WO2014196460A1 - Transparent conductor and method for producing same - Google Patents

Transparent conductor and method for producing same Download PDF

Info

Publication number
WO2014196460A1
WO2014196460A1 PCT/JP2014/064369 JP2014064369W WO2014196460A1 WO 2014196460 A1 WO2014196460 A1 WO 2014196460A1 JP 2014064369 W JP2014064369 W JP 2014064369W WO 2014196460 A1 WO2014196460 A1 WO 2014196460A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
refractive index
index layer
metal film
layer
Prior art date
Application number
PCT/JP2014/064369
Other languages
French (fr)
Japanese (ja)
Inventor
仁一 粕谷
一成 多田
健 波木井
小島 茂
和央 吉田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2014196460A1 publication Critical patent/WO2014196460A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/017Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of aluminium or an aluminium alloy, another layer being formed of an alloy based on a non ferrous metal other than aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/018Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of a noble metal or a noble metal alloy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022491Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of a thin transparent metal layer, e.g. gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens

Definitions

  • the present invention relates to a transparent conductor and a manufacturing method thereof. More specifically, the present invention relates to a transparent conductor having a low surface electrical resistance value and high light transmittance, and a method for manufacturing the same.
  • electrode materials for display devices such as liquid crystal displays, plasma displays, inorganic and organic electroluminescence (hereinafter abbreviated as “EL”) displays, electrode materials for inorganic and organic EL elements, touch panel materials, solar cell materials, etc.
  • Transparent conductive films are used in various devices.
  • metals such as Au, Ag, Pt, Cu, Rh, Pd, Al, and Cr, In 2 O 3 , CdO, CdIn 2 O 4 , Cd 2 SnO 4 , and TiO 2 are used.
  • SnO 2 , ZnO, ITO (indium tin oxide) and other oxide semiconductors are known.
  • a capacitive touch panel has been developed.
  • a transparent conductive film having a low surface electrical resistance value and high transparency is required.
  • an ITO film it is difficult to sufficiently reduce the surface electrical resistance value.
  • the ITO film is easily broken and cannot be applied to applications that require flexibility. Therefore, a transparent conductive film in which Ag is formed in a mesh shape has been proposed as a transparent conductive film that replaces ITO (Patent Document 1).
  • a transparent conductive film coated with carbon nanotubes or Ag nanowires has also been proposed (Patent Documents 2 and 3).
  • it has been proposed to use a thin film made of Ag as a transparent conductive film, and a transparent conductor in which an underlayer made of aluminum and an Ag layer are laminated has also been proposed (Patent Document 4).
  • the Ag mesh described in Patent Document 1 has a metal part having a line width of about 20 ⁇ m. Therefore, the Ag mesh is easily visible and cannot be applied to uses that require high transparency. Moreover, the transparent conductive film of patent document 2 and patent document 3 still has a high surface electrical resistance value. Therefore, it is required to further reduce the surface electrical resistance value. On the other hand, the transparent conductor of Patent Document 4 has a low average transmittance of visible light and is required to further increase the light transmittance.
  • JP 2006-352073 A Japanese translation of PCT publication No. 2004-526838 JP 2011-167848 A JP 2008-171737 A
  • An object of the present invention is to provide a transparent conductor having a low surface electrical resistance value and high light transmittance and a method for producing the same.
  • the present inventor can obtain a transparent conductor having a low surface electrical resistance value and a high light transmittance by incorporating molybdenum into the underlayer in the process of examining the cause of the above-mentioned problems.
  • the present invention was reached. That is, the said subject which concerns on this invention is solved by the following means.
  • a transparent substrate An underlayer containing molybdenum and having a layer thickness of 2 nm or less; A transparent metal film disposed adjacent to the base layer and having a thickness of 15 nm or less; Transparent conductors including
  • a high refractive index layer including a dielectric material or an oxide semiconductor material having a higher refractive index of light having a wavelength of 570 nm than that of the transparent substrate is provided between the transparent substrate and the base layer or on the transparent metal film.
  • a method for producing a transparent conductor comprising a transparent substrate, molybdenum, an underlayer having a layer thickness of 2 nm or less, and a transparent metal film having a film thickness of 15 nm or less in this order, Forming the underlayer on the transparent substrate by vapor deposition or sputtering; Forming the transparent metal film on the underlayer by a vapor deposition method; The manufacturing method of the transparent conductor containing this.
  • a transparent conductor having both high transparency and a low surface electric resistance value can be obtained.
  • the expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows. That is, in the transparent conductor according to the present invention, the underlying layer containing molybdenum is disposed between the transparent substrate and the transparent metal film. The layer containing molybdenum is easily formed uniformly by a general vapor deposition method. Molybdenum is difficult to migrate (move) on the film formation surface (for example, the surface of the transparent substrate), and it is difficult to form an island structure.
  • the transparent conductor of the present invention has a transparent substrate, a base layer containing molybdenum and having a layer thickness of 2 nm or less, a layer adjacent to the base layer, and a film thickness of 15 nm or less.
  • a transparent metal film is included in this order.
  • This feature is a technical feature common to the inventions according to claims 1 to 4.
  • the transparent conductor is a dielectric material or an oxide semiconductor having a refractive index of light having a wavelength of 570 nm of 1.8 or less between at least one of the transparent substrate and the base layer or on the transparent metal film. It is preferable to further have a low refractive index layer containing a material.
  • the method for producing a transparent conductor of the present invention includes a transparent substrate, an underlayer containing molybdenum and having a layer thickness of 2 nm or less, and a transparent metal film having a thickness of 15 nm or less in this order.
  • a method for producing a transparent conductor comprising: forming a base layer on the transparent substrate by vapor deposition or sputtering; and forming the transparent metal film on the base layer by vapor deposition. It is necessary to be a manufacturing method of an aspect including the process to form into a film. With this manufacturing method, a transparent conductor having a low surface electrical resistance value and a high light transmittance can be obtained.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the transparent conductor 100 of the present invention is a laminate in which a transparent substrate 1 / underlayer 2 / transparent metal film 3 are laminated in this order.
  • the transparent conductor 100 may include other layers as necessary.
  • the underlayer 2 and the transparent metal film 3 may be sandwiched between the first high refractive index layer 4 and the second high refractive index layer 5 having a high refractive index. Only one of the first high refractive index layer 4 and the second high refractive index layer 5 may be formed, or both may be formed, and preferably both may be formed.
  • the base layer 2 and the transparent metal are formed on the surface of the base layer 2 on the transparent substrate 1 side or on the transparent metal film 3.
  • a first low refractive index layer 6 and a second low refractive index layer 7 for suppressing plasmon absorption of the film 3 may be included. Only one of the first low refractive index layer 6 and the second low refractive index layer 7 may be formed, or both may be formed, and preferably both may be formed.
  • the underlying layer 2 made of molybdenum or an alloy with another metal containing 20 mass% or more of molybdenum is disposed between the transparent substrate 1 and the transparent metal film 3. It is installed.
  • a layer containing a certain amount or more of molybdenum is easily formed uniformly by a general vapor deposition method. Molybdenum is difficult to migrate on the film formation surface (for example, the surface of the transparent substrate 1), and it is difficult to form the aforementioned island-like structure.
  • the transparent metal film 3 is formed on such an underlayer 2, the constituent atoms of the transparent metal film 3 are difficult to migrate, and the transparent metal film 3 becomes a smooth film even if the film thickness is small. Therefore, the transparent conductor 100 of the present invention achieves both high light transmittance and low surface electrical resistance.
  • the transparent substrate 1 contained in the transparent conductor 100 can be the same as the transparent substrate of various display devices.
  • a glass substrate, or a cellulose ester resin for example, triacetyl cellulose, diacetyl cellulose, acetyl propionyl cellulose, etc.
  • a polycarbonate resin for example, Panlite, Multilon (both manufactured by Teijin Limited)
  • a cycloolefin resin for example, Zeonore (manufactured by Nippon Zeon), Arton (manufactured by JSR), Appel (manufactured by Mitsui Chemicals), acrylic resin (for example, polymethyl methacrylate, "Acrylite (manufactured by Mitsubishi Rayon), Sumipex (manufactured by Sumitomo Chemical))
  • Polyimide phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyester resin (eg, polyethylene terephthalate (PE)), polyethylene terephthalate
  • the transparent substrate 1 is a glass substrate, or a cellulose ester resin, a polyester resin (particularly polyethylene terephthalate), a triacetyl cellulose, a cycloolefin resin, a phenol resin, an epoxy resin, a polyphenylene ether (PPE) resin, a polyether sulfone.
  • a film made of ABS / AS resin, MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin) and styrene block copolymer resin is preferable.
  • the transparent substrate 1 preferably has high transparency to visible light, and the average transmittance of light within a wavelength range of 450 to 800 nm is preferably 70% or more, more preferably 80% or more, and 85 % Or more is more preferable.
  • the average light transmittance of the transparent substrate 1 is 70% or more, the light transmittance of the transparent conductor 100 is likely to be increased.
  • the average absorptance of light within the wavelength range of 450 to 800 nm of the transparent substrate 1 is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
  • the average transmittance of the transparent substrate 1 is measured by making light incident from an angle inclined by 5 ° with respect to the normal of the surface of the transparent substrate 1.
  • the average absorptance of the transparent substrate 1 is measured by making the light incident from the same angle as the average transmissivity and measuring the average reflectivity of the transparent substrate 1.
  • Average absorptivity 100 ⁇ (average transmissivity + average reflectivity) ).
  • Average transmittance and average reflectance are measured with a spectrophotometer.
  • the refractive index of light having a wavelength of 570 nm of the transparent substrate 1 is preferably 1.40 to 1.95, more preferably 1.45 to 1.75, and still more preferably 1.45 to 1.70. .
  • the refractive index of the transparent substrate is usually determined by the material of the transparent substrate.
  • the “refractive index” of the transparent substrate is irradiated with a light beam having a predetermined wavelength (for example, 570 nm) in an atmosphere of a temperature of 25 ° C. and a relative humidity of 55% RH, and an Abbe refractometer (DR-M2 manufactured by ATAGO) is used. It is the value measured using (the refractive index of other members is also the same).
  • the haze value of the transparent substrate 1 is preferably 0.01 to 2.5, more preferably 0.1 to 1.2.
  • the haze value of the transparent conductor 100 can be suppressed as the haze value of the transparent substrate is 2.5 or less.
  • the haze value is measured with a haze meter.
  • the thickness of the transparent substrate 1 is preferably 1 ⁇ m to 20 mm, more preferably 10 ⁇ m to 2 mm.
  • the thickness of the transparent substrate is 1 ⁇ m or more, the strength of the transparent substrate 1 is increased, and the first high refractive index layer 4 is difficult to be cracked or torn.
  • the thickness of the transparent substrate 1 is 20 mm or less, the flexibility of the transparent conductor 100 is sufficient.
  • the thickness of the apparatus using the transparent conductor 100 can be reduced.
  • the apparatus using the transparent conductor 100 can also be reduced in weight.
  • the underlayer 2 is disposed between the transparent substrate 1 and the transparent metal film 3 and in contact with the transparent metal film 3.
  • the underlayer 2 is a layer made of molybdenum alone or an alloy of molybdenum and another metal.
  • the amount of molybdenum contained in the underlayer 2 is 20% by mass or more, preferably 40% by mass or more, and more preferably 60% by mass or more. From the viewpoint of cost, it is desirable that the amount of molybdenum is large.
  • the layer thickness and density of the base layer 2 tend to be uniform, and the surface smoothness of the transparent metal film 3 tends to increase.
  • Molybdenum has a high affinity with the atoms constituting the transparent metal film 3. Therefore, when the base layer 2 contains 20% by mass or more of molybdenum, the adhesion between the base layer 2 and the transparent metal film 3 is likely to increase.
  • Examples of metals other than molybdenum contained in the underlayer 2 include indium other than molybdenum, platinum group, gold, cobalt, nickel, palladium, titanium, aluminum, chromium, niobium, and zinc.
  • the underlayer 2 may contain only one kind of these metals or two or more kinds. Among these metals, palladium and indium are preferable.
  • the layer thickness of the underlayer 2 is 2 nm or less, preferably 0.5 nm or less.
  • the underlayer 2 is more preferably a monoatomic film.
  • the underlayer 2 may be a film in which metal atoms are adhered to the transparent substrate 1 while being separated from each other. If metal atoms are attached to the transparent substrate 1 at a distance from each other, atoms that are the material of the transparent metal film 3 are difficult to migrate when the transparent metal film 3 is formed. Furthermore, the transparent metal film 3 tends to grow from this metal atom as a starting point, and the transparent metal film 3 tends to become flat.
  • the transparent metal film 3 is a film for conducting electricity in the transparent conductor 100, and is disposed adjacent to the base layer 2.
  • the metal contained in the transparent metal film 3 is not particularly limited as long as it is a highly conductive metal, and examples thereof include silver, copper, gold, platinum group, titanium, and chromium.
  • the transparent metal film 3 may contain only one kind of these metals or two or more kinds. From the viewpoint of high conductivity, the transparent metal film 3 is preferably made of silver or an alloy containing 90 at% or more of silver. Examples of the metal combined with silver include zinc, gold, copper, palladium, aluminum, manganese, bismuth, neodymium, and molybdenum.
  • the sulfidation resistance of the transparent metal film is enhanced.
  • salt resistance (NaCl) resistance increases.
  • silver and copper are combined, the oxidation resistance increases.
  • the metal combined with silver only 1 type may be combined among the said metals, and 2 or more types may be combined.
  • the plasmon absorption rate of the transparent metal film 3 is preferably 10% or less over the entire wavelength range of 400 to 800 nm.
  • the plasmon absorption rate of the transparent metal film 3 is more preferably 7% or less, and further preferably 5% or less.
  • the plasmon absorption rate in the wavelength range of 400 to 800 nm of the transparent metal film 3 is measured by the following procedure.
  • Molybdenum molybdenum content 20% by mass
  • the average film thickness of molybdenum is calculated from the film formation rate of the manufacturer's nominal value of the sputtering apparatus.
  • a film made of the same metal as the object to be measured is formed on the substrate to which molybdenum is attached with a vapor deposition machine to a thickness of 20 nm.
  • the film thickness of the transparent metal film 3 is 15 nm or less, preferably 3 to 13 nm, and more preferably 7 to 12 nm. If the film thickness of the transparent metal film 3 is 15 nm or less, reflection of the metal contained in the transparent metal film 3 hardly occurs and the light transmittance of the transparent conductor 100 is likely to increase.
  • the transparent conductor 100 of the present invention has a relatively refractive index so as to sandwich the underlayer 2 and the transparent metal film 3 as described above.
  • High layers that is, the first high refractive index layer 4 and the second high refractive index layer 5 may be provided.
  • the reflection characteristics of the transparent conductor 100 greatly depend on the layer configuration of the transparent conductor 100. And when the 1st high refractive index layer 4 and the 2nd high refractive index layer 5 are arrange
  • the first high-refractive index layer 4 and the second high-refractive index layer 5 include a dielectric material or an oxide semiconductor material in which the refractive index of light having a wavelength of 570 nm is higher than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1. It is preferred that The refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 larger than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1, and is preferably 0.4 to 1.0. Larger is more preferable.
  • the refractive index of light having a specific wavelength of 570 nm of the dielectric material or the oxide semiconductor material contained in the first high refractive index layer 4 and the second high refractive index layer 5 is preferably larger than 1.5, Is more preferably 2.5, and still more preferably 1.8 to 2.5.
  • the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the reflectance of the transparent conductor 100 is likely to be lowered by the first high refractive index layer 4 and the second high refractive index layer 5.
  • the refractive index of the 1st high refractive index layer 4 and the 2nd high refractive index layer 5 is adjusted with the refractive index of the said dielectric material or an oxide semiconductor material, and the density of each layer.
  • the dielectric material or the oxide semiconductor material included in the first high refractive index layer 4 and the second high refractive index layer 5 may be an insulating material or a conductive material.
  • the dielectric material or oxide semiconductor material contained in the first high refractive index layer 4 and the second high refractive index layer 5 is preferably a metal oxide or a metal sulfide.
  • metal oxides or metal sulfides include TiO 2 , ITO (indium tin oxide), ZnO, ZnS, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O.
  • the metal oxide or metal sulfide is preferably TiO 2 , ITO, ZnO, Nb 2 O 5 , or ZnS from the viewpoint of refractive index and productivity.
  • the first high-refractive index layer 4 and the second high-refractive index layer 5 may contain only one kind of the metal oxide or metal sulfide, or may contain two or more kinds.
  • the layer thicknesses of the first high refractive index layer 4 and the second high refractive index layer 5 are preferably set by optical design using an admittance diagram.
  • the layer thicknesses of the first high refractive index layer 4 and the second high refractive index layer 5 are usually preferably 10 to 150 nm, more preferably 20 to 80 nm.
  • the first high refractive index layer 4 and the second high refractive index layer 5 cause the reflectance of the transparent conductor 100 to be sufficiently low. Become.
  • the thicknesses of the first high refractive index layer 4 and the second high refractive index layer 5 are 150 nm or less, the light transmittance of the transparent conductor 100 is unlikely to decrease.
  • the layer thicknesses of the first high refractive index layer 4 and the second high refractive index layer 5 are measured by an ellipsometer.
  • the transparent conductor 100 of the present invention includes a first low refractive index layer 6 for suppressing plasmon absorption of the underlayer 2 and the transparent metal film 3. And the 2nd low refractive index layer 7 may be arrange
  • the first low refractive index layer 6 and the second low refractive index layer 7 are disposed between the transparent substrate 1 and the base layer 2 or at least one on the transparent metal film 3.
  • the first low-refractive index layer 6 and the second low-refractive index layer 7 are either the surface of the base layer 2 on the transparent substrate 1 side or the surface of the transparent metal film 3 on the side not adjacent to the base layer 2. It is disposed on one or both surfaces.
  • the first low refractive index layer 6 and the second low refractive index layer 7 are disposed on the surface of the base layer 2 on the transparent substrate 1 side or the surface of the transparent metal film 3 on the side not adjacent to the base layer 2,
  • the reason why the plasmon absorption of the underlayer 2 and the transparent metal film 3 is suppressed is as follows.
  • the localized plasmon absorption cross section C abs is expressed by the following equation.
  • the first low refractive index layer 6 and the second low refractive index layer 7 include a dielectric material or an oxide semiconductor material having a refractive index of light having a wavelength of 570 nm of less than 1.8.
  • the refractive index is more preferably 1.30 to 1.6, and particularly preferably 1.35 to 1.5.
  • the refractive indexes of the first low refractive index layer 6 and the second low refractive index layer 7 are mainly the refractive indexes of the materials contained in the first low refractive index layer 6 and the second low refractive index layer 7, The density of the low refractive index layer 6 and the second low refractive index layer 7 is adjusted.
  • Examples of dielectric materials or oxide semiconductor materials included in the first low refractive index layer 6 and the second low refractive index layer 7 include MgF 2 , SiO 2 , AlF 3 , CaF 2 , CeF 3 , CdF 3 , LaF 3 , Examples include LiF, NaF, NdF 3 , YF 3 , YbF 3 , Ga 2 O 3 , LaAlO 3 , Na 3 AlF 6 , Al 2 O 3 , MgO, and ThO 2 .
  • Dielectric material or oxide semiconductor materials among others MgF 2, SiO 2, CaF 2, CeF 3, LaF 3, LiF, NaF, NdF 3, Na 3 AlF 6, Al 2 O 3, it is MgO and ThO 2 From the viewpoint that the refractive index is low, MgF 2 and SiO 2 are particularly preferable.
  • the first low-refractive index layer 6 and the second low-refractive index layer 7 may contain only one kind of these materials or two or more kinds.
  • the layer thickness of the first low refractive index layer 6 and the second low refractive index layer 7 is preferably a layer thickness that does not greatly affect the optical characteristics of the transparent conductor 100.
  • the thickness of the first low refractive index layer 6 and the second low refractive index layer 7 is preferably 0.1 to 15 nm, more preferably 1 to 10 nm, and further preferably 3 to 8 nm.
  • the method for producing a transparent conductor described above preferably includes the following two steps.
  • Underlayer film formation step The above-described underlayer is formed on a transparent substrate by vapor deposition or sputtering. However, some types of metal cannot be sufficiently deposited. When such a material containing a metal atom is deposited, unevenness may occur in the layer thickness and density of the obtained underlayer. Therefore, when the base layer is formed by an evaporation method, it is preferable that the amount of molybdenum contained in the material is large.
  • the specific content of molybdenum is preferably 20% by mass or more, more preferably 40% by mass or more, and still more preferably 60% by mass or more. A material containing 20% by mass or more of molybdenum is easily formed into a uniform film by an evaporation method. From the viewpoint of cost, it is desirable that the amount of molybdenum is large.
  • Examples of vapor deposition methods for forming the underlayer include vacuum vapor deposition, electron beam vapor deposition, ion plating, and ion beam vapor deposition.
  • the vapor deposition time is appropriately selected according to the thickness of the underlying layer to be deposited and the deposition rate.
  • the deposition rate is preferably 0.1 to 15 ⁇ / second, more preferably 0.1 to 7 ⁇ / second.
  • the amount of molybdenum contained in the material is not particularly limited and is appropriately selected according to the composition of the underlayer.
  • sputtering methods include ion beam sputtering, magnetron sputtering, reactive sputtering, bipolar sputtering, and bias sputtering.
  • the sputtering time is appropriately selected according to the desired underlayer thickness and film formation rate.
  • the sputter deposition rate is preferably 0.1 to 15 ⁇ / sec, more preferably 0.1 to 14 ⁇ / sec.
  • Transparent Metal Film Forming Step A metal is laminated on the above-described underlayer by a vapor deposition method to form a transparent metal film.
  • a transparent metal film As described above, by forming a transparent metal film on the underlayer, constituent atoms of the transparent metal film are difficult to migrate, and the surface of the obtained transparent metal film is likely to be smooth.
  • the method for forming the transparent metal film is not particularly limited as long as it is a general vapor deposition method.
  • a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like is used. Can do.
  • the vacuum evaporation method or the sputtering method is preferable. According to the vacuum evaporation method or the sputtering method, a transparent metal film having a uniform and desired film thickness can be easily obtained.
  • the film forming speed of the transparent metal film is appropriately selected according to the type of vapor phase film forming method, the desired film density, and the like.
  • the first high refractive index layer and the second high refractive index layer are formed in accordance with the layer configuration of the desired transparent conductor.
  • the process and the process of forming the first low refractive index layer and the second low refractive index layer may be included.
  • the film formation methods of the first high refractive index layer, the second high refractive index layer, the first low refractive index layer, and the second low refractive index layer are not particularly limited as long as they are general vapor deposition methods. , Vacuum deposition, sputtering, ion plating, plasma CVD, thermal CVD, and the like.
  • the transparent conductor of the present invention has a light transmittance of 50% or more, preferably 70% or more, and more preferably over the entire range of light within a wavelength range of 400 to 800 nm. 80% or more.
  • the transmittance is 50% or more in the entire range of the wavelength range of 400 to 800 nm, the transparent conductor is difficult to be colored.
  • the average transmittance of light within the wavelength range of 400 to 800 nm is preferably 50% or more, more preferably 70% or more, and further preferably 80% or more.
  • the transparent conductor can be applied to applications that require high transparency.
  • the average reflectance of light within the wavelength range of 500 to 700 nm of the transparent conductor is preferably 25% or less, preferably 20% or less, more preferably 15% or less, and still more preferably. 10% or less.
  • the transmittance and the reflectance are measured by allowing measurement light to enter the transparent conductor from an angle inclined by 5 ° with respect to the normal of the surface of the transparent conductor. Transmittance and reflectance are measured with a spectrophotometer.
  • the transparent conductor preferably has a light absorptance of 30% or less, more preferably 15% or less, and even more preferably 10% or less over the entire range of light within a wavelength range of 400 to 800 nm. It is. If the absorptance is 30% or less over the entire range of wavelengths from 400 to 800 nm, the transparent conductor is difficult to be colored.
  • the average absorptance of light within the wavelength range of 400 to 800 nm is preferably 25% or less, preferably 20% or less, more preferably 15% or less, and further preferably 10% or less. .
  • the light absorption rate of the transparent conductor can be reduced by suppressing the absorption rate of the transparent metal film and the light absorption rate of the material constituting each layer.
  • the a * value and b * value in the L * a * b * color system of the transparent conductor are preferably within ⁇ 30, more preferably within ⁇ 5, and even more preferably within ⁇ 3.0. Particularly preferably, it is within ⁇ 2.0. If the a * value and b * value in the L * a * b * color system are within ⁇ 30, the transparent conductor is observed as colorless and transparent. The a * value and b * value in the L * a * b * color system are measured with a spectrophotometer.
  • the surface electric resistance value of the transparent conductor is preferably 50 ⁇ / ⁇ or less, more preferably 30 ⁇ / ⁇ or less.
  • a transparent conductor having a surface electric resistance value of 50 ⁇ / ⁇ or less can be applied to a transparent conductive panel for a capacitive touch panel.
  • the surface electrical resistance value of the transparent conductor can be adjusted by the film thickness of the transparent metal film or the like.
  • the surface electrical resistance value of the transparent conductor can be measured according to, for example, JIS K7194, ASTM D257, etc., and can also be measured by a commercially available surface electrical resistivity meter.
  • Example 1 A white plate substrate manufactured by Yamanaka Semiconductor ( ⁇ 30 mm, thickness 2 mm, refractive index 1.52 of light having a wavelength of 570 nm) was ultrasonically cleaned in ultrapure water (an ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. An underlayer and a transparent metal film were formed on the white plate substrate (transparent substrate) by the following method.
  • molybdenum (Mo) was vapor-deposited by resistance heating using a BMC-800T vapor deposition machine manufactured by SYNCHRON Co., Ltd. at 240 A and a film formation rate of 0.1 kg / s.
  • the layer thickness of the underlayer was 0.2 nm. The layer thickness was calculated from the film formation rate and the film formation time.
  • Example 2 In the manufacture of Example 1, the layer thickness of the underlayer was 2 nm. Otherwise, a transparent conductor having a transparent substrate / underlayer / transparent metal film in this order was produced in the same manner as in Example 1.
  • Example 3 In the production of Example 1, the thickness of the transparent metal film was 15 nm.
  • the first high refractive index layer and the second high refractive index layer were formed by the following method.
  • a transparent conductor having a transparent substrate / first high refractive index layer / underlayer / transparent metal film / second high refractive index layer in this order was produced in the same manner as in Example 1 except for the above.
  • EB electron beam
  • a layer having a thickness of 37 nm and a light refractive index of 2.35 with a wavelength of 570 nm and a second high refractive index layer (layer thickness of 37 nm and a refractive index of light with a wavelength of 570 nm 2.35) were formed.
  • Example 4 In the production of Example 3, the thickness of the transparent metal film was 9 nm. Otherwise, a transparent conductor having a transparent substrate / first high refractive index layer / underlayer / transparent metal film / second high refractive index layer in this order was produced in the same manner as in Example 3.
  • Example 5 In the production of Example 3, the thickness of the transparent metal film was 9 nm.
  • the first low refractive index layer and the second low refractive index layer were formed by the following method. Except for the above, in the same manner as in Example 3, transparent substrate / first high refractive index layer / first low refractive index layer / underlayer / transparent metal film / second low refractive index layer / second high refractive index layer The transparent conductor which has these in this order was produced.
  • First low refractive index layer and second low refractive index layer Using a BMC-800T vapor deposition machine manufactured by Syncron Co., SiO 2 was deposited by electron beam (EB) with oxygen introduction (2 ⁇ 10 ⁇ 2 Pa), 100 mA, and a deposition rate of 10 ⁇ / s, and the first low refractive index layer ( A light refractive index of 1.46) having a layer thickness of 5 nm and a wavelength of 370 nm and a second low refractive index layer (layer refractive index of light having a thickness of 5 nm and a wavelength of 370 nm 1.46) were formed.
  • EB electron beam
  • Example 6 In the production of Example 1, the first high refractive index layer, the underlayer, the transparent metal film, and the second high refractive index layer were formed by the following method.
  • (First high refractive index layer) Using a sputtering apparatus manufactured by Osaka Vacuum Co., ZnO was RF-sputtered on a transparent substrate at Ar 20 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 1.33 ⁇ / s.
  • the target-substrate distance was 100 mm.
  • the layer thickness of the obtained first high refractive index layer was 40 nm.
  • the refractive index of light having a wavelength of 570 nm of the first high refractive index layer was 2.05. (Underlayer)
  • Mo was sputter-deposited with Ar 20 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 50 W, and deposition rate 0.33 ⁇ / s. Then, growth nuclei having an average thickness of 0.2 nm were formed.
  • the average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus. (Transparent metal film) Subsequently, Ag was RF-sputtered at Ar 20 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 1.33 ⁇ / s. The target-substrate distance was 100 mm. The plasmon absorption rate of the obtained transparent metal film made of Ag (film thickness: 9 nm) was 10% or less over the entire wavelength range of 400 to 800 nm (over the entire range).
  • Example 1 In the production of Example 1, the underlayer was formed by the following method. Other than that produced the transparent conductor similarly to Example 1.
  • FIG. (Underlayer) Al was deposited by resistance heating vapor deposition (RH) at 310 mA and a film formation rate of 5 s / s using a BMC-800T vapor deposition machine manufactured by SYNCHRON Co., Ltd. to obtain an underlayer (layer thickness: 1 nm).
  • Comparative Example 2 In the production of Comparative Example 1, the thickness of the transparent metal film was 10 nm. Other than that produced the transparent conductor similarly to the comparative example 1. FIG.
  • Comparative Example 1 and Comparative Example 2 having a base layer made of Al As shown in Table 3, in Comparative Example 1 and Comparative Example 2 having a base layer made of Al (particularly Comparative Example 2 has substantially the same configuration as Example 1 of Patent Document 4), it is transparent. The light transmittance of the conductor did not increase, and light absorption could not be sufficiently suppressed. Furthermore, since the surface electrical resistance is high, it is presumed that the surface smoothness of the transparent metal film was low.
  • the average transmittance of light with a wavelength of 400 to 800 nm exceeds 50%, and the average of light within a wavelength of 400 to 800 nm
  • the absorptance was 25% or less, and the surface electrical resistance was also 20 ⁇ / ⁇ or less. This is presumed that a transparent metal film having high surface smoothness was obtained by the underlayer.
  • the average transmittance of light in the wavelength range of 400 to 800 nm is 83. %, And the light transmittance was good.
  • the light transmittance was improved, and the low refractive index layer may be formed. It turned out to be useful.
  • Example 4 and 6 it was found that also in Example 6 formed by sputtering, light transmittance was improved, and film formation using sputtering was also useful.
  • the transparent conductor obtained by the present invention has a low surface electric resistance value and excellent transparency. Therefore, it is preferably used for various types of optoelectronic devices such as various types of displays, touch panels, mobile phones, electronic paper, various types of solar cells, and various types of electroluminescent light control elements.

Abstract

The present invention relates to a transparent conductor having a low surface electrical resistivity and high optical transparency, and also to a method for producing the same. Conventional ITO films pose problems in that sufficiently reducing surface electrical resistivity is difficult, and ITO films are not suited to uses that require flexibility because they have a tendency toward cracking. Therefore, thin films formed from Ag are being recommended as transparent conductor films, and transparent conductors and the like obtained by laminating a base layer formed from aluminum and an Ag layer are being recommended. Nevertheless, there is a need for a reduction in the visible-light average transmittance and a further increase in optical transparency. The present invention provides a transparent conductor that has both a high transparency and a low surface electrical resistivity as a result of a configuration comprising, in the following order, a transparent substrate, a base layer containing molybdenum and having a layer thickness of 2 nm or less, and a transparent metal film disposed adjacent to the base layer and having a film thickness of 15 nm or less.

Description

透明導電体及びその製造方法Transparent conductor and method for producing the same
 本発明は、透明導電体及びその製造方法に関する。より詳しくは、表面電気抵抗値が低く、かつ光透過性が高い透明導電体及びその製造方法に関する。 The present invention relates to a transparent conductor and a manufacturing method thereof. More specifically, the present invention relates to a transparent conductor having a low surface electrical resistance value and high light transmittance, and a method for manufacturing the same.
 近年、液晶ディスプレイやプラズマディスプレイ、無機及び有機エレクトロルミネッセンス(以下「EL」と略記する。)ディスプレイ等の表示装置の電極材料や、無機及び有機EL素子の電極材料、タッチパネル材料、太陽電池材料等の各種装置に透明導電膜が使用されている。 In recent years, electrode materials for display devices such as liquid crystal displays, plasma displays, inorganic and organic electroluminescence (hereinafter abbreviated as “EL”) displays, electrode materials for inorganic and organic EL elements, touch panel materials, solar cell materials, etc. Transparent conductive films are used in various devices.
 このような透明導電膜を構成する材料として、Au、Ag、Pt、Cu、Rh、Pd、Al、Cr等の金属やIn、CdO、CdIn、CdSnO、TiO、SnO、ZnO、ITO(酸化インジウムスズ)等の酸化物半導体が知られている。 As a material constituting such a transparent conductive film, metals such as Au, Ag, Pt, Cu, Rh, Pd, Al, and Cr, In 2 O 3 , CdO, CdIn 2 O 4 , Cd 2 SnO 4 , and TiO 2 are used. , SnO 2 , ZnO, ITO (indium tin oxide) and other oxide semiconductors are known.
 近年、静電容量方式のタッチパネルが開発され、この方式では、表面電気抵抗値が低く、かつ透明性の高い透明導電膜が求められている。しかし、ITO膜では、表面電気抵抗値を十分に低くすることが難しい。また、ITO膜は割れやすく、フレキシブル性が求められる用途に適用できない、という問題もある。
 そこで、ITOに代わる透明導電膜として、Agをメッシュ状に形成した透明導電膜が提案されている(特許文献1)。また、カーボンナノチューブや、Agナノワイヤをコーティングした透明導電膜も提案されている(特許文献2及び3)。さらに、Agからなる薄膜を透明導電膜とすることも提案されており、アルミニウムからなる下地層と、Ag層とが積層された透明導電体等も提案されている(特許文献4)。
In recent years, a capacitive touch panel has been developed. In this method, a transparent conductive film having a low surface electrical resistance value and high transparency is required. However, with an ITO film, it is difficult to sufficiently reduce the surface electrical resistance value. In addition, the ITO film is easily broken and cannot be applied to applications that require flexibility.
Therefore, a transparent conductive film in which Ag is formed in a mesh shape has been proposed as a transparent conductive film that replaces ITO (Patent Document 1). In addition, a transparent conductive film coated with carbon nanotubes or Ag nanowires has also been proposed (Patent Documents 2 and 3). Furthermore, it has been proposed to use a thin film made of Ag as a transparent conductive film, and a transparent conductor in which an underlayer made of aluminum and an Ag layer are laminated has also been proposed (Patent Document 4).
 しかし、特許文献1に記載のAgメッシュは、金属部の線幅が20μm程度である。そのため、Agメッシュが視認されやすく、高い透明性が必要とされる用途には適用できない。
 また、特許文献2や特許文献3の透明導電膜は、いまだ表面電気抵抗値が高い。そのため、さらに表面電気抵抗値を低くすることが求められている。
 一方、特許文献4の透明導電体は、可視光の平均透過率が低く、光透過性をさらに高めることが求められている。
However, the Ag mesh described in Patent Document 1 has a metal part having a line width of about 20 μm. Therefore, the Ag mesh is easily visible and cannot be applied to uses that require high transparency.
Moreover, the transparent conductive film of patent document 2 and patent document 3 still has a high surface electrical resistance value. Therefore, it is required to further reduce the surface electrical resistance value.
On the other hand, the transparent conductor of Patent Document 4 has a low average transmittance of visible light and is required to further increase the light transmittance.
特開2006-352073号公報JP 2006-352073 A 特表2004-526838号公報Japanese translation of PCT publication No. 2004-526838 特開2011-167848号公報JP 2011-167848 A 特開2008-171637号公報JP 2008-171737 A
 本発明は、上述のような状況に鑑みてなされたものである。本発明の課題は、表面電気抵抗値が低く、かつ光透過性が高い透明導電体及びその製造方法を提供することである。 The present invention has been made in view of the above situation. An object of the present invention is to provide a transparent conductor having a low surface electrical resistance value and high light transmittance and a method for producing the same.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において下地層にモリブデンを含有させることにより表面電気抵抗値が低く、かつ光透過性が高い透明導電体を得られることを見出し本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
In order to solve the above-mentioned problems, the present inventor can obtain a transparent conductor having a low surface electrical resistance value and a high light transmittance by incorporating molybdenum into the underlayer in the process of examining the cause of the above-mentioned problems. As a result, the present invention was reached.
That is, the said subject which concerns on this invention is solved by the following means.
 1.透明基板と、
 モリブデンを含有し、かつ、層厚が2nm以下である下地層と、
 前記下地層に隣接して配設され、かつ、膜厚が15nm以下である透明金属膜と、
 をこの順に含む透明導電体。
1. A transparent substrate;
An underlayer containing molybdenum and having a layer thickness of 2 nm or less;
A transparent metal film disposed adjacent to the base layer and having a thickness of 15 nm or less;
Transparent conductors including
 2.前記透明基板と前記下地層との間又は前記透明金属膜上の少なくとも一方に、前記透明基板より、波長570nmの光の屈折率が高い誘電性材料又は酸化物半導体材料を含む高屈折率層をさらに有する、第1項に記載の透明導電体。 2. A high refractive index layer including a dielectric material or an oxide semiconductor material having a higher refractive index of light having a wavelength of 570 nm than that of the transparent substrate is provided between the transparent substrate and the base layer or on the transparent metal film. The transparent conductor according to item 1, further comprising:
 3.前記透明基板と前記下地層との間又は前記透明金属膜上の少なくとも一方に、波長570nmの光の屈折率が1.8以下である誘電性材料又は酸化物半導体材料を含む低屈折率層をさらに有する、第1項又は第2項に記載の透明導電体。 3. A low refractive index layer containing a dielectric material or an oxide semiconductor material having a refractive index of light having a wavelength of 570 nm of 1.8 or less between at least one of the transparent substrate and the base layer or on the transparent metal film. The transparent conductor according to item 1 or 2, further comprising:
 4.透明基板と、モリブデンを含有し、かつ、層厚が2nm以下である下地層と、膜厚が15nm以下である透明金属膜と、をこの順に有する透明導電体の製造方法であって、
 前記透明基板上に、蒸着法又はスパッタ法で前記下地層を成膜する工程と、
 前記下地層上に、気相成膜法で前記透明金属膜を成膜する工程と、
 を含む透明導電体の製造方法。
4). A method for producing a transparent conductor comprising a transparent substrate, molybdenum, an underlayer having a layer thickness of 2 nm or less, and a transparent metal film having a film thickness of 15 nm or less in this order,
Forming the underlayer on the transparent substrate by vapor deposition or sputtering;
Forming the transparent metal film on the underlayer by a vapor deposition method;
The manufacturing method of the transparent conductor containing this.
 本発明によれば、高い透明性と、低い表面電気抵抗値とを兼ね備えた、透明導電体が得られる。
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
 すなわち、本発明の透明導電体では、透明基板と透明金属膜との間に、モリブデンを含有する下地層が配設されている。モリブデンが含有される層は、一般的な気相成膜法で均一に成膜されやすい。また、モリブデンは、被成膜面(例えば透明基板表面)でマイグレート(移動)し難く、島状構造を形成し難い。このような下地層上に透明金属膜を成膜すると、透明金属膜の構成原子がマイグレートし難く、透明金属膜は、膜厚が薄くとも平滑な膜になる。
 したがって、本発明の透明導電体では、高い光透過性と、低い表面電気抵抗値が両立し得ると推察される。なお、当該効果の発現機構の詳細については、後述する。
According to the present invention, a transparent conductor having both high transparency and a low surface electric resistance value can be obtained.
The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
That is, in the transparent conductor according to the present invention, the underlying layer containing molybdenum is disposed between the transparent substrate and the transparent metal film. The layer containing molybdenum is easily formed uniformly by a general vapor deposition method. Molybdenum is difficult to migrate (move) on the film formation surface (for example, the surface of the transparent substrate), and it is difficult to form an island structure. When a transparent metal film is formed on such an underlayer, constituent atoms of the transparent metal film are difficult to migrate, and the transparent metal film becomes a smooth film even if the film thickness is small.
Therefore, in the transparent conductor of this invention, it is guessed that high light transmittance and low surface electrical resistance value can be compatible. Details of the mechanism of the effect will be described later.
本発明の透明導電体の層構成一例を示す概略断面図Schematic sectional view showing an example of the layer structure of the transparent conductor of the present invention 本発明の透明導電体の層構成の他の例を示す概略断面図Schematic sectional view showing another example of the layer structure of the transparent conductor of the present invention 本発明の実施例及び比較例の透明導電体の光の透過率を示すグラフThe graph which shows the light transmittance of the transparent conductor of the Example and comparative example of this invention 本発明の実施例及び比較例の透明導電体の光の吸収率を示すグラフThe graph which shows the light absorption rate of the transparent conductor of the Example and comparative example of this invention
 本発明の透明導電体は、透明基板と、モリブデンを含有し、かつ、層厚が2nm以下である下地層と、前記下地層に隣接して配設され、かつ、膜厚が15nm以下である透明金属膜と、をこの順に含むことを特徴とする。この特徴は請求項1から請求項4までの請求項に係る発明に共通する技術的特徴である。
 本発明の実施態様としては、本発明の効果発現の観点から、前記透明基板と前記下地層との間又は前記透明金属膜上の少なくとも一方に、前記透明基板より、波長570nmの光の屈折率が高い誘電性材料又は酸化物半導体材料を含む高屈折率層をさらに有する態様の透明導電体であることが好ましい。
 さらに、当該透明導電体が、前記透明基板と前記下地層との間又は前記透明金属膜上の少なくとも一方に、波長570nmの光の屈折率が1.8以下である誘電性材料又は酸化物半導体材料を含む低屈折率層をさらに有することが好ましい。
 本発明の透明導電体の製造方法としては、透明基板と、モリブデンを含有し、かつ、層厚が2nm以下である下地層と、膜厚が15nm以下である透明金属膜と、をこの順に有する透明導電体の製造方法であって、前記透明基板上に、蒸着法又はスパッタ法で前記下地層を成膜する工程と、前記下地層上に、気相成膜法で前記透明金属膜を成膜する工程とを含む態様の製造方法であることを要する。かかる製造方法により、表面電気抵抗値が低く、かつ光透過性が高い透明導電体を得ることができる。
The transparent conductor of the present invention has a transparent substrate, a base layer containing molybdenum and having a layer thickness of 2 nm or less, a layer adjacent to the base layer, and a film thickness of 15 nm or less. A transparent metal film is included in this order. This feature is a technical feature common to the inventions according to claims 1 to 4.
As an embodiment of the present invention, from the viewpoint of manifesting the effect of the present invention, at least one of the refractive index of light having a wavelength of 570 nm between the transparent substrate and the base layer or on the transparent metal film from the transparent substrate. It is preferable that it is a transparent conductor of the aspect which further has a high refractive index layer containing a high dielectric material or oxide semiconductor material.
Further, the transparent conductor is a dielectric material or an oxide semiconductor having a refractive index of light having a wavelength of 570 nm of 1.8 or less between at least one of the transparent substrate and the base layer or on the transparent metal film. It is preferable to further have a low refractive index layer containing a material.
The method for producing a transparent conductor of the present invention includes a transparent substrate, an underlayer containing molybdenum and having a layer thickness of 2 nm or less, and a transparent metal film having a thickness of 15 nm or less in this order. A method for producing a transparent conductor, comprising: forming a base layer on the transparent substrate by vapor deposition or sputtering; and forming the transparent metal film on the base layer by vapor deposition. It is necessary to be a manufacturing method of an aspect including the process to form into a film. With this manufacturing method, a transparent conductor having a low surface electrical resistance value and a high light transmittance can be obtained.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
1.透明導電体について
 本発明の透明導電体の層構成の例を図1及び図2に示す。図1及び図2に示されるように、本発明の透明導電体100は、透明基板1/下地層2/透明金属膜3がこの順に積層された積層体である。
 図2に示されるように、透明導電体100には、必要に応じて、他の層が含まれてもよい。
 例えば、下地層2及び透明金属膜3が、屈折率の高い第一高屈折率層4と第二高屈折率層5とで挟み込まれていてもよい。第一高屈折率層4及び第二高屈折率層5はいずれか一方のみが形成されてもよいし、両方が形成されてもよく、好ましくは両方が形成されるのがよい。
 また、第一高屈折率層4及び第二高屈折率層5に代えてまたはこれらに加えて、下地層2の透明基板1側の表面又は透明金属膜3上に、下地層2及び透明金属膜3のプラズモン吸収を抑制するための第一低屈折率層6及び第二低屈折率層7が含まれてもよい。第一低屈折率層6及び第二低屈折率層7はいずれか一方のみが形成されてもよいし、両方が形成されてもよく、好ましくは両方が形成されるのがよい。
1. About a transparent conductor The example of a layer structure of the transparent conductor of this invention is shown in FIG.1 and FIG.2. As shown in FIGS. 1 and 2, the transparent conductor 100 of the present invention is a laminate in which a transparent substrate 1 / underlayer 2 / transparent metal film 3 are laminated in this order.
As shown in FIG. 2, the transparent conductor 100 may include other layers as necessary.
For example, the underlayer 2 and the transparent metal film 3 may be sandwiched between the first high refractive index layer 4 and the second high refractive index layer 5 having a high refractive index. Only one of the first high refractive index layer 4 and the second high refractive index layer 5 may be formed, or both may be formed, and preferably both may be formed.
Further, instead of or in addition to the first high-refractive index layer 4 and the second high-refractive index layer 5, the base layer 2 and the transparent metal are formed on the surface of the base layer 2 on the transparent substrate 1 side or on the transparent metal film 3. A first low refractive index layer 6 and a second low refractive index layer 7 for suppressing plasmon absorption of the film 3 may be included. Only one of the first low refractive index layer 6 and the second low refractive index layer 7 may be formed, or both may be formed, and preferably both may be formed.
 透明基板上に直接Ag等からなる透明金属膜を成膜すると、高い光透過性と、低い表面電気抵抗とを兼ね備えた透明金属膜になり難くかった。その理由は、以下のように推察される。一般的な気相成膜法で、基板上にAg層を成膜すると、成膜初期には、透明基板に到達したAg原子が透明基板上をマイグレート(表面移動)する。そして、多数のAg原子が寄り集まって非連続な島状構造を多数形成する。 When a transparent metal film made of Ag or the like was directly formed on a transparent substrate, it was difficult to obtain a transparent metal film having both high light transmittance and low surface electric resistance. The reason is guessed as follows. When an Ag layer is formed on a substrate by a general vapor deposition method, Ag atoms that reach the transparent substrate migrate (surface move) on the transparent substrate at the initial stage of film formation. A large number of Ag atoms gather to form a discontinuous island structure.
 さらにAg原子を供給すると、当該島状構造を起点にAg膜が成長し、隣り合う塊同士の一部が繋がって、電気の導通が可能になる。しかし、Ag膜の膜厚が薄いと、塊同士の間の隙間が完全に埋まらない。そのため、プラズモン吸収が生じて、光透過性が十分に高まらない。一方、Ag膜の膜厚が厚くなると、Ag膜の表面が平滑になるため、表面電気抵抗値が低くなり、プラズモン吸収も発生しなくなる。しかし、Ag本来の反射が生じるため、Ag層の光透過性が高まらない。 Further, when Ag atoms are supplied, an Ag film grows starting from the island-like structure, and a part of adjacent lumps are connected to enable electrical conduction. However, if the thickness of the Ag film is thin, the gap between the chunks is not completely filled. Therefore, plasmon absorption occurs, and the light transmittance is not sufficiently increased. On the other hand, when the thickness of the Ag film is increased, the surface of the Ag film becomes smooth, so that the surface electrical resistance value is lowered and plasmon absorption is not generated. However, since Ag inherent reflection occurs, the light transmittance of the Ag layer does not increase.
 そこで前述のように、透明基板とAg層との間に、アルミニウムからなる下地層を配設することが提案されている。しかしこの方法においても、上記プラズモン吸収を十分に抑制することはできなかった。これは、下地層を構成する原子(アルミニウム等)とAgとの親和性が十分でなく、当該下地層が成長核になり難いか、又は下地層を構成する原子が、Ag原子同様にマイグレートして、非連続な島状構造(大きな塊)を形成しやすいためであると推察される。 Therefore, as described above, it has been proposed to dispose an underlayer made of aluminum between the transparent substrate and the Ag layer. However, even with this method, the plasmon absorption could not be sufficiently suppressed. This is because the affinity between atoms (aluminum, etc.) constituting the underlayer and Ag is not sufficient, and it is difficult for the underlayer to become a growth nucleus, or the atoms constituting the underlayer are migrated in the same way as Ag atoms. And it is guessed that it is because it is easy to form a discontinuous island-like structure (large lump).
 これに対し、本発明の透明導電体100では、透明基板1と透明金属膜3との間に、モリブデン、又はモリブデンが20質量%以上含まれる他の金属との合金からなる下地層2が配設されている。モリブデンが一定以上含まれる層は、一般的な気相成膜法で均一に成膜されやすい。またモリブデンは、被成膜面(例えば透明基板1表面)でマイグレートし難く、前述の島状構造を形成し難い。このような下地層2上に透明金属膜3を成膜すると、透明金属膜3の構成原子がマイグレートし難く、透明金属膜3は、膜厚が薄くとも平滑な膜になる。したがって、本発明の透明導電体100では、高い光透過性と、低い表面電気抵抗値が両立する。 On the other hand, in the transparent conductor 100 of the present invention, the underlying layer 2 made of molybdenum or an alloy with another metal containing 20 mass% or more of molybdenum is disposed between the transparent substrate 1 and the transparent metal film 3. It is installed. A layer containing a certain amount or more of molybdenum is easily formed uniformly by a general vapor deposition method. Molybdenum is difficult to migrate on the film formation surface (for example, the surface of the transparent substrate 1), and it is difficult to form the aforementioned island-like structure. When the transparent metal film 3 is formed on such an underlayer 2, the constituent atoms of the transparent metal film 3 are difficult to migrate, and the transparent metal film 3 becomes a smooth film even if the film thickness is small. Therefore, the transparent conductor 100 of the present invention achieves both high light transmittance and low surface electrical resistance.
1.1)透明基板
 透明導電体100に含まれる透明基板1は、各種表示デバイスの透明基板と同様のものを使用することができる。透明基板1としては、ガラス基板、又はセルロースエステル樹脂(例えば、トリアセチルセルロース、ジアセチルセルロース、アセチルプロピオニルセルロース等)、ポリカーボネート樹脂(例えばパンライト、マルチロン(いずれも帝人社製))、シクロオレフィン樹脂(例えばゼオノア(日本ゼオン社製)、アートン(JSR社製)、アペル(三井化学社製))、アクリル樹脂(例えばポリメチルメタクリレート、「アクリライト(三菱レイヨン社製)、スミペックス(住友化学社製))、ポリイミド、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリエステル樹脂(例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート)、ポリエーテルスルホン、ABS/AS樹脂、MBS樹脂、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/EVOH(エチレンビニルアルコール樹脂)及びスチレン系ブロックコポリマー樹脂等からなる透明樹脂フィルムが挙げられる。透明基板が透明樹脂フィルムである場合、当該フィルムは1種の樹脂で構成されてもよいし、2種以上の樹脂で構成されてもよい。
1.1) Transparent substrate The transparent substrate 1 contained in the transparent conductor 100 can be the same as the transparent substrate of various display devices. As the transparent substrate 1, a glass substrate, or a cellulose ester resin (for example, triacetyl cellulose, diacetyl cellulose, acetyl propionyl cellulose, etc.), a polycarbonate resin (for example, Panlite, Multilon (both manufactured by Teijin Limited)), a cycloolefin resin ( For example, Zeonore (manufactured by Nippon Zeon), Arton (manufactured by JSR), Appel (manufactured by Mitsui Chemicals), acrylic resin (for example, polymethyl methacrylate, "Acrylite (manufactured by Mitsubishi Rayon), Sumipex (manufactured by Sumitomo Chemical)) ), Polyimide, phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyester resin (eg, polyethylene terephthalate (PET), polyethylene naphthalate), polyether sulfone, ABS / AS resin, MBS resin Examples include transparent resin films made of polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), styrene block copolymer resin, etc. When the transparent substrate is a transparent resin film, the film is composed of one kind of resin. It may be made of two or more kinds of resins.
 透明性の観点から、透明基板1はガラス基板、又はセルロースエステル樹脂、ポリエステル樹脂(特にポリエチレンテレフタレート)、トリアセチルセルロース、シクロオレフィン樹脂、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリエーテルスルホン、ABS/AS樹脂、MBS樹脂、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/EVOH(エチレンビニルアルコール樹脂)及びスチレン系ブロックコポリマー樹脂からなるフィルムであることが好ましい。 From the viewpoint of transparency, the transparent substrate 1 is a glass substrate, or a cellulose ester resin, a polyester resin (particularly polyethylene terephthalate), a triacetyl cellulose, a cycloolefin resin, a phenol resin, an epoxy resin, a polyphenylene ether (PPE) resin, a polyether sulfone. A film made of ABS / AS resin, MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin) and styrene block copolymer resin is preferable.
 透明基板1は、可視光に対する透明性が高いことが好ましく、波長450~800nmの範囲内の光の平均透過率が70%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることがさらに好ましい。透明基板1の光の平均透過率が70%以上であると、透明導電体100の光透過性が高まりやすい。また、透明基板1の波長450~800nmの範囲内の光の平均吸収率は10%以下であることが好ましく、より好ましくは5%以下、さらに好ましくは3%以下である。 The transparent substrate 1 preferably has high transparency to visible light, and the average transmittance of light within a wavelength range of 450 to 800 nm is preferably 70% or more, more preferably 80% or more, and 85 % Or more is more preferable. When the average light transmittance of the transparent substrate 1 is 70% or more, the light transmittance of the transparent conductor 100 is likely to be increased. Further, the average absorptance of light within the wavelength range of 450 to 800 nm of the transparent substrate 1 is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
 透明基板1の平均透過率は、透明基板1の表面の法線に対して、5°傾けた角度から光を入射させて測定する。一方、透明基板1の平均吸収率は、平均透過率と同様の角度から光を入射させて、透明基板1の平均反射率を測定し、平均吸収率=100-(平均透過率+平均反射率)として算出する。平均透過率及び平均反射率は分光光度計で測定する。 The average transmittance of the transparent substrate 1 is measured by making light incident from an angle inclined by 5 ° with respect to the normal of the surface of the transparent substrate 1. On the other hand, the average absorptance of the transparent substrate 1 is measured by making the light incident from the same angle as the average transmissivity and measuring the average reflectivity of the transparent substrate 1. Average absorptivity = 100− (average transmissivity + average reflectivity) ). Average transmittance and average reflectance are measured with a spectrophotometer.
 透明基板1の波長570nmの光の屈折率は1.40~1.95であることが好ましく、より好ましくは1.45~1.75であり、さらに好ましくは1.45~1.70である。透明基板の屈折率は、通常、透明基板の材質によって定まる。透明基板の「屈折率」は、温度25℃、相対湿度55%RHの雰囲気下で、所定の波長(例えば570nm)の光線を照射し、アッベ屈折率計(ATAGO社製、DR-M2)を用いて測定した値である(他の部材の屈折率も同様である。)。 The refractive index of light having a wavelength of 570 nm of the transparent substrate 1 is preferably 1.40 to 1.95, more preferably 1.45 to 1.75, and still more preferably 1.45 to 1.70. . The refractive index of the transparent substrate is usually determined by the material of the transparent substrate. The “refractive index” of the transparent substrate is irradiated with a light beam having a predetermined wavelength (for example, 570 nm) in an atmosphere of a temperature of 25 ° C. and a relative humidity of 55% RH, and an Abbe refractometer (DR-M2 manufactured by ATAGO) is used. It is the value measured using (the refractive index of other members is also the same).
 透明基板1のヘイズ値は0.01~2.5であることが好ましく、より好ましくは0.1~1.2である。透明基板のヘイズ値が2.5以下であると、透明導電体100のヘイズ値を抑制できる。ヘイズ値は、ヘイズメーターで測定される。 The haze value of the transparent substrate 1 is preferably 0.01 to 2.5, more preferably 0.1 to 1.2. The haze value of the transparent conductor 100 can be suppressed as the haze value of the transparent substrate is 2.5 or less. The haze value is measured with a haze meter.
 透明基板1の厚さは、1μm~20mmであることが好ましく、より好ましくは10μm~2mmである。透明基板の厚さが1μm以上であると、透明基板1の強度が高まり、第一高屈折率層4の作製時に割れたり、裂けたりし難くなる。一方、透明基板1の厚さが20mm以下であれば、透明導電体100のフレキシブル性が十分となる。さらに透明導電体100を用いた機器の厚さを薄くできる。また、透明導電体100を用いた機器を軽量化することもできる。 The thickness of the transparent substrate 1 is preferably 1 μm to 20 mm, more preferably 10 μm to 2 mm. When the thickness of the transparent substrate is 1 μm or more, the strength of the transparent substrate 1 is increased, and the first high refractive index layer 4 is difficult to be cracked or torn. On the other hand, if the thickness of the transparent substrate 1 is 20 mm or less, the flexibility of the transparent conductor 100 is sufficient. Furthermore, the thickness of the apparatus using the transparent conductor 100 can be reduced. Moreover, the apparatus using the transparent conductor 100 can also be reduced in weight.
1.2)下地層
 下地層2は、透明基板1と透明金属膜3との間で、かつ透明金属膜3と接して配設される。下地層2は、モリブデン単体、又はモリブデンと他の金属との合金からなる層である。下地層2に含まれるモリブデンの量は、20質量%以上であり、好ましくは40質量%以上であり、さらに好ましくは60質量%以上である。またコストの面からもモリブデンが多い方が望ましい。
1.2) Underlayer The underlayer 2 is disposed between the transparent substrate 1 and the transparent metal film 3 and in contact with the transparent metal film 3. The underlayer 2 is a layer made of molybdenum alone or an alloy of molybdenum and another metal. The amount of molybdenum contained in the underlayer 2 is 20% by mass or more, preferably 40% by mass or more, and more preferably 60% by mass or more. From the viewpoint of cost, it is desirable that the amount of molybdenum is large.
 前述のように、下地層2にモリブデン原子が20質量%以上含まれると、下地層2の層厚や密度が均一になりやすく、透明金属膜3の表面平滑性が高まりやすい。また、モリブデンは、透明金属膜3を構成する原子との親和性が高い。したがって、下地層2にモリブデンが20質量%以上含まれると、下地層2と透明金属膜3との密着性が高まりやすい。 As described above, when the base layer 2 contains 20 mass% or more of molybdenum atoms, the layer thickness and density of the base layer 2 tend to be uniform, and the surface smoothness of the transparent metal film 3 tends to increase. Molybdenum has a high affinity with the atoms constituting the transparent metal film 3. Therefore, when the base layer 2 contains 20% by mass or more of molybdenum, the adhesion between the base layer 2 and the transparent metal film 3 is likely to increase.
 下地層2に含まれるモリブデン以外の金属の例には、モリブデン以外のインジウム、白金族、金、コバルト、ニッケル、パラジウム、チタン、アルミニウム、クロム、ニオブ及び亜鉛等が含まれる。下地層2には、これらの金属が1種のみ含まれてもよく、2種以上含まれてもよい。これらの金属の中でも、好ましくはパラジウム、及びインジウムである。 Examples of metals other than molybdenum contained in the underlayer 2 include indium other than molybdenum, platinum group, gold, cobalt, nickel, palladium, titanium, aluminum, chromium, niobium, and zinc. The underlayer 2 may contain only one kind of these metals or two or more kinds. Among these metals, palladium and indium are preferable.
 下地層2の層厚は、2nm以下であり、好ましくは0.5nm以下である。下地層2は単原子膜であることがより好ましい。さらに、下地層2は透明基板1上に金属原子が互いに離間して付着している膜であってもよい。透明基板1上に金属原子が離間して付着していると、透明金属膜3の成膜時に、透明金属膜3の材料である原子がマイグレートし難い。またさらに、透明金属膜3がこの金属原子を起点に成長しやすく、透明金属膜3が平坦になりやすい。 The layer thickness of the underlayer 2 is 2 nm or less, preferably 0.5 nm or less. The underlayer 2 is more preferably a monoatomic film. Furthermore, the underlayer 2 may be a film in which metal atoms are adhered to the transparent substrate 1 while being separated from each other. If metal atoms are attached to the transparent substrate 1 at a distance from each other, atoms that are the material of the transparent metal film 3 are difficult to migrate when the transparent metal film 3 is formed. Furthermore, the transparent metal film 3 tends to grow from this metal atom as a starting point, and the transparent metal film 3 tends to become flat.
1.3)透明金属膜
 透明金属膜3は、透明導電体100において電気を導通させるための膜であり、前記下地層2に隣接して配設される。透明金属膜3に含まれる金属は、導電性の高い金属であれば特に制限されず、例えば銀、銅、金、白金族、チタン及びクロム等が挙げられる。透明金属膜3には、これらの金属が1種のみ含まれてもよく、2種以上含まれてもよい。導電性が高いとの観点から、透明金属膜3は銀又は銀が90at%以上含まれる合金からなることが好ましい。銀と組み合わされる金属としては、亜鉛、金、銅、パラジウム、アルミニウム、マンガン、ビスマス、ネオジム及びモリブデン等が挙げられる。例えば銀と亜鉛とが組み合わされると、透明金属膜の耐硫化性が高まる。銀と金とが組み合わされると、耐塩(NaCl)性が高まる。さらに銀と銅とが組み合わされると、耐酸化性が高まる。銀と組み合わされる金属は、上記金属のうち、1種のみが組み合わされてもよいし、2種以上が組み合わされてもよい。
1.3) Transparent Metal Film The transparent metal film 3 is a film for conducting electricity in the transparent conductor 100, and is disposed adjacent to the base layer 2. The metal contained in the transparent metal film 3 is not particularly limited as long as it is a highly conductive metal, and examples thereof include silver, copper, gold, platinum group, titanium, and chromium. The transparent metal film 3 may contain only one kind of these metals or two or more kinds. From the viewpoint of high conductivity, the transparent metal film 3 is preferably made of silver or an alloy containing 90 at% or more of silver. Examples of the metal combined with silver include zinc, gold, copper, palladium, aluminum, manganese, bismuth, neodymium, and molybdenum. For example, when silver and zinc are combined, the sulfidation resistance of the transparent metal film is enhanced. When silver and gold are combined, salt resistance (NaCl) resistance increases. Furthermore, when silver and copper are combined, the oxidation resistance increases. As for the metal combined with silver, only 1 type may be combined among the said metals, and 2 or more types may be combined.
 また、透明金属膜3のプラズモン吸収率は、波長400~800nmの範囲内にわたって(全範囲で)10%以下であることが好ましい。透明金属膜3の上記プラズモン吸収率は7%以下であることがより好ましく、さらに好ましくは5%以下である。 In addition, the plasmon absorption rate of the transparent metal film 3 is preferably 10% or less over the entire wavelength range of 400 to 800 nm. The plasmon absorption rate of the transparent metal film 3 is more preferably 7% or less, and further preferably 5% or less.
 透明金属膜3の波長400~800nmの範囲内におけるプラズモン吸収率は、以下の手順で測定される。
 (i)ガラス基板上に、モリブデン(モリブデン含有量20質量%)をマグネトロンスパッタ装置にて0.1nm成膜する。モリブデンの平均膜厚は、スパッタ装置のメーカー公称値の成膜速度等から算出する。その後、モリブデンが付着した基板上に蒸着機にて測定対象と同様の金属からなる膜を20nm成膜する。
The plasmon absorption rate in the wavelength range of 400 to 800 nm of the transparent metal film 3 is measured by the following procedure.
(I) Molybdenum (molybdenum content 20% by mass) is formed to a thickness of 0.1 nm on a glass substrate using a magnetron sputtering apparatus. The average film thickness of molybdenum is calculated from the film formation rate of the manufacturer's nominal value of the sputtering apparatus. Thereafter, a film made of the same metal as the object to be measured is formed on the substrate to which molybdenum is attached with a vapor deposition machine to a thickness of 20 nm.
 (ii)そして、得られた金属膜の表面の法線に対して、5°傾けた角度から測定光を入射させ、金属膜の透過率及び反射率を測定する。そして各波長における透過率及び反射率から、吸収率=100-(透過率+反射率)を算出し、これをリファレンスデータとする。透過率及び反射率は、分光光度計で測定する。 (Ii) Then, measurement light is incident from an angle inclined by 5 ° with respect to the normal of the surface of the obtained metal film, and the transmittance and reflectance of the metal film are measured. Then, from the transmittance and reflectance at each wavelength, absorption rate = 100− (transmittance + reflectance) is calculated and used as reference data. The transmittance and reflectance are measured with a spectrophotometer.
 (iii)続いて、測定対象の透明金属膜について、同様に透過率及び反射率を測定する。そして、得られた吸収率から上記リファレンスデータを差し引き、算出された値を、プラズモン吸収率とする。 (Iii) Subsequently, the transmittance and reflectance of the transparent metal film to be measured are measured in the same manner. Then, the reference data is subtracted from the obtained absorption rate, and the calculated value is defined as the plasmon absorption rate.
 透明金属膜3の膜厚は15nm以下であり、好ましくは3~13nmであり、さらに好ましくは7~12nmである。透明金属膜3の膜厚が15nm以下であれば、透明金属膜3に含まれる金属本来の反射が生じ難く、透明導電体100の光透過性が高まりやすい。 The film thickness of the transparent metal film 3 is 15 nm or less, preferably 3 to 13 nm, and more preferably 7 to 12 nm. If the film thickness of the transparent metal film 3 is 15 nm or less, reflection of the metal contained in the transparent metal film 3 hardly occurs and the light transmittance of the transparent conductor 100 is likely to increase.
1.4)第一高屈折率層及び第二高屈折率層
 本発明の透明導電体100には、前述のように、下地層2及び透明金属膜3を挟み込むように、比較的屈折率の高い層、つまり第一高屈折率層4及び第二高屈折率層5が配設されていてもよい。透明導電体100の反射特性は、透明導電体100の層構成によって大きく依存する。そして、下地層2及び透明金属膜3を挟み込むように、第一高屈折率層4及び第二高屈折率層5が配設されると、透明導電体100表面の反射率が低下し、透明導電体100の光透過性が高まりやすい。
1.4) First High Refractive Index Layer and Second High Refractive Index Layer The transparent conductor 100 of the present invention has a relatively refractive index so as to sandwich the underlayer 2 and the transparent metal film 3 as described above. High layers, that is, the first high refractive index layer 4 and the second high refractive index layer 5 may be provided. The reflection characteristics of the transparent conductor 100 greatly depend on the layer configuration of the transparent conductor 100. And when the 1st high refractive index layer 4 and the 2nd high refractive index layer 5 are arrange | positioned so that the base layer 2 and the transparent metal film 3 may be pinched | interposed, the reflectance of the transparent conductor 100 surface will fall, and transparent The light transmittance of the conductor 100 is likely to increase.
 第一高屈折率層4及び第二高屈折率層5には、透明基板1の波長570nmの光の屈折率より、波長570nmの光の屈折率が高い誘電性材料又は酸化物半導体材料が含まれることが好ましい。当該誘電性材料又は酸化物半導体材料の波長570nmの光の屈折率は、透明基板1の波長570nmの光の屈折率より0.1~1.1大きいことが好ましく、0.4~1.0大きいことがより好ましい。第一高屈折率層4及び第二高屈折率層5に含まれる誘電性材料又は酸化物半導体材料の具体的な波長570nmの光の屈折率は1.5より大きいことが好ましく、1.6~2.5であることがより好ましく、さらに好ましくは1.8~2.5である。誘電性材料又は酸化物半導体材料の屈折率が1.5より大きいと、第一高屈折率層4及び第二高屈折率層5によって、透明導電体100の反射率が低下しやすい。なお、第一高屈折率層4及び第二高屈折率層5の屈折率は、上記誘電性材料又は酸化物半導体材料の屈折率や、各層の密度で調整される。 The first high-refractive index layer 4 and the second high-refractive index layer 5 include a dielectric material or an oxide semiconductor material in which the refractive index of light having a wavelength of 570 nm is higher than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1. It is preferred that The refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 larger than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1, and is preferably 0.4 to 1.0. Larger is more preferable. The refractive index of light having a specific wavelength of 570 nm of the dielectric material or the oxide semiconductor material contained in the first high refractive index layer 4 and the second high refractive index layer 5 is preferably larger than 1.5, Is more preferably 2.5, and still more preferably 1.8 to 2.5. When the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the reflectance of the transparent conductor 100 is likely to be lowered by the first high refractive index layer 4 and the second high refractive index layer 5. In addition, the refractive index of the 1st high refractive index layer 4 and the 2nd high refractive index layer 5 is adjusted with the refractive index of the said dielectric material or an oxide semiconductor material, and the density of each layer.
 第一高屈折率層4及び第二高屈折率層5に含まれる誘電性材料又は酸化物半導体材料は、絶縁性の材料であってもよく、導電性の材料であってもよい。第一高屈折率層4及び第二高屈折率層5に含まれる誘電性材料又は酸化物半導体材料は、金属酸化物又は金属硫化物であることが好ましい。金属酸化物又は金属硫化物の例には、TiO、ITO(酸化インジウムスズ)、ZnO、ZnS、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO(酸化インジウム・酸化亜鉛)、AZO(AlドープZnO)、GZO(GaドープZnO)、ATO(SbドープSnO)、ICO(インジウムセリウムオキサイド)、ZTO、及びWO等が含まれる。金属酸化物又は金属硫化物は、屈折率や生産性の観点からTiO、ITO、ZnO、Nb、ZnSであることが好ましい。第一高屈折率層4及び第二高屈折率層5には、上記金属酸化物又は金属硫化物が1種のみ含まれてもよく、2種以上が含まれてもよい。 The dielectric material or the oxide semiconductor material included in the first high refractive index layer 4 and the second high refractive index layer 5 may be an insulating material or a conductive material. The dielectric material or oxide semiconductor material contained in the first high refractive index layer 4 and the second high refractive index layer 5 is preferably a metal oxide or a metal sulfide. Examples of metal oxides or metal sulfides include TiO 2 , ITO (indium tin oxide), ZnO, ZnS, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O. 7 , Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO (indium oxide / zinc oxide), AZO (Al-doped ZnO), GZO (Ga-doped ZnO), ATO (Sb-doped SnO), ICO (Indium cerium oxide), ZTO, and WO 3 are included. The metal oxide or metal sulfide is preferably TiO 2 , ITO, ZnO, Nb 2 O 5 , or ZnS from the viewpoint of refractive index and productivity. The first high-refractive index layer 4 and the second high-refractive index layer 5 may contain only one kind of the metal oxide or metal sulfide, or may contain two or more kinds.
 第一高屈折率層4及び第二高屈折率層5の層厚は、アドミッタンス図を用いた光学設計によって設定されることが好ましい。第一高屈折率層4及び第二高屈折率層5の層厚は、通常10~150nmであることが好ましく、より好ましくは20~80nmである。第一高屈折率層4及び第二高屈折率層5が10nm以上であると、第一高屈折率層4及び第二高屈折率層5によって、透明導電体100の反射率が十分に低くなる。一方、第一高屈折率層4及び第二高屈折率層5の層厚が150nm以下であれば、透明導電体100の光透過性が低下し難い。第一高屈折率層4及び第二高屈折率層5の層厚は、エリプソメーターで測定される。 The layer thicknesses of the first high refractive index layer 4 and the second high refractive index layer 5 are preferably set by optical design using an admittance diagram. The layer thicknesses of the first high refractive index layer 4 and the second high refractive index layer 5 are usually preferably 10 to 150 nm, more preferably 20 to 80 nm. When the first high refractive index layer 4 and the second high refractive index layer 5 are 10 nm or more, the first high refractive index layer 4 and the second high refractive index layer 5 cause the reflectance of the transparent conductor 100 to be sufficiently low. Become. On the other hand, if the thicknesses of the first high refractive index layer 4 and the second high refractive index layer 5 are 150 nm or less, the light transmittance of the transparent conductor 100 is unlikely to decrease. The layer thicknesses of the first high refractive index layer 4 and the second high refractive index layer 5 are measured by an ellipsometer.
1.5)第一低屈折率層及び第二低屈折率層
 本発明の透明導電体100には、下地層2及び透明金属膜3のプラズモン吸収を抑制するための第一低屈折率層6及び第二低屈折率層7が配設されていてもよい。
 第一低屈折率層6及び第二低屈折率層7は、透明基板1と下地層2との間又は透明金属膜3上の少なくとも一方に、配設される。詳しくは、第一低屈折率層6及び第二低屈折率層7は、下地層2の透明基板1側の表面、及び透明金属膜3の下地層2と隣接しない側の表面のうち、いずれか一方の面又は両方の面に配設される。
1.5) First Low Refractive Index Layer and Second Low Refractive Index Layer The transparent conductor 100 of the present invention includes a first low refractive index layer 6 for suppressing plasmon absorption of the underlayer 2 and the transparent metal film 3. And the 2nd low refractive index layer 7 may be arrange | positioned.
The first low refractive index layer 6 and the second low refractive index layer 7 are disposed between the transparent substrate 1 and the base layer 2 or at least one on the transparent metal film 3. Specifically, the first low-refractive index layer 6 and the second low-refractive index layer 7 are either the surface of the base layer 2 on the transparent substrate 1 side or the surface of the transparent metal film 3 on the side not adjacent to the base layer 2. It is disposed on one or both surfaces.
 下地層2の透明基板1側の表面又は透明金属膜3の下地層2と隣接しない側の表面に、第一低屈折率層6及び第二低屈折率層7が配設されたときに、下地層2及び透明金属膜3のプラズモン吸収が抑制される理由は以下のとおりである。 When the first low refractive index layer 6 and the second low refractive index layer 7 are disposed on the surface of the base layer 2 on the transparent substrate 1 side or the surface of the transparent metal film 3 on the side not adjacent to the base layer 2, The reason why the plasmon absorption of the underlayer 2 and the transparent metal film 3 is suppressed is as follows.
 前述の下地層2及び透明金属膜3を一つの層とみなし、これらが金属微細球で構成されるとすると、局在プラズモン吸収断面積Cabsは下記の式で表される。
Figure JPOXMLDOC01-appb-M000001
 
If the above-described underlayer 2 and the transparent metal film 3 are regarded as one layer and are composed of metal fine spheres, the localized plasmon absorption cross section C abs is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000001
 上記式に基づけば、下地層2及び透明金属膜3の周囲に接する層の屈折率が、低ければ低いほど、下地層2及び透明金属膜3の局在プラズモン吸収断面積が小さくなる。つまり、比較的屈折率の低い第一低屈折率層6及び第二低屈折率層7が下地層2や透明金属膜3の表面に配設されると、下地層2や透明金属膜3のプラズモン吸収が抑制される。 Based on the above formula, the lower the refractive index of the layer in contact with the periphery of the underlayer 2 and the transparent metal film 3, the smaller the localized plasmon absorption cross section of the underlayer 2 and the transparent metal film 3. That is, when the first low refractive index layer 6 and the second low refractive index layer 7 having a relatively low refractive index are disposed on the surface of the underlayer 2 or the transparent metal film 3, Plasmon absorption is suppressed.
 ここで、第一低屈折率層6及び第二低屈折率層7には、波長570nmの光の屈折率が1.8未満である誘電性材料又は酸化物半導体材料が含まれることが好ましく、当該屈折率はより好ましくは1.30~1.6であり、特に好ましくは1.35~1.5である。なお、第一低屈折率層6及び第二低屈折率層7の屈折率は主に、第一低屈折率層6及び第二低屈折率層7に含まれる材料の屈折率や、第一低屈折率層6及び第二低屈折率層7の密度で調整される。 Here, it is preferable that the first low refractive index layer 6 and the second low refractive index layer 7 include a dielectric material or an oxide semiconductor material having a refractive index of light having a wavelength of 570 nm of less than 1.8. The refractive index is more preferably 1.30 to 1.6, and particularly preferably 1.35 to 1.5. The refractive indexes of the first low refractive index layer 6 and the second low refractive index layer 7 are mainly the refractive indexes of the materials contained in the first low refractive index layer 6 and the second low refractive index layer 7, The density of the low refractive index layer 6 and the second low refractive index layer 7 is adjusted.
 第一低屈折率層6及び第二低屈折率層7に含まれる誘電性材料又は酸化物半導体材料としては、MgF、SiO、AlF、CaF、CeF、CdF、LaF、LiF、NaF、NdF、YF、YbF、Ga、LaAlO、NaAlF、Al、MgO及びThO等が挙げられる。誘電性材料又は酸化物半導体材料は中でも、MgF、SiO、CaF、CeF、LaF、LiF、NaF、NdF、NaAlF、Al、MgO及びThOであることが好ましく、屈折率が低いとの観点から、MgF及びSiOが特に好ましい。第一低屈折率層6及び第二低屈折率層7には、これらの材料が1種のみ含まれてもよく、2種以上含まれてもよい。 Examples of dielectric materials or oxide semiconductor materials included in the first low refractive index layer 6 and the second low refractive index layer 7 include MgF 2 , SiO 2 , AlF 3 , CaF 2 , CeF 3 , CdF 3 , LaF 3 , Examples include LiF, NaF, NdF 3 , YF 3 , YbF 3 , Ga 2 O 3 , LaAlO 3 , Na 3 AlF 6 , Al 2 O 3 , MgO, and ThO 2 . Dielectric material or oxide semiconductor materials among others, MgF 2, SiO 2, CaF 2, CeF 3, LaF 3, LiF, NaF, NdF 3, Na 3 AlF 6, Al 2 O 3, it is MgO and ThO 2 From the viewpoint that the refractive index is low, MgF 2 and SiO 2 are particularly preferable. The first low-refractive index layer 6 and the second low-refractive index layer 7 may contain only one kind of these materials or two or more kinds.
 第一低屈折率層6及び第二低屈折率層7の層厚は、透明導電体100の光学特性に大きく影響しない層厚であることが好ましい。第一低屈折率層6及び第二低屈折率層7の層厚は0.1~15nmであることが好ましく、1~10nmであることがより好ましく、さらに好ましくは3~8nmである。 The layer thickness of the first low refractive index layer 6 and the second low refractive index layer 7 is preferably a layer thickness that does not greatly affect the optical characteristics of the transparent conductor 100. The thickness of the first low refractive index layer 6 and the second low refractive index layer 7 is preferably 0.1 to 15 nm, more preferably 1 to 10 nm, and further preferably 3 to 8 nm.
2.透明導電体の製造方法
 前述の透明導電体の製造方法には、以下の二つの工程が含まれることが好ましい。
 (i)透明基板上に、蒸着法又はスパッタ法で下地層を成膜する工程
 (ii)下地層上に、気相成膜法で透明金属膜を成膜する工程
 また、透明導電体の層構成に応じて、第一高屈折率層を成膜する工程、第一低屈折率層を成膜する工程、第二低屈折率層を成膜する工程及び第二高屈折率層を成膜する工程が含まれてもよい。
2. Method for Producing Transparent Conductor The method for producing a transparent conductor described above preferably includes the following two steps.
(I) A step of forming a base layer on the transparent substrate by vapor deposition or sputtering (ii) A step of forming a transparent metal film on the base layer by vapor deposition method Further, a layer of a transparent conductor Depending on the configuration, forming the first high refractive index layer, forming the first low refractive index layer, forming the second low refractive index layer, and forming the second high refractive index layer A step may be included.
2.1)下地層成膜工程
 透明基板上に、蒸着法又はスパッタ法で、前述の下地層を成膜する。ただし、金属の種類によっては、十分に蒸着できないものがある。このような金属原子を含む材料を蒸着すると、得られる下地層の層厚や密度にムラが生じる場合がある。したがって、下地層を蒸着法で成膜する場合には、材料中に含まれるモリブデンの量が多いことが好ましい。モリブデンの具体的な含有量は、20質量%以上であることが好ましく、より好ましくは40質量%以上であり、さらに好ましくは60質量%以上である。モリブデンが20質量%以上含まれる材料は、蒸着法で均一に成膜されやすい。またコストの面からもモリブデンが多い方が望ましい。
2.1) Underlayer film formation step The above-described underlayer is formed on a transparent substrate by vapor deposition or sputtering. However, some types of metal cannot be sufficiently deposited. When such a material containing a metal atom is deposited, unevenness may occur in the layer thickness and density of the obtained underlayer. Therefore, when the base layer is formed by an evaporation method, it is preferable that the amount of molybdenum contained in the material is large. The specific content of molybdenum is preferably 20% by mass or more, more preferably 40% by mass or more, and still more preferably 60% by mass or more. A material containing 20% by mass or more of molybdenum is easily formed into a uniform film by an evaporation method. From the viewpoint of cost, it is desirable that the amount of molybdenum is large.
 下地層を成膜するための蒸着法の例には、真空蒸着法、電子線蒸着法、イオンプレーティング法、イオンビーム蒸着法等が含まれる。蒸着時間は、成膜する下地層の層厚や及び成膜速度に合わせて適宜選択される。蒸着速度は、好ましくは0.1~15Å/秒であり、より好ましくは0.1~7Å/秒である。 Examples of vapor deposition methods for forming the underlayer include vacuum vapor deposition, electron beam vapor deposition, ion plating, and ion beam vapor deposition. The vapor deposition time is appropriately selected according to the thickness of the underlying layer to be deposited and the deposition rate. The deposition rate is preferably 0.1 to 15 Å / second, more preferably 0.1 to 7 Å / second.
 一方、下地層をスパッタ法で成膜する場合には、材料中に含まれるモリブデンの量は特に制限されず、下地層の組成に応じて適宜選択される。 On the other hand, when the underlayer is formed by sputtering, the amount of molybdenum contained in the material is not particularly limited and is appropriately selected according to the composition of the underlayer.
 スパッタ法の例には、イオンビームスパッタ法や、マグネトロンスパッタ法、反応性スパッタ法、2極スパッタ法、バイアススパッタ法等が含まれる。スパッタ時間は、所望の下地層の層厚、及び成膜速度に合わせて適宜選択する。スパッタ成膜速度は、好ましくは0.1~15Å/秒であり、より好ましくは0.1~14Å/秒である Examples of sputtering methods include ion beam sputtering, magnetron sputtering, reactive sputtering, bipolar sputtering, and bias sputtering. The sputtering time is appropriately selected according to the desired underlayer thickness and film formation rate. The sputter deposition rate is preferably 0.1 to 15 Å / sec, more preferably 0.1 to 14 Å / sec.
2.2)透明金属膜形成工程
 前述の下地層上に、気相成膜法で金属を積層して、透明金属膜を形成する。前述のように、下地層上に透明金属膜を成膜することで、透明金属膜の構成原子がマイグレートし難くなり、得られる透明金属膜の表面が平滑になりやすい。
2.2) Transparent Metal Film Forming Step A metal is laminated on the above-described underlayer by a vapor deposition method to form a transparent metal film. As described above, by forming a transparent metal film on the underlayer, constituent atoms of the transparent metal film are difficult to migrate, and the surface of the obtained transparent metal film is likely to be smooth.
 透明金属膜の成膜方法は、一般的な気相成膜法であれば特に制限されず、例えば真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等を使用することができる。 The method for forming the transparent metal film is not particularly limited as long as it is a general vapor deposition method. For example, a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like is used. Can do.
 これらの中でも、好ましくは真空蒸着法又はスパッタ法である。真空蒸着法又はスパッタ法によれば、均一かつ、所望の膜厚の透明金属膜が得られやすい。透明金属膜の成膜速度は、気相成膜法の種類や、所望の膜密度等に応じて適宜選択する。 Among these, the vacuum evaporation method or the sputtering method is preferable. According to the vacuum evaporation method or the sputtering method, a transparent metal film having a uniform and desired film thickness can be easily obtained. The film forming speed of the transparent metal film is appropriately selected according to the type of vapor phase film forming method, the desired film density, and the like.
2.3)その他の工程
 前述のように、透明導電体の製造方法には、所望の透明導電体の層構成に応じて、第一高屈折率層及び第二高屈折率層を成膜する工程並びに第一低屈折率層及び第二低屈折率層を成膜する工程が含まれてもよい。
2.3) Other Steps As described above, in the method for manufacturing a transparent conductor, the first high refractive index layer and the second high refractive index layer are formed in accordance with the layer configuration of the desired transparent conductor. The process and the process of forming the first low refractive index layer and the second low refractive index layer may be included.
 第一高屈折率層及び第二高屈折率層並びに第一低屈折率層及び第二低屈折率層の成膜方法は、いずれも一般的な気相成膜法であれば特に制限されず、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等であり得る。 The film formation methods of the first high refractive index layer, the second high refractive index layer, the first low refractive index layer, and the second low refractive index layer are not particularly limited as long as they are general vapor deposition methods. , Vacuum deposition, sputtering, ion plating, plasma CVD, thermal CVD, and the like.
3.透明導電体の物性について
 本発明の透明導電体は、波長400~800nmの範囲内の光の全範囲で、光の透過率が50%以上であり、好ましくは70%以上であり、さらに好ましくは80%以上である。波長400~800nmの範囲内の全範囲で、透過率が50%以上であると、透明導電体が着色し難い。
 また、波長400~800nmの範囲内の光の平均透過率は、50%以上であることが好ましく、より好ましくは70%以上であり、さらに好ましくは80%以上である。透明導電体の上記波長範囲の光の平均透過率が50%以上であると、透明導電体を高い透明性が要求される用途にも適用できる。
3. Regarding the physical properties of the transparent conductor The transparent conductor of the present invention has a light transmittance of 50% or more, preferably 70% or more, and more preferably over the entire range of light within a wavelength range of 400 to 800 nm. 80% or more. When the transmittance is 50% or more in the entire range of the wavelength range of 400 to 800 nm, the transparent conductor is difficult to be colored.
Further, the average transmittance of light within the wavelength range of 400 to 800 nm is preferably 50% or more, more preferably 70% or more, and further preferably 80% or more. When the average transmittance of light in the above-mentioned wavelength range of the transparent conductor is 50% or more, the transparent conductor can be applied to applications that require high transparency.
 一方、透明導電体の波長500~700nmの範囲内の光の平均反射率は、25%以下であることが好ましく、好ましくは20%以下であり、より好ましくは15%以下であり、さらに好ましくは10%以下である。上記透過率及び反射率は、透明導電体の表面の法線に対して5°傾けた角度から測定光を透明導電体に入射させて測定される。透過率及び反射率は、分光光度計で測定される。 On the other hand, the average reflectance of light within the wavelength range of 500 to 700 nm of the transparent conductor is preferably 25% or less, preferably 20% or less, more preferably 15% or less, and still more preferably. 10% or less. The transmittance and the reflectance are measured by allowing measurement light to enter the transparent conductor from an angle inclined by 5 ° with respect to the normal of the surface of the transparent conductor. Transmittance and reflectance are measured with a spectrophotometer.
 また、透明導電体は、波長400~800nmの範囲内の光の全範囲で、光の吸収率が30%以下であることが好ましく、より好ましくは15%以下であり、さらに好ましくは10%以下である。波長400~800nmの範囲内の全範囲で、吸収率が30%以下であると、透明導電体が着色し難い。
 また、波長400~800nmの範囲内の光の平均吸収率が25%以下であることが好ましく、好ましくは20%以下であり、より好ましくは15%以下であり、さらに好ましくは10%以下である。透明導電体の光の吸収率は、透明金属膜の吸収率や、各層を構成する材料の光吸収率を抑制することで、低減される。透明導電体の吸収率は、吸収率=100-(透過率+反射率)として算出される。
The transparent conductor preferably has a light absorptance of 30% or less, more preferably 15% or less, and even more preferably 10% or less over the entire range of light within a wavelength range of 400 to 800 nm. It is. If the absorptance is 30% or less over the entire range of wavelengths from 400 to 800 nm, the transparent conductor is difficult to be colored.
The average absorptance of light within the wavelength range of 400 to 800 nm is preferably 25% or less, preferably 20% or less, more preferably 15% or less, and further preferably 10% or less. . The light absorption rate of the transparent conductor can be reduced by suppressing the absorption rate of the transparent metal film and the light absorption rate of the material constituting each layer. The absorptance of the transparent conductor is calculated as absorptivity = 100− (transmittance + reflectance).
 透明導電体のL表色系におけるa値及びb値は±30以内であることが好ましく、より好ましくは±5以内であり、さらに好ましくは±3.0以内であり、特に好ましくは±2.0以内である。L表色系におけるa値及びb値は±30以内であれば、透明導電体が無色透明に観察される。L表色系におけるa値及びb値は、分光光度計で測定される。 The a * value and b * value in the L * a * b * color system of the transparent conductor are preferably within ± 30, more preferably within ± 5, and even more preferably within ± 3.0. Particularly preferably, it is within ± 2.0. If the a * value and b * value in the L * a * b * color system are within ± 30, the transparent conductor is observed as colorless and transparent. The a * value and b * value in the L * a * b * color system are measured with a spectrophotometer.
 透明導電体の表面電気抵抗値は、50Ω/□以下であることが好ましく、さらに好ましくは30Ω/□以下である。表面電気抵抗値が50Ω/□以下である透明導電体は、静電容量方式のタッチパネル用の透明導電パネル等に適用できる。透明導電体の表面電気抵抗値は、透明金属膜の膜厚等によって調整できる。透明導電体の表面電気抵抗値は、例えばJIS K7194、ASTM D257等に準拠して測定でき、また、市販の表面電気抵抗率計によっても測定できる。 The surface electric resistance value of the transparent conductor is preferably 50Ω / □ or less, more preferably 30Ω / □ or less. A transparent conductor having a surface electric resistance value of 50Ω / □ or less can be applied to a transparent conductive panel for a capacitive touch panel. The surface electrical resistance value of the transparent conductor can be adjusted by the film thickness of the transparent metal film or the like. The surface electrical resistance value of the transparent conductor can be measured according to, for example, JIS K7194, ASTM D257, etc., and can also be measured by a commercially available surface electrical resistivity meter.
 以下、本発明を実施例により更に詳細に説明する。しかしながら、本発明の範囲はこれによって何ら制限を受けない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited by this.
[実施例1]
 山中セミコンダクター製の白板基板(Φ30mm、厚さ2mm、波長570nmの光の屈折率1.52)を超純水(Millipore製の超純水装置Synergy UV)中で超音波洗浄した。超音波洗浄機はアズワン製VS-100IIIを用いた。上記白板基板(透明基板)上に、下記の方法で、下地層及び透明金属膜を成膜した。
[Example 1]
A white plate substrate manufactured by Yamanaka Semiconductor (Φ30 mm, thickness 2 mm, refractive index 1.52 of light having a wavelength of 570 nm) was ultrasonically cleaned in ultrapure water (an ultrapure water device Synergy UV manufactured by Millipore). As the ultrasonic cleaner, VS-100III manufactured by ASONE was used. An underlayer and a transparent metal film were formed on the white plate substrate (transparent substrate) by the following method.
(下地層)
 前記透明基板上に、シンクロン社製のBMC-800T蒸着機により、240A、成膜レート0.1Å/sでモリブデン(Mo)を抵抗加熱式蒸着した。下地層の層厚は0.2nmであった。層厚は、成膜レート及び成膜時間から算出した。
(Underlayer)
On the transparent substrate, molybdenum (Mo) was vapor-deposited by resistance heating using a BMC-800T vapor deposition machine manufactured by SYNCHRON Co., Ltd. at 240 A and a film formation rate of 0.1 kg / s. The layer thickness of the underlayer was 0.2 nm. The layer thickness was calculated from the film formation rate and the film formation time.
(透明金属膜)
 前記下地層上に、Optorun社のGener 1300(210Aの抵抗加熱)にてAgを蒸着し、Agからなる透明金属膜(膜厚6nm)を得た。成膜レートは3Å/sとした。膜厚は、J.A.Woollam Co.Inc.製のVB-250型VASEエリプソメーターで測定した。
(Transparent metal film)
On the underlayer, Ag was vapor-deposited by Genetor 1300 (210A resistance heating) manufactured by Optorun to obtain a transparent metal film (film thickness 6 nm) made of Ag. The film formation rate was 3 Å / s. The film thickness is J. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
[実施例2]
 実施例1の作製において、下地層の層厚を、2nmとした。
 それ以外は、実施例1と同様の方法で、透明基板/下地層/透明金属膜をこの順に有する透明導電体を作製した。
[Example 2]
In the manufacture of Example 1, the layer thickness of the underlayer was 2 nm.
Otherwise, a transparent conductor having a transparent substrate / underlayer / transparent metal film in this order was produced in the same manner as in Example 1.
[実施例3]
 実施例1の作製において、透明金属膜の膜厚を、15nmとした。
 実施例1の作製において、第一高屈折率層及び第二高屈折率層を以下の方法で成膜した。
 上記以外は、実施例1と同様の方法で、透明基板/第一高屈折率層/下地層/透明金属膜/第二高屈折率層をこの順に有する透明導電体を作製した。
(第一高屈折率層及び第二高屈折率層)
 シンクロン社製のBMC-800T蒸着機により、酸素導入下(2×10-2Pa)、320mA、成膜レート3Å/sでTiOを電子ビーム(EB)蒸着し、第一高屈折率層(層厚37nm、波長570nmの光の屈折率2.35)及び第二高屈折率層(層厚37nm、波長570nmの光の屈折率2.35)を、それぞれ成膜した。
[Example 3]
In the production of Example 1, the thickness of the transparent metal film was 15 nm.
In the production of Example 1, the first high refractive index layer and the second high refractive index layer were formed by the following method.
A transparent conductor having a transparent substrate / first high refractive index layer / underlayer / transparent metal film / second high refractive index layer in this order was produced in the same manner as in Example 1 except for the above.
(First high refractive index layer and second high refractive index layer)
A BMC-800T vapor deposition machine manufactured by SYNCHRON Co., Ltd. was used to deposit TiO 2 by electron beam (EB) at 320 mA, a deposition rate of 3 Å / s under introduction of oxygen (2 × 10 −2 Pa), and a first high refractive index layer ( A layer having a thickness of 37 nm and a light refractive index of 2.35 with a wavelength of 570 nm and a second high refractive index layer (layer thickness of 37 nm and a refractive index of light with a wavelength of 570 nm 2.35) were formed.
[実施例4]
 実施例3の作製において、透明金属膜の膜厚を、9nmとした。
 それ以外は、実施例3と同様の方法で、透明基板/第一高屈折率層/下地層/透明金属膜/第二高屈折率層をこの順に有する透明導電体を作製した。
[Example 4]
In the production of Example 3, the thickness of the transparent metal film was 9 nm.
Otherwise, a transparent conductor having a transparent substrate / first high refractive index layer / underlayer / transparent metal film / second high refractive index layer in this order was produced in the same manner as in Example 3.
[実施例5]
 実施例3の作製において、透明金属膜の膜厚を、9nmとした。
 実施例3の作製において、第一高屈折率層及び第二高屈折率層に加え、第一低屈折率層及び第二低屈折率層を、以下の方法で成膜した。
 上記以外は、実施例3と同様の方法で、透明基板/第一高屈折率層/第一低屈折率層/下地層/透明金属膜/第二低屈折率層/第二高屈折率層をこの順に有する透明導電体を作製した。
(第一低屈折率層及び第二低屈折率層)
 シンクロン社製のBMC-800T蒸着機により、酸素導入下(2×10-2Pa)、100mA、成膜レート10Å/sでSiOを電子ビーム(EB)蒸着し、第一低屈折率層(層厚5nm、波長370nmの光の屈折率1.46)及び第二低屈折率層(層厚5nm、波長370nmの光の屈折率1.46)をそれぞれ成膜した。
[Example 5]
In the production of Example 3, the thickness of the transparent metal film was 9 nm.
In the production of Example 3, in addition to the first high refractive index layer and the second high refractive index layer, the first low refractive index layer and the second low refractive index layer were formed by the following method.
Except for the above, in the same manner as in Example 3, transparent substrate / first high refractive index layer / first low refractive index layer / underlayer / transparent metal film / second low refractive index layer / second high refractive index layer The transparent conductor which has these in this order was produced.
(First low refractive index layer and second low refractive index layer)
Using a BMC-800T vapor deposition machine manufactured by Syncron Co., SiO 2 was deposited by electron beam (EB) with oxygen introduction (2 × 10 −2 Pa), 100 mA, and a deposition rate of 10 Å / s, and the first low refractive index layer ( A light refractive index of 1.46) having a layer thickness of 5 nm and a wavelength of 370 nm and a second low refractive index layer (layer refractive index of light having a thickness of 5 nm and a wavelength of 370 nm 1.46) were formed.
[実施例6]
 実施例1の作製において、第一高屈折率層、下地層、透明金属膜及び第二高屈折率層を以下の方法で成膜した。
 上記以外は、実施例1と同様の方法で、透明基板/第一高屈折率層/下地層/透明金属膜/第二高屈折率層をこの順に有する透明導電体を作製した。
(第一高屈折率層)
 透明基板上に、大阪真空社製のスパッタ装置を用い、Ar20sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート1.33Å/sでZnOをRFスパッタした。ターゲット-基板間距離は100mmとした。
 得られた第一高屈折率層の層厚は40nmであった。第一高屈折率層の波長570nmの光の屈折率は2.05であった。
(下地層)
 第一高屈折率層上に、大阪真空社製のスパッタ装置を用い、Ar20sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力50W、成膜レート0.33Å/sで、Moをスパッタ成膜し、平均厚さ0.2nmの成長核を形成した。成長核の平均厚さは、スパッタ装置のメーカー公称値の成膜速度から算出した。
(透明金属膜)
 続いて、Ar20sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート1.33Å/sでAgをRFスパッタした。ターゲット-基板間距離は100mmとした。
 得られたAgからなる透明金属膜(膜厚9nm)のプラズモン吸収率は、波長400~800nmの範囲内にわたって(全範囲で)10%以下であった。
(第二高屈折率層)
 透明基板上に、大阪真空社製のスパッタ装置を用い、Ar20sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート1.33Å/sでZnOをRFスパッタした。ターゲット-基板間距離は100mmとした。
 得られた第二高屈折率層の層厚は40nmであった。第二高屈折率層の波長570nmの光の屈折率は2.05であった。
[Example 6]
In the production of Example 1, the first high refractive index layer, the underlayer, the transparent metal film, and the second high refractive index layer were formed by the following method.
A transparent conductor having a transparent substrate / first high refractive index layer / underlayer / transparent metal film / second high refractive index layer in this order was produced in the same manner as in Example 1 except for the above.
(First high refractive index layer)
Using a sputtering apparatus manufactured by Osaka Vacuum Co., ZnO was RF-sputtered on a transparent substrate at Ar 20 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 1.33 Å / s. The target-substrate distance was 100 mm.
The layer thickness of the obtained first high refractive index layer was 40 nm. The refractive index of light having a wavelength of 570 nm of the first high refractive index layer was 2.05.
(Underlayer)
On the first high-refractive index layer, using a sputtering apparatus manufactured by Osaka Vacuum Co., Mo was sputter-deposited with Ar 20 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 50 W, and deposition rate 0.33 Å / s. Then, growth nuclei having an average thickness of 0.2 nm were formed. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
(Transparent metal film)
Subsequently, Ag was RF-sputtered at Ar 20 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 1.33 Å / s. The target-substrate distance was 100 mm.
The plasmon absorption rate of the obtained transparent metal film made of Ag (film thickness: 9 nm) was 10% or less over the entire wavelength range of 400 to 800 nm (over the entire range).
(Second high refractive index layer)
Using a sputtering apparatus manufactured by Osaka Vacuum Co., ZnO was RF-sputtered on a transparent substrate at Ar 20 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 1.33 Å / s. The target-substrate distance was 100 mm.
The layer thickness of the obtained second high refractive index layer was 40 nm. The refractive index of light having a wavelength of 570 nm of the second high refractive index layer was 2.05.
[比較例1]
 実施例1の作製において、下地層を、以下の方法で成膜した。
 それ以外は、実施例1と同様に透明導電体を作製した。
(下地層)
 シンクロン社製のBMC-800T蒸着機により、310mA、成膜レート5Å/sでAlを抵抗加熱式蒸着(RH)蒸着し、下地層(層厚1nm)を得た。
[Comparative Example 1]
In the production of Example 1, the underlayer was formed by the following method.
Other than that produced the transparent conductor similarly to Example 1. FIG.
(Underlayer)
Al was deposited by resistance heating vapor deposition (RH) at 310 mA and a film formation rate of 5 s / s using a BMC-800T vapor deposition machine manufactured by SYNCHRON Co., Ltd. to obtain an underlayer (layer thickness: 1 nm).
[比較例2]
 比較例1の作製において、透明金属膜の膜厚を10nmとした。
 それ以外は、比較例1と同様に透明導電体を作製した。
[Comparative Example 2]
In the production of Comparative Example 1, the thickness of the transparent metal film was 10 nm.
Other than that produced the transparent conductor similarly to the comparative example 1. FIG.
[評価]
(透明導電体の透過率及び吸収率)
 各実施例及び比較例で得られた透明導電体の波長400~800nmの範囲内の光に対する透過率及び吸収率を以下のように算出した。
 得られた透明導電体について、透明金属膜の表面(第二高屈折率層を表面に有する場合は第二高屈折率層の表面)の法線に対して5°傾けた位置から測定光を入射させた。そして、透明導電体の透過率及び反射率を分光光度計(日立ハイテク社製U4100)で測定した。さらに、光の吸収率を、吸収率=100-(透過率+反射率)として算出した。
 結果を、各透明導電体の層構成と併せて(表1、表2)、表3、図3のグラフ(透過率)及び図4のグラフ(吸収率)に示す。
[Evaluation]
(Transmissivity and absorption rate of transparent conductor)
The transmissivity and absorptance of light in the wavelength range of 400 to 800 nm of the transparent conductor obtained in each example and comparative example were calculated as follows.
With respect to the obtained transparent conductor, the measurement light is emitted from a position inclined by 5 ° with respect to the normal of the surface of the transparent metal film (or the surface of the second high refractive index layer if the second high refractive index layer is provided on the surface). Incident. And the transmittance | permeability and the reflectance of a transparent conductor were measured with the spectrophotometer (Hitachi High-Tech U4100). Further, the light absorptance was calculated as absorptance = 100− (transmittance + reflectance).
The results are shown in Tables 3 and 3 (graphs of transmittance) and FIG. 4 of graphs (absorbance) together with the layer configuration of each transparent conductor (Tables 1 and 2).
(表面電気抵抗)
 実施例及び比較例で得られた透明導電体の表面電気抵抗を、三菱化学アナリテック製のロレスタEP MCP-T360にて測定した。結果を表3に示す。
(Surface electrical resistance)
The surface electrical resistances of the transparent conductors obtained in the examples and comparative examples were measured by Loresta EP MCP-T360 manufactured by Mitsubishi Chemical Analytech. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
[まとめ]
 表3に示されるように、Alからなる下地層を有する比較例1及び比較例2(特に比較例2は特許文献4の実施例1とほぼ同様の構成を有している。)では、透明導電体の光の透過率が高まらず、光の吸収も十分に抑制できなかった。さらに、表面電気抵抗も高いことから、透明金属膜の表面の平滑性が低かったと推察される。
[Summary]
As shown in Table 3, in Comparative Example 1 and Comparative Example 2 having a base layer made of Al (particularly Comparative Example 2 has substantially the same configuration as Example 1 of Patent Document 4), it is transparent. The light transmittance of the conductor did not increase, and light absorption could not be sufficiently suppressed. Furthermore, since the surface electrical resistance is high, it is presumed that the surface smoothness of the transparent metal film was low.
 これに対し、Moからなる下地層を有する実施例1~6の透明導電体では、波長400~800nmの光の平均透過率が50%を超え、さらに波長400~800nmの範囲内の光の平均吸収率が25%以下であり、表面電気抵抗も20Ω/□以下であった。これは、上記下地層によって、表面平滑性の高い、透明金属膜が得られたと推察される。 On the other hand, in the transparent conductors of Examples 1 to 6 having the underlying layer made of Mo, the average transmittance of light with a wavelength of 400 to 800 nm exceeds 50%, and the average of light within a wavelength of 400 to 800 nm The absorptance was 25% or less, and the surface electrical resistance was also 20Ω / □ or less. This is presumed that a transparent metal film having high surface smoothness was obtained by the underlayer.
 特に、透明金属膜が、第一高屈折率層及び第二高屈折率層で挟み込まれた実施例3~6の透明導電体では、波長400~800nmの範囲内の光の平均透過率が83%以上であり、光透過性が良好であった。
 また、実施例4、5の比較から、第一低屈折率層及び第二低屈折率層を形成した実施例5では、光透過性が向上しており、低屈折率層を形成することも有用であることがわかった。
 さらに、実施例4、6の比較から、スパッタ法で成膜した実施例6でも、光透過性が向上しており、スパッタ法を用いた成膜も有用であることがわかった。
In particular, in the transparent conductors of Examples 3 to 6 in which the transparent metal film is sandwiched between the first high refractive index layer and the second high refractive index layer, the average transmittance of light in the wavelength range of 400 to 800 nm is 83. %, And the light transmittance was good.
Further, from the comparison of Examples 4 and 5, in Example 5 in which the first low refractive index layer and the second low refractive index layer were formed, the light transmittance was improved, and the low refractive index layer may be formed. It turned out to be useful.
Further, from the comparison between Examples 4 and 6, it was found that also in Example 6 formed by sputtering, light transmittance was improved, and film formation using sputtering was also useful.
 本発明で得られる透明導電体は、表面電気抵抗値が低く、かつ透明性にも優れる。したがって、各種方式のディスプレイをはじめ、タッチパネルや携帯電話、電子ペーパー、各種太陽電池、各種エレクトロルミネッセンス調光素子等の様々なオプトエレクトロニクスデバイスに好ましく用いられる。 The transparent conductor obtained by the present invention has a low surface electric resistance value and excellent transparency. Therefore, it is preferably used for various types of optoelectronic devices such as various types of displays, touch panels, mobile phones, electronic paper, various types of solar cells, and various types of electroluminescent light control elements.
 1 透明基板
 2 下地層
 3 透明金属膜
 4 第一高屈折率層
 5 第二高屈折率層
 6 第一低屈折率層
 7 第二低屈折率層
 100 透明導電体
DESCRIPTION OF SYMBOLS 1 Transparent substrate 2 Underlayer 3 Transparent metal film 4 First high refractive index layer 5 Second high refractive index layer 6 First low refractive index layer 7 Second low refractive index layer 100 Transparent conductor

Claims (4)

  1.  透明基板と、
     モリブデンを含有し、かつ、層厚が2nm以下である下地層と、
     前記下地層に隣接して配設され、かつ、膜厚が15nm以下である透明金属膜と、
     をこの順に含む透明導電体。
    A transparent substrate;
    An underlayer containing molybdenum and having a layer thickness of 2 nm or less;
    A transparent metal film disposed adjacent to the base layer and having a thickness of 15 nm or less;
    Transparent conductors including
  2.  前記透明基板と前記下地層との間又は前記透明金属膜上の少なくとも一方に、前記透明基板より、波長570nmの光の屈折率が高い誘電性材料又は酸化物半導体材料を含む高屈折率層をさらに有する、請求項1に記載の透明導電体。 A high refractive index layer including a dielectric material or an oxide semiconductor material having a higher refractive index of light having a wavelength of 570 nm than that of the transparent substrate is provided between the transparent substrate and the base layer or on the transparent metal film. The transparent conductor according to claim 1, further comprising:
  3.  前記透明基板と前記下地層との間又は前記透明金属膜上の少なくとも一方に、波長570nmの光の屈折率が1.8以下である誘電性材料又は酸化物半導体材料を含む低屈折率層をさらに有する、請求項1又は請求項2に記載の透明導電体。 A low refractive index layer containing a dielectric material or an oxide semiconductor material having a refractive index of light having a wavelength of 570 nm of 1.8 or less between at least one of the transparent substrate and the base layer or on the transparent metal film. Furthermore, the transparent conductor of Claim 1 or Claim 2 which has.
  4.  透明基板と、モリブデンを含有し、かつ、層厚が2nm以下である下地層と、膜厚が15nm以下である透明金属膜と、をこの順に有する透明導電体の製造方法であって、
     前記透明基板上に、蒸着法又はスパッタ法で前記下地層を成膜する工程と、
     前記下地層上に、気相成膜法で前記透明金属膜を成膜する工程と、
     を含む透明導電体の製造方法。
    A method for producing a transparent conductor comprising a transparent substrate, molybdenum, an underlayer having a layer thickness of 2 nm or less, and a transparent metal film having a film thickness of 15 nm or less in this order,
    Forming the underlayer on the transparent substrate by vapor deposition or sputtering;
    Forming the transparent metal film on the underlayer by a vapor deposition method;
    The manufacturing method of the transparent conductor containing this.
PCT/JP2014/064369 2013-06-07 2014-05-30 Transparent conductor and method for producing same WO2014196460A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-120435 2013-06-07
JP2013120435A JP2016149183A (en) 2013-06-07 2013-06-07 Transparent electric conductor and method for producing the same

Publications (1)

Publication Number Publication Date
WO2014196460A1 true WO2014196460A1 (en) 2014-12-11

Family

ID=52008106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064369 WO2014196460A1 (en) 2013-06-07 2014-05-30 Transparent conductor and method for producing same

Country Status (2)

Country Link
JP (1) JP2016149183A (en)
WO (1) WO2014196460A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104766647A (en) * 2015-04-02 2015-07-08 江苏双星彩塑新材料股份有限公司 ITO transparent conducting thin film
CN113345644A (en) * 2021-06-07 2021-09-03 北方民族大学 Flexible Ag/Zn conductive film and preparation method and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004140319A (en) * 2002-08-19 2004-05-13 Hitachi Metals Ltd Thin film wiring
JP2005310810A (en) * 2004-04-16 2005-11-04 Asahi Glass Co Ltd Laminate for forming substrate having wiring, substrate having wiring and its forming method
JP2005308774A (en) * 2004-04-16 2005-11-04 Asahi Glass Co Ltd Laminate for forming wiring substrate, wiring substrate ans its forming method
JP2007017926A (en) * 2005-06-07 2007-01-25 Kobe Steel Ltd Display device
JP2007191761A (en) * 2006-01-19 2007-08-02 Idemitsu Kosan Co Ltd Stacked structure, electrode for electric circuit using the same and method for producing the same
JP2008263191A (en) * 2008-03-28 2008-10-30 Hitachi Metals Ltd Metal thin-film wiring
JP2009301836A (en) * 2008-06-12 2009-12-24 Hitachi Ltd Plasma display panel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004140319A (en) * 2002-08-19 2004-05-13 Hitachi Metals Ltd Thin film wiring
JP2005310810A (en) * 2004-04-16 2005-11-04 Asahi Glass Co Ltd Laminate for forming substrate having wiring, substrate having wiring and its forming method
JP2005308774A (en) * 2004-04-16 2005-11-04 Asahi Glass Co Ltd Laminate for forming wiring substrate, wiring substrate ans its forming method
JP2007017926A (en) * 2005-06-07 2007-01-25 Kobe Steel Ltd Display device
JP2007191761A (en) * 2006-01-19 2007-08-02 Idemitsu Kosan Co Ltd Stacked structure, electrode for electric circuit using the same and method for producing the same
JP2008263191A (en) * 2008-03-28 2008-10-30 Hitachi Metals Ltd Metal thin-film wiring
JP2009301836A (en) * 2008-06-12 2009-12-24 Hitachi Ltd Plasma display panel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104766647A (en) * 2015-04-02 2015-07-08 江苏双星彩塑新材料股份有限公司 ITO transparent conducting thin film
CN104766647B (en) * 2015-04-02 2017-02-01 江苏双星彩塑新材料股份有限公司 ITO transparent conducting thin film
CN113345644A (en) * 2021-06-07 2021-09-03 北方民族大学 Flexible Ag/Zn conductive film and preparation method and application thereof

Also Published As

Publication number Publication date
JP2016149183A (en) 2016-08-18

Similar Documents

Publication Publication Date Title
JP5549216B2 (en) Transparent conductive laminate, method for producing the same, and touch panel
JP6314463B2 (en) Transparent conductor
JP5617276B2 (en) Transparent conductive laminate and method for producing the same
JP2011194679A (en) Transparent and conductive laminate, method for manufacturing same, and touch panel
JP6292225B2 (en) Transparent conductor
JP4349794B2 (en) Method for producing conductive transparent substrate with multilayer antireflection film
JP6319302B2 (en) Transparent conductor and method for producing the same
WO2014196460A1 (en) Transparent conductor and method for producing same
WO2015068738A1 (en) Transparent conductive body
CN111883284A (en) Double-sided conductive film, film coating method and touch screen
CN111446024A (en) Transparent conductive film and touch screen
CN111446028A (en) Transparent conductive film and touch screen
JP4406237B2 (en) A method for producing a transparent substrate with a multilayer film having conductivity.
WO2014181538A1 (en) Transparent conductor and method for producing same
JP2015219690A (en) Transparent conductive device and touch panel
WO2015087895A1 (en) Transparent conductive body
CN212516601U (en) Transparent conductive film and touch screen
WO2015125558A1 (en) Method for manufacturing transparent electroconductive body and electroconductive body
WO2015011928A1 (en) Method for producing transparent conductive body
WO2015025525A1 (en) Transparent conductive body
WO2015053371A1 (en) Transparent conductor
KR101689852B1 (en) Multi-layered transparent electrode comprising grid pattern structure
JP2016146052A (en) Transparent conductor, and touch panel including the same
JP2004175074A (en) Transparent substrate with multilayer film having electroconductivity
JP2016177940A (en) Method for producing transparent conductive body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14807118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14807118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP