WO2015053371A1 - Transparent conductor - Google Patents

Transparent conductor Download PDF

Info

Publication number
WO2015053371A1
WO2015053371A1 PCT/JP2014/077094 JP2014077094W WO2015053371A1 WO 2015053371 A1 WO2015053371 A1 WO 2015053371A1 JP 2014077094 W JP2014077094 W JP 2014077094W WO 2015053371 A1 WO2015053371 A1 WO 2015053371A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
layer
index layer
transparent
high refractive
Prior art date
Application number
PCT/JP2014/077094
Other languages
French (fr)
Japanese (ja)
Inventor
一成 多田
仁一 粕谷
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015541637A priority Critical patent/JPWO2015053371A1/en
Publication of WO2015053371A1 publication Critical patent/WO2015053371A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a transparent conductor including a transparent metal film.
  • transparent conductive films have been used for various devices such as electrode materials for display devices such as liquid crystal displays, plasma displays, inorganic and organic EL (electroluminescence) displays, electrode materials for inorganic and organic EL elements, touch panel materials, and solar cell materials.
  • electrode materials for display devices such as liquid crystal displays, plasma displays, inorganic and organic EL (electroluminescence) displays, electrode materials for inorganic and organic EL elements, touch panel materials, and solar cell materials.
  • a wiring made of a transparent conductive film or the like is disposed on the image display surface of the display element. Therefore, the transparent conductive film is required to have high light transmittance.
  • a transparent conductive film made of ITO having high light transmittance is often used.
  • An object of this invention is to provide a transparent conductor with high moisture resistance and light transmittance.
  • 6 is a graph showing spectral characteristics of a transparent conductor produced in Example 4.
  • 10 is a graph showing spectral characteristics of a transparent conductor produced in Example 5.
  • 7 is a graph showing spectral characteristics of a transparent conductor produced in Example 6.
  • 7 is a graph showing spectral characteristics of a transparent conductor produced in Example 7.
  • 6 is a graph showing spectral characteristics of a transparent conductor produced in Example 8.
  • 6 is a graph showing spectral characteristics of a transparent conductor produced in Example 9.
  • 6 is a graph showing spectral characteristics of a transparent conductor produced in Example 10.
  • FIG. 10 is a graph showing spectral characteristics of a transparent conductor produced in Example 11.
  • 14 is a graph showing spectral characteristics of a transparent conductor produced in Example 12.
  • the prevention layer 5 may be included, but from the viewpoint of sufficiently increasing the light transmittance of the transparent conductor 100, the sulfide prevention layer 5 is provided between the zinc sulfide-containing layers 2 and 4 and the transparent metal film 3, respectively. Is preferably included. That is, it is preferable that the sulfidation preventing layer 5 is included between the first high refractive index layer 2 and the transparent metal film 3 and between the transparent metal film 3 and the second high refractive index layer 4.
  • the average transmittance is measured by making light incident from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent substrate 1.
  • Average transmittance and average reflectance are measured with a spectrophotometer.
  • the thickness of the transparent substrate 1 is preferably 1 ⁇ m to 20 mm, more preferably 10 ⁇ m to 2 mm.
  • the thickness of the transparent substrate is 1 ⁇ m or more, the strength of the transparent substrate 1 is increased, and it is difficult to crack or tear the first high refractive index layer 2 during production.
  • the thickness of the transparent substrate 1 is 20 mm or less, the flexibility of the transparent conductor 100 is sufficient.
  • the thickness of the apparatus using the transparent conductor 100 can be reduced.
  • the apparatus using the transparent conductor 100 can also be reduced in weight.
  • the dielectric material or oxide semiconductor material contained in the first high refractive index layer 2 may be an insulating material or a conductive material.
  • the dielectric material or oxide semiconductor material can be a metal oxide.
  • metal oxides include TiO 2 , ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO (indium oxide / zinc oxide), AZO (Al-doped ZnO), GZO (Ga-doped ZnO), ATO (Sb-doped SnO), ICO (indium cerium oxide), Bi 2 O 3 , Ga 2 O 3 , GeO 2 , WO 3 , HfO 2 , IGZO (indium gallium zinc oxide), a-GIO (amorphous oxide composed of gallium, indium and
  • the amount of ZnS is 0.1% by mass or more and 95% by mass with respect to the total number of moles of the material constituting the first high refractive index layer 2.
  • % Is preferably 50% by mass or more and 90% by mass or less, and more preferably 60% by mass or more and 85% by mass or less.
  • the ratio of ZnS is high, the sputtering rate is increased, and the deposition rate of the first high refractive index layer 2 is increased.
  • the amorphousness of the first high refractive index layer 2 is increased, and cracking of the first high refractive index layer 2 is suppressed.
  • the first high refractive index layer 2 can be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like. From the viewpoint of increasing the refractive index (density) of the first high refractive index layer 2, the first high refractive index layer 2 is preferably a layer formed by an electron beam evaporation method or a sputtering method. In the case of the electron beam evaporation method, it is desirable to have assistance such as IAD (ion assist) in order to increase the film density.
  • IAD ion assist
  • First anti-sulfurization layer ZnS is contained in the first high-refractive index layer; that is, when the first high-refractive index layer 2 is a zinc sulfide-containing layer, as shown in FIG. It is preferable that the first sulfidation preventing layer 5 a is included between the high refractive index layer 2 and the transparent metal film 3.
  • the first sulfidation preventing layer 5a may be formed also in the insulating region b of the transparent conductor 100, but from the viewpoint of making it difficult to visually recognize the pattern composed of the conductive region a and the insulating region b, only the conductive region a is formed. Preferably it is formed.
  • metal oxides include TiO 2 , ITO, ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2. , La 2 Ti 2 O 7 , IZO, AZO, GZO, ATO, ICO, Bi 2 O 3 , a-GIO, Ga 2 O 3 , GeO 2 , SiO 2 , Al 2 O 3 , HfO 2 , SiO, MgO, Y 2 O 3 , WO 3 , In 2 O 3 , IGZO and the like are included.
  • the thickness of the first sulfidation preventing layer 5a is preferably a thickness capable of protecting the surface of the first high refractive index layer 2 from an impact during the formation of the transparent metal film 3 described later.
  • ZnS that can be contained in the first high refractive index layer 2 has high affinity with the metal contained in the transparent metal film 3. Therefore, if the thickness of the first sulfidation preventing layer 5a is very thin and a part of the first high refractive index layer 2 is slightly exposed, a transparent metal film grows around the exposed part, and the transparent metal film 3 tends to be dense.
  • the first sulfidation preventing layer 5a is preferably relatively thin, preferably 0.1 nm to 10 nm, more preferably 0.5 nm to 5 nm, and further preferably 1 nm to 3 nm.
  • the thickness of the first sulfurization preventing layer 5a is measured with an ellipsometer.
  • the first antisulfurization layer 5a can be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like.
  • a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like.
  • the transparent metal film 3 is a film for conducting electricity in the transparent conductor 100.
  • the transparent metal film 3 may be formed on the entire surface of the transparent substrate 1 as described above, or may be patterned into a desired shape.
  • the metal contained in the transparent metal film 3 is not particularly limited as long as it is a highly conductive metal, and may be, for example, silver, copper, gold, platinum group, titanium, chromium, or the like.
  • the transparent metal film 3 may contain only one kind of these metals or two or more kinds.
  • the transparent metal film is preferably made of silver or an alloy containing 90 at% or more of silver.
  • the metal combined with silver can be zinc, gold, copper, palladium, aluminum, manganese, bismuth, neodymium, molybdenum, and the like.
  • the sulfidation resistance of the transparent metal film is enhanced.
  • salt resistance (NaCl) resistance increases.
  • silver and copper are combined, the oxidation resistance increases.
  • the plasmon absorption rate of the transparent metal film 3 is preferably 10% or less (over the entire range) over a wavelength range of 400 nm to 800 nm, more preferably 7% or less, and further preferably 5% or less. If there is a region having a large plasmon absorption rate in a part of the wavelength of 400 nm to 800 nm, the transmitted light of the conductive region a of the transparent conductor 100 is likely to be colored.
  • the thickness of the transparent metal film 3 is 10 nm or less, preferably 3 to 9 nm, and more preferably 5 to 8 nm.
  • the transparent conductor 100 of the present invention since the transparent metal film 3 has a thickness of 10 nm or less, the metal reflection is hardly generated in the transparent metal film 3. Furthermore, when the thickness of the transparent metal film 3 is 10 nm or less, the optical admittance of the transparent conductor 100 is easily adjusted by the first high-refractive index layer 2 and the second high-refractive index layer 4, so Light reflection is easily suppressed.
  • the thickness of the transparent metal film 3 is measured with an ellipsometer.
  • the sputtering method since the material collides with the deposition target at high speed during film formation, a dense and smooth film is easily obtained; the light transmittance of the transparent metal film 3 is likely to increase. Moreover, when the transparent metal film 3 is a film formed by sputtering, the transparent metal film 3 is hardly corroded even in an environment of high temperature and low humidity.
  • the type of the sputtering method is not particularly limited, and may be an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, a bias sputtering method, a counter sputtering method, or the like.
  • the method for forming the transparent metal film 3 is not particularly limited, and may be a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like.
  • the thickness of the second sulfidation preventing layer 5b is preferably a thickness capable of protecting the surface of the transparent metal film 3 from an impact during film formation of the second high refractive index layer 4 described later.
  • the metal contained in the transparent metal film 3 and the ZnS contained in the second high refractive index layer 4 have high affinity. Therefore, if the thickness of the second sulfidation preventing layer 5b is very thin and a part of the transparent metal film 3 is slightly exposed, the transparent metal film 3 or the second sulfidation preventing layer 5b and the second high refractive index layer 4 are exposed. Adhesiveness is likely to increase.
  • the specific thickness of the second antisulfurization layer 5b is preferably 0.1 nm to 10 nm, more preferably 0.5 nm to 5 nm, and further preferably 1 nm to 3 nm.
  • the thickness of the second sulfidation preventing layer 5b is measured with an ellipsometer.
  • the second sulfidation preventing layer 5b can be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like.
  • the patterning method is not particularly limited.
  • the second sulfidation preventing layer 5b may be, for example, a layer formed in a pattern by a vapor deposition method by disposing a mask having a desired pattern on the film formation surface; It may be a layer patterned by a method.
  • the second high refractive index layer 4 adjusts the light transmittance (optical admittance) of the conductive region a of the transparent conductor 100, that is, the region where the transparent metal film 3 is formed. And is formed at least in the conduction region a of the transparent conductor 100.
  • the second high-refractive index layer 4 may be formed in the insulating region b of the transparent conductor 100, but is formed only in the conductive region a from the viewpoint of making it difficult to visually recognize the pattern composed of the conductive region a and the insulating region b. It is preferable that
  • the second high refractive index layer 4 includes a dielectric material or an oxide semiconductor material having a refractive index higher than that of the transparent substrate 1 described above.
  • the refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 larger than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1, and is preferably 0.4 to 1.0. Larger is more preferable.
  • the specific refractive index of light with a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the second high refractive index layer 4 is preferably greater than 1.5, and is 1.7 to 2.5. More preferably, it is 1.8 to 2.5.
  • the dielectric material or oxide semiconductor material contained in the second high refractive index layer 4 may be an insulating material or a conductive material.
  • the dielectric material or oxide semiconductor material can be a metal oxide.
  • the metal oxide can be the same as the metal oxide contained in the first high refractive index layer 2.
  • the second high refractive index layer 4 may contain only one kind of the metal oxide or two or more kinds.
  • the amount of ZnS is 0.1% by mass or more and 95% by mass with respect to the total number of moles of components constituting the second high refractive index layer 4.
  • % Is preferably 50% by mass or more and 90% by mass or less, and more preferably 60% by mass or more and 85% by mass or less.
  • the ratio of ZnS is high, the sputtering rate is increased, and the deposition rate of the second high refractive index layer 4 is increased.
  • the amount of components other than ZnS increases, the amorphousness of the second high refractive index layer 4 increases, and cracking of the second high refractive index layer 4 is suppressed.
  • the thickness of the second high refractive index layer 4 is 15 nm or more, and usually 150 nm or less.
  • the thickness of the second high refractive index layer 4 is more preferably 15 to 150 nm, still more preferably 20 to 80 nm.
  • the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the second high refractive index layer 4.
  • the thickness of the second high refractive index layer 4 is 150 nm or less, the light transmittance of the region including the second high refractive index layer 4 is unlikely to decrease.
  • the thickness of the second high refractive index layer 4 is measured with an ellipsometer.
  • the film formation method of the second high refractive index layer 4 is not particularly limited, and is formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like. Layer. From the viewpoint that the moisture permeability of the second high refractive index layer 4 is lowered, the second high refractive index layer 4 is particularly preferably a film formed by sputtering.
  • the patterning method is not particularly limited.
  • the second high refractive index layer 4 may be, for example, a layer formed in a pattern by a vapor deposition method by placing a mask having a desired pattern on the deposition surface.
  • the layer patterned by the well-known etching method may be sufficient.
  • the material of the transparent metal film 3 is deposited on, for example, the first high refractive index layer 2 by a general vapor deposition method
  • atoms attached to the first high refractive index layer 2 are initially deposited.
  • Migrate move
  • atoms gather together to form a lump (island structure).
  • a film grows clinging to this lump. Therefore, in the film at the initial stage of film formation, there is a gap between the lumps and it is not conductive.
  • a lump further grows from this state, a part of the lump is connected and barely conducted. However, since there is still a gap between the lumps, plasmon absorption occurs. As the film formation proceeds further, the lumps are completely connected and plasmon absorption is reduced.
  • the intrinsic reflection of the metal occurs, and the light transmittance of the film decreases.
  • the transparent metal film 3 grows using the base layer as a growth nucleus. That is, the material of the transparent metal film 3 is difficult to migrate, and the film grows without forming the island-like structure described above. As a result, it becomes easy to obtain a smooth transparent metal film 3 even if the thickness is small.
  • the base layer contains palladium, molybdenum, zinc, germanium, niobium, or indium; or an alloy of these metals with other metals, or an oxide or sulfide of these metals (for example, ZnS). Is preferred.
  • the underlayer may contain only one kind, or two or more kinds.
  • the amount of palladium, molybdenum, zinc, germanium, niobium or indium contained in the underlayer is preferably 20% by mass or more, more preferably 40% by mass or more, and further preferably 60% by mass or more.
  • the metal is contained in the base layer in an amount of 20% by mass or more, the affinity between the base layer and the transparent metal film 3 is increased, and the adhesion between the base layer and the transparent metal film 3 is likely to be increased. It is particularly preferable that the underlayer contains palladium or molybdenum.
  • the thickness of the underlayer is 3 nm or less, preferably 0.5 nm or less, and more preferably a monoatomic film.
  • the underlayer can also be a film in which metal atoms adhere to the transparent substrate 1 with a distance therebetween.
  • the adhesion amount of the underlayer is 3 nm or less, the underlayer hardly affects the light transmission property and optical admittance of the transparent conductor 100.
  • the presence or absence of the underlayer is confirmed by the ICP-MS method. Further, the thickness of the underlayer is calculated from the product of the film formation speed and the film formation time.
  • the underlayer can be a layer formed by sputtering or vapor deposition.
  • the sputtering method include an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, and a bias sputtering method.
  • the sputtering time during the underlayer film formation is appropriately selected according to the desired average thickness of the underlayer and the film formation speed.
  • the sputter deposition rate is preferably from 0.1 to 15 ⁇ / second, more preferably from 0.1 to 7 ⁇ / second.
  • the underlayer may be, for example, a layer formed in a pattern by a vapor deposition method by placing a mask having a desired pattern on the deposition surface; patterned by a known etching method It may be a layer.
  • the refractive index of light having a wavelength of 570 nm is more than the refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material included in the first high refractive index layer 2 and the second high refractive index layer 4.
  • a dielectric material or an oxide semiconductor material having a low rate is included.
  • the refractive index of the light of wavelength 570 nm of the dielectric material or oxide semiconductor material contained in the low refractive index layer is the light of wavelength 570 nm of the material contained in the first high refractive index layer 2 and the second high refractive index layer 4.
  • the refractive index is preferably 0.2 or more lower and more preferably 0.4 or more lower.
  • the specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the low refractive index layer is preferably less than 1.8, more preferably 1.30 to 1.6, Particularly preferred is 1.35 to 1.5.
  • the refractive index of the low refractive index layer is mainly adjusted by the refractive index of the material included in the low refractive index layer and the density of the material included in the low refractive index layer.
  • the dielectric material or oxide semiconductor material contained in the low refractive index layer is MgF 2 , SiO 2 , AlF 3 , CaF 2 , CeF 3 , CdF 3 , LaF 3 , LiF, NaF, Nad, NdF 3 , YF 3 , YbF 3. , Ga 2 O 3 , LaAlO 3 , Na 3 AlF 6 , Al 2 O 3 , MgO, and ThO 2 .
  • Dielectric material or an oxide semiconductor material is inter alia, is MgF 2, SiO 2, CaF 2 , CeF 3, LaF 3, LiF, NaF, NdF 3, Na 3 AlF 6, Al 2 O 3, MgO or ThO 2,
  • MgF 2 and SiO 2 are particularly preferable. Only one of these materials may be included in the low refractive index layer, or two or more of these materials may be included.
  • the thickness of the low refractive index layer is preferably 10 to 150 nm, more preferably 20 to 100 nm.
  • the thickness of the low refractive index layer is 10 nm or more, the optical admittance on the surface of the transparent conductor is easily finely adjusted.
  • the thickness of the low refractive index layer is 150 nm or less, the thickness of the transparent conductor is reduced.
  • the thickness of the low refractive index layer is measured with an ellipsometer.
  • the low refractive index layer may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like. From the viewpoint of easiness of film formation, the low refractive index layer is preferably a layer formed by electron beam evaporation or sputtering.
  • the low refractive index layer is a patterned layer
  • the patterning method is not particularly limited.
  • the low refractive index layer may be, for example, a layer formed in a pattern by a vapor deposition method by placing a mask having a desired pattern on the deposition surface; It may be a patterned layer.
  • the light transmittance (optical admittance) of the conductive region a of the transparent conductor is further adjusted on the low refractive index layer.
  • a third high refractive index layer may be included.
  • the third high refractive index layer may be formed only in the conductive region a of the transparent conductor 100, or may be formed in both the conductive region a and the insulating region b of the transparent conductor 100.
  • the third high refractive index layer preferably contains a dielectric material or an oxide semiconductor material having a refractive index higher than the refractive index of the transparent substrate 1 and the refractive index of the low refractive index layer.
  • the specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the third high refractive index layer is preferably larger than 1.5, more preferably 1.7 to 2.5. Preferably, it is 1.8 to 2.5.
  • the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the third high refractive index layer.
  • the refractive index of the third high refractive index layer is adjusted by the refractive index of the material included in the third high refractive index layer and the density of the material included in the third high refractive index layer.
  • the film formation method of the third high refractive index layer is not particularly limited, and may be a layer formed by the same method as the first high refractive index layer 2 and the second high refractive index layer 4.
  • the reflectance R of the surface of the conductive area a of the transparent conductor is determined by the optical admittance Y env of the medium on which light is incident and the transparent conductor determined from the equivalent admittance Y E of the surface of the conductive region a of the body.
  • the medium on which the light is incident refers to a member or environment through which light incident on the transparent conductor passes immediately before the incident; a member or environment made of an organic resin.
  • the relationship between the optical admittance Y env of the medium on which light is incident and the equivalent admittance Y E of the surface of the transparent conductor is expressed by the following equation. Based on the above formula, the closer the value
  • the optical admittance Y env of the medium is obtained from the ratio (H / E) of the electric field strength and the magnetic field strength, and is usually the same as the refractive index n env of the medium.
  • the equivalent admittance Y E of the surface of the conductive region a of the transparent conductor is determined from the optical admittance Y of the layers constituting the conductive region a. For example, when the transparent conductor (conductive region a) is composed of one is equivalent admittance Y E of the transparent conductor is equal to the of the layer optical admittance Y (refractive index).
  • the optical admittance Y x (E x H x ) of the laminate from the first layer to the x-th layer is from the first layer to (x ⁇ 1) It is represented by the product of the optical admittance Y x-1 (E x-1 H x-1 ) of the laminate up to the layer and a specific matrix; specifically, the following formula (1) or formula (2) Is required.
  • the optical admittance Y x (E x H x ) of the laminate from the transparent substrate to the outermost layer becomes the equivalent admittance Y E of the transparent conductor.
  • FIG. 4A shows a transparent conductor (transparent substrate / first high refractive index layer (ZnS—SiO 2 ) / first antisulfuration layer (ITO) / transparent metal film (Ag) / second high refraction of Example 1 described later. shows the admittance locus of wavelength 570nm conductive region a rate layer (ZnS-SiO 2) a transparent conductor comprising a).
  • the horizontal axis of the graph is the real part when the optical admittance Y of the region is represented by x + iy; that is, x in the equation, and the vertical axis is the imaginary part of the optical admittance; that is, y in the equation.
  • the first sulfidation prevention layer (ITO) is sufficiently thin, so that its optical admittance can be ignored.
  • the final coordinates of the admittance locus is equivalent admittance Y E conductive region a.
  • the distance between the coordinate (x E , y E ) of the equivalent admittance Y E and the admittance coordinate Y env (n env , 0) (not shown) of the medium on which the light is incident is determined by the conduction region a of the transparent conductor. It is proportional to the surface reflectance R.
  • it is preferable that one or both of x 1 and x 2 is 1.6 or more. either one of x 1 and x 2 are, it tends enhanced light transmission of the transparent conductor If it is 1.6 or more. The reason will be described below.
  • x 1 and x 2 are preferably 1.6 or more, more preferably 1.8 or more, and further preferably 2.0 or more. Any one of x 1 and x 2 may be 1.6 or more, but x 1 is particularly preferably 1.6 or more.
  • the x 1 and x 2 is preferably 7.0 or less, more preferably 5.5 or less.
  • x 1 is the refractive index of the first high refractive index layer and is adjusted in such a thickness of the first high refractive index layer.
  • x 2 is the refractive index of the values and the transparent metal film x 1, is adjusted by the thickness or the like of the first transparent metal film.
  • ) of the difference between x 1 and x 2 is preferably 1.5 or less, more preferably 1.0 or less, and even more preferably 0.8 or less. is there.
  • the aforementioned y 1 is sufficiently large.
  • the optical admittance of the transparent metal film has a large imaginary part value, and the admittance locus greatly moves in the vertical axis (imaginary part) direction. Therefore, if y 1 is sufficiently large, the absolute value of the imaginary part of the admittance coordinates is likely to be within an appropriate range, and the admittance locus is likely to be line symmetric.
  • y 1 is preferably 0.2 or more, more preferably 0.3 to 1.5, and still more preferably 0.3 to 1.0.
  • y 2 described above is preferably ⁇ 0.3 to ⁇ 2.0, and more preferably ⁇ 0.6 to ⁇ 1.5.
  • Distance from equivalent admittance coordinates (n env , 0) ((x E ⁇ n env ) 2 + (y E ) 2 ) 0.5 is preferably less than 0.5, more preferably 0.3 or less It is. When the distance is less than 0.5, the reflectance Ra of the surface of the conduction region a is sufficiently small, and the light transmittance of the conduction region a is increased.
  • an equivalent admittance coordinate (x E , y E ) of light with a wavelength of 570 nm in the conduction region a and an equivalent admittance coordinate (( x ( b , y b )), ((x E ⁇ x b ) 2 + (y E ⁇ y b ) 2 ) 0.5 is preferably less than 0.5, more preferably 0 .3 or less.
  • the coordinates of the equivalent admittance Y E conductive region a, the coordinate of the equivalent admittance Y b of the insulating region b is sufficiently close, so these patterns are hardly visually recognized.
  • the average transmittance of light having a wavelength of 450 to 800 nm of the transparent conductor of the present invention is preferably 83% or more, more preferably 85% in both the conduction region a and the insulation region b. Or more, more preferably 88% or more.
  • the transparent conductor can be applied to applications requiring high transparency to visible light.
  • the average transmittance of light having a wavelength of 400 to 1000 nm of the transparent conductor is preferably 80% or more in both the conduction region a and the insulation region b, more preferably 83% or more, and still more preferably 85%. That's it.
  • the transparent conductor is also applied to applications requiring transparency with respect to light in a wide wavelength range, such as a transparent conductive film for solar cells. can do.
  • the average reflectance of light with a wavelength of 500 nm to 700 nm of the transparent conductor is preferably 20% or less, more preferably 15% or less, and even more preferably in both the conduction region a and the insulation region b. Is 10% or less.
  • the reflectance of the conductive region a and the insulating region b are approximated.
  • the difference ⁇ R between the luminous reflectance of the conduction region a and the luminous reflectance of the insulating region b is preferably 5% or less, more preferably 3% or less, and still more preferably It is 1% or less, particularly preferably 0.3% or less.
  • the luminous reflectances of the conductive region a and the insulating region b are each preferably 5% or less, more preferably 3% or less, and further preferably 1% or less.
  • the luminous reflectance is a Y value measured with a spectrophotometer (U4100; manufactured by Hitachi High-Technologies Corporation).
  • the a * value and the b * value in the L * a * b * color system are preferably within ⁇ 30 in any region. More preferably, it is within ⁇ 5, more preferably within ⁇ 3.0, and particularly preferably within ⁇ 2.0. If the a * value and the b * value in the L * a * b * color system are within ⁇ 30, both the conduction region a and the insulation region b are observed as colorless and transparent. The a * value and b * value in the L * a * b * color system are measured with a spectrophotometer.
  • the surface electric resistance of the conductive region a of the transparent conductor is preferably 50 ⁇ / ⁇ or less, more preferably 30 ⁇ / ⁇ or less.
  • a transparent conductor having a surface electric resistance value of 50 ⁇ / ⁇ or less in the conduction region can be applied to a transparent conductive panel for a capacitive touch panel.
  • the surface electric resistance value of the conduction region a is adjusted by the thickness of the transparent metal film.
  • the surface electrical resistance value of the conduction region a is measured in accordance with, for example, JIS K7194, ASTM D257, or the like. It is also measured by a commercially available surface electrical resistivity meter.
  • transparent conductors include various types of displays such as liquid crystal, plasma, organic electroluminescence, field emission, touch panels, mobile phones, electronic paper, various solar cells, various electroluminescent dimming elements, etc. It can be preferably used for a substrate of an optoelectronic device.
  • the surface of the transparent conductor (for example, the surface opposite to the transparent substrate) may be bonded to another member via an adhesive layer or the like.
  • the equivalent admittance coordinates of the surface of the transparent conductor and the admittance coordinates of the adhesive layer approximate each other. Thereby, reflection at the interface between the transparent conductor and the adhesive layer is suppressed.
  • the admittance coordinates of the surface of the transparent conductor and the admittance coordinates of the air approximate each other. Thereby, reflection of light at the interface between the transparent conductor and air is suppressed.
  • Example 1 On a film made of cycloolefin polymer, the following method is used to form a first high refractive index layer (ZnS-SiO 2 ) / first antisulfurization layer (ITO) / transparent metal film (Ag) / second high refractive index layer ( ITO) was sequentially laminated by the following method. Thereafter, the laminate was patterned by the following method. The thickness of each layer is described in J. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer. However, the average thickness of the underlayer was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
  • FIG. 4A shows the admittance locus of the obtained transparent conductor at a wavelength of 570 nm
  • FIG. 4B shows the spectral characteristics of the conduction region of the transparent conductor.
  • a resist layer is formed into a pattern on the obtained laminate, and the first high-refractive index layer, the first antisulfurization layer, the transparent metal film, and the second high-refractive index layer are formed as shown in FIG.
  • the pattern was formed with an ITO etching solution (manufactured by Hayashi Junyaku Co., Ltd.) in a shape including a conductive region a and a line-shaped insulating region b separating the conductive region a. Only the transparent substrate was included in the insulating region. The width of the line-shaped insulating region b was 16 ⁇ m.
  • IGZO First antisulfurization layer and second high refractive index layer (IGZO)) Using Anelva L-430S-FHS, IGZO was RF sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 2.2 L / s. The target-substrate distance was 86 mm.
  • the refractive index of light with a wavelength of 570 nm of IGZO was 2.09, and the refractive index of light with a wavelength of 570 nm of the first antisulfurization layer and the second high refractive index layer was also 2.09.
  • Example 3 On a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 ⁇ m), a first high refractive index layer (ZnS—SiO 2 ) / first antisulfuration layer (Ga 2 O 3 ) / transparent metal film (Ag—Nd—) Bi—Au) / second high refractive index layer (Ga 2 O 3 ) was laminated in this order.
  • the first high refractive index layer (ZnS—SiO 2 ) was formed in the same manner as in Example 1.
  • the first sulfurization prevention layer and the second high refractive index layer (Ga 2 O 3 ) were formed by the following method.
  • the second high refractive index layer (ITO) was formed in the same manner as the second high refractive index layer of Example 1.
  • the obtained laminate was patterned in the same manner as in Example 1.
  • FIG. 7 shows the spectral characteristics of the conductive region of the obtained transparent conductor.
  • ZnS First high refractive index layer
  • a magnetron sputtering apparatus manufactured by Osaka Vacuum Co.
  • ZnS was RF-sputtered at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 3.8 ⁇ / s.
  • the target-substrate distance was 90 mm.
  • the refractive index of light with a wavelength of 570 nm of ZnS was 2.37, and the refractive index of light with a wavelength of 570 nm of the first high refractive index layer was also 2.37.
  • Nb 2 O 5 (First sulfurization prevention layer and second high refractive index layer (Nb 2 O 5 )) Nb 2 O 5 was DC sputtered at 20 sccm Ar, 1 sccm O 2 , sputtering pressure 0.5 Pa, room temperature, target side power 150 W, deposition rate 1.2 ⁇ / s using L-430S-FHS manufactured by Anerva.
  • the target-substrate distance was 86 mm.
  • the refractive index of light with a wavelength of 570 nm of Nb 2 O 5 was 2.31, and the refractive indexes of light with a wavelength of 570 nm of the first antisulfurization layer and the second high refractive index layer were also 2.31.
  • Example 6 A first high refractive index layer (ZnS) / first antisulfurization layer (SnO 2 ) / transparent metal film (Ag) / second high refractive index layer (SnO 2 ) are laminated in this order on a transparent substrate made of a cycloolefin polymer. did.
  • the first high refractive index layer (ZnS) was formed in the same manner as the first high refractive index layer of Example 4.
  • the transparent metal film (Ag) was formed in the same manner as in Example 1.
  • the first sulfurization prevention layer and the second high refractive index layer (SnO 2 ) were formed by the following method.
  • the obtained laminate was patterned in the same manner as in Example 1. The spectral characteristics of the conduction region of the obtained transparent conductor are shown in FIG.
  • Example 7 On a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 ⁇ m), a first high refractive index layer (ZnS) / first antisulfuration layer (ZnO) / transparent metal film (Ag) / second high refractive index layer ( TiO 2 ) was laminated in order.
  • the first high refractive index layer (ZnS) and the first antisulfurization layer (ZnO) were formed in the same manner as the first high refractive index layer and the first antisulfurization layer of Example 4, respectively.
  • the transparent metal film (Ag) was formed in the same manner as in Example 1.
  • the second high refractive index layer (TiO 2 ) was formed by the following method.
  • the obtained laminate was patterned in the same manner as in Example 1. The spectral characteristics of the conduction region of the obtained transparent conductor are shown in FIG.
  • the first sulfidation prevention layer and the second sulfidation prevention layer (ZnO) were formed in the same manner as the first sulfidation prevention layer of Example 4.
  • the underlayer (Pd) was formed in the same manner as the underlayer of Example 5.
  • a transparent metal film (Ag—Nd—Bi—Au alloy) was formed in the same manner as in Example 3.
  • the obtained laminate was patterned in the same manner as in Example 1. The spectral characteristics of the conduction region of the obtained transparent conductor are shown in FIG.
  • Example 10 On a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 ⁇ m), first high refractive index layer (ZnS—SiO 2 ) / first antisulfuration layer (IGZO) / transparent metal film (Ag) / second antisulfurization Layer (IGZO) / second high refractive index layer (ZnS—SiO 2 ) were laminated in this order.
  • the first high refractive index layer, the second high refractive index layer (ZnS—SiO 2 ), and the transparent metal film (Ag) were formed in the same manner as the first high refractive index layer and the transparent metal film in Example 1, respectively.
  • the first sulfidation prevention layer and the second sulfidation prevention layer were formed in the same manner as the first sulfidation prevention layer of Example 2.
  • the obtained laminate was patterned in the same manner as in Example 1. The spectral characteristics of the conduction region of the obtained transparent conductor are shown in FIG.
  • Example 11 On a transparent substrate made of glass, a first high refractive index layer (ZnS) / first antisulfurization layer (ZnO) / transparent metal film (Ag) / second antisulfuration layer (IZO) / second high refractive index layer ( ZnS) were stacked in order.
  • the first high refractive index layer and the second high refractive index layer (ZnS) were formed in the same manner as the first high refractive index layer of Example 4.
  • the first antisulfurization layer (ZnO) was formed in the same manner as the first antisulfurization layer of Example 4.
  • the transparent metal film (Ag) was formed in the same manner as in Example 1.
  • the second antisulfurization layer (IZO) was formed by the following method.
  • the obtained laminate was patterned in the same manner as in Example 1.
  • FIG. 14 shows the spectral characteristics of the conductive region of the obtained transparent conductor.
  • IZO Tin anti-sulfurization layer
  • the first high refractive index layer, the second high refractive index layer, the third high refractive index layer (ZnS), the first antisulfurization layer, and the second antisulfation layer (ZnO) were formed in the same manner.
  • the transparent metal film (Ag) was formed in the same manner as in Example 1.
  • the low refractive index layer (SiO 2 ) was formed by the following method.
  • the obtained laminate was patterned in the same manner as in Example 1. The spectral characteristics of the conduction region of the obtained transparent conductor are shown in FIG.
  • SiO 2 Low refractive index layer (SiO 2 )
  • SiO 2 RF-sputtered at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 300 W, and deposition rate 1.6 ⁇ / s.
  • the target-substrate distance was 90 mm.
  • the refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46, and the refractive index of light with a wavelength of 570 nm of the low refractive index layer was also 1.46.
  • Example 13 On a transparent substrate made of glass, a first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (APC-TR alloy) / second antisulfurization layer (ITO) / second high refractive index layer (ZnS—SiO 2) 2 ) were laminated in order.
  • the first high refractive index layer and the second high refractive index layer (ZnS—SiO 2 ) were formed in the same manner as the first high refractive index layer of Example 1.
  • a transparent metal film (APC-TR alloy) was formed in the same manner as in Example 4.
  • the second antisulfation layer (ITO) was formed in the same manner as the first antisulfation layer of Example 1.
  • the obtained laminate was patterned in the same manner as in Example 1.
  • FIG. 16 shows the spectral characteristics of the conductive region of the obtained transparent conductor.
  • Example 14 On a Konica Minolta TAC film (transparent substrate), a first high refractive index layer (ZnS-SiO 2 ) / transparent metal film (APC alloy) / second antisulfuration layer (ZnO) / second high refractive index layer (ZnS -SiO 2 ) were sequentially laminated.
  • the first high refractive index layer and the second high refractive index layer (ZnS—SiO 2 ) were formed in the same manner as in Example 1.
  • the transparent metal film (APC alloy) was formed by the same method as in Example 1 except that the target at the time of film formation was an Ag alloy (manufactured by Furuya Metal Co., Ltd.).
  • the second antisulfurization layer (ZnO) was formed in the same manner as the first antisulfurization layer of Example 4.
  • the obtained laminate was patterned in the same manner as in Example 1.
  • FIG. 17 shows the spectral characteristics of the conductive region of the obtained transparent conductor.
  • Example 15 On a transparent substrate made of glass, a first high refractive index layer (ZnS) / transparent metal film (Ag) / second antisulfurization layer (GZO) / second high refractive index layer (ZnS) were laminated in this order.
  • the first high refractive index layer and the second high refractive index layer (ZnS) were formed in the same manner as the first high refractive index layer of Example 4.
  • the transparent metal film (Ag) was formed in the same manner as in Example 1.
  • the second antisulfurization layer (GZO) was formed by the following method.
  • the obtained laminate was patterned in the same manner as in Example 1.
  • FIG. 18 shows the spectral characteristics of the conductive region of the obtained transparent conductor.
  • GZO Spin anti-sulfurization layer
  • a magnetron sputtering apparatus manufactured by Osaka Vacuum Co.
  • GZO was RF-sputtered at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 1.1 ⁇ / s.
  • the target-substrate distance was 90 mm.
  • the refractive index of light with a wavelength of 570 nm of GZO was 2.04, and the refractive index of light with a wavelength of 570 nm of the second high refractive index layer was also 2.04.
  • ZrO 2 First high refractive index layer (ZrO 2 )) Using Arnelva L-430S-FHS, ZrO 2 was RF sputtered at Ar 20 sccm, O 2 1 sccm, sputtering pressure 0.5 Pa, room temperature, target-side power 150 W, and deposition rate 0.5 ⁇ / s. The target-substrate distance was 86 mm. The refractive index of light with a wavelength of 570 nm of ZrO 2 was 2.05.
  • the second antisulfurization layer (ZnO) and the second high refractive index layer (ZnS) were formed in the same manner as the first antisulfurization layer and the first high refractive index layer of Example 4, respectively.
  • the obtained laminate was patterned in the same manner as in Example 1.
  • FIG. 21 shows the spectral characteristics of the conductive region of the obtained transparent conductor.
  • Example 19 On a transparent substrate made of PET / CHC (PET film with clear hard coat layer), first high refractive index layer (ZnS) / first antisulfurization layer (GZO) / transparent metal film (Ag) / second high refractive index Layer (IGZO) / third high refractive index layer (ITO) were laminated in order.
  • the first high refractive index layer (ZnS) was formed in the same manner as the first high refractive index layer of Example 4.
  • the first antisulfurization layer (GZO) was formed in the same manner as the first antisulfurization layer of Example 1 except that the target was GZO.
  • the transparent metal film (Ag) was formed in the same manner as the transparent metal film of Example 1.
  • the second high refractive index layer (IGZO) was formed in the same manner as the second high refractive index layer of Example 2.
  • the third high refractive index layer (ITO) was formed in the same manner as the second high refractive index layer of Example 1.
  • the obtained laminate was patterned in the same manner as in Example 1.
  • the spectral characteristics of the conduction region of the obtained transparent conductor are shown in FIG.
  • the surface electrical resistance of the conductive region of the transparent conductor was measured and found to be 5 ⁇ / ⁇ .
  • the surface electrical resistance was measured with a resistivity meter “Loresta EP MCP-T360” manufactured by Mitsubishi Chemical Analytech Co., Ltd. in accordance with JIS K7194, ASTM D257 and the like.
  • Transparent metal film (Ag) On the first high refractive index layer, a silver film having a thickness of 12 nm was formed by resistance heating using a BMC-800T vapor deposition machine manufactured by SYNCHRON. The input current value at this time was 210 A, and the film formation rate was 5 ⁇ / s.
  • a first high refractive index layer (ZnS) / transparent metal film (Ag) / second high refractive index layer (ZnS) were laminated in this order.
  • the first high refractive index layer and the second high refractive index layer were formed by the same method as the first high refractive index layer of Example 4.
  • the transparent metal film was formed in the same manner as in Comparative Example 1.
  • a first high refractive index layer (Nb 2 O 5 ) / transparent metal film (Ag) / second high refractive index layer (IZO) were laminated in this order on a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 ⁇ m). .
  • Each layer was formed by the following method. The spectral characteristics of the conduction region of the obtained transparent conductor are shown in FIG.
  • IZO Spin high refractive index layer
  • Anelva L-430S-FHS Using an Anelva L-430S-FHS, IZO was RF sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 2.2 L / s.
  • the target-substrate distance was 86 mm.
  • the refractive index of light with a wavelength of 570 nm of IZO is 2.05, but the refractive index of light with a wavelength of 570 nm of the second high refractive index layer is 1.98.
  • the target was formed in the same manner as the second high refractive index layer of Comparative Example 3 except that the target was made of a material (ICO) containing 10 atomic% of cerium in indium.
  • the refractive index of light with a wavelength of 570 nm of ICO was 2.2, and the refractive indexes of light with a wavelength of 570 nm of the first high refractive index layer and the second high refractive index layer were also 2.2.
  • Fluorine material layer (KP801M) Fluorine-based material (manufactured by Shin-Etsu Chemical Co., Ltd .: KP801M) was vapor-deposited by resistance heating with a Gener 1300 manufactured by Optorun at 190 mA and a film formation rate of 10 kg / s.
  • a first high refractive index layer (ITO) / transparent metal film (APC alloy) / second high refractive index layer (ITO) were laminated in this order on a transparent substrate made of Toyobo PET (Cosmo Shine A4300, thickness 50 ⁇ m).
  • the first high refractive index layer and the second high refractive index layer (ITO) were formed in the same manner as the first high refractive index layer of Example 17, respectively.
  • the transparent metal film was formed by the following method.
  • measurement light for example, light having a wavelength of 450 nm to 800 nm
  • the light transmittance and reflectance were measured at U4100.
  • the absorptance was calculated from a formula of 100 ⁇ (transmittance + reflectance).
  • the value obtained by subtracting the reflection at the interface between the alkali-free glass substrate and the atmosphere (4%) and the reflection at the interface between the transparent substrate and the atmosphere (4%) from the measured value of the reflectance The reflectance of the transparent conductor was used. Also, the transmittance was added to the measured value of transmittance by 8% in consideration of the reflection at the interface between the alkali-free glass substrate and the atmosphere and the reflection of the transparent conductor at the interface between the transparent substrate and the atmosphere. The value was the transmittance of the transparent conductor.
  • the transparent conductors of Examples 6, 7, 12, 15, Comparative Example 1 and Comparative Example 3 were used in contact with air. Therefore, measurement light (for example, light having a wavelength of 450 nm to 800 nm) is incident on the conductive region without bonding an alkali-free glass substrate on the transparent conductor, and light is emitted by Hitachi, Ltd .: spectrophotometer U4100. The transmittance and reflectance were measured. The absorptance was calculated from a formula of 100 ⁇ (transmittance + reflectance). The measurement light was incident from the second high refractive index layer side.
  • measurement light for example, light having a wavelength of 450 nm to 800 nm
  • the transmittance and reflectance were measured.
  • the absorptance was calculated from a formula of 100 ⁇ (transmittance + reflectance).
  • the measurement light was incident from the second high refractive index layer side.
  • the value obtained by subtracting the reflection (4%) at the interface between the transparent substrate of the transparent conductor and the atmosphere from the measured value of the reflectance was taken as the reflectance of the transparent conductor.
  • the transmittance of the transparent conductor was determined by adding 4% to the measured value of the transmittance in consideration of the reflection of the transparent conductor at the interface between the transparent substrate and the atmosphere.
  • ⁇ R in Tables 1 and 2 represents the absolute value of the difference between the luminous efficiency of the conductive area and the luminous efficiency of the insulating area.
  • optical admittance The optical admittance of the transparent conductor obtained by the Example and the comparative example was specified.
  • the optical admittance of wavelength 570nm of the first high refractive index layer side of the surface of the transparent metal Y1 x 1 + iy 1
  • the optical admittance of wavelength 570nm of the second high refractive index layer side of the surface of the transparent metal film Y2 x
  • Tables 3 and 4 show the values of (x 1 , y 1 ) and (x 2 , y 2 ) when 2 + iy 2 is set.
  • the optical admittance of the layer contained in the transparent conductor was calculated by the thin film design software Essential Macleod Ver.9.4.375. Note that the thickness d, refractive index n, and absorption coefficient k of each layer necessary for the calculation are as follows. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
  • the transparent conductor (Comparative Example 1) having no anti-sulfurization layer between the zinc sulfide-containing layer and the transparent metal film has an average transmittance of 450 to 800 nm. It was 85.3%.
  • Comparative Example 2 in which a transparent metal film having a thickness of 7.3 nm was prepared by vapor deposition, a continuous film was not obtained and electricity was not conducted.

Abstract

The present invention addresses the problem of providing a transparent conductor having high humidity resistance and light transmittance. In order to solve this problem, this transparent conductor is configured so as to include, in this order, a transparent substrate, a first high-refractive-index layer containing a dielectric material or an oxide semiconductor material having a higher index of refraction of light having a wavelength of 570nm than that of the transparent substrate, a transparent metal film, and a second high-refractive-index layer containing a dielectric material or an oxide semiconductor material having a higher index of refraction of light having a wavelength of 570nm than that of the transparent substrate, wherein one or both of the first and second high-refractive-index layers is a zinc-sulfide-containing layer which contains ZnS, and a sulfidation-prevention layer containing a metal oxide, a metal fluoride, a metal nitride or Zn is present between the zinc-sulfide-containing layer and the transparent metal film.

Description

透明導電体Transparent conductor
 本発明は、透明金属膜を含む透明導電体に関する。 The present invention relates to a transparent conductor including a transparent metal film.
 近年、液晶ディスプレイやプラズマディスプレイ、無機及び有機EL(エレクトロルミネッセンス)ディスプレイ等の表示装置の電極材料、無機及び有機EL素子の電極材料、タッチパネル材料、太陽電池材料等の各種装置に透明導電膜が使用されている。 In recent years, transparent conductive films have been used for various devices such as electrode materials for display devices such as liquid crystal displays, plasma displays, inorganic and organic EL (electroluminescence) displays, electrode materials for inorganic and organic EL elements, touch panel materials, and solar cell materials. Has been.
 このような透明導電膜を構成する材料として、Au、Ag、Pt、Cu、Rh、Pd、Al、Cr等の金属やIn、CdO、CdIn、CdSnO、TiO、SnO、ZnO、ITO(酸化インジウムスズ)等の酸化物半導体が知られている。 As a material constituting such a transparent conductive film, metals such as Au, Ag, Pt, Cu, Rh, Pd, Al, and Cr, In 2 O 3 , CdO, CdIn 2 O 4 , Cd 2 SnO 4 , and TiO 2 are used. , SnO 2 , ZnO, ITO (indium tin oxide) and other oxide semiconductors are known.
 ここで、タッチパネル型の表示装置等では、表示素子の画像表示面上に、透明導電膜等からなる配線が配置される。したがって、透明導電膜には、光の透過性が高いことが求められる。このような各種表示装置には、光透過性の高いITOからなる透明導電膜が多用されている。 Here, in a touch panel type display device or the like, a wiring made of a transparent conductive film or the like is disposed on the image display surface of the display element. Therefore, the transparent conductive film is required to have high light transmittance. In such various display devices, a transparent conductive film made of ITO having high light transmittance is often used.
 近年、静電容量方式のタッチパネル表示装置が開発され、透明導電膜の表面電気抵抗をさらに低くすることが求められている。しかし、従来のITO膜では、表面電気抵抗を十分に下げられない、との問題があった。 In recent years, a capacitive touch panel display device has been developed, and it is required to further reduce the surface electrical resistance of the transparent conductive film. However, the conventional ITO film has a problem that the surface electrical resistance cannot be lowered sufficiently.
 そこで、Agの蒸着膜を透明導電膜とすることが検討されている(特許文献1)。また、透明導電体の光透過性を高めるため、Ag膜を屈折率の高い膜(例えば酸化ニオブ(Nb)、IZO(酸化インジウム・酸化亜鉛)、ICO(インジウムセリウムオキサイド)、a-GIO(ガリウム、インジウム、及び酸素からなる非晶質酸化物)等からなる膜)で挟み込むことも提案されている(特許文献2~4、非特許文献3)。さらに、Ag膜をZnS膜で挟み込むこと提案されている(非特許文献1及び2)。 Thus, it has been studied to use a vapor-deposited Ag film as a transparent conductive film (Patent Document 1). In order to increase the light transmittance of the transparent conductor, the Ag film is made of a film having a high refractive index (for example, niobium oxide (Nb 2 O 5 ), IZO (indium oxide / zinc oxide), ICO (indium cerium oxide), a- It has also been proposed that the film is sandwiched between GIO (a film made of gallium, indium, and oxygen) (Patent Documents 2 to 4 and Non-Patent Document 3). Further, it has been proposed to sandwich an Ag film between ZnS films (Non-patent Documents 1 and 2).
特表2011-508400号公報Special table 2011-508400 gazette 特開2006-184849号公報JP 2006-184849 A 特開2002-15623号公報JP 2002-15623 A 特開2008-226581号公報JP 2008-226581 A
 しかし、特許文献2~4に示されるように、酸化ニオブやIZO等の誘電体層でAg膜が挟み込まれた透明導電体では、耐湿性が十分でなかった。その結果、湿度環境下で透明導電体を使用すると、Ag膜が腐食しやすい等の問題があった。 However, as shown in Patent Documents 2 to 4, a transparent conductor in which an Ag film is sandwiched between dielectric layers such as niobium oxide and IZO has not been sufficiently moisture resistant. As a result, when a transparent conductor is used in a humidity environment, there is a problem that the Ag film is easily corroded.
 一方、Ag層がZnS層に挟み込まれた透明導電体では、透明導電体の耐湿性が十分に高いものの、Ag層の成膜時、もしくはZnS層の成膜時に、Agが硫化されて硫化銀が生じやすい。その結果、透明導電体の光透過性が低くなる、との問題があった。 On the other hand, in the transparent conductor in which the Ag layer is sandwiched between the ZnS layers, although the moisture resistance of the transparent conductor is sufficiently high, Ag is sulfided when the Ag layer is formed or the ZnS layer is formed. Is likely to occur. As a result, there is a problem that the light transmittance of the transparent conductor is lowered.
 本発明はこのような状況に鑑みてなされたものである。本発明は、耐湿性及び光透過性が高い透明導電体を提供することを目的とする。 The present invention has been made in view of such a situation. An object of this invention is to provide a transparent conductor with high moisture resistance and light transmittance.
 即ち、本発明は、以下の透明導電体に関する。
 [1]透明基板と、前記透明基板の波長570nmの光の屈折率より、波長570nmの光の屈折率が高い誘電性材料または酸化物半導体材料を含む第一高屈折率層と、透明金属膜と、前記透明基板の波長570nmの光の屈折率より、波長570nmの光の屈折率が高い誘電性材料または酸化物半導体材料を含む第二高屈折率層と、をこの順に含む透明導電体であって、前記第一高屈折率層または前記第二高屈折率層のうち、少なくとも一方の層がZnSを含む硫化亜鉛含有層であり、前記硫化亜鉛含有層と前記透明金属膜との間に、金属酸化物、金属フッ化物、金属窒化物、またはZnを含む硫化防止層をさらに含む、透明導電体。
That is, this invention relates to the following transparent conductors.
[1] A transparent substrate, a first high refractive index layer containing a dielectric material or an oxide semiconductor material having a refractive index of light having a wavelength of 570 nm higher than that of light having a wavelength of 570 nm of the transparent substrate, and a transparent metal film And a second high refractive index layer including a dielectric material or an oxide semiconductor material having a refractive index of light having a wavelength of 570 nm higher than that of light having a wavelength of 570 nm of the transparent substrate in this order. And at least one of the first high-refractive index layer and the second high-refractive index layer is a zinc sulfide-containing layer containing ZnS, and the zinc sulfide-containing layer is interposed between the transparent metal film and the transparent metal film. A transparent conductor further comprising an anti-sulfurization layer comprising metal oxide, metal fluoride, metal nitride, or Zn.
 [2]前記硫化防止層がZnOを含む、[1]に記載の透明導電体。
 [3]前記硫化亜鉛含有層が、SiOをさらに含む、[1]または[2]に記載の透明導電体。
 [4]前記透明金属膜が、所定の形状にパターニングされた金属パターンである、[1]~[3]のいずれかに記載の透明導電体。
[2] The transparent conductor according to [1], wherein the antisulfurization layer contains ZnO.
[3] The transparent conductor according to [1] or [2], wherein the zinc sulfide-containing layer further contains SiO 2 .
[4] The transparent conductor according to any one of [1] to [3], wherein the transparent metal film is a metal pattern patterned into a predetermined shape.
 本発明によれば、耐湿性が高く、かつ光透過性の高い透明導電体が得られる。 According to the present invention, a transparent conductor having high moisture resistance and high light transmittance can be obtained.
本発明の透明導電体の層構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the laminated constitution of the transparent conductor of this invention. 本発明の透明導電体の層構成の他の例を示す概略断面図である。It is a schematic sectional drawing which shows the other example of the laminated constitution of the transparent conductor of this invention. 本発明の透明導電体の導通領域及び絶縁領域からなるパターンの一例を示す模式図である。It is a schematic diagram which shows an example of the pattern which consists of a conduction area | region and an insulation area | region of the transparent conductor of this invention. 実施例1で作製した透明導電体の波長570nmのアドミッタンス軌跡を示すグラフである。4 is a graph showing an admittance locus of a wavelength of 570 nm of the transparent conductor produced in Example 1. 実施例1で作製した透明導電体の分光特性を示すグラフである。3 is a graph showing spectral characteristics of a transparent conductor produced in Example 1. FIG. 実施例2で作製した透明導電体の分光特性を示すグラフである。4 is a graph showing spectral characteristics of a transparent conductor produced in Example 2. 実施例3で作製した透明導電体の分光特性を示すグラフである。4 is a graph showing spectral characteristics of a transparent conductor produced in Example 3. 実施例4で作製した透明導電体の分光特性を示すグラフである。6 is a graph showing spectral characteristics of a transparent conductor produced in Example 4. 実施例5で作製した透明導電体の分光特性を示すグラフである。10 is a graph showing spectral characteristics of a transparent conductor produced in Example 5. 実施例6で作製した透明導電体の分光特性を示すグラフである。7 is a graph showing spectral characteristics of a transparent conductor produced in Example 6. 実施例7で作製した透明導電体の分光特性を示すグラフである。7 is a graph showing spectral characteristics of a transparent conductor produced in Example 7. 実施例8で作製した透明導電体の分光特性を示すグラフである。6 is a graph showing spectral characteristics of a transparent conductor produced in Example 8. 実施例9で作製した透明導電体の分光特性を示すグラフである。6 is a graph showing spectral characteristics of a transparent conductor produced in Example 9. 実施例10で作製した透明導電体の分光特性を示すグラフである。6 is a graph showing spectral characteristics of a transparent conductor produced in Example 10. FIG. 実施例11で作製した透明導電体の分光特性を示すグラフである。10 is a graph showing spectral characteristics of a transparent conductor produced in Example 11. 実施例12で作製した透明導電体の分光特性を示すグラフである。14 is a graph showing spectral characteristics of a transparent conductor produced in Example 12. 実施例13で作製した透明導電体の分光特性を示すグラフである。14 is a graph showing the spectral characteristics of the transparent conductor produced in Example 13. 実施例14で作製した透明導電体の分光特性を示すグラフである。14 is a graph showing spectral characteristics of the transparent conductor produced in Example 14. 実施例15で作製した透明導電体の分光特性を示すグラフである。16 is a graph showing spectral characteristics of a transparent conductor produced in Example 15. 実施例16で作製した透明導電体の分光特性を示すグラフである。10 is a graph showing spectral characteristics of a transparent conductor produced in Example 16. 実施例17で作製した透明導電体の分光特性を示すグラフである。14 is a graph showing spectral characteristics of a transparent conductor produced in Example 17. 実施例18で作製した透明導電体の分光特性を示すグラフである。14 is a graph showing spectral characteristics of a transparent conductor produced in Example 18. FIG. 実施例19で作製した透明導電体の分光特性を示すグラフである。14 is a graph showing spectral characteristics of a transparent conductor produced in Example 19. 比較例1で作製した透明導電体の分光特性を示すグラフである。5 is a graph showing spectral characteristics of a transparent conductor produced in Comparative Example 1. 比較例3で作製した透明導電体の分光特性を示すグラフである。10 is a graph showing spectral characteristics of a transparent conductor produced in Comparative Example 3.
 本発明の透明導電体の層構成の例を図1及び図2に示す。図1及び図2に示されるように、本発明の透明導電体100には、透明基板1/第一高屈折率層2/透明金属膜3/第二高屈折率層4が含まれる。そして、本発明の透明導電体100では、当該第一高屈折率層2または第二高屈折率層4のいずれか一方、もしくは両方が、ZnSを含む硫化亜鉛含有層である。そして、当該硫化亜鉛含有層2,4と透明金属膜3との間には、硫化防止層5(5a及び5b)が含まれる。 Examples of the layer structure of the transparent conductor of the present invention are shown in FIGS. As shown in FIGS. 1 and 2, the transparent conductor 100 of the present invention includes a transparent substrate 1 / first high refractive index layer 2 / transparent metal film 3 / second high refractive index layer 4. In the transparent conductor 100 of the present invention, either one or both of the first high refractive index layer 2 and the second high refractive index layer 4 are zinc sulfide-containing layers containing ZnS. Between the zinc sulfide-containing layers 2 and 4 and the transparent metal film 3, an antisulfurization layer 5 (5a and 5b) is included.
 ここで、第一高屈折率層2及び第二高屈折率層4のいずれか一方が硫化亜鉛含有層である場合には、当該硫化亜鉛含有層2または4と透明金属膜3との間に、硫化防止層5が含まれる。一方、第一高屈折率層2及び第二高屈折率層4の両方が硫化亜鉛含有層である場合、いずれか一方の硫化亜鉛含有層2または4と透明金属膜3との間に、硫化防止層5が含まれればよいが、透明導電体100の光透過性を十分に高めるとの観点から、各硫化亜鉛含有層2及び4と透明金属膜3との間に、それぞれ硫化防止層5が含まれることが好ましい。つまり、第一高屈折率層2と透明金属膜3との間、及び透明金属膜3と第二高屈折率層4との間に、それぞれ硫化防止層5が含まれることが好ましい。 Here, when either one of the first high-refractive index layer 2 and the second high-refractive index layer 4 is a zinc sulfide-containing layer, the zinc sulfide-containing layer 2 or 4 and the transparent metal film 3 are interposed. In addition, an antisulfurization layer 5 is included. On the other hand, when both the first high-refractive index layer 2 and the second high-refractive index layer 4 are zinc sulfide-containing layers, the sulfide is interposed between any one of the zinc sulfide-containing layers 2 or 4 and the transparent metal film 3. The prevention layer 5 may be included, but from the viewpoint of sufficiently increasing the light transmittance of the transparent conductor 100, the sulfide prevention layer 5 is provided between the zinc sulfide-containing layers 2 and 4 and the transparent metal film 3, respectively. Is preferably included. That is, it is preferable that the sulfidation preventing layer 5 is included between the first high refractive index layer 2 and the transparent metal film 3 and between the transparent metal film 3 and the second high refractive index layer 4.
 前述のように、透明金属膜とZnSを含む層とが隣接して成膜されると、金属硫化物が生成されやすく、透明導電体の光透過性が低下しやすいとの問題があった。金属硫化物は、以下のように生成されると推察される。 As described above, when the transparent metal film and the layer containing ZnS are formed adjacent to each other, there is a problem that metal sulfide is easily generated and the light transmittance of the transparent conductor is likely to be lowered. The metal sulfide is presumed to be produced as follows.
 硫化亜鉛含有層(第一高屈折率層)上にスパッタ法等の気相成膜法で透明金属膜を成膜する場合、硫化亜鉛含有層中の未反応の硫黄成分が、透明金属膜の材料(金属材料)によって成膜雰囲気中に弾き出される。そして、弾き出された硫黄成分と金属とが反応し、金属硫化物が硫化亜鉛含有層上に堆積する。また、硫化亜鉛含有層と透明金属膜とを連続的に成膜する場合、硫化亜鉛含有層の成膜雰囲気に含まれる硫黄成分が透明金属膜雰囲気内に残存する。そして、この硫黄成分と金属とが反応し、金属硫化物が硫化亜鉛含有層上に堆積する。 When a transparent metal film is formed on a zinc sulfide-containing layer (first high refractive index layer) by a vapor deposition method such as sputtering, unreacted sulfur components in the zinc sulfide-containing layer It is blown out into the film forming atmosphere by the material (metal material). Then, the ejected sulfur component reacts with the metal, and metal sulfide is deposited on the zinc sulfide-containing layer. Further, when the zinc sulfide-containing layer and the transparent metal film are continuously formed, the sulfur component contained in the film formation atmosphere of the zinc sulfide-containing layer remains in the transparent metal film atmosphere. And this sulfur component and a metal react, and a metal sulfide deposits on a zinc sulfide content layer.
 一方、透明金属膜上に硫化亜鉛含有層(第二高屈折率層)を成膜する場合、透明金属膜中の金属が、硫化亜鉛含有層の材料によって、成膜雰囲気中に弾き出される。そして、弾き出された金属と硫黄成分とが反応し、金属硫化物が透明金属膜表面に堆積する。さらに、透明金属膜の表面と、成膜雰囲気中の硫黄成分とが接触することでも、透明金属膜表面に金属硫化物が生成する。 On the other hand, when the zinc sulfide-containing layer (second high refractive index layer) is formed on the transparent metal film, the metal in the transparent metal film is blown out into the film formation atmosphere by the material of the zinc sulfide-containing layer. The ejected metal reacts with the sulfur component, and metal sulfide is deposited on the surface of the transparent metal film. Furthermore, a metal sulfide is also generated on the surface of the transparent metal film by contacting the surface of the transparent metal film with the sulfur component in the film forming atmosphere.
 これに対し、本発明の透明導電体100では、例えば図1に示されるように、第一高屈折率層2上に、第一硫化防止層5aが積層される。当該構成では、第一高屈折率層2が第一硫化防止層5aで保護されるため、透明金属膜3の成膜時に第一高屈折率層2中の硫黄成分が弾き出され難い。また、第一高屈折率層2と透明金属膜3とを連続的に成膜したとしても、第一高屈折率層2の成膜雰囲気に含まれる硫黄成分が、第一硫化防止層5aの構成成分と反応したり、第一硫化防止層5aの構成成分に吸着される。したがって、透明金属膜3の成膜雰囲気には硫黄が含まれ難くなり、金属硫化物の生成が抑制される。 On the other hand, in the transparent conductor 100 of the present invention, for example, as shown in FIG. 1, the first antisulfurization layer 5 a is laminated on the first high refractive index layer 2. In this configuration, since the first high refractive index layer 2 is protected by the first antisulfurization layer 5a, it is difficult for the sulfur component in the first high refractive index layer 2 to be ejected when the transparent metal film 3 is formed. Further, even if the first high refractive index layer 2 and the transparent metal film 3 are continuously formed, the sulfur component contained in the film formation atmosphere of the first high refractive index layer 2 is not contained in the first sulfurization preventing layer 5a. It reacts with the component and is adsorbed by the component of the first sulfidation prevention layer 5a. Therefore, it is difficult for sulfur to be contained in the film forming atmosphere of the transparent metal film 3, and the generation of metal sulfide is suppressed.
 また本発明の透明導電体100では、例えば図1に示されるように、透明金属膜3上に第二硫化防止層5bが積層される。当該構成では、透明金属膜3が第二硫化防止層5bで保護されるため、第二高屈折率層4の成膜時に透明金属膜3中の金属が弾き出され難い。また、第二高屈折率層4の成膜雰囲気中の硫黄成分が、透明金属膜3の表面と接触し難い。したがって、透明金属膜3表面に金属硫化物が生成し難い。 In the transparent conductor 100 of the present invention, for example, as shown in FIG. 1, the second sulfidation preventing layer 5 b is laminated on the transparent metal film 3. In this configuration, since the transparent metal film 3 is protected by the second antisulfurization layer 5b, the metal in the transparent metal film 3 is not easily ejected when the second high refractive index layer 4 is formed. Further, the sulfur component in the film formation atmosphere of the second high refractive index layer 4 is difficult to come into contact with the surface of the transparent metal film 3. Therefore, it is difficult for metal sulfides to be generated on the surface of the transparent metal film 3.
 本発明の透明導電体100では、図1に示されるように、透明金属膜3が透明基板1の全面に積層されていてもよく、図2に示されるように、透明金属膜3が所望の形状にパターニングされていてもよい。本発明の透明導電体100において、透明金属膜3が積層されている領域aが、電気が導通する領域(以下、「導通領域」とも称する)である。一方、図2に示されるように、透明金属膜3が含まれない領域bが絶縁領域である。 In the transparent conductor 100 of the present invention, the transparent metal film 3 may be laminated on the entire surface of the transparent substrate 1 as shown in FIG. 1, and the transparent metal film 3 is desired as shown in FIG. It may be patterned into a shape. In the transparent conductor 100 of the present invention, the region a where the transparent metal film 3 is laminated is a region where electricity is conducted (hereinafter also referred to as “conduction region”). On the other hand, as shown in FIG. 2, the region b not including the transparent metal film 3 is an insulating region.
 導通領域a及び絶縁領域bからなるパターンは、透明導電体100の用途に応じて、適宜選択される。例えば透明導電体100が静電方式のタッチパネルに適用される場合には、図3に示されるように、複数の導通領域aと、これを区切るライン状の絶縁領域bとを含むパターン等でありうる。 The pattern composed of the conductive region a and the insulating region b is appropriately selected according to the use of the transparent conductor 100. For example, when the transparent conductor 100 is applied to an electrostatic touch panel, as shown in FIG. 3, the pattern includes a plurality of conductive regions a and line-shaped insulating regions b that divide the conductive regions a. sell.
 また、本発明の透明導電体100には、透明基板1、第一高屈折率層2、透明金属膜3、及び第二高屈折率層4、及び硫化防止層5以外の層が含まれてもよい。例えば透明金属膜3の成膜時に成長核になり得る下地層が、透明金属膜3と第一高屈折率層2との間に、透明金属膜3に隣接して含まれてもよい。ただし、本発明の透明導電体100に含まれる層は、透明基板1を除いて、いずれも無機材料からなる層である。例えば第二高屈折率層4上に有機樹脂からなる接着層が積層されていたとしても、透明基板1から第二高屈折率層4までの積層体が、本発明の透明導電体100である。 The transparent conductor 100 of the present invention includes layers other than the transparent substrate 1, the first high refractive index layer 2, the transparent metal film 3, the second high refractive index layer 4, and the antisulfurization layer 5. Also good. For example, an underlayer that can be a growth nucleus when forming the transparent metal film 3 may be included between the transparent metal film 3 and the first high refractive index layer 2 adjacent to the transparent metal film 3. However, the layers included in the transparent conductor 100 of the present invention are all layers made of an inorganic material except for the transparent substrate 1. For example, even if an adhesive layer made of an organic resin is laminated on the second high refractive index layer 4, the laminated body from the transparent substrate 1 to the second high refractive index layer 4 is the transparent conductor 100 of the present invention. .
 1.透明導電体の層構成について
 1-1)透明基板
 透明導電体100に含まれる透明基板1は、各種表示デバイスの透明基板と同様でありうる。透明基板1は、ガラス基板や、セルロースエステル樹脂(例えば、トリアセチルセルロース、ジアセチルセルロース、アセチルプロピオニルセルロース等)、ポリカーボネート樹脂(例えばパンライト、マルチロン(いずれも帝人社製))、シクロオレフィン樹脂(例えばゼオノア(日本ゼオン社製)、アートン(JSR社製)、アペル(三井化学社製))、アクリル樹脂(例えばポリメチルメタクリレート、アクリライト(三菱レイヨン社製)、スミペックス(住友化学社製))、ポリイミド、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリエステル樹脂(例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート)、ポリエーテルスルホン、ABS/AS樹脂、MBS樹脂、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/EVOH(エチレンビニルアルコール樹脂)、スチレン系ブロックコポリマー樹脂等からなる透明樹脂フィルムでありうる。透明基板1が透明樹脂フィルムである場合、当該フィルムには2種以上の樹脂が含まれてもよい。
1. 1. Layer Configuration of Transparent Conductor 1-1) Transparent Substrate The transparent substrate 1 included in the transparent conductor 100 can be the same as the transparent substrate of various display devices. The transparent substrate 1 includes a glass substrate, a cellulose ester resin (for example, triacetylcellulose, diacetylcellulose, acetylpropionylcellulose, etc.), a polycarbonate resin (for example, Panlite, Multilon (both manufactured by Teijin Limited)), a cycloolefin resin (for example, ZEONOR (manufactured by Nippon Zeon), Arton (manufactured by JSR), APPEL (manufactured by Mitsui Chemicals)), acrylic resin (eg polymethyl methacrylate, acrylite (manufactured by Mitsubishi Rayon), Sumipex (manufactured by Sumitomo Chemical)) Polyimide, phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyester resin (for example, polyethylene terephthalate (PET), polyethylene naphthalate), polyethersulfone, ABS / AS resin, MBS resin, polystyrene Emissions, methacrylic resins, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resins), may be a transparent resin film comprising a styrene block copolymer resin. When the transparent substrate 1 is a transparent resin film, the film may contain two or more kinds of resins.
 透明性の観点から、透明基板1はガラス基板、もしくはセルロースエステル樹脂、ポリカーボネート樹脂、ポリエステル樹脂(特にポリエチレンテレフタレート)、トリアセチルセルロース、シクロオレフィン樹脂、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリエーテルスルホン、ABS/AS樹脂、MBS樹脂、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/EVOH(エチレンビニルアルコール樹脂)、またはスチレン系ブロックコポリマー樹脂からなるフィルムであることが好ましい。 From the viewpoint of transparency, the transparent substrate 1 is a glass substrate, or a cellulose ester resin, a polycarbonate resin, a polyester resin (particularly polyethylene terephthalate), a triacetyl cellulose, a cycloolefin resin, a phenol resin, an epoxy resin, a polyphenylene ether (PPE) resin, A film made of polyethersulfone, ABS / AS resin, MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), or styrene block copolymer resin is preferable.
 透明基板1は、可視光に対する透明性が高いことが好ましく;波長450~800nmの光の平均透過率が70%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることがさらに好ましい。透明基板1の光の平均透過率が70%以上であると、透明導電体100の光透過性が高まりやすい。また、透明基板1の波長450~800nmの光の平均吸収率は10%以下であることが好ましく、より好ましくは5%以下、さらに好ましくは3%以下である。 The transparent substrate 1 preferably has high transparency to visible light; the average transmittance of light having a wavelength of 450 to 800 nm is preferably 70% or more, more preferably 80% or more, and 85% or more. More preferably it is. When the average light transmittance of the transparent substrate 1 is 70% or more, the light transmittance of the transparent conductor 100 is likely to be increased. Further, the average absorptance of light having a wavelength of 450 to 800 nm of the transparent substrate 1 is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
 上記平均透過率は、透明基板1の表面の法線に対して、5°傾けた角度から光を入射させて測定する。一方、平均吸収率は、平均透過率と同様の角度から光を入射させて、透明基板1の平均反射率を測定し;平均吸収率=100-(平均透過率+平均反射率)として算出する。平均透過率及び平均反射率は分光光度計で測定される。 The average transmittance is measured by making light incident from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent substrate 1. On the other hand, the average absorptance is calculated as average absorptance = 100− (average transmissivity + average reflectivity) by making light incident from the same angle as the average transmissivity and measuring the average reflectivity of the transparent substrate 1; . Average transmittance and average reflectance are measured with a spectrophotometer.
 透明基板1の波長570nmの光の屈折率は1.40~1.95であることが好ましく、より好ましくは1.45~1.75であり、さらに好ましくは1.45~1.70である。透明基板の屈折率は、通常、透明基板の材質によって定まる。透明基板の屈折率は、エリプソメーターで測定される。 The refractive index of light having a wavelength of 570 nm of the transparent substrate 1 is preferably 1.40 to 1.95, more preferably 1.45 to 1.75, and still more preferably 1.45 to 1.70. . The refractive index of the transparent substrate is usually determined by the material of the transparent substrate. The refractive index of the transparent substrate is measured with an ellipsometer.
 透明基板1のヘイズ値は0.01~2.5であることが好ましく、より好ましくは0.1~1.2である。透明基板のヘイズ値が2.5以下であると、透明導電体のヘイズ値が抑制される。ヘイズ値は、ヘイズメーターで測定される。 The haze value of the transparent substrate 1 is preferably 0.01 to 2.5, more preferably 0.1 to 1.2. When the haze value of the transparent substrate is 2.5 or less, the haze value of the transparent conductor is suppressed. The haze value is measured with a haze meter.
 透明基板1の厚みは、1μm~20mmであることが好ましく、より好ましくは10μm~2mmである。透明基板の厚みが1μm以上であると、透明基板1の強度が高まり、第一高屈折率層2の作製時に割れたり、裂けたりし難くなる。一方、透明基板1の厚みが20mm以下であれば、透明導電体100のフレキシブル性が十分となる。さらに透明導電体100を用いた機器の厚みを薄くできる。また、透明導電体100を用いた機器を軽量化することもできる。 The thickness of the transparent substrate 1 is preferably 1 μm to 20 mm, more preferably 10 μm to 2 mm. When the thickness of the transparent substrate is 1 μm or more, the strength of the transparent substrate 1 is increased, and it is difficult to crack or tear the first high refractive index layer 2 during production. On the other hand, when the thickness of the transparent substrate 1 is 20 mm or less, the flexibility of the transparent conductor 100 is sufficient. Furthermore, the thickness of the apparatus using the transparent conductor 100 can be reduced. Moreover, the apparatus using the transparent conductor 100 can also be reduced in weight.
 1-2)第一高屈折率層
 第一高屈折率層2は、透明導電体の導通領域a、つまり透明金属膜3が成膜されている領域の光透過性(光学アドミッタンス)を調整する層であり、少なくとも透明導電体100の導通領域aに形成される。第一高屈折率層2は、透明導電体100の絶縁領域bにも形成されていてもよいが、導通領域a及び絶縁領域bからなるパターンを視認され難くするとの観点から、導通領域aのみに形成されていることが好ましい。
1-2) First High Refractive Index Layer The first high refractive index layer 2 adjusts the light transmittance (optical admittance) of the conductive region a of the transparent conductor, that is, the region where the transparent metal film 3 is formed. It is a layer and is formed at least in the conduction region a of the transparent conductor 100. The first high refractive index layer 2 may be formed also in the insulating region b of the transparent conductor 100, but from the viewpoint of making it difficult to visually recognize the pattern formed of the conductive region a and the insulating region b, only the conductive region a. It is preferable to be formed.
 第一高屈折率層2には、前述の透明基板1の屈折率より高い屈折率を有する誘電性材料または酸化物半導体材料が含まれる。当該誘電性材料または酸化物半導体材料の波長570nmの光の屈折率は、透明基板1の波長570nmの光の屈折率より0.1~1.1大きいことが好ましく、0.4~1.0大きいことがより好ましい。一方、第一高屈折率層2に含まれる誘電性材料または酸化物半導体材料の波長570nmの光の具体的な屈折率は1.5より大きいことが好ましく、1.7~2.5であることがより好ましく、さらに好ましくは1.8~2.5である。誘電性材料または酸化物半導体材料の屈折率が1.5より大きいと、第一高屈折率層2によって、透明導電体100の導通領域aの光学アドミッタンスが十分に調整される。なお、第一高屈折率層2の屈折率は、第一高屈折率層2に含まれる材料の屈折率や、第一高屈折率層2に含まれる材料の密度で調整される。 The first high refractive index layer 2 includes a dielectric material or an oxide semiconductor material having a refractive index higher than the refractive index of the transparent substrate 1 described above. The refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 larger than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1, and is preferably 0.4 to 1.0. Larger is more preferable. On the other hand, the specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the first high refractive index layer 2 is preferably larger than 1.5 and is 1.7 to 2.5. More preferably, it is 1.8 to 2.5. When the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the first high refractive index layer 2. The refractive index of the first high refractive index layer 2 is adjusted by the refractive index of the material included in the first high refractive index layer 2 and the density of the material included in the first high refractive index layer 2.
 第一高屈折率層2に含まれる誘電性材料または酸化物半導体材料は、絶縁性の材料であってもよく、導電性の材料であってもよい。誘電性材料または酸化物半導体材料は、金属酸化物でありうる。金属酸化物の例にはTiO、ITO(酸化インジウムスズ)、ZnO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO(酸化インジウム・酸化亜鉛)、AZO(AlドープZnO)、GZO(GaドープZnO)、ATO(SbドープSnO)、ICO(インジウムセリウムオキサイド)、Bi、Ga、GeO、WO、HfO、IGZO(インジウム・ガリウム・亜鉛酸化物)、a-GIO(ガリウム、インジウム、及び酸素からなる非晶質酸化物)等が含まれる。第一高屈折率層2には、当該金属酸化物が1種のみ含まれてもよく、2種以上が含まれてもよい。 The dielectric material or oxide semiconductor material contained in the first high refractive index layer 2 may be an insulating material or a conductive material. The dielectric material or oxide semiconductor material can be a metal oxide. Examples of metal oxides include TiO 2 , ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO (indium oxide / zinc oxide), AZO (Al-doped ZnO), GZO (Ga-doped ZnO), ATO (Sb-doped SnO), ICO (indium cerium oxide), Bi 2 O 3 , Ga 2 O 3 , GeO 2 , WO 3 , HfO 2 , IGZO (indium gallium zinc oxide), a-GIO (amorphous oxide composed of gallium, indium and oxygen), etc. It is. The first high refractive index layer 2 may contain only one kind of the metal oxide or two or more kinds.
 また、第一高屈折率層2に含まれる誘電性材料または酸化物半導体材料は、ZnSでもありうる。第一高屈折率層2にZnSが含まれると、透明基板1側から水分が透過し難くなり、透明金属膜3の腐食が抑制される。第一高屈折率層2には、ZnSのみが含まれてもよく、ZnSと共に他の材料が含まれてもよい。ZnSと共に含まれる材料は、上記誘電性材料または酸化物半導体材料でありうる金属酸化物やSiO等であり、特に好ましくはSiOである。ZnSと共にSiOが含まれると、第一高屈折率層が非晶質になりやすく、透明導電体のフレキシブル性が高まりやすい。 In addition, the dielectric material or the oxide semiconductor material included in the first high refractive index layer 2 may be ZnS. When ZnS is contained in the first high refractive index layer 2, it becomes difficult for moisture to permeate from the transparent substrate 1 side, and corrosion of the transparent metal film 3 is suppressed. The first high refractive index layer 2 may contain only ZnS or may contain other materials together with ZnS. Materials included with ZnS is a metal oxide or SiO 2 or the like, which may be the dielectric material or an oxide semiconductor material, particularly preferably SiO 2. When SiO 2 is contained together with ZnS, the first high refractive index layer is likely to be amorphous, and the flexibility of the transparent conductor is likely to be enhanced.
 第一高屈折率層2にZnSと共に他の材料が含まれる場合、ZnSの量は、第一高屈折率層2を構成する材料の総モル数に対して、0.1質量%以上95質量%以下であることが好ましく、50質量%以上90質量%以下であることがより好ましく、さらに好ましくは60質量%以上85質量%以下である。ZnSの比率が高いとスパッタ速度が速くなり、第一高屈折率層2の成膜速度が速くなる。一方、ZnS以外の成分が多く含まれると、第一高屈折率層2の非晶質性が高まり、第一高屈折率層2の割れが抑制される。 When the first high refractive index layer 2 contains other materials together with ZnS, the amount of ZnS is 0.1% by mass or more and 95% by mass with respect to the total number of moles of the material constituting the first high refractive index layer 2. % Is preferably 50% by mass or more and 90% by mass or less, and more preferably 60% by mass or more and 85% by mass or less. When the ratio of ZnS is high, the sputtering rate is increased, and the deposition rate of the first high refractive index layer 2 is increased. On the other hand, when many components other than ZnS are contained, the amorphousness of the first high refractive index layer 2 is increased, and cracking of the first high refractive index layer 2 is suppressed.
 第一高屈折率層2の厚みは、15~150nmであることが好ましく、より好ましくは20~80nmである。第一高屈折率層2の厚みが15nm以上であると、第一高屈折率層2によって、透明導電体100の導通領域aの光学アドミッタンスが十分に調整される。一方、第一高屈折率層2の厚みが150nm以下であれば、第一高屈折率層2が含まれる領域の光透過性が低下し難い。第一高屈折率層2の厚みは、エリプソメーターで測定される。 The thickness of the first high refractive index layer 2 is preferably 15 to 150 nm, more preferably 20 to 80 nm. When the thickness of the first high refractive index layer 2 is 15 nm or more, the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the first high refractive index layer 2. On the other hand, if the thickness of the first high refractive index layer 2 is 150 nm or less, the light transmittance of the region including the first high refractive index layer 2 is unlikely to decrease. The thickness of the first high refractive index layer 2 is measured with an ellipsometer.
 第一高屈折率層2は、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で成膜された層でありうる。第一高屈折率層2の屈折率(密度)が高まるとの観点から、第一高屈折率層2は、電子ビーム蒸着法またはスパッタ法で成膜された層であることが好ましい。電子ビーム蒸着法の場合は膜密度を高めるため、IAD(イオンアシスト)などのアシストがあることが望ましい。 The first high refractive index layer 2 can be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like. From the viewpoint of increasing the refractive index (density) of the first high refractive index layer 2, the first high refractive index layer 2 is preferably a layer formed by an electron beam evaporation method or a sputtering method. In the case of the electron beam evaporation method, it is desirable to have assistance such as IAD (ion assist) in order to increase the film density.
 また、第一高屈折率層2が所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。第一高屈折率層2は、例えば、所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に成膜された層であってもよく;公知のエッチング法によってパターニングされた層であってもよい。 Further, when the first high refractive index layer 2 is a layer patterned in a desired shape, the patterning method is not particularly limited. The first high refractive index layer 2 may be, for example, a layer formed in a pattern by a vapor deposition method by arranging a mask having a desired pattern on the film formation surface; It may be a layer patterned by an etching method.
 1-3)第一硫化防止層
 前述の第一高屈折率層にZnSが含まれる;つまり第一高屈折率層2が硫化亜鉛含有層である場合、図1に示されるように、第一高屈折率層2と透明金属膜3との間に第一硫化防止層5aが含まれることが好ましい。第一硫化防止層5aは、透明導電体100の絶縁領域bにも形成されていてもよいが、導通領域a及び絶縁領域bからなるパターンを視認され難くするとの観点から、導通領域aのみに形成されていることが好ましい。
1-3) First anti-sulfurization layer ZnS is contained in the first high-refractive index layer; that is, when the first high-refractive index layer 2 is a zinc sulfide-containing layer, as shown in FIG. It is preferable that the first sulfidation preventing layer 5 a is included between the high refractive index layer 2 and the transparent metal film 3. The first sulfidation preventing layer 5a may be formed also in the insulating region b of the transparent conductor 100, but from the viewpoint of making it difficult to visually recognize the pattern composed of the conductive region a and the insulating region b, only the conductive region a is formed. Preferably it is formed.
 当該第一硫化防止層5aは、金属酸化物、金属窒化物、金属フッ化物等、またはZnを含む層でありうる。第一硫化防止層5aには、これらが一種のみ含まれてもよく、二種以上含まれてもよい。ただし、第一高屈折率層2と、第一硫化防止層5aと、透明金属膜3とが連続的に成膜される場合には、金属酸化物が硫黄と反応可能、もしくは硫黄を吸着可能な化合物であることが好ましい。金属酸化物が、硫黄と反応する化合物である場合、金属酸化物と硫黄との反応物は、可視光の透過性が高いことが好ましい。 The first sulfidation preventing layer 5a may be a metal oxide, metal nitride, metal fluoride or the like, or a layer containing Zn. Only one of these may be included in the first sulfurization prevention layer 5a, or two or more thereof may be included. However, when the first high-refractive index layer 2, the first antisulfurization layer 5a, and the transparent metal film 3 are continuously formed, the metal oxide can react with sulfur or adsorb sulfur. Preferably. In the case where the metal oxide is a compound that reacts with sulfur, the reaction product of the metal oxide and sulfur preferably has high visible light permeability.
 金属酸化物の例には、TiO、ITO、ZnO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO、AZO、GZO、ATO、ICO、Bi、a-GIO、Ga、GeO、SiO、Al、HfO、SiO、MgO、Y、WO、In、及びIGZO等が含まれる。
 金属フッ化物の例には、LaF、BaF、NaAl14、NaAlF、AlF、MgF、CaF、BaF、CeF、NdF、YF等が含まれる。
 金属窒化物の例には、Si、AlN等が含まれる。これらの中でも特に、硫黄を吸着可能なZnOが含まれることが好ましい。
Examples of metal oxides include TiO 2 , ITO, ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2. , La 2 Ti 2 O 7 , IZO, AZO, GZO, ATO, ICO, Bi 2 O 3 , a-GIO, Ga 2 O 3 , GeO 2 , SiO 2 , Al 2 O 3 , HfO 2 , SiO, MgO, Y 2 O 3 , WO 3 , In 2 O 3 , IGZO and the like are included.
Examples of metal fluorides include LaF 3 , BaF 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , BaF 2 , CeF 3 , NdF 3 , YF 3 and the like. .
Examples of the metal nitride include Si 3 N 4 , AlN, and the like. Among these, it is preferable that ZnO capable of adsorbing sulfur is contained.
 ここで、第一硫化防止層5aの厚みは、後述する透明金属膜3の成膜時の衝撃から、第一高屈折率層2の表面を保護可能な厚みであることが好ましい。一方で、第一高屈折率層2に含まれ得るZnSは、透明金属膜3に含まれる金属との親和性が高い。そのため、第一硫化防止層5aの厚みが非常に薄く、第一高屈折率層2の一部が僅かに露出していると、当該露出部分を中心に透明金属膜が成長し、透明金属膜3が緻密になりやすい。つまり、第一硫化防止層5aは比較的薄いことが好ましく、0.1nm~10nmであることが好ましく、より好ましくは0.5nm~5nmであり、さらに好ましくは1nm~3nmである。第一硫化防止層5aの厚みは、エリプソメーターで測定される。 Here, the thickness of the first sulfidation preventing layer 5a is preferably a thickness capable of protecting the surface of the first high refractive index layer 2 from an impact during the formation of the transparent metal film 3 described later. On the other hand, ZnS that can be contained in the first high refractive index layer 2 has high affinity with the metal contained in the transparent metal film 3. Therefore, if the thickness of the first sulfidation preventing layer 5a is very thin and a part of the first high refractive index layer 2 is slightly exposed, a transparent metal film grows around the exposed part, and the transparent metal film 3 tends to be dense. That is, the first sulfidation preventing layer 5a is preferably relatively thin, preferably 0.1 nm to 10 nm, more preferably 0.5 nm to 5 nm, and further preferably 1 nm to 3 nm. The thickness of the first sulfurization preventing layer 5a is measured with an ellipsometer.
 第一硫化防止層5aは、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で成膜された層でありうる。 The first antisulfurization layer 5a can be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like.
 第一硫化防止層5aが、所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。第一硫化防止層5aは、例えば、所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に成膜された層であってもよく;公知のエッチング法によってパターニングされた層であってもよい。 When the first sulfidation preventing layer 5a is a layer patterned into a desired shape, the patterning method is not particularly limited. The first sulfidation preventing layer 5a may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the film formation surface; It may be a layer patterned by a method.
 1-4)透明金属膜
 透明金属膜3は、透明導電体100において電気を導通させるための膜である。透明金属膜3は、前述のように、透明基板1の全面に形成されていてもよく、また所望の形状にパターニングされていてもよい。
1-4) Transparent Metal Film The transparent metal film 3 is a film for conducting electricity in the transparent conductor 100. The transparent metal film 3 may be formed on the entire surface of the transparent substrate 1 as described above, or may be patterned into a desired shape.
 透明金属膜3に含まれる金属は、導電性の高い金属であれば特に制限されず、例えば銀、銅、金、白金族、チタン、クロム等でありうる。透明金属膜3には、これらの金属が1種のみ含まれてもよく、2種以上含まれてもよい。導電性が高いとの観点から、透明金属膜は銀、または銀が90at%以上含まれる合金からなることが好ましい。銀と組み合わされる金属は、亜鉛、金、銅、パラジウム、アルミニウム、マンガン、ビスマス、ネオジム、モリブデン等でありうる。例えば銀と亜鉛とが組み合わされると、透明金属膜の耐硫化性が高まる。銀と金とが組み合わされると、耐塩(NaCl)性が高まる。さらに銀と銅とが組み合わされると、耐酸化性が高まる。 The metal contained in the transparent metal film 3 is not particularly limited as long as it is a highly conductive metal, and may be, for example, silver, copper, gold, platinum group, titanium, chromium, or the like. The transparent metal film 3 may contain only one kind of these metals or two or more kinds. From the viewpoint of high conductivity, the transparent metal film is preferably made of silver or an alloy containing 90 at% or more of silver. The metal combined with silver can be zinc, gold, copper, palladium, aluminum, manganese, bismuth, neodymium, molybdenum, and the like. For example, when silver and zinc are combined, the sulfidation resistance of the transparent metal film is enhanced. When silver and gold are combined, salt resistance (NaCl) resistance increases. Furthermore, when silver and copper are combined, the oxidation resistance increases.
 透明金属膜3のプラズモン吸収率は、波長400nm~800nmにわたって(全範囲で)10%以下であることが好ましく、7%以下であることがより好ましく、さらに好ましくは5%以下である。波長400nm~800nmの一部にプラズモン吸収率が大きい領域があると、透明導電体100の導通領域aの透過光が着色しやすくなる。 The plasmon absorption rate of the transparent metal film 3 is preferably 10% or less (over the entire range) over a wavelength range of 400 nm to 800 nm, more preferably 7% or less, and further preferably 5% or less. If there is a region having a large plasmon absorption rate in a part of the wavelength of 400 nm to 800 nm, the transmitted light of the conductive region a of the transparent conductor 100 is likely to be colored.
 透明金属膜3の波長400nm~800nmにおけるプラズモン吸収率は、以下の手順で測定される。
 (i)ガラス基板上に、白金パラジウムをマグネトロンスパッタ装置にて0.1nm成膜する。白金パラジウムの平均厚みは、スパッタ装置のメーカー公称値の成膜速度等から算出する。その後、白金パラジウムが付着した基板上にスパッタ法にて金属からなる膜を20nm成膜する。
The plasmon absorption rate at a wavelength of 400 nm to 800 nm of the transparent metal film 3 is measured by the following procedure.
(I) A platinum palladium film is formed to a thickness of 0.1 nm on a glass substrate using a magnetron sputtering apparatus. The average thickness of platinum palladium is calculated from the film forming speed and the like of the manufacturer's nominal value of the sputtering apparatus. Thereafter, a film made of metal is formed to a thickness of 20 nm on the substrate to which platinum palladium is adhered by sputtering.
 (ii)そして、得られた金属膜の表面の法線に対して、5°傾けた角度から測定光を入射させ、金属膜の透過率及び反射率を測定する。そして各波長における透過率及び反射率から、吸収率=100-(透過率+反射率)を算出し、これをリファレンスデータとする。透過率及び反射率は、分光光度計で測定する。 (Ii) Then, measurement light is incident from an angle inclined by 5 ° with respect to the normal of the surface of the obtained metal film, and the transmittance and reflectance of the metal film are measured. Then, from the transmittance and reflectance at each wavelength, absorption rate = 100− (transmittance + reflectance) is calculated and used as reference data. The transmittance and reflectance are measured with a spectrophotometer.
 (iii)続いて、測定対象の透明金属膜を同様のガラス基板上に成膜する。そして、当該透明金属膜について、同様に透過率及び反射率を測定する。得られた吸収率から上記リファレンスデータを差し引き、算出された値を、プラズモン吸収率とする。 (Iii) Subsequently, a transparent metal film to be measured is formed on the same glass substrate. And the transmittance | permeability and reflectance are similarly measured about the said transparent metal film. The reference data is subtracted from the obtained absorption rate, and the calculated value is defined as the plasmon absorption rate.
 透明金属膜3の厚みは10nm以下であり、好ましくは3~9nmであり、さらに好ましくは5~8nmである。本発明の透明導電体100では、透明金属膜3の厚みが10nm以下であるため、透明金属膜3に金属本来の反射が生じ難い。さらに、透明金属膜3の厚みが10nm以下であると、第一高屈折率層2及び第二高屈折率層4によって、透明導電体100の光学アドミッタンスが調整されやすく、導通領域a表面での光の反射が抑制されやすい。透明金属膜3の厚みは、エリプソメーターで測定される。 The thickness of the transparent metal film 3 is 10 nm or less, preferably 3 to 9 nm, and more preferably 5 to 8 nm. In the transparent conductor 100 of the present invention, since the transparent metal film 3 has a thickness of 10 nm or less, the metal reflection is hardly generated in the transparent metal film 3. Furthermore, when the thickness of the transparent metal film 3 is 10 nm or less, the optical admittance of the transparent conductor 100 is easily adjusted by the first high-refractive index layer 2 and the second high-refractive index layer 4, so Light reflection is easily suppressed. The thickness of the transparent metal film 3 is measured with an ellipsometer.
 透明金属膜3は、いずれの成膜方法で成膜された膜でありうるが、透明金属膜の平均透過率を高めるためには、スパッタ法で成膜された膜;もしくは後述する下地層上に成膜された膜であることが好ましい。 The transparent metal film 3 can be a film formed by any film forming method, but in order to increase the average transmittance of the transparent metal film, a film formed by a sputtering method; or an underlayer described later It is preferable that the film is formed in the same manner.
 スパッタ法では、成膜時に材料が被成膜体に高速で衝突するため、緻密かつ平滑な膜が得られやすく;透明金属膜3の光透過性が高まりやすい。また、透明金属膜3がスパッタ法により成膜された膜であると、透明金属膜3が高温かつ低湿度な環境においても腐食し難くなる。スパッタ法の種類は特に制限されず、イオンビームスパッタ法や、マグネトロンスパッタ法、反応性スパッタ法、2極スパッタ法、バイアススパッタ法、対向スパッタ法等でありうる。透明金属膜3は、特に対向スパッタ法で成膜された膜であることが好ましい。透明金属膜3が、対向スパッタ法で成膜された膜であると、透明金属膜3が緻密になり、表面平滑性が高まりやすい。その結果、透明金属膜3の表面電気抵抗がより低くなり、光の透過率も高まりやすい。 In the sputtering method, since the material collides with the deposition target at high speed during film formation, a dense and smooth film is easily obtained; the light transmittance of the transparent metal film 3 is likely to increase. Moreover, when the transparent metal film 3 is a film formed by sputtering, the transparent metal film 3 is hardly corroded even in an environment of high temperature and low humidity. The type of the sputtering method is not particularly limited, and may be an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, a bias sputtering method, a counter sputtering method, or the like. The transparent metal film 3 is particularly preferably a film formed by a counter sputtering method. When the transparent metal film 3 is a film formed by the facing sputtering method, the transparent metal film 3 becomes dense and the surface smoothness is likely to increase. As a result, the surface electrical resistance of the transparent metal film 3 becomes lower and the light transmittance is likely to increase.
 一方、透明金属膜3が後述する下地層上に成膜された膜である場合、透明金属膜3の成膜時に下地層が成長核となるため、透明金属膜3が平滑な膜になりやすい。その結果、透明金属膜3が薄くとも、プラズモン吸収が生じ難くなる。この場合、透明金属膜3の成膜方法は特に制限されず、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法でありうる。 On the other hand, when the transparent metal film 3 is a film formed on an underlayer described later, the underlayer becomes a growth nucleus when the transparent metal film 3 is formed, so that the transparent metal film 3 tends to be a smooth film. . As a result, even if the transparent metal film 3 is thin, plasmon absorption hardly occurs. In this case, the method for forming the transparent metal film 3 is not particularly limited, and may be a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like.
 また、透明金属膜3が所望の形状にパターニングされた膜である場合、パターニング方法は特に制限されない。透明金属膜3は、例えば、所望のパターンを有するマスクを配置して成膜された膜であってもよく;公知のエッチング法によってパターニングされた膜であってもよい。 Further, when the transparent metal film 3 is a film patterned into a desired shape, the patterning method is not particularly limited. The transparent metal film 3 may be, for example, a film formed by arranging a mask having a desired pattern; it may be a film patterned by a known etching method.
 1-5)第二硫化防止層
 後述する第二高屈折率層が硫化亜鉛含有層である場合、図1に示されるように、透明金属膜3と第二高屈折率層4との間に第二硫化防止層5bが含まれることが好ましい。第二硫化防止層5bは、透明導電体100の絶縁領域bにも形成されていてもよいが、導通領域a及び絶縁領域bからなるパターンを視認され難くするとの観点から、導通領域aのみに形成されていることが好ましい。
1-5) Second anti-sulfurization layer When the second high-refractive index layer to be described later is a zinc sulfide-containing layer, as shown in FIG. 1, between the transparent metal film 3 and the second high-refractive index layer 4 It is preferable that the second sulfidation preventing layer 5b is included. The second sulfidation preventing layer 5b may be formed also in the insulating region b of the transparent conductor 100, but from the viewpoint of making it difficult to visually recognize the pattern composed of the conductive region a and the insulating region b, only the conductive region a. Preferably it is formed.
 当該第二硫化防止層5bは、金属酸化物、金属窒化物、金属フッ化物等、またはZnを含む層である。第二硫化防止層5bには、これらが一種のみ含まれてもよく、二種以上が含まれてもよい。金属酸化物、金属窒化物、金属フッ化物は、前述の第一高屈折率層2に含まれる金属酸化物、金属窒化物、金属フッ化物と同様でありうる。 The second antisulfurization layer 5b is a layer containing metal oxide, metal nitride, metal fluoride or the like or Zn. Only one of these may be included in the second sulfidation preventing layer 5b, or two or more thereof may be included. The metal oxide, metal nitride, and metal fluoride can be the same as the metal oxide, metal nitride, and metal fluoride contained in the first high refractive index layer 2 described above.
 一方、第二硫化防止層5bの厚みは、後述する第二高屈折率層4の成膜時の衝撃から、透明金属膜3の表面を保護可能な厚みであることが好ましい。一方で、透明金属膜3に含まれる金属と、第二高屈折率層4に含まれるZnSは、親和性が高い。そのため、第二硫化防止層5bの厚みが非常に薄く、透明金属膜3の一部が僅かに露出していると、透明金属膜3や第二硫化防止層5bと第二高屈折率層4との密着性が高まりやすい。したがって、第二硫化防止層5bの具体的な厚みは0.1nm~10nmであることが好ましく、より好ましくは0.5nm~5nmであり、さらに好ましくは1nm~3nmである。第二硫化防止層5bの厚みは、エリプソメーターで測定される。 On the other hand, the thickness of the second sulfidation preventing layer 5b is preferably a thickness capable of protecting the surface of the transparent metal film 3 from an impact during film formation of the second high refractive index layer 4 described later. On the other hand, the metal contained in the transparent metal film 3 and the ZnS contained in the second high refractive index layer 4 have high affinity. Therefore, if the thickness of the second sulfidation preventing layer 5b is very thin and a part of the transparent metal film 3 is slightly exposed, the transparent metal film 3 or the second sulfidation preventing layer 5b and the second high refractive index layer 4 are exposed. Adhesiveness is likely to increase. Accordingly, the specific thickness of the second antisulfurization layer 5b is preferably 0.1 nm to 10 nm, more preferably 0.5 nm to 5 nm, and further preferably 1 nm to 3 nm. The thickness of the second sulfidation preventing layer 5b is measured with an ellipsometer.
 第二硫化防止層5bは、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で成膜された層でありうる。 The second sulfidation preventing layer 5b can be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like.
 第二硫化防止層5bが、所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。第二硫化防止層5bは、例えば、所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に成膜された層であってもよく;公知のエッチング法によってパターニングされた層であってもよい。 When the second sulfidation preventing layer 5b is a layer patterned into a desired shape, the patterning method is not particularly limited. The second sulfidation preventing layer 5b may be, for example, a layer formed in a pattern by a vapor deposition method by disposing a mask having a desired pattern on the film formation surface; It may be a layer patterned by a method.
1-6)第二高屈折率層
 第二高屈折率層4は、透明導電体100の導通領域a、つまり透明金属膜3が成膜されている領域の光透過性(光学アドミッタンス)を調整するための層であり、少なくとも透明導電体100の導通領域aに形成される。第二高屈折率層4は、透明導電体100の絶縁領域bに形成されてもよいが、導通領域a及び絶縁領域bからなるパターンを視認され難くするとの観点から、導通領域aのみに形成されていることが好ましい。
1-6) Second High Refractive Index Layer The second high refractive index layer 4 adjusts the light transmittance (optical admittance) of the conductive region a of the transparent conductor 100, that is, the region where the transparent metal film 3 is formed. And is formed at least in the conduction region a of the transparent conductor 100. The second high-refractive index layer 4 may be formed in the insulating region b of the transparent conductor 100, but is formed only in the conductive region a from the viewpoint of making it difficult to visually recognize the pattern composed of the conductive region a and the insulating region b. It is preferable that
 第二高屈折率層4には前述の透明基板1の屈折率より高い屈折率を有する誘電性材料または酸化物半導体材料が含まれる。当該誘電性材料または酸化物半導体材料の波長570nmの光の屈折率は、透明基板1の波長570nmの光の屈折率より0.1~1.1大きいことが好ましく、0.4~1.0大きいことがより好ましい。一方、第二高屈折率層4に含まれる誘電性材料または酸化物半導体材料の波長570nmの光の具体的な屈折率は1.5より大きいことが好ましく、1.7~2.5であることがより好ましく、さらに好ましくは1.8~2.5である。誘電性材料または酸化物半導体材料の屈折率が1.5より大きいと、第二高屈折率層4によって、透明導電体100の導通領域aの光学アドミッタンスが十分に調整される。なお、第二高屈折率層4の屈折率は、第二高屈折率層4に含まれる材料の屈折率や、第二高屈折率層4に含まれる材料の密度で調整される。 The second high refractive index layer 4 includes a dielectric material or an oxide semiconductor material having a refractive index higher than that of the transparent substrate 1 described above. The refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 larger than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1, and is preferably 0.4 to 1.0. Larger is more preferable. On the other hand, the specific refractive index of light with a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the second high refractive index layer 4 is preferably greater than 1.5, and is 1.7 to 2.5. More preferably, it is 1.8 to 2.5. When the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the second high refractive index layer 4. The refractive index of the second high refractive index layer 4 is adjusted by the refractive index of the material included in the second high refractive index layer 4 and the density of the material included in the second high refractive index layer 4.
 第二高屈折率層4に含まれる誘電性材料または酸化物半導体材料は、絶縁性の材料であってもよく、導電性の材料であってもよい。誘電性材料または酸化物半導体材料は、金属酸化物でありうる。当該金属酸化物は、第一高屈折率層2に含まれる金属酸化物と同様でありうる。第二高屈折率層4には、当該金属酸化物が1種のみ含まれてもよく、2種以上が含まれてもよい。 The dielectric material or oxide semiconductor material contained in the second high refractive index layer 4 may be an insulating material or a conductive material. The dielectric material or oxide semiconductor material can be a metal oxide. The metal oxide can be the same as the metal oxide contained in the first high refractive index layer 2. The second high refractive index layer 4 may contain only one kind of the metal oxide or two or more kinds.
 また、第二高屈折率層4に含まれる誘電性材料または酸化物半導体材料は、ZnSでもありうる。第二高屈折率層4にZnSが含まれると、第二高屈折率層4側から水分が透過し難くなり、透明金属膜3の腐食が抑制される。第二高屈折率層4には、ZnSのみが含まれてもよく、ZnSと共に他の材料が含まれてもよい。ZnSと共に含まれる材料は、上記誘電性材料または酸化物半導体材料でありうる金属酸化物、もしくはSiOであり、特に好ましくはSiOである。ZnSと共にSiOが含まれると、第二高屈折率層4が非晶質になりやすく、透明導電体のフレキシブル性が高まりやすい。 Further, the dielectric material or the oxide semiconductor material included in the second high refractive index layer 4 may be ZnS. When ZnS is contained in the second high refractive index layer 4, it becomes difficult for moisture to permeate from the second high refractive index layer 4 side, and corrosion of the transparent metal film 3 is suppressed. The second high refractive index layer 4 may contain only ZnS or may contain other materials together with ZnS. The material contained together with ZnS is a metal oxide that can be the dielectric material or the oxide semiconductor material, or SiO 2 , and particularly preferably SiO 2 . When SiO 2 is contained together with ZnS, the second high refractive index layer 4 tends to be amorphous, and the flexibility of the transparent conductor is likely to increase.
 第二高屈折率層4にZnSと共に他の材料が含まれる場合、ZnSの量は、第二高屈折率層4を構成する成分の総モル数に対して、0.1質量%以上95質量%以下であることが好ましく、50質量%以上90質量%以下であることがより好ましく、さらに好ましくは60質量%以上85質量%以下である。ZnSの比率が高いとスパッタ速度が速くなり、第二高屈折率層4の成膜速度が早くなる。一方、ZnS以外の成分が多くなると、第二高屈折率層4の非晶質性が高まり、第二高屈折率層4の割れが抑制される。 When the second high refractive index layer 4 contains other materials together with ZnS, the amount of ZnS is 0.1% by mass or more and 95% by mass with respect to the total number of moles of components constituting the second high refractive index layer 4. % Is preferably 50% by mass or more and 90% by mass or less, and more preferably 60% by mass or more and 85% by mass or less. When the ratio of ZnS is high, the sputtering rate is increased, and the deposition rate of the second high refractive index layer 4 is increased. On the other hand, when the amount of components other than ZnS increases, the amorphousness of the second high refractive index layer 4 increases, and cracking of the second high refractive index layer 4 is suppressed.
 第二高屈折率層4の厚みは15nm以上であり、通常150nm以下である。第二高屈折率層4の厚みは、より好ましくは15~150nmであり、さらに好ましくは20nm~80nmである。第二高屈折率層4の厚みが15nm以上であると、第二高屈折率層4によって、透明導電体100の導通領域aの光学アドミッタンスが十分に調整される。一方、第二高屈折率層4の厚みが150nm以下であれば、第二高屈折率層4が含まれる領域の光透過性が低下し難い。第二高屈折率層4の厚みは、エリプソメーターで測定される。 The thickness of the second high refractive index layer 4 is 15 nm or more, and usually 150 nm or less. The thickness of the second high refractive index layer 4 is more preferably 15 to 150 nm, still more preferably 20 to 80 nm. When the thickness of the second high refractive index layer 4 is 15 nm or more, the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the second high refractive index layer 4. On the other hand, if the thickness of the second high refractive index layer 4 is 150 nm or less, the light transmittance of the region including the second high refractive index layer 4 is unlikely to decrease. The thickness of the second high refractive index layer 4 is measured with an ellipsometer.
 第二高屈折率層4の成膜方法は特に制限されず、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で成膜された層であり得る。第二高屈折率層4の透湿性が低くなるとの観点から、第二高屈折率層4はスパッタ法で成膜された膜であることが特に好ましい。 The film formation method of the second high refractive index layer 4 is not particularly limited, and is formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like. Layer. From the viewpoint that the moisture permeability of the second high refractive index layer 4 is lowered, the second high refractive index layer 4 is particularly preferably a film formed by sputtering.
 また、第二高屈折率層4が所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。第二高屈折率層4は、例えば、所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に成膜された層であってもよい。また、公知のエッチング法によってパターニングされた層であってもよい。 Further, when the second high refractive index layer 4 is a layer patterned into a desired shape, the patterning method is not particularly limited. The second high refractive index layer 4 may be, for example, a layer formed in a pattern by a vapor deposition method by placing a mask having a desired pattern on the deposition surface. Moreover, the layer patterned by the well-known etching method may be sufficient.
 1-7)下地層
 前述のように、透明導電体100には、透明金属膜3の成膜時に成長核となる下地層が含まれてもよい。下地層は、透明金属膜3より透明基板1側、かつ透明金属膜3に隣接して形成された層;つまり、第一高屈折率層2と透明金属膜3との間、もしくは第一硫化防止層5aと透明金属膜3との間に成膜された層でありうる。下地層は、少なくとも透明導電体の導通領域aに形成されていることが好ましく、透明導電体100の絶縁領域bに成膜されていてもよい。
1-7) Underlayer As described above, the transparent conductor 100 may include an underlayer serving as a growth nucleus when the transparent metal film 3 is formed. The underlayer is a layer formed on the transparent substrate 1 side and adjacent to the transparent metal film 3 from the transparent metal film 3; that is, between the first high refractive index layer 2 and the transparent metal film 3, or the first sulfide. It may be a layer formed between the prevention layer 5 a and the transparent metal film 3. The underlayer is preferably formed at least in the conductive region a of the transparent conductor, and may be formed in the insulating region b of the transparent conductor 100.
 透明導電体100に下地層が含まれると、透明金属膜3の厚みが薄くとも、透明金属膜3の表面の平滑性が高まる。その理由は以下の通りである。 If the transparent conductor 100 includes a base layer, the smoothness of the surface of the transparent metal film 3 is enhanced even if the transparent metal film 3 is thin. The reason is as follows.
 一般的な気相成膜法で透明金属膜3の材料を、例えば第一高屈折率層2上に堆積させると、成膜初期には、第一高屈折率層2上に付着した原子がマイグレート(移動)し、原子が寄り集まって塊(島状構造)を形成する。そして、この塊にまとわりつきながら膜が成長する。そのため、成膜初期の膜では、塊同士の間に隙間があり、導通しない。この状態からさらに塊が成長すると、塊同士の一部が繋がり、かろうじて導通する。しかし、塊同士の間に未だ隙間があるため、プラズモン吸収が生じる。そして、さらに成膜が進むと、塊同士が完全に繋がって、プラズモン吸収が少なくなる。しかしその一方で、金属本来の反射が生じ、膜の光透過性が低下する。 When the material of the transparent metal film 3 is deposited on, for example, the first high refractive index layer 2 by a general vapor deposition method, atoms attached to the first high refractive index layer 2 are initially deposited. Migrate (move), and atoms gather together to form a lump (island structure). And a film grows clinging to this lump. Therefore, in the film at the initial stage of film formation, there is a gap between the lumps and it is not conductive. When a lump further grows from this state, a part of the lump is connected and barely conducted. However, since there is still a gap between the lumps, plasmon absorption occurs. As the film formation proceeds further, the lumps are completely connected and plasmon absorption is reduced. However, on the other hand, the intrinsic reflection of the metal occurs, and the light transmittance of the film decreases.
 これに対し、第一高屈折率層2上をマイグレートし難い金属からなる下地層が成膜されていると、当該下地層を成長核として、透明金属膜3が成長する。つまり、透明金属膜3の材料がマイグレートし難くなり、前述の島状構造を形成せずに膜が成長する。その結果、厚みが薄くとも平滑な透明金属膜3が得られやすくなる。 On the other hand, when a base layer made of a metal that is difficult to migrate is formed on the first high refractive index layer 2, the transparent metal film 3 grows using the base layer as a growth nucleus. That is, the material of the transparent metal film 3 is difficult to migrate, and the film grows without forming the island-like structure described above. As a result, it becomes easy to obtain a smooth transparent metal film 3 even if the thickness is small.
 ここで、下地層には、パラジウム、モリブデン、亜鉛、ゲルマニウム、ニオブまたはインジウム;あるいはこれらの金属と他の金属との合金や、これらの金属の酸化物や硫化物(例えばZnS)が含まれることが好ましい。下地層には、これらが一種のみ含まれてもよく、二種以上が含まれてもよい。 Here, the base layer contains palladium, molybdenum, zinc, germanium, niobium, or indium; or an alloy of these metals with other metals, or an oxide or sulfide of these metals (for example, ZnS). Is preferred. The underlayer may contain only one kind, or two or more kinds.
 下地層に含まれるパラジウム、モリブデン、亜鉛、ゲルマニウム、ニオブまたはインジウムの量は、20質量%以上であることが好ましく、より好ましくは40質量%以上であり、さらに好ましくは60質量%以上である。下地層に上記金属が20質量%以上含まれると、下地層と透明金属膜3との親和性が高まり、下地層と透明金属膜3との密着性が高まりやすい。下地層にはパラジウムまたはモリブデンが含まれることが特に好ましい。 The amount of palladium, molybdenum, zinc, germanium, niobium or indium contained in the underlayer is preferably 20% by mass or more, more preferably 40% by mass or more, and further preferably 60% by mass or more. When the metal is contained in the base layer in an amount of 20% by mass or more, the affinity between the base layer and the transparent metal film 3 is increased, and the adhesion between the base layer and the transparent metal film 3 is likely to be increased. It is particularly preferable that the underlayer contains palladium or molybdenum.
 一方、パラジウム、モリブデン、亜鉛、ゲルマニウム、ニオブまたはインジウムと合金を形成する金属は特に制限されないが、例えばパラジウム以外の白金族、金、コバルト、ニッケル、チタン、アルミニウム、クロム等でありうる。 On the other hand, the metal that forms an alloy with palladium, molybdenum, zinc, germanium, niobium, or indium is not particularly limited, but may be a platinum group other than palladium, gold, cobalt, nickel, titanium, aluminum, chromium, or the like.
 下地層の厚みは、3nm以下であり、好ましくは0.5nm以下であり、より好ましくは単原子膜である。下地層は、透明基板1上に金属原子が互いに離間して付着している膜でもありうる。下地層の付着量が3nm以下であれば、下地層が透明導電体100の光透過性や光学アドミッタンスに影響を及ぼし難い。下地層の有無はICP-MS法で確認される。また、下地層の厚みは、成膜速度と成膜時間との積から算出される。 The thickness of the underlayer is 3 nm or less, preferably 0.5 nm or less, and more preferably a monoatomic film. The underlayer can also be a film in which metal atoms adhere to the transparent substrate 1 with a distance therebetween. When the adhesion amount of the underlayer is 3 nm or less, the underlayer hardly affects the light transmission property and optical admittance of the transparent conductor 100. The presence or absence of the underlayer is confirmed by the ICP-MS method. Further, the thickness of the underlayer is calculated from the product of the film formation speed and the film formation time.
 下地層は、スパッタ法または蒸着法で成膜された層でありうる。スパッタ法の例には、イオンビームスパッタ法や、マグネトロンスパッタ法、反応性スパッタ法、2極スパッタ法、バイアススパッタ法等が含まれる。下地層成膜時のスパッタ時間は、所望の下地層の平均厚み、及び成膜速度に合わせて適宜選択される。スパッタ成膜速度は、好ましくは0.1~15Å/秒であり、より好ましくは0.1~7Å/秒である。 The underlayer can be a layer formed by sputtering or vapor deposition. Examples of the sputtering method include an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, and a bias sputtering method. The sputtering time during the underlayer film formation is appropriately selected according to the desired average thickness of the underlayer and the film formation speed. The sputter deposition rate is preferably from 0.1 to 15 Å / second, more preferably from 0.1 to 7 秒 / second.
 一方、蒸着法の例には、真空蒸着法、電子線蒸着法、イオンプレーティング法、イオンビーム蒸着法等が含まれる。蒸着時間は、所望の下地層の厚み、及び成膜速度に合わせて適宜選択される。蒸着速度は、好ましくは0.1~15Å/秒であり、より好ましくは0.1~7Å/秒である。 On the other hand, examples of the vapor deposition method include vacuum vapor deposition method, electron beam vapor deposition method, ion plating method, ion beam vapor deposition method and the like. The deposition time is appropriately selected according to the desired thickness of the underlayer and the film formation rate. The deposition rate is preferably 0.1 to 15 Å / second, more preferably 0.1 to 7 Å / second.
 下地層が所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。下地層は、例えば、所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に成膜された層であってもよく;公知のエッチング法によってパターニングされた層であってもよい。 When the ground layer is a layer patterned into a desired shape, the patterning method is not particularly limited. The underlayer may be, for example, a layer formed in a pattern by a vapor deposition method by placing a mask having a desired pattern on the deposition surface; patterned by a known etching method It may be a layer.
 1-8)低屈折率層
 前述のように、本発明の透明導電体100には、第二高屈折率層4上に、透明導電体の導通領域aの光透過性(光学アドミッタンス)を調整する低屈折率層(図示せず)が含まれてもよい。低屈折率層は、透明導電体100の導通領域aにのみ成膜されていてもよく、透明導電体100の導通領域a及び絶縁領域bの両方に成膜されていてもよい。
1-8) Low Refractive Index Layer As described above, in the transparent conductor 100 of the present invention, the light transmittance (optical admittance) of the conductive region a of the transparent conductor is adjusted on the second high refractive index layer 4. A low refractive index layer (not shown) may be included. The low refractive index layer may be formed only in the conductive region a of the transparent conductor 100, or may be formed in both the conductive region a and the insulating region b of the transparent conductor 100.
 低屈折率層には、第一高屈折率層2及び第二高屈折率層4に含まれる誘電性材料または酸化物半導材料の波長570nmの光の屈折率より、波長570nmの光の屈折率が低い誘電性材料または酸化物半導体材料が含まれる。低屈折率層に含まれる誘電性材料または酸化物半導体材料の波長570nmの光の屈折率は、第一高屈折率層2及び第二高屈折率層4に含まれる上記材料の波長570nmの光の屈折率より、それぞれ0.2以上低いことが好ましく、0.4以上低いことがより好ましい。 In the low refractive index layer, the refractive index of light having a wavelength of 570 nm is more than the refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material included in the first high refractive index layer 2 and the second high refractive index layer 4. A dielectric material or an oxide semiconductor material having a low rate is included. The refractive index of the light of wavelength 570 nm of the dielectric material or oxide semiconductor material contained in the low refractive index layer is the light of wavelength 570 nm of the material contained in the first high refractive index layer 2 and the second high refractive index layer 4. The refractive index is preferably 0.2 or more lower and more preferably 0.4 or more lower.
 低屈折率層に含まれる誘電性材料または酸化物半導体材料の波長570nmの光の具体的な屈折率は1.8未満であることが好ましく、より好ましくは1.30~1.6であり、特に好ましくは1.35~1.5である。なお、低屈折率層の屈折率は主に、低屈折率層に含まれる材料の屈折率や、低屈折率層に含まれる材料の密度で調整される。 The specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the low refractive index layer is preferably less than 1.8, more preferably 1.30 to 1.6, Particularly preferred is 1.35 to 1.5. The refractive index of the low refractive index layer is mainly adjusted by the refractive index of the material included in the low refractive index layer and the density of the material included in the low refractive index layer.
 低屈折率層に含まれる誘電性材料または酸化物半導体材料は、MgF、SiO、AlF、CaF、CeF、CdF、LaF、LiF、NaF、NdF、YF、YbF、Ga、LaAlO、NaAlF、Al、MgO、及びThO等でありうる。誘電性材料または酸化物半導体材料は中でも、MgF、SiO、CaF、CeF、LaF、LiF、NaF、NdF、NaAlF、Al、MgO、またはThOであることが好ましく、屈折率が低いとの観点から、MgF及びSiOが特に好ましい。低屈折率層には、これらの材料が1種のみ含まれてもよく、2種以上含まれてもよい。 The dielectric material or oxide semiconductor material contained in the low refractive index layer is MgF 2 , SiO 2 , AlF 3 , CaF 2 , CeF 3 , CdF 3 , LaF 3 , LiF, NaF, Nad, NdF 3 , YF 3 , YbF 3. , Ga 2 O 3 , LaAlO 3 , Na 3 AlF 6 , Al 2 O 3 , MgO, and ThO 2 . Dielectric material or an oxide semiconductor material is inter alia, is MgF 2, SiO 2, CaF 2 , CeF 3, LaF 3, LiF, NaF, NdF 3, Na 3 AlF 6, Al 2 O 3, MgO or ThO 2, In view of low refractive index, MgF 2 and SiO 2 are particularly preferable. Only one of these materials may be included in the low refractive index layer, or two or more of these materials may be included.
 低屈折率層の厚みは、10~150nmであることが好ましく、より好ましくは20~100nmである。低屈折率層の厚みが10nm以上であると、透明導電体表面の光学アドミッタンスが微調整されやすい。一方、低屈折率層の厚みが150nm以下であれば、透明導電体の厚みが薄くなる。低屈折率層の厚みは、エリプソメーターで測定される。 The thickness of the low refractive index layer is preferably 10 to 150 nm, more preferably 20 to 100 nm. When the thickness of the low refractive index layer is 10 nm or more, the optical admittance on the surface of the transparent conductor is easily finely adjusted. On the other hand, if the thickness of the low refractive index layer is 150 nm or less, the thickness of the transparent conductor is reduced. The thickness of the low refractive index layer is measured with an ellipsometer.
 低屈折率層は、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で成膜された層であり得る。成膜の容易性等の観点から、低屈折率層は、電子ビーム蒸着法またはスパッタ法で成膜された層であることが好ましい。 The low refractive index layer may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like. From the viewpoint of easiness of film formation, the low refractive index layer is preferably a layer formed by electron beam evaporation or sputtering.
 また、低屈折率層がパターニングされた層である場合、パターニング方法は特に制限されない。低屈折率層は、例えば、所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に成膜された層であってもよく;公知のエッチング法でパターニングされた層であってもよい。 Further, when the low refractive index layer is a patterned layer, the patterning method is not particularly limited. The low refractive index layer may be, for example, a layer formed in a pattern by a vapor deposition method by placing a mask having a desired pattern on the deposition surface; It may be a patterned layer.
1-9)第三高屈折率層
 前述のように、本発明の透明導電体100には、低屈折率層上にさらに、透明導電体の導通領域aの光透過性(光学アドミッタンス)を調整する第三高屈折率層が含まれてもよい。第三高屈折率層は、透明導電体100の導通領域aにのみ成膜されていてもよく、透明導電体100の導通領域a及び絶縁領域bの両方に成膜されていてもよい。
1-9) Third High Refractive Index Layer As described above, in the transparent conductor 100 of the present invention, the light transmittance (optical admittance) of the conductive region a of the transparent conductor is further adjusted on the low refractive index layer. A third high refractive index layer may be included. The third high refractive index layer may be formed only in the conductive region a of the transparent conductor 100, or may be formed in both the conductive region a and the insulating region b of the transparent conductor 100.
 第三高屈折率層には、前述の透明基板1の屈折率及び前記低屈折率層の屈折率より高い屈折率を有する誘電性材料または酸化物半導体材料が含まれることが好ましい。
 第三高屈折率層に含まれる誘電性材料または酸化物半導体材料の波長570nmの光の具体的な屈折率は1.5より大きいことが好ましく、1.7~2.5であることがより好ましく、さらに好ましくは1.8~2.5である。誘電性材料または酸化物半導体材料の屈折率が1.5より大きいと、第三高屈折率層によって、透明導電体100の導通領域aの光学アドミッタンスが十分に調整される。なお、第三高屈折率層の屈折率は、第三高屈折率層に含まれる材料の屈折率や、第三高屈折率層に含まれる材料の密度で調整される。
The third high refractive index layer preferably contains a dielectric material or an oxide semiconductor material having a refractive index higher than the refractive index of the transparent substrate 1 and the refractive index of the low refractive index layer.
The specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the third high refractive index layer is preferably larger than 1.5, more preferably 1.7 to 2.5. Preferably, it is 1.8 to 2.5. When the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the third high refractive index layer. The refractive index of the third high refractive index layer is adjusted by the refractive index of the material included in the third high refractive index layer and the density of the material included in the third high refractive index layer.
 第三高屈折率層に含まれる誘電性材料または酸化物半導体材料は、絶縁性の材料であってもよく、導電性の材料であってもよい。誘電性材料または酸化物半導体材料は、金属酸化物またはZnSであることが好ましい。金属酸化物の例には、前述の第一高屈折率層2または第二高屈折率層4に含まれる金属酸化物が含まれる。第三高屈折率層には、当該金属酸化物またはZnSが1種のみ含まれてもよく、2種以上が含まれてもよい。また、金属酸化物やZnSと共に、SiO等の誘電性材料が含まれてもよい。 The dielectric material or oxide semiconductor material included in the third high refractive index layer may be an insulating material or a conductive material. The dielectric material or oxide semiconductor material is preferably a metal oxide or ZnS. Examples of the metal oxide include the metal oxide contained in the first high refractive index layer 2 or the second high refractive index layer 4 described above. The third high refractive index layer may contain only one kind of the metal oxide or ZnS, and may contain two or more kinds. Further, a dielectric material such as SiO 2 may be included together with the metal oxide and ZnS.
 第三高屈折率層の厚みは特に制限されず、好ましくは1~40nmであり、さらに好ましくは5~20nmである。第三高屈折率層の厚みが上記範囲であると、透明導電体100の導通領域aの光学アドミッタンスが十分に調整される。第三高屈折率層の厚みは、エリプソメーターで測定される。 The thickness of the third high refractive index layer is not particularly limited, and is preferably 1 to 40 nm, and more preferably 5 to 20 nm. When the thickness of the third high refractive index layer is within the above range, the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted. The thickness of the third high refractive index layer is measured with an ellipsometer.
 第三高屈折率層の成膜方法は特に制限されず、第一高屈折率層2や第二高屈折率層4と同様の方法で成膜された層でありうる。 The film formation method of the third high refractive index layer is not particularly limited, and may be a layer formed by the same method as the first high refractive index layer 2 and the second high refractive index layer 4.
2.透明導電体の光学アドミッタンスについて
 透明導電体の導通領域aの表面(透明導電体において透明基板とは反対側の表面)の反射率Rは、光が入射する媒質の光学アドミッタンスYenvと、透明導電体の導通領域aの表面の等価アドミッタンスYとから定まる。ここで光が入射する媒質とは、透明導電体に入射する光が、その入射直前に通過する部材または環境であって;有機樹脂からなる部材、もしくは環境をいう。光が入射する媒質の光学アドミッタンスYenvと、透明導電体の表面の等価アドミッタンスYとの関係は以下の式で表される。
Figure JPOXMLDOC01-appb-M000001
 上記の式に基づけば、|Yenv-Y|が0に近い程、透明導電体(導通領域a)の表面の反射率Rが低くなる。
2. About the optical admittance of the transparent conductor The reflectance R of the surface of the conductive area a of the transparent conductor (the surface opposite to the transparent substrate in the transparent conductor) is determined by the optical admittance Y env of the medium on which light is incident and the transparent conductor determined from the equivalent admittance Y E of the surface of the conductive region a of the body. Here, the medium on which the light is incident refers to a member or environment through which light incident on the transparent conductor passes immediately before the incident; a member or environment made of an organic resin. The relationship between the optical admittance Y env of the medium on which light is incident and the equivalent admittance Y E of the surface of the transparent conductor is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000001
Based on the above formula, the closer the value | Y env −Y E | is to 0, the lower the reflectance R of the surface of the transparent conductor (conduction region a).
 前記媒質の光学アドミッタンスYenvは、電場強度と磁場強度との比(H/E)から求められ、通常、媒質の屈折率nenvと同一である。一方、透明導電体の導通領域aの表面の等価アドミッタンスYは、導通領域aを構成する層の光学アドミッタンスYから求められる。例えば透明導電体(導通領域a)が一層からなる場合には、透明導電体の等価アドミッタンスYは、当該層の光学アドミッタンスY(屈折率)と等しくなる。 The optical admittance Y env of the medium is obtained from the ratio (H / E) of the electric field strength and the magnetic field strength, and is usually the same as the refractive index n env of the medium. On the other hand, the equivalent admittance Y E of the surface of the conductive region a of the transparent conductor is determined from the optical admittance Y of the layers constituting the conductive region a. For example, when the transparent conductor (conductive region a) is composed of one is equivalent admittance Y E of the transparent conductor is equal to the of the layer optical admittance Y (refractive index).
 一方、透明導電体(導通領域a)が積層体からなる場合、1層目からx層目までの積層体の光学アドミッタンスY(E H)は、1層目から(x-1)層目までの積層体の光学アドミッタンスYx-1(Ex-1 Hx-1)と、特定のマトリクスとの積で表され;具体的には以下の式(1)または式(2)にて求められる。 On the other hand, when the transparent conductor (conducting region a) is a laminate, the optical admittance Y x (E x H x ) of the laminate from the first layer to the x-th layer is from the first layer to (x−1) It is represented by the product of the optical admittance Y x-1 (E x-1 H x-1 ) of the laminate up to the layer and a specific matrix; specifically, the following formula (1) or formula (2) Is required.
・x層目が誘電性材料または酸化物半導体材料からなる層である場合
Figure JPOXMLDOC01-appb-M000002
When the x-th layer is a layer made of a dielectric material or an oxide semiconductor material
Figure JPOXMLDOC01-appb-M000002
・x層目が理想金属層である場合
Figure JPOXMLDOC01-appb-M000003
・ When the xth layer is an ideal metal layer
Figure JPOXMLDOC01-appb-M000003
 そして、x層目が最表層であるときの、透明基板から最表層までの積層物の光学アドミッタンスY(E H)が、当該透明導電体の等価アドミッタンスYとなる。 When the x-th layer is the outermost layer, the optical admittance Y x (E x H x ) of the laminate from the transparent substrate to the outermost layer becomes the equivalent admittance Y E of the transparent conductor.
 図4Aに、後述する実施例1の透明導電体(透明基板/第一高屈折率層(ZnS-SiO)/第一硫化防止層(ITO)/透明金属膜(Ag)/第二高屈折率層(ZnS-SiO)を備える透明導電体)の導通領域aの波長570nmのアドミッタンス軌跡を示す。グラフの横軸は、当該領域の光学アドミッタンスYをx+iyで表したときの実部;つまり当該式におけるxであり、縦軸は光学アドミッタンスの虚部;つまり当該式におけるyである。なお、実施例1の透明導電体では、第一硫化防止層(ITO)は厚みが十分に薄いため、その光学アドミッタンスは無視できる。 FIG. 4A shows a transparent conductor (transparent substrate / first high refractive index layer (ZnS—SiO 2 ) / first antisulfuration layer (ITO) / transparent metal film (Ag) / second high refraction of Example 1 described later. shows the admittance locus of wavelength 570nm conductive region a rate layer (ZnS-SiO 2) a transparent conductor comprising a). The horizontal axis of the graph is the real part when the optical admittance Y of the region is represented by x + iy; that is, x in the equation, and the vertical axis is the imaginary part of the optical admittance; that is, y in the equation. In the transparent conductor of Example 1, the first sulfidation prevention layer (ITO) is sufficiently thin, so that its optical admittance can be ignored.
 図4Aにおいて、アドミッタンス軌跡の最終座標が、導通領域aの等価アドミッタンスYである。そして、等価アドミッタンスYの座標(x,y)と、光が入射する媒質のアドミッタンス座標Yenv(nenv,0)(図示せず)との距離が、透明導電体の導通領域aの表面の反射率Rに比例する。 In Figure 4A, the final coordinates of the admittance locus is equivalent admittance Y E conductive region a. The distance between the coordinate (x E , y E ) of the equivalent admittance Y E and the admittance coordinate Y env (n env , 0) (not shown) of the medium on which the light is incident is determined by the conduction region a of the transparent conductor. It is proportional to the surface reflectance R.
 ここで、本発明の透明導電体では、透明金属膜の高屈折率層側の表面の波長570nmにおける光学アドミッタンスをY1(=x+iy)とし、透明金属膜の中間層側の表面の波長570nmにおける光学アドミッタンスをY2(=x+iy)とした場合に、x及びxのうちいずれか一方、もしくは両方が1.6以上であることが好ましい。xまたはxのうちいずれか一方が、1.6以上であると透明導電体の光透過性が高まりやすい。その理由を以下に説明する。 Here, in the transparent conductor of the present invention, the optical admittance at a wavelength of 570 nm on the surface of the transparent metal film on the high refractive index layer side is Y1 (= x 1 + ii 1 ), and the wavelength on the surface of the transparent metal film on the intermediate layer side When the optical admittance at 570 nm is Y2 (= x 2 + iy 2 ), it is preferable that one or both of x 1 and x 2 is 1.6 or more. either one of x 1 and x 2 are, it tends enhanced light transmission of the transparent conductor If it is 1.6 or more. The reason will be described below.
 透明導電体を構成する各層どうしの界面のアドミッタンスYと、各層に存在する電場強度Eとの間には、下記関係式が成り立つ。
Figure JPOXMLDOC01-appb-M000004
 上記関係式に基づけば、透明金属膜表面の光学アドミッタンスY1及びY2の実数部(x及びx)が大きくなれば、透明金属膜の電場強度Eが小さくなり、電場損失(光の吸収)が抑制される。すなわち、透明導電体の光透過性が十分に高まる。
The following relational expression is established between the admittance Y at the interface between the layers constituting the transparent conductor and the electric field strength E existing in each layer.
Figure JPOXMLDOC01-appb-M000004
Based on the above relational expression, if the real part (x 1 and x 2 ) of the optical admittances Y1 and Y2 on the surface of the transparent metal film increases, the electric field strength E of the transparent metal film decreases and the electric field loss (light absorption). Is suppressed. That is, the light transmittance of the transparent conductor is sufficiently increased.
 したがって、上記x及びxのうち、いずれか一方、もしくは両方が1.6以上であることが好ましく、より好ましくは1.8以上であり、さらに好ましくは2.0以上である。x及びxのうち、いずれか一方が1.6以上であればよいが、特にxが1.6以上であることが好ましい。またx及びxは、7.0以下であることが好ましく、より好ましくは5.5以下である。xは、第一高屈折率層の屈折率や、第一高屈折率層の厚み等で調整される。xは、xの値や透明金属膜の屈折率、第一透明金属膜の厚み等によって調整される。例えば、第一高屈折率層の屈折率が高い場合や、第一高屈折率層の厚みがある程度厚い場合には、x及びxの値が大きくなりやすい。またxとxとの差の絶対値(|x-x|)は1.5以下であることが好ましく、より好ましくは1.0以下であり、さらに好ましくは0.8以下である。 Accordingly, either one or both of x 1 and x 2 are preferably 1.6 or more, more preferably 1.8 or more, and further preferably 2.0 or more. Any one of x 1 and x 2 may be 1.6 or more, but x 1 is particularly preferably 1.6 or more. The x 1 and x 2 is preferably 7.0 or less, more preferably 5.5 or less. x 1 is the refractive index of the first high refractive index layer and is adjusted in such a thickness of the first high refractive index layer. x 2 is the refractive index of the values and the transparent metal film x 1, is adjusted by the thickness or the like of the first transparent metal film. For example, if and refractive index of the first high refractive index layer is high, when the thickness of the first high refractive index layer is somewhat thicker, the value of x 1 and x 2 tends to increase. The absolute value (| x 1 −x 2 |) of the difference between x 1 and x 2 is preferably 1.5 or less, more preferably 1.0 or less, and even more preferably 0.8 or less. is there.
 また、特定波長(本発明では570nm)におけるアドミッタンス軌跡は、グラフの横軸を中心に線対称であることが好ましい。アドミッタンス軌跡が、グラフの横軸を中心に線対称であると、特定波長以外の波長(例えば450nmや700nm)における等価アドミッタンスYの座標が、一定になりやすく、いずれの波長においても、反射率Rが小さくなる。したがって、上記Y1の虚部の座標yと、Y2の虚部の座標yが、y×y≦0を満たすことが好ましい。さらに、|y+y|が0.8未満であることが好ましく、より好ましくは0.5以下、さらに好ましくは0.3以下である。 In addition, the admittance locus at a specific wavelength (570 nm in the present invention) is preferably line symmetric with respect to the horizontal axis of the graph. Admittance locus and is centered symmetrically on the horizontal axis of the graph, the coordinates of the equivalent admittance Y E is at a wavelength other than the specific wavelength (e.g. 450nm or 700 nm), likely to be constant, at any wavelength, reflectance R becomes smaller. Therefore, a coordinate y 1 of the imaginary part of the Y1, the coordinate y 2 of the imaginary part of the Y2, it is preferable to satisfy the y 1 × y 2 ≦ 0. Furthermore, | y 1 + y 2 | is preferably less than 0.8, more preferably 0.5 or less, and still more preferably 0.3 or less.
 さらに、前述のyが十分に大きいことが好ましい。前述のように、透明金属膜の光学アドミッタンスは虚部の値が大きく、アドミッタンス軌跡が縦軸(虚部)方向に大きく移動する。そのため、yが十分に大きければ、アドミッタンス座標の虚部の絶対値が適切な範囲に収まりやすく、アドミッタンス軌跡が線対称になりやすい。yは0.2以上であることが好ましく、より好ましくは0.3~1.5であり、さらに好ましくは0.3~1.0である。一方、前述のyは、-0.3~-2.0であることが好ましく、より好ましくは-0.6~-1.5である。 Furthermore, it is preferable that the aforementioned y 1 is sufficiently large. As described above, the optical admittance of the transparent metal film has a large imaginary part value, and the admittance locus greatly moves in the vertical axis (imaginary part) direction. Therefore, if y 1 is sufficiently large, the absolute value of the imaginary part of the admittance coordinates is likely to be within an appropriate range, and the admittance locus is likely to be line symmetric. y 1 is preferably 0.2 or more, more preferably 0.3 to 1.5, and still more preferably 0.3 to 1.0. On the other hand, y 2 described above is preferably −0.3 to −2.0, and more preferably −0.6 to −1.5.
 一方、導通領域aの波長570nmの光の等価アドミッタンス座標(x,y)と、透明導電体の第二高屈折率層側の表面と接する部材もしくは環境(媒質)の波長570nmの光の等価アドミッタンス座標(nenv,0)との距離((x-nenv+(y0.5は、0.5未満であることが好ましく、さらに好ましくは0.3以下である。上記距離が0.5未満であれば、導通領域aの表面の反射率Rが十分に小さくなり、導通領域aの光の透過性が高まる。 On the other hand, the equivalent admittance coordinates (x E , y E ) of light having a wavelength of 570 nm in the conduction region a and the light of wavelength 570 nm in the member or environment (medium) in contact with the surface on the second high refractive index layer side of the transparent conductor. Distance from equivalent admittance coordinates (n env , 0) ((x E −n env ) 2 + (y E ) 2 ) 0.5 is preferably less than 0.5, more preferably 0.3 or less It is. When the distance is less than 0.5, the reflectance Ra of the surface of the conduction region a is sufficiently small, and the light transmittance of the conduction region a is increased.
 さらに、透明金属膜3がパターニングされている場合には、導通領域aの波長570nmの光の等価アドミッタンス座標(x,y)と、絶縁領域bの波長570nmの光の等価アドミッタンス座標((x,y)で表す)との距離、((x-x+(y-y0.5が0.5未満であることが好ましく、より好ましくは0.3以下である。導通領域aの等価アドミッタンスYの座標と、絶縁領域bの等価アドミッタンスYの座標とが十分に近くなると、これらのパターンが視認され難くなる。またさらに、|(xenv-x+(yenv-y-(xenv-x+(yenv-y|が0.1以下であることが好ましい。当該値を満たすと、導通領域a及び絶縁領域bがいずれも視認され難くなる。 Further, when the transparent metal film 3 is patterned, an equivalent admittance coordinate (x E , y E ) of light with a wavelength of 570 nm in the conduction region a and an equivalent admittance coordinate (( x ( b , y b )), ((x E −x b ) 2 + (y E −y b ) 2 ) 0.5 is preferably less than 0.5, more preferably 0 .3 or less. The coordinates of the equivalent admittance Y E conductive region a, the coordinate of the equivalent admittance Y b of the insulating region b is sufficiently close, so these patterns are hardly visually recognized. Furthermore, it is preferable that | (x env −x b ) 2 + (y env −y b ) 2 − (x env −x E ) 2 + (y env −y E ) 2 | . If the said value is satisfy | filled, both the conduction | electrical_connection area | region a and the insulation area | region b will become difficult to visually recognize.
3.透明導電体の物性について
 本発明の透明導電体の波長450~800nmの光の平均透過率は、導通領域a及び絶縁領域bのいずれにおいても83%以上であることが好ましく、より好ましくは85%以上であり、さらに好ましくは88%以上である。上記波長範囲における平均透過率が83%以上であると、透明導電体を、可視光に対して高い透明性が要求される用途に適用することができる。
3. Regarding the physical properties of the transparent conductor The average transmittance of light having a wavelength of 450 to 800 nm of the transparent conductor of the present invention is preferably 83% or more, more preferably 85% in both the conduction region a and the insulation region b. Or more, more preferably 88% or more. When the average transmittance in the above wavelength range is 83% or more, the transparent conductor can be applied to applications requiring high transparency to visible light.
 一方、透明導電体の波長400~1000nmの光の平均透過率は、導通領域a及び絶縁領域bのいずれにおいても80%以上であることが好ましく、より好ましくは83%以上、さらに好ましくは85%以上である。波長400~1000nmの光の平均透過率が80%以上であると、広い波長範囲の光に対して透明性が要求される用途、例えば太陽電池用の透明導電膜等にも透明導電体を適用することができる。 On the other hand, the average transmittance of light having a wavelength of 400 to 1000 nm of the transparent conductor is preferably 80% or more in both the conduction region a and the insulation region b, more preferably 83% or more, and still more preferably 85%. That's it. When the average transmittance of light having a wavelength of 400 to 1000 nm is 80% or more, the transparent conductor is also applied to applications requiring transparency with respect to light in a wide wavelength range, such as a transparent conductive film for solar cells. can do.
 一方、透明導電体の波長400nm~800nmの光の平均吸収率は、導通領域a及び絶縁領域bのいずれにおいても10%以下であることが好ましく、より好ましくは8%以下であり、さらに好ましくは7%以下である。また、透明導電体の波長450nm~800nmの光の吸収率の最大値は、導通領域a及び絶縁領域bのいずれにおいても15%以下であることが好ましく、より好ましくは10%以下であり、さらに好ましくは9%以下である。一方、透明導電体の波長500nm~700nmの光の平均反射率は、導通領域a及び絶縁領域bのいずれにおいても、20%以下であることが好ましく、より好ましくは15%以下であり、さらに好ましくは10%以下である。透明導電体の平均吸収率及び平均反射率が低いほど、前述の平均透過率が高まる。 On the other hand, the average absorptance of light having a wavelength of 400 nm to 800 nm of the transparent conductor is preferably 10% or less, more preferably 8% or less, and still more preferably in both the conduction region a and the insulation region b. 7% or less. Further, the maximum value of the light absorptance of the transparent conductor having a wavelength of 450 nm to 800 nm is preferably 15% or less, more preferably 10% or less, in any of the conduction region a and the insulation region b. Preferably it is 9% or less. On the other hand, the average reflectance of light with a wavelength of 500 nm to 700 nm of the transparent conductor is preferably 20% or less, more preferably 15% or less, and even more preferably in both the conduction region a and the insulation region b. Is 10% or less. The lower the average absorptance and average reflectance of the transparent conductor, the higher the aforementioned average transmittance.
 上記平均透過率、平均反射率、及び平均反射率は、透明導電体の使用環境下での平均透過率、平均反射率、及び平均反射率であることが好ましい。具体的には、透明導電体が有機樹脂と貼り合わせて使用される場合には、透明導電体上に有機樹脂からなる層を配置して平均透過率及び平均反射率測定することが好ましい。一方、透明導電体が大気中で使用される場合には、大気中での平均透過率及び平均反射率を測定することが好ましい。透過率及び反射率は、透明導電体の表面の法線に対して5°傾けた角度から測定光を入射させて分光光度計で測定する。吸収率は、100-(透過率+反射率)の計算式より算出される。 The average transmittance, average reflectance, and average reflectance are preferably the average transmittance, average reflectance, and average reflectance under the usage environment of the transparent conductor. Specifically, when the transparent conductor is used by being bonded to an organic resin, it is preferable to measure the average transmittance and the average reflectance by disposing a layer made of the organic resin on the transparent conductor. On the other hand, when the transparent conductor is used in the air, it is preferable to measure the average transmittance and the average reflectance in the air. The transmittance and the reflectance are measured with a spectrophotometer by allowing measurement light to enter from an angle inclined by 5 ° with respect to the normal of the surface of the transparent conductor. The absorptance is calculated from a calculation formula of 100− (transmittance + reflectance).
 また透明導電体100に導通領域a及び絶縁領域bが含まれる場合、導通領域aの反射率及び絶縁領域bの反射率がそれぞれ近似することが好ましい。具体的には、導通領域aの視感反射率と、絶縁領域bの視感反射率との差ΔRが5%以下であることが好ましく、3%以下であることがより好ましく、さらに好ましくは1%以下であり、特に好ましくは0.3%以下である。一方、導通領域a及び絶縁領域bの視感反射率は、それぞれ5%以下であることが好ましく、より好ましくは3%以下であり、さらに好ましくは1%以下である。視感反射率は、分光光度計(U4100;日立ハイテクノロジーズ社製)で測定されるY値である。 In addition, when the conductive region a and the insulating region b are included in the transparent conductor 100, it is preferable that the reflectance of the conductive region a and the reflectance of the insulating region b are approximated. Specifically, the difference ΔR between the luminous reflectance of the conduction region a and the luminous reflectance of the insulating region b is preferably 5% or less, more preferably 3% or less, and still more preferably It is 1% or less, particularly preferably 0.3% or less. On the other hand, the luminous reflectances of the conductive region a and the insulating region b are each preferably 5% or less, more preferably 3% or less, and further preferably 1% or less. The luminous reflectance is a Y value measured with a spectrophotometer (U4100; manufactured by Hitachi High-Technologies Corporation).
 また透明導電体100に導通領域a及び絶縁領域bが含まれる場合、いずれの領域においても、L*a*b*表色系におけるa*値及びb*値は±30以内であることが好ましく、より好ましくは±5以内であり、さらに好ましくは±3.0以内であり、特に好ましくは±2.0以内である。L*a*b*表色系におけるa*値及びb*値が±30以内であれば、導通領域a及び絶縁領域bのいずれの領域も無色透明に観察される。L*a*b*表色系におけるa*値及びb*値は、分光光度計で測定される。 In addition, when the transparent conductor 100 includes the conduction region a and the insulation region b, the a * value and the b * value in the L * a * b * color system are preferably within ± 30 in any region. More preferably, it is within ± 5, more preferably within ± 3.0, and particularly preferably within ± 2.0. If the a * value and the b * value in the L * a * b * color system are within ± 30, both the conduction region a and the insulation region b are observed as colorless and transparent. The a * value and b * value in the L * a * b * color system are measured with a spectrophotometer.
 透明導電体の導通領域aの表面電気抵抗は、50Ω/□以下であることが好ましく、さらに好ましくは30Ω/□以下である。導通領域の表面電気抵抗値が50Ω/□以下である透明導電体は、静電容量方式のタッチパネル用の透明導電パネル等に適用できる。導通領域aの表面電気抵抗値は、透明金属膜の厚み等によって調整される。導通領域aの表面電気抵抗値は、例えばJIS K7194、ASTM D257等に準拠して測定される。また、市販の表面電気抵抗率計によっても測定される。 The surface electric resistance of the conductive region a of the transparent conductor is preferably 50Ω / □ or less, more preferably 30Ω / □ or less. A transparent conductor having a surface electric resistance value of 50 Ω / □ or less in the conduction region can be applied to a transparent conductive panel for a capacitive touch panel. The surface electric resistance value of the conduction region a is adjusted by the thickness of the transparent metal film. The surface electrical resistance value of the conduction region a is measured in accordance with, for example, JIS K7194, ASTM D257, or the like. It is also measured by a commercially available surface electrical resistivity meter.
4.透明導電体の用途
 前述の透明導電体は、液晶、プラズマ、有機エレクトロルミネッセンス、フィールドエミッションなど各種方式のディスプレイをはじめ、タッチパネルや携帯電話、電子ペーパー、各種太陽電池、各種エレクトロルミネッセンス調光素子など様々なオプトエレクトロニクスデバイスの基板等に好ましく用いることができる。
4). Applications of transparent conductors The above-mentioned transparent conductors include various types of displays such as liquid crystal, plasma, organic electroluminescence, field emission, touch panels, mobile phones, electronic paper, various solar cells, various electroluminescent dimming elements, etc. It can be preferably used for a substrate of an optoelectronic device.
 このとき、透明導電体の表面(例えば、透明基板と反対側の表面)は、接着層等を介して、他の部材と貼り合わせられてもよい。この場合には、前述のように、透明導電体の表面の等価アドミッタンス座標と、接着層のアドミッタンス座標と、がそれぞれ近似することが好ましい。これにより、透明導電体と接着層との界面での反射が抑制される。 At this time, the surface of the transparent conductor (for example, the surface opposite to the transparent substrate) may be bonded to another member via an adhesive layer or the like. In this case, as described above, it is preferable that the equivalent admittance coordinates of the surface of the transparent conductor and the admittance coordinates of the adhesive layer approximate each other. Thereby, reflection at the interface between the transparent conductor and the adhesive layer is suppressed.
 一方、透明導電体の表面が空気と接するような構成で使用される場合には、透明導電体の表面のアドミッタンス座標と、空気のアドミッタンス座標と、がそれぞれ近似することが好ましい。これにより、透明導電体と空気との界面での光の反射が抑制される。 On the other hand, when used in a configuration in which the surface of the transparent conductor is in contact with air, it is preferable that the admittance coordinates of the surface of the transparent conductor and the admittance coordinates of the air approximate each other. Thereby, reflection of light at the interface between the transparent conductor and air is suppressed.
 以下、本発明を実施例により更に詳細に説明する。しかしながら、本発明の範囲はこれによって何ら制限を受けない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited by this.
 [実施例1]
 シクロオレフィンポリマーからなるフィルム上に、下記の方法で、第一高屈折率層(ZnS-SiO)/第一硫化防止層(ITO)/透明金属膜(Ag)/第二高屈折率層(ITO)を順に下記の方法で積層した。その後、当該積層体を下記の方法でパターニングした。各層の厚みは、J.A.Woollam Co.Inc.製のVB-250型VASEエリプソメーターで測定した。ただし、下地層の平均厚みはスパッタ装置のメーカー公称値の成膜速度から算出した。得られた透明導電体の波長570nmにおけるアドミッタンス軌跡を図4Aに示し、当該透明導電体の導通領域の分光特性を図4Bに示す。
[Example 1]
On a film made of cycloolefin polymer, the following method is used to form a first high refractive index layer (ZnS-SiO 2 ) / first antisulfurization layer (ITO) / transparent metal film (Ag) / second high refractive index layer ( ITO) was sequentially laminated by the following method. Thereafter, the laminate was patterned by the following method. The thickness of each layer is described in J. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer. However, the average thickness of the underlayer was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus. FIG. 4A shows the admittance locus of the obtained transparent conductor at a wavelength of 570 nm, and FIG. 4B shows the spectral characteristics of the conduction region of the transparent conductor.
 (第一高屈折率層(ZnS-SiO))
 前記透明基板上に、大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート3.0Å/sでZnS-SiOをRFスパッタした。ターゲット-基板間距離は90mmであった。
 ZnSとSiOとの比率(モル比)は、80:20であり、第一高屈折率層の屈折率は2.14であった。
(First high refractive index layer (ZnS—SiO 2 ))
On the transparent substrate, using a magnetron sputtering apparatus of Osaka Vacuum Co., ZnS—SiO 2 at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target side power 150 W, film formation rate 3.0 Å / s. Was RF sputtered. The target-substrate distance was 90 mm.
The ratio (molar ratio) between ZnS and SiO 2 was 80:20, and the refractive index of the first high refractive index layer was 2.14.
 (第一硫化防止層(ITO))
 前記第一高屈折率層上に、アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力150W、成膜レート2.0Å/sでITOをDCスパッタした。ターゲット-基板間距離は86mmであった。
(First anti-sulfurization layer (ITO))
On the first high refractive index layer, L-430S-FHS manufactured by Anelva Co., Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target side power 150 W, film formation rate 2.0 レ ー ト / s The ITO was DC sputtered. The target-substrate distance was 86 mm.
 (透明金属膜(Ag))
 FTSコーポレーション社の対向スパッタ機を用い、Ar 20sccm、スパッタ圧0.5Pa、室温下、ターゲット側電力150W、成膜レート14Å/sでAgを対向スパッタした。ターゲット-基板間距離は90mmであった。
(Transparent metal film (Ag))
Using a counter sputtering machine manufactured by FTS Corporation, Ag was counter sputtered at an Ar of 20 sccm, a sputtering pressure of 0.5 Pa, a room temperature, a target power of 150 W, and a film formation rate of 14 K / s. The target-substrate distance was 90 mm.
 (第二高屈折率層(ITO))
 前記透明金属膜上に、アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力150W、成膜レート2.0Å/sでITOをDCスパッタした。ターゲット-基板間距離は86mmであった。ITOの波長570nmの光の屈折率は、2.12であり、第二高屈折率層の波長570nmの光の屈折率も2.12とした。
(Second high refractive index layer (ITO))
On the transparent metal film, L-430S-FHS manufactured by Anerva Co., Ltd. was used. Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target side power 150 W, film formation rate 2.0 Å / s. DC sputtered. The target-substrate distance was 86 mm. The refractive index of light with a wavelength of 570 nm of ITO was 2.12, and the refractive index of light with a wavelength of 570 nm of the second high refractive index layer was also 2.12.
 (積層体のパターニング)
 得られた積層体上にレジスト層をパターン状に成膜し、第一高屈折率層、第一硫化防止層、透明金属膜、及び第二高屈折率層を図3に示されるパターン(複数の導通領域aと、これを区切るライン状の絶縁領域bとを含むパターン)状にITOエッチング液(林純薬製)でパターニングした。絶縁領域には、透明基板のみが含まれるものとした。また、ライン状の絶縁領域bの幅は16μmとした。
(Layer patterning)
A resist layer is formed into a pattern on the obtained laminate, and the first high-refractive index layer, the first antisulfurization layer, the transparent metal film, and the second high-refractive index layer are formed as shown in FIG. The pattern was formed with an ITO etching solution (manufactured by Hayashi Junyaku Co., Ltd.) in a shape including a conductive region a and a line-shaped insulating region b separating the conductive region a. Only the transparent substrate was included in the insulating region. The width of the line-shaped insulating region b was 16 μm.
 [実施例2]
 コニカミノルタ製TACフィルム上に、第一高屈折率層(ZnS-SiO)/第一硫化防止層(IGZO)/透明金属膜(Ag-Bi)/第二高屈折率層(IGZO)を順に積層した。
 第一高屈折率層(ZnS-SiO)は実施例1と同様に成膜した。
 第一硫化防止層及び第二高屈折率層(IGZO)は、下記の方法で成膜した。
 透明金属膜(Ag-Bi)は、成膜時のターゲットをAg合金(コベルコ社製)とした以外は、実施例1と同様に成膜した。
 そして、得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の導通領域の分光特性を図5に示す。
[Example 2]
On the Konica Minolta TAC film, the first high refractive index layer (ZnS-SiO 2 ) / first antisulfuration layer (IGZO) / transparent metal film (Ag-Bi) / second high refractive index layer (IGZO) in this order. Laminated.
The first high refractive index layer (ZnS—SiO 2 ) was formed in the same manner as in Example 1.
The first sulfurization prevention layer and the second high refractive index layer (IGZO) were formed by the following method.
The transparent metal film (Ag—Bi) was formed in the same manner as in Example 1 except that the target at the time of film formation was an Ag alloy (manufactured by Kobelco).
The obtained laminate was patterned in the same manner as in Example 1. FIG. 5 shows the spectral characteristics of the conductive region of the obtained transparent conductor.
 (第一硫化防止層及び第二高屈折率層(IGZO))
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート2.2Å/sでIGZOをRFスパッタした。ターゲット-基板間距離は86mmであった。IGZOの波長570nmの光の屈折率は、2.09であり、第一硫化防止層や第二高屈折率層の波長570nmの光の屈折率も2.09とした。
(First antisulfurization layer and second high refractive index layer (IGZO))
Using Anelva L-430S-FHS, IGZO was RF sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 2.2 L / s. The target-substrate distance was 86 mm. The refractive index of light with a wavelength of 570 nm of IGZO was 2.09, and the refractive index of light with a wavelength of 570 nm of the first antisulfurization layer and the second high refractive index layer was also 2.09.
 [実施例3]
 東洋紡製PET(コスモシャインA4300 厚み50μm)からなる透明基板上に、第一高屈折率層(ZnS-SiO)/第一硫化防止層(Ga)/透明金属膜(Ag-Nd-Bi-Au)/第二高屈折率層(Ga)を順に積層した。
 第一高屈折率層(ZnS-SiO)は実施例1と同様に成膜した。
 第一硫化防止層及び第二高屈折率層(Ga)は、下記の方法で成膜した。
 透明金属膜(Ag-Nd-Bi-Au)は、成膜時のターゲットをAg合金(コベルコ社製)とした以外は、実施例1と同様に成膜した。
 そして得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の導通領域の分光特性を図6に示す。
[Example 3]
On a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 μm), a first high refractive index layer (ZnS—SiO 2 ) / first antisulfuration layer (Ga 2 O 3 ) / transparent metal film (Ag—Nd—) Bi—Au) / second high refractive index layer (Ga 2 O 3 ) was laminated in this order.
The first high refractive index layer (ZnS—SiO 2 ) was formed in the same manner as in Example 1.
The first sulfurization prevention layer and the second high refractive index layer (Ga 2 O 3 ) were formed by the following method.
The transparent metal film (Ag—Nd—Bi—Au) was formed in the same manner as in Example 1 except that the target during film formation was an Ag alloy (manufactured by Kobelco).
The obtained laminate was patterned in the same manner as in Example 1. The spectral characteristics of the conduction region of the obtained transparent conductor are shown in FIG.
 (第一硫化防止層及び第二高屈折率層(Ga))
 大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート1.1Å/sでGaをRFスパッタした。ターゲット-基板間距離は90mmであった。Gaの波長570nmの光の屈折率は、1.95であり、第一硫化防止層や第二高屈折率層の波長570nmの光の屈折率も1.95とした。
(First sulfurization prevention layer and second high refractive index layer (Ga 2 O 3 ))
Using a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., Ga 2 O 3 was RF-sputtered at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 1.1 Å / s. The target-substrate distance was 90 mm. The refractive index of light with a wavelength of 570 nm of Ga 2 O 3 was 1.95, and the refractive index of light with a wavelength of 570 nm of the first antisulfurization layer and the second high refractive index layer was also 1.95.
 [実施例4]
 ポリカーボネートからなる透明基板上に、第一高屈折率層(ZnS)/第一硫化防止層(ZnO)/透明金属膜(APC-TR合金)/第二高屈折率層(ITO)を順に積層した。
 第一高屈折率層(ZnS)は下記の方法で成膜した。
 第一硫化防止層(ZnO)は下記の方法で成膜した。
 透明金属膜(APC-TR合金)は、成膜時のターゲットをAg合金(フルヤ金属社製)とした以外は、実施例1と同様の方法で成膜した。
 第二高屈折率層(ITO)は実施例1の第二高屈折率層と同様に成膜した。
 そして得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の導通領域の分光特性を図7に示す。
[Example 4]
A first high refractive index layer (ZnS) / first antisulfurization layer (ZnO) / transparent metal film (APC-TR alloy) / second high refractive index layer (ITO) were laminated in this order on a transparent substrate made of polycarbonate. .
The first high refractive index layer (ZnS) was formed by the following method.
The first sulfurization prevention layer (ZnO) was formed by the following method.
The transparent metal film (APC-TR alloy) was formed by the same method as in Example 1 except that the target at the time of film formation was an Ag alloy (manufactured by Furuya Metal Co., Ltd.).
The second high refractive index layer (ITO) was formed in the same manner as the second high refractive index layer of Example 1.
The obtained laminate was patterned in the same manner as in Example 1. FIG. 7 shows the spectral characteristics of the conductive region of the obtained transparent conductor.
 (第一高屈折率層(ZnS))
 大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O2 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート3.8Å/sでZnSをRFスパッタした。ターゲット-基板間距離は90mmであった。ZnSの波長570nmの光の屈折率は、2.37であり、第一高屈折率層の波長570nmの光の屈折率も2.37とした。
(First high refractive index layer (ZnS))
Using a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., ZnS was RF-sputtered at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 3.8 Å / s. The target-substrate distance was 90 mm. The refractive index of light with a wavelength of 570 nm of ZnS was 2.37, and the refractive index of light with a wavelength of 570 nm of the first high refractive index layer was also 2.37.
 (第一硫化防止層(ZnO))
 大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート1.1Å/sでZnOをRFスパッタした。ターゲット-基板間距離は90mmであった。
(First antisulfurization layer (ZnO))
Using a magnetron sputtering apparatus of Osaka Vacuum Co., ZnO was RF-sputtered at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 1.1 liters / s. The target-substrate distance was 90 mm.
[実施例5]
 コニカミノルタ製TACフィルム(透明基板)上に、第一高屈折率層(ZnS)/第一硫化防止層(Nb)/下地層(Pd)/透明金属膜(Ag)/第二高屈折率層(Nb)を順に積層した。
 第一高屈折率層(ZnS)は実施例4と同様に成膜した。
 透明金属膜(Ag)は実施例1と同様に成膜した。
 第一硫化防止層及び第二高屈折率層(Nb)は、下記の方法で成膜した。
 下地層(Pd)は、下記の方法で成膜した。
 そして得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の導通領域の分光特性を図8に示す。
[Example 5]
On the TAC film (transparent substrate) manufactured by Konica Minolta, the first high refractive index layer (ZnS) / first antisulfuration layer (Nb 2 O 5 ) / underlayer (Pd) / transparent metal film (Ag) / second high A refractive index layer (Nb 2 O 5 ) was laminated in order.
The first high refractive index layer (ZnS) was formed in the same manner as in Example 4.
The transparent metal film (Ag) was formed in the same manner as in Example 1.
The first sulfurization prevention layer and the second high refractive index layer (Nb 2 O 5 ) were formed by the following method.
The underlayer (Pd) was formed by the following method.
The obtained laminate was patterned in the same manner as in Example 1. The spectral characteristics of the conduction region of the obtained transparent conductor are shown in FIG.
 (第一硫化防止層及び第二高屈折率層(Nb))
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 1sccm、スパッタ圧0.5Pa、室温下、ターゲット側電力150W、成膜レート1.2Å/sでNbをDCスパッタした。ターゲット-基板間距離は86mmであった。Nbの波長570nmの光の屈折率は、2.31であり、第一硫化防止層及び第二高屈折率層の波長570nmの光の屈折率も2.31とした。
(First sulfurization prevention layer and second high refractive index layer (Nb 2 O 5 ))
Nb 2 O 5 was DC sputtered at 20 sccm Ar, 1 sccm O 2 , sputtering pressure 0.5 Pa, room temperature, target side power 150 W, deposition rate 1.2 Å / s using L-430S-FHS manufactured by Anerva. The target-substrate distance was 86 mm. The refractive index of light with a wavelength of 570 nm of Nb 2 O 5 was 2.31, and the refractive indexes of light with a wavelength of 570 nm of the first antisulfurization layer and the second high refractive index layer were also 2.31.
 (下地層(Pd))
 真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、パラジウムを0.2秒間成膜し、平均厚み0.1nmの下地層を形成した。
(Underlayer (Pd))
Using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc., palladium was deposited for 0.2 seconds to form an underlayer with an average thickness of 0.1 nm.
 [実施例6]
 シクロオレフィンポリマーからなる透明基板上に、第一高屈折率層(ZnS)/第一硫化防止層(SnO)/透明金属膜(Ag)/第二高屈折率層(SnO)を順に積層した。
 第一高屈折率層(ZnS)は、実施例4の第一高屈折率層と同様に成膜した。
 透明金属膜(Ag)は、実施例1と同様に成膜した。
 第一硫化防止層及び第二高屈折率層(SnO)は、下記の方法で成膜した。
 そして得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の導通領域の分光特性を図9に示す。
[Example 6]
A first high refractive index layer (ZnS) / first antisulfurization layer (SnO 2 ) / transparent metal film (Ag) / second high refractive index layer (SnO 2 ) are laminated in this order on a transparent substrate made of a cycloolefin polymer. did.
The first high refractive index layer (ZnS) was formed in the same manner as the first high refractive index layer of Example 4.
The transparent metal film (Ag) was formed in the same manner as in Example 1.
The first sulfurization prevention layer and the second high refractive index layer (SnO 2 ) were formed by the following method.
The obtained laminate was patterned in the same manner as in Example 1. The spectral characteristics of the conduction region of the obtained transparent conductor are shown in FIG.
 (第一硫化防止層及び第二高屈折率層(SnO))
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート2.2Å/sでSnOをRFスパッタした。ターゲット-基板間距離は86mmであった。SnOの波長570nmの光の屈折率は、2.0であり、第一硫化防止層及び第二高屈折率層の波長570nmの光の屈折率も2.0とした。
(First antisulfurization layer and second high refractive index layer (SnO 2 ))
Using Anelva L-430S-FHS, SnO 2 was RF-sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 2.2 L / s. The target-substrate distance was 86 mm. The refractive index of light with a wavelength of 570 nm of SnO 2 was 2.0, and the refractive index of light with a wavelength of 570 nm of the first antisulfurization layer and the second high refractive index layer was also 2.0.
 [実施例7]
 東洋紡製PET(コスモシャインA4300 厚み50μm)からなる透明基板上に、第一高屈折率層(ZnS)/第一硫化防止層(ZnO)/透明金属膜(Ag)/第二高屈折率層(TiO)を順に積層した。
 第一高屈折率層(ZnS)及び第一硫化防止層(ZnO)は、実施例4の第一高屈折率層及び第一硫化防止層とそれぞれ同様に成膜した。
 透明金属膜(Ag)は、実施例1と同様に成膜した。
 第二高屈折率層(TiO)は、下記の方法で成膜した。
 そして得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の導通領域の分光特性を図10に示す。
[Example 7]
On a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 μm), a first high refractive index layer (ZnS) / first antisulfuration layer (ZnO) / transparent metal film (Ag) / second high refractive index layer ( TiO 2 ) was laminated in order.
The first high refractive index layer (ZnS) and the first antisulfurization layer (ZnO) were formed in the same manner as the first high refractive index layer and the first antisulfurization layer of Example 4, respectively.
The transparent metal film (Ag) was formed in the same manner as in Example 1.
The second high refractive index layer (TiO 2 ) was formed by the following method.
The obtained laminate was patterned in the same manner as in Example 1. The spectral characteristics of the conduction region of the obtained transparent conductor are shown in FIG.
 (第二高屈折率層(TiO))
 Optorun社のGener 1300により、320mA、成膜レート3Å/sでTiOを、イオンアシストしながら電子ビーム(EB)蒸着した。イオンビームは電流500mA、電圧500V、加速電圧400Vで照射した。イオンビーム装置内には、Oガス:50sccm、及びArガス:8sccmを導入した。TiOの波長570nmの光の屈折率は2.35であり、第二高屈折率層の波長570nmの光の屈折率も2.35とした。
(Second high refractive index layer (TiO 2 ))
The Optorun's Gener 1300, 320 mA, the TiO 2 at a deposition rate of 3 Å / s, and electron beam (EB) vapor deposition with ion assist. The ion beam was irradiated at a current of 500 mA, a voltage of 500 V, and an acceleration voltage of 400 V. In the ion beam apparatus, O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced. The refractive index of light with a wavelength of 570 nm of TiO 2 was 2.35, and the refractive index of light with a wavelength of 570 nm of the second high refractive index layer was also 2.35.
 [実施例8]
 コニカミノルタ製TACフィルム(透明基板)上に、第一高屈折率層(ZnS-SiO)/第一硫化防止層(ITO)/透明金属膜(Ag-Nd-Bi-Au合金)/第二硫化防止層(ITO)/第二高屈折率層(ZnS-SiO)を順に積層した。
 第一高屈折率層及び第二高屈折率層(ZnS-SiO)は実施例1の第一高屈折率層と同様に成膜した。
 第一硫化防止層及び第二硫化防止層(ITO)は、実施例1の第一硫化防止層と同様に成膜した。
 透明金属膜(Ag-Nd-Bi-Au合金)は、実施例3と同様に成膜した。
 そして得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の導通領域の分光特性を図11に示す。
[Example 8]
On Konica Minolta TAC film (transparent substrate), first high refractive index layer (ZnS—SiO 2 ) / first antisulfuration layer (ITO) / transparent metal film (Ag—Nd—Bi—Au alloy) / second An antisulfurization layer (ITO) / second high refractive index layer (ZnS—SiO 2 ) were laminated in this order.
The first high refractive index layer and the second high refractive index layer (ZnS—SiO 2 ) were formed in the same manner as the first high refractive index layer of Example 1.
The first sulfidation prevention layer and the second sulfidation prevention layer (ITO) were formed in the same manner as the first sulfidation prevention layer of Example 1.
A transparent metal film (Ag—Nd—Bi—Au alloy) was formed in the same manner as in Example 3.
The obtained laminate was patterned in the same manner as in Example 1. FIG. 11 shows the spectral characteristics of the conductive region of the obtained transparent conductor.
 [実施例9]
 コニカミノルタ製TACフィルム(透明基板)上に、第一高屈折率層(ZnS-SiO)/第一硫化防止層(ZnO)/下地層(Pd)/透明金属膜(Ag-Nd-Bi-Au合金)/第二硫化防止層(ZnO)/第二高屈折率層(ZnS-SiO)を順に積層した。
 第一高屈折率層及び第二高屈折率層(ZnS-SiO)は実施例1の第一高屈折率層と同様に成膜した。
 第一硫化防止層及び第二硫化防止層(ZnO)は、実施例4の第一硫化防止層と同様に成膜した。
 下地層(Pd)は、実施例5の下地層と同様に成膜した。
 透明金属膜(Ag-Nd-Bi-Au合金)は、実施例3と同様に成膜した。
 そして得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の導通領域の分光特性を図12に示す。
[Example 9]
On a Konica Minolta TAC film (transparent substrate), a first high refractive index layer (ZnS—SiO 2 ) / first antisulfuration layer (ZnO) / underlayer (Pd) / transparent metal film (Ag—Nd—Bi—) Au alloy) / second anti-sulfurization layer (ZnO) / second high refractive index layer (ZnS—SiO 2 ) were laminated in this order.
The first high refractive index layer and the second high refractive index layer (ZnS—SiO 2 ) were formed in the same manner as the first high refractive index layer of Example 1.
The first sulfidation prevention layer and the second sulfidation prevention layer (ZnO) were formed in the same manner as the first sulfidation prevention layer of Example 4.
The underlayer (Pd) was formed in the same manner as the underlayer of Example 5.
A transparent metal film (Ag—Nd—Bi—Au alloy) was formed in the same manner as in Example 3.
The obtained laminate was patterned in the same manner as in Example 1. The spectral characteristics of the conduction region of the obtained transparent conductor are shown in FIG.
 [実施例10]
 東洋紡製PET(コスモシャインA4300 厚み50μm)からなる透明基板上に、第一高屈折率層(ZnS-SiO)/第一硫化防止層(IGZO)/透明金属膜(Ag)/第二硫化防止層(IGZO)/第二高屈折率層(ZnS-SiO)を順に積層した。
 第一高屈折率層及び第二高屈折率層(ZnS-SiO)、並びに透明金属膜(Ag)は実施例1の第一高屈折率層及び透明金属膜とそれぞれ同様に成膜した。
 第一硫化防止層及び第二硫化防止層(IGZO)は、実施例2の第一硫化防止層と同様に成膜した。
 そして得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の導通領域の分光特性を図13に示す。
[Example 10]
On a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 μm), first high refractive index layer (ZnS—SiO 2 ) / first antisulfuration layer (IGZO) / transparent metal film (Ag) / second antisulfurization Layer (IGZO) / second high refractive index layer (ZnS—SiO 2 ) were laminated in this order.
The first high refractive index layer, the second high refractive index layer (ZnS—SiO 2 ), and the transparent metal film (Ag) were formed in the same manner as the first high refractive index layer and the transparent metal film in Example 1, respectively.
The first sulfidation prevention layer and the second sulfidation prevention layer (IGZO) were formed in the same manner as the first sulfidation prevention layer of Example 2.
The obtained laminate was patterned in the same manner as in Example 1. The spectral characteristics of the conduction region of the obtained transparent conductor are shown in FIG.
 [実施例11]
 ガラスからなる透明基板上に、第一高屈折率層(ZnS)/第一硫化防止層(ZnO)/透明金属膜(Ag)/第二硫化防止層(IZO)/第二高屈折率層(ZnS)を順に積層した。
 第一高屈折率層及び第二高屈折率層(ZnS)は、実施例4の第一高屈折率層と同様に成膜した。
 第一硫化防止層(ZnO)は、実施例4の第一硫化防止層と同様に成膜した。
 透明金属膜(Ag)は、実施例1と同様に成膜した。
 第二硫化防止層(IZO)は、下記の方法で成膜した。
 そして得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の導通領域の分光特性を図14に示す。
[Example 11]
On a transparent substrate made of glass, a first high refractive index layer (ZnS) / first antisulfurization layer (ZnO) / transparent metal film (Ag) / second antisulfuration layer (IZO) / second high refractive index layer ( ZnS) were stacked in order.
The first high refractive index layer and the second high refractive index layer (ZnS) were formed in the same manner as the first high refractive index layer of Example 4.
The first antisulfurization layer (ZnO) was formed in the same manner as the first antisulfurization layer of Example 4.
The transparent metal film (Ag) was formed in the same manner as in Example 1.
The second antisulfurization layer (IZO) was formed by the following method.
The obtained laminate was patterned in the same manner as in Example 1. FIG. 14 shows the spectral characteristics of the conductive region of the obtained transparent conductor.
 (第二硫化防止層(IZO))
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート2.2Å/sでIZOをRFスパッタした。ターゲット-基板間距離は86mmであった。
(Second anti-sulfurization layer (IZO))
Using an Anelva L-430S-FHS, IZO was RF sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 2.2 L / s. The target-substrate distance was 86 mm.
 [実施例12]
 東洋紡製PET(コスモシャインA4300 厚み50μm)からなる透明基板上に、第一高屈折率層(ZnS)/第一硫化防止層(ZnO)/透明金属膜(Ag)/第二硫化防止層(ZnO)/第二高屈折率層(ZnS)/低屈折率層(SiO)/第三高屈折率層(ZnS)を順に積層した。
 第一高屈折率層、第二高屈折率層、及び第三高屈折率層(ZnS)、並びに第一硫化防止層及び第二硫化防止層(ZnO)は、実施例4の第一高屈折率層及び第一硫化防止層とそれぞれ同様に成膜した。
 透明金属膜(Ag)は、実施例1と同様に成膜した。
 低屈折率層(SiO)は下記の方法で成膜した。
 そして得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の導通領域の分光特性を図15に示す。
[Example 12]
On the transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 μm), the first high refractive index layer (ZnS) / first antisulfuration layer (ZnO) / transparent metal film (Ag) / second antisulfuration layer (ZnO) ) / Second high refractive index layer (ZnS) / low refractive index layer (SiO 2 ) / third high refractive index layer (ZnS).
The first high refractive index layer, the second high refractive index layer, the third high refractive index layer (ZnS), the first antisulfurization layer, and the second antisulfation layer (ZnO) The rate layer and the first antisulfurization layer were formed in the same manner.
The transparent metal film (Ag) was formed in the same manner as in Example 1.
The low refractive index layer (SiO 2 ) was formed by the following method.
The obtained laminate was patterned in the same manner as in Example 1. The spectral characteristics of the conduction region of the obtained transparent conductor are shown in FIG.
 (低屈折率層(SiO))
 大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力300W、成膜レート1.6Å/sでSiOをRFスパッタした。ターゲット-基板間距離は90mmであった。SiOの波長570nmの光の屈折率は1.46であり、低屈折率層の波長570nmの光の屈折率も1.46とした。
(Low refractive index layer (SiO 2 ))
Using a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., SiO 2 was RF-sputtered at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 300 W, and deposition rate 1.6 Å / s. The target-substrate distance was 90 mm. The refractive index of light with a wavelength of 570 nm of SiO 2 was 1.46, and the refractive index of light with a wavelength of 570 nm of the low refractive index layer was also 1.46.
 [実施例13]
 ガラスからなる透明基板上に、第一高屈折率層(ZnS-SiO)/透明金属膜(APC-TR合金)/第二硫化防止層(ITO)/第二高屈折率層(ZnS-SiO)を順に積層した。
 第一高屈折率層及び第二高屈折率層(ZnS-SiO)は、実施例1の第一高屈折率層と同様に成膜した。
 透明金属膜(APC-TR合金)は、実施例4と同様に成膜した。
 第二硫化防止層(ITO)は、実施例1の第一硫化防止層と同様に成膜した。
 そして得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の導通領域の分光特性を図16に示す。
[Example 13]
On a transparent substrate made of glass, a first high refractive index layer (ZnS—SiO 2 ) / transparent metal film (APC-TR alloy) / second antisulfurization layer (ITO) / second high refractive index layer (ZnS—SiO 2) 2 ) were laminated in order.
The first high refractive index layer and the second high refractive index layer (ZnS—SiO 2 ) were formed in the same manner as the first high refractive index layer of Example 1.
A transparent metal film (APC-TR alloy) was formed in the same manner as in Example 4.
The second antisulfation layer (ITO) was formed in the same manner as the first antisulfation layer of Example 1.
The obtained laminate was patterned in the same manner as in Example 1. FIG. 16 shows the spectral characteristics of the conductive region of the obtained transparent conductor.
 [実施例14]
 コニカミノルタ製TACフィルム(透明基板)上に、第一高屈折率層(ZnS-SiO)/透明金属膜(APC合金)/第二硫化防止層(ZnO)/第二高屈折率層(ZnS-SiO)を順に積層した。
 第一高屈折率層及び第二高屈折率層(ZnS-SiO)は実施例1と同様に成膜した。
 透明金属膜(APC合金)は、成膜時のターゲットをAg合金(フルヤ金属社製)とした以外は、実施例1と同様の方法で成膜した。
 第二硫化防止層(ZnO)は、実施例4の第一硫化防止層と同様に成膜した。
 そして得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の導通領域の分光特性を図17に示す。
[Example 14]
On a Konica Minolta TAC film (transparent substrate), a first high refractive index layer (ZnS-SiO 2 ) / transparent metal film (APC alloy) / second antisulfuration layer (ZnO) / second high refractive index layer (ZnS -SiO 2 ) were sequentially laminated.
The first high refractive index layer and the second high refractive index layer (ZnS—SiO 2 ) were formed in the same manner as in Example 1.
The transparent metal film (APC alloy) was formed by the same method as in Example 1 except that the target at the time of film formation was an Ag alloy (manufactured by Furuya Metal Co., Ltd.).
The second antisulfurization layer (ZnO) was formed in the same manner as the first antisulfurization layer of Example 4.
The obtained laminate was patterned in the same manner as in Example 1. FIG. 17 shows the spectral characteristics of the conductive region of the obtained transparent conductor.
 [実施例15]
 ガラスからなる透明基板上に、第一高屈折率層(ZnS)/透明金属膜(Ag)/第二硫化防止層(GZO)/第二高屈折率層(ZnS)を順に積層した。
 第一高屈折率層及び第二高屈折率層(ZnS)は、実施例4の第一高屈折率層と同様に成膜した。
 透明金属膜(Ag)は、実施例1と同様に成膜した。
 第二硫化防止層(GZO)は、下記の方法で成膜した。
 そして得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の導通領域の分光特性を図18に示す。
[Example 15]
On a transparent substrate made of glass, a first high refractive index layer (ZnS) / transparent metal film (Ag) / second antisulfurization layer (GZO) / second high refractive index layer (ZnS) were laminated in this order.
The first high refractive index layer and the second high refractive index layer (ZnS) were formed in the same manner as the first high refractive index layer of Example 4.
The transparent metal film (Ag) was formed in the same manner as in Example 1.
The second antisulfurization layer (GZO) was formed by the following method.
The obtained laminate was patterned in the same manner as in Example 1. FIG. 18 shows the spectral characteristics of the conductive region of the obtained transparent conductor.
 (第二硫化防止層(GZO))
 大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート1.1Å/sでGZOをRFスパッタした。ターゲット-基板間距離は90mmであった。
 GZOの波長570nmの光の屈折率は、2.04であり、第二高屈折率層の波長570nmの光の屈折率も2.04とした。
(Second anti-sulfurization layer (GZO))
Using a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., GZO was RF-sputtered at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target-side power 150 W, and deposition rate 1.1 Å / s. The target-substrate distance was 90 mm.
The refractive index of light with a wavelength of 570 nm of GZO was 2.04, and the refractive index of light with a wavelength of 570 nm of the second high refractive index layer was also 2.04.
 [実施例16]
 シクロオレフィンポリマーからなる透明基板上に、第一高屈折率層(Nb)/下地層(Pd)/透明金属膜(Ag)/第二硫化防止層(ZnO)/第二高屈折率層(ZnS-SiO)を順に積層した。
 第一高屈折率層(Nb)は実施例5の第二高屈折率層と同様に成膜した。
 下地層(Pd)は、実施例5の下地層と同様に成膜した。
 透明金属膜(Ag)及び第二高屈折率層(ZnS-SiO)は、実施例1の透明金属膜及び第一高屈折率層とそれぞれ同様に成膜した。
 第二硫化防止層(ZnO)は、実施例4の第一硫化防止層と同様に成膜した。
 そして得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の導通領域の分光特性を図19に示す。
[Example 16]
On the transparent substrate made of cycloolefin polymer, the first high refractive index layer (Nb 2 O 5 ) / underlayer (Pd) / transparent metal film (Ag) / second antisulfuration layer (ZnO) / second high refractive index Layers (ZnS—SiO 2 ) were sequentially stacked.
The first high refractive index layer (Nb 2 O 5 ) was formed in the same manner as the second high refractive index layer of Example 5.
The underlayer (Pd) was formed in the same manner as the underlayer of Example 5.
The transparent metal film (Ag) and the second high refractive index layer (ZnS—SiO 2 ) were formed in the same manner as the transparent metal film and the first high refractive index layer in Example 1, respectively.
The second antisulfurization layer (ZnO) was formed in the same manner as the first antisulfurization layer of Example 4.
The obtained laminate was patterned in the same manner as in Example 1. FIG. 19 shows the spectral characteristics of the conductive region of the obtained transparent conductor.
 [実施例17]
 シクロオレフィンポリマーからなる透明基板上に、第一高屈折率層(ZrO)/下地層(Pd)/透明金属膜(Ag)/第二硫化防止層(ZnO)/第二高屈折率層(ZnS)を順に積層した。
 第一高屈折率層(ZrO)は、下記の方法で成膜した。
 下地層(Pd)は、実施例5の下地層と同様に成膜した。
 透明金属膜(Ag)、実施例1の透明金属膜と同様に成膜した。
 第二硫化防止層(ZnO)及び第二高屈折率層(ZnS)は、実施例4の第一硫化防止層及び第一高屈折率層とそれぞれ同様に成膜した。
 そして得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の導通領域の分光特性を図20に示す。
[Example 17]
On a transparent substrate made of a cycloolefin polymer, a first high refractive index layer (ZrO 2 ) / underlayer (Pd) / transparent metal film (Ag) / second antisulfuration layer (ZnO) / second high refractive index layer ( ZnS) were stacked in order.
The first high refractive index layer (ZrO 2 ) was formed by the following method.
The underlayer (Pd) was formed in the same manner as the underlayer of Example 5.
A transparent metal film (Ag) was formed in the same manner as the transparent metal film of Example 1.
The second antisulfurization layer (ZnO) and the second high refractive index layer (ZnS) were formed in the same manner as the first antisulfurization layer and the first high refractive index layer of Example 4, respectively.
The obtained laminate was patterned in the same manner as in Example 1. The spectral characteristics of the conduction region of the obtained transparent conductor are shown in FIG.
 (第一高屈折率層(ZrO))
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 1sccm、スパッタ圧0.5Pa、室温下、ターゲット側電力150W、成膜レート0.5Å/sでZrOをRFスパッタした。ターゲット-基板間距離は86mmであった。ZrOの波長570nmの光の屈折率は、2.05であった。
(First high refractive index layer (ZrO 2 ))
Using Arnelva L-430S-FHS, ZrO 2 was RF sputtered at Ar 20 sccm, O 2 1 sccm, sputtering pressure 0.5 Pa, room temperature, target-side power 150 W, and deposition rate 0.5 Å / s. The target-substrate distance was 86 mm. The refractive index of light with a wavelength of 570 nm of ZrO 2 was 2.05.
 [実施例18]
 ガラスからなる透明基板上に、第一高屈折率層(ITO)/下地層(Pd)/透明金属膜(Ag)/第二硫化防止層(ZnO)/第二高屈折率層(ZnS)を順に積層した。
 第一高屈折率層(ITO)及び透明金属膜(Ag)は、実施例1の第二高屈折率層及び透明金属膜とそれぞれ同様に成膜した。
 下地層(Pd)は、実施例5の下地層と同様に成膜した。
 第二硫化防止層(ZnO)及び第二高屈折率層(ZnS)は、実施例4の第一硫化防止層及び第一高屈折率層とそれぞれ同様に成膜した。
 そして得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の導通領域の分光特性を図21に示す。
[Example 18]
On a transparent substrate made of glass, a first high refractive index layer (ITO) / underlayer (Pd) / transparent metal film (Ag) / second antisulfuration layer (ZnO) / second high refractive index layer (ZnS) Laminated in order.
The first high refractive index layer (ITO) and the transparent metal film (Ag) were formed in the same manner as the second high refractive index layer and the transparent metal film in Example 1, respectively.
The underlayer (Pd) was formed in the same manner as the underlayer of Example 5.
The second antisulfurization layer (ZnO) and the second high refractive index layer (ZnS) were formed in the same manner as the first antisulfurization layer and the first high refractive index layer of Example 4, respectively.
The obtained laminate was patterned in the same manner as in Example 1. FIG. 21 shows the spectral characteristics of the conductive region of the obtained transparent conductor.
 [実施例19]
 PET/CHC(クリアハードコート層付きPETフィルム)からなる透明基板上に、第一高屈折率層(ZnS)/第一硫化防止層(GZO)/透明金属膜(Ag)/第二高屈折率層(IGZO)/第三高屈折率層(ITO)を順に積層した。
 第一高屈折率層(ZnS)は、実施例4の第一高屈折率層と同様に成膜した。
 第一硫化防止層(GZO)は、ターゲットをGZOとした以外は、実施例1の第一硫化防止層と同様に成膜した。
 透明金属膜(Ag)は、実施例1の透明金属膜と同様に成膜した。
 第二高屈折率層(IGZO)は、実施例2の第二高屈折率層と同様に成膜した。
 第三高屈折率層(ITO)は、実施例1の第二高屈折率層と同様に成膜した。
 そして得られた積層体を実施例1と同様にパターニングした。得られた透明導電体の導通領域の分光特性を図22に示す。当該透明導電体の導通領域の表面電気抵抗を測定したところ、5Ω/□であった。表面電気抵抗は、JIS K7194、ASTM D257等に準拠して、三菱化学アナリテック社製の抵抗率計「ロレスタEP MCP-T360」にて測定した。
[Example 19]
On a transparent substrate made of PET / CHC (PET film with clear hard coat layer), first high refractive index layer (ZnS) / first antisulfurization layer (GZO) / transparent metal film (Ag) / second high refractive index Layer (IGZO) / third high refractive index layer (ITO) were laminated in order.
The first high refractive index layer (ZnS) was formed in the same manner as the first high refractive index layer of Example 4.
The first antisulfurization layer (GZO) was formed in the same manner as the first antisulfurization layer of Example 1 except that the target was GZO.
The transparent metal film (Ag) was formed in the same manner as the transparent metal film of Example 1.
The second high refractive index layer (IGZO) was formed in the same manner as the second high refractive index layer of Example 2.
The third high refractive index layer (ITO) was formed in the same manner as the second high refractive index layer of Example 1.
The obtained laminate was patterned in the same manner as in Example 1. The spectral characteristics of the conduction region of the obtained transparent conductor are shown in FIG. The surface electrical resistance of the conductive region of the transparent conductor was measured and found to be 5Ω / □. The surface electrical resistance was measured with a resistivity meter “Loresta EP MCP-T360” manufactured by Mitsubishi Chemical Analytech Co., Ltd. in accordance with JIS K7194, ASTM D257 and the like.
 [実施例20]
 PET/CHC(クリアハードコート層付きPETフィルム)からなる透明基板上に、第一高屈折率層(ZnS)/第一硫化防止層(IGZO)/透明金属膜(Ag)/第二高屈折率層(IGZO)/第三高屈折率層(ITO)を順に積層した。
 第一硫化防止層をIGZOとした以外は、実施例19と同様に積層体を得た。そして得られた積層体を実施例1と同様にパターニングした。当該透明導電体の導通領域の表面電気抵抗を測定したところ、5Ω/□であった。表面電気抵抗は、JIS K7194、ASTM D257等に準拠して、三菱化学アナリテック社製の抵抗率計「ロレスタEP MCP-T360」にて測定した。
[Example 20]
On a transparent substrate made of PET / CHC (PET film with clear hard coat layer), first high refractive index layer (ZnS) / first antisulfurization layer (IGZO) / transparent metal film (Ag) / second high refractive index Layer (IGZO) / third high refractive index layer (ITO) were laminated in order.
A laminate was obtained in the same manner as in Example 19 except that the first sulfurization prevention layer was changed to IGZO. The obtained laminate was patterned in the same manner as in Example 1. The surface electrical resistance of the conductive region of the transparent conductor was measured and found to be 5Ω / □. The surface electrical resistance was measured with a resistivity meter “Loresta EP MCP-T360” manufactured by Mitsubishi Chemical Analytech Co., Ltd. in accordance with JIS K7194, ASTM D257 and the like.
 [比較例1]
 石英からなる透明基板上に、第一高屈折率層(ZnS)/透明金属膜(Ag)/第二高屈折率層(ZnS)を順に積層した。
 第一高屈折率層(ZnS)、透明金属膜(Ag)、及び第二高屈折率層(ZnS)は、それぞれ下記の方法で成膜した。
 得られた透明導電体の導通領域の分光特性を図23に示す。
[Comparative Example 1]
On a transparent substrate made of quartz, a first high refractive index layer (ZnS) / transparent metal film (Ag) / second high refractive index layer (ZnS) were laminated in this order.
The first high refractive index layer (ZnS), the transparent metal film (Ag), and the second high refractive index layer (ZnS) were formed by the following methods, respectively.
FIG. 23 shows the spectral characteristics of the conduction region of the obtained transparent conductor.
 (第一高屈折率層及び第二高屈折率層(ZnS))
 シンクロン製のBMC-800T蒸着機を用いて、抵抗加熱でZnSからなる膜を成膜した。このときの投入電流値は210A、成膜レートは5Å/sとした。
(First high refractive index layer and second high refractive index layer (ZnS))
A film made of ZnS was formed by resistance heating using a BMC-800T vapor deposition machine manufactured by SYNCHRON. The input current value at this time was 210 A, and the film formation rate was 5 Å / s.
 (透明金属膜(Ag))
 第一高屈折率層上に、シンクロン製のBMC-800T蒸着機を用いて、抵抗加熱で銀を12nm成膜した。このときの投入電流値は210A、成膜レートは5Å/sとした。
(Transparent metal film (Ag))
On the first high refractive index layer, a silver film having a thickness of 12 nm was formed by resistance heating using a BMC-800T vapor deposition machine manufactured by SYNCHRON. The input current value at this time was 210 A, and the film formation rate was 5 Å / s.
 [比較例2]
 EAGLE Glassからなる透明基板上に、第一高屈折率層(ZnS)/透明金属膜(Ag)/第二高屈折率層(ZnS)を順に積層した。
 第一高屈折率層、及び第二高屈折率層の成膜方法は、実施例4の第一高屈折率層と同様の方法で成膜した。
 透明金属膜は、比較例1と同様に成膜した。
[Comparative Example 2]
On a transparent substrate made of EAGLE Glass, a first high refractive index layer (ZnS) / transparent metal film (Ag) / second high refractive index layer (ZnS) were laminated in this order.
The first high refractive index layer and the second high refractive index layer were formed by the same method as the first high refractive index layer of Example 4.
The transparent metal film was formed in the same manner as in Comparative Example 1.
 [比較例3]
 東洋紡製PET(コスモシャインA4300 厚み50μm)からなる透明基板上に、第一高屈折率層(Nb)/透明金属膜(Ag)/第二高屈折率層(IZO)を順に積層した。
 各層はそれぞれ下記の方法で成膜した。
 得られた透明導電体の導通領域の分光特性を図24に示す。
[Comparative Example 3]
A first high refractive index layer (Nb 2 O 5 ) / transparent metal film (Ag) / second high refractive index layer (IZO) were laminated in this order on a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 μm). .
Each layer was formed by the following method.
The spectral characteristics of the conduction region of the obtained transparent conductor are shown in FIG.
 (第一高屈折率層(Nb))
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート0.74Å/sでNbをRFスパッタした。ターゲット-基板間距離は86mmであった。Nbの波長570nmの光の屈折率は2.31であるが、高屈折率層の波長570nmの光の屈折率は2.35とした。
(First high refractive index layer (Nb 2 O 5 ))
Nb 2 O 5 was RF-sputtered using Arnelva L-430S-FHS at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 0.74 Å / s. The target-substrate distance was 86 mm. The refractive index of light with a wavelength of 570 nm of Nb 2 O 5 is 2.31, but the refractive index of light with a wavelength of 570 nm of the high refractive index layer is 2.35.
 (透明金属膜(Ag))
 日本真空技術株式会社の小型スパッタ装置(BC4279)でDCスパッタした。このとき、ターゲット側電力200Wとした。
(Transparent metal film (Ag))
DC sputtering was performed with a small sputtering apparatus (BC4279) manufactured by Nippon Vacuum Technology Co., Ltd. At this time, the target side power was set to 200 W.
 (第二高屈折率層(IZO))
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力300W、成膜レート2.2Å/sでIZOをRFスパッタした。ターゲット-基板間距離は86mmであった。IZOの波長570nmの光の屈折率は2.05であるが、第二高屈折率層の波長570nmの光の屈折率は1.98とした。
(Second high refractive index layer (IZO))
Using an Anelva L-430S-FHS, IZO was RF sputtered at Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 300 W, and deposition rate 2.2 L / s. The target-substrate distance was 86 mm. The refractive index of light with a wavelength of 570 nm of IZO is 2.05, but the refractive index of light with a wavelength of 570 nm of the second high refractive index layer is 1.98.
 [比較例4]
 コニカミノルタ製TACフィルム(透明基板)上に、第一高屈折率層(ICO)/下地層(NiCr)/透明金属膜(AgAu)/密着層(NiCr)/第二高屈折率層(ICO)/低屈折率層(SiO)/フッ素系材料層(KP801M)を順に積層した。
 低屈折率層(SiO)は、実施例12の低屈折率層と同様に成膜した。それ以外の各層は、それぞれ下記の方法で成膜した。
[Comparative Example 4]
On Konica Minolta TAC film (transparent substrate), first high refractive index layer (ICO) / underlayer (NiCr) / transparent metal film (AgAu) / adhesion layer (NiCr) / second high refractive index layer (ICO) / Low refractive index layer (SiO 2 ) / Fluorine-based material layer (KP801M) were laminated in this order.
The low refractive index layer (SiO 2 ) was formed in the same manner as the low refractive index layer of Example 12. The other layers were formed by the following methods.
 (第一高屈折率層及び第二高屈折率層(ICO))
 ターゲットをインジウム中にセリウムが10原子%含まれる材料(ICO)とした以外は、比較例3の第二高屈折率層と同様に成膜した。ICOの波長570nmの光の屈折率は2.2であり、第一高屈折率層及び第二高屈折率層の波長570nmの光の屈折率も2.2とした。
(First high refractive index layer and second high refractive index layer (ICO))
The target was formed in the same manner as the second high refractive index layer of Comparative Example 3 except that the target was made of a material (ICO) containing 10 atomic% of cerium in indium. The refractive index of light with a wavelength of 570 nm of ICO was 2.2, and the refractive indexes of light with a wavelength of 570 nm of the first high refractive index layer and the second high refractive index layer were also 2.2.
 (下地層及び密着層(NiCr))
 ターゲットをNiCrとした以外は、実施例5の下地層(Pd)と同様に成膜した。
(Underlayer and adhesion layer (NiCr))
A film was formed in the same manner as the base layer (Pd) of Example 5 except that the target was NiCr.
 (透明金属膜(AgAu))
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力100W、成膜レート2.5Å/sでAg合金(Ag中にAuが1.5原子%、Cuが0.5原子%含まれる合金)をRFスパッタした。ターゲット-基板間距離は86mmであった。
(Transparent metal film (AgAu))
An alloy alloy L-430S-FHS, Ar 20 sccm, sputtering pressure 0.3 Pa, room temperature, target side power 100 W, film formation rate 2.5 kg / s, Ag alloy (1.5 atomic% of Au in Ag) An alloy containing 0.5 atomic% of Cu) was RF sputtered. The target-substrate distance was 86 mm.
 (フッ素系材料層(KP801M))
 Optorun社のGener 1300によって、190mA、成膜レート10Å/sでフッ素系材料(信越化学工業社製:KP801M)を抵抗加熱蒸着した。
(Fluorine material layer (KP801M))
Fluorine-based material (manufactured by Shin-Etsu Chemical Co., Ltd .: KP801M) was vapor-deposited by resistance heating with a Gener 1300 manufactured by Optorun at 190 mA and a film formation rate of 10 kg / s.
 [比較例5]
 東洋紡製PET(コスモシャインA4300 厚み50μm)からなる透明基板上に、第一高屈折率層(ITO)/透明金属膜(APC合金)/第二高屈折率層(ITO)を順に積層した。
 第一高屈折率層、及び第二高屈折率層(ITO)はそれぞれ実施例17の第一高屈折率層と同様の方法で成膜した。
 透明金属膜は、下記の方法で成膜した。
[Comparative Example 5]
A first high refractive index layer (ITO) / transparent metal film (APC alloy) / second high refractive index layer (ITO) were laminated in this order on a transparent substrate made of Toyobo PET (Cosmo Shine A4300, thickness 50 μm).
The first high refractive index layer and the second high refractive index layer (ITO) were formed in the same manner as the first high refractive index layer of Example 17, respectively.
The transparent metal film was formed by the following method.
 (透明金属膜(APC合金))
 アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力100W、成膜レート2.5Å/sでAgとPdとCuとの合金(Ag:Pd:Cu=99:1:1(質量比))をRFスパッタした。ターゲット-基板間距離は86mmであった。
(Transparent metal film (APC alloy))
An alloy of L-430S-FHS manufactured by Anelva, an alloy of Ag, Pd, and Cu (Ag: Pd :) at Ar 20 sccm, sputtering pressure 0.3 Pa, room temperature, target side power 100 W, and deposition rate 2.5 Å / s. RF sputtering was performed on Cu = 99: 1: 1 (mass ratio). The target-substrate distance was 86 mm.
 [比較例6]
 コーニング社製ガラス基板(#7059、厚み1.1mm)からなる透明基板上に、第一高屈折率層(a-GIO)/透明金属膜(Ag)/第二高屈折率層(a-GIO)を順に積層した。
 各層はそれぞれ下記の方法で成膜した。
[Comparative Example 6]
On a transparent substrate made of Corning glass substrate (# 7059, thickness 1.1 mm), first high refractive index layer (a-GIO) / transparent metal film (Ag) / second high refractive index layer (a-GIO) ) In order.
Each layer was formed by the following method.
 (第一高屈折率層及び第二高屈折率層(a-GIO))
 Oガスを混入したArガス0.6Paの雰囲気中、2.2W/cmの電力密度で、GaとInの酸化物焼結体を直流スパッタした。導入するOガスの割合は、8~12体積%とした。
(First high refractive index layer and second high refractive index layer (a-GIO))
An oxide sintered body of Ga and In was DC sputtered at an electric power density of 2.2 W / cm 2 in an atmosphere of 0.6 Pa of Ar gas mixed with O 2 gas. The ratio of O 2 gas to be introduced was 8 to 12% by volume.
 (透明金属膜(Ag))
 Arガス0.6Paの雰囲気中、0.55W/cm2の電力密度で純度4NのAgターゲットを直流スパッタした。
(Transparent metal film (Ag))
In an atmosphere of Ar gas 0.6 Pa, a 4N purity Ag target was DC sputtered at a power density of 0.55 W / cm 2 .
 [評価]
 (腐食評価)
 実施例及び比較例で得られた透明導電体の腐食耐性を評価した。腐食耐性は、実施例または比較例で得られた透明導電体を、2個ずつ、65℃、95%Rh中に100時間保存した後の外観で評価した。評価は、以下の基準とした。
 ○:30mm×30mmの領域において、サイズ20μm以上の腐食箇所が0個
 △:30mm×30mmの領域において、サイズ20μm以上の腐食箇所が1個以上10個未満
 ×:30mm×30mmの領域において、サイズ20μm以上の腐食箇所が10個以上
[Evaluation]
(Corrosion evaluation)
The corrosion resistance of the transparent conductors obtained in Examples and Comparative Examples was evaluated. Corrosion resistance was evaluated by the appearance after storing the transparent conductors obtained in Examples or Comparative Examples two by two in 65 ° C. and 95% Rh for 100 hours. Evaluation was based on the following criteria.
○: In the area of 30 mm × 30 mm, 0 corrosion sites with a size of 20 μm or more Δ: In the region of 30 mm × 30 mm, 1 or more and less than 10 corrosion sites with a size of 20 μm or more ×: Size in the region of 30 mm × 30 mm 10 or more corrosion spots of 20μm or more
 (光の透過率、反射率、及び吸収率の測定)
 実施例1~5、8~11、13、14、及び16~20の透明導電体については、以下のように光の透過率、反射率、及び吸収率を測定した。
 各実施例で得られた透明導電体の第二高屈折率層側の表面に、マッチングオイル(ニコン社製 屈折率=1.515)を塗布した。そして、透明導電体とコーニング社製無アルカリガラス基板(EAGLE XG(厚さ7mm×縦30mm×横30mm))とを貼り合わせた。そして、無アルカリガラス基板側から、透明導電体の透過率及び反射率を測定した。このとき、無アルカリガラス基板の表面の法線に対して、5°傾けた角度から、導通領域に測定光(例えば、波長450nm~800nmの光)を入射させ、日立株式会社製:分光光度計 U4100にて、光の透過率及び反射率を測定した。そして、吸収率は、100-(透過率+反射率)の計算式より算出した。
(Measurement of light transmittance, reflectance and absorptance)
For the transparent conductors of Examples 1 to 5, 8 to 11, 13, 14, and 16 to 20, the light transmittance, reflectance, and absorptance were measured as follows.
Matching oil (refractive index = 1.515 manufactured by Nikon Corporation) was applied to the surface of the transparent conductor obtained in each example on the second high refractive index layer side. Then, the transparent conductor and a non-alkali glass substrate (EAGLE XG (thickness 7 mm × length 30 mm × width 30 mm)) manufactured by Corning were bonded together. And the transmittance | permeability and reflectance of the transparent conductor were measured from the alkali free glass substrate side. At this time, measurement light (for example, light having a wavelength of 450 nm to 800 nm) is incident on the conduction region from an angle inclined by 5 ° with respect to the normal line of the surface of the alkali-free glass substrate. The light transmittance and reflectance were measured at U4100. The absorptance was calculated from a formula of 100− (transmittance + reflectance).
 なお、反射率の測定値から、無アルカリガラス基板と大気との界面での反射(4%)、及び透明導電体の透明基板と大気との界面での反射(4%)を差し引いた値を、透明導電体の反射率とした。また、透過率についても、上記無アルカリガラス基板と大気との界面での反射、及び透明導電体の透明基板と大気との界面での反射を考慮し、透過率の測定値に8%足した値を透明導電体の透過率とした。 The value obtained by subtracting the reflection at the interface between the alkali-free glass substrate and the atmosphere (4%) and the reflection at the interface between the transparent substrate and the atmosphere (4%) from the measured value of the reflectance The reflectance of the transparent conductor was used. Also, the transmittance was added to the measured value of transmittance by 8% in consideration of the reflection at the interface between the alkali-free glass substrate and the atmosphere and the reflection of the transparent conductor at the interface between the transparent substrate and the atmosphere. The value was the transmittance of the transparent conductor.
 一方、実施例6、7、12、15、比較例1、及び比較例3の透明導電体は、空気と接触して使用されるものとした。したがって、透明導電体上に、無アルカリガラス基板を貼り合わせずに、導通領域に測定光(例えば、波長450nm~800nmの光)を入射させ、日立株式会社製:分光光度計 U4100にて、光の透過率及び反射率を測定した。そして、吸収率は、100-(透過率+反射率)の計算式より算出した。なお、測定光は、第二高屈折率層側から入射させた。 On the other hand, the transparent conductors of Examples 6, 7, 12, 15, Comparative Example 1 and Comparative Example 3 were used in contact with air. Therefore, measurement light (for example, light having a wavelength of 450 nm to 800 nm) is incident on the conductive region without bonding an alkali-free glass substrate on the transparent conductor, and light is emitted by Hitachi, Ltd .: spectrophotometer U4100. The transmittance and reflectance were measured. The absorptance was calculated from a formula of 100− (transmittance + reflectance). The measurement light was incident from the second high refractive index layer side.
 なお、反射率の測定値から、透明導電体の透明基板と大気との界面での反射(4%)を差し引いた値を、透明導電体の反射率とした。また、透過率についても、上記透明導電体の透明基板と大気との界面での反射を考慮し、透過率の測定値に4%足した値を透明導電体の透過率とした。 The value obtained by subtracting the reflection (4%) at the interface between the transparent substrate of the transparent conductor and the atmosphere from the measured value of the reflectance was taken as the reflectance of the transparent conductor. Also, the transmittance of the transparent conductor was determined by adding 4% to the measured value of the transmittance in consideration of the reflection of the transparent conductor at the interface between the transparent substrate and the atmosphere.
 (視感反射率の測定方法)
 各透明導電体の視感反射率は、分光光度計(U4100;日立ハイテクノロジーズ社製)で測定した。表1及び表2中のΔRは、導通領域の視感率と絶縁領域の視感率との差の絶対値を表す。
(Measuring method of luminous reflectance)
The luminous reflectance of each transparent conductor was measured with a spectrophotometer (U4100; manufactured by Hitachi High-Technologies Corporation). ΔR in Tables 1 and 2 represents the absolute value of the difference between the luminous efficiency of the conductive area and the luminous efficiency of the insulating area.
 (導通領域のa*値及びb*値の測定方法)
 各透明導電体のL*a*b*表色系におけるa*値及びb*値は、日立株式会社製:分光光度計 U4100で測定した。
(Measurement method of a * value and b * value of conduction region)
The a * value and b * value in the L * a * b * color system of each transparent conductor were measured with a spectrophotometer U4100 manufactured by Hitachi, Ltd.
 (光学アドミッタンス)
 実施例及び比較例で得られた透明導電体の光学アドミッタンスを特定した。透明金属の第一高屈折率層側の表面の波長570nmの光学アドミッタンスをY1=x+iy、透明金属膜の前記第二高屈折率層側の表面の波長570nmの光学アドミッタンスをY2=x+iyとしたときの(x,y)、及び(x,y)の値を表3及び4に示す。
 また、第一高屈折率層、透明金属膜、及び第二高屈折率層をパターニングした透明導電体については、前記透明金属膜を含む積層体(導通領域)表面の波長570nmの光の等価アドミッタンスをY=x+iyで表し、前記透明金属膜を含まない積層体(絶縁領域)表面;つまり透明基板表面の波長570nmの光の等価アドミッタンスをYsub=xsub+iysubで表したときの(xsub,ysub)の値をそれぞれ表3及び表4に示す。さらに、透明導電体に光が入射する媒体の波長570nmの光の等価アドミッタンスをYenv=xenv+iyenvで表したときの(xenv,yenv)の値もそれぞれ表3及び表4に示す。そして|(xenv-xsub+(yenv-ysub-(xenv-x+(yenv-y|の値を、それぞれ表3及び表4に示す。
(Optical admittance)
The optical admittance of the transparent conductor obtained by the Example and the comparative example was specified. The optical admittance of wavelength 570nm of the first high refractive index layer side of the surface of the transparent metal Y1 = x 1 + iy 1, the optical admittance of wavelength 570nm of the second high refractive index layer side of the surface of the transparent metal film Y2 = x Tables 3 and 4 show the values of (x 1 , y 1 ) and (x 2 , y 2 ) when 2 + iy 2 is set.
For the transparent conductor obtained by patterning the first high-refractive index layer, the transparent metal film, and the second high-refractive index layer, the equivalent admittance of light having a wavelength of 570 nm on the surface of the laminate (conduction region) including the transparent metal film Is expressed as Y E = x E + iy E , and the equivalent admittance of light with a wavelength of 570 nm on the surface of the laminate (insulating region) that does not include the transparent metal film; that is, Y sub = x sub + iy sub The values of (x sub , y sub ) are shown in Table 3 and Table 4, respectively. Furthermore, the values of (x env , y env ) when the equivalent admittance of light having a wavelength of 570 nm of the medium in which light enters the transparent conductor is expressed by Y env = x env + iy env are also shown in Table 3 and Table 4, respectively. . The values of | (x env −x sub ) 2 + (y env −y sub ) 2 − (x env −x E ) 2 + (y env −y E ) 2 | are shown in Table 3 and Table 4, respectively. .
 透明導電体に含まれる層の光学アドミッタンスは、薄膜設計ソフトEssential Macleod Ver.9.4.375で算出した。なお、算出に必要な各層の厚みd、屈折率n、及び吸収係数kは、J.A.Woollam Co.Inc.製のVB-250型VASEエリプソメーターで測定した。 The optical admittance of the layer contained in the transparent conductor was calculated by the thin film design software Essential Macleod Ver.9.4.375. Note that the thickness d, refractive index n, and absorption coefficient k of each layer necessary for the calculation are as follows. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表1及び表2に示されるように硫化亜鉛含有層と透明金属膜との間に、硫化防止層を有する透明導電体(実施例1~20)では、いずれも波長450~800nmの平均透過率が86.4%以上であった。ここで、第一高屈折率層及び第二高屈折率層のいずれもが硫化亜鉛含有層である場合であって、いずれか一方の硫化亜鉛含有層と透明金属膜との間にのみ、硫化防止層を有する場合(実施例13~15)には、波長450~800nmの平均透過率が88.6%以下であったが、両方の硫化亜鉛含有層と透明金属膜との間に、硫化防止層を有する場合(実施例8~12)には、波長450~800nmの平均透過率が89.3%以上になった。 As shown in Tables 1 and 2, in the transparent conductors (Examples 1 to 20) each having an anti-sulfurization layer between the zinc sulfide-containing layer and the transparent metal film, the average transmittance is 450 to 800 nm. Was 86.4% or more. Here, both the first high-refractive index layer and the second high-refractive index layer are zinc sulfide-containing layers, and only between one of the zinc sulfide-containing layers and the transparent metal film is sulfided. In the case of having the prevention layer (Examples 13 to 15), the average transmittance at a wavelength of 450 to 800 nm was 88.6% or less. However, between both the zinc sulfide-containing layers and the transparent metal film, In the case of having a prevention layer (Examples 8 to 12), the average transmittance at a wavelength of 450 to 800 nm was 89.3% or more.
 これに対し、表2に示されるように、硫化亜鉛含有層と透明金属膜との間に硫化防止層を有さない透明導電体(比較例1)では、波長450~800nmの平均透過率が85.3%であった。 On the other hand, as shown in Table 2, the transparent conductor (Comparative Example 1) having no anti-sulfurization layer between the zinc sulfide-containing layer and the transparent metal film has an average transmittance of 450 to 800 nm. It was 85.3%.
 また、表1及び表2に示されるように、透明金属膜のいずれか一方、もしくは両方に硫化亜鉛含有層を有する場合(実施例1~20、及び比較例1、2)には、湿熱環境下でも腐食が生じなかった。これに対し、透明導電体に硫化亜鉛含有層が含まれない場合(比較例3~6)には、湿熱環境下で腐食が生じやすかった。 In addition, as shown in Tables 1 and 2, when one or both of the transparent metal films has a zinc sulfide-containing layer (Examples 1 to 20 and Comparative Examples 1 and 2), the wet heat environment No corrosion occurred even underneath. On the other hand, when the transparent conductor did not contain a zinc sulfide-containing layer (Comparative Examples 3 to 6), corrosion was likely to occur in a humid heat environment.
 なお、蒸着法で厚み7.3nmの透明金属膜を作製した比較例2では、連続膜が得られず、電気が導通しなかった。 In Comparative Example 2 in which a transparent metal film having a thickness of 7.3 nm was prepared by vapor deposition, a continuous film was not obtained and electricity was not conducted.
 本出願は、2013年10月9日出願の特願2013-211875に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2013-211185 filed on Oct. 9, 2013. The contents described in the application specification and the drawings are all incorporated herein.
 本発明で得られる透明導電体は、湿熱環境下でも透明金属膜が腐食し難く、さらに光透過性も高い。したがって、各種方式のディスプレイをはじめ、タッチパネルや携帯電話、電子ペーパー、各種太陽電池、各種エレクトロルミネッセンス調光素子など様々なオプトエレクトロニクスデバイスに好ましく用いられる。 The transparent conductor obtained by the present invention hardly corrodes the transparent metal film even in a humid heat environment, and has high light transmittance. Therefore, it is preferably used in various optoelectronic devices such as various types of displays, touch panels, mobile phones, electronic paper, various solar cells, various electroluminescence light control elements, and the like.
 1 透明基板
 2 第一高屈折率層
 3 透明金属膜
 4 第二高屈折率層
 5a、5b 硫化防止層
 100 透明導電体
 
DESCRIPTION OF SYMBOLS 1 Transparent substrate 2 1st high refractive index layer 3 Transparent metal film 4 2nd high refractive index layer 5a, 5b Antisulfuration layer 100 Transparent conductor

Claims (4)

  1.  透明基板と、
     前記透明基板の波長570nmの光の屈折率より、波長570nmの光の屈折率が高い誘電性材料または酸化物半導体材料を含む第一高屈折率層と、
     透明金属膜と、
     前記透明基板の波長570nmの光の屈折率より、波長570nmの光の屈折率が高い誘電性材料または酸化物半導体材料を含む第二高屈折率層と、をこの順に含む透明導電体であって、
     前記第一高屈折率層または前記第二高屈折率層のうち、少なくとも一方の層がZnSを含む硫化亜鉛含有層であり、
     前記硫化亜鉛含有層と前記透明金属膜との間に、金属酸化物、金属フッ化物、金属窒化物、またはZnを含む硫化防止層をさらに含む、透明導電体。
    A transparent substrate;
    A first high refractive index layer including a dielectric material or an oxide semiconductor material having a refractive index of light having a wavelength of 570 nm higher than that of light having a wavelength of 570 nm of the transparent substrate;
    A transparent metal film,
    A transparent conductor including a second high-refractive-index layer including a dielectric material or an oxide semiconductor material in which the refractive index of light having a wavelength of 570 nm is higher than the refractive index of light having a wavelength of 570 nm of the transparent substrate in this order. ,
    Of the first high refractive index layer or the second high refractive index layer, at least one layer is a zinc sulfide-containing layer containing ZnS,
    A transparent conductor further comprising a sulfide prevention layer containing metal oxide, metal fluoride, metal nitride, or Zn between the zinc sulfide-containing layer and the transparent metal film.
  2.  前記硫化防止層がZnOを含む、請求項1に記載の透明導電体。 The transparent conductor according to claim 1, wherein the anti-sulfurization layer contains ZnO.
  3.  前記硫化亜鉛含有層が、SiOをさらに含む、請求項1に記載の透明導電体。 The transparent conductor according to claim 1, wherein the zinc sulfide-containing layer further contains SiO 2 .
  4.  前記透明金属膜が、所定の形状にパターニングされた金属パターンである、請求項1に記載の透明導電体。
     
     
     
    The transparent conductor according to claim 1, wherein the transparent metal film is a metal pattern patterned into a predetermined shape.


PCT/JP2014/077094 2013-10-09 2014-10-09 Transparent conductor WO2015053371A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015541637A JPWO2015053371A1 (en) 2013-10-09 2014-10-09 Transparent conductor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013211875 2013-10-09
JP2013-211875 2013-10-09

Publications (1)

Publication Number Publication Date
WO2015053371A1 true WO2015053371A1 (en) 2015-04-16

Family

ID=52813186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/077094 WO2015053371A1 (en) 2013-10-09 2014-10-09 Transparent conductor

Country Status (2)

Country Link
JP (1) JPWO2015053371A1 (en)
WO (1) WO2015053371A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166850A1 (en) * 2014-05-02 2015-11-05 コニカミノルタ株式会社 Transparent electroconductive film

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06278244A (en) * 1993-01-29 1994-10-04 Mitsui Toatsu Chem Inc Lamination
JP2001179868A (en) * 1999-12-27 2001-07-03 Nitto Denko Corp Method for manufacturing transparent laminate
JP2001297630A (en) * 2000-04-13 2001-10-26 Mitsui Chemicals Inc Clear electrode
JP2002313139A (en) * 2001-04-12 2002-10-25 Mitsui Chemicals Inc Transparent conductive thin film laminated body
JP2002324431A (en) * 2001-04-24 2002-11-08 Mitsui Chemicals Inc Display filer and manufacturing method of the same
JP2010184477A (en) * 2009-02-13 2010-08-26 Toppan Printing Co Ltd Laminated film and method for manufacturing the same
WO2011048648A1 (en) * 2009-10-19 2011-04-28 東洋紡績株式会社 Electrically conductive transparent laminate film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06278244A (en) * 1993-01-29 1994-10-04 Mitsui Toatsu Chem Inc Lamination
JP2001179868A (en) * 1999-12-27 2001-07-03 Nitto Denko Corp Method for manufacturing transparent laminate
JP2001297630A (en) * 2000-04-13 2001-10-26 Mitsui Chemicals Inc Clear electrode
JP2002313139A (en) * 2001-04-12 2002-10-25 Mitsui Chemicals Inc Transparent conductive thin film laminated body
JP2002324431A (en) * 2001-04-24 2002-11-08 Mitsui Chemicals Inc Display filer and manufacturing method of the same
JP2010184477A (en) * 2009-02-13 2010-08-26 Toppan Printing Co Ltd Laminated film and method for manufacturing the same
WO2011048648A1 (en) * 2009-10-19 2011-04-28 東洋紡績株式会社 Electrically conductive transparent laminate film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015166850A1 (en) * 2014-05-02 2015-11-05 コニカミノルタ株式会社 Transparent electroconductive film

Also Published As

Publication number Publication date
JPWO2015053371A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP6314463B2 (en) Transparent conductor
JP6292225B2 (en) Transparent conductor
JP6319302B2 (en) Transparent conductor and method for producing the same
WO2015068738A1 (en) Transparent conductive body
JP6344095B2 (en) Transparent conductor and touch panel
WO2015087895A1 (en) Transparent conductive body
JP6206262B2 (en) Transparent conductor, method for producing the same, and conductive paste
WO2015053371A1 (en) Transparent conductor
JP2015219690A (en) Transparent conductive device and touch panel
WO2015025525A1 (en) Transparent conductive body
WO2015125558A1 (en) Method for manufacturing transparent electroconductive body and electroconductive body
WO2014196460A1 (en) Transparent conductor and method for producing same
JP2016146052A (en) Transparent conductor, and touch panel including the same
WO2015011928A1 (en) Method for producing transparent conductive body
WO2015151677A1 (en) Transparent conductive member and method for producing transparent conductive member
WO2014181538A1 (en) Transparent conductor and method for producing same
WO2014188683A1 (en) Touch panel electrode substrate, touch panel including touch panel electrode substrate, and display panel
JP2016177940A (en) Method for producing transparent conductive body
WO2015111327A1 (en) Transparent conductor
WO2015125677A1 (en) Transparent conductor
JP2016144884A (en) Transparent conductor and touch panel including the same
JP2016044356A (en) Production method of transparent conductive body
JP6586738B2 (en) Transparent conductive member and method for manufacturing transparent conductive member
JP2016169420A (en) Apparatus and method for manufacturing transparent conductive member
JPWO2016052158A1 (en) Transparent conductor and touch panel including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14851790

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015541637

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14851790

Country of ref document: EP

Kind code of ref document: A1