JP2013147734A - METHOD FOR PRODUCING Mo ALLOY SPUTTERING TARGET MATERIAL, AND Mo ALLOY SPUTTERING TARGET MATERIAL - Google Patents

METHOD FOR PRODUCING Mo ALLOY SPUTTERING TARGET MATERIAL, AND Mo ALLOY SPUTTERING TARGET MATERIAL Download PDF

Info

Publication number
JP2013147734A
JP2013147734A JP2012247430A JP2012247430A JP2013147734A JP 2013147734 A JP2013147734 A JP 2013147734A JP 2012247430 A JP2012247430 A JP 2012247430A JP 2012247430 A JP2012247430 A JP 2012247430A JP 2013147734 A JP2013147734 A JP 2013147734A
Authority
JP
Japan
Prior art keywords
alloy
sputtering target
target material
powder
alloy sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012247430A
Other languages
Japanese (ja)
Other versions
JP5958822B2 (en
Inventor
Hideo Murata
英夫 村田
Masashi Kaminada
真史 上灘
Keisuke Inoue
惠介 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2012247430A priority Critical patent/JP5958822B2/en
Publication of JP2013147734A publication Critical patent/JP2013147734A/en
Application granted granted Critical
Publication of JP5958822B2 publication Critical patent/JP5958822B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets

Abstract

PROBLEM TO BE SOLVED: To provide a production method capable of stably and inexpensively providing a high density, high purity and nonmagnetic Mo alloy sputtering target material having low resistance, further having excellent heat resistance, moisture resistance and adhesion with a substrate and suitable as an electrode and a wiring film, and to provide a new Mo alloy sputtering target material.SOLUTION: Mo powders and one or more of Ni alloy powders are mixed so as to satisfy a composition which includes 10 to 49 atomic% Ni and 1 to 20 atomic% Nb, and in which the total content of Ni and Nb is ≤50 atomic%, and which has the balance Mo with inevitable impurities, and the mixture thereof is then subjected to press sintering.

Description

本発明は、電子部品用の電極・配線膜を形成するためのMo合金スパッタリングターゲット材の製造方法およびMo合金スパッタリングターゲット材に関するものである。   The present invention relates to a method for producing a Mo alloy sputtering target material for forming an electrode / wiring film for an electronic component and a Mo alloy sputtering target material.

ガラス基板上に薄膜デバイスを形成する液晶ディスプレイ(Liquid Crystal Display:以下、LCDという)、プラズマディスプレイパネル(Plasma Display Panel:以下、PDPという)、電子ペーパー等に利用される電気泳動型ディスプレイ等の平面表示装置(フラットパネルディスプレイ、Flat Panel Display:以下、FPDという)に加え、各種半導体デバイス、薄膜センサー、磁気ヘッド等の薄膜電子部品においては、低い電気抵抗の配線膜が必要である。例えば、LCD、PDP、有機ELディスプレイ等のFPDは、大画面、高精細、高速応答化に伴い、その配線膜には低抵抗化が要求されている。また、近年、FPDに操作性を加えるタッチパネルや樹脂基板を用いたフレキシブルなFPD等、新たな製品が開発されている。   Flat surfaces such as liquid crystal displays (Liquid Crystal Display: hereinafter referred to as LCD), plasma display panels (hereinafter referred to as PDP), electrophoretic displays used for electronic paper, etc., which form a thin film device on a glass substrate In addition to display devices (flat panel displays: hereinafter referred to as FPD), thin film electronic components such as various semiconductor devices, thin film sensors, magnetic heads, etc. require wiring films with low electrical resistance. For example, FPDs such as LCDs, PDPs, and organic EL displays are required to have low resistance in their wiring films in accordance with large screens, high definition, and high speed response. In recent years, new products such as a touch panel for adding operability to the FPD and a flexible FPD using a resin substrate have been developed.

近年、FPDの駆動素子として用いられている薄膜トランジスタ(Thin FilmTransistor:以下、TFTという)の配線膜には低抵抗化が必要であり、主配線材料を従来のAlからより低抵抗なCuに変更する検討が行われている。
現在、TFTには、Si半導体膜が用いられており、主配線材料であるCuは、Siと直接触れると、TFT製造中の加熱工程により熱拡散して、TFTの特性を劣化させる。このため、CuとSiの間に耐熱性に優れた純MoやMo合金をバリア膜とした積層配線膜が用いられている。
In recent years, it is necessary to reduce the resistance of a wiring film of a thin film transistor (hereinafter referred to as TFT) used as an FPD driving element, and the main wiring material is changed from conventional Al to a lower resistance Cu. Consideration is being made.
At present, Si semiconductor films are used for TFTs. When Cu, which is the main wiring material, is in direct contact with Si, it is thermally diffused by a heating process during the manufacture of the TFTs, thereby degrading the characteristics of the TFTs. For this reason, a laminated wiring film using pure Mo or Mo alloy having excellent heat resistance between Cu and Si as a barrier film is used.

また、FPDの画面を見ながら直接的な操作性を付与するタッチパネル基板画面も大型化が進んでおり、低抵抗のCuを主配線材料に用いる検討が進んでいる。
TFTからつながる画素電極や携帯型端末やタブレットPC等に用いられているタッチパネルの位置検出電極には、一般的に透明導電膜であるインジウム−スズ酸化物(Indium Tin Oxide:以下、ITOという)が用いられている。Cuは、ITOとのコンタクト性は得られるが、基板との密着性が低いことにより、密着性を確保するためにCuを純MoやMo合金で被覆した積層配線膜とする必要がある。
さらに、これまでの非晶質Si半導体から、より高速応答を実現できる酸化物を用いた透明な半導体膜の適用検討が行われており、これら酸化物半導体の配線膜にもCuと純Moを用いた積層配線膜が検討されている。このため、これらの積層配線膜の形成に用いられるMo合金薄膜からなる薄膜配線の需要が高まっている。
In addition, touch panel substrate screens that provide direct operability while viewing the screen of the FPD are also increasing in size, and studies are underway to use low-resistance Cu as the main wiring material.
A pixel electrode connected to a TFT, or a position detection electrode of a touch panel used for a portable terminal, a tablet PC, or the like is generally made of indium tin oxide (hereinafter referred to as ITO) which is a transparent conductive film. It is used. Although Cu can be contacted with ITO, it has to have a laminated wiring film in which Cu is coated with pure Mo or Mo alloy in order to ensure adhesion because of its low adhesion to the substrate.
Furthermore, application studies of transparent semiconductor films using oxides that can realize faster response than conventional amorphous Si semiconductors are being conducted, and Cu and pure Mo are also used for these oxide semiconductor wiring films. The laminated wiring film used has been studied. For this reason, the demand of the thin film wiring which consists of Mo alloy thin film used for formation of these laminated wiring films is increasing.

本出願人は、耐熱性、耐食性や基板との密着性に優れた低抵抗なMo合金薄膜として、Moに3〜50原子%のV、NbにさらにNi、Cuを添加した薄膜配線を提案しており、その実施例でMo−15Nb−10Ni(原子%)の組成でなる薄膜配線の発明を具体的に開示している(特許文献1)。   The present applicant has proposed a thin-film wiring in which 3-50 atomic% of V is added to Mo and Ni and Cu are further added to Nb as a low-resistance Mo alloy thin film excellent in heat resistance, corrosion resistance and adhesion to the substrate. In this example, the invention of a thin film wiring having a composition of Mo-15Nb-10Ni (atomic%) is specifically disclosed (Patent Document 1).

一方、上述した薄膜配線を形成する手法としては、スパッタリングターゲット材を用いたスパッタリング法が最適である。スパッタリング法は、物理蒸着法の一つであり、他の真空蒸着やイオンプレ−ティングに比較して大面積に安定に形成できる方法であるとともに、上記のような添加元素の多い合金でも組成変動が少ない優れた薄膜が得られる有効な手法である。
このようなスパッタリングターゲット材を得る手法としては、例えば特許文献2に開示されるように、原料Mo粉、Ni粉およびその他の添加元素(例えばNb)からなる粉末とを混合した混合粉末またはアトマイズ法で得たMo合金粉末を加圧焼結した焼結体に機械加工を施す方法が提案されている。
On the other hand, a sputtering method using a sputtering target material is optimal as a method for forming the above-described thin film wiring. The sputtering method is one of physical vapor deposition methods, and can be stably formed in a large area compared to other vacuum vapor deposition and ion plating. This is an effective technique for obtaining a few excellent thin films.
As a method for obtaining such a sputtering target material, for example, as disclosed in Patent Document 2, a mixed powder or an atomizing method in which raw material Mo powder, Ni powder and a powder composed of other additive elements (for example, Nb) are mixed. There has been proposed a method of machining a sintered body obtained by pressure-sintering the Mo alloy powder obtained in (1).

特開2004−140319号公報JP 2004-140319 A 特開2010−132974号公報JP 2010-132974 A

高品位の合金薄膜を安定的に得るには、合金薄膜の母材となるスパッタリングターゲット材に高密度、高純度、低ガス成分と、偏析のない均一な組織とが要求される。このような組織とするには、特許文献2で提案されるように全ての成分元素をあらかじめ合金化したMo合金粉末を使用することが望ましい。
しかし、Moが高融点金属であるために、Moを主成分とするMo合金の融点は高く、一般に用いられている誘導加熱装置を用いて溶解してアトマイズ法でMo合金粉末を歩留よく製造することは困難である。また、Mo合金は融点が高いため、合金粉末の粒度が大きいと高密度の焼結体を得にくく、合金粉末の粒度を細かくしようとすると得られるスパッタリングターゲット材中の不純物が増加してしまうといった問題がある。
また、Moは酸化すると、その酸化物がMoの融点に達する前に容易に昇華し気化するため、工程中のMoの酸化を抑制するためには溶解雰囲気を制御した大がかりで高価な装置が必要となるため、得られるMo合金粉末も高価な物となる。
In order to stably obtain a high-quality alloy thin film, a sputtering target material serving as a base material for the alloy thin film requires high density, high purity, low gas components, and a uniform structure without segregation. In order to obtain such a structure, it is desirable to use Mo alloy powder in which all component elements are previously alloyed as proposed in Patent Document 2.
However, since Mo is a refractory metal, the melting point of Mo alloy containing Mo as the main component is high, and it is melted using a commonly used induction heating device to produce Mo alloy powder with high yield by the atomization method. It is difficult to do. In addition, since the Mo alloy has a high melting point, it is difficult to obtain a high-density sintered body when the particle size of the alloy powder is large, and impurities in the obtained sputtering target material increase when attempting to make the particle size of the alloy powder fine. There's a problem.
In addition, when Mo is oxidized, the oxide easily sublimates and vaporizes before reaching the melting point of Mo. Therefore, in order to suppress the oxidation of Mo during the process, a large and expensive apparatus with controlled dissolution atmosphere is required. Therefore, the obtained Mo alloy powder is also expensive.

さらに、原料粉として単純にMo粉末、Ni粉末およびNb粉末を混合して混合粉末を得て、これを加圧焼結すると、合金化が不十分なことに起因してスパッタリングターゲット材中に磁性を帯びやすいNi強磁性相が残存してしまい、スパッタ速度が低下したり、スパッタリングターゲット材の寿命が短くなったりするという問題が生じる場合がある。   Furthermore, simply mixing Mo powder, Ni powder and Nb powder as the raw material powder to obtain a mixed powder, and when this is pressure-sintered, it is magnetic in the sputtering target material due to insufficient alloying In some cases, Ni ferromagnetic phase that tends to be charged remains, resulting in a decrease in sputtering speed and a shortened life of the sputtering target material.

本発明の目的は、低抵抗で耐熱性、耐湿性や基板との密着性にも優れ、電極・配線膜として好適な高密度、高純度で、且つ非磁性のMo合金スパッタリングターゲット材を安定かつ安価に提供できる製造方法、および新規なMo合金スパッタリングターゲット材を提供することにある。   The object of the present invention is to provide a stable, high-density, high-purity, non-magnetic Mo alloy sputtering target material suitable for an electrode / wiring film with low resistance, excellent heat resistance, moisture resistance and adhesion to the substrate. An object of the present invention is to provide a production method that can be provided at low cost and a novel Mo alloy sputtering target material.

本発明者は、上記課題に鑑み、高融点なMoを主成分とするMo合金スパッタリングターゲット材に関して鋭意検討した。その結果、主成分のMoに添加する粉末の性状を最適化することで、低抵抗で耐熱性、耐湿性や基板との密着性にも優れる高品位な薄膜を得るために必要な高密度で高純度なMo合金スパッタリングターゲット材を安定且つ安価に製造できる方法を見出し、本発明に到達した。   In view of the above problems, the present inventor has intensively studied a Mo alloy sputtering target material mainly composed of Mo having a high melting point. As a result, by optimizing the properties of the powder added to the main component Mo, the high density required to obtain a high-quality thin film with low resistance and excellent heat resistance, moisture resistance and adhesion to the substrate. The present inventors have found a method by which a high-purity Mo alloy sputtering target material can be produced stably and inexpensively, and have reached the present invention.

すなわち、本発明は、Niを10〜49原子%、Nbを1〜20原子%含有し、且つNiとNbの合計量が50原子%以下、残部がMoおよび不可避的不純物よりなるMo合金スパッタリングターゲット材の製造方法であって、Mo粉末と、前記組成を満足するように1種または2種以上のNi合金粉末とを混合し、次いで加圧焼結するMo合金スパッタリングターゲット材の製造方法の発明である。
前記Ni合金粉末は、Ni−Nb合金からなることが好ましく、前記Ni−Nb合金粉末がNiNbおよび/またはNiNbからなることがより好ましい。
前記Ni合金粉末は、Ni−Mo合金からなり、さらに純Nb粉末を添加して混合することが好ましい。
That is, the present invention includes a Mo alloy sputtering target containing 10 to 49 atomic percent of Ni and 1 to 20 atomic percent of Nb, the total amount of Ni and Nb being 50 atomic percent or less, and the balance being Mo and inevitable impurities. An invention of a method for producing a Mo alloy sputtering target material, wherein Mo powder and one or more Ni alloy powders are mixed so as to satisfy the above composition, followed by pressure sintering It is.
The Ni alloy powder is preferably made of a Ni—Nb alloy, and more preferably the Ni—Nb alloy powder is made of Ni 6 Nb 7 and / or Ni 3 Nb.
The Ni alloy powder is made of a Ni—Mo alloy, and it is preferable to add and mix pure Nb powder.

また、本発明は、Niを10〜49原子%、Nbを1〜20原子%含有し、且つNiとNbの合計量が50原子%以下、残部がMoおよび不可避的不純物よりなるMo合金スパッタリングターゲット材であって、Moのマトリックス中にNi合金相が分散している組織を有するMo合金スパッタリングターゲット材の発明である。
前記Ni合金相は、Ni−Mo合金相およびNi−Nb合金相からなることが好ましく、前記Ni−Nb合金相が、NiNbおよび/またはNiNbからなることがより好ましい。
本発明のMo合金スパッタリングターゲット材は、前記Ni−Mo合金相と前記Moのマトリックスとの界面に拡散層を有することがより好ましい。
The present invention also provides a Mo alloy sputtering target containing 10 to 49 atomic percent of Ni and 1 to 20 atomic percent of Nb, the total amount of Ni and Nb being 50 atomic percent or less, and the balance being Mo and inevitable impurities. It is an invention of a Mo alloy sputtering target material which has a structure in which a Ni alloy phase is dispersed in a Mo matrix.
The Ni alloy phase is preferably composed of a Ni—Mo alloy phase and a Ni—Nb alloy phase, and the Ni—Nb alloy phase is more preferably composed of Ni 6 Nb 7 and / or Ni 3 Nb.
The Mo alloy sputtering target material of the present invention more preferably has a diffusion layer at the interface between the Ni-Mo alloy phase and the Mo matrix.

本発明は、高密度、高純度で、且つ非磁性のMo合金スパッタリングターゲット材を安定且つ安価に製造することが可能となり、低抵抗で耐熱性、耐湿性や基板との密着性にも優れ、電極・配線膜の形成に好適なMo合金スパッタリングターゲット材を提供できる。このため本発明は、電子部品の製造や信頼性の向上に有用な技術となる。   The present invention makes it possible to stably and inexpensively produce a non-magnetic Mo alloy sputtering target material with high density, high purity, low resistance, excellent heat resistance, moisture resistance and adhesion to the substrate, A Mo alloy sputtering target material suitable for forming an electrode / wiring film can be provided. Therefore, the present invention is a useful technique for manufacturing electronic components and improving reliability.

本発明のMo合金スパッタリングターゲット材の断面ミクロ観察組織写真の一例である。It is an example of the cross-sectional micro observation structure | tissue photograph of Mo alloy sputtering target material of this invention. 本発明のMo合金スパッタリングターゲット材の断面ミクロ観察組織写真の別の例である。It is another example of the cross-sectional micro observation structure | tissue photograph of Mo alloy sputtering target material of this invention.

Moを主成分とする合金は、融点が高く、従来から用いられているアトマイズ法で合金化して粉末にすることは難しく、スパッタリングターゲット材を安定且つ安価に得るには種々の課題があることは上述した通りである。   An alloy containing Mo as a main component has a high melting point, and it is difficult to form a powder by alloying by a conventionally used atomizing method, and there are various problems in obtaining a sputtering target material stably and inexpensively. As described above.

本発明に係る製造方法の重要な特徴は、高融点であるMo合金を溶解することなく、Mo粉末と特定のNi合金粉末とを混合し、次いで加圧焼結することにある。以下、詳しく説明する。
まず、本発明の製造方法で用いる粉末について説明すると、本発明で用いるMo粉末には、入手が容易な市販されているMo粉末を用いることができる。Mo粉末の平均粒径が1μm未満だと得られるスパッタリングターゲット材中の不純物が増加してしまい、50μmを超えると高密度の焼結体を得にくくなる。したがって、Mo粉末の平均粒径の範囲は1μm〜50μmとすることが好ましい。また、Mo粉末は、Moのマトリックスを形成するために、総量で50原子%以上混合することが好ましい。
本発明の製造方法で用いるNi合金粉末は、例えばNi−Nb合金やNi−Mo合金の粉末を用いることができる。これにより、それぞれのNi合金粉末の融点をNbやMoの融点よりも低くできるため、合金粉末の製造や混合粉末の焼結、緻密化が容易になる。これらのNi合金粉末は、所定の成分比に調合した合金をアトマイズ法により容易に得ることができる。Ni合金粉末の平均粒径が5μm未満だと得られるスパッタリングターゲット材中の不純物が増加してしまい、300μmを超えると高密度の焼結体を得にくくなる。したがって、Ni合金粉末の平均粒径の範囲は5μm〜300μmとすることが好ましい。
尚、本発明でいう平均粒径は、JIS Z 8901で規定される、レーザー光を用いた光散乱法による球相当径で表す。
An important feature of the production method according to the present invention is that the Mo powder and the specific Ni alloy powder are mixed and then sintered under pressure without melting the Mo alloy having a high melting point. This will be described in detail below.
First, the powder used in the production method of the present invention will be described. As the Mo powder used in the present invention, a commercially available Mo powder that is easily available can be used. If the average particle size of the Mo powder is less than 1 μm, impurities in the obtained sputtering target material increase, and if it exceeds 50 μm, it becomes difficult to obtain a high-density sintered body. Therefore, the range of the average particle diameter of the Mo powder is preferably 1 μm to 50 μm. The Mo powder is preferably mixed in an amount of 50 atomic% or more in order to form a Mo matrix.
For example, Ni—Nb alloy or Ni—Mo alloy powder can be used as the Ni alloy powder used in the production method of the present invention. Thereby, since melting | fusing point of each Ni alloy powder can be made lower than melting | fusing point of Nb and Mo, manufacture of alloy powder, sintering of powder mixture, and densification become easy. These Ni alloy powders can be easily obtained by an atomizing method with an alloy prepared in a predetermined component ratio. When the average particle size of the Ni alloy powder is less than 5 μm, impurities in the obtained sputtering target material increase, and when it exceeds 300 μm, it becomes difficult to obtain a high-density sintered body. Therefore, the range of the average particle size of the Ni alloy powder is preferably 5 μm to 300 μm.
In addition, the average particle diameter as used in the field of this invention is represented by the spherical equivalent diameter by the light-scattering method using a laser beam prescribed | regulated by JISZ8901.

また、本発明の製造方法で用いるNi合金粉末は、Ni−Nb合金またはNi−Moにすることが好ましい。これは、上述したようにNiが磁性体であり、Niの添加量が増加すると、スパッタリングターゲット材中に磁性を帯びやすいNi強磁性相が残存し、FPDで一般に用いられているマグネトロンスパッタリングにおいて、スパッタ速度が低下したり、スパッタリングターゲット材の寿命が短くなったりすることがあるからである。このため、本発明では、NiをMoやNbと合金化して、非磁性のNi合金相とすることが好ましい。具体的には、Moのマトリックス中にNi−Nb合金相および/またはNi−Mo合金相で分散した組織とするために、Ni合金粉末を用いる。これにより本発明では、スパッタ性のよいスパッタリングターゲット材を得ることが可能となる。   Further, the Ni alloy powder used in the production method of the present invention is preferably a Ni—Nb alloy or Ni—Mo. This is because, as described above, Ni is a magnetic material, and when the amount of Ni added increases, a Ni ferromagnetic phase that tends to be magnetized remains in the sputtering target material, and in magnetron sputtering generally used in FPD, This is because the sputtering rate may decrease and the life of the sputtering target material may be shortened. For this reason, in the present invention, Ni is preferably alloyed with Mo or Nb to form a nonmagnetic Ni alloy phase. Specifically, Ni alloy powder is used in order to obtain a structure dispersed in a Ni—Nb alloy phase and / or a Ni—Mo alloy phase in a Mo matrix. Thereby, in this invention, it becomes possible to obtain a sputtering target material with good sputter property.

また、Ni合金粉末のうち、Ni−Nb合金粉末は、NiNbおよび/またはNiNbの金属間化合物でなることが好ましい。これらの金属間化合物でなるNi合金粉末は、融点がNiより低く、容易に高純度の合金粉末をアトマイズ法で得ることができる。
また、Ni−Mo合金粉末は、Ni合金が常温以上で常磁性となるMoを8原子%以上含有する組成とすることが望ましく、Moを60原子%まで含有してもNiより融点が低く、容易に合金粉末を得ることが可能である。また、Ni−Mo合金も金属間化合物であるため、脆性を有し、溶解−粉砕することで容易に合金粉末を得ることができる上、安価であるから好ましい。以上のことから本発明では、Moの含有量が60原子%以下のNi−Mo粉末を用いることが好ましい。このとき、本発明の成分となるように、純Nb粉末を添加して混合することがより好ましい。
本発明の製造方法では、Ni合金粉末として、Niよりも融点が低くなるように成分を調整したNi−Nb−Mo合金をアトマイズ法や溶解−粉砕を行ない、Ni合金粉末を作製して用いることも可能である。
Of the Ni alloy powders, the Ni—Nb alloy powder is preferably made of an intermetallic compound of Ni 6 Nb 7 and / or Ni 3 Nb. The Ni alloy powder made of these intermetallic compounds has a melting point lower than that of Ni, and a high-purity alloy powder can be easily obtained by the atomizing method.
Further, the Ni-Mo alloy powder preferably has a composition containing 8 atomic% or more of Mo which becomes paramagnetic at room temperature or higher, and even if it contains up to 60 atomic%, the melting point is lower than that of Ni. It is possible to easily obtain an alloy powder. Ni-Mo alloys are also an intermetallic compound, so that they are brittle and can be easily obtained by melting and pulverizing, and are preferable because they are inexpensive. From the above, in the present invention, it is preferable to use a Ni—Mo powder having a Mo content of 60 atomic% or less. At this time, it is more preferable to add and mix pure Nb powder so as to be a component of the present invention.
In the production method of the present invention, Ni-Nb-Mo alloy whose components are adjusted so that the melting point is lower than that of Ni is atomized or dissolved and pulverized to produce Ni alloy powder as Ni alloy powder. Is also possible.

次に、本発明の製造方法について説明すると、本発明のMo合金スパッタリングターゲットの製造方法では、上で説明したMo粉末とNi合金粉末とを目的の組成を満足するように混合し、加圧焼結することで、高密度で高純度なMo合金スパッタリングターゲット材を製造することができる。
本発明の製造方法では、上述した混合粉末の焼結を加圧焼結により実施する。加圧焼結は、熱間静水圧プレスやホットプレスが適用可能であり、焼結温度800〜1500℃、圧力10〜200MPaで1〜10時間行うことが好ましい。
これらの条件の選択は、加圧焼結する装置に依存する。例えば熱間静水圧プレスは低温高圧の条件が適用しやすく、ホットプレスは高温低圧の条件が適用しやすい。本発明の製造方法では、加圧焼結に、低温で焼結してNiやNbの拡散を抑制でき、且つ高圧で焼結して高密度の焼結体が得られる熱間静水圧プレスを用いることが好ましい。
Next, the manufacturing method of the present invention will be described. In the manufacturing method of the Mo alloy sputtering target of the present invention, the Mo powder and the Ni alloy powder described above are mixed so as to satisfy the target composition, and then subjected to pressure sintering. By linking, a high-density and high-purity Mo alloy sputtering target material can be produced.
In the production method of the present invention, the above-described mixed powder is sintered by pressure sintering. The pressure sintering can be performed by hot isostatic pressing or hot pressing, and is preferably performed at a sintering temperature of 800 to 1500 ° C. and a pressure of 10 to 200 MPa for 1 to 10 hours.
The selection of these conditions depends on the pressure sintering apparatus. For example, hot isostatic pressing is easy to apply low temperature and high pressure conditions, and hot pressing is easy to apply high temperature and low pressure conditions. In the production method of the present invention, a hot isostatic press that can be sintered at a low temperature to suppress diffusion of Ni and Nb and that can be sintered at a high pressure to obtain a high-density sintered body is used in the production method of the present invention. It is preferable to use it.

なお、焼結温度が800℃未満では、焼結が進みにくく高密度の焼結体を得ることができない。一方、焼結温度が1500℃を超えると、液相が発現したり、焼結体の結晶成長が著しくなったりして均一微細な組織が得にくくなる。
また、圧力は、10MPa未満では焼結が進みにくく高密度の焼結体を得ることができない。一方、圧力が200MPaを超えると耐え得る装置が限られるという問題がある。
また、焼結時間は、1時間未満では焼結を十分に進行させるのが難しく、高密度の焼結体を得ることができない。一方、焼結時間が10時間を超えると製造効率において避ける方がよい。
なお、熱間静水圧プレスやホットプレスで加圧焼結をする際には、混合粉末を加圧容器や加圧用ダイスに充填した後に、加熱しながら減圧脱気をすることが望ましい。減圧脱気は、加熱温度100〜600℃の範囲で、大気圧(101.3kPa)より低い減圧下で行うことが望ましい。これは、得られる焼結体の酸素をより低減することができ、高純度のMo合金スパッタリングターゲット材を得ることが可能となるためである。
If the sintering temperature is less than 800 ° C., the sintering is difficult to proceed and a high-density sintered body cannot be obtained. On the other hand, when the sintering temperature exceeds 1500 ° C., a liquid phase appears or crystal growth of the sintered body becomes remarkable, and it becomes difficult to obtain a uniform fine structure.
Also, if the pressure is less than 10 MPa, sintering does not proceed easily and a high-density sintered body cannot be obtained. On the other hand, when the pressure exceeds 200 MPa, there is a problem that the apparatus that can withstand is limited.
Further, if the sintering time is less than 1 hour, it is difficult to sufficiently advance the sintering, and a high-density sintered body cannot be obtained. On the other hand, if the sintering time exceeds 10 hours, it is better to avoid the production efficiency.
In addition, when performing pressure sintering by hot isostatic pressing or hot pressing, it is desirable to deaerate under reduced pressure while heating after filling the mixed powder into a pressure vessel or a pressure die. The vacuum degassing is desirably performed under a reduced pressure lower than the atmospheric pressure (101.3 kPa) in the heating temperature range of 100 to 600 ° C. This is because oxygen in the obtained sintered body can be further reduced, and a high-purity Mo alloy sputtering target material can be obtained.

次に、本発明のMo合金スパッタリングターゲット材について説明すると、Niを10〜49原子%、Nbを1〜20原子%含有し、NiとNbの合計量が50原子%以下、残部がMoおよび不可避的不純物からなり、Moのマトリックス中にNi合金相が分散している組織を有する。ここで、Ni合金相とは、Ni−Nb合金相、Ni−Mo合金相、あるいはNi−Nb−Mo合金相のことをいう。   Next, the Mo alloy sputtering target material of the present invention will be described. Ni is contained in 10 to 49 atomic%, Nb is contained in 1 to 20 atomic%, the total amount of Ni and Nb is 50 atomic% or less, and the balance is Mo and inevitable. It has a structure in which a Ni alloy phase is dispersed in a Mo matrix. Here, the Ni alloy phase means a Ni—Nb alloy phase, a Ni—Mo alloy phase, or a Ni—Nb—Mo alloy phase.

本発明でMoにNiやNbを添加するのは、CuやAl等と積層する保護膜としての耐熱性、耐湿性や、下地膜としての密着性を確保するためである。以下、詳しく説明する。
Ni添加量は、10原子%未満では、CuやAl等の保護膜として酸化抑制効果が十分でなく、一方、NiはCuやAlに熱拡散しやすい元素であり、Niリッチの合金になると特にCuやAlに拡散しやすくなり、CuやAlの電気抵抗値が増加しやすくなる。このため、本発明はNiの添加量を10〜49原子%とし、且つNiとNbの合計を50原子%以下とする。
The reason why Ni or Nb is added to Mo in the present invention is to secure heat resistance and moisture resistance as a protective film laminated with Cu or Al, and adhesion as a base film. This will be described in detail below.
If the amount of Ni added is less than 10 atomic%, the effect of suppressing oxidation is not sufficient as a protective film for Cu, Al, etc. On the other hand, Ni is an element that is easily thermally diffused into Cu or Al. It becomes easy to diffuse to Cu and Al, and the electrical resistance value of Cu and Al tends to increase. Therefore, in the present invention, the amount of Ni added is 10 to 49 atomic%, and the total of Ni and Nb is 50 atomic% or less.

また、Nbの添加量は、1原子%未満では耐湿性の改善効果が得られない。一方、Nbの添加量が20原子%以上で耐湿性の向上効果が飽和し、Nbは高価な元素であり、できる限り少ない添加量が望ましい。したがって、本発明は、Nbの添加量を1〜20原子%とする。
本発明では、酸化の抑制や耐湿性の向上に加え、CuやAlへの熱拡散の抑制をするために、Niを15〜35原子%、Nbを3〜10原子%の範囲で添加することがより好ましい。
Further, if the amount of Nb added is less than 1 atomic%, the moisture resistance improving effect cannot be obtained. On the other hand, when the addition amount of Nb is 20 atomic% or more, the effect of improving the moisture resistance is saturated, and Nb is an expensive element, and the addition amount as small as possible is desirable. Therefore, in the present invention, the amount of Nb added is 1 to 20 atomic%.
In the present invention, in addition to suppressing oxidation and improving moisture resistance, Ni is added in the range of 15 to 35 atomic% and Nb in the range of 3 to 10 atomic% in order to suppress thermal diffusion to Cu and Al. Is more preferable.

また、本発明のMo合金スパッタリングターゲット材は、主成分のMoとNi、Nb以外の元素は、できる限り少ないことが望ましい。主成分以外の不純物が多いと、薄膜の電気抵抗が増加したり、元素の種類により他の積層薄膜と反応して密着性や耐湿性・耐酸化性等の特性を劣化させたり場合がある。特に、ガス成分の酸素や窒素は、薄膜中に取り込まれやすく、密着性を低下させたり、薄膜に欠陥を生じさせたりする。したがって本発明は、純度は99.9%以上、また、酸素等の不純物は1000質量ppm以下が好ましく、300質量ppm以下がより好ましい。   Moreover, it is desirable that the Mo alloy sputtering target material of the present invention contains as few elements as possible except for the main components Mo, Ni, and Nb. If there are many impurities other than the main component, the electrical resistance of the thin film may increase, or the characteristics such as adhesion, moisture resistance, and oxidation resistance may be deteriorated by reacting with other laminated thin films depending on the type of element. In particular, oxygen and nitrogen as gas components are easily taken into the thin film, thereby reducing adhesion and causing defects in the thin film. Accordingly, in the present invention, the purity is 99.9% or more, and impurities such as oxygen are preferably 1000 ppm by mass or less, and more preferably 300 ppm by mass or less.

以下の実施例を挙げて本発明を詳細に説明する。
原子比で15%Ni−5%Nb−残部がMoおよび不可避的不純物のMo合金スパッタリングターゲット材を作製するために、純度99.99%、平均粒径6μmのMo粉末と、アトマイズ法で作成した純度99.9%、平均粒径70μmのNiNb合金粉末を用意した。比較のために溶解法で作製することを試みたが、Moが溶け残り、正常な合金塊を作ることができなかった。
The following examples illustrate the invention in detail.
In order to produce a Mo alloy sputtering target material having an atomic ratio of 15% Ni-5% Nb—the balance being Mo and unavoidable impurities, Mo powder having a purity of 99.99% and an average particle size of 6 μm was prepared by an atomizing method. Ni 3 Nb alloy powder having a purity of 99.9% and an average particle diameter of 70 μm was prepared. For comparison, an attempt was made to prepare by a melting method, but Mo remained undissolved and a normal alloy lump could not be made.

上記の組成となるように各粉末を秤量し、クロスロータリー混合機により混合して混合粉末を得た。その後、内径133mm、高さ30mm、厚さ3mmの軟鋼製の容器に充填し、450℃で10時間加熱して脱ガス処理を行なった後に軟鋼製容器を封止し、熱間静水圧プレス(HIP)装置により1180℃、148MPaに3時間保持して焼結した。冷却後、HIP装置から取り出し、機械加工により軟鋼製容器を外し、直径100mm、厚さ5mmのMo合金スパッタリングターゲット材を得て、残部より試験片を切り出した。   Each powder was weighed so as to have the above composition, and mixed with a cross rotary mixer to obtain a mixed powder. After that, a soft steel container having an inner diameter of 133 mm, a height of 30 mm, and a thickness of 3 mm is filled, heated at 450 ° C. for 10 hours and degassed, and then the soft steel container is sealed and hot isostatic press ( HIP) was sintered at 1180 ° C. and 148 MPa for 3 hours. After cooling, it was taken out from the HIP device, the soft steel container was removed by machining, a Mo alloy sputtering target material having a diameter of 100 mm and a thickness of 5 mm was obtained, and a test piece was cut out from the remainder.

得られた試験片の相対密度をアルキメデス法により測定したところ、99.9%であり、本発明の製造方法によれば、高密度のMo合金スパッタリングターゲット材を得られることが確認できた。ここでいう相対密度とは、アルキメデス法により測定されたかさ密度を、Mo合金スパッタリングターゲット材の組成比から得られる質量比で算出した元素単体の加重平均として得た理論密度で除した値に100を乗じて得た値をいう。
また、得られた試験片の金属元素の定量分析を株式会社島津製作所製の型式番号:ICPV−1017の誘電プラズマ発光分析装置(ICP)で行ない、酸素の定量を非分散型赤外線吸収法により測定したところ、Mo、Ni、Nbの分析値の合計の純度は99.9%、酸素濃度は350質量ppmであり、本発明の製造方法によれば、高純度のMo合金スパッタリングターゲット材が得られることが確認できた。
When the relative density of the obtained test piece was measured by the Archimedes method, it was 99.9%, and according to the manufacturing method of this invention, it has confirmed that a high-density Mo alloy sputtering target material could be obtained. The relative density here is 100 divided by a value obtained by dividing the bulk density measured by the Archimedes method by the theoretical density obtained as a weighted average of elemental elements calculated by the mass ratio obtained from the composition ratio of the Mo alloy sputtering target material. The value obtained by multiplying.
Further, quantitative analysis of the metal element of the obtained test piece is performed with a dielectric plasma emission analyzer (ICP) of model number: ICPV-1017 manufactured by Shimadzu Corporation, and the determination of oxygen is measured by a non-dispersive infrared absorption method. As a result, the total purity of the analytical values of Mo, Ni, and Nb is 99.9%, and the oxygen concentration is 350 mass ppm. According to the manufacturing method of the present invention, a high-purity Mo alloy sputtering target material can be obtained. I was able to confirm.

上記で得た試験片を、鏡面研磨した後、ナイタール試薬で腐食して、光学顕微鏡で組織観察した結果を図1に示す。図1に示すように、本発明のMo合金スパッタリングターゲット材は、Moの細かな再結晶したマトリックス中に、球状に近いNi合金相が分散した組織を有しており、偏析や空孔等の大きな欠陥は確認されず、スパッタ成膜に好適なスパッタリングターゲット材であることが確認できた。   The test piece obtained above is mirror-polished, then corroded with a Nital reagent, and the result of observing the structure with an optical microscope is shown in FIG. As shown in FIG. 1, the Mo alloy sputtering target material of the present invention has a structure in which a Ni alloy phase close to a sphere is dispersed in a finely recrystallized matrix of Mo, such as segregation and vacancies. No large defects were confirmed, and it was confirmed that the sputtering target material was suitable for sputtering film formation.

また、上記で得た直径100mm、厚さ5mmのMo合金スパッタリングターゲット材を銅製のバッキングプレートにろう付けした後、キャノンアネルバ株式会社製の型式番号:SPF−440HLのスパッタ装置に取り付け、Ar雰囲気、圧力0.5Pa、電力500Wでスパッタを実施した。本発明のMo合金スパッタリングターゲットを用いてスパッタすると、異常放電もなく、安定したスパッタを行なうことができることを確認した。   In addition, after brazing the Mo alloy sputtering target material having a diameter of 100 mm and a thickness of 5 mm obtained above to a copper backing plate, it was attached to a sputtering apparatus of model number SPF-440HL manufactured by Canon Anelva Co., Ltd., Ar atmosphere, Sputtering was performed at a pressure of 0.5 Pa and a power of 500 W. It was confirmed that when sputtering was performed using the Mo alloy sputtering target of the present invention, stable sputtering could be performed without abnormal discharge.

コーニング社製の製品番号:EagleXGの25×50mmのガラス基板上に、上記の条件で膜厚200nmのMo合金薄膜を形成した試料をそれぞれ作製し、密着性、耐湿性、耐熱性を評価した。
密着性の評価は、JIS K5400で規定された方法で行なった。先ず、上記のMo合金薄膜上に、住友スリーエム株式会社製の透明粘着テープ(製品名:透明美色)を貼り、2mm角のマス目をカッターナイフで入れ、透明粘着テープを引き剥がして、薄膜の残存の有無で評価をした。本発明のMo合金スパッタリングターゲット材を用いて成膜した薄膜は、一マスも剥がれず、高い密着性を有することが確認できた。
耐湿性の評価は、上記のMo合金薄膜を、温度85℃、湿度85%の雰囲気に100時間放置し、Mo合金薄膜表面の変色の有無を目視で確認した。本発明のMo合金スパッタリングターゲット材を用いた成膜した薄膜は、高温高湿雰囲気にさらしても変色せず、高い耐湿性を有することが確認できた。
耐熱性の評価は、上記のMo合金薄膜を、大気中の300℃の雰囲気で30分加熱し、Mo合金薄膜の変色の有無を目視で確認した。本発明のMo合金スパッタリングターゲット材を用いて成膜した薄膜は、高温で加熱しても変色せず、高い耐熱性を有する薄膜であることが確認できた。
Samples each having a 200 nm-thick Mo alloy thin film formed on a 25 × 50 mm glass substrate of Corning Corporation product number: EagleXG were prepared under the above conditions, and evaluated for adhesion, moisture resistance, and heat resistance.
The evaluation of adhesion was performed by a method defined in JIS K5400. First, a transparent adhesive tape (product name: transparent beautiful color) manufactured by Sumitomo 3M Co., Ltd. is applied on the Mo alloy thin film, and a square of 2 mm square is put with a cutter knife, and the transparent adhesive tape is peeled off. Evaluation was made based on the presence or absence of residual. It was confirmed that the thin film formed using the Mo alloy sputtering target material of the present invention was not peeled off, and had high adhesion.
For the evaluation of moisture resistance, the Mo alloy thin film was left in an atmosphere at a temperature of 85 ° C. and a humidity of 85% for 100 hours, and the presence or absence of discoloration on the surface of the Mo alloy thin film was visually confirmed. It was confirmed that the formed thin film using the Mo alloy sputtering target material of the present invention did not change color even when exposed to a high temperature and high humidity atmosphere, and had high moisture resistance.
In the evaluation of heat resistance, the Mo alloy thin film was heated at 300 ° C. in the atmosphere for 30 minutes, and the presence or absence of discoloration of the Mo alloy thin film was visually confirmed. It was confirmed that the thin film formed using the Mo alloy sputtering target material of the present invention did not change color even when heated at a high temperature, and had a high heat resistance.

原子比で20%Ni−10%Nb−残部Moおよび不可避的不純物のMo合金スパッタリングターゲット材を作製するために、純度99.99%、平均粒径6μmのMo粉末と、アトマイズ法で作成した純度99.9%、平均粒径100μmのNi−30Mo(原子%)合金粉末と、平均粒径85μmのNb粉末とを用意した。比較のために溶解法で作製することを試みたが、Moが溶け残り、正常な合金塊を作ることができなかった。   In order to produce 20% Ni-10% Nb-balance Mo and unavoidable Mo alloy sputtering target material in atomic ratio, Mo powder with a purity of 99.99% and an average particle size of 6 μm, and the purity produced by the atomization method A 9-30% Ni-30Mo (atomic%) alloy powder having an average particle size of 100 μm and an Nb powder having an average particle size of 85 μm were prepared. For comparison, an attempt was made to prepare by a melting method, but Mo remained undissolved and a normal alloy lump could not be made.

上記の組成となるように各粉末を秤量し、クロスロータリー混合機により混合して混合粉末を得た。その後、内径133mm、高さ30mm、厚さ3mmの軟鋼製の容器に充填し、450℃で10時間加熱して脱ガス処理を行なった後に軟鋼製容器を封止し、熱間静水圧プレス(HIP)装置により1100℃、148MPaに5時間保持して焼結した。冷却後、HIP装置から取り出し、機械加工により軟鋼製容器を外し、直径100mm、厚さ5mmのMo合金スパッタリングターゲット材を得て、残部より試験片を切り出した。   Each powder was weighed so as to have the above composition, and mixed with a cross rotary mixer to obtain a mixed powder. After that, a soft steel container having an inner diameter of 133 mm, a height of 30 mm, and a thickness of 3 mm is filled, heated at 450 ° C. for 10 hours and degassed, and then the soft steel container is sealed and hot isostatic press ( HIP) was sintered at 1100 ° C. and 148 MPa for 5 hours. After cooling, it was taken out from the HIP device, the soft steel container was removed by machining, a Mo alloy sputtering target material having a diameter of 100 mm and a thickness of 5 mm was obtained, and a test piece was cut out from the remainder.

得られた試験片の相対密度を実施例1と同様に、アルキメデス法により測定したところ、99.9%であり、本発明の製造方法によれば、高密度のMo合金スパッタリングターゲット材を得られることが確認できた。
また、得られた試験片の金属元素の定量分析を株式会社島津製作所製の型式番号:ICPV−1017のICP(誘電プラズマ発光分析装置)で行ない、酸素の定量を非分散型赤外線吸収法により測定したところ、Mo、Ni、Nbの分析値の合計の純度は99.9%、酸素濃度は500質量ppmであり、本発明の製造方法によれば、高純度のMo合金スパッタリングターゲット材が得られることが確認できた。
When the relative density of the obtained test piece was measured by the Archimedes method in the same manner as in Example 1, it was 99.9%. According to the production method of the present invention, a high-density Mo alloy sputtering target material can be obtained. I was able to confirm.
In addition, quantitative analysis of the metal elements of the obtained test piece is performed by ICP (dielectric plasma emission analyzer) of model number: ICPV-1017 manufactured by Shimadzu Corporation, and the quantitative determination of oxygen is measured by a non-dispersive infrared absorption method. As a result, the total purity of the analytical values of Mo, Ni, and Nb is 99.9%, and the oxygen concentration is 500 ppm by mass. According to the manufacturing method of the present invention, a high-purity Mo alloy sputtering target material can be obtained. I was able to confirm.

上記で得た試験片を、鏡面研磨した後、ナイタール試薬で腐食して、光学顕微鏡で組織観察した結果を図2に示す。図2に示すように、本発明のMo合金スパッタリングターゲット材は、Moの細かな再結晶したマトリックス中に、アトマイズ法で得られた球状に近いNi−Mo合金相と、粉砕により得られたNb粉が分散した組織を有しており、その周囲にMoとの拡散層があり、偏析や空孔等の大きな欠陥は確認されず、スパッタ成膜に好適なスパッタリングターゲット材であることが確認できた。   The test piece obtained above is mirror-polished, then corroded with a Nital reagent, and the result of observation of the structure with an optical microscope is shown in FIG. As shown in FIG. 2, the Mo alloy sputtering target material of the present invention has a nearly Ni-Mo alloy phase obtained by atomization in a finely recrystallized matrix of Mo, and Nb obtained by pulverization. It has a structure in which powder is dispersed, and there is a diffusion layer with Mo around it, and no large defects such as segregation or vacancies are confirmed, and it can be confirmed that it is a sputtering target material suitable for sputtering film formation It was.

また、上記で得た直径100mm、厚さ5mmのMo合金スパッタリングターゲット材を銅製のバッキングプレートにろう付けした後、キャノンアネルバ株式会社製の型式番号:SPF−440HLのスパッタ装置に取り付け、Ar雰囲気、圧力0.5Pa、電力500Wでスパッタを実施した。本発明のMo合金スパッタリングターゲットを用いてスパッタすると、異常放電もなく、安定したスパッタを行なうことができることを確認した。   In addition, after brazing the Mo alloy sputtering target material having a diameter of 100 mm and a thickness of 5 mm obtained above to a copper backing plate, it was attached to a sputtering apparatus of model number SPF-440HL manufactured by Canon Anelva Co., Ltd., Ar atmosphere, Sputtering was performed at a pressure of 0.5 Pa and a power of 500 W. It was confirmed that when sputtering was performed using the Mo alloy sputtering target of the present invention, stable sputtering could be performed without abnormal discharge.

コーニング社製の製品番号:EagleXGの25×50mmのガラス基板上に、上記の条件で膜厚200nmのMo合金薄膜を形成した試料をそれぞれ作製し、密着性、耐湿性、耐熱性を評価した。
密着性の評価は、JIS K5400で規定された方法で行なった。先ず、上記のMo合金薄膜上に住友スリーエム株式会社製の透明粘着テープ(製品名:透明美色)を貼り、2mm角のマス目をカッターナイフで入れ、透明粘着テープを引き剥がして、薄膜の残存の有無で評価をした。本発明のMo合金スパッタリングターゲット材を用いて成膜した薄膜は、一マスも剥がれず、高い密着性を有することが確認できた。
耐湿性の評価は、上記のMo合金薄膜を、温度85℃、湿度85%の雰囲気に300時間放置し、Mo合金薄膜表面の変色の有無を目視で確認した。本発明のMo合金スパッタリングターゲット材を用いた成膜した薄膜は、高温高湿雰囲気にさらしても変色せず、高い耐湿性を有することが確認できた。
耐熱性の評価は、上記のMo合金薄膜を、大気中の400℃の雰囲気で30分加熱し、Mo合金薄膜の変色の有無を目視で確認した。本発明のMo合金スパッタリングターゲット材を用いて成膜した薄膜は、高温で加熱しても変色せず、高い耐熱性を有する薄膜であることが確認できた。
Samples each having a 200 nm-thick Mo alloy thin film formed on a 25 × 50 mm glass substrate of Corning Corporation product number: EagleXG were prepared under the above conditions, and evaluated for adhesion, moisture resistance, and heat resistance.
The evaluation of adhesion was performed by a method defined in JIS K5400. First, a transparent adhesive tape (product name: transparent beautiful color) manufactured by Sumitomo 3M Co., Ltd. is applied on the Mo alloy thin film, and a square of 2 mm square is put with a cutter knife, and the transparent adhesive tape is peeled off. Evaluation was made based on the presence or absence of residual. It was confirmed that the thin film formed using the Mo alloy sputtering target material of the present invention was not peeled off, and had high adhesion.
In the evaluation of moisture resistance, the Mo alloy thin film was left in an atmosphere at a temperature of 85 ° C. and a humidity of 85% for 300 hours, and the presence or absence of discoloration on the surface of the Mo alloy thin film was visually confirmed. It was confirmed that the formed thin film using the Mo alloy sputtering target material of the present invention did not change color even when exposed to a high temperature and high humidity atmosphere, and had high moisture resistance.
In the evaluation of heat resistance, the Mo alloy thin film was heated at 400 ° C. in the atmosphere for 30 minutes, and the presence or absence of discoloration of the Mo alloy thin film was visually confirmed. It was confirmed that the thin film formed using the Mo alloy sputtering target material of the present invention did not change color even when heated at a high temperature, and had a high heat resistance.

Claims (8)

Niを10〜49原子%、Nbを1〜20原子%含有し、且つNiとNbの合計量が50原子%以下で、残部がMoおよび不可避的不純物よりなるMo合金スパッタリングターゲット材の製造方法であって、Mo粉末と1種または2種以上のNi合金粉末とを前記組成を満足するように混合し、次いで加圧焼結することを特徴とするMo合金スパッタリングターゲット材の製造方法。   A method for producing a Mo alloy sputtering target material containing 10 to 49 atomic percent of Ni, 1 to 20 atomic percent of Nb, the total amount of Ni and Nb being 50 atomic percent or less, and the balance being Mo and inevitable impurities. A method for producing a Mo alloy sputtering target material, comprising mixing Mo powder and one or more Ni alloy powders so as to satisfy the above composition, followed by pressure sintering. 前記Ni合金粉末が、Ni−Nb合金からなることを特徴とする請求項1に記載のMo合金スパッタリングターゲット材の製造方法。   The method for producing a Mo alloy sputtering target material according to claim 1, wherein the Ni alloy powder is made of a Ni—Nb alloy. 前記Ni−Nb合金粉末が、NiNbおよび/またはNiNbからなることを特徴とする請求項2に記載のMo合金スパッタリングターゲット材の製造方法。 The Ni-Nb alloy powder, a manufacturing method of Mo alloy sputtering target material according to claim 2, characterized in that it consists of Ni 6 Nb 7 and / or Ni 3 Nb. 前記Ni合金粉末が、Ni−Mo合金からなり、さらに純Nb粉末を添加して混合することを特徴とする請求項1に記載のMo合金スパッタリングターゲット材の製造方法。   The method for producing a Mo alloy sputtering target material according to claim 1, wherein the Ni alloy powder is made of a Ni—Mo alloy, and pure Nb powder is further added and mixed. Niを10〜49原子%、Nbを1〜20原子%含有し、且つNiとNbの合計量が50原子%以下で、残部がMoおよび不可避的不純物よりなるMo合金スパッタリングターゲット材であって、Moのマトリックス中にNi合金相が分散している組織を有することを特徴とするMo合金スパッタリングターゲット材。   A Mo alloy sputtering target material containing 10 to 49 atomic percent of Ni, 1 to 20 atomic percent of Nb, and a total amount of Ni and Nb of 50 atomic percent or less, with the balance being Mo and inevitable impurities, A Mo alloy sputtering target material having a structure in which a Ni alloy phase is dispersed in a Mo matrix. 前記Ni合金相が、Ni−Mo合金相および/またはNi−Nb合金相からなることを特徴する請求項5に記載のMo合金スパッタリングターゲット材。   The Mo alloy sputtering target material according to claim 5, wherein the Ni alloy phase is composed of a Ni—Mo alloy phase and / or a Ni—Nb alloy phase. 前記Ni−Nb合金相が、NiNbおよび/またはNiNbからなることを特徴する請求項6に記載のMo合金スパッタリングターゲット材。 The Mo alloy sputtering target material according to claim 6, wherein the Ni—Nb alloy phase is made of Ni 6 Nb 7 and / or Ni 3 Nb. 前記Ni−Mo合金相と前記Moのマトリックスとの界面に拡散層を有することを特徴とする請求項6または請求項7に記載のMo合金スパッタリングタ−ゲット材。   The Mo alloy sputtering target material according to claim 6 or 7, further comprising a diffusion layer at an interface between the Ni-Mo alloy phase and the Mo matrix.
JP2012247430A 2011-12-22 2012-11-09 Method for producing Mo alloy sputtering target material and Mo alloy sputtering target material Active JP5958822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012247430A JP5958822B2 (en) 2011-12-22 2012-11-09 Method for producing Mo alloy sputtering target material and Mo alloy sputtering target material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011281293 2011-12-22
JP2011281293 2011-12-22
JP2012247430A JP5958822B2 (en) 2011-12-22 2012-11-09 Method for producing Mo alloy sputtering target material and Mo alloy sputtering target material

Publications (2)

Publication Number Publication Date
JP2013147734A true JP2013147734A (en) 2013-08-01
JP5958822B2 JP5958822B2 (en) 2016-08-02

Family

ID=48633907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012247430A Active JP5958822B2 (en) 2011-12-22 2012-11-09 Method for producing Mo alloy sputtering target material and Mo alloy sputtering target material

Country Status (4)

Country Link
JP (1) JP5958822B2 (en)
KR (1) KR20130079176A (en)
CN (1) CN103173728B (en)
TW (1) TWI447250B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106574324A (en) * 2014-08-20 2017-04-19 攀时奥地利公司 Metallization for a thin film component, method for the production thereof, and sputtering target
CN106567047A (en) * 2016-11-04 2017-04-19 北方民族大学 Method of preparing high-purity microstructure-controllable Mo-Nb alloy target material through hot-pressing process
KR20170056003A (en) * 2014-09-30 2017-05-22 제이엑스금속주식회사 Master alloy for sputtering target and method for manufacturing sputtering target
KR20200112716A (en) 2019-03-20 2020-10-05 히타치 긴조쿠 가부시키가이샤 Mo alloy target material and method for manufacturing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016117048A1 (en) * 2016-09-12 2018-03-15 Materion Advanced Materials Germany Gmbh Sputtering target for producing a light-absorbing layer
CN108491103B (en) * 2018-02-28 2021-09-17 信利半导体有限公司 Manufacturing method of double-sided ITO product and double-sided ITO product
CN108754200A (en) * 2018-08-28 2018-11-06 马林生 A kind of nickel molybdenum intermediate alloy preparation process
JP7385370B2 (en) * 2019-05-07 2023-11-22 山陽特殊製鋼株式会社 Ni-based sputtering target and magnetic recording medium
CN110670032B (en) * 2019-10-29 2021-10-01 金堆城钼业股份有限公司 Molybdenum-nickel-copper multi-element alloy sputtering target material and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07292463A (en) * 1994-04-27 1995-11-07 Kubota Corp Sputtering target member for forming non-magnetic primary film of metal thin film type magnetic recording medium
JPH10301499A (en) * 1997-04-22 1998-11-13 Ulvac Seimaku Kk Blanks or black matrix and their production
JP2000214307A (en) * 1999-01-25 2000-08-04 Asahi Glass Co Ltd Substrate with thin film for black matrix, color filter substrate, production of substrate with thin film for black matrix and target used for that production
JP2004140319A (en) * 2002-08-19 2004-05-13 Hitachi Metals Ltd Thin film wiring
JP2010132974A (en) * 2008-12-04 2010-06-17 Nippon Steel Materials Co Ltd Ni-Mo BASED ALLOY SPUTTERING TARGET PLATE
US20120247948A1 (en) * 2009-11-19 2012-10-04 Seung Yong Shin Sputtering target of multi-component single body and method for preparation thereof, and method for producing multi-component alloy-based nanostructured thin films using same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7832619B2 (en) * 2004-02-27 2010-11-16 Howmet Corporation Method of making sputtering target
RU2418886C2 (en) * 2005-05-05 2011-05-20 Х.К. Штарк Гмбх Procedure for application of coating for fabrication or restoration of sputtering targets and anodes of x-ray tubes
JP2011523978A (en) * 2008-04-28 2011-08-25 ハー ツェー シュタルク インコーポレイテッド Molybdenum-niobium alloy, sputtering target containing such alloy, method for producing such target, thin film produced therefrom, and use thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07292463A (en) * 1994-04-27 1995-11-07 Kubota Corp Sputtering target member for forming non-magnetic primary film of metal thin film type magnetic recording medium
JPH10301499A (en) * 1997-04-22 1998-11-13 Ulvac Seimaku Kk Blanks or black matrix and their production
JP2000214307A (en) * 1999-01-25 2000-08-04 Asahi Glass Co Ltd Substrate with thin film for black matrix, color filter substrate, production of substrate with thin film for black matrix and target used for that production
JP2004140319A (en) * 2002-08-19 2004-05-13 Hitachi Metals Ltd Thin film wiring
JP2010132974A (en) * 2008-12-04 2010-06-17 Nippon Steel Materials Co Ltd Ni-Mo BASED ALLOY SPUTTERING TARGET PLATE
US20120247948A1 (en) * 2009-11-19 2012-10-04 Seung Yong Shin Sputtering target of multi-component single body and method for preparation thereof, and method for producing multi-component alloy-based nanostructured thin films using same
JP2013511621A (en) * 2009-11-19 2013-04-04 韓国生産技術研究院 Multi-component unitary sputtering target and method for producing the same, and method for producing multi-component alloy nanostructure thin film using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106574324A (en) * 2014-08-20 2017-04-19 攀时奥地利公司 Metallization for a thin film component, method for the production thereof, and sputtering target
US11047038B2 (en) 2014-08-20 2021-06-29 Plansee Se Metallization for a thin-film component, process for the production thereof and sputtering target
KR20170056003A (en) * 2014-09-30 2017-05-22 제이엑스금속주식회사 Master alloy for sputtering target and method for manufacturing sputtering target
JPWO2016052371A1 (en) * 2014-09-30 2017-06-08 Jx金属株式会社 Mother alloy for sputtering target and method for producing sputtering target
KR101953493B1 (en) 2014-09-30 2019-02-28 제이엑스금속주식회사 Master alloy for sputtering target and method for manufacturing sputtering target
US10704137B2 (en) 2014-09-30 2020-07-07 Jx Nippon Mining & Metals Corporation Master alloy for sputtering target and method for producing sputtering target
CN106567047A (en) * 2016-11-04 2017-04-19 北方民族大学 Method of preparing high-purity microstructure-controllable Mo-Nb alloy target material through hot-pressing process
KR20200112716A (en) 2019-03-20 2020-10-05 히타치 긴조쿠 가부시키가이샤 Mo alloy target material and method for manufacturing the same
JP7419886B2 (en) 2019-03-20 2024-01-23 株式会社プロテリアル Mo alloy target material and its manufacturing method

Also Published As

Publication number Publication date
KR20130079176A (en) 2013-07-10
TW201329267A (en) 2013-07-16
JP5958822B2 (en) 2016-08-02
TWI447250B (en) 2014-08-01
CN103173728A (en) 2013-06-26
CN103173728B (en) 2015-11-04

Similar Documents

Publication Publication Date Title
JP5958822B2 (en) Method for producing Mo alloy sputtering target material and Mo alloy sputtering target material
JP6284004B2 (en) Method for producing Mo alloy sputtering target material and Mo alloy sputtering target material
JP6369750B2 (en) LAMINATED WIRING FILM, MANUFACTURING METHOD THEREOF, AND NI ALLOY SPUTTERING TARGET MATERIAL
CN108242276B (en) Laminated wiring film and method for manufacturing same
TWI583801B (en) A sputtering target for forming a wiring film for an electronic component and a coating layer material
KR20190010701A (en) Laminate wiring layer for an electronic component and a sputtering target material for forming a coating layer
JP2013060655A (en) Laminated wiring film for electronic component and sputtering target material for forming coating layer
TWI504772B (en) Copper-manganese alloy film and copper-manganese alloy sputtering target and film formation method of copper-manganese alloy film
JP6292471B2 (en) Metal thin film for electronic parts and Mo alloy sputtering target material for metal thin film formation
TWI576454B (en) Spraying target for forming wiring film and coating layer for electronic parts
JP6380837B2 (en) Sputtering target material for forming coating layer and method for producing the same
JP5622079B2 (en) Sputtering target
JP2013038393A (en) Multilayer wiring film for electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160609

R150 Certificate of patent or registration of utility model

Ref document number: 5958822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350