JP2004140319A - Thin film wiring - Google Patents
Thin film wiring Download PDFInfo
- Publication number
- JP2004140319A JP2004140319A JP2003099967A JP2003099967A JP2004140319A JP 2004140319 A JP2004140319 A JP 2004140319A JP 2003099967 A JP2003099967 A JP 2003099967A JP 2003099967 A JP2003099967 A JP 2003099967A JP 2004140319 A JP2004140319 A JP 2004140319A
- Authority
- JP
- Japan
- Prior art keywords
- film
- wiring
- alloy
- resistance
- thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Liquid Crystal (AREA)
- Electroluminescent Light Sources (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Physical Vapour Deposition (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Thin Film Transistor (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、例えば液晶ディスプレイ(以下、LCDという)、プラズマディスプレイパネル(以下、PDPという)、フィールドエミッションディスプレイ(以下、FEDという)、エレクトロルミネッセンスディスプレイ(以下、ELDという)、電子ペーパー等に利用される電気泳動型ディスプレイ等の表示装置(いわゆるフラットパネルディスプレイ、以下、FPDという)に加え、各種半導体デバイス、薄膜センサー、磁気ヘッド等の薄膜電子部品において、低い電気抵抗と耐食性、耐熱性、密着性を要求される薄膜配線に関するものである。
【0002】
【従来の技術】
ガラス基板上に薄膜デバイスを作製するLCD、PDP、有機ELディスプレイ(以下、OELDという)等などのFPD、薄膜センサ−、セラミック基板上に素子を形成する磁気ヘッド等に用いる電気配線膜、電極等には、近年、耐食性、耐熱性、基板との密着性に優れる金属であるAl合金膜が用いられている。
【0003】
Al合金の中で、特にAl−Nd合金膜は、耐食性、耐熱性、密着性に優れ、薄膜デバイスを製造する際の加熱により発生するヒロックが少ない。さらに、室温の基板上に成膜した状態での比抵抗は15μΩcmと高いものの、250℃以上の加熱処理等を行うことにより5μΩcm程度に低減することが可能なため、優れた特性を兼ね備えた金属膜であることが知られている。しかしながら、Al合金膜であっても、今後の大型ディスプレイ、携帯機器用ディスプレイ等で要求されるさらなる高精細化、動画に対応した高速応答性の向上を実現する為には十分とは言えない。
【0004】
液晶ディスプレイにおいては、現在主流のアモルファスシリコンTFT駆動方式よりも高速応答が可能なポリシリコンTFT駆動方式を利用した液晶TV等の開発が進められている。ポリシリコンTFTの製造プロセスではアモルファスシリコンTFTの製造プロセスよりもさらに高いプロセス温度となるために、配線材料にはさらに高い耐熱性が要求される。このため、融点の低いAl合金では十分な耐熱性が確保できない。また、ポリシリコンTFTを駆動素子として用いる自発光の平面表示装置として有機ELディスプレイが注目されている。有機ELディスプレイでは液晶ディスプレイと異なり電流駆動となるためさらに低い電気抵抗の配線が求められている。そのため、Al合金に替えてさらに低電気抵抗であるAgやCuの適用が検討されている。
【0005】
また、特に小型の携帯情報端末においては、耐衝撃性や軽量化のためにガラス基板等に替えて、樹脂基板や樹脂フィルム等を用いた表示装置が要求されている。既述のようにAl合金により低電気抵抗の配線膜を得るには加熱処理が必要であり、樹脂基板や樹脂フィルム等の場合に十分な加熱処理を行えないため、低電気抵抗を得難いという欠点も有している。このため、加熱処理を行わないプロセスにおいてもAl合金より低電気抵抗のAgやCuの適応が検討されている。
【0006】
【発明が解決しようとする課題】
AgやCuはAlより融点が高く、低電気抵抗であるために今後の配線材料として有望であるが、表示装置に用いる基板に対する密着性が低く、さらに耐熱性、耐食性が低いという欠点を有する。
例えば、AgをFPDの配線膜として用いた場合、基板(例えばガラスやSiウェハ−、樹脂基板、樹脂フィルム、耐食性の高い金属箔、例えばステンレス箔等)に対する膜の密着性が低く、プロセス中に剥がれが生じるという問題を生じる。また、表示装置製造時に基板材質や加熱雰囲気の影響により膜粒子が凝集し、膜表面の平滑性が低下したり、膜の連続性が失われることにより大幅に電気抵抗が増大することがある。また、耐食性が低いことに起因して、基板上に成膜した後、数日大気に放置しただけで変色したり、ディスプレイの製造時に使用する薬液により腐食され、大幅に電気抵抗が上昇したり、膜が剥離する等の問題があった。
【0007】
上記の問題を解決するために、特開平8−260135号公報にはAgにCuを0.1原子%以上添加したAg合金タ−ゲットを用いる方法が、特開平11−119664号公報には接着層上にAgにPt、Pd、Au、Cu、Niを添加する合金を用いた反射型表示装置用電極基板が提案されている。また、特開2001―192752号公報ではAgにPdを0.1〜3質量%、Al、Au、Pt、Cu、Ta、Cr、Ti,Ni,Co,Si等を合計で0.1〜3質量%添加する合金を用いた電子部品用金属材料等が提案されている。
【0008】
しかし、これらに開示される方法によりAgに元素を添加するだけでは、低電気抵抗、密着性、耐食性、耐熱性、パタニング性の全てを満足できる合金膜を得ることは出来ない。具体的には、例えば遷移金属であるTa、Cr、Ti,Ni、Co等や半金属であるAl、Si等の元素を添加した場合、密着性や耐食性を確保するためには、上述の添加量では不十分であり、2原子%を越える添加量を加える必要がある。するとAgの持つ低抵抗な特徴が失われてしまう場合が多く、またパタニング性が低下してしまう。また貴金属元素であるPd、Pt、Auや同族元素であるCuを添加した場合は電気抵抗の増加は少ないが耐熱性に問題がある。
【0009】
また、Cuに対しては希土類元素を0.02〜10原子%添加することでエレクトロマイグレ−ションを改善したCu配線膜を形成する方法が特開2001−11610号公報で提案されている。しかし、AgやCuは透明電極パットであるインジュウム錫酸化物(以下、ITOという)との接触抵抗が大きく実用上直接接続が困難であることが明らかとなっている。
【0010】
このため、上記のようにCuやAgに添加元素を加えて膜特性を改善する方法だけでなく、特開2001−242483号公報ではAgまたはAg合金膜に、Agより溶解反応の標準電極電位の低い金属元素または合金との積層配線とする方法として、例えばMoまたはMoを主体とするMo−Zr、Mo−Cr、Mo−Hf等のMo合金膜で積層することでITOとの接触抵抗を改善する液晶表示装置用の配線構造が述べられている。
また、CuについてはJ.Apply.Phys.Vol.90、P411(1.July 2001)でTFT−LCDのゲ−ト電極として低抵抗なCu膜を用いる場合に、Cuの拡散を抑制し、さらにCuを保護するために、CuをTiやTiNと積層した構造が述べられている。すなわち、ガラス上にTiN、Ti、Cuを積層して、ドライエッチングし、配線状にした後、熱処理することでCuの上部、サイド部にTiOxを形成させる方法が提案されている。
【0011】
しかし、これらの方法では、電子部品用薄膜配線として広い分野で安定した膜特性を得るために必要な、耐熱性、密着性、耐食性の改善と、配線を形成する際に必要なフォトエッチングによるパタ−ニング性の改善には不十分であった。例えばAgに対して、Mo−Zr,Mo−Hf、Mo−CrのMo合金膜を積層する場合、ITOとの接触抵抗は改善できるが、MoにTi、ZrやHfを添加したMo合金は抵抗値が高くなるとともに、Ti、Zr、HfがAgに拡散し抵抗値が増加する問題がある。またCrを添加した物はウェットエッチングの際に有害な六価クロムが発生する問題がある。また、純Moでは耐湿性が低く製造プロセス中で変質やFPD製造後での信頼性に問題がある。さらにCuにTiNやTiを積層した場合FPDの大面積にTiをArと窒素の混合ガスを用いて反応性スパッタを行うために、大型のFPD基板上に安定に膜を形成する際の安定性に問題がある。また、Tiは耐食性が高くウェットエッチングでのパタニングが困難となり、高価なドライエッチング手法を用いることとなり、高コストとなる問題がある。
本発明の目的は、低い電気抵抗と耐熱性、耐食性、そして基板への密着性およびパタニング性を兼ね備えた電子部品用薄膜配線を提供することにある。
【0012】
【課題を解決するための手段】
本発明者は、上記の課題を解決するべく、鋭意検討を行った結果、CuまたはAgを主成分とする膜と、Moを主体としてVおよび/またはNbを含有する合金膜を積層した金属配線とすることにより、本来AgまたはCuの持つ低い電気抵抗を大きく損なうことなく耐食性を向上し、さらに基板への密着性、パタニング性も改善した電子部品用配線膜を得ることが可能な事を見いだし、本発明に到達した。
【0013】
すなわち、本発明はCuまたはAgを主成分とする膜と、Moを主体としてVおよび/またはNbを含有する合金膜とが積層されている薄膜配線である。
【0014】
また、CuまたはAgを主成分とする膜を中間層として、該中間層の上層と下層をMoを主体としてVおよび/またはNbを含有する合金膜で形成する3層で積層されている薄膜配線である。
【0015】
また、前記のMoを主体とする合金は、Vおよび/またはNbを合計で3〜50原子%含有する薄膜配線である。
【0016】
また、前記CuまたはAgを主成分とする膜は、遷移金属元素および/または半金属元素を合計で2.0原子%以下含有する合金膜である前記記載の薄膜配線である。
また、前記Moを主体としてVおよび/またはNbを含有する合金膜に、さらにNiおよび/またはCuを添加した薄膜配線である。
【0017】
また、本発明は、表示装置、有機ELディスプレイ、表示装置用ポリシリコンTFT用の配線膜である上記記載の積層構造を有する薄膜配線である。
また、本発明は、表示装置に用いられるガラス基板またはSiウェハー上に形成された上記記載の積層構造を有する薄膜配線である。
【0018】
【発明の実施の形態】
本発明の特徴は、AgまたはCu自体の低電気抵抗をできる限り維持しながら、AgまたはCuの有する欠点である密着性や耐食性、耐熱性を補うのに最適な積層構造およびその合金構成を見いだしたところにある。
【0019】
通常、Ag膜またはCu膜を作製すると、膜としての電気抵抗は低いが、表示装置(例えば液晶ディスプレイなど)を製造する際のプロセスにおいて種々の問題が発生することは上述の通りである。つまり、加熱による膜成長や凝集等が起こり、膜表面はより凹凸のある形状となったり、ボイドが発生したりする。そして、その加熱雰囲気によっては膜表面が変色し、電気抵抗の増大の原因となる。そこで、本発明ではCuまたはAgを主成分とする膜と、Moを主体としてVおよび/またはNbを含有する合金を積層した金属配線とすることにより、本来AgまたはCuの持つ低い電気抵抗を維持しつつ、耐食性の向上、さらに基板への密着性、パタニング性を改善することが可能な優れた特性を有する電子部品用薄膜配線やこの薄膜配線を用いた有機ELディスプレイ等の表示装置を得ることができる。
なお、本発明におけるCuまたはAgを主成分とする膜には、不可避的不純物を含む純度99.9%以上の純Cuまたは純Ag膜が含まれる。
【0020】
以下に、本発明の電子部品用薄膜配線において、CuまたはAgを主成分とする膜と、Moを主体としてVおよび/またはNbを含有する合金を積層した金属配線とする理由を説明する。CuまたはAgが抱える問題は、上述のように耐食性、耐熱性、密着性等である。
【0021】
特にCuおよびAgは、それ自体が直接、大気や薬液に触れることにより変質し耐食性に問題がある。このため、Moを主体としてVおよび/またはNbを含有する合金膜で、Cu膜またはAg膜の表面を覆うことにより薄膜配線の耐食性を大幅に改善できる。MoにVおよび/またはNbを含有する理由は、Moのみでは耐湿性が低くCu膜またはAg膜を保護するためには不十分であるが、Vおよび/またはNbを含有するMo合金膜とすることで耐湿性が向上し、Cu膜またはAg膜の表面を保護することが可能となるからである。
【0022】
CuまたはAgは電子部品用の種々の基板材料であるが、ガラス基板、Siウェハ−や樹脂基板等に対して密着性が低いことは上述の通りである。このため、基板とCuまたはAgを主成分とする膜の間に、基板とCuまたはAgの双方と密着性のよいMo合金膜を形成することで、密着性を改善できる。Moは基板材料であるガラス基板やSiウェハ−に対して密着性が高く、CuまたはAgを主成分とする膜との密着性にも優れる。このため、上述のように耐食性に優れたMoにVおよび/またはNbを添加した合金膜を、CuまたはAgを主成分とする膜と基板の間に形成する積層構造とするのが望ましい。また、MoにVおよび/またはNbを添加した合金膜は膜応力が低く、FPD用の大型基板に形成した場合に基板のそり等を押さえられる利点もある。
【0023】
耐熱性には物質の融点が大きく関係する。低融点の材料でかつ高い純度を有するほど、低い温度で原子の移動が起こり結晶粒の成長等によりその形態が変化し易く耐熱性は劣る。CuまたはAgの融点は1000℃前後であり、FPD製造時等の数100℃の加熱工程により、原子が移動し、凝集等により耐熱性が低下することは上述の通りである。一方、Moの融点はCuまたはAgの倍以上高く、数100℃程度の加熱では原子が移動しにくいため、耐熱性に優れている。このため、CuまたはAgを主成分とする膜の下層または上層、またはその両方にMo合金膜を形成することは、加熱時のCuやAgの原子移動を抑制することから耐熱性を向上させる効果がある。しかし、Moのみでは上述のように耐食性が劣るために、MoにVおよび/またはNbを添加した合金膜を用いることが適している。
【0024】
さらに、本発明者は、MoにVおよび/またはNbを添加したMo合金膜に、さらにNiおよび/またはCuを添加することで、Mo合金膜とCuおよび/またはAgを主体とする膜との密着性の改善をさらに高めることができるとともに、CuまたはAgを主体とする膜の抵抗値をさらに低減できる効果があることを見出した。
その理由は明確ではないが、以下のように考えられる。Mo、VおよびNbは、CuやAgに比べて原子半径が大きい元素であるため、MoにVおよび/またはNbを添加したMo合金と、Cuおよび/またはAgを主体とする膜を積層する場合に結晶格子の整合性が乱れる。このため、上記Mo合金膜上にCuおよび/またはAgを主体とする膜を成膜する場合に膜の初期形成層では結晶格子の乱れが相対的に大きくなり、抵抗値が微増するものと考えられる。そこで、AgまたはCuに原子半径の大きさが近く、Moと比較してAg、Cuに電子状態の近いNiおよび/またはCuを添加することで、結晶格子の整合性が向上し、Cuおよび/またはAgを主体とする膜の初期形成層における結晶格子の乱れが抑制され、密着性が向上するとともに抵抗値を低減できるものと考えられる。Ni、Cuと同様な元素としてはPd、Pt等があるがこれらは貴金属であり高価であるとともに、原子半径が大きくなるため、添加した場合の効果も少ないので、添加元素としてはNi、Cuが好ましい。
【0025】
CuまたはAgを主成分とする膜の下層または上層、あるいはその両方の層として、MoにVおよび/またはNbを添加した合金膜を形成することで耐食性、密着性、耐熱性が改善されることは上述の通りである。さらに、本発明の積層構造膜はパタニング性にも優れる。Cuを主成分とする膜とMoにVおよび/またはNbを添加した合金膜を積層した膜は、例えば、硝酸第2セリュウムアンモニュウム+硝酸系の水溶液に溶解し、一度のエッチング工程で薄膜パタ−ンを得ることができる。また、Agを主成分とする膜とMoにVおよび/またはNbを添加した合金膜を積層した膜は、例えば、リン酸+硝酸+酢酸系の水溶液に溶解して、一度のエッチング工程で同様に薄膜パタ−ンを得ることが可能である。このように、CuまたはAgを主成分とする膜の下層または上層、あるいは両方の層として、MoにVおよび/またはNbを添加した合金膜を形成した膜は、安価なウェットエッチング工程で組成を選択したエッチング液を用いて容易に薄膜パタ−ンを形成できる利点を有する。
【0026】
また、Cuを主成分とする膜とMoにVおよび/またはNbを添加した合金膜を積層した膜ではドライエッチングにより安定に薄膜パタ−ンを形成することも可能である。また、本発明のMo合金膜はその合金元素の添加量を最適化することで、積層膜上に絶縁保護膜を形成し、その保護膜にスル−ホ−ル等を形成する際のドライエッチングを行う場合のAgやCuのバリヤ膜として用いること可能である。
【0027】
上述のように、本発明のCuまたはAgを主成分とする膜の下層または上層、あるいは両方の層として、MoにVおよび/またはNbを添加した合金膜を形成することで耐食性、密着性、耐熱性、パタニング性に優れた電子部品用薄膜金属配線を得ることが可能となるものである。
【0028】
また、MoにVおよび/またはNbの添加量は合計で3〜50原子%が望ましい。それは、3原子%以下では耐食性の改善効果がなく、50原子%を越えるとエッチング時に残さが生じやすくなるためである。また、上記Mo合金に、さらなる密着性の向上と抵抗値の低減のためにNiおよび/またはCuを添加する場合は、その添加量としては3〜30原子%が望ましい。それは3原子%以下では、CuまたはAgを主成分とする膜の低抵抗化の効果がなく、30原子%を越えるとMo合金膜と基板との密着性が低下してしまうためである。また、Moに添加するCuが30%を越えるとMo合金膜の耐食性も低下してしまう。このため、Niおよび/またはCuの添加量は30原子%以下が望ましい。
【0029】
また、CuまたはAgを主成分とする膜は、遷移金属元素および/または半金属元素を合計で2.0原子%以下含有する合金膜であることが望ましい。これらの元素を添加しCu合金膜、Ag合金膜とすることで耐食性、耐熱性、密着性の改善に効果がある。添加する遷移金属元素としては、耐食性が向上するため、IVa族ではTi、Zr、Va族ではV、Nb、VIIa族ではMn、VIII族ではNiが望ましい。また耐熱性が向上する希土類元素の中ではNd、Sm、Gd、Dyが望ましい。さらに密着性の向上に効果のある添加元素としては同族元素であるCu、Ag、Auを加えることも可能である。また、密着性と耐熱性の向上に効果のある半金族であるSi、Ge、Sn、Znを加えても良い。さらに耐食性を向上させるために貴金属元素であるPt、Ir、Os、Ru、Pd等を加えても良い。これらの添加元素は単独で加えても膜特性の改善効果があるが、種々の元素を組み合わせて複合添加することでさらに改善効果を得ることが可能となる。その添加総量は2.0原子%を越えると抵抗値が増加して、配線材料としてのCuやAgの持つ低抵抗な利点が失われてしまうため、合計で2.0原子%以下であることが望ましい。
【0030】
本発明の薄膜配線を形成する際に用いる基板として、ガラス基板、Siウェハーを用いることが好適である。これらの基板は平面表示装置を製造する上でプロセス安定性に優れるとともに、本発明の薄膜配線を形成する際に基板を加熱することで、室温で成膜する場合より低い電気抵抗と高い密着性を得ることが可能となるためである。また、表示素子を製造する場合に用いる基板は、上述のようにガラス基板、Siウェハーが好適であるが、スパッタリングで薄膜を形成できるものであればよく、例えば樹脂基板、金属基板、その他樹脂箔、金属箔等でもよい。
【0031】
また、本発明は、上記記載の積層構造を有することで、低抵抗でかつ耐食性、耐熱性、密着性、パタニング性に優れた薄膜配線であるため、表示装置、有機ELディスプレイ、表示装置用ポリシリコンTFT用の配線膜に最適である。
【0032】
本発明の薄膜配線は、安定した電気抵抗と耐食性、耐熱性、密着性、パタニング性を得るために、膜厚としてはMoにVおよび/またはNbを添加した合金膜は10〜50nm、CuまたはAgあるいはCuまたはAgを主体とする合金膜は100〜300nmとすることが好ましい。それは、前記Mo合金膜が10nm以下では下層膜としての密着性、上層膜として耐食性を得るのに不十分であること、また、50nmを越えると膜厚が厚くなりCuまたはAg膜あるいはCuまたはAgを主体とする合金膜と積層する際に時間が掛かり生産性が低下するためである。また、CuまたはAg膜あるいはCuまたはAgを主体とする合金膜が100nmより薄くなると抵抗値が増加するため好ましくない。また、300nmを越えると生産性が低下する。さらに前記Mo合金膜とCuまたはAg膜あるいはCuまたはAgを主体とする合金膜の膜厚の総和は100〜300nm以下とすることが望ましい。膜厚が100nm未満であると、膜が薄いために電子の表面散乱影響で電気抵抗が上昇してしまうとともに、膜の表面形態が変化し易くなる。一方、膜厚が300nmを超えると、電気抵抗値は低いが、膜応力によって膜が剥がれ易くなったり、膜を形成する際に時間が掛かり、生産性が低下するためである。
【0033】
【実施例】
(実施例1)
ガラス基板、またはSiウェハ−に、MoにVおよび/またはNbを加えたMo合金膜、さらにNiおよびまたはCuを加えたMo合金膜、Ag、Cuおよび種々のAg合金膜、Cu合金膜を種々の構成で形成したAg系積層膜、Cu系積層膜を作製した。また、比較のためにAgまたはAg合金膜に、MoにCr、Zr、Hfを加えたMo合金を下地膜または上部膜として形成したAg系積層膜と、CuにTiまたはTiN膜を形成したCu積層膜を作製した。この際TiNを形成する場合はTiのタ−ゲットを用いてArと窒素の混合ガスを用いて反応性スパッタにより形成した。その他の膜は所定の組成のタ−ゲット材を用いてArガスのみでスパッタして形成した。各々の膜厚はMo合金膜、Ti、TiNを30nm、Ag、Cuおよび種々のAg合金膜、Cu合金膜の膜厚を200nmとした。
【0034】
これらの積層膜について膜特性として、4探針法で積層膜厚と抵抗値から求めた比抵抗値を測定した。また、膜の密着性を評価するために、積層膜表面にスコッチテープを貼りつけ、斜め45°方向に引き剥がした際の基板上に残った面積を20cm2あたりの面積率を求めて密着力として評価した。さらに、所定製品の製造工程を経た後での膜特性変化を評価するために、耐食性評価としては、積層膜を温度80℃、湿度90%の大気中に24時間放置した後の比抵抗値で、耐熱性評価としては、積層膜を1×10− 3Pa以下の真空中で温度250℃、1時間の加熱処理を施した後の比抵抗値で評価した。パタニング性評価として、東京応化製OFPR−800ポジ型レジストをスピンコートにより形成し、フォトマスクを用いて紫外線でレジストを露光後、有機アルカリ現像液NMD−3で現像し、レジストパターンを作製した。その後、Ag系積層膜はリン酸、硝酸、酢酸の混合液で、Cu系積層膜は硝酸第2セリュウムアンモニュウム、硝酸の混合水溶液を用いてエッチングした後、レジストパタ−ンと積層膜のパタ−ン幅のずれ、パタ−ンエッジの形状、その周囲の残さ等を光学顕微鏡で観察した。その時、膜剥れ、端部形状の乱れおよび残さが無いものを良好と評価した。以上の測定および評価結果を表1に示す。
【0035】
【表1】
【0036】
試料No.1のAg、No.2のCuは成膜時に低い比抵抗を有しているが密着性が低く、特にCuは加熱処理後、耐食試験後に大幅に抵抗値が上昇している。試料No.3、No.4のAgにMo−Zr、Mo−Hf合金を積層したAg積層膜は加熱処理後の抵抗値の増加が大きく、またパタニング時に形状の乱れがある。また、試料No.5のTiN膜上にCu膜を形成しさらにその上にTiOx膜を形成したCu積層膜は成膜時の抵抗値が高くウェットエッチングができない。試料No.6のMoとCuを積層した膜は成膜時の抵抗値は低いが、耐食性試験後、比抵抗値の増加が大きく増加するとともに密着性が低いことがわかる。
【0037】
一方、本発明の試料No.7から15のAgまたはAg合金膜の下地膜、または上部膜および両方にMo−VまたはMo−Nbを用いたAg積層膜は、成膜時、加熱処理後、耐食試験後での5μΩcm以下の比抵抗を有し、密着性、パタニング性に優れていることがわかる。また、Ag合金膜とすることで密着性も向上している。また、Moへの添加元素は3原子%から耐食性の向上に効果のあることがわかる。さらに、試料No.17から22に示すのCuまたはCu合金膜の下地膜、または上部膜および両方にMo−VまたはMo−Nbを用いたCu積層膜は、成膜時、加熱処理後、耐食試験後での5μΩcm以下の比抵抗を有し、密着性、パタニング性に優れていることがわかる。また、試料No.16からMo合金への添加量が50原子%を越えると残さ生じパタニング性が低下することがわかる。また、試料No.23からCuへの添加元素量の総和が2原子%を超えると5μΩcm以下の比抵抗を得ることができないことがわかる。
【0038】
さらに本発明の試料No.24から27のAg合金膜、Cu合金膜の下地膜にMo−V、Mo−NbにNiまたはCuを添加したMo合金膜を用いた場合、NiまたはCuを添加しないMo合金膜を用いた場合と比較して、比抵抗が抑制されているとともに、密着性の改善に効果があることがわかる。また、Mo合金に対するCuの添加量が35原子%と高い試料No.28は耐食試験後、膜表面が変色しており、5μΩcm以下の比抵抗が得られないことがわかる。
【0039】
【発明の効果】
以上のように本発明であれば、低い電気抵抗と耐熱性、耐食性、そして基板との密着性を改善した薄膜配線を得ることが可能である。よって、高精細、高速応答が要求される平面表示装置、高い耐熱性が要求されるポリシリコンTFTを用いる有機ELディスプレイ等の配線に有用であり、産業上の利用価値は高い。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is used for, for example, a liquid crystal display (hereinafter, referred to as LCD), a plasma display panel (hereinafter, referred to as PDP), a field emission display (hereinafter, referred to as FED), an electroluminescent display (hereinafter, referred to as ELD), electronic paper, and the like. In addition to display devices such as electrophoretic displays (so-called flat panel displays, hereinafter referred to as FPDs), various semiconductor devices, thin film sensors, thin film electronic components such as magnetic heads, etc., have low electrical resistance and corrosion resistance, heat resistance, and adhesion. And a thin film wiring which requires the following.
[0002]
[Prior art]
FPDs such as LCDs, PDPs, organic EL displays (hereinafter referred to as OELDs), etc., which produce thin-film devices on glass substrates, thin-film sensors, electric wiring films and electrodes used for magnetic heads, etc., which form elements on ceramic substrates In recent years, an Al alloy film, which is a metal having excellent corrosion resistance, heat resistance, and adhesion to a substrate, has been used.
[0003]
Among Al alloys, an Al—Nd alloy film is particularly excellent in corrosion resistance, heat resistance, and adhesion, and has few hillocks generated by heating when manufacturing a thin film device. Furthermore, although the specific resistance in a state of being formed on a substrate at room temperature is as high as 15 μΩcm, it can be reduced to about 5 μΩcm by performing a heat treatment or the like at 250 ° C. or more. It is known to be a membrane. However, even with an Al alloy film, it cannot be said that it is sufficient to realize higher definition and improvement in high-speed response corresponding to moving images, which are required for large displays and displays for portable devices in the future.
[0004]
In the liquid crystal display, development of a liquid crystal TV and the like using a polysilicon TFT driving method capable of responding faster than the current mainstream amorphous silicon TFT driving method is underway. Since the process temperature for producing a polysilicon TFT is higher than that for producing an amorphous silicon TFT, the wiring material is required to have higher heat resistance. Therefore, sufficient heat resistance cannot be ensured with an Al alloy having a low melting point. Also, an organic EL display has been attracting attention as a self-luminous flat panel display device using a polysilicon TFT as a driving element. Unlike the liquid crystal display, the organic EL display is driven by current, so that a wiring having a lower electric resistance is required. Therefore, the use of Ag or Cu, which has a lower electric resistance, instead of the Al alloy is being studied.
[0005]
In particular, particularly in a small portable information terminal, a display device using a resin substrate, a resin film, or the like instead of a glass substrate or the like is required for impact resistance and weight reduction. As described above, a heat treatment is necessary to obtain a wiring film having a low electric resistance by using an Al alloy, and since a sufficient heat treatment cannot be performed in the case of a resin substrate or a resin film, it is difficult to obtain a low electric resistance. Also have. For this reason, application of Ag or Cu, which has lower electric resistance than Al alloy, is being studied even in a process in which heat treatment is not performed.
[0006]
[Problems to be solved by the invention]
Ag and Cu have higher melting points than Al and have low electrical resistance, so they are promising as future wiring materials. However, they have the disadvantages of low adhesion to substrates used for display devices and low heat resistance and corrosion resistance.
For example, when Ag is used as a wiring film of an FPD, the adhesion of the film to a substrate (for example, a glass or Si wafer, a resin substrate, a resin film, a metal foil having high corrosion resistance, for example, a stainless steel foil) is low, and during the process, There is a problem that peeling occurs. Further, during the production of the display device, the film particles are aggregated under the influence of the substrate material or the heating atmosphere, and the smoothness of the film surface is reduced, or the continuity of the film is lost. In addition, due to the low corrosion resistance, after film formation on a substrate, discoloration occurs only by leaving it in the air for a few days, or it is corroded by chemicals used in display manufacturing, causing a significant increase in electrical resistance. There was a problem that the film was peeled off.
[0007]
In order to solve the above problem, Japanese Patent Application Laid-Open No. Hei 8-260135 discloses a method using an Ag alloy target in which Cu is added at 0.1 atomic% or more to Ag. Japanese Patent Application Laid-Open No. 11-119664 discloses an adhesive method. An electrode substrate for a reflective display device using an alloy in which Pt, Pd, Au, Cu, and Ni are added to Ag on a layer has been proposed. Japanese Patent Application Laid-Open No. 2001-192752 discloses that Ag contains 0.1 to 3% by mass of Pd and Al, Au, Pt, Cu, Ta, Cr, Ti, Ni, Co, Si, etc., in a total amount of 0.1 to 3%. A metal material for electronic parts and the like using an alloy to be added by mass% has been proposed.
[0008]
However, an alloy film which satisfies all of low electric resistance, adhesion, corrosion resistance, heat resistance and patterning properties cannot be obtained only by adding an element to Ag by the methods disclosed therein. Specifically, for example, when elements such as transition metals such as Ta, Cr, Ti, Ni, and Co and semimetals such as Al and Si are added, in order to ensure adhesion and corrosion resistance, the above-described addition is performed. The amount is not sufficient, and it is necessary to add an amount exceeding 2 atomic%. Then, the low resistance characteristic of Ag is often lost, and the patterning property is reduced. Further, when Pd, Pt, Au which is a noble metal element or Cu which is a homologous element is added, an increase in electric resistance is small, but there is a problem in heat resistance.
[0009]
Japanese Patent Application Laid-Open No. 2001-11610 proposes a method of forming a Cu wiring film having improved electromigration by adding 0.02 to 10 atomic% of a rare earth element to Cu. However, it has been clarified that Ag and Cu have a large contact resistance with indium tin oxide (hereinafter referred to as ITO), which is a transparent electrode pad, and direct connection is practically difficult.
[0010]
For this reason, not only the method of improving the film characteristics by adding an additive element to Cu or Ag as described above, but also Japanese Patent Application Laid-Open No. 2001-242483 discloses that the Ag or Ag alloy film has As a method of forming a laminated wiring with a low metal element or alloy, for example, the contact resistance with ITO is improved by laminating with Mo or a Mo alloy film mainly composed of Mo, such as Mo-Zr, Mo-Cr, Mo-Hf. A wiring structure for a liquid crystal display device is described.
Further, Cu is described in J. Am. Apply. Phys. Vol. 90, P411 (1. July 2001) When a low-resistance Cu film is used as a gate electrode of a TFT-LCD, Cu is mixed with Ti or TiN to suppress the diffusion of Cu and further protect Cu. A stacked structure is described. That is, a method has been proposed in which TiN, Ti, and Cu are laminated on glass, dry-etched, formed into a wiring shape, and then heat-treated to form TiOx on the upper and side portions of Cu.
[0011]
However, in these methods, the heat resistance, adhesion, and corrosion resistance required to obtain stable film characteristics in a wide field as a thin film wiring for electronic components are improved, and the pattern formed by photo etching required for forming wiring is required. -Insufficient for improvement in ning properties. For example, when a Mo alloy film of Mo—Zr, Mo—Hf, or Mo—Cr is laminated on Ag, the contact resistance with ITO can be improved, but the Mo alloy obtained by adding Ti, Zr, or Hf to Mo has a higher resistance. As the value increases, there is a problem that Ti, Zr, and Hf diffuse into Ag and the resistance value increases. In addition, the addition of Cr has a problem that harmful hexavalent chromium is generated during wet etching. In addition, pure Mo has low moisture resistance, which causes deterioration in the manufacturing process and reliability after the FPD is manufactured. In addition, when TiN or Ti is laminated on Cu, Ti is reactively sputtered on a large area of the FPD using a mixed gas of Ar and nitrogen, so that stability when a film is stably formed on a large FPD substrate is obtained. There is a problem. In addition, Ti has high corrosion resistance, so that patterning by wet etching becomes difficult, and an expensive dry etching method is used, resulting in high cost.
An object of the present invention is to provide a thin film wiring for an electronic component having low electric resistance, heat resistance, corrosion resistance, and adhesion to a substrate and patterning.
[0012]
[Means for Solving the Problems]
The present inventor has conducted intensive studies to solve the above-described problems, and as a result, has found that a metal wiring in which a film mainly containing Cu or Ag and an alloy film mainly containing Mo and containing V and / or Nb are stacked. It has been found that it is possible to obtain a wiring film for electronic parts which has improved corrosion resistance without significantly impairing the low electric resistance inherently of Ag or Cu, and further has improved adhesion to a substrate and improved patterning. Reached the present invention.
[0013]
That is, the present invention is a thin film wiring in which a film mainly containing Cu or Ag and an alloy film mainly containing Mo and containing V and / or Nb are laminated.
[0014]
Further, a thin film wiring is formed by stacking three layers in which a film mainly composed of Cu or Ag is used as an intermediate layer, and an upper layer and a lower layer of the intermediate layer are made of an alloy film mainly containing Mo and containing V and / or Nb. It is.
[0015]
The Mo-based alloy is a thin-film wiring containing V and / or Nb in a total amount of 3 to 50 atomic%.
[0016]
Further, the thin film wiring as described above, wherein the film containing Cu or Ag as a main component is an alloy film containing a total of 2.0 atomic% or less of a transition metal element and / or a metalloid element.
Further, it is a thin film wiring in which Ni and / or Cu are further added to the alloy film mainly containing Mo and containing V and / or Nb.
[0017]
Further, the present invention is a thin film wiring having a laminated structure as described above, which is a wiring film for a display device, an organic EL display, and a polysilicon TFT for a display device.
Further, the present invention is a thin film wiring having the above-mentioned laminated structure formed on a glass substrate or a Si wafer used for a display device.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
The feature of the present invention is to find a laminated structure and an alloy structure thereof optimal for compensating for the disadvantages of Ag or Cu such as adhesion, corrosion resistance and heat resistance while maintaining the low electric resistance of Ag or Cu itself as much as possible. There.
[0019]
Usually, when an Ag film or a Cu film is manufactured, the electrical resistance as a film is low, but various problems occur in the process of manufacturing a display device (for example, a liquid crystal display) as described above. That is, film growth, aggregation, and the like occur due to heating, and the film surface has a more uneven shape and voids are generated. Then, depending on the heating atmosphere, the film surface is discolored, which causes an increase in electric resistance. Therefore, in the present invention, by using a metal wiring in which a film containing Cu or Ag as a main component and an alloy mainly containing Mo and containing V and / or Nb are laminated, the low electric resistance inherent to Ag or Cu is maintained. To obtain a thin film wiring for an electronic component and a display device such as an organic EL display using the thin film wiring having excellent characteristics capable of improving corrosion resistance, and further improving adhesion to a substrate and patterning property. Can be.
Note that the film containing Cu or Ag as a main component in the present invention includes a pure Cu or pure Ag film having a purity of 99.9% or more containing unavoidable impurities.
[0020]
Hereinafter, the reason why the thin film wiring for electronic parts of the present invention is a metal wiring in which a film mainly containing Cu or Ag and an alloy mainly containing Mo and containing V and / or Nb are laminated. The problems of Cu or Ag are corrosion resistance, heat resistance, adhesion, and the like as described above.
[0021]
In particular, Cu and Ag themselves are degraded by directly contacting the atmosphere or a chemical solution, and have a problem in corrosion resistance. Therefore, by covering the surface of the Cu film or the Ag film with an alloy film mainly containing Mo and containing V and / or Nb, the corrosion resistance of the thin film wiring can be greatly improved. The reason for containing V and / or Nb in Mo is that Mo alone has a low moisture resistance and is not sufficient to protect the Cu film or the Ag film, but it is a Mo alloy film containing V and / or Nb. Thereby, the moisture resistance is improved, and the surface of the Cu film or the Ag film can be protected.
[0022]
Cu or Ag is a variety of substrate materials for electronic components, but has low adhesion to glass substrates, Si wafers, resin substrates, etc., as described above. Therefore, by forming a Mo alloy film having good adhesion to both the substrate and Cu or Ag between the substrate and the film containing Cu or Ag as a main component, the adhesion can be improved. Mo has a high adhesion to a glass substrate or a Si wafer as a substrate material, and also has an excellent adhesion to a film containing Cu or Ag as a main component. For this reason, it is preferable that the alloy film obtained by adding V and / or Nb to Mo having excellent corrosion resistance as described above has a laminated structure formed between a film containing Cu or Ag as a main component and a substrate. In addition, an alloy film obtained by adding V and / or Nb to Mo has a low film stress, and has an advantage that, when formed on a large-sized substrate for FPD, warpage of the substrate can be suppressed.
[0023]
The heat resistance is greatly related to the melting point of the substance. The lower the melting point of the material and the higher the purity, the lower the temperature, the more atoms move, the more easily the morphology changes due to the growth of crystal grains, and the lower the heat resistance. As described above, the melting point of Cu or Ag is around 1000 ° C., and atoms are moved by the heating process at several hundred ° C. during the production of the FPD and the heat resistance is reduced due to aggregation and the like. On the other hand, the melting point of Mo is at least twice as high as that of Cu or Ag, and atoms are not easily moved by heating at several hundred degrees Celsius, so that Mo is excellent in heat resistance. For this reason, forming a Mo alloy film on the lower layer or the upper layer of the film containing Cu or Ag as a main component, or on both of them suppresses the atomic movement of Cu or Ag during heating, thereby improving the heat resistance. There is. However, since Mo alone has poor corrosion resistance as described above, it is suitable to use an alloy film obtained by adding V and / or Nb to Mo.
[0024]
Further, the present inventor has found that by adding Ni and / or Cu to a Mo alloy film obtained by adding V and / or Nb to Mo, the Mo alloy film and the film mainly containing Cu and / or Ag can be combined. It has been found that it is possible to further improve the adhesion and to further reduce the resistance of a film mainly composed of Cu or Ag.
Although the reason is not clear, it is considered as follows. Since Mo, V and Nb are elements having an atomic radius larger than that of Cu or Ag, when a Mo alloy obtained by adding V and / or Nb to Mo and a film mainly composed of Cu and / or Ag are laminated. In addition, the consistency of the crystal lattice is disturbed. For this reason, when a film mainly composed of Cu and / or Ag is formed on the Mo alloy film, the disorder of the crystal lattice becomes relatively large in the initial formation layer of the film, and it is considered that the resistance value slightly increases. Can be Therefore, by adding Ni and / or Cu, whose atomic radius is close to that of Ag or Cu and closer to Ag and Cu in an electronic state compared to Mo, the consistency of the crystal lattice is improved, and Cu and / or Cu are added. Alternatively, it is considered that the disorder of the crystal lattice in the initial formation layer of the film mainly composed of Ag is suppressed, the adhesion is improved, and the resistance value can be reduced. As elements similar to Ni and Cu, there are Pd, Pt, and the like, but these are noble metals, are expensive, and have a large atomic radius, so that the effect when added is small. Therefore, Ni and Cu are added as elements. preferable.
[0025]
Corrosion resistance, adhesion, and heat resistance are improved by forming an alloy film obtained by adding V and / or Nb to Mo as a lower layer, an upper layer, or both layers of a film containing Cu or Ag as a main component. Is as described above. Further, the laminated structure film of the present invention is excellent in patterning properties. A film in which a film containing Cu as a main component and an alloy film in which Mo and / or Nb are added to Mo is laminated, for example, is dissolved in an aqueous solution of cerium ammonium nitrate + nitric acid, and the thin film pattern is formed in one etching step. -Can be obtained. Further, a film in which a film containing Ag as a main component and an alloy film in which V and / or Nb is added to Mo is laminated, for example, is dissolved in an aqueous solution of phosphoric acid + nitric acid + acetic acid, and the same process is performed in one etching step It is possible to obtain a thin film pattern. As described above, a film in which an alloy film in which V and / or Nb is added to Mo is formed as a lower layer, an upper layer, or both layers of a film containing Cu or Ag as a main component is formed by an inexpensive wet etching process. This has the advantage that a thin film pattern can be easily formed using the selected etching solution.
[0026]
In a film in which a film containing Cu as a main component and an alloy film in which V and / or Nb are added to Mo, a thin film pattern can be stably formed by dry etching. Further, the Mo alloy film of the present invention forms an insulating protective film on the laminated film by optimizing the addition amount of the alloy element, and performs dry etching when forming a through-hole or the like on the protective film. It can be used as a barrier film of Ag or Cu in the case of performing.
[0027]
As described above, by forming an alloy film in which V and / or Nb is added to Mo as a lower layer or an upper layer of the film mainly containing Cu or Ag of the present invention, or both layers, corrosion resistance, adhesion, This makes it possible to obtain a thin film metal wiring for electronic parts having excellent heat resistance and patterning properties.
[0028]
It is desirable that the total amount of V and / or Nb added to Mo is 3 to 50 atomic%. This is because if the content is less than 3 atomic%, there is no effect of improving the corrosion resistance, and if it exceeds 50 atomic%, residues are likely to be generated during etching. When Ni and / or Cu is added to the Mo alloy for the purpose of further improving the adhesion and reducing the resistance value, the addition amount is preferably 3 to 30 atomic%. This is because if the content is less than 3 atomic%, there is no effect of lowering the resistance of the film containing Cu or Ag as a main component, and if it exceeds 30 atomic%, the adhesion between the Mo alloy film and the substrate is reduced. Further, if the amount of Cu added to Mo exceeds 30%, the corrosion resistance of the Mo alloy film also decreases. Therefore, the addition amount of Ni and / or Cu is desirably 30 atomic% or less.
[0029]
The film containing Cu or Ag as a main component is preferably an alloy film containing a total of 2.0 atomic% or less of a transition metal element and / or a metalloid element. The addition of these elements to form a Cu alloy film or an Ag alloy film is effective in improving corrosion resistance, heat resistance, and adhesion. As a transition metal element to be added, Ti, Zr for Group IVa, V and Nb for Group Va, Mn for Group VIIa, and Ni for Group VIII are preferable since the corrosion resistance is improved. Nd, Sm, Gd, and Dy are desirable among rare earth elements that improve heat resistance. Further, as an additional element effective for improving the adhesion, it is possible to add Cu, Ag, and Au, which are homologous elements. Further, semi-metallic groups of Si, Ge, Sn, and Zn, which are effective in improving adhesion and heat resistance, may be added. In order to further improve the corrosion resistance, a noble metal element such as Pt, Ir, Os, Ru, Pd and the like may be added. Although these additional elements alone have an effect of improving the film properties, it is possible to further improve the effect by combining and adding various elements. If the total amount of addition exceeds 2.0 atomic%, the resistance value increases and the low resistance advantage of Cu or Ag as a wiring material is lost, so that the total amount is 2.0 atomic% or less. Is desirable.
[0030]
It is preferable to use a glass substrate or a Si wafer as a substrate used when forming the thin film wiring of the present invention. These substrates are excellent in process stability in manufacturing a flat panel display, and by heating the substrate when forming the thin film wiring of the present invention, lower electric resistance and higher adhesion than when forming a film at room temperature. This is because it is possible to obtain Further, the substrate used for manufacturing the display element is preferably a glass substrate or a Si wafer as described above, but any substrate capable of forming a thin film by sputtering, such as a resin substrate, a metal substrate, and other resin foils Or a metal foil.
[0031]
In addition, the present invention is a thin film wiring having low resistance and excellent corrosion resistance, heat resistance, adhesion, and patterning properties by having the above-described laminated structure. Most suitable for wiring film for silicon TFT.
[0032]
In order to obtain stable electric resistance and corrosion resistance, heat resistance, adhesion, and patterning properties, the thin film wiring of the present invention has a thickness of 10 to 50 nm for an alloy film obtained by adding V and / or Nb to Mo, Cu or The thickness of Ag or an alloy film mainly composed of Cu or Ag is preferably 100 to 300 nm. This is because if the Mo alloy film is less than 10 nm, it is insufficient to obtain adhesion as a lower film and corrosion resistance as an upper film, and if it exceeds 50 nm, the film becomes thick and becomes Cu or Ag film or Cu or Ag film. This is because it takes a long time to laminate with an alloy film mainly composed of, and the productivity is reduced. Further, if the thickness of the Cu or Ag film or the alloy film mainly composed of Cu or Ag is less than 100 nm, the resistance value is undesirably increased. If it exceeds 300 nm, the productivity will be reduced. Further, it is desirable that the total thickness of the Mo alloy film and the Cu or Ag film or the alloy film mainly composed of Cu or Ag be 100 to 300 nm or less. When the film thickness is less than 100 nm, the electric resistance increases due to the surface scattering effect of electrons because the film is thin, and the surface morphology of the film tends to change. On the other hand, when the film thickness exceeds 300 nm, the electric resistance value is low, but the film is easily peeled off due to film stress, and it takes time to form the film, and the productivity is reduced.
[0033]
【Example】
(Example 1)
Various types of Mo alloy films obtained by adding V and / or Nb to Mo, Mo alloy films obtained by adding Ni and / or Cu, Ag, Cu and various Ag alloy films, and Cu alloy films on a glass substrate or a Si wafer. An Ag-based laminated film and a Cu-based laminated film formed by the above configuration were produced. For comparison, an Ag-based laminated film in which a Mo alloy obtained by adding Cr, Zr, and Hf to an Ag or Ag alloy film as an underlayer or an upper film, and a Cu in which a Ti or TiN film is formed in Cu. A laminated film was produced. At this time, TiN was formed by reactive sputtering using a Ti target and a mixed gas of Ar and nitrogen. Other films were formed by sputtering using a target material having a predetermined composition and using only Ar gas. The thickness of each film was 30 nm for Mo alloy film, Ti and TiN, and 200 nm for Ag, Cu and various Ag alloy films and Cu alloy films.
[0034]
As the film characteristics of these laminated films, a specific resistance value determined from the laminated film thickness and the resistance value by a four-probe method was measured. Further, in order to evaluate the adhesion of the film, a scotch tape was attached to the surface of the laminated film, and the area remaining on the substrate when peeled off at an angle of 45 ° was 20 cm.2The area ratio per unit was determined and evaluated as the adhesion. Furthermore, in order to evaluate the change in film characteristics after the production process of a predetermined product, the corrosion resistance was evaluated by measuring the specific resistance value of the laminated film after leaving it in the air at a temperature of 80 ° C. and a humidity of 90% for 24 hours. For heat resistance evaluation, the laminated film was 1 × 10− 3It was evaluated by the specific resistance value after a heat treatment of 250 ° C. for 1 hour in a vacuum of Pa or less. As a patterning evaluation, an OFPR-800 positive resist manufactured by Tokyo Ohka Co., Ltd. was formed by spin coating, the resist was exposed to ultraviolet rays using a photomask, and then developed with an organic alkali developer NMD-3 to form a resist pattern. Thereafter, the Ag-based laminated film is etched using a mixed solution of phosphoric acid, nitric acid and acetic acid, and the Cu-based laminated film is etched using a mixed aqueous solution of cerium ammonium nitrate and nitric acid, and then the resist pattern and the pattern of the laminated film are etched. The deviation of the pattern width, the shape of the pattern edge, the residue around the pattern, etc. were observed with an optical microscope. At that time, those having no peeling of the film, no disorder in the end portion shape and no residue were evaluated as good. Table 1 shows the above measurement and evaluation results.
[0035]
[Table 1]
[0036]
Sample No. No. 1 Ag, No. 1 The Cu of No. 2 has a low specific resistance at the time of film formation, but has low adhesion. In particular, the resistance of Cu significantly increases after the heat treatment and after the corrosion test. Sample No. 3, no. In the Ag laminated film obtained by laminating the Mo—Zr and Mo—Hf alloys on the Ag of No. 4, the resistance value after the heat treatment is greatly increased, and the shape is disturbed during patterning. Further, the sample No. The Cu laminated film in which a Cu film is formed on the TiN film of No. 5 and a TiOx film is further formed thereon has a high resistance value at the time of film formation and cannot perform wet etching. Sample No. It can be seen that the film obtained by laminating Mo and Cu of No. 6 has a low resistance value at the time of film formation, but after the corrosion resistance test, the specific resistance value greatly increases and the adhesion is low.
[0037]
On the other hand, the sample No. An Ag laminated film using Mo-V or Mo-Nb as a base film of an Ag or Ag alloy film of 7 to 15 or an upper film and both of them has a thickness of 5 μΩcm or less at the time of film formation, after heat treatment, and after corrosion test. It can be seen that it has specific resistance and is excellent in adhesion and patterning. The use of an Ag alloy film also improves the adhesion. In addition, it can be seen that the element added to Mo is effective in improving the corrosion resistance from 3 atomic%. Further, the sample No. The underlayer of Cu or Cu alloy film shown in 17 to 22, or the Cu laminated film using Mo-V or Mo-Nb for both the upper film and both films was 5 μΩcm at the time of film formation, after heat treatment, and after corrosion test. It has the following specific resistance, and it turns out that it is excellent in adhesiveness and patterning property. Further, the sample No. From 16 it can be seen that when the amount of addition to the Mo alloy exceeds 50 atomic%, residues are formed and the patterning properties are reduced. Further, the sample No. It is understood that when the total amount of the added elements from 23 to Cu exceeds 2 atomic%, a specific resistance of 5 μΩcm or less cannot be obtained.
[0038]
Further, the sample No. In the case of using a Mo alloy film obtained by adding Ni or Cu to Mo-V or Mo-Nb as a base film of the Ag alloy film or Cu alloy film of Nos. 24 to 27, or using a Mo alloy film not adding Ni or Cu. It can be seen that the specific resistance is suppressed and the adhesion is improved as compared to In addition, the sample No. in which the addition amount of Cu to the Mo alloy was as high as 35 atomic%. No. 28 shows that after the corrosion resistance test, the film surface was discolored, and a specific resistance of 5 μΩcm or less could not be obtained.
[0039]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain a thin-film wiring having improved low electric resistance, heat resistance, corrosion resistance, and adhesion to a substrate. Therefore, it is useful for wiring of a flat display device that requires high definition and high-speed response, and an organic EL display using a polysilicon TFT that requires high heat resistance, and has a high industrial value.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003099967A JP4496518B2 (en) | 2002-08-19 | 2003-04-03 | Thin film wiring |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002237830 | 2002-08-19 | ||
JP2003099967A JP4496518B2 (en) | 2002-08-19 | 2003-04-03 | Thin film wiring |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004140319A true JP2004140319A (en) | 2004-05-13 |
JP4496518B2 JP4496518B2 (en) | 2010-07-07 |
Family
ID=32472483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003099967A Expired - Lifetime JP4496518B2 (en) | 2002-08-19 | 2003-04-03 | Thin film wiring |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4496518B2 (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006078600A (en) * | 2004-09-07 | 2006-03-23 | Fuji Photo Film Co Ltd | Method for manufacturing electro-optical apparatus |
JP2006078599A (en) * | 2004-09-07 | 2006-03-23 | Fuji Photo Film Co Ltd | Matrix array substrate, liquid crystal display apparatus, data electrode plate for plasma display panel (pdp), and pdp |
WO2007018052A1 (en) * | 2005-08-09 | 2007-02-15 | Advanced Interconnect Materials, Llc | Planar electronic display device and process for producing the same |
JP2007226058A (en) * | 2006-02-24 | 2007-09-06 | Tosoh Corp | Liquid crystal display panel, its manufacturing method, and cu alloy sputtering target |
US7301170B2 (en) | 2004-09-08 | 2007-11-27 | Samsung Electronics Co., Ltd. | Thin film transistor array panel and method for manufacturing the same |
US7462895B2 (en) | 2004-12-06 | 2008-12-09 | Samsung Electronics Co., Ltd. | Signal line for display device and thin film transistor array panel including the signal line |
JP2009097085A (en) * | 2007-09-25 | 2009-05-07 | Hitachi Metals Ltd | Cu ALLOY FILM FOR WIRING FILM, AND SPUTTERING TARGET MATERIAL FOR WIRING FILM FORMATION |
JP2009185323A (en) * | 2008-02-05 | 2009-08-20 | Mitsubishi Materials Corp | Wiring for liquid crystal display causing no heat defect and having excellent adhesion force, and electrode |
US7808108B2 (en) | 2005-08-12 | 2010-10-05 | Samsung Electronics Co., Ltd. | Thin film conductor and method of fabrication |
JP2013060656A (en) * | 2011-08-22 | 2013-04-04 | Hitachi Metals Ltd | Laminated wiring film for electronic component and sputtering target material for forming coating layer |
JP2013147734A (en) * | 2011-12-22 | 2013-08-01 | Hitachi Metals Ltd | METHOD FOR PRODUCING Mo ALLOY SPUTTERING TARGET MATERIAL, AND Mo ALLOY SPUTTERING TARGET MATERIAL |
WO2013111225A1 (en) * | 2012-01-26 | 2013-08-01 | パナソニック株式会社 | Thin film transistor array apparatus and el display apparatus using same |
JP2013541192A (en) * | 2010-09-03 | 2013-11-07 | アプライド マテリアルズ インコーポレイテッド | Staggered thin film transistor and method for forming the same |
WO2014020892A1 (en) * | 2012-08-01 | 2014-02-06 | パナソニック液晶ディスプレイ株式会社 | Thin film transistor and method for manufacturing same |
JPWO2012086758A1 (en) * | 2010-12-24 | 2014-06-05 | Necライティング株式会社 | ORGANIC ELECTROLUMINESCENT ELEMENT AND ORGANIC ELECTROLUMINESCENT LIGHTING DEVICE |
CN103990802A (en) * | 2013-02-15 | 2014-08-20 | 日立金属株式会社 | Manufacturing method of Mo alloy sputtering target material and Mo alloy sputtering target material |
KR20140104358A (en) | 2013-02-20 | 2014-08-28 | 히타치 긴조쿠 가부시키가이샤 | METAL THIN FILM AND Mo ALLOY SPUTTERING TARGET MATERIAL FOR FORMING METAL THIN FILM |
TWI452161B (en) * | 2009-03-26 | 2014-09-11 | Hitachi Metals Ltd | Method for producing oxygen-containing copper alloy film |
KR20140111955A (en) | 2013-03-12 | 2014-09-22 | 히타치 긴조쿠 가부시키가이샤 | METAL THIN FILM FOR ELECTRONIC COMPONENT AND Mo ALLOY SPUTTERING TARGET MATERIAL FOR FORMING METAL THIN FILM |
WO2014196460A1 (en) * | 2013-06-07 | 2014-12-11 | コニカミノルタ株式会社 | Transparent conductor and method for producing same |
KR20160103933A (en) | 2015-02-25 | 2016-09-02 | 히타치 긴조쿠 가부시키가이샤 | Laminated wiring film for electronic components and sputtering target material for forming coating layer |
KR20160112995A (en) | 2015-03-20 | 2016-09-28 | 히타치 긴조쿠 가부시키가이샤 | Laminated wiring film for electronic components and sputtering target material for forming coating layer |
JP2016189477A (en) * | 2016-06-08 | 2016-11-04 | パナソニック液晶ディスプレイ株式会社 | Thin transistor |
JP2017054718A (en) * | 2015-09-10 | 2017-03-16 | 株式会社ジャパンディスプレイ | Display device and method for manufacturing display device |
KR20180076316A (en) | 2016-12-27 | 2018-07-05 | 히타치 긴조쿠 가부시키가이샤 | LAMINATED WIRING FILM, METHOD FOR MANUFACTURING THEREOF, AND Mo ALLOY SPUTTERING TARGET MATERIAL |
CN110651373A (en) * | 2017-05-11 | 2020-01-03 | 普兰西股份有限公司 | Flexible component comprising a layer structure with metallic plies |
CN114921761A (en) * | 2022-05-17 | 2022-08-19 | 广东欧莱高新材料股份有限公司 | High-purity multi-element alloy sputtering coating material for high-definition liquid crystal display of high generation |
CN114959397A (en) * | 2022-04-28 | 2022-08-30 | 长沙惠科光电有限公司 | Alloy target material, preparation method and application thereof, and array substrate |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1174537A (en) * | 1997-08-26 | 1999-03-16 | Lg Electron Inc | Thin-film transistor and its production |
JP2000349298A (en) * | 1999-03-26 | 2000-12-15 | Semiconductor Energy Lab Co Ltd | Electrooptic device and manufacture thereof |
JP2002190212A (en) * | 2000-12-22 | 2002-07-05 | Hitachi Metals Ltd | Thin film wiring for electronic component |
JP2005108437A (en) * | 2002-04-11 | 2005-04-21 | Optrex Corp | Organic electroluminescence display element, organic electroluminescence display device and method for producing organic electroluminescence display element |
-
2003
- 2003-04-03 JP JP2003099967A patent/JP4496518B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1174537A (en) * | 1997-08-26 | 1999-03-16 | Lg Electron Inc | Thin-film transistor and its production |
JP2000349298A (en) * | 1999-03-26 | 2000-12-15 | Semiconductor Energy Lab Co Ltd | Electrooptic device and manufacture thereof |
JP2002190212A (en) * | 2000-12-22 | 2002-07-05 | Hitachi Metals Ltd | Thin film wiring for electronic component |
JP2005108437A (en) * | 2002-04-11 | 2005-04-21 | Optrex Corp | Organic electroluminescence display element, organic electroluminescence display device and method for producing organic electroluminescence display element |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006078599A (en) * | 2004-09-07 | 2006-03-23 | Fuji Photo Film Co Ltd | Matrix array substrate, liquid crystal display apparatus, data electrode plate for plasma display panel (pdp), and pdp |
JP2006078600A (en) * | 2004-09-07 | 2006-03-23 | Fuji Photo Film Co Ltd | Method for manufacturing electro-optical apparatus |
JP4583848B2 (en) * | 2004-09-07 | 2010-11-17 | 富士フイルム株式会社 | Manufacturing method of matrix array substrate, matrix array substrate, liquid crystal display device, manufacturing method of data electrode for PDP, data electrode for PDP, and PDP |
US7662715B2 (en) | 2004-09-08 | 2010-02-16 | Samsung Electronics Co., Ltd. | Thin film transistor array panel and method for manufacturing the same |
US7301170B2 (en) | 2004-09-08 | 2007-11-27 | Samsung Electronics Co., Ltd. | Thin film transistor array panel and method for manufacturing the same |
US7550768B2 (en) | 2004-09-08 | 2009-06-23 | Samsung Electronics Co., Ltd. | Thin film transistor array panel and method for manufacturing the same |
US7462895B2 (en) | 2004-12-06 | 2008-12-09 | Samsung Electronics Co., Ltd. | Signal line for display device and thin film transistor array panel including the signal line |
WO2007018052A1 (en) * | 2005-08-09 | 2007-02-15 | Advanced Interconnect Materials, Llc | Planar electronic display device and process for producing the same |
US7808108B2 (en) | 2005-08-12 | 2010-10-05 | Samsung Electronics Co., Ltd. | Thin film conductor and method of fabrication |
JP2007226058A (en) * | 2006-02-24 | 2007-09-06 | Tosoh Corp | Liquid crystal display panel, its manufacturing method, and cu alloy sputtering target |
JP2009097085A (en) * | 2007-09-25 | 2009-05-07 | Hitachi Metals Ltd | Cu ALLOY FILM FOR WIRING FILM, AND SPUTTERING TARGET MATERIAL FOR WIRING FILM FORMATION |
JP2009185323A (en) * | 2008-02-05 | 2009-08-20 | Mitsubishi Materials Corp | Wiring for liquid crystal display causing no heat defect and having excellent adhesion force, and electrode |
TWI452161B (en) * | 2009-03-26 | 2014-09-11 | Hitachi Metals Ltd | Method for producing oxygen-containing copper alloy film |
JP2013541192A (en) * | 2010-09-03 | 2013-11-07 | アプライド マテリアルズ インコーポレイテッド | Staggered thin film transistor and method for forming the same |
JPWO2012086758A1 (en) * | 2010-12-24 | 2014-06-05 | Necライティング株式会社 | ORGANIC ELECTROLUMINESCENT ELEMENT AND ORGANIC ELECTROLUMINESCENT LIGHTING DEVICE |
US9119272B2 (en) | 2010-12-24 | 2015-08-25 | Nec Lighting, Ltd. | Organic electroluminescent element and organic electroluminescent lighting device |
JP5988380B2 (en) * | 2010-12-24 | 2016-09-07 | Necライティング株式会社 | ORGANIC ELECTROLUMINESCENT ELEMENT AND ORGANIC ELECTROLUMINESCENT LIGHTING DEVICE |
JP2013060656A (en) * | 2011-08-22 | 2013-04-04 | Hitachi Metals Ltd | Laminated wiring film for electronic component and sputtering target material for forming coating layer |
TWI447250B (en) * | 2011-12-22 | 2014-08-01 | Hitachi Metals Ltd | Method for producing molybdenum alloy sputtering target material and molybdenum alloy sputtering target material |
JP2013147734A (en) * | 2011-12-22 | 2013-08-01 | Hitachi Metals Ltd | METHOD FOR PRODUCING Mo ALLOY SPUTTERING TARGET MATERIAL, AND Mo ALLOY SPUTTERING TARGET MATERIAL |
WO2013111225A1 (en) * | 2012-01-26 | 2013-08-01 | パナソニック株式会社 | Thin film transistor array apparatus and el display apparatus using same |
KR101544663B1 (en) | 2012-01-26 | 2015-08-17 | 가부시키가이샤 제이올레드 | Thin film transistor array apparatus and el display apparatus using same |
WO2014020892A1 (en) * | 2012-08-01 | 2014-02-06 | パナソニック液晶ディスプレイ株式会社 | Thin film transistor and method for manufacturing same |
JP2014032999A (en) * | 2012-08-01 | 2014-02-20 | Panasonic Liquid Crystal Display Co Ltd | Thin film transistor and manufacturing method thereof |
US9748396B2 (en) | 2012-08-01 | 2017-08-29 | Panasonic Liquid Crystal Display Co., Ltd. | Thin film transistor and method of manufacturing the same |
US9543449B2 (en) | 2012-08-01 | 2017-01-10 | Panasonic Liquid Crystal Display Co., Ltd. | Thin film transistor and method of manufacturing the same |
CN103990802A (en) * | 2013-02-15 | 2014-08-20 | 日立金属株式会社 | Manufacturing method of Mo alloy sputtering target material and Mo alloy sputtering target material |
KR20140104358A (en) | 2013-02-20 | 2014-08-28 | 히타치 긴조쿠 가부시키가이샤 | METAL THIN FILM AND Mo ALLOY SPUTTERING TARGET MATERIAL FOR FORMING METAL THIN FILM |
KR20140111955A (en) | 2013-03-12 | 2014-09-22 | 히타치 긴조쿠 가부시키가이샤 | METAL THIN FILM FOR ELECTRONIC COMPONENT AND Mo ALLOY SPUTTERING TARGET MATERIAL FOR FORMING METAL THIN FILM |
WO2014196460A1 (en) * | 2013-06-07 | 2014-12-11 | コニカミノルタ株式会社 | Transparent conductor and method for producing same |
KR20160103933A (en) | 2015-02-25 | 2016-09-02 | 히타치 긴조쿠 가부시키가이샤 | Laminated wiring film for electronic components and sputtering target material for forming coating layer |
KR20160112995A (en) | 2015-03-20 | 2016-09-28 | 히타치 긴조쿠 가부시키가이샤 | Laminated wiring film for electronic components and sputtering target material for forming coating layer |
JP2017054718A (en) * | 2015-09-10 | 2017-03-16 | 株式会社ジャパンディスプレイ | Display device and method for manufacturing display device |
JP2016189477A (en) * | 2016-06-08 | 2016-11-04 | パナソニック液晶ディスプレイ株式会社 | Thin transistor |
KR20180076316A (en) | 2016-12-27 | 2018-07-05 | 히타치 긴조쿠 가부시키가이샤 | LAMINATED WIRING FILM, METHOD FOR MANUFACTURING THEREOF, AND Mo ALLOY SPUTTERING TARGET MATERIAL |
KR102012210B1 (en) * | 2016-12-27 | 2019-08-21 | 히타치 긴조쿠 가부시키가이샤 | LAMINATED WIRING FILM, METHOD FOR MANUFACTURING THEREOF, AND Mo ALLOY SPUTTERING TARGET MATERIAL |
CN110651373A (en) * | 2017-05-11 | 2020-01-03 | 普兰西股份有限公司 | Flexible component comprising a layer structure with metallic plies |
CN110651373B (en) * | 2017-05-11 | 2023-08-15 | 普兰西股份有限公司 | Flexible component comprising a layer structure with metallic plies |
CN114959397A (en) * | 2022-04-28 | 2022-08-30 | 长沙惠科光电有限公司 | Alloy target material, preparation method and application thereof, and array substrate |
CN114921761A (en) * | 2022-05-17 | 2022-08-19 | 广东欧莱高新材料股份有限公司 | High-purity multi-element alloy sputtering coating material for high-definition liquid crystal display of high generation |
CN114921761B (en) * | 2022-05-17 | 2023-01-17 | 广东欧莱高新材料股份有限公司 | High-purity multi-element alloy sputtering coating material for high-definition liquid crystal display of high generation |
Also Published As
Publication number | Publication date |
---|---|
JP4496518B2 (en) | 2010-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4496518B2 (en) | Thin film wiring | |
TWI437697B (en) | Wiring structure and a display device having a wiring structure | |
JP5247448B2 (en) | Conductive film forming method and thin film transistor manufacturing method | |
TWI394850B (en) | A display device using a Cu alloy film and a Cu alloy sputtering target | |
KR20160100591A (en) | Etchant composition for ag thin layer and method for fabricating metal pattern using the same | |
EP1956104A1 (en) | Working method of a metallic material and a manufacturing method of an electronic component | |
US20070228575A1 (en) | Wiring material and wiring board using the same | |
TW200830558A (en) | Al alloy film for display device, display device, and sputtering target | |
WO2012043490A1 (en) | Al alloy film, wiring structure having al alloy film, and sputtering target used in producing al alloy film | |
WO2006075483A1 (en) | TFT SUBSTRATE AND PRODUCTION METHOD THEREFOR, AND TRANSPARENT CONDUCTIVE FILM LAMINATE SUBSTRATE PROVIDED WITH Al WIRING AND PRODUCTION METHOD THEREFOR, AND TRANSPARENT CONDUCTIVE FILM LAMINATE CIRCUIT BOARD PROVIDED WITH Al WIRING AND PRODUCTION METHOD THEREFOR, AND OXIDE TRANSPARENT CONDUCTIVE FILM MATERIAL | |
JP2006195077A (en) | TRANSPARENT CONDUCTIVE FILM LAYERED SUBSTRATE EQUIPPED WITH Al WIRING, AND ITS MANUFACTURING METHOD | |
KR101926274B1 (en) | Etchant composition for silver thin layer and ehting method and mehtod for fabrication metal pattern using the same | |
JP2006310814A (en) | Thin film wiring layer | |
WO2004070812A1 (en) | Method for manufacturing semi-transparent semi-reflective electrode substrate, reflective element substrate, method for manufacturing same, etching composition used for the method for manufacturing the reflective electrode substrate | |
JP5374111B2 (en) | Display device and Cu alloy film used therefor | |
JP4700352B2 (en) | TFT substrate and manufacturing method thereof | |
JP6361957B2 (en) | Laminated wiring film for electronic parts and sputtering target material for coating layer formation | |
WO2016035554A1 (en) | Oxide semiconductor thin film of thin film transistor, thin film transistor and sputtering target | |
JP3778443B2 (en) | Ag alloy film, flat display device, and sputtering target material for forming Ag alloy film | |
JP3778425B2 (en) | Ag alloy film for electronic parts used for display device and sputtering target material for forming Ag alloy film for electronic parts used for display device | |
TWI438903B (en) | A thin film transistor substrate, and a display device having a thin film transistor substrate | |
JP3994386B2 (en) | Ag alloy film, flat display device, and sputtering target material for forming Ag alloy film | |
JP4264397B2 (en) | Ag-based alloy wiring electrode film for flat panel display, Ag-based alloy sputtering target, and flat panel display | |
JP2006210033A (en) | Laminated circuit board having al wiring and coated with transparent conductive film, and manufacturing method thereof | |
JP2010258347A (en) | DISPLAY DEVICE AND Cu ALLOY FILM USED FOR THE SAME |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060314 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080611 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100218 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100319 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100401 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130423 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4496518 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140423 Year of fee payment: 4 |
|
EXPY | Cancellation because of completion of term |