MgF 2 (refractive index 1.38) are listed as main components of the second dielectric film layer 3b. The film thickness of the second dielectric film layer 3b is preferably 10 nm or more and 600 nm or less, more preferably 50 nm or more and 550 nm or less. Even if the film thickness is thinner or thicker than this, it is difficult to obtain the antireflection effect.
[0013]
Reference numeral 3 c denotes a third dielectric film layer which is laminated on the second dielectric film layer 3 b and is made of a transparent dielectric having a refractive index higher than that of the substrate 1. The transparent dielectric used for the third dielectric film layer 3c can be basically made of the same material as that of the first dielectric film layer 3a. To improve the antireflection effect, the first dielectric film layer is used. It is preferable to use a material having the same or higher refractive index than that of the material used in 3a. The film thickness of the third dielectric film layer 3c is preferably 10 nm or more and 600 nm or less, more preferably 50 nm or more and 550 nm or less.
[0014]
Reference numeral 3d denotes a fourth dielectric film layer which is laminated on the third dielectric film layer 3c and is made of a transparent dielectric having a refractive index lower than that of the substrate 1. The transparent dielectric used for the fourth dielectric film layer 3d can be made of basically the same material as the second dielectric film layer 3b. The thickness of the fourth dielectric film layer 3d is preferably 10 nm or more and 600 nm or less, more preferably 50 nm or more and 550 nm or less.
[0015]
Reference numeral 4 denotes a second conductive film layer that is laminated on the fourth dielectric film layer 3d and has conductivity. Examples of the transparent conductor of the second conductive layer 4 include transparent and conductive materials that do not contain zinc oxide as a main component, such as ITO, ATO, SnO 2 , and IZO. Reference numeral 5 denotes a first conductive film layer that is laminated on the second conductive film layer 4 and has conductivity as an outermost surface. For the transparent conductor of the first conductive film layer 5, a material mainly composed of zinc oxide such as zinc oxide, AZO (aluminum-doped zinc oxide) or GZO (gallium-doped zinc oxide) can be used.
Thus, by forming the first conductive film layer 5 mainly composed of zinc oxide on the second conductive film layer 4 made of ITO or the like, compared with the conventional transparent substrate with a multilayer film having conductivity, Pen sliding resistance performance is greatly improved.
[0016]
The surface resistance value is determined by the combined film thickness of the first conductive film layer 5 and the second conductive film layer 4. Accordingly, when the surface resistance value is set to a low resistance value, one film thickness or both film thicknesses may be increased. When the surface resistance value is set to a high resistance value, one film thickness or both film thicknesses may be reduced. When a material having good resistivity such as ITO is used for the second conductive film layer, it is preferable to increase or decrease the film thickness of the second conductive film layer 4 with respect to the increase or decrease of the film thickness of the first conductive film layer 5. The surface resistance value varies greatly. For this reason, since the film thickness of the whole electrically conductive film layer can be made thin by mainly increasing / decreasing the film thickness of the 2nd electrically conductive film layer 4 in order to obtain the desired surface resistance value, the improvement of the transmittance | permeability can be anticipated. .
[0017]
Further, the surface resistance value may be appropriately determined according to the purpose of use, but when used for an electro-optical element, a photoelectric conversion element, a liquid crystal, a touch panel, etc., the surface resistance value is preferably 100Ω / □ or more. It is 5000Ω / □ or less, more preferably 100Ω / □ or more and 1000Ω / □ or less. The total film thickness of the first conductive film layer 5 and the second conductive film layer 4 corresponding to the surface resistance value is preferably 10 nm to 1000 nm, more preferably 15 nm to 100 nm.
[0018]
Moreover, the optimal film thickness of each layer is determined by the following method.
First, the film thicknesses of the conductive film layers (here, the first conductive film layer 5 and the second conductive film layer 4) that can obtain a necessary surface resistance value in accordance with the application are determined. Next, the refractive index of the material used for the antireflection layer 3 (dielectric layers 3a to 3d) is set to a fixed value, and the physical film thickness of the dielectric layers 3a to 3d is changed using an optimization algorithm. With such a method, the film thicknesses of the dielectric layers 3a to 3d are obtained so that the highest transmittance or the lowest reflectance can be obtained. The optimization algorithm is given based on various optimization methods using merit functions such as Adaptive Random Search, Modified Gardient, Monte Carilo method, and Simulated Rated Annealing.
[0019]
As a method of forming each thin film layer (conductive film layer, dielectric film layer) on the substrate 1, the physical vapor deposition method (PVD) includes a vacuum deposition method, a sputtering method, an ion plating method, and the like. Can be mentioned. In addition, examples of the chemical vapor deposition method (CVD) include a plating method and a chemical vapor deposition method. Any of these film forming methods can be used as this embodiment mode. However, since a method involving a high temperature during film formation may cause deformation of the plastic substrate due to heat, the multilayer film is formed on the plastic substrate. A vacuum deposition method or sputtering method that does not require high heat is preferably used.
[0020]
In the above-described embodiment, two conductive film layers are stacked on the antireflection belt 3 having four layers. However, the present invention is not limited to this. For example, if it is not necessary to consider the transmittance (reflectance) of the transparent substrate with a multilayer film having conductivity, it is not necessary to provide such an antireflection layer band 3. Further, even when the antireflection layer 3 is formed, the number of layers is not limited to four, and a multilayer structure (for example, 1 to 6 layers) that can obtain a desired transmittance (reflectance) is formed. That's fine.
[0021]
<Example 1>
A polycarbonate substrate with a hard coat (refractive index: 1.59) was prepared, and four dielectric film layers were formed on the substrate by vacuum deposition. As the first dielectric film layer, a ZrO 2 tablet manufactured by Optron was used, and a thin film layer mainly composed of ZrO 2 was formed on the hard coat as the undercoat layer. The film thickness (optical film thickness nd) of the first dielectric layer at this time was 70 nm. As the second dielectric film layer, SiO 2 granules made by Optron were used, and a thin film layer mainly composed of SiO 2 was formed on the first dielectric film layer. At this time, the thickness of the second dielectric film layer was set to 35 nm. As the third dielectric film layer, Optron TiO 2 granules were used, and a thin film layer mainly composed of TiO 2 was formed on the second dielectric film layer. The thickness of the third dielectric film layer at this time was 95 nm. As the fourth dielectric film layer, SiO 2 granules made by Optron were used, and a thin film layer mainly composed of SiO 2 was formed on the third dielectric film layer. The thickness of the fourth dielectric film layer at this time was 65 nm.
[0022]
Next, an ITO target manufactured by Vacuum Metallurgical Co., Ltd. was used, and a thin film layer mainly composed of ITO was formed as a second conductive film layer on the fourth dielectric film layer by sputtering. The film thickness of the second conductive film layer at this time was 20 nm. An AZO target manufactured by Sumitomo Metal Mining Co., Ltd. was used as the first conductive film layer serving as the outermost surface, and an AZO thin film layer was formed on the second conductive film layer. The thickness of the first conductive film layer at this time was 30 nm.
[0023]
The visibility transmittance of the thus obtained transparent substrate with a multilayer film having electrical conductivity was measured. As a measuring apparatus, Asahi Spectroscopic Visibility Transmittance Model MODEL304 was used. The luminous transmittance obtained was 92.1%. The surface resistance value was 500Ω / □.
[0024]
Next, after sticking the ITO forming surface side of the PET (polyethylene terephthalate) film with ITO having a physical film thickness of 188 μm and the film forming surface side of the prepared transparent substrate with a multilayer film, pen sliding resistance was evaluated. . The pen sliding resistance evaluation is performed by applying a load of 250 g to a polyacetal pen (tip shape: 0.8 mmR) from the back surface of the ITO electrode surface of the laminated PET film, and performing a sliding test of 100,000 round trips. It was evaluated by. Even if a sliding test was performed 100,000 times in a reciprocating manner, it was evaluated as “◯” if no white turbidity was observed on the multilayer film-coated substrate, and “X” if white turbidity occurred.
The results are shown in Table 1.
[0025]
<Example 2>
A transparent substrate with a multilayer film was prepared under the same conditions as in Example 1 for the substrate, film configuration, and film forming material. However, the film thickness was changed to 15 nm for the first conductive film layer. In addition, in order to set the obtained surface resistance value to 500 Ω / □, which is the same as in Example 1, the film thickness of the second conductive film layer was set to 23 nm. Moreover, the film thickness of each dielectric film layer was adjusted using an optimization algorithm so that the transmittance of the transparent substrate with a multilayer film could be obtained as high as possible under these conditions. As a result, the film thicknesses of the first dielectric film layer to the fourth dielectric film layer were sequentially set to 75 nm, 35 nm, 90 nm, and 80 nm. As in Example 1, the dielectric film layer was formed by a vacuum deposition method, and the conductive film layer was formed by a sputtering method.
[0026]
The visibility transmittance of the transparent substrate with a multilayer film thus obtained was 93.3%. In the slidability test, no cloudiness was observed. The results are shown in Table 1.
[0027]
<Example 3>
A transparent substrate with a multilayer film was prepared under the same conditions as in Example 1 for the substrate, film configuration, and film forming material. However, the first conductive film layer was formed by changing the film thickness to 5 nm. In order to obtain the same surface resistance value of 500Ω / □ as in Example 1, the film thickness of the second conductive film layer was 23.5 nm. Moreover, the film thickness of each dielectric film layer was adjusted using an optimization algorithm so that the transmittance of the transparent substrate with a multilayer film could be obtained as high as possible under these conditions. As a result, the film thicknesses of the first dielectric film layer to the fourth dielectric film layer were set to 75 nm, 35 nm, 86 nm, and 91 nm in order. As in Example 1, the dielectric film layer was formed by a vacuum deposition method, and the conductive film layer was formed by a sputtering method.
[0028]
The visibility transmittance of the transparent substrate with a multilayer film thus obtained was 93.9%. In the slidability test, no cloudiness was observed. The results are shown in Table 1.
[0029]
<Example 4>
A transparent substrate with a multilayer film was prepared under the same conditions as in Example 1 for the substrate and film configuration. However, the film formation was performed using GZO (film thickness: 15 nm) as the film formation material for the first conductive film layer. In addition, in order to set the obtained surface resistance value to 500 Ω / □, which is the same as in Example 1, the film thickness of the second conductive film layer was set to 23 nm. Moreover, the film thickness of each dielectric film layer was adjusted using an optimization algorithm so that the transmittance of the transparent substrate with a multilayer film could be obtained as high as possible under these conditions. As a result, the film thicknesses of the first dielectric film layer to the fourth dielectric film layer were sequentially set to 75 nm, 35 nm, 90 nm, and 80 nm. As in Example 1, the dielectric film layer was formed by a vacuum deposition method, and the conductive film layer was formed by a sputtering method.
[0030]
The visibility transmittance of the transparent substrate with a multilayer film thus obtained was 93.3%. In the slidability test, no cloudiness was observed. The results are shown in Table 1.
[0031]
<Example 5>
Using the same substrate as in Example 1, a first dielectric film layer made of ZrO 2 and a second dielectric film layer made of SiO 2 are formed on this substrate, and then a second conductive film made of ITO is formed on the second dielectric film layer. A film layer and a first conductive film layer made of AZO were sequentially laminated to prepare a transparent substrate with a multilayer film. The film thickness of the first conductive film layer was set to 15 nm, and the film thickness of the second conductive film layer was set to 23 nm in order to set the surface resistance value to 500 Ω / □ as in Example 1. Moreover, the film thickness of each dielectric film layer was adjusted using an optimization algorithm so that the transmittance of the transparent substrate with a multilayer film could be obtained as high as possible under these conditions. As a result, the thicknesses of the first dielectric film layer and the second dielectric film layer were set to 140 nm and 90 nm, respectively. As in Example 1, the dielectric film layer was formed by a vacuum deposition method, and the conductive film layer was formed by a sputtering method.
The visibility transmittance of the transparent substrate with a multilayer film thus obtained was 92.5%. In the slidability test, no cloudiness was observed. The results are shown in Table 1.
[0032]
<Comparative Example 1>
A transparent substrate with a multilayer film was prepared under the same conditions as in Example 1 except that the conductive film layer was made of a single layer of ITO, and the film configuration and material of the dielectric film layer were the same as in Example 1. However, the film thickness of the outermost ITO conductive film layer (referred to as the second conductive film layer in Table 1) was 24 nm so as to obtain a surface resistance value of 500Ω / □. Moreover, the film thickness of each dielectric film layer was adjusted using an optimization algorithm so that the transmittance of the transparent substrate with a multilayer film could be obtained as high as possible under these conditions. As a result, the film thicknesses of the first dielectric film layer to the fourth dielectric film layer were 80 nm, 35 nm, 85 nm, and 100 nm in order. As in Example 1, the dielectric film layer was formed by a vacuum deposition method, and the conductive film layer was formed by a sputtering method.
[0033]
The visibility transmittance of the transparent substrate with a multilayer film thus obtained was 94.1%. Further, white turbidity occurred in the sliding test. The results are shown in Table 1.
[0034]
<Comparative example 2>
Using the same substrate as that in Example 1, a first dielectric film layer made of ZrO 2 and a second dielectric film layer made of SiO 2 were formed on this substrate, and then a conductive film layer made of ITO was formed on the second dielectric film layer. To form a transparent substrate with a multilayer film. However, the film thickness of the outermost ITO conductive film layer (referred to as the second conductive film layer in Table 1) was 24 nm so as to obtain a surface resistance value of 500Ω / □. Moreover, the film thickness of each dielectric film layer was adjusted using an optimization algorithm so that the transmittance of the transparent substrate with a multilayer film could be obtained as high as possible under these conditions. As a result, the thicknesses of the first dielectric film layer and the second dielectric film layer were set to 140 nm and 90 nm, respectively. As in Example 1, the dielectric film layer was formed by a vacuum deposition method, and the conductive film layer was formed by a sputtering method.
[0035]
The visibility transmittance of the transparent substrate with a multilayer film thus obtained was 92.9%. Further, white turbidity occurred in the sliding test. The results are shown in Table 1.
[0036]
[Table 1]
Figure 0004245339
[0037]
<Result>
As shown in Table 1, each of the transparent substrates with multilayer films of Examples 1 to 5 has a high transmittance of 90% and a high pen resistance. It was confirmed to have slidability.
[0038]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a transparent substrate with a multilayer film having high scratch resistance (pen slidability) and having conductivity.
[Brief description of the drawings]
FIG. 1 is a diagram showing a film configuration in the present embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Substrate 2 Hard coat layer 3 Antireflection layer belt 4 Second conductive film layer 5 First conductive film layer

Claims (1)

透明基板上に該基板の屈折率より高い屈折率となる透明誘電膜層と前記基板より低い屈折率となる透明誘電膜層とを交互に積層することによりなる反射防止層と,該反射防止層の上に透明導電体の薄膜からなる導電層とを積層してなる導電性を有する多層膜付透明基板の製造方法において、前記導電層は最外層に主成分として酸化亜鉛を含有する透明導電体からなる第1導電膜と該第1導電膜の下層に形成され前記酸化亜鉛を主成分としない透明導電体からなる第2導電膜とからなり,前記導電層に対して電気光学素子用,光電変換素子用,液晶用,タッチパネル用として必要な表面抵抗値が得られるとともに前記第1導電膜の膜厚に対して前記第2導電膜の膜厚が厚くなるように前記第1及び第2導電膜層の膜厚を決定する第1ステップと、該第1ステップにより決定された前記第1導電膜と第2導電膜の膜厚及び屈折率と,前記反射防止層に用いられる薄膜形成材料の屈折率とを固定値としてメリット関数を使用した最適化アルゴリズムを用いながら前記反射防止層を形成するための各誘電膜層の膜厚を決定する第2ステップと、前記第1及び第2ステップで決定された前記第1及び第2導電膜層,並びに各誘電膜層の膜厚となるように前記基板上に前記複数の誘電膜層からなる反射防止層と前記第1及び第2導電膜層からなる導電層とを形成することを特徴とする導電性を有する多層膜付透明基板の製造方法。An antireflection layer formed by alternately laminating a transparent dielectric film layer having a refractive index higher than that of the substrate and a transparent dielectric film layer having a refractive index lower than that of the substrate on the transparent substrate; and the antireflection layer In the method of manufacturing a transparent substrate with a multilayer film having a conductive layer formed by laminating a conductive layer made of a thin film of a transparent conductor on the transparent conductor, the conductive layer contains zinc oxide as a main component in the outermost layer comprises a first conductive film and the second conductive film made from the first conductive film underlayer formed transparent conductor that does not mainly containing zinc oxide consisting of, for electro-optical element to the conductive layer, the photoelectric The first and second conductive materials can be obtained so that the necessary surface resistance value can be obtained for the conversion element, the liquid crystal, and the touch panel, and the second conductive film can be thicker than the first conductive film. A first step for determining the film thickness of the film layer; Optimal used and the film thickness and refractive index of the second conductive film of the first conductive film which is determined by the first step, the merit function and a refractive index of the thin film-forming materials for use in the anti-reflective layer as a fixed value A second step of determining a film thickness of each dielectric film layer for forming the antireflection layer using a conversion algorithm, and the first and second conductive film layers determined in the first and second steps, And an antireflection layer comprising the plurality of dielectric film layers and a conductive layer comprising the first and second conductive film layers are formed on the substrate so as to have a thickness of each dielectric film layer. A method for producing a transparent substrate with a multilayer film having conductivity.
JP2002347236A 2002-11-29 2002-11-29 Method for producing conductive transparent substrate with multilayer film Expired - Fee Related JP4245339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002347236A JP4245339B2 (en) 2002-11-29 2002-11-29 Method for producing conductive transparent substrate with multilayer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002347236A JP4245339B2 (en) 2002-11-29 2002-11-29 Method for producing conductive transparent substrate with multilayer film

Publications (2)

Publication Number Publication Date
JP2004175074A JP2004175074A (en) 2004-06-24
JP4245339B2 true JP4245339B2 (en) 2009-03-25

Family

ID=32707904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002347236A Expired - Fee Related JP4245339B2 (en) 2002-11-29 2002-11-29 Method for producing conductive transparent substrate with multilayer film

Country Status (1)

Country Link
JP (1) JP4245339B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010004937A1 (en) * 2008-07-09 2010-01-14 株式会社アルバック Method for manufacture of touch panel, and film formation apparatus
JP5160325B2 (en) * 2008-07-16 2013-03-13 日東電工株式会社 Transparent conductive film and touch panel
JP5160329B2 (en) * 2008-07-24 2013-03-13 日東電工株式会社 Transparent conductive film and touch panel
JP2010113923A (en) * 2008-11-06 2010-05-20 Tosoh Corp Laminated type transparent conductive film and method of manufacturing the same
JP5463972B2 (en) * 2010-03-10 2014-04-09 凸版印刷株式会社 Hard coat substrate for touch panel and touch panel using the same

Also Published As

Publication number Publication date
JP2004175074A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
JP4349794B2 (en) Method for producing conductive transparent substrate with multilayer antireflection film
JP5549216B2 (en) Transparent conductive laminate, method for producing the same, and touch panel
TWI486973B (en) Transparent conductive multilayered film, producing method of the same, and touch panel containing the same
JP6314463B2 (en) Transparent conductor
JPWO2002029830A1 (en) Transparent substrate with multilayer anti-reflection film having conductivity, transparent touch panel using this transparent substrate with multi-layer anti-reflection film, and electronic device using this transparent touch panel
CN1389346A (en) Antireflective optical multilayer film
JP6292225B2 (en) Transparent conductor
JP6319302B2 (en) Transparent conductor and method for producing the same
KR20160082711A (en) Metal mesh type touch screen panel and method of manufacturing the same
TW201328878A (en) Double-sided transparent conductive film with excellent visibility and method of manufacturing the same
JP4406237B2 (en) A method for producing a transparent substrate with a multilayer film having conductivity.
JP4245339B2 (en) Method for producing conductive transparent substrate with multilayer film
CN111883284A (en) Double-sided conductive film, film coating method and touch screen
CN111446024A (en) Transparent conductive film and touch screen
CN111446027A (en) Film laminated structure
US7655280B2 (en) Extreme low resistivity light attenuation anti-reflection coating structure and method for manufacturing the same
CN212516601U (en) Transparent conductive film and touch screen
JP6446209B2 (en) Transparent electrode pattern laminate and touch screen panel provided with the same
JP4162425B2 (en) Transparent substrate with conductive anti-reflection coating
WO2014196460A1 (en) Transparent conductor and method for producing same
CN111739678A (en) Conducting film and touch screen
CN106165025A (en) Duplexer, conductive laminate and electronic equipment
JP3915202B2 (en) Conductive antireflection film and method for producing the same
CN214152473U (en) Double-sided conductive film and touch screen
CN212256951U (en) Thin film laminated structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees