WO2015166850A1 - Transparent electroconductive film - Google Patents

Transparent electroconductive film Download PDF

Info

Publication number
WO2015166850A1
WO2015166850A1 PCT/JP2015/062181 JP2015062181W WO2015166850A1 WO 2015166850 A1 WO2015166850 A1 WO 2015166850A1 JP 2015062181 W JP2015062181 W JP 2015062181W WO 2015166850 A1 WO2015166850 A1 WO 2015166850A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
refractive index
transparent conductive
high refractive
oxide
Prior art date
Application number
PCT/JP2015/062181
Other languages
French (fr)
Japanese (ja)
Inventor
弘典 高橋
一成 多田
仁一 粕谷
健一郎 平田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016516332A priority Critical patent/JPWO2015166850A1/en
Publication of WO2015166850A1 publication Critical patent/WO2015166850A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a transparent conductive film, and more particularly to a transparent conductive film having good conductivity and transparency and having high durability.
  • transparent conductive films have been used in various devices such as liquid crystal displays, plasma displays, inorganic and organic EL (electroluminescence) displays, touch panels, and solar cells.
  • metals such as gold, silver, platinum, copper, rhodium, palladium, aluminum, and chromium, In 2 O 3 , CdO, CdIn 2 O 4 , Cd 2 SnO 4 , and TiO 2 are used.
  • SnO 2 , ZnO, ITO (indium tin oxide) and other oxide semiconductors are known.
  • a transparent conductive film made of a transparent conductive film or the like is disposed on an image display surface of a display element. Therefore, the transparent conductive film is required to have high light transmittance. In such various display devices, a transparent conductive film made of ITO having high light transmittance is often used.
  • capacitive touch panel display devices have become widespread in product groups such as smartphones, and it has been required to further reduce the surface electrical resistance of transparent conductive films.
  • the conventional ITO film has a problem that the surface electric resistance cannot be sufficiently lowered.
  • a silver deposited film is formed of a film having a high refractive index (for example, niobium oxide (Nb 2 O 5 ), IZO (indium / zinc oxide), ICO (indium / cerium oxide). ) And a-GIO (a film made of gallium, indium and oxygen containing amorphous oxide) or the like) (see, for example, Patent Documents 2 to 4). Further, it has been proposed to sandwich a vapor deposited silver film with a zinc sulfide film (see, for example, Non-Patent Documents 1 and 2).
  • This coloring phenomenon is understood as a phenomenon in which a silver sulfide film is formed on the surface of bulk silver, but as described above, the transparent conductive material used in the form of a thin film obtained by vapor deposition of silver or the like. In the film, it becomes a significant and serious problem due to the characteristics of the thin film.
  • a thin film obtained by vapor deposition or sputtering as compared with a bulk solid is characterized by an extremely small thickness (depth) and an extremely remarkable microporous property. Therefore, various components that invade silver such as sulfides in the atmosphere easily diffuse throughout the silver thin film, and the entire silver thin film is modified not only at the interface of the silver thin film structure. For this reason, all of the characteristics required as a constituent member of the transparent conductive film, such as conductivity, transparency, and wavelength uniformity of optical characteristics, are impaired.
  • the film thickness used is limited to be thinner than that for mirror and surface decoration purposes.
  • the influence of modification by atmospheric components is particularly great.
  • the sulfur contained in the zinc sulfide causes silver to be sulfided in the process of forming the transparent conductive member. As well as becoming a problem, transparency was impaired.
  • the present invention has been made in view of the above problems and circumstances, and the solution is to provide a transparent conductive film having good conductivity and uniform transparency over the entire visible light range and having high durability. Is to provide.
  • the present inventor has at least a first high-refractive index layer, a transparent conductive layer, and a second high-refractive index layer in this order in the process of examining the cause of the above-described problem.
  • Either one of the high refractive index layers contains zinc sulfide, and the ratio of the number of sulfur atoms contained in the zinc sulfide is less than the number of zinc atoms, that is, the transparent conductive layer of the transparent conductive film
  • a transparent conductive film having at least a first high refractive index layer, a transparent conductive layer and a second high refractive index layer in this order,
  • the transparent conductive layer contains silver;
  • At least one of the first high refractive index layer or the second high refractive index layer is a layer containing zinc sulfide,
  • the ratio of the number of sulfur atoms contained in the zinc sulfide is 50 or more and less than 100 with respect to 100 zinc atoms.
  • the first high refractive index layer contains zinc sulfide and an oxide or nitride, and the content of the oxide or nitride is 5 to 30 volumes of the total volume of the first high refractive index layer. % In the range of%, The transparent conductive film as described in any one of 1st term
  • the second high refractive index layer is made of zinc sulfide, titanium dioxide, indium tin oxide, zinc oxide, niobium oxide, tin dioxide, indium zinc oxide, aluminum zinc oxide, gallium. Selected from zinc oxide, antimony / tin oxide, indium / cerium oxide, indium / gallium / zinc oxide, bismuth oxide, tungsten trioxide, indium oxide and amorphous oxide containing gallium / indium / oxygen Any one is contained, The transparent conductive film as described in any one of 1st term
  • the said 2nd high refractive index layer contains a gallium zinc oxide as said high refractive index material,
  • the transparent conductive film as described in any one of Claim 1-7 characterized by the above-mentioned.
  • a second antisulfurization layer is provided between the transparent conductive layer and the second high refractive index layer, and the second antisulfurization layer contains an oxide or a nitride.
  • the transparent conductive film as described in any one of to the term.
  • a thin film formed by a vacuum process exhibits a microporous property having a low density relative to a bulk solid.
  • Sputtering can form a relatively bulky film among dry coating techniques, but still has a lower density than bulk solids. Therefore, it can be said that element diffusion is likely to occur.
  • a protective layer is provided for sealing the transparent conductive layer, there may be an upper limit on the film thickness that is practical in terms of adhesion and the like. The effect is presumed to be limited.
  • the sulfur component has the most adverse effect on the silver constituting the transparent conductive layer, and zinc sulfide (ZnS) is contained in the stoichiometric composition ratio (included in zinc sulfide).
  • Transparent conductive film layer containing silver by incorporating sulfur (S) from the component and approaching the stoichiometric composition ratio without re-releasing from the strength of the covalent bond, acting as a sulfur trapping film Inhibiting the diffusion of sulfur components to the surface is a mechanism for manifesting the effects of the present invention.
  • the refractive index of the layer containing zinc sulfide obtained in the present invention has a sufficiently high value. From this, by controlling the film thickness of the layer containing zinc sulfide appropriately, it is possible to remarkably reduce the decrease in transmission intensity due to the reflection of silver (Ag), and as a result, highly transparent and transparent with excellent visibility. A conductive film can be formed.
  • Schematic sectional view showing an example of the layer structure of the transparent conductive film of the present invention The schematic diagram which shows an example of the pattern which consists of a conduction
  • Process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by photolithography Process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by photolithography
  • Process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by photolithography Process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by photolithography
  • Process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by photolithography Process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by photolithography
  • Process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by photolithography Process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by photolithography
  • the transparent conductive film of the present invention is a transparent conductive film having at least a first high refractive index layer, a transparent conductive layer, and a second high refractive index layer in this order on a transparent resin support, the transparent conductive film
  • the layer contains silver
  • at least one of the first high refractive index layer or the second high refractive index layer is a layer containing zinc sulfide
  • the ratio of the number of sulfur atoms contained in the zinc sulfide is It is characterized by being 50 or more and less than 100 with respect to 100 zinc atoms.
  • the layer containing zinc sulfide is the first high refractive index layer because a high effect of preventing silver sulfidation of the transparent conductive layer can be obtained.
  • the first high-refractive index layer and the transparent conductive layer have a first anti-sulfurization layer, and the first anti-sulfur layer contains an oxide or a nitride.
  • sulfur is not a problem when a transparent conductive layer containing silver is subsequently formed.
  • a transparent conductive layer can be formed below, which is preferable.
  • the first antisulfurization layer contains zinc oxide or gallium oxide as the oxide, and the metal in zinc oxide or gallium oxide removes sulfur remaining slightly in the chamber atmosphere. As a result, when a transparent conductive layer containing silver is subsequently formed, the remaining of sulfur is not a problem, and it is possible to form a layer in a better atmosphere, which is preferable.
  • the first high refractive index layer contains zinc sulfide and an oxide or nitride, and the content of the oxide or nitride is 5 to 5% of the total volume of the first high refractive index layer. It is preferable that the content is within the range of 30% by volume because the internal structure of the first high refractive index layer approaches amorphous and the flexibility can be improved.
  • the first high refractive index layer contains zinc sulfide and silicon dioxide because the internal structure of the first high refractive index layer approaches an amorphous state and flexibility can be further improved.
  • the second high refractive index layer is made of zinc sulfide (ZnS), titanium dioxide (TiO 2 ), indium tin oxide (ITO), zinc oxide (ZnO), niobium oxide (Nb 2 ) as a high refractive index material.
  • ZnS zinc sulfide
  • TiO 2 titanium dioxide
  • ITO indium tin oxide
  • ZnO zinc oxide
  • Nb 2 niobium oxide
  • tin dioxide SnO 2
  • indium zinc oxide IZO
  • aluminum zinc oxide AZO
  • gallium zinc oxide GZO
  • antimony tin oxide ATO
  • indium cerium Oxide ICO
  • indium gallium zinc oxide IGZO
  • bismuth oxide Bi 2 O 3
  • tungsten trioxide WO 3
  • indium oxide In 2 O 3
  • gallium indium and oxygen Containing any one selected from amorphous oxides (a-GIO) can further reduce the surface resistance, It preferred because continuity is readily take as when subjected to grayed.
  • the second high refractive index layer contains zinc sulfide as the high refractive index material because it has a high effect of preventing silver sulfide of the transparent conductive layer.
  • the second high refractive index layer further contains silicon dioxide as the high refractive index material, the internal structure of the second high refractive index layer approaches an amorphous state, and the flexibility can be further improved. preferable.
  • the second high refractive index layer contains gallium / zinc oxide as the high refractive index material because it is suitable for patterning and at the same time a silver protective function can be obtained.
  • the said 2nd sulfurization prevention layer between the said transparent conductive layer and a 2nd high refractive index layer, and the said 2nd sulfide prevention layer contains an oxide or nitride, it is silver of a transparent conductive layer. This is preferable because it has an effect of preventing sulfidation.
  • the second antisulfurization layer contains zinc oxide or gallium / zinc oxide as the oxide because it has a high effect of preventing silver sulfide of the transparent conductive layer.
  • the transparent conductive film of the present invention is a transparent conductive film having at least a first high refractive index layer, a transparent conductive layer, and a second high refractive index layer in this order on a transparent resin support, the transparent conductive film
  • the layer contains silver, at least one of the first high refractive index layer or the second high refractive index layer is a layer containing zinc sulfide, and the ratio of the number of sulfur atoms contained in the zinc sulfide is It is characterized by being 50 or more and less than 100 with respect to 100 zinc atoms.
  • FIG. 1 and FIG. 2 show one embodiment of the layer structure of the transparent conductive film of the present invention.
  • the transparent conductive film 100 of the present invention includes transparent resin support 1 / first high refractive index layer 2 / transparent conductive layer 3 / second high refractive index layer 4.
  • first high refractive index layer 2 or the second high refractive index layer 4 is a layer containing zinc sulfide (ZnS).
  • ZnS zinc sulfide
  • the antisulfurization layers 5 a or 5 b is provided between the first high refractive index layer 2, the second high refractive index layer 4, and the transparent conductive layer 3.
  • these layers are layers formed from a thin film, and the sulfidation prevention layer preferably contains an oxide or a nitride.
  • one of the first high refractive index layer 2 and the second high refractive index layer 4 is a layer containing zinc sulfide, and the first high refractive index layer 2 or the second high refractive index layer. 4 and the transparent conductive layer 3 are preferably provided with an anti-sulfurization layer 5 (an anti-sulfurization layer 5a or 5b containing zinc oxide).
  • the transparency and conductivity of the transparent conductive layer can be improved by the effect of the antisulfurization layer.
  • this transparent conductive layer and the high refractive index layer containing zinc sulfide are formed adjacent to each other, metal sulfide is likely to be generated, which may affect the light transmittance of the transparent conductive film.
  • a high refractive index layer is provided on the support side of the transparent conductive layer, that is, when a layer containing silver is formed after forming a layer containing zinc sulfide, a layer containing zinc sulfide is formed.
  • a layer containing silver is formed in a state where the sulfur component released in the film forming chamber remains slightly.
  • sulfidation modification of the transparent conductive layer occurs at the time of forming the transparent conductive member. Needless to say, it is very difficult to solve this problem only with the exhaust performance of the apparatus and the cold trap function.
  • the high concentration sulfur component directly touches the surface of the silver layer already existing on the support. Therefore, sulfidation modification of the transparent conductive layer also occurs at the time of forming the transparent conductive member.
  • the transparent conductive layer using silver is provided with a very thin film thickness to increase the transparency, but when the surface properties deteriorate as described above, the conductive network is partially cut off, Not only is the conductivity lowered, but the cut-off portion has a rough island structure, plasmon absorption occurs due to this shape characteristic, and further scattering occurs in some cases, so that even transparency is lost.
  • the transparent conductive layer 3 may be laminated on the entire surface of the transparent resin support 1, and as shown in FIG. It may be patterned into a desired shape.
  • the region a where the transparent conductive layer 3 is laminated is a region where electricity is conducted (hereinafter also referred to as “conduction region”).
  • the region b where the transparent conductive layer 3 is not included is an insulating region.
  • the pattern composed of the conductive region a and the insulating region b is appropriately selected according to the use of the transparent conductive film 100.
  • the pattern includes a plurality of conductive regions a and line-shaped insulating regions b that divide the conductive regions a. It is possible.
  • the transparent conductive film 100 of the present invention includes layers other than the transparent resin support 1, the first high refractive index layer 2, the transparent conductive layer 3, the second high refractive index layer 4, and the sulfurization prevention layer 5. May be included.
  • an underlayer that can be a growth nucleus when forming the transparent conductive layer 3 may be included between the transparent conductive layer and the first high refractive index layer 2 adjacent to the transparent conductive layer 3.
  • Transparent resin support examples include cellulose ester resins (for example, triacetylcellulose (Zerotac (manufactured by Konica Minolta)), diacetylcellulose, acetylpropionylcellulose, etc.), polycarbonate resins (for example, panlite, Multilon (both made by Teijin)), cycloolefin resin (for example, Zeonoa (made by Nippon Zeon), Arton (made by JSR), Apel (made by Mitsui Chemicals)), acrylic resin (for example, polymethyl methacrylate, acrylite ( (Mitsubishi Rayon Co., Ltd.) and Sumipex (Sumitomo Chemical Co., Ltd.)), and these resins are preferably 50% by mass or more of the transparent resin support. Two or more kinds of these resins may be used.
  • cellulose ester resins for example, triacetylcellulose (Zerotac (manufactured by Konica Minolta)
  • cellulose ester resins cellulose ester resins, cycloolefin resins and polycarbonate resins are preferred.
  • resins that may be mixed include polyimide, phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyester resin (for example, polyethylene terephthalate (PET), polyethylene naphthalate), polyether sulfone, ABS / AS resin, One or more resins selected from MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), styrene block copolymer resin, and the like may be included.
  • PPE polyphenylene ether
  • PET polyethylene terephthalate
  • PET polyethylene naphthalate
  • polyether sulfone polyether sulfone
  • ABS / AS resin One or more resins selected from MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), styrene block copolymer resin, and the like may be included.
  • the transparent resin support 1 used in the present invention is a cellulose ester
  • a lower fatty acid ester is preferable, and cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate propionate butyrate, or the like is preferable.
  • the cellulose ester used in the present invention preferably has an acyl group substitution degree of 2.85 to 3.00 because the degree of plane orientation can be kept lower, and particularly preferably 2.92 to 3.00.
  • the method for measuring the substitution degree of the acyl group can be measured in accordance with the provisions of ASTM-D817-96.
  • a cellulose ester having a polymerization degree of 250 to 400 is preferably used, and cellulose triacetate is particularly preferably used.
  • the number average molecular weight Mn of the cellulose ester according to the present invention is preferably 70000 to 250,000, since it is excellent in mechanical strength and has an appropriate dope viscosity, and more preferably 80000 to 150,000.
  • a cellulose ester having a ratio Mw / Mn to the weight average molecular weight Mw of 1.0 to 5.0 is preferably used.
  • the in-plane retardation value Ro is 0 to 150 nm at a measurement wavelength of 589 nm of the transparent resin support. It can be adjusted within the range, that is, it is preferable because it can be obtained as a low retardation film frequently used in display applications, which is the main application form of the present invention.
  • the retardation value of the transparent resin support can be controlled by selection of the resin material, the draw ratio during film formation, and the like. Specifically, it can be controlled to an arbitrary value by appropriately selecting the stretching ratio in the longitudinal direction and the transverse direction, and the in-plane retardation value Ro and the thickness direction retardation value Rt are 23 ° C. ⁇ 55. In an environment of% RH, it can be measured by a phase difference measuring device “KOBRA-21ADH” (manufactured by Oji Scientific Instruments).
  • the transparent resin support 1 of the present invention preferably has high transparency to visible light, and the average transmittance of light having a wavelength of 450 to 800 nm is preferably 70% or more, more preferably 80% or more. And more preferably 85% or more.
  • the average light transmittance of the transparent resin support 1 is 70% or more, the light transmittance of the transparent conductive film 100 is likely to increase.
  • the average absorptance of light having a wavelength of 450 to 800 nm of the transparent resin support 1 is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
  • the average transmittance is measured by making light incident from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent resin support 1.
  • the average absorptance is measured by measuring the average reflectance of the transparent substrate 1 by making light incident from the same angle as the average transmittance.
  • Average absorptance 100 ⁇ (average transmittance + average reflectance) (%) Calculate as Average transmittance and average reflectance are measured with a spectrophotometer.
  • the surface roughness Ra of the transparent resin support is preferably 3.5 nm or less on both surfaces of the transparent resin support, more preferably. Is 3.0 nm or less.
  • the surface roughness Ra of the transparent resin support is 3.5 nm or less on both surfaces of the transparent resin support, the haze value is reduced and a transparent resin support excellent in transparency can be obtained.
  • the surface roughness Ra refers to the arithmetic average roughness in JIS B0601: 2001.
  • the haze value of the transparent resin support 1 of the present invention is preferably 0.01 to 2.5 (%), more preferably 0.1 to 1.2 (%).
  • the haze value of a transparent conductive film is suppressed as the haze value of a support body is 2.5 (%) or less.
  • the haze value of the transparent resin support is measured with a haze meter “model: NDH 2000” (manufactured by Nippon Denshoku Co., Ltd.).
  • the refractive index of light having a wavelength of 570 nm of the transparent resin support 1 is preferably 1.40 to 1.95, more preferably 1.45 to 1.75, and still more preferably 1.45 to 1.70. It is.
  • the refractive index of the transparent resin support is usually determined by the material of the support.
  • the refractive index of the transparent resin support is measured with an ellipsometer at 23 ° C. and 55% RH.
  • the thickness of the transparent resin support 1 is preferably 1 ⁇ m to 20 mm, more preferably 10 ⁇ m to 2 mm.
  • the thickness of the transparent resin support is 1 ⁇ m or more, the strength of the transparent resin support 1 is increased, and the first high refractive index layer 2 is difficult to be cracked or torn.
  • the thickness of the transparent resin support 1 is 20 mm or less, the flexibility of the transparent conductive film 100 is sufficient.
  • the thickness of the apparatus using the transparent conductive film 100 can be reduced.
  • the apparatus using the transparent conductive film 100 can also be reduced in weight.
  • the high refractive index layer in the present invention is a layer containing a high refractive index material and means a layer having a refractive index higher than that of the transparent resin support 1.
  • the first high refractive index layer 2 is a layer that adjusts the light transmission (optical admittance) of the conductive region a of the transparent conductive film, that is, the region where the transparent conductive layer 3 is formed, and at least the transparent conductive film 100. Formed in the conductive region a.
  • the first high-refractive index layer 2 has a function of protecting the transparent conductive layer from moisture, sulfide, sulfur-containing components, etc. in the atmosphere, so that it is also formed in the insulating region b of the transparent conductive film 100. It is preferable that
  • the first high refractive index layer and the second high refractive index layer is a layer containing zinc sulfide, and the first high refractive index layer and the second high refractive index layer
  • the first high refractive index layer 2 is preferably a layer containing zinc sulfide (ZnS).
  • ZnS zinc sulfide
  • the first high refractive index layer 2 may contain other dielectric material or oxide semiconductor material together with zinc sulfide.
  • the refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained together with zinc sulfide is preferably 0.1 to 1.1 higher than the refractive index of light having a wavelength of 570 nm of the transparent resin support 1. More preferably, it is larger by 4 to 1.0.
  • the specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the first high refractive index layer 2 is preferably larger than 1.5, and is 1.7 to 2.5. More preferably, it is 1.8 to 2.5.
  • the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the first high refractive index layer 2.
  • the refractive index of the first high refractive index layer 2 is adjusted by the refractive index of the material included in the first high refractive index layer 2 and the density of the material included in the first high refractive index layer 2.
  • the refractive index is measured with an ellipsometer in an environment of 23 ° C. and 55% RH.
  • the first high refractive index layer is preferably a layer containing zinc sulfide, and the composition ratio at this time is 50 or more and less than 100 sulfur atoms with respect to 100 zinc atoms. .
  • the number of sulfur atoms is 83 or more and 90 or less with respect to 100 zinc atoms.
  • the number of sulfur atoms and the number of zinc atoms contained in the zinc sulfide contained in the first high refractive index layer can be analyzed using an ICP emission spectroscopic analyzer. Specifically, it can be analyzed by performing as follows.
  • a zinc standard solution for atomic absorption analysis 1000 mg / l (manufactured by Kanto Chemical Co., Inc.) is used as a reference for zinc, and a sulfur standard solution Sulfur 1000 mg / l (SPEX) is used for sulfur.
  • the measurement wavelength is 213.924 nm for zinc and 180.734 nm for sulfur.
  • the ratio of the number of zinc atoms and the number of sulfur atoms contained in the first high refractive index layer can be controlled by co-evaporating or co-sputtering zinc sulfide and zinc and adjusting the respective conditions. it can.
  • a reactive sputtering method can be used to obtain a composition containing a large amount of sulfur, for example, zinc sulfide (ZnS) while blowing hydrogen sulfide (H 2 S) gas diluted with Ar gas into a vacuum chamber. It is also possible to control by sputtering using as a target.
  • ZnS zinc sulfide
  • H 2 S hydrogen sulfide
  • a sputtering target obtained mainly as a sintered body which is adjusted to an appropriate elemental composition ratio in obtaining a desired composition in the formed layer, is prepared and used. It is simple and at the same time has excellent production process compatibility. Such sintered bodies having different elemental composition ratios can be obtained as commercial products.
  • an oxide or nitride is preferable as a material used with the said zinc sulfide.
  • the oxide is particularly preferably silicon dioxide (SiO 2 ).
  • the nitride include silicon nitride (Si 3 N 4 , SiN), aluminum nitride (AlN), titanium nitride (TiN), and the like.
  • ZnS zinc sulfide
  • SiO 2 silicon dioxide
  • sputtering using a zinc sulfide (ZnS) target containing silicon dioxide (SiO 2 ) at an appropriate concentration This can be performed by using a co-sputtering method using silicon (SiO 2 ) and zinc sulfide (ZnS) targets simultaneously.
  • silicon dioxide is contained in the high refractive index layer containing zinc sulfide (ZnS) at a concentration of 5 to 30 volume percent or less, the internal structure of the layer becomes close to amorphous and the flexibility can be improved.
  • ZnS zinc sulfide
  • Zinc sulfide is a material having a strong covalent bond, but when it is obtained in a state deviating from the stoichiometric composition ratio, the internal structure of the layer is considered to be crystalline with many grain boundaries. At this time, the properties of the obtained layer are hard and brittle, and in addition, the adhesion strength is inferior.
  • transparent conductive films are often unwound between roll-to-roll processes and handled while being repeatedly wound. Therefore, if the film is crystalline in this process, fine cracks originate from the grain boundaries. As a result, the sealing performance of the transparent conductive layer is impaired, so that flexibility is very preferable.
  • the flexible layer obtained by containing silicon dioxide also has excellent followability to the thermal expansion of the support made of resin, so it can also reduce the occurrence of fine cracks and is reliable under temperature stress Is still preferable.
  • silicon dioxide is contained at a concentration of 5 to 30 volume percent as described above.
  • the layer thickness of the first high refractive index layer 2 is preferably 15 to 150 nm, more preferably 20 to 80 nm.
  • the layer thickness of the first high refractive index layer 2 is 15 nm or more, the optical admittance of the conductive region a of the transparent conductive film 100 is sufficiently adjusted by the first high refractive index layer 2.
  • the thickness of the first high refractive index layer 2 is 150 nm or less, the light transmittance of the region including the first high refractive index layer 2 is unlikely to decrease.
  • the layer thickness of the first high refractive index layer 2 is measured by an ellipsometer “multi-incidence angle spectroscopic ellipsometer VASE (registered trademark)” (manufactured by JA Woollam).
  • the first high refractive index layer 2 is formed by a general vapor deposition method (also called a deposition method or a vapor deposition method) such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like. It can be a layer formed of From the standpoint that the refractive index (density) of the first high refractive index layer 2 is increased, the first high refractive index layer 2 is preferably a layer formed by an electron beam evaporation method or a sputtering method. In the case of the electron beam evaporation method, it is desirable to have assistance such as IAD (ion assist) in order to increase the density of the layer.
  • IAD ion assist
  • the patterning method is not particularly limited.
  • the first high refractive index layer 2 may be, for example, a layer formed in a pattern by a vapor deposition method by placing a mask or the like having a desired pattern on the deposition surface. It may be a layer patterned by a method.
  • the anti-sulfurization layer 5a preferably includes the anti-sulfuration layer 5a containing zinc oxide or gallium oxide.
  • the first sulfurization preventing layer 5a has a function of preventing diffusion of sulfides and sulfur-containing components from the first high refractive index layer.
  • the first sulfidation preventing layer 5a may also be formed in the insulating region b of the transparent conductive film 100.
  • the transparent conductive layer is made transparent from moisture, sulfide, sulfur-containing components, etc. in the atmosphere. Since it has a function of protecting the layer, it is preferably formed also in the insulating region b.
  • the first antisulfurization layer 5a is a layer that preferably contains zinc oxide or gallium oxide, and may be a layer that contains a metal oxide, a metal nitride, a metal fluoride, or the like.
  • the first sulfidation preventing layer 5a may contain only one kind or two or more kinds. However, when the first high refractive index layer 2, the first sulfidation preventing layer 5a, and the transparent conductive layer 3 are continuously formed, the metal oxide can react with sulfur or adsorb sulfur. A compound is preferred. In the case where the metal oxide is a compound that reacts with sulfur, the reaction product of the metal oxide and sulfur preferably has high visible light permeability.
  • metal oxides include zinc oxide (ZnO) and gallium oxide (Ga 2 O 3 ), titanium dioxide (TiO 2 ), indium tin oxide (ITO), niobium oxide (Nb 2 O 5 ), Zirconium oxide (ZrO 2 ), cerium oxide (CeO 2 ), tantalum pentoxide (Ta 2 O 5 ), titanium pentoxide (Ti 3 O 5 ), titanium heptoxide (Ti 4 O 7 ), titanium trioxide (Ti 2) O 3 ), titanium oxide (TiO), tin dioxide (SnO 2 ), lanthanum titanium oxide (La 2 Ti 2 O 7 ), indium / zinc oxide (IZO), aluminum / zinc oxide (AZO), gallium / zinc oxide (GZO), antimony tin oxide (ATO), indium cerium oxide (ICO), bismuth oxide (Bi 2 O 3), gallium Indium, and amorphous oxide composed of oxygen (a-GIO), germanium oxide (GeO 2),
  • metal fluorides include lanthanum fluoride (LaF 3 ), barium fluoride (BaF 2 ), sodium aluminum fluoride (Na 5 Al 3 F 14 , Na 3 AlF 6 ), aluminum fluoride (AlF 3 ), Includes magnesium fluoride (MgF 2 ), calcium fluoride (CaF 2 ), barium fluoride (BaF 2 ), cerium fluoride (CeF 3 ), neodymium fluoride (NdF 3 ), yttrium fluoride (YF 3 ), etc. It is.
  • LaF 3 lanthanum fluoride
  • BaF 2 barium fluoride
  • Na 5 Al 3 F 14 sodium aluminum fluoride
  • AlF 3 aluminum fluoride
  • MgF 2 magnesium fluoride
  • CaF 2 calcium fluoride
  • BaF 2 barium fluoride
  • CeF 3 cerium fluoride
  • NdF 3 neodymium fluoride
  • YF 3 yttrium
  • metal nitride examples include silicon nitride (Si 3 N 4 , SiN), aluminum nitride (AlN), titanium nitride (TiN), and the like.
  • the layer may be formed by sputtering using a target in which the respective materials are mixed in a desired ratio. it can. Moreover, a layer can be formed by using each target simultaneously and using a co-sputtering method.
  • the layer thickness of the first sulfidation preventing layer 5a is preferably a layer thickness capable of protecting the surface of the first high refractive index layer 2 from an impact when forming the transparent conductive layer 3 described later.
  • zinc oxide or gallium oxide that can be contained in the first high refractive index layer has a high affinity with the metal contained in the transparent conductive layer 3. Therefore, if the thickness of the first anti-sulfurization layer 5a is very thin and a part of the first high refractive index layer 2 is slightly exposed, a transparent metal film of the transparent conductive layer grows around the exposed part.
  • the transparent conductive layer 3 tends to be dense. That is, the first sulfidation preventing layer 5a is preferably relatively thin, preferably 0.1 to 5.0 nm, and more preferably 0.5 to 2.0 nm.
  • the first antisulfurization layer 5a is a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like.
  • the first antisulfurization layer 5a is a layer patterned into a desired shape
  • the patterning method is not particularly limited.
  • the first sulfidation preventing layer 5a may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the deposition surface, and may be a known etching method. It may be a layer patterned by.
  • the transparent conductive layer 3 is a layer for conducting electricity in the transparent conductive film 100. As described above, the transparent conductive layer 3 may be formed on the entire surface of the transparent resin support 1, or may be patterned into a desired shape.
  • the transparent conductive layer 3 is a layer containing silver and may contain other metals.
  • the metal used together with silver is not particularly limited as long as it is a metal having high transparent conductivity.
  • gold, copper, nickel, palladium, platinum, zinc, aluminum, manganese, germanium, bismuth, neodymium, and molybdenum are preferable.
  • the transparent conductive layer 3 may contain only one kind of these metals or two or more kinds. From the viewpoint of conductivity, the transparent conductive layer preferably contains an alloy containing 90 atm% or more of silver. When silver is contained at 90 atm% or more, excellent conductivity and high durability can be obtained.
  • the above highly conductive metal when at least one kind of the above highly conductive metal is contained within the above range, predetermined conductivity can be secured even if the thickness of the transparent conductive layer is reduced, and it is contained in the transparent conductive layer.
  • the effect of preventing silver deterioration is obtained and the reliability is improved.
  • the sulfidation resistance of the transparent metal layer is increased.
  • salt resistance (NaCl) resistance increases.
  • silver and copper are combined, the oxidation resistance increases.
  • the layer thickness of the transparent conductive layer of the present invention is preferably in the range of 3 to 15 nm, more preferably in the range of 5 to 13 nm. The desired transparency and plasmon absorption rate can be ensured by this layer thickness.
  • the plasmon absorption rate of the transparent conductive layer 3 is preferably 10% or less (over the entire range) over a wavelength range of 400 to 800 nm, more preferably 7% or less, and even more preferably 5% or less.
  • the transparent conductive layer 3 can be a layer formed by any forming method, but in order to change the average transmittance of the transparent conductive layer, it is formed on a layer formed by sputtering or an underlayer described later. It is preferable that it is a layer.
  • the material collides with the deposition target at high speed, so that a dense and smooth layer can be easily obtained, and the light transmittance of the transparent conductive layer 3 is likely to be increased.
  • the transparent conductive layer 3 is a layer formed by sputtering, the transparent conductive layer 3 is hardly corroded even in an environment of high temperature and low humidity.
  • the type of the sputtering method is not particularly limited, and may be an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, a bias sputtering method, a counter sputtering method, or the like.
  • the transparent conductive layer 3 is particularly preferably a layer formed by a counter sputtering method. When the transparent conductive layer 3 is a layer formed by the facing sputtering method, the transparent conductive layer 3 becomes dense and the surface smoothness is likely to increase. As a result, the surface electrical resistance of the transparent conductive layer 3 becomes lower and the light transmittance is likely to increase.
  • Second anti-sulfur layer> When the second high-refractive index layer to be described later is a zinc sulfide-containing layer, as shown in FIG. 1, zinc oxide, gallium / zinc oxide is interposed between the transparent conductive layer 3 and the second high-refractive index layer 4. Or it is preferable that the 2nd sulfide prevention layer 5b containing a gallium oxide is contained.
  • the second sulfidation preventing layer 5b may be formed also in the insulating region b of the transparent conductive film 100, but from the viewpoint of making it difficult to visually recognize the pattern formed of the conductive region a and the insulating region b, only the conductive region a. It is preferable to be formed.
  • the second anti-sulfurization layer 5b is a layer containing zinc oxide, gallium / zinc oxide or gallium oxide, and may be a layer containing metal oxide, metal nitride, metal fluoride or the like. In addition to zinc oxide, only one of these may be contained in the second sulfurization prevention layer 5b, or two or more thereof may be contained.
  • the metal oxide, metal nitride, and metal fluoride may be the same as the metal oxide, metal nitride, and metal fluoride contained in the first high refractive index layer 2 described above. Among these, a layer containing zinc oxide is preferable.
  • the layer may be formed by sputtering using a target in which the respective materials are mixed in a desired ratio. it can. Moreover, a layer can be formed by using each target simultaneously and using a co-sputtering method.
  • the thickness of the second antisulfurization layer 5b is preferably a thickness capable of protecting the surface of the transparent conductive layer 3 from damage during the formation of the second high refractive index layer 4 described later.
  • the metal contained in the transparent conductive layer 3 and the ZnS contained in the second high refractive index layer 4 have high affinity. Therefore, if the thickness of the second antisulfurization layer 5b is very thin and a part of the transparent conductive layer 3 is slightly exposed, the transparent conductive layer 3, the second antisulfurization layer 5b, and the second high refractive index layer. Adhesion with 4 tends to increase.
  • the specific layer thickness of the second sulfidation preventing layer 5b is preferably 0.1 to 5.0 nm, and more preferably 0.5 to 2.0 nm.
  • the layer thickness of the second sulfurization preventing layer 5b is measured with an ellipsometer.
  • the second antisulfurization layer 5b may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like.
  • a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like.
  • the second antisulfurization layer 5b is a layer patterned into a desired shape
  • the patterning method is not particularly limited.
  • the second antisulfurization layer 5b may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the deposition surface, and may be a known etching method. It may be a layer patterned by.
  • the second high refractive index layer 4 is a layer for adjusting the light transmittance (optical admittance) of the conductive region a of the transparent conductive film 100, that is, the region where the transparent conductive layer 3 is formed.
  • the conductive film 100 is formed in the conduction region a.
  • the second high-refractive index layer 4 may be formed in the insulating region b of the transparent conductive film 100, but from the viewpoint of making it difficult to visually recognize the pattern composed of the conductive region a and the insulating region b, only the conductive region a. Preferably it is formed. Since the second high refractive index layer 4 makes it difficult for water molecules and sulfide molecules to pass through from the atmosphere side, it has an effect of suppressing the corrosion of the transparent conductive layer 3.
  • the second high refractive index layer 4 is a layer containing a high refractive index material, and is a layer having a refractive index higher than the refractive index of the transparent resin support 1 described above, and one of the first high refractive index layers.
  • the layer is a layer containing zinc sulfide (ZnS).
  • the second high refractive index layer 4 may include zinc sulfide or other dielectric material or oxide semiconductor material.
  • the refractive index of light having a wavelength of 570 nm of zinc sulfide or other dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 higher than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1. More preferably, it is larger by 1.0.
  • the specific refractive index of light having a wavelength of 570 nm of the dielectric material or the oxide semiconductor material contained in the second high refractive index layer 4 is preferably larger than 1.5 and is 1.7 to 2.5. More preferably, it is 1.8 to 2.5.
  • the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the optical admittance of the conductive region a of the transparent conductive film 100 is sufficiently adjusted by the second high refractive index layer 4.
  • the refractive index of the second high refractive index layer 4 is adjusted by the refractive index of the material included in the second high refractive index layer 4 and the density of the material included in the second high refractive index layer 4.
  • the dielectric material or oxide semiconductor material contained in the second high refractive index layer 4 may be an insulating material or a conductive material.
  • the dielectric material or oxide semiconductor material can be a metal oxide.
  • metal oxides include silicon dioxide (SiO 2 ), titanium dioxide (TiO 2 ), ITO (indium tin oxide), zinc oxide (ZnO), niobium oxide (Nb 2 O 5 ), zirconium oxide (ZrO 2 ), cerium oxide (CeO 2 ), tantalum pentoxide (Ta 2 O 5 ), titanium pentoxide (Ti 3 O 5 ), titanium heptoxide (Ti 4 O 7 ), titanium trioxide (Ti 2 O 3 ), Titanium oxide (TiO), tin dioxide (SnO 2 ), lanthanum titanium oxide (La 2 Ti 2 O 7 ), indium zinc oxide (IZO), aluminum zinc oxide (AZO), gallium zinc oxide ( GZO), antimony tin oxide (ATO), indium cerium oxide
  • ITO indium / zinc oxide
  • IZO indium / zinc oxide
  • GZO gallium / zinc oxide
  • IGZO indium / gallium / zinc oxide
  • zinc sulfide (ZnS) is particularly preferable as the dielectric material or oxide semiconductor material contained in the second high refractive index layer 4.
  • zinc sulfide (ZnS) is contained in the second high refractive index layer 4, water molecules and sulfide molecules are hardly transmitted from the transparent resin support 1 side, and corrosion of the transparent conductive layer 3 is suppressed.
  • the second high refractive index layer may contain only zinc sulfide (ZnS).
  • ZnS zinc sulfide
  • the composition ratio at this time is 50 or more and less than 100 sulfur atoms with respect to 100 zinc atoms.
  • the number of sulfur atoms is 83 or more and 90 or less with respect to 100 zinc atoms.
  • the second high refractive index layer 4 may contain other materials together with zinc sulfide (ZnS).
  • Materials included with zinc sulfide (ZnS) may be an oxide semiconductor material oxide or silicon dioxide (SiO 2) and the like, particularly preferably silicon dioxide (SiO 2).
  • SiO 2 silicon dioxide
  • the second high refractive index layer is likely to be amorphous, and the flexibility of the transparent conductor is likely to be enhanced.
  • the composition ratio at this time is the same as that of zinc sulfide (ZnS) alone, and the composition ratio is preferably 50 or more and less than 100 sulfur atoms with respect to 100 zinc atoms. More preferably, the number of sulfur atoms is 83 or more and 90 or less with respect to 100 zinc atoms.
  • the amount of zinc sulfide (ZnS) is 0.1 to 95 with respect to the total volume of the second high refractive index layer 4.
  • the volume is preferably 50%, more preferably 50 to 90% by volume, and still more preferably 60 to 85% by volume.
  • the ratio of ZnS is high, the sputtering rate increases and the formation rate of the second high refractive index layer 4 increases.
  • the amorphous nature of the second high refractive index layer 4 increases, and cracking of the second high refractive index layer 4 is suppressed.
  • a method for controlling the composition of zinc sulfide and silicon dioxide (SiO 2 ) within the above range for example, a sputtering method using a zinc sulfide (ZnS) target containing silicon dioxide (SiO 2 ) at an appropriate concentration, This can be performed by utilizing a co-sputtering method using silicon dioxide (SiO 2 ) and zinc sulfide (ZnS) targets simultaneously.
  • ZnS zinc sulfide
  • the second high refractive index layer is likely to be amorphous, and the flexibility of the transparent conductive film is likely to be enhanced.
  • the ratio of ZnS is high, the sputtering rate increases and the formation rate of the second high refractive index layer 4 increases.
  • the amount of components other than ZnS increases, the amorphousness of the second high refractive index layer 4 increases, and cracking of the second high refractive index layer 4 is suppressed.
  • the layer thickness of the second high refractive index layer 4 is preferably 15 to 150 nm, and more preferably 20 to 80 nm. When the layer thickness of the second high refractive index layer 4 is 15 nm or more, the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the second high refractive index layer 4. On the other hand, if the layer thickness of the second high refractive index layer 4 is 150 nm or less, the light transmittance of the region including the second high refractive index layer 4 is unlikely to decrease. The layer thickness of the second high refractive index layer 4 is measured with an ellipsometer.
  • the formation method of the second high refractive index layer 4 is not particularly limited, and is a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like. It can be. From the viewpoint that the moisture permeability of the second high refractive index layer 4 is lowered, the second high refractive index layer 4 is particularly preferably a film formed by a sputtering method.
  • the patterning method is not particularly limited.
  • the second high refractive index layer 4 may be, for example, a layer formed in a pattern by a vapor deposition method by disposing a mask having a desired pattern on the deposition surface.
  • the layer patterned by the well-known etching method may be sufficient.
  • Hard coat layer> A hard coat layer is provided on at least one surface of the transparent resin support, preferably on the transparent conductive layer side, for the purpose of preventing scratches on the surface of the transparent resin support during the production of the transparent conductive film. It is preferable.
  • the film By providing a hard coat layer on at least one surface of the transparent resin support, the film can be wound, conveyed, and unwound in the production process of the transparent conductive film of the present invention from the time of forming the transparent resin support. It has the effect of preventing the occurrence of scratches due to surface pressure and friction between the film surfaces.
  • the hard coat layer is provided by applying and drying an ultraviolet curable acrylate resin and then curing with an ultraviolet light source.
  • the layer thickness of the hard coat layer is preferably in the range of 0.2 to 5.0 ⁇ m, and if the layer thickness of the hard coat layer is in the above range, a sufficient scratch resistance effect can be obtained. Scratches can be prevented and sufficient transparency can be obtained when a transparent conductive film is formed.
  • the hard coat layer can be produced by laminating a SiO 2 thin film by a CVD method, a sputtering method, a vapor deposition method or the like with a layer thickness of 100 nm or less in addition to the application.
  • Anti-blocking layer A blocking prevention layer having a 10-point average roughness Rz of 50 nm or less is provided on the surface of the transparent conductive film of the present invention opposite to the surface provided with the transparent conductive layer of the transparent resin support. preferable.
  • the anti-blocking layer is used to prevent sticking between films when winding and handling the film. This is done by providing an arbitrary roughness on the surface of the film and filling this gap with air. It is possible to prevent sticking between films during unwinding and winding operations.
  • the anti-blocking layer can be provided by applying a coating liquid in which fine particles are mixed with a resin such as an acrylate resin.
  • a resin such as an acrylate resin.
  • resin fine particles can be used as the fine particles.
  • the average particle diameter of the fine particles is preferably within the range of 10 to 300 nm.
  • each thin film layer of a high refractive index layer, an antisulfurization layer and a transparent conductive layer provided on a transparent resin support is formed by a sputtering method or a vapor deposition method. Is preferred.
  • productivity is improved and an effect suitable for mass production is obtained.
  • the value obtained by the present invention is not impaired even if it is based on any other thin layer manufacturing method such as chemical vapor deposition (CVD).
  • the transparent conductive layer is divided into a plurality of conductive regions a and a line-shaped insulating region that divides the conductive regions a. It is preferable to pattern it into a predetermined shape including b.
  • Examples of the deterioration factor of the transparent conductive layer containing silver include moisture and sulfide contained in the atmosphere. These are taken into the transparent resin support and the hard coat layer, and pass through the hard coat layer to reach the transparent conductive layer. Therefore, the transparent resin support and the hard coat layer alone do not provide sufficient silver protective function for the transparent conductive layer. Therefore, if there is a first high refractive index layer, preferably a first antisulfurization layer, the antisulfurization layer is included. From the viewpoint of preventing the deterioration of the transparent conductive layer, it is preferable to leave it on the transparent resin support without being patterned.
  • a known method can be used as a method of patterning the transparent conductive layer. Specifically, such a patterning method can be performed as follows.
  • the photolithographic method applied to the present invention includes resist coating such as curable resin, preheating, exposure, development (removal of uncured resin), rinsing, etching treatment with an etching solution, and resist stripping.
  • resist coating such as curable resin, preheating, exposure, development (removal of uncured resin), rinsing, etching treatment with an etching solution, and resist stripping.
  • the transparent conductive layer is processed into a desired pattern as shown in FIG.
  • a conventionally known general photolithography method can be used as appropriate.
  • the resist either positive or negative resist can be used.
  • preheating or prebaking can be performed as necessary.
  • a pattern mask having a desired pattern may be disposed, and light having a wavelength suitable for the resist used, generally ultraviolet rays, electron beams, or the like may be irradiated thereon.
  • development is performed with a developer suitable for the resist used.
  • a resist pattern is formed by stopping development with a rinse solution such as water and washing.
  • a rinse solution such as water and washing.
  • the formed resist pattern is pretreated or post-baked as necessary, and then is etched with an etching solution containing an organic solvent to dissolve the intermediate layer in a region not protected by the resist and to form a silver thin film electrode Remove.
  • the photolithography method applied to the present invention is a method generally recognized by those skilled in the art, and the specific application mode is easily selected by those skilled in the art according to the intended purpose. be able to.
  • FIG. 4 is a process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by a photolithography method.
  • the transparent resin support 1 As a first step, as shown in FIG. 4A, on the transparent resin support 1, the first high refractive index layer 2, the first antisulfurization layer 5a, the transparent conductive layer 3, the second antisulfurization layer 5b, the second high A transparent conductive film 100 in which the refractive index layer 4 is laminated in this order is produced.
  • a resist film 6 composed of a photosensitive resin composition or the like is uniformly coated on the transparent conductive film 100.
  • a photosensitive resin composition a negative photosensitive resin composition or a positive photosensitive resin composition can be used.
  • a coating method it is applied on the transparent conductive film 100 by a known method such as microgravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating, slit coating, hot plate, oven, etc. It can be pre-baked with a heating device. Pre-baking can be performed, for example, using a hot plate or the like in the range of 50 ° C. or higher and 150 ° C. or lower for 30 seconds to 30 minutes.
  • an exposure machine such as a stepper, a mirror projection mask aligner (MPA), a parallel light mask aligner, or the like is used through a mask 7 made with a predetermined electrode pattern to obtain 10 to 4000 J / mm.
  • the resist film 6A to be removed in the next step is irradiated with light of about m 2 (wavelength 365 nm exposure amount conversion).
  • the exposure light source is not limited, and ultraviolet rays, electron beams, KrF (wavelength 248 nm) laser, ArF (wavelength 193 nm) laser, and the like can be used.
  • the exposed transparent conductive film is immersed in a developing solution to dissolve the resist film 6A in the region irradiated with light.
  • the developing method it is preferable to immerse in the developer for 5 seconds to 10 minutes by a method such as showering, dipping or paddle.
  • a known alkali developer can be used. Specific examples include inorganic alkalis such as alkali metal hydroxides, carbonates, phosphates, silicates and borates, amines such as 2-diethylaminoethanol, monoethanolamine and diethanolamine, tetramethylammonium hydroxide. Examples thereof include aqueous solutions containing one or more quaternary ammonium salts such as side and choline.
  • d is the thickness of the support
  • Ro is the in-plane retardation
  • Rt is the retardation in the thickness direction.
  • Ro and Rt are values at a measurement wavelength of 589 nm and are representative values.
  • APC Furuya Metal "Ag alloy” (containing Pd and Cu) 8).
  • APC-TR “Ag alloy” made of Furuya Metal (containing Pd and Cu) 9.
  • APC-SR Furuya Metal's “Ag alloy” (containing Pd and Cu) The above three grade alloys have different compositions.
  • IZO indium / zinc oxide 20.
  • GZO gallium / zinc oxide
  • IGZO indium gallium zinc oxide 22.
  • TiN titanium nitride 23.
  • Ga 2 O 3 Gallium oxide 24.
  • Bi 2 O 3 Bismuth oxide 25.
  • ZnS Sintered body in which the composition of Zn and S is adjusted 26.
  • ZnS—SiO 2 a mixture in which the composition of ZnS and SiO 2 is adjusted 27.
  • ZnO—Ga 2 O 3 a mixture in which the composition of ZnO and Ga 2 O 3 is adjusted 28.
  • ZnO—SiN a mixture in which the composition of ZnO and SiN is adjusted 29.
  • Ga 2 O 3 —SiN mixture in which the composition of Ga 2 O 3 and SiN is adjusted 30.
  • ZnS—ZnO a mixture in which the composition of ZnS and ZnO is adjusted 31.
  • ZnS—SiN mixture in which the composition of ZnS and SiN is adjusted 32.
  • ZnS—TiN a mixture in which the composition of ZnS and TiN is adjusted 33.
  • ZnS—Bi 2 O 3 A mixture in which the composition of ZnS and Bi 2 O 3 is adjusted.
  • the ZnS of 26, 30 to 33 is the same as 25, using a sintered body in which the composition of Zn and S is adjusted. A mixture was obtained.
  • a ZnS target with an adjusted composition is placed on the cathode, and the target-side power is 150 W so that the overall formation rate is 3.0 ⁇ / sec (0.3 nm / sec) at Ar 20 sccm, sputtering pressure 0.2 Pa, and room temperature.
  • a first high refractive index layer having a layer thickness of 40.0 nm was formed.
  • RF power was supplied to the cathode.
  • the distance between the target and the substrate was 90 mm. According to the composition analysis test described later, the composition ratio of Zn and S at this time was 83 with respect to 100 Zn atoms.
  • the transparent conductive films 2 to 36 of the present invention and the transparent conductive film 101 of the comparative example were used in the same manner as the transparent conductive film 1 except that the configurations shown in Tables 1 and 2 were used. To 107 were produced.
  • adjustment of each elemental composition ratio of zinc and sulfur in the first high refractive index layer and the second term refractive index layer is performed by adjusting the element composition ratio of the desired ratio in the formed layer. This was done by sputtering using the body as a target. Moreover, also about formation of the layer containing two types of materials in each other layer, it sputters using the mixture prepared beforehand as a target so that each material may become the ratio indicated in Table 1 and Table 2 as a target. To form a layer.
  • composition ratio analysis of the number of zinc and sulfur atoms For quantitative elemental analysis of zinc and sulfur, a reference sample in which a predetermined ZnS thin layer was formed as a single layer on BK7 glass was prepared, and ultra-high purity hydrogen peroxide (manufactured by Kanto Chemical Co., Ltd.) was used for these samples. For each element contained in a 20 ml solution obtained by sufficiently dissolving the ZnS layer using a solution and diluting with ultrapure water, a matrix using an ICP emission spectroscopic analyzer “SPS3520UV” manufactured by Hitachi High-Tech Science Co., Ltd. is used. Matching was done.
  • zinc reference solution for atomic absorption analysis 1000 mg / l (manufactured by Kanto Chemical Co., Inc.) was used for zinc as a reference, and sulfur standard solution Sulfur 1000 mg / l (SPEX) was used for sulfur.
  • the measurement wavelength is 213.924 nm for zinc and 180.734 nm for sulfur.
  • a solution sample obtained by performing the same treatment on clean BK7 glass was analyzed, and it was confirmed that the zinc and sulfur components as background noise that hinder the test were below the detection limit.
  • Conductivity evaluation surface resistance
  • the conductivity of the transparent conductive film was evaluated using a low resistivity meter “Loresta-EP” (manufactured by Mitsubishi Chemical Analytech Co., Ltd.).
  • the average transmittance is measured by making light incident from an angle inclined by 5 ° with respect to the normal of the surface of the transparent conductive film on the transparent resin support side.
  • the average absorptivity is measured by measuring the average reflectance of the transparent conductive film by making light incident from the same angle as the average transmittance.
  • Average absorptance 100 ⁇ (average transmittance + average reflectance) (%) Calculated as Average transmittance and average reflectance were measured with a spectrophotometer.
  • Average transmittance is 92% or more
  • Average transmittance is 90% or more and less than 92%
  • Average transmittance is 85% or more and less than 90%
  • Average transmittance is less than 85%
  • Reliability Acceleration Test In the reliability acceleration test (durability test), a small environmental tester “SH-222” (manufactured by ESPEC CORP.) was used and left in an environment of 80 ° C. and 85% RH for 168 hours. The above-described conductivity evaluation, transparency evaluation, and appearance evaluation were performed before and after this reliability acceleration test.
  • the transparent conductive films 1 to 36 of the present invention can provide a transparent conductive film having good conductivity and uniform transparency over the entire visible light range and having high durability.
  • the transparent conductive films 101 to 107 produced as comparative examples for the effects of the present invention tended to be inferior in initial performance in various characteristics as compared with the present invention.
  • the transparent conductive films 101 to 107 of the comparative example were evaluated to be the lowest in any of the three types of evaluation of conductivity, transparency, and appearance by performing a reliability acceleration test. This is in contrast to the fact that the transparent conductive films 1 to 36 of the present invention maintain a high evaluation after the reliability test.
  • the main factor is presumed to be the sulfur trapping function of the high refractive index layer, which is a feature of the present invention, and the protective function of the conductive layer by the antisulfurization layer.
  • the above comparative example is a transparent conductive layer provided by the present invention. It clearly shows the effect and superiority of the protective film.
  • the transparent conductive film of the present invention has good conductivity and transparency and high durability, and is used in various devices such as liquid crystal displays, plasma displays, inorganic and organic EL displays, touch panels, and solar cells. It can be suitably used.
  • Transparent conductive film 1 Transparent resin support body 2 1st high refractive index layer 3 Transparent conductive layer 4 2nd high refractive index layer 5a 1st sulfidation prevention layer 5b 2nd sulfidation prevention layer 6 Resist film 6A Resist film 7 to remove 8 Exposure unit EU Transparent electrode unit a Conduction area b Insulation area

Abstract

 The present invention addresses the problem of providing a transparent electroconductive film having good electroconductivity, uniform transparency across the entire visible light region, and high durability. This transparent electroconductive film has at least a first high refractive index layer, a transparent electroconductive layer, and a second high refractive index layer on a transparent resin support body in the stated order, wherein the transparent electroconductive film is characterized in that the transparent electroconductive layer contains silver, the first high refractive index layer and/or the second high refractive index layer contains zinc sulfide, and the proportion of the number of sulfur atoms contained in the zinc sulfide is equal to or greater than 50 and less than 100 to 100 zinc atoms.

Description

透明導電性フィルムTransparent conductive film
 本発明は、透明導電性フィルムに関し、更に詳しくは、良好な導電性と透明性を有し、かつ高い耐久性を有する透明導電性フィルムに関する。 The present invention relates to a transparent conductive film, and more particularly to a transparent conductive film having good conductivity and transparency and having high durability.
 近年、液晶ディスプレイやプラズマディスプレイ、無機及び有機EL(エレクトロルミネッセンス)ディスプレイ、タッチパネル、太陽電池等の各種装置に透明導電膜が使用されている。 In recent years, transparent conductive films have been used in various devices such as liquid crystal displays, plasma displays, inorganic and organic EL (electroluminescence) displays, touch panels, and solar cells.
 このような透明導電膜を構成する材料として、金、銀、白金、銅、ロジウム、パラジウム、アルミニウム、クロム等の金属やIn、CdO、CdIn、CdSnO、TiO、SnO、ZnO、ITO(インジウム・スズ酸化物)等の酸化物半導体が知られている。 As a material constituting such a transparent conductive film, metals such as gold, silver, platinum, copper, rhodium, palladium, aluminum, and chromium, In 2 O 3 , CdO, CdIn 2 O 4 , Cd 2 SnO 4 , and TiO 2 are used. , SnO 2 , ZnO, ITO (indium tin oxide) and other oxide semiconductors are known.
 ディスプレイ用途において、タッチパネル型の表示装置等では、表示素子の画像表示面上に、透明導電膜等からなる透明導電性フィルムが配置される。したがって、透明導電膜には、光の透過性が高いことが求められる。このような各種表示装置には、光透過性の高いITOからなる透明導電膜が多用されている。 In a display application, in a touch panel type display device or the like, a transparent conductive film made of a transparent conductive film or the like is disposed on an image display surface of a display element. Therefore, the transparent conductive film is required to have high light transmittance. In such various display devices, a transparent conductive film made of ITO having high light transmittance is often used.
 近年、スマートフォンなどの製品群において静電容量方式のタッチパネル表示装置が普及し、透明導電膜の表面電気抵抗をさらに低くすることが求められている。しかし、従来のITO膜では、表面電気抵抗を十分に下げられないという問題があった。 In recent years, capacitive touch panel display devices have become widespread in product groups such as smartphones, and it has been required to further reduce the surface electrical resistance of transparent conductive films. However, the conventional ITO film has a problem that the surface electric resistance cannot be sufficiently lowered.
 そこで、銀の蒸着膜を透明導電膜とすることが検討されている(例えば、特許文献1参照。)。また、透明導電体の光透過性を高めるため、銀の蒸着膜を屈折率の高い膜(例えば酸化ニオブ(Nb)、IZO(インジウム・亜鉛酸化物)、ICO(インジウム・セリウム酸化物)、a-GIO(ガリウム・インジウム及び酸素を含む非晶質酸化物)等からなる膜)で挟み込むことも提案されている(例えば、特許文献2~4参照。)。さらに、銀の蒸着膜を硫化亜鉛の膜で挟み込むことが提案されている(例えば、非特許文献1及び2参照。)。 Thus, it has been studied to use a silver deposited film as a transparent conductive film (see, for example, Patent Document 1). Further, in order to increase the light transmittance of the transparent conductor, a silver deposited film is formed of a film having a high refractive index (for example, niobium oxide (Nb 2 O 5 ), IZO (indium / zinc oxide), ICO (indium / cerium oxide). ) And a-GIO (a film made of gallium, indium and oxygen containing amorphous oxide) or the like) (see, for example, Patent Documents 2 to 4). Further, it has been proposed to sandwich a vapor deposited silver film with a zinc sulfide film (see, for example, Non-Patent Documents 1 and 2).
 以上のような銀薄膜を透明導電膜として設ける場合の課題として、銀自体の反応性による信頼性の不足がある。例えば、銀は雰囲気中の硫化物と容易に反応し着色することが知られている。 As a problem in providing the above-described silver thin film as a transparent conductive film, there is a lack of reliability due to the reactivity of silver itself. For example, it is known that silver easily reacts and colors with sulfides in the atmosphere.
 この着色現象は、バルクの銀においては表面に硫化銀の被膜が形成されてなる現象として理解されるものであるが、前述のように銀を蒸着などで得られる薄膜の形態で利用する透明導電膜においては、薄膜が有する特徴ゆえに顕著かつ重大な問題となる。 This coloring phenomenon is understood as a phenomenon in which a silver sulfide film is formed on the surface of bulk silver, but as described above, the transparent conductive material used in the form of a thin film obtained by vapor deposition of silver or the like. In the film, it becomes a significant and serious problem due to the characteristics of the thin film.
 すなわち、バルク固体に比して蒸着やスパッタリング法で得られる薄膜は、極めて微小な厚さ(深さ)と、極めて顕著なミクロポーラス性とを特徴としている。そのため、雰囲気中における硫化物をはじめとする銀を侵す各種成分が容易に銀薄膜全体に拡散し、銀の薄膜構造の界面に留まらず銀薄膜全体が変性する。そのため、透明導電膜の構成部材として要求される特性である導電性、透明性、光学特性の波長均一性の全てが損なわれることとなる。 That is, a thin film obtained by vapor deposition or sputtering as compared with a bulk solid is characterized by an extremely small thickness (depth) and an extremely remarkable microporous property. Therefore, various components that invade silver such as sulfides in the atmosphere easily diffuse throughout the silver thin film, and the entire silver thin film is modified not only at the interface of the silver thin film structure. For this reason, all of the characteristics required as a constituent member of the transparent conductive film, such as conductivity, transparency, and wavelength uniformity of optical characteristics, are impaired.
 銀薄膜を透明導電層として用いる場合には、光透過性を確保することの要請から、ミラーや表面加飾を目的とした場合に比べ、使用される膜厚はより薄く制限されるため、上記雰囲気成分による変性の影響は特に大きい。 When using a silver thin film as a transparent conductive layer, from the request to ensure light transmission, the film thickness used is limited to be thinner than that for mirror and surface decoration purposes. The influence of modification by atmospheric components is particularly great.
 このように、銀を薄膜の形態で用いる場合には雰囲気成分による劣化対策に特に注意が必要となるが、前述の文献に代表される従来の方法は、主に高い導電性と透過率を確保することに主眼を置いており、ここで我々が着目した前述のような銀薄膜の変性を防止するための対策は十分ではなかった。 As described above, when silver is used in the form of a thin film, special attention must be paid to measures against deterioration due to atmospheric components, but the conventional methods represented by the above-mentioned literature mainly ensure high conductivity and transmittance. However, the measures to prevent the above-mentioned silver thin film modification that we focused on were not sufficient.
 加えて、銀薄膜を挟み込む材料に硫化亜鉛などのイオウ含有物を用いる技術においては、硫化亜鉛に含まれるイオウにより、透明導電性部材形成過程において、銀が硫化されてしまうため、電気抵抗が大きくなってしまうばかりか透明性を損なうという問題があった。 In addition, in the technology using a sulfur-containing material such as zinc sulfide as a material for sandwiching the silver thin film, the sulfur contained in the zinc sulfide causes silver to be sulfided in the process of forming the transparent conductive member. As well as becoming a problem, transparency was impaired.
 一方、近年のタッチパネルを備えた情報機器は大画面化・軽量薄型化の要求と同時に、一層の画質の高さ、動作精度と応答速度を両立する必要に迫られた結果、高い電気伝導性と透明性の重要性はこれまで以上に増しており、さらにスマートフォンなどのように、民生用途においても広く用いられる傾向となった結果、あらゆる温湿度環境や雰囲気環境に耐え、上記導電性と透明性を長期使用期間にわたり確保することが強く求められている。 On the other hand, information devices equipped with touch panels in recent years have been required to achieve higher image quality, operational accuracy, and response speed at the same time as demands for larger screens, lighter weights and thinners. Transparency is more important than ever, and it has become more widely used in consumer applications such as smartphones. As a result, it can withstand all temperature and humidity environments and atmospheric environments, and has the above conductivity and transparency. There is a strong demand to secure the product over a long period of use.
特表2011-508400号公報Special table 2011-508400 gazette 特開2006-184849号公報JP 2006-184849 A 特開2002-15623号公報JP 2002-15623 A 特開2008-226581号公報JP 2008-226581 A
 本発明は上記問題・状況に鑑みてなされたものであり、その解決課題は、良好な導電性と可視光域全体にわたる均質な透明性を有し、かつ高い耐久性を有する透明導電性フィルムを提供することである。 The present invention has been made in view of the above problems and circumstances, and the solution is to provide a transparent conductive film having good conductivity and uniform transparency over the entire visible light range and having high durability. Is to provide.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、少なくとも第1高屈折率層、透明導電層及び第2高屈折率層を、この順に有する透明導電性フィルムであって、どちらか一方の高屈折率層が硫化亜鉛を含有し、当該硫化亜鉛に含まれるイオウ原子数の割合を亜鉛原子数より少なくすることにより、すなわち、透明導電性フィルムの透明導電層に銀薄膜を用い、この銀薄膜を硫化物などの銀を劣化させる雰囲気成分から保護し、同時に透明導電性部材の可視全域における光透過率を最適化させる上で好適な組成の高屈折率層を設けることで、上記課題が解決されることを見いだし本発に至った。 In order to solve the above problems, the present inventor has at least a first high-refractive index layer, a transparent conductive layer, and a second high-refractive index layer in this order in the process of examining the cause of the above-described problem. Either one of the high refractive index layers contains zinc sulfide, and the ratio of the number of sulfur atoms contained in the zinc sulfide is less than the number of zinc atoms, that is, the transparent conductive layer of the transparent conductive film A high-refractive-index layer with a composition suitable for protecting the silver thin film from atmospheric components such as sulfides, and at the same time optimizing the light transmittance in the entire visible region of the transparent conductive member. It was found that the above-mentioned problems can be solved by providing the above, and the present work was started.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned problem according to the present invention is solved by the following means.
 1.透明樹脂支持体上に、少なくとも第1高屈折率層、透明導電層及び第2高屈折率層を、この順に有する透明導電性フィルムであって、
 前記透明導電層が銀を含有し、
 前記第1高屈折率層又は前記第2高屈折率層の少なくともどちらか一方が硫化亜鉛を含有する層であり、
 当該硫化亜鉛に含まれるイオウ原子数の割合が、亜鉛原子数100に対して、50以上、100未満であることを特徴とする透明導電性フィルム。
1. On the transparent resin support, a transparent conductive film having at least a first high refractive index layer, a transparent conductive layer and a second high refractive index layer in this order,
The transparent conductive layer contains silver;
At least one of the first high refractive index layer or the second high refractive index layer is a layer containing zinc sulfide,
The ratio of the number of sulfur atoms contained in the zinc sulfide is 50 or more and less than 100 with respect to 100 zinc atoms.
 2.前記硫化亜鉛を含有する層が、第1高屈折率層であることを特徴とする第1項に記載の透明導電性フィルム。 2. 2. The transparent conductive film according to item 1, wherein the layer containing zinc sulfide is a first high refractive index layer.
 3.前記第1高屈折率層と前記透明導電層との間に第1硫化防止層を有し、当該第1硫化防止層が、酸化物又は窒化物を含有することを特徴とする第1項又は第2項に記載の透明導電性フィルム。 3. The first item or the item having a first antisulfurization layer between the first high refractive index layer and the transparent conductive layer, wherein the first antisulfurization layer contains an oxide or a nitride. The transparent conductive film according to Item 2.
 4.前記第1硫化防止層が、前記酸化物として、酸化亜鉛又は酸化ガリウムを含有することを特徴とする第3項に記載の透明導電性フィルム。 4. 4. The transparent conductive film according to claim 3, wherein the first sulfurization prevention layer contains zinc oxide or gallium oxide as the oxide.
 5.前記第1高屈折率層が、硫化亜鉛と、酸化物又は窒化物とを含有し、当該酸化物又は当該窒化物の含有量が、当該第1高屈折率層の総体積の5~30体積%の範囲内であることを特徴とする第1項から第4項までのいずれか一項に記載の透明導電性フィルム。 5. The first high refractive index layer contains zinc sulfide and an oxide or nitride, and the content of the oxide or nitride is 5 to 30 volumes of the total volume of the first high refractive index layer. % In the range of%, The transparent conductive film as described in any one of 1st term | claim to 4th term | claim characterized by the above-mentioned.
 6.前記第1高屈折率層が、硫化亜鉛と二酸化ケイ素を含有することを特徴とする第1項から第5項までのいずれか一項に記載の透明導電性フィルム。 6. The transparent conductive film according to any one of Items 1 to 5, wherein the first high refractive index layer contains zinc sulfide and silicon dioxide.
 7.前記第2高屈折率層が、高屈折率材料として、硫化亜鉛、二酸化チタン、インジウム・スズ酸化物、酸化亜鉛、酸化ニオブ、二酸化スズ、インジウム・亜鉛酸化物、アルミニウム・亜鉛酸化物、ガリウム・亜鉛酸化物、アンチモン・スズ酸化物、インジウム・セリウム酸化物、インジウム・ガリウム・亜鉛酸化物、酸化ビスマス、三酸化タングステン、酸化インジウム及びガリウム・インジウム・及び酸素を含む非晶質酸化物から選ばれるいずれかを含有することを特徴とする第1項から第6項までのいずれか一項に記載の透明導電性フィルム。 7. The second high refractive index layer is made of zinc sulfide, titanium dioxide, indium tin oxide, zinc oxide, niobium oxide, tin dioxide, indium zinc oxide, aluminum zinc oxide, gallium. Selected from zinc oxide, antimony / tin oxide, indium / cerium oxide, indium / gallium / zinc oxide, bismuth oxide, tungsten trioxide, indium oxide and amorphous oxide containing gallium / indium / oxygen Any one is contained, The transparent conductive film as described in any one of 1st term | claim to 6th term | claim characterized by the above-mentioned.
 8.前記第2高屈折率層が、前記高屈折率材料として、硫化亜鉛を含有することを特徴とする第1項から第7項までのいずれか一項に記載の透明導電性フィルム。 8. The transparent conductive film according to any one of items 1 to 7, wherein the second high refractive index layer contains zinc sulfide as the high refractive index material.
 9.前記第2高屈折率層が、前記高屈折率材料として、さらに二酸化ケイ素を含有することを特徴とする第8項に記載の透明導電性フィルム。 9. The transparent conductive film according to item 8, wherein the second high refractive index layer further contains silicon dioxide as the high refractive index material.
 10.前記第2高屈折率層が、前記高屈折率材料として、ガリウム・亜鉛酸化物を含有することを特徴とする第1項から第7項までのいずれか一項に記載の透明導電性フィルム。 10. The said 2nd high refractive index layer contains a gallium zinc oxide as said high refractive index material, The transparent conductive film as described in any one of Claim 1-7 characterized by the above-mentioned.
 11.前記透明導電層と第2高屈折率層の間に第2硫化防止層を有し、当該第2硫化防止層が、酸化物又は窒化物を含有することを特徴とする第1項から第10項までのいずれか一項に記載の透明導電性フィルム。 11. A second antisulfurization layer is provided between the transparent conductive layer and the second high refractive index layer, and the second antisulfurization layer contains an oxide or a nitride. The transparent conductive film as described in any one of to the term.
 12.前記第2硫化防止層が、前記酸化物として、酸化亜鉛又はガリウム・亜鉛酸化物を含有することを特徴とする第11項に記載の透明導電性フィルム。 12. The transparent conductive film according to item 11, wherein the second antisulfurization layer contains zinc oxide or gallium / zinc oxide as the oxide.
 本発明の上記手段により、良好な導電性と可視光域全体にわたる均質な透明性を有し、かつ高い耐久性を有する透明導電性フィルムを提供することができる。 By the above means of the present invention, it is possible to provide a transparent conductive film having good conductivity and uniform transparency over the entire visible light region and having high durability.
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。 The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 一般に真空プロセスで形成された薄膜はバルク固体に対して密度の低い、ミクロポーラスな性状を呈する。スパッタリング法はドライコーティング手法の中で比較的バルキーな膜の形成が可能であるが、やはりバルク固体に比べれば低密度である。ゆえに元素の拡散は起こりやすいものと言え、したがって、透明導電層の封止を狙って保護層を設けても、密着性他の観点で実用に足る膜厚に上限が存在することもあり、その効果は限定的なものと推察される。 Generally, a thin film formed by a vacuum process exhibits a microporous property having a low density relative to a bulk solid. Sputtering can form a relatively bulky film among dry coating techniques, but still has a lower density than bulk solids. Therefore, it can be said that element diffusion is likely to occur.Therefore, even if a protective layer is provided for sealing the transparent conductive layer, there may be an upper limit on the film thickness that is practical in terms of adhesion and the like. The effect is presumed to be limited.
 本発明者らはこのような科学的背景を鑑みたうえで、現実的かつ最大限の導電層変性抑制手段を見いだすべく鋭意取り組む中で、以下のように推論し、結論として本発明の効果を見いだすに至った。 In light of such a scientific background, the present inventors made the following inferences while eagerly trying to find a practical and maximum means for suppressing the modification of the conductive layer, and concluded that the effects of the present invention were as follows. I came to find it.
 すなわち、雰囲気中に含まれる元素種のうち、透明導電層を構成する銀に対して最も悪影響を与えるのはイオウ成分であり、硫化亜鉛(ZnS)を化学量論的組成比(硫化亜鉛に含まれるイオウ原子数の割合が、亜鉛元素1に対して同じく1)に対してイオウ欠損の状態で導電層近傍に構成したならば、これが雰囲気中に含まれるイオウ含有成分に暴露されたときには、雰囲気成分からイオウ(S)を取り込み、かつ共有結合の強さから再放出することなく化学量論的組成比に近づいていく、いわばイオウ捕捉膜として作用することで、銀を含有する透明導電膜層へのイオウ成分拡散を抑制することが、本発明の効果の発現機構である。 That is, among the element species contained in the atmosphere, the sulfur component has the most adverse effect on the silver constituting the transparent conductive layer, and zinc sulfide (ZnS) is contained in the stoichiometric composition ratio (included in zinc sulfide). If the ratio of the number of sulfur atoms formed is in the vicinity of the conductive layer in a sulfur deficient state with respect to zinc element 1 as well as 1), when this is exposed to sulfur-containing components contained in the atmosphere, Transparent conductive film layer containing silver by incorporating sulfur (S) from the component and approaching the stoichiometric composition ratio without re-releasing from the strength of the covalent bond, acting as a sulfur trapping film Inhibiting the diffusion of sulfur components to the surface is a mechanism for manifesting the effects of the present invention.
 また、本発明で得られた硫化亜鉛を含有する層の屈折率は、十分に高い値をとっている。このことから、硫化亜鉛を含有する層の膜厚を適宜制御することにより、銀(Ag)の反射による透過強度低下を著しく緩和することが可能である結果、視認性に優れた高透明な透明導電性フィルムを形成することができる。 Further, the refractive index of the layer containing zinc sulfide obtained in the present invention has a sufficiently high value. From this, by controlling the film thickness of the layer containing zinc sulfide appropriately, it is possible to remarkably reduce the decrease in transmission intensity due to the reflection of silver (Ag), and as a result, highly transparent and transparent with excellent visibility. A conductive film can be formed.
本発明の透明導電性フィルムの層構成の一例を示す概略断面図Schematic sectional view showing an example of the layer structure of the transparent conductive film of the present invention 本発明の透明導電性フィルムの導通領域及び絶縁領域からなるパターンの一例を示す模式図The schematic diagram which shows an example of the pattern which consists of a conduction | electrical_connection area | region and an insulation area | region of the transparent conductive film of this invention. 本発明の透明導電性フィルムの導通領域及び絶縁領域からなる電極パターンの一例を示す模式図The schematic diagram which shows an example of the electrode pattern which consists of a conduction | electrical_connection area | region and an insulation area | region of the transparent conductive film of this invention. 本発明の透明導電体に電極パターンをフォトリソグラフィー法で形成する一例を示す工程フロー図Process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by photolithography 本発明の透明導電体に電極パターンをフォトリソグラフィー法で形成する一例を示す工程フロー図Process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by photolithography 本発明の透明導電体に電極パターンをフォトリソグラフィー法で形成する一例を示す工程フロー図Process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by photolithography 本発明の透明導電体に電極パターンをフォトリソグラフィー法で形成する一例を示す工程フロー図Process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by photolithography 本発明の透明導電体に電極パターンをフォトリソグラフィー法で形成する一例を示す工程フロー図Process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by photolithography 本発明の透明導電体に電極パターンをフォトリソグラフィー法で形成する一例を示す工程フロー図Process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by photolithography 本発明の透明導電体に電極パターンをフォトリソグラフィー法で形成する一例を示す工程フロー図Process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by photolithography
 本発明の透明導電性フィルムは、透明樹脂支持体上に、少なくとも第1高屈折率層、透明導電層及び第2高屈折率層を、この順に有する透明導電性フィルムであって、前記透明導電層が銀を含有し、前記第1高屈折率層又は前記第2高屈折率層の少なくともどちらか一方が硫化亜鉛を含有する層であり、当該硫化亜鉛に含まれるイオウ原子数の割合が、亜鉛原子数100に対して、50以上、100未満であることを特徴とする。この特徴は、請求項1から請求項12までの請求項に係る発明に共通する技術的特徴である。 The transparent conductive film of the present invention is a transparent conductive film having at least a first high refractive index layer, a transparent conductive layer, and a second high refractive index layer in this order on a transparent resin support, the transparent conductive film The layer contains silver, at least one of the first high refractive index layer or the second high refractive index layer is a layer containing zinc sulfide, and the ratio of the number of sulfur atoms contained in the zinc sulfide is It is characterized by being 50 or more and less than 100 with respect to 100 zinc atoms. This feature is a technical feature common to the inventions according to claims 1 to 12.
 本発明の効果発現の観点から、前記硫化亜鉛を含有する層が、第1高屈折率層であることが、透明導電層の銀の硫化を防止する高い効果が得られるので好ましい。 From the viewpoint of manifesting the effects of the present invention, it is preferable that the layer containing zinc sulfide is the first high refractive index layer because a high effect of preventing silver sulfidation of the transparent conductive layer can be obtained.
 また、前記第1高屈折率層と前記透明導電層との間に第1硫化防止層を有し、当該第1硫化防止層が、酸化物又は窒化物を含有することが、酸化物又は窒化物中の元素がチャンバー内雰囲気に僅かに残存するイオウをトラップする形で取り去る結果、続いて銀を含有する透明導電層が形成される際にはイオウの残存が問題とならず、良好な雰囲気下で透明導電層の形成が可能となるので好ましい。 Further, the first high-refractive index layer and the transparent conductive layer have a first anti-sulfurization layer, and the first anti-sulfur layer contains an oxide or a nitride. As a result of removal of elemental elements in the trapping form of sulfur remaining in the chamber atmosphere, sulfur is not a problem when a transparent conductive layer containing silver is subsequently formed. A transparent conductive layer can be formed below, which is preferable.
 また、前記第1硫化防止層が、前記酸化物として、酸化亜鉛又は酸化ガリウムを含有することが、酸化亜鉛又は酸化ガリウム中の金属がチャンバー内雰囲気に僅かに残存するイオウをトラップする形で取り去る結果、続いて銀を含有する透明導電層が形成される際にはイオウの残存が問題とならず、さらに良好な雰囲気下での層形成が可能となるので好ましい。 The first antisulfurization layer contains zinc oxide or gallium oxide as the oxide, and the metal in zinc oxide or gallium oxide removes sulfur remaining slightly in the chamber atmosphere. As a result, when a transparent conductive layer containing silver is subsequently formed, the remaining of sulfur is not a problem, and it is possible to form a layer in a better atmosphere, which is preferable.
 また、前記第1高屈折率層が、硫化亜鉛と、酸化物又は窒化物とを含有し、当該酸化物又は当該窒化物の含有量が、当該第1高屈折率層の総体積の5~30体積%の範囲内であることが、第1高屈折率層の内部構造がアモルファスに近づき、フレキシブル性を高めることができるので好ましい。 The first high refractive index layer contains zinc sulfide and an oxide or nitride, and the content of the oxide or nitride is 5 to 5% of the total volume of the first high refractive index layer. It is preferable that the content is within the range of 30% by volume because the internal structure of the first high refractive index layer approaches amorphous and the flexibility can be improved.
 また、前記第1高屈折率層が、硫化亜鉛と二酸化ケイ素を含有することが、第1高屈折率層の内部構造がアモルファスに近づき、さらにフレキシブル性を高めることができるので好ましい。 In addition, it is preferable that the first high refractive index layer contains zinc sulfide and silicon dioxide because the internal structure of the first high refractive index layer approaches an amorphous state and flexibility can be further improved.
 また、前記第2高屈折率層が、高屈折率材料として、硫化亜鉛(ZnS)、二酸化チタン(TiO)、インジウム・スズ酸化物(ITO)、酸化亜鉛(ZnO)、酸化ニオブ(Nb)、二酸化スズ(SnO)、インジウム・亜鉛酸化物(IZO)、アルミニウム・亜鉛酸化物(AZO)、ガリウム・亜鉛酸化物(GZO)、アンチモン・スズ酸化物(ATO)、インジウム・セリウム酸化物(ICO)、インジウム・ガリウム・亜鉛酸化物(IGZO)、酸化ビスマス(Bi)、三酸化タングステン(WO)、酸化インジウム(In)及びガリウム・インジウム・及び酸素を含む非晶質酸化物(a-GIO)から選ばれるいずれかを含有することが、表面抵抗をより下げることができるほか、パターニングを施した際の導通が容易にとれるようになるので好ましい。 In addition, the second high refractive index layer is made of zinc sulfide (ZnS), titanium dioxide (TiO 2 ), indium tin oxide (ITO), zinc oxide (ZnO), niobium oxide (Nb 2 ) as a high refractive index material. O 5 ), tin dioxide (SnO 2 ), indium zinc oxide (IZO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), antimony tin oxide (ATO), indium cerium Oxide (ICO), indium gallium zinc oxide (IGZO), bismuth oxide (Bi 2 O 3 ), tungsten trioxide (WO 3 ), indium oxide (In 2 O 3 ), gallium indium, and oxygen Containing any one selected from amorphous oxides (a-GIO) can further reduce the surface resistance, It preferred because continuity is readily take as when subjected to grayed.
 また、前記第2高屈折率層が、前記高屈折率材料として、硫化亜鉛を含有することが、透明導電層の銀の硫化を防止する高い効果を有するので好ましい。 In addition, it is preferable that the second high refractive index layer contains zinc sulfide as the high refractive index material because it has a high effect of preventing silver sulfide of the transparent conductive layer.
 また、前記第2高屈折率層が、前記高屈折率材料として、さらに二酸化ケイ素を含有することが、第2高屈折率層の内部構造がアモルファスに近づき、さらにフレキシブル性を高めることができるので好ましい。 In addition, since the second high refractive index layer further contains silicon dioxide as the high refractive index material, the internal structure of the second high refractive index layer approaches an amorphous state, and the flexibility can be further improved. preferable.
 また、前記第2高屈折率層が、前記高屈折率材料として、ガリウム・亜鉛酸化物を含有することが、パターン化に好適であると同時に、銀の保護機能を得ることができるので好ましい。 Further, it is preferable that the second high refractive index layer contains gallium / zinc oxide as the high refractive index material because it is suitable for patterning and at the same time a silver protective function can be obtained.
 また、前記透明導電層と第2高屈折率層の間に第2硫化防止層を有し、当該第2硫化防止層が、酸化物又は窒化物を含有することが、透明導電層の銀の硫化を防止する効果を有するので好ましい。 Moreover, it has a 2nd sulfurization prevention layer between the said transparent conductive layer and a 2nd high refractive index layer, and the said 2nd sulfide prevention layer contains an oxide or nitride, it is silver of a transparent conductive layer. This is preferable because it has an effect of preventing sulfidation.
 また、前記第2硫化防止層が、前記酸化物として、酸化亜鉛又はガリウム・亜鉛酸化物を含有することが、透明導電層の銀の硫化を防止する高い効果を有するので好ましい。 In addition, it is preferable that the second antisulfurization layer contains zinc oxide or gallium / zinc oxide as the oxide because it has a high effect of preventing silver sulfide of the transparent conductive layer.
 以下本発明の構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で用いる。 Hereinafter, constituent elements of the present invention, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit and an upper limit.
 ≪透明導電性フィルム≫
 本発明の透明導電性フィルムは、透明樹脂支持体上に、少なくとも第1高屈折率層、透明導電層及び第2高屈折率層を、この順に有する透明導電性フィルムであって、前記透明導電層が銀を含有し、前記第1高屈折率層又は前記第2高屈折率層の少なくともどちらか一方が硫化亜鉛を含有する層であり、当該硫化亜鉛に含まれるイオウ原子数の割合が、亜鉛原子数100に対して、50以上、100未満であることを特徴とする。
≪Transparent conductive film≫
The transparent conductive film of the present invention is a transparent conductive film having at least a first high refractive index layer, a transparent conductive layer, and a second high refractive index layer in this order on a transparent resin support, the transparent conductive film The layer contains silver, at least one of the first high refractive index layer or the second high refractive index layer is a layer containing zinc sulfide, and the ratio of the number of sulfur atoms contained in the zinc sulfide is It is characterized by being 50 or more and less than 100 with respect to 100 zinc atoms.
 本発明の透明導電性フィルムの層構成の一実施態様を図1及び図2に示す。 FIG. 1 and FIG. 2 show one embodiment of the layer structure of the transparent conductive film of the present invention.
 図1において、 本発明の透明導電性フィルム100には、透明樹脂支持体1/第1高屈折率層2/透明導電層3/第2高屈折率層4が含まれる。そして、本発明の透明導電性フィルム100では、当該第1高屈折率層2又は第2高屈折率層4のどちらか一方が、硫化亜鉛(ZnS)を含有する層であり、当該硫化亜鉛に含まれるイオウ原子数の割合が、亜鉛原子数100に対して、50以上、100未満である。 In FIG. 1, the transparent conductive film 100 of the present invention includes transparent resin support 1 / first high refractive index layer 2 / transparent conductive layer 3 / second high refractive index layer 4. In the transparent conductive film 100 of the present invention, either the first high refractive index layer 2 or the second high refractive index layer 4 is a layer containing zinc sulfide (ZnS). The ratio of the number of sulfur atoms contained is 50 or more and less than 100 with respect to 100 zinc atoms.
 さらに当該第1高屈折率層2、第2高屈折率層4と透明導電層3との間には、少なくともどちらか一層の硫化防止層5a又は5bを有することが好ましい。また、これらの層は薄膜から形成される層であり、硫化防止層は、酸化物又は窒化物を含有することが好ましい。 Further, it is preferable that at least one of the antisulfurization layers 5 a or 5 b is provided between the first high refractive index layer 2, the second high refractive index layer 4, and the transparent conductive layer 3. Moreover, these layers are layers formed from a thin film, and the sulfidation prevention layer preferably contains an oxide or a nitride.
 図1においては、第1高屈折率層2及び第2高屈折率層4のどちらか一方が、硫化亜鉛を含有する層であり、当該第1高屈折率層2又は第2高屈折率層4と透明導電層3との間に、硫化防止層5(酸化亜鉛を含有する硫化防止層5a又は5b)が設けられることが好ましい。 In FIG. 1, one of the first high refractive index layer 2 and the second high refractive index layer 4 is a layer containing zinc sulfide, and the first high refractive index layer 2 or the second high refractive index layer. 4 and the transparent conductive layer 3 are preferably provided with an anti-sulfurization layer 5 (an anti-sulfurization layer 5a or 5b containing zinc oxide).
 前記硫化防止層の効果により、透明導電層の透明性及び導電性を向上させることができる。この透明導電層と硫化亜鉛を含有する高屈折率層とが隣接して形成されると、金属硫化物が生成されやすく、透明導電性フィルムの光透過性に影響を与えることがある。 The transparency and conductivity of the transparent conductive layer can be improved by the effect of the antisulfurization layer. When this transparent conductive layer and the high refractive index layer containing zinc sulfide are formed adjacent to each other, metal sulfide is likely to be generated, which may affect the light transmittance of the transparent conductive film.
 これは、銀を含有する透明導電層の前後に硫化亜鉛を含有する高屈折率層が形成されるとき、以下の二つの理由により銀を含有する透明導電層の部分的あるいは全体の硫化を引き起こし、透明性と導電性を著しく低下させるためであると推定され、硫化防止層を層厚0.1~5nmの範囲で設けることでこの問題を解消することができる技術的背景を、以下のように説明することができる。 When a high refractive index layer containing zinc sulfide is formed before and after a transparent conductive layer containing silver, this causes partial or total sulfidation of the transparent conductive layer containing silver for the following two reasons. The technical background, which is presumed to significantly reduce transparency and conductivity, and can solve this problem by providing an anti-sulfurization layer in the thickness range of 0.1 to 5 nm, is as follows. Can be explained.
 まず、透明導電層の支持体側に高屈折率層が設けられるとき、すなわち硫化亜鉛を含有する層を形成した後に銀を含有する層を形成するときには、硫化亜鉛を含有する層を形成した際に成膜機チャンバー内に放出されたイオウ成分が僅かに残存した状態で、銀を含有する層が形成されることとなる。この結果、透明導電性部材形成時点で透明導電層の硫化変性が起こる。これを装置の排気性能やコールドトラップ機能だけで解決するのは非常に困難であることは言うまでもない。 First, when a high refractive index layer is provided on the support side of the transparent conductive layer, that is, when a layer containing silver is formed after forming a layer containing zinc sulfide, a layer containing zinc sulfide is formed. A layer containing silver is formed in a state where the sulfur component released in the film forming chamber remains slightly. As a result, sulfidation modification of the transparent conductive layer occurs at the time of forming the transparent conductive member. Needless to say, it is very difficult to solve this problem only with the exhaust performance of the apparatus and the cold trap function.
 この問題に対し、硫化亜鉛を含有する層を形成した直後に酸化亜鉛又は酸化ガリウムを含有する層を形成すると、酸化亜鉛中の亜鉛又はガリウムがチャンバー雰囲気に僅かに残存するイオウをトラップする形で取り去る結果、続いて銀を含有する層が形成される際にはイオウの残存が問題とならず、良好な雰囲気下での成膜が可能となるため好ましい。 In response to this problem, if a layer containing zinc oxide or gallium oxide is formed immediately after forming a layer containing zinc sulfide, zinc or gallium in the zinc oxide traps sulfur remaining slightly in the chamber atmosphere. As a result of removal, when a silver-containing layer is subsequently formed, sulfur is not a problem, and film formation under a good atmosphere is possible, which is preferable.
 次に、銀を含有する透明導電層が形成された後に硫化亜鉛を含有する高屈折率層が形成されるときには、既に支持体上に存在する銀層の表面に高濃度のイオウ成分が直接触れるため、やはり透明導電性部材形成時点で透明導電層の硫化変性が生ずる。 Next, when the high refractive index layer containing zinc sulfide is formed after the transparent conductive layer containing silver is formed, the high concentration sulfur component directly touches the surface of the silver layer already existing on the support. Therefore, sulfidation modification of the transparent conductive layer also occurs at the time of forming the transparent conductive member.
 加えて透明導電性部材をスパッタリングで形成する際には、銀のイオウ成分への暴露だけでなく、イオウ含有成分が高い入射エネルギーを持って入射し、硫化変性と同時に銀表面を僅かに逆スパッタリングし、面性状を荒らすことがある。銀を用いた透明導電層は、透過性を高めるために極めて薄い膜厚にて提供されるが、上記のように面性状が劣化した場合には、導電性のネットワークが部分的に断ち切られ、導電性を落とすばかりか、断ち切られた部分が荒れた島状構造を呈し、この形状的特徴からプラズモン吸収が発生し、さらには場合によって散乱が生ずることから、透明性までもが損なわれる。 In addition, when forming a transparent conductive member by sputtering, not only the exposure to the sulfur component of silver, but also the sulfur-containing component is incident with high incident energy, and the silver surface is slightly reverse-sputtered simultaneously with the sulfurization modification. However, the surface properties may be roughened. The transparent conductive layer using silver is provided with a very thin film thickness to increase the transparency, but when the surface properties deteriorate as described above, the conductive network is partially cut off, Not only is the conductivity lowered, but the cut-off portion has a rough island structure, plasmon absorption occurs due to this shape characteristic, and further scattering occurs in some cases, so that even transparency is lost.
 この問題に対し、硫化亜鉛を設ける前に酸化亜鉛又は酸化ガリウムを含有する層を形成すると、次いで硫化亜鉛を含有する層を形成する際に生ずる銀の硫化変性と逆スパッタリングの双方を防ぐことができ、やはり好ましい。 In response to this problem, if a layer containing zinc oxide or gallium oxide is formed before providing zinc sulfide, it is possible to prevent both silver sulfide modification and reverse sputtering that occur when a layer containing zinc sulfide is subsequently formed. Yes, it is preferable.
 本発明の透明導電性フィルムでは、図1に示されるように、透明導電層3が透明樹脂支持体1の全面に積層されていてもよく、図2に示されるように、透明導電層3が所望の形状にパターン化されていてもよい。本発明の透明導電性フィルムにおいて、透明導電層3が積層されている領域aが、電気が導通する領域(以下、「導通領域」とも称する)である。一方、図2に示されるように、透明導電層3が含まれない領域bが絶縁領域である。 In the transparent conductive film of the present invention, as shown in FIG. 1, the transparent conductive layer 3 may be laminated on the entire surface of the transparent resin support 1, and as shown in FIG. It may be patterned into a desired shape. In the transparent conductive film of the present invention, the region a where the transparent conductive layer 3 is laminated is a region where electricity is conducted (hereinafter also referred to as “conduction region”). On the other hand, as shown in FIG. 2, the region b where the transparent conductive layer 3 is not included is an insulating region.
 導通領域a及び絶縁領域bからなるパターンは、透明導電性フィルム100の用途に応じて、適宜選択される。例えば透明導電性フィルム100が静電方式のタッチパネルに適用される場合には、図3に示されるように、複数の導通領域aと、これを区切るライン状の絶縁領域bとを含むパターン等でありうる。 The pattern composed of the conductive region a and the insulating region b is appropriately selected according to the use of the transparent conductive film 100. For example, when the transparent conductive film 100 is applied to an electrostatic touch panel, as shown in FIG. 3, the pattern includes a plurality of conductive regions a and line-shaped insulating regions b that divide the conductive regions a. It is possible.
 また、本発明の透明導電性フィルム100には、透明樹脂支持体1、第1高屈折率層2、透明導電層3、及び第2高屈折率層4、及び硫化防止層5以外の層が含まれてもよい。例えば透明導電層3の形成時に成長核になり得る下地層が、透明導電層と第1高屈折率層2との間に、透明導電層3に隣接して含まれてもよい。 In addition, the transparent conductive film 100 of the present invention includes layers other than the transparent resin support 1, the first high refractive index layer 2, the transparent conductive layer 3, the second high refractive index layer 4, and the sulfurization prevention layer 5. May be included. For example, an underlayer that can be a growth nucleus when forming the transparent conductive layer 3 may be included between the transparent conductive layer and the first high refractive index layer 2 adjacent to the transparent conductive layer 3.
 ≪透明導電性フィルムの層構成について≫
 <1.透明樹脂支持体>
 透明導電性フィルム100に用いられる透明樹脂支持体1としては、セルロースエステル樹脂(例えばトリアセチルセルロース(ゼロタック(コニカミノルタ社製))、ジアセチルセルロース、アセチルプロピオニルセルロース等)、ポリカーボネート樹脂(例えばパンライト、マルチロン(いずれも帝人社製))、シクロオレフィン樹脂(例えばゼオノア(日本ゼオン社製)、アートン(JSR社製)、アペル(三井化学社製))、アクリル樹脂(例えばポリメチルメタクリレート、アクリライト(三菱レイヨン社製)、スミペックス(住友化学社製))が挙げられ、これらの樹脂が透明樹脂支持体の50質量%以上であることが好ましい。これらの樹脂は二種以上であってもよい。
≪About layer structure of transparent conductive film≫
<1. Transparent resin support>
Examples of the transparent resin support 1 used for the transparent conductive film 100 include cellulose ester resins (for example, triacetylcellulose (Zerotac (manufactured by Konica Minolta)), diacetylcellulose, acetylpropionylcellulose, etc.), polycarbonate resins (for example, panlite, Multilon (both made by Teijin)), cycloolefin resin (for example, Zeonoa (made by Nippon Zeon), Arton (made by JSR), Apel (made by Mitsui Chemicals)), acrylic resin (for example, polymethyl methacrylate, acrylite ( (Mitsubishi Rayon Co., Ltd.) and Sumipex (Sumitomo Chemical Co., Ltd.)), and these resins are preferably 50% by mass or more of the transparent resin support. Two or more kinds of these resins may be used.
 これらの樹脂のうち、セルロースエステル樹脂、シクロオレフィン樹脂及びポリカーボネート樹脂が好ましい。 Of these resins, cellulose ester resins, cycloolefin resins and polycarbonate resins are preferred.
 またその他混合してもよい樹脂として、ポリイミド、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリエステル樹脂(例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート)、ポリエーテルスルホン、ABS/AS樹脂、MBS樹脂、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/EVOH(エチレンビニルアルコール樹脂)及びスチレン系ブロックコポリマー樹脂等から選択される一種以上の樹脂が含まれてもよい。 Other resins that may be mixed include polyimide, phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyester resin (for example, polyethylene terephthalate (PET), polyethylene naphthalate), polyether sulfone, ABS / AS resin, One or more resins selected from MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), styrene block copolymer resin, and the like may be included.
 また本発明において用いられる透明樹脂支持体1がセルロースエステルである場合については、低級脂肪酸エステルが好ましく、セルロースアセテート、セルロースアセテートプロピオネート、セルロースアセテートブチレート又はセルロースアセテートプロピオネートブチレート等が好ましく用いられる。本発明で用いられるセルロースエステルはアシル基の置換度が2.85~3.00であることが面配向度がより低く維持できるため好ましく、特に2.92~3.00であることが好ましい。 Further, when the transparent resin support 1 used in the present invention is a cellulose ester, a lower fatty acid ester is preferable, and cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate propionate butyrate, or the like is preferable. Used. The cellulose ester used in the present invention preferably has an acyl group substitution degree of 2.85 to 3.00 because the degree of plane orientation can be kept lower, and particularly preferably 2.92 to 3.00.
 アシル基の置換度の測定方法はASTM-D817-96の規定に準じて測定することができる。 The method for measuring the substitution degree of the acyl group can be measured in accordance with the provisions of ASTM-D817-96.
 重合度は250~400であるセルロースエステルが好ましく用いられ、特にセルローストリアセテートが好ましく用いられる。本発明に係るセルロースエステルの数平均分子量Mnは、70000~250000が、機械的強度に優れ、かつ、適度なドープ粘度となるので好ましく、更に好ましくは、80000~150000である。また、重量平均分子量Mwとの比Mw/Mnは1.0~5.0のセルロースエステルが好ましく用いられる。 A cellulose ester having a polymerization degree of 250 to 400 is preferably used, and cellulose triacetate is particularly preferably used. The number average molecular weight Mn of the cellulose ester according to the present invention is preferably 70000 to 250,000, since it is excellent in mechanical strength and has an appropriate dope viscosity, and more preferably 80000 to 150,000. A cellulose ester having a ratio Mw / Mn to the weight average molecular weight Mw of 1.0 to 5.0 is preferably used.
 透明樹脂支持体が、少なくともセルロースエステル樹脂、シクロオレフィン樹脂及びポリカーボネート樹脂から選択されるいずれか一種を含有すると、面内リターデーション値Roを前記透明樹脂支持体の測定波長589nmにおいて、0~150nmの範囲内に調整することができ、すわなち、本発明の主たる利用形態であるディスプレイ用途で多用される低位相差フィルムとして得られるため好ましい。 When the transparent resin support contains at least one selected from a cellulose ester resin, a cycloolefin resin, and a polycarbonate resin, the in-plane retardation value Ro is 0 to 150 nm at a measurement wavelength of 589 nm of the transparent resin support. It can be adjusted within the range, that is, it is preferable because it can be obtained as a low retardation film frequently used in display applications, which is the main application form of the present invention.
 なお、透明樹脂支持体のリターデーション値は、樹脂材料の選択、製膜時の延伸倍率等で制御することができる。具体的には、縦方向、横方向の延伸倍率を適宜選択することにより、任意の値に制御することができ、面内リターデーション値Ro及び厚さ方向リターデーション値Rtは、23℃・55%RHの環境下において、位相差測定装置「KOBRA-21ADH」(王子計測機器(株)製)によって測定することができる。 The retardation value of the transparent resin support can be controlled by selection of the resin material, the draw ratio during film formation, and the like. Specifically, it can be controlled to an arbitrary value by appropriately selecting the stretching ratio in the longitudinal direction and the transverse direction, and the in-plane retardation value Ro and the thickness direction retardation value Rt are 23 ° C. · 55. In an environment of% RH, it can be measured by a phase difference measuring device “KOBRA-21ADH” (manufactured by Oji Scientific Instruments).
 本発明の透明樹脂支持体1は、可視光に対する透明性が高いことが好ましく、波長450~800nmの光の平均透過率が70%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることがさらに好ましい。透明樹脂支持体1の光の平均透過率が70%以上であると、透明導電性フィルム100の光透過性が高まりやすい。また、透明樹脂支持体1の波長450~800nmの光の平均吸収率は10%以下であることが好ましく、より好ましくは5%以下、さらに好ましくは3%以下である。 The transparent resin support 1 of the present invention preferably has high transparency to visible light, and the average transmittance of light having a wavelength of 450 to 800 nm is preferably 70% or more, more preferably 80% or more. And more preferably 85% or more. When the average light transmittance of the transparent resin support 1 is 70% or more, the light transmittance of the transparent conductive film 100 is likely to increase. Further, the average absorptance of light having a wavelength of 450 to 800 nm of the transparent resin support 1 is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
 上記平均透過率は、透明樹脂支持体1の表面の法線に対して、5°傾けた角度から光を入射させて測定する。一方、平均吸収率は、平均透過率と同様の角度から光を入射させて、透明基板1の平均反射率を測定し、
 平均吸収率=100-(平均透過率+平均反射率)(%)
として算出する。平均透過率及び平均反射率は分光光度計で測定される。
The average transmittance is measured by making light incident from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent resin support 1. On the other hand, the average absorptance is measured by measuring the average reflectance of the transparent substrate 1 by making light incident from the same angle as the average transmittance.
Average absorptance = 100− (average transmittance + average reflectance) (%)
Calculate as Average transmittance and average reflectance are measured with a spectrophotometer.
 また、透明樹脂支持体の透過率を上記範囲内とするためには、透明樹脂支持体の表面粗さRaが、透明樹脂支持体の両面において、3.5nm以下であることが好ましく、より好ましくは、3.0nm以下である。透明樹脂支持体の表面粗さRaが透明樹脂支持体の両面において、3.5nm以下であるとヘイズ値が小さくなり透明性に優れた透明樹脂支持体とすることができる。ここで、表面粗さRaとは、JIS B0601:2001における算術平均粗さをいう。 In order to make the transmittance of the transparent resin support within the above range, the surface roughness Ra of the transparent resin support is preferably 3.5 nm or less on both surfaces of the transparent resin support, more preferably. Is 3.0 nm or less. When the surface roughness Ra of the transparent resin support is 3.5 nm or less on both surfaces of the transparent resin support, the haze value is reduced and a transparent resin support excellent in transparency can be obtained. Here, the surface roughness Ra refers to the arithmetic average roughness in JIS B0601: 2001.
 本発明の透明樹脂支持体1のヘイズ値は0.01~2.5(%)であることが好ましく、より好ましくは0.1~1.2(%)である。支持体のヘイズ値が2.5(%)以下であると、透明導電性フィルムのヘイズ値が抑制される。
なお、透明樹脂支持体のヘイズ値は、ヘイズメーター「型式:NDH 2000」(日本電色(株)製)で測定される。
The haze value of the transparent resin support 1 of the present invention is preferably 0.01 to 2.5 (%), more preferably 0.1 to 1.2 (%). The haze value of a transparent conductive film is suppressed as the haze value of a support body is 2.5 (%) or less.
The haze value of the transparent resin support is measured with a haze meter “model: NDH 2000” (manufactured by Nippon Denshoku Co., Ltd.).
 透明樹脂支持体1の波長570nmの光の屈折率は1.40~1.95であることが好ましく、より好ましくは1.45~1.75であり、さらに好ましくは1.45~1.70である。透明樹脂支持体の屈折率は、通常、支持体の材質によって定まる。透明樹脂支持体の屈折率は、23℃・55%RHでエリプソメーターで測定される。 The refractive index of light having a wavelength of 570 nm of the transparent resin support 1 is preferably 1.40 to 1.95, more preferably 1.45 to 1.75, and still more preferably 1.45 to 1.70. It is. The refractive index of the transparent resin support is usually determined by the material of the support. The refractive index of the transparent resin support is measured with an ellipsometer at 23 ° C. and 55% RH.
 透明樹脂支持体1の厚さは、1μm~20mmであることが好ましく、より好ましくは10μm~2mmである。透明樹脂支持体の厚さが1μm以上であると、透明樹脂支持体1の強度が高まり、第1高屈折率層2の作製時に割れたり、裂けたりし難くなる。一方、透明樹脂支持体1の厚さが20mm以下であれば、透明導電性フィルム100のフレキシブル性が十分となる。さらに透明導電性フィルム100を用いた機器の厚さを薄くできる。また、透明導電性フィルム100を用いた機器を軽量化することもできる。 The thickness of the transparent resin support 1 is preferably 1 μm to 20 mm, more preferably 10 μm to 2 mm. When the thickness of the transparent resin support is 1 μm or more, the strength of the transparent resin support 1 is increased, and the first high refractive index layer 2 is difficult to be cracked or torn. On the other hand, if the thickness of the transparent resin support 1 is 20 mm or less, the flexibility of the transparent conductive film 100 is sufficient. Furthermore, the thickness of the apparatus using the transparent conductive film 100 can be reduced. Moreover, the apparatus using the transparent conductive film 100 can also be reduced in weight.
 <2.第1高屈折率層>
 本発明でいう高屈折率層とは、高屈折率材料を含有する層で、透明樹脂支持体1よりも高い屈折率を有する層をいう。
<2. First High Refractive Index Layer>
The high refractive index layer in the present invention is a layer containing a high refractive index material and means a layer having a refractive index higher than that of the transparent resin support 1.
 第1高屈折率層2は、透明導電性フィルムの導通領域a、つまり透明導電層3が形成されている領域の光透過性(光学アドミッタンス)を調整する層であり、少なくとも透明導電性フィルム100の導通領域aに形成される。第1高屈折率層2は、透明導電層を雰囲気中の水分や硫化物やイオウ含有成分等から透明導電層を保護する機能を有することから、透明導電性フィルム100の絶縁領域bにも形成されていることが好ましい。 The first high refractive index layer 2 is a layer that adjusts the light transmission (optical admittance) of the conductive region a of the transparent conductive film, that is, the region where the transparent conductive layer 3 is formed, and at least the transparent conductive film 100. Formed in the conductive region a. The first high-refractive index layer 2 has a function of protecting the transparent conductive layer from moisture, sulfide, sulfur-containing components, etc. in the atmosphere, so that it is also formed in the insulating region b of the transparent conductive film 100. It is preferable that
 本発明においては、前記第1高屈折率層又は前記第2高屈折率層の少なくともどちらか一方が硫化亜鉛を含有する層であり、第1高屈折率層と第2高屈折率層のうち、第1高屈折率層2が、硫化亜鉛(ZnS)を含有することが好ましい層である。第1高屈折率層2に硫化亜鉛が含まれると、透明樹脂支持体1側から水分が透過し難くなり、透明導電層3の腐食が抑制される。第1高屈折率層2には、硫化亜鉛とともに他の誘電性材料又は酸化物半導体材料が含まれてもよい。硫化亜鉛とともに含まれる誘電性材料又は酸化物半導体材料の波長570nmの光の屈折率は、透明樹脂支持体1の波長570nmの光の屈折率より0.1~1.1大きいことが好ましく、0.4~1.0大きいことがより好ましい。一方、第1高屈折率層2に含まれる誘電性材料又は酸化物半導体材料の波長570nmの光の具体的な屈折率は1.5より大きいことが好ましく、1.7~2.5であることがより好ましく、さらに好ましくは1.8~2.5である。誘電性材料又は酸化物半導体材料の屈折率が1.5より大きいと、第1高屈折率層2によって、透明導電体100の導通領域aの光学アドミッタンスが十分に調整される。なお、第1高屈折率層2の屈折率は、第1高屈折率層2に含まれる材料の屈折率や、第1高屈折率層2に含まれる材料の密度で調整される。上記屈折率は、23℃・55%RHの環境下、エリプソメーターで測定される。 In the present invention, at least one of the first high refractive index layer and the second high refractive index layer is a layer containing zinc sulfide, and the first high refractive index layer and the second high refractive index layer The first high refractive index layer 2 is preferably a layer containing zinc sulfide (ZnS). When zinc sulfide is contained in the first high refractive index layer 2, it becomes difficult for moisture to permeate from the transparent resin support 1 side, and corrosion of the transparent conductive layer 3 is suppressed. The first high refractive index layer 2 may contain other dielectric material or oxide semiconductor material together with zinc sulfide. The refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained together with zinc sulfide is preferably 0.1 to 1.1 higher than the refractive index of light having a wavelength of 570 nm of the transparent resin support 1. More preferably, it is larger by 4 to 1.0. On the other hand, the specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the first high refractive index layer 2 is preferably larger than 1.5, and is 1.7 to 2.5. More preferably, it is 1.8 to 2.5. When the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the first high refractive index layer 2. The refractive index of the first high refractive index layer 2 is adjusted by the refractive index of the material included in the first high refractive index layer 2 and the density of the material included in the first high refractive index layer 2. The refractive index is measured with an ellipsometer in an environment of 23 ° C. and 55% RH.
 本発明においては、第1高屈折率層が、硫化亜鉛を含有する層であることが好ましく、このときの組成比は、亜鉛原子数100に対してイオウ原子数が50以上、100未満である。好ましくは、亜鉛原子数100に対してイオウ原子数が83以上、90以下である。この範囲内であると、透明導電層中に含有される銀の硫化防止効果が優れるので、良好な導電性と透明性、可視光域全体にわたって均質な光透過率を有し、かつ耐久性向上の効果が得られる。 In the present invention, the first high refractive index layer is preferably a layer containing zinc sulfide, and the composition ratio at this time is 50 or more and less than 100 sulfur atoms with respect to 100 zinc atoms. . Preferably, the number of sulfur atoms is 83 or more and 90 or less with respect to 100 zinc atoms. Within this range, the anti-sulfuration effect of silver contained in the transparent conductive layer is excellent, so it has good conductivity and transparency, uniform light transmittance over the entire visible light range, and improved durability. The effect is obtained.
 <イオウ原子数及び亜鉛原子数の分析方法>
 第1高屈折率層が含有する硫化亜鉛に含まれるイオウ原子数と亜鉛原子数は、ICP発光分光分析装置を用いて分析することができる。具体的には、以下のとおり行うことで分析することができる。
<Method for analyzing the number of sulfur atoms and the number of zinc atoms>
The number of sulfur atoms and the number of zinc atoms contained in the zinc sulfide contained in the first high refractive index layer can be analyzed using an ICP emission spectroscopic analyzer. Specifically, it can be analyzed by performing as follows.
 亜鉛とイオウの元素定量分析には、所定のZnS薄層を単層でBK7ガラス上に形成した参照試料を作成し、これら試料に対して、超高純度過酸化水素(関東化学株式会社製)を用いてZnS層を十分溶解させ、超純水で希釈させて得られる、20ml溶液中に含まれる各元素に対し、(株)日立ハイテクサイエンス製のICP発光分光分析装置「SPS3520UV」を用いてマトリックスマッチングを行う。 For quantitative elemental analysis of zinc and sulfur, a reference sample in which a predetermined ZnS thin layer was formed as a single layer on BK7 glass was prepared, and ultra-high purity hydrogen peroxide (manufactured by Kanto Chemical Co., Ltd.) was used for these samples. For each element contained in a 20 ml solution obtained by sufficiently dissolving the ZnS layer using a solution and diluted with ultrapure water, an ICP emission spectroscopic analyzer “SPS3520UV” manufactured by Hitachi High-Tech Science Co., Ltd. is used. Perform matrix matching.
 定量にあたり、リファレンスとして亜鉛に対しては原子吸光分析用亜鉛標準液1000mg/l(関東化学株式会社製)、イオウに対してはイオウ標準液Sulfur 1000mg/l(SPEX)を用いている。測定波長は、亜鉛が213.924nm、イオウが180.734nmである。 In the determination, a zinc standard solution for atomic absorption analysis 1000 mg / l (manufactured by Kanto Chemical Co., Inc.) is used as a reference for zinc, and a sulfur standard solution Sulfur 1000 mg / l (SPEX) is used for sulfur. The measurement wavelength is 213.924 nm for zinc and 180.734 nm for sulfur.
 なお、測定にあたり、清浄なBK7ガラスについて同様の処置を行って得られる溶液サンプルの分析を行い、本試験を妨げるバックグラウンド・ノイズとしての亜鉛、イオウ成分が検出限界以下であることを確認する。 In the measurement, a solution sample obtained by performing the same treatment on clean BK7 glass is analyzed, and it is confirmed that the zinc and sulfur components as background noise that hinder the test are below the detection limit.
 <イオウ含有量の制御方法>
 本発明において、第1高屈折率層に含有される亜鉛原子数とイオウ原子数の割合は、硫化亜鉛と亜鉛とを共蒸着又は共スパッタし、それぞれの条件を調整することにより制御することができる。
<Method for controlling sulfur content>
In the present invention, the ratio of the number of zinc atoms and the number of sulfur atoms contained in the first high refractive index layer can be controlled by co-evaporating or co-sputtering zinc sulfide and zinc and adjusting the respective conditions. it can.
 また、硫黄を多く含有する組成を得るために反応性スパッタ法を利用することもでき、例えば、真空チャンバー内にArガスで希釈した硫化水素(HS)ガスを吹き込みながら硫化亜鉛(ZnS)をターゲットとしてスパッタすることによっても制御することができる。 In addition, a reactive sputtering method can be used to obtain a composition containing a large amount of sulfur, for example, zinc sulfide (ZnS) while blowing hydrogen sulfide (H 2 S) gas diluted with Ar gas into a vacuum chamber. It is also possible to control by sputtering using as a target.
 層形成がスパッタ法によってなされるときには、形成された層において所望の組成を得るにあたって適切な元素組成比に調整された、主に焼結体として得られるスパッタリングターゲットを作成し、これを用いるのが簡便であると同時に、生産工程親和性が高く優れている。このような元素組成比の異なる焼結体は市販品として入手することができる。 When layer formation is performed by a sputtering method, a sputtering target obtained mainly as a sintered body, which is adjusted to an appropriate elemental composition ratio in obtaining a desired composition in the formed layer, is prepared and used. It is simple and at the same time has excellent production process compatibility. Such sintered bodies having different elemental composition ratios can be obtained as commercial products.
 第1高屈折率層について、上記硫化亜鉛とともに用いられる材料として、酸化物又は窒化物が好ましい。酸化物としては、特に好ましくは二酸化ケイ素(SiO)である。窒化物としては、窒化ケイ素(Si、SiN)、窒化アルミニウム(AlN)及び窒化チタン(TiN)等が挙げられる。 About a 1st high refractive index layer, an oxide or nitride is preferable as a material used with the said zinc sulfide. The oxide is particularly preferably silicon dioxide (SiO 2 ). Examples of the nitride include silicon nitride (Si 3 N 4 , SiN), aluminum nitride (AlN), titanium nitride (TiN), and the like.
 硫化亜鉛(ZnS)及び二酸化ケイ素(SiO)の組成を制御する方法としては、例えば、適切な濃度で二酸化ケイ素(SiO)を含有した硫化亜鉛(ZnS)のターゲットを用いたスパッタリング法、二酸化ケイ素(SiO)と硫化亜鉛(ZnS)のターゲットを同時に用いた共スパッタリング法を利用することにより行うことができる。 As a method for controlling the composition of zinc sulfide (ZnS) and silicon dioxide (SiO 2 ), for example, sputtering using a zinc sulfide (ZnS) target containing silicon dioxide (SiO 2 ) at an appropriate concentration, This can be performed by using a co-sputtering method using silicon (SiO 2 ) and zinc sulfide (ZnS) targets simultaneously.
 硫化亜鉛(ZnS)を含有する前記高屈折率層に5~30体積パーセント以下の濃度において二酸化ケイ素を含有させると、層の内部構造がアモルファスに近づき、フレキシブル性を高めることができる。 When silicon dioxide is contained in the high refractive index layer containing zinc sulfide (ZnS) at a concentration of 5 to 30 volume percent or less, the internal structure of the layer becomes close to amorphous and the flexibility can be improved.
 硫化亜鉛(ZnS)は共有結合性の強い材料であるが、これを化学量論的組成比から外れた状態で得る場合、層の内部構造は粒界を多く持つ結晶質となると考えられる。このとき、得られた層の性質は硬くとも脆く、加えて付着強度においても劣るものとなる。 Zinc sulfide (ZnS) is a material having a strong covalent bond, but when it is obtained in a state deviating from the stoichiometric composition ratio, the internal structure of the layer is considered to be crystalline with many grain boundaries. At this time, the properties of the obtained layer are hard and brittle, and in addition, the adhesion strength is inferior.
 一方、透明導電性フィルムはしばしばロール・トゥ・ロールの工程間で度々巻き出し、巻き取りを繰り返しながらハンドリングされるため、この過程で結晶質である場合は結晶粒界を起点に微細な割れを生じ、透明導電層の封止性能が損なわれるため、フレキシブル性を与えるのは大変好ましい。 On the other hand, transparent conductive films are often unwound between roll-to-roll processes and handled while being repeatedly wound. Therefore, if the film is crystalline in this process, fine cracks originate from the grain boundaries. As a result, the sealing performance of the transparent conductive layer is impaired, so that flexibility is very preferable.
 この他、二酸化ケイ素を含有させて得られる柔軟な層は、樹脂からなる支持体の熱膨張への追従性も優れることから、やはり微細な割れの発生を軽減でき、温度ストレス下での信頼性を高めることができ、やはり好ましい。 In addition, the flexible layer obtained by containing silicon dioxide also has excellent followability to the thermal expansion of the support made of resin, so it can also reduce the occurrence of fine cracks and is reliable under temperature stress Is still preferable.
 その含有量は、透明導電性フィルムの光学特性を調節するための屈折率を維持し、かつ前述の硫黄捕捉機能を損なわない程度に調整される必要がある。この観点から、二酸化ケイ素が上記のように5~30体積パーセントの濃度で含有されることが好ましい。 The content needs to be adjusted to maintain the refractive index for adjusting the optical characteristics of the transparent conductive film and not to impair the above-described sulfur capturing function. From this viewpoint, it is preferable that silicon dioxide is contained at a concentration of 5 to 30 volume percent as described above.
 第1高屈折率層2の層厚は、15~150nmであることが好ましく、より好ましくは20~80nmである。第1高屈折率層2の層厚が15nm以上であると、第1高屈折率層2によって、透明導電性フィルム100の導通領域aの光学アドミッタンスが十分に調整される。一方、第1高屈折率層2の層厚が150nm以下であれば、第1高屈折率層2が含まれる領域の光透過性が低下し難い。第1高屈折率層2の層厚は、エリプソメーター「多入射角分光エリプソメーターVASE(登録商標)」(J.A.Woollam社製)で測定される。 The layer thickness of the first high refractive index layer 2 is preferably 15 to 150 nm, more preferably 20 to 80 nm. When the layer thickness of the first high refractive index layer 2 is 15 nm or more, the optical admittance of the conductive region a of the transparent conductive film 100 is sufficiently adjusted by the first high refractive index layer 2. On the other hand, if the thickness of the first high refractive index layer 2 is 150 nm or less, the light transmittance of the region including the first high refractive index layer 2 is unlikely to decrease. The layer thickness of the first high refractive index layer 2 is measured by an ellipsometer “multi-incidence angle spectroscopic ellipsometer VASE (registered trademark)” (manufactured by JA Woollam).
 第1高屈折率層2は、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法(堆積法、気相成長法ともいう。)で形成された層でありうる。第1高屈折率層2の屈折率(密度)が高まるとの観点から、第1高屈折率層2は、電子ビーム蒸着法又はスパッタ法で形成された層であることが好ましい。電子ビーム蒸着法の場合は層の密度を高めるため、IAD(イオンアシスト)などのアシストがあることが望ましい。 The first high refractive index layer 2 is formed by a general vapor deposition method (also called a deposition method or a vapor deposition method) such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like. It can be a layer formed of From the standpoint that the refractive index (density) of the first high refractive index layer 2 is increased, the first high refractive index layer 2 is preferably a layer formed by an electron beam evaporation method or a sputtering method. In the case of the electron beam evaporation method, it is desirable to have assistance such as IAD (ion assist) in order to increase the density of the layer.
 また、第1高屈折率層2が所望の形状にパターン化された層である場合、パターン化方法は特に制限されない。第1高屈折率層2は、例えば、所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に形成された層であってもよく、公知のエッチング法によってパターン化された層であってもよい。 Further, when the first high refractive index layer 2 is a layer patterned in a desired shape, the patterning method is not particularly limited. The first high refractive index layer 2 may be, for example, a layer formed in a pattern by a vapor deposition method by placing a mask or the like having a desired pattern on the deposition surface. It may be a layer patterned by a method.
 <3.第1硫化防止層>
 前述の第1高屈折率層2には硫化亜鉛が含有されるので、図1に示されるように、第1高屈折率層2と透明導電層3との間に酸化物又は窒化物を含有する第1硫化防止層5aを有することが好ましく、硫化防止層5aは、酸化亜鉛又は酸化ガリウムを含有する第1硫化防止層5aであることが好ましい。第1硫化防止層5aは、第1高屈折率層からの硫化物やイオウ含有成分の拡散を防止する機能を持っている。また、第1硫化防止層5aは、透明導電性フィルム100の絶縁領域bにも形成されていてもよく、この場合、透明導電層を雰囲気中の水分や硫化物やイオウ含有成分等から透明導電層を保護する機能を有することから絶縁領域bにも形成されていることが好ましい。
<3. First sulfurization prevention layer>
Since the above-mentioned first high refractive index layer 2 contains zinc sulfide, an oxide or a nitride is contained between the first high refractive index layer 2 and the transparent conductive layer 3 as shown in FIG. The anti-sulfurization layer 5a preferably includes the anti-sulfuration layer 5a containing zinc oxide or gallium oxide. The first sulfurization preventing layer 5a has a function of preventing diffusion of sulfides and sulfur-containing components from the first high refractive index layer. Further, the first sulfidation preventing layer 5a may also be formed in the insulating region b of the transparent conductive film 100. In this case, the transparent conductive layer is made transparent from moisture, sulfide, sulfur-containing components, etc. in the atmosphere. Since it has a function of protecting the layer, it is preferably formed also in the insulating region b.
 当該第1硫化防止層5aは、酸化亜鉛又は酸化ガリウムを好ましく含有する層であり、その他に、金属酸化物、金属窒化物、金属フッ化物等を含む層でありうる。第1硫化防止層5aには、これらが一種のみ含まれてもよく、二種以上含まれてもよい。ただし、第1高屈折率層2と、第1硫化防止層5aと、透明導電層3とが連続的に形成される場合には、金属酸化物が硫黄と反応可能、若しくは硫黄を吸着可能な化合物であることが好ましい。金属酸化物が、硫黄と反応する化合物である場合、金属酸化物と硫黄との反応物は、可視光の透過性が高いことが好ましい。 The first antisulfurization layer 5a is a layer that preferably contains zinc oxide or gallium oxide, and may be a layer that contains a metal oxide, a metal nitride, a metal fluoride, or the like. The first sulfidation preventing layer 5a may contain only one kind or two or more kinds. However, when the first high refractive index layer 2, the first sulfidation preventing layer 5a, and the transparent conductive layer 3 are continuously formed, the metal oxide can react with sulfur or adsorb sulfur. A compound is preferred. In the case where the metal oxide is a compound that reacts with sulfur, the reaction product of the metal oxide and sulfur preferably has high visible light permeability.
 金属酸化物の例には、酸化亜鉛(ZnO)及び酸化ガリウム(Ga)の他、二酸化チタン(TiO)、インジウム・スズ酸化物(ITO)、酸化ニオブ(Nb)、酸化ジルコニウム(ZrO)、酸化セリウム(CeO)、五酸化タンタル(Ta)、五酸化チタン(Ti)、七酸化チタン(Ti)、三酸化チタン(Ti)、酸化チタン(TiO)、二酸化スズ(SnO)、ランタニウムチタニウムオキシド(LaTi)、インジウム・亜鉛酸化物(IZO)、アルミニウム・亜鉛酸化物(AZO)、ガリウム・亜鉛酸化物(GZO)、アンチモン・スズ酸化物(ATO)、インジウム・セリウム酸化物(ICO)、酸化ビスマス(Bi)、ガリウム、インジウム、及び酸素からなる非晶質酸化物(a-GIO)、酸化ゲルマニウム(GeO)、二酸化ケイ素(SiO)、酸化アルミニウム(Al)、酸化ハフニウム(HfO)、酸化ケイ素(SiO)、酸化マグネシウム(MgO)、酸化イットリウム(Y)及び三酸化タングステン(WO)等が含まれる。 Examples of metal oxides include zinc oxide (ZnO) and gallium oxide (Ga 2 O 3 ), titanium dioxide (TiO 2 ), indium tin oxide (ITO), niobium oxide (Nb 2 O 5 ), Zirconium oxide (ZrO 2 ), cerium oxide (CeO 2 ), tantalum pentoxide (Ta 2 O 5 ), titanium pentoxide (Ti 3 O 5 ), titanium heptoxide (Ti 4 O 7 ), titanium trioxide (Ti 2) O 3 ), titanium oxide (TiO), tin dioxide (SnO 2 ), lanthanum titanium oxide (La 2 Ti 2 O 7 ), indium / zinc oxide (IZO), aluminum / zinc oxide (AZO), gallium / zinc oxide (GZO), antimony tin oxide (ATO), indium cerium oxide (ICO), bismuth oxide (Bi 2 O 3), gallium Indium, and amorphous oxide composed of oxygen (a-GIO), germanium oxide (GeO 2), silicon dioxide (SiO 2), aluminum oxide (Al 2 O 3), hafnium oxide (HfO 2), silicon oxide ( SiO), magnesium oxide (MgO), yttrium oxide (Y 2 O 3 ), tungsten trioxide (WO 3 ), and the like.
 金属フッ化物の例には、フッ化ランタン(LaF)、フッ化バリウム(BaF)、ナトリウムアルミニウムフルオライド(NaAl14、NaAlF)、フッ化アルミニウム(AlF)、フッ化マグネシウム(MgF)、フッ化カルシウム(CaF)、フッ化バリウム(BaF)、フッ化セリウム(CeF)、フッ化ネオジム(NdF)及びフッ化イットリウム(YF)等が含まれる。 Examples of metal fluorides include lanthanum fluoride (LaF 3 ), barium fluoride (BaF 2 ), sodium aluminum fluoride (Na 5 Al 3 F 14 , Na 3 AlF 6 ), aluminum fluoride (AlF 3 ), Includes magnesium fluoride (MgF 2 ), calcium fluoride (CaF 2 ), barium fluoride (BaF 2 ), cerium fluoride (CeF 3 ), neodymium fluoride (NdF 3 ), yttrium fluoride (YF 3 ), etc. It is.
 金属窒化物の例には、窒化ケイ素(Si、SiN)、窒化アルミニウム(AlN)及び窒化チタン(TiN)等が挙げられる。 Examples of the metal nitride include silicon nitride (Si 3 N 4 , SiN), aluminum nitride (AlN), titanium nitride (TiN), and the like.
 これらの中でも酸化亜鉛又は酸化ガリウムを含有する層であることが好ましい。第1硫化防止層を酸化亜鉛と酸化ガリウム又は酸化亜鉛と窒化ケイ素など2成分の層とする場合は、それぞれの素材を所望の割合で混合したターゲットを用いてスパッタリング法で層を形成することができる。またそれぞれのターゲットを同時に用いて共スパッタリング法を用いることにより層を形成することができる。 Among these, a layer containing zinc oxide or gallium oxide is preferable. When the first anti-sulfurization layer is a two-component layer such as zinc oxide and gallium oxide or zinc oxide and silicon nitride, the layer may be formed by sputtering using a target in which the respective materials are mixed in a desired ratio. it can. Moreover, a layer can be formed by using each target simultaneously and using a co-sputtering method.
 ここで、第1硫化防止層5aの層厚は、後述する透明導電層3の形成時の衝撃から、第1高屈折率層2の表面を保護可能な層厚であることが好ましい。一方で、第1高屈折率層に含まれ得る酸化亜鉛又は酸化ガリウムは、透明導電層3に含まれる金属との親和性が高い。そのため、第1硫化防止層5aの層厚が非常に薄く、第1高屈折率層2の一部が僅かに露出していると、当該露出部分を中心に透明導電層の透明金属膜が成長し、透明導電層3が緻密になりやすい。つまり、第1硫化防止層5aは比較的薄いことが好ましく、0.1~5.0nmであることが好ましく、より好ましくは0.5~2.0nmである。 Here, the layer thickness of the first sulfidation preventing layer 5a is preferably a layer thickness capable of protecting the surface of the first high refractive index layer 2 from an impact when forming the transparent conductive layer 3 described later. On the other hand, zinc oxide or gallium oxide that can be contained in the first high refractive index layer has a high affinity with the metal contained in the transparent conductive layer 3. Therefore, if the thickness of the first anti-sulfurization layer 5a is very thin and a part of the first high refractive index layer 2 is slightly exposed, a transparent metal film of the transparent conductive layer grows around the exposed part. However, the transparent conductive layer 3 tends to be dense. That is, the first sulfidation preventing layer 5a is preferably relatively thin, preferably 0.1 to 5.0 nm, and more preferably 0.5 to 2.0 nm.
 第1硫化防止層5aは、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で形成された層である。 The first antisulfurization layer 5a is a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like.
 第1硫化防止層5aが、所望の形状にパターン化された層である場合、パターン化方法は特に制限されない。第1硫化防止層5aは、例えば、所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に形成された層であってもよく、公知のエッチング法によってパターン化された層であってもよい。 When the first antisulfurization layer 5a is a layer patterned into a desired shape, the patterning method is not particularly limited. The first sulfidation preventing layer 5a may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the deposition surface, and may be a known etching method. It may be a layer patterned by.
 <4.透明導電層>
 透明導電層3は、透明導電性フィルム100において電気を導通させるための層である。透明導電層3は、前述のように、透明樹脂支持体1の全面に形成されていてもよく、また所望の形状にパターン化されていてもよい。
<4. Transparent conductive layer>
The transparent conductive layer 3 is a layer for conducting electricity in the transparent conductive film 100. As described above, the transparent conductive layer 3 may be formed on the entire surface of the transparent resin support 1, or may be patterned into a desired shape.
 透明導電層3は銀を含有する層であり、その他の金属を含有してもよい。銀とともに用いられる金属としては、透明導電性の高い金属であれば特に制限されず、例えば金、銅、ニッケル、パラジウム、白金、亜鉛、アルミニウム、マンガン、ゲルマニウム、ビスマス、ネオジム及びモリブデンが好ましい。 The transparent conductive layer 3 is a layer containing silver and may contain other metals. The metal used together with silver is not particularly limited as long as it is a metal having high transparent conductivity. For example, gold, copper, nickel, palladium, platinum, zinc, aluminum, manganese, germanium, bismuth, neodymium, and molybdenum are preferable.
 これらの中でも、金、パラジウム、ゲルマニウム、ビスマス、銅、白金、ネオジム及びニオブが好ましい。透明導電層3には、これらの金属が一種のみ含まれてもよく、二種以上含まれてもよい。導電性の観点から、透明導電層には銀が90atm%以上含まれる合金を含有することが好ましい。銀が90atm%以上含有されると優れた導電性と高耐久性が得られる。 Among these, gold, palladium, germanium, bismuth, copper, platinum, neodymium and niobium are preferable. The transparent conductive layer 3 may contain only one kind of these metals or two or more kinds. From the viewpoint of conductivity, the transparent conductive layer preferably contains an alloy containing 90 atm% or more of silver. When silver is contained at 90 atm% or more, excellent conductivity and high durability can be obtained.
 また、上記透明導電性の高い金属を少なくとも一種を上記範囲内で含有すると透明導電層の層厚を薄層化しても所定の導電性を確保することができ、また透明導電層に含有される銀の劣化防止の効果が得られ信頼性が向上する。例えば銀と亜鉛とが組み合わされると、透明金属層の耐硫化性が高まる。銀と金とが組み合わされると、耐塩(NaCl)性が高まる。さらに銀と銅とが組み合わされると、耐酸化性が高まる。 Further, when at least one kind of the above highly conductive metal is contained within the above range, predetermined conductivity can be secured even if the thickness of the transparent conductive layer is reduced, and it is contained in the transparent conductive layer. The effect of preventing silver deterioration is obtained and the reliability is improved. For example, when silver and zinc are combined, the sulfidation resistance of the transparent metal layer is increased. When silver and gold are combined, salt resistance (NaCl) resistance increases. Furthermore, when silver and copper are combined, the oxidation resistance increases.
 本発明の透明導電層の層厚は、好ましくは3~15nmの範囲内であり、より好ましくは5~13nmの範囲内である。この層厚により所望の透明性、プラズモン吸収率を担保することができる。 The layer thickness of the transparent conductive layer of the present invention is preferably in the range of 3 to 15 nm, more preferably in the range of 5 to 13 nm. The desired transparency and plasmon absorption rate can be ensured by this layer thickness.
 透明導電層3のプラズモン吸収率は、波長400~800nmにわたって(全範囲で)10%以下であることが好ましく、7%以下であることがより好ましく、さらに好ましくは5%以下である。 The plasmon absorption rate of the transparent conductive layer 3 is preferably 10% or less (over the entire range) over a wavelength range of 400 to 800 nm, more preferably 7% or less, and even more preferably 5% or less.
 透明導電層3は、いずれの形成方法で形成された層でありうるが、透明導電層の平均透過率を変えるためには、スパッタ法で形成された層、若しくは後述する下地層上に形成された層であることが好ましい。 The transparent conductive layer 3 can be a layer formed by any forming method, but in order to change the average transmittance of the transparent conductive layer, it is formed on a layer formed by sputtering or an underlayer described later. It is preferable that it is a layer.
 スパッタ法では、層の形成時に材料が被成膜体に高速で衝突するため、緻密かつ平滑な層が得られやすく、透明導電層3の光透過性が高まりやすい。また、透明導電層3がスパッタ法により形成された層であると、透明導電層3が高温かつ低湿度な環境においても腐食し難くなる。 In the sputtering method, when the layer is formed, the material collides with the deposition target at high speed, so that a dense and smooth layer can be easily obtained, and the light transmittance of the transparent conductive layer 3 is likely to be increased. Moreover, when the transparent conductive layer 3 is a layer formed by sputtering, the transparent conductive layer 3 is hardly corroded even in an environment of high temperature and low humidity.
 スパッタ法の種類は特に制限されず、イオンビームスパッタ法や、マグネトロンスパッタ法、反応性スパッタ法、2極スパッタ法、バイアススパッタ法、対向スパッタ法等でありうる。透明導電層3は、特に対向スパッタ法で形成された層であることが好ましい。透明導電層3が、対向スパッタ法で形成された層であると、透明導電層3が緻密になり、表面平滑性が高まりやすい。その結果、透明導電層3の表面電気抵抗がより低くなり、光の透過率も高まりやすい。 The type of the sputtering method is not particularly limited, and may be an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, a bias sputtering method, a counter sputtering method, or the like. The transparent conductive layer 3 is particularly preferably a layer formed by a counter sputtering method. When the transparent conductive layer 3 is a layer formed by the facing sputtering method, the transparent conductive layer 3 becomes dense and the surface smoothness is likely to increase. As a result, the surface electrical resistance of the transparent conductive layer 3 becomes lower and the light transmittance is likely to increase.
 <5.第2硫化防止層>
 後述する第2高屈折率層が硫化亜鉛含有層である場合は、図1に示されるように、透明導電層3と第2高屈折率層4との間に酸化亜鉛、ガリウム・亜鉛酸化物又は酸化ガリウムを含有する第2硫化防止層5bが含まれることが好ましい。第2硫化防止層5bは、透明導電性フィルム100の絶縁領域bにも形成されていてもよいが、導通領域a及び絶縁領域bからなるパターンを視認され難くするとの観点から、導通領域aのみに形成されていることが好ましい。
<5. Second anti-sulfur layer>
When the second high-refractive index layer to be described later is a zinc sulfide-containing layer, as shown in FIG. 1, zinc oxide, gallium / zinc oxide is interposed between the transparent conductive layer 3 and the second high-refractive index layer 4. Or it is preferable that the 2nd sulfide prevention layer 5b containing a gallium oxide is contained. The second sulfidation preventing layer 5b may be formed also in the insulating region b of the transparent conductive film 100, but from the viewpoint of making it difficult to visually recognize the pattern formed of the conductive region a and the insulating region b, only the conductive region a. It is preferable to be formed.
 当該第2硫化防止層5bは、酸化亜鉛、ガリウム・亜鉛酸化物又は酸化ガリウムを含有する層であり、その他に金属酸化物、金属窒化物、金属フッ化物等を含む層であってもよい。第2硫化防止層5bには、酸化亜鉛の他にこれらが一種のみ含まれてもよく、二種以上が含まれてもよい。金属酸化物、金属窒化物、金属フッ化物は、前述の第1高屈折率層2に含まれる金属酸化物、金属窒化物、金属フッ化物と同様でありうる。これらの中でも酸化亜鉛を含有する層であることが好ましい。 The second anti-sulfurization layer 5b is a layer containing zinc oxide, gallium / zinc oxide or gallium oxide, and may be a layer containing metal oxide, metal nitride, metal fluoride or the like. In addition to zinc oxide, only one of these may be contained in the second sulfurization prevention layer 5b, or two or more thereof may be contained. The metal oxide, metal nitride, and metal fluoride may be the same as the metal oxide, metal nitride, and metal fluoride contained in the first high refractive index layer 2 described above. Among these, a layer containing zinc oxide is preferable.
 第2硫化防止層を酸化亜鉛と酸化ガリウム又は酸化亜鉛と窒化ケイ素など2成分の層とする場合は、それぞれの素材を所望の割合で混合したターゲットを用いてスパッタリング法で層を形成することができる。またそれぞれのターゲットを同時に用いて共スパッタリング法を用いることにより層を形成することができる。 When the second anti-sulfurization layer is a two-component layer such as zinc oxide and gallium oxide or zinc oxide and silicon nitride, the layer may be formed by sputtering using a target in which the respective materials are mixed in a desired ratio. it can. Moreover, a layer can be formed by using each target simultaneously and using a co-sputtering method.
 一方、第2硫化防止層5bの層厚は、後述する第2高屈折率層4の形成時のダメージから、透明導電層3の表面を保護可能な厚さであることが好ましい。一方で、透明導電層3に含まれる金属と、第2高屈折率層4に含まれるZnSは、親和性が高い。そのため、第2硫化防止層5bの層厚が非常に薄く、透明導電層3の一部が僅かに露出していると、透明導電層3や第2硫化防止層5bと第2高屈折率層4との密着性が高まりやすい。したがって、第2硫化防止層5bの具体的な層厚は0.1~5.0nmであることが好ましく、より好ましくは0.5~2.0nmである。第2硫化防止層5bの層厚は、エリプソメーターで測定される。 On the other hand, the thickness of the second antisulfurization layer 5b is preferably a thickness capable of protecting the surface of the transparent conductive layer 3 from damage during the formation of the second high refractive index layer 4 described later. On the other hand, the metal contained in the transparent conductive layer 3 and the ZnS contained in the second high refractive index layer 4 have high affinity. Therefore, if the thickness of the second antisulfurization layer 5b is very thin and a part of the transparent conductive layer 3 is slightly exposed, the transparent conductive layer 3, the second antisulfurization layer 5b, and the second high refractive index layer. Adhesion with 4 tends to increase. Therefore, the specific layer thickness of the second sulfidation preventing layer 5b is preferably 0.1 to 5.0 nm, and more preferably 0.5 to 2.0 nm. The layer thickness of the second sulfurization preventing layer 5b is measured with an ellipsometer.
 第2硫化防止層5bは、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で形成された層でありうる。 The second antisulfurization layer 5b may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like.
 第2硫化防止層5bが、所望の形状にパターン化された層である場合、パターン化方法は特に制限されない。第2硫化防止層5bは、例えば、所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に形成された層であってもよく、公知のエッチング法によってパターン化された層であってもよい。 When the second antisulfurization layer 5b is a layer patterned into a desired shape, the patterning method is not particularly limited. The second antisulfurization layer 5b may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the deposition surface, and may be a known etching method. It may be a layer patterned by.
 <6.第2高屈折率層>
 第2高屈折率層4は、透明導電性フィルム100の導通領域a、つまり透明導電層3が形成されている領域の光透過性(光学アドミッタンス)を調整するための層であり、少なくとも透明導電性フィルム100の導通領域aに形成される。第2高屈折率層4は、透明導電性フィルム100の絶縁領域bに形成されてもよいが、導通領域a及び絶縁領域bからなるパターンを視認され難くするとの観点から、導通領域aのみに形成されていることが好ましい。第2高屈折率層4は、大気側から水分子及び硫化物分子を透過しにくくするので、透明導電層3の腐食が抑制される効果を有する。
<6. Second High Refractive Index Layer>
The second high refractive index layer 4 is a layer for adjusting the light transmittance (optical admittance) of the conductive region a of the transparent conductive film 100, that is, the region where the transparent conductive layer 3 is formed. The conductive film 100 is formed in the conduction region a. The second high-refractive index layer 4 may be formed in the insulating region b of the transparent conductive film 100, but from the viewpoint of making it difficult to visually recognize the pattern composed of the conductive region a and the insulating region b, only the conductive region a. Preferably it is formed. Since the second high refractive index layer 4 makes it difficult for water molecules and sulfide molecules to pass through from the atmosphere side, it has an effect of suppressing the corrosion of the transparent conductive layer 3.
 第2高屈折率層4は、高屈折率材料を含有する層で、前述の透明樹脂支持体1の屈折率より高い屈折率を有する層であり、第1高屈折率層のどちらか一方の層が硫化亜鉛(ZnS)を含有する層である。第2高屈折率層4には、硫化亜鉛又は他の誘電性材料又は酸化物半導体材料が含まれてもよい。硫化亜鉛又は他の誘電性材料又は酸化物半導体材料の波長570nmの光の屈折率は、透明基板1の波長570nmの光の屈折率より0.1~1.1大きいことが好ましく、0.4~1.0大きいことがより好ましい。 The second high refractive index layer 4 is a layer containing a high refractive index material, and is a layer having a refractive index higher than the refractive index of the transparent resin support 1 described above, and one of the first high refractive index layers. The layer is a layer containing zinc sulfide (ZnS). The second high refractive index layer 4 may include zinc sulfide or other dielectric material or oxide semiconductor material. The refractive index of light having a wavelength of 570 nm of zinc sulfide or other dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 higher than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1. More preferably, it is larger by 1.0.
 一方、第2高屈折率層4に含まれる誘電性材料又は酸化物半導体材料の波長570nmの光の具体的な屈折率は1.5より大きいことが好ましく、1.7~2.5であることがより好ましく、さらに好ましくは1.8~2.5である。誘電性材料又は酸化物半導体材料の屈折率が1.5より大きいと、第2高屈折率層4によって、透明導電性フィルム100の導通領域aの光学アドミッタンスが十分に調整される。なお、第2高屈折率層4の屈折率は、第2高屈折率層4に含まれる材料の屈折率や、第2高屈折率層4に含まれる材料の密度で調整される。 On the other hand, the specific refractive index of light having a wavelength of 570 nm of the dielectric material or the oxide semiconductor material contained in the second high refractive index layer 4 is preferably larger than 1.5 and is 1.7 to 2.5. More preferably, it is 1.8 to 2.5. When the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the optical admittance of the conductive region a of the transparent conductive film 100 is sufficiently adjusted by the second high refractive index layer 4. The refractive index of the second high refractive index layer 4 is adjusted by the refractive index of the material included in the second high refractive index layer 4 and the density of the material included in the second high refractive index layer 4.
 第2高屈折率層4に含まれる誘電性材料又は酸化物半導体材料は、絶縁性の材料であってもよく、導電性の材料であってもよい。誘電性材料又は酸化物半導体材料は、金属酸化物でありうる。金属酸化物の例としては、二酸化ケイ素(SiO)、二酸化チタン(TiO)、ITO(インジウム・スズ酸化物)、酸化亜鉛(ZnO)、酸化ニオブ(Nb)、酸化ジルコニウム(ZrO)、酸化セリウム(CeO)、五酸化タンタル(Ta)、五酸化チタン(Ti)、七酸化チタン(Ti)、三酸化チタン(Ti)、酸化チタン(TiO)、二酸化スズ(SnO)、ランタニウムチタニウムオキシド(LaTi)、インジウム・亜鉛酸化物(IZO)、アルミニウム・亜鉛酸化物(AZO)、ガリウム・亜鉛酸化物(GZO)、アンチモン・スズ酸化物(ATO)、インジウム・セリウム酸化物(ICO)、インジウム・ガリウム・亜鉛酸化物(IGZO)、酸化ビスマス(Bi)、酸化ガリウム(Ga)、酸化ゲルマニウム(GeO)、三酸化タングステン(WO)、酸化ハフニウム(HfO)、ガリウム・インジウム及び酸素からなる非晶質酸化物(a-GIO)等が含まれる。第2高屈折率層4には、当該金属酸化物が一種のみ含まれてもよく、二種以上が含まれてもよい。 The dielectric material or oxide semiconductor material contained in the second high refractive index layer 4 may be an insulating material or a conductive material. The dielectric material or oxide semiconductor material can be a metal oxide. Examples of metal oxides include silicon dioxide (SiO 2 ), titanium dioxide (TiO 2 ), ITO (indium tin oxide), zinc oxide (ZnO), niobium oxide (Nb 2 O 5 ), zirconium oxide (ZrO 2 ), cerium oxide (CeO 2 ), tantalum pentoxide (Ta 2 O 5 ), titanium pentoxide (Ti 3 O 5 ), titanium heptoxide (Ti 4 O 7 ), titanium trioxide (Ti 2 O 3 ), Titanium oxide (TiO), tin dioxide (SnO 2 ), lanthanum titanium oxide (La 2 Ti 2 O 7 ), indium zinc oxide (IZO), aluminum zinc oxide (AZO), gallium zinc oxide ( GZO), antimony tin oxide (ATO), indium cerium oxide (ICO), indium gallium zinc oxide (IGZO) Bismuth oxide (Bi 2 O 3), gallium oxide (Ga 2 O 3), germanium oxide (GeO 2), three tungsten oxide (WO 3), hafnium oxide (HfO 2), amorphous of gallium-indium and oxygen Oxides (a-GIO) and the like are included. The second high refractive index layer 4 may include only one kind of the metal oxide or two or more kinds.
 本発明においては、上記金属酸化物の中では、インジウム・亜鉛酸化物(ITO)、インジウム・亜鉛酸化物(IZO)、ガリウム・亜鉛酸化物(GZO)、インジウム・ガリウム・亜鉛酸化物(IGZO)が好ましい。これらの材料は、パターン化に好適であると同時に、銀の保護機能を得ることができるほか、これらのワイドギャップ半導体を用いることで透明導電性フィルムの表面抵抗値を下げ、電流の取り出しが容易になる効果がある。 In the present invention, among the above metal oxides, indium / zinc oxide (ITO), indium / zinc oxide (IZO), gallium / zinc oxide (GZO), indium / gallium / zinc oxide (IGZO) Is preferred. These materials are suitable for patterning, and at the same time, can provide a protective function for silver, and by using these wide gap semiconductors, the surface resistance value of the transparent conductive film is lowered, and current can be easily taken out. There is an effect to become.
 またさらに、本発明において、第2高屈折率層4に含まれる誘電性材料又は酸化物半導体材料としては、硫化亜鉛(ZnS)が特に好ましい。第2高屈折率層4に硫化亜鉛(ZnS)が含まれると、透明樹脂支持体1側から水分子や硫化物分子が透過し難くなり、透明導電層3の腐食が抑制される。 Furthermore, in the present invention, zinc sulfide (ZnS) is particularly preferable as the dielectric material or oxide semiconductor material contained in the second high refractive index layer 4. When zinc sulfide (ZnS) is contained in the second high refractive index layer 4, water molecules and sulfide molecules are hardly transmitted from the transparent resin support 1 side, and corrosion of the transparent conductive layer 3 is suppressed.
 第2高屈折率層は、硫化亜鉛(ZnS)のみが含まれてもよい。このときの組成比は、亜鉛原子数100に対して硫黄原子数が50以上、100未満である。好ましくは、亜鉛原子数100に対して硫黄原子数が83以上、90以下である。 The second high refractive index layer may contain only zinc sulfide (ZnS). The composition ratio at this time is 50 or more and less than 100 sulfur atoms with respect to 100 zinc atoms. Preferably, the number of sulfur atoms is 83 or more and 90 or less with respect to 100 zinc atoms.
 前記第2高屈折率層4には、硫化亜鉛(ZnS)とともに他の材料が含まれてもよい。硫化亜鉛(ZnS)とともに含まれる材料は、上記誘電性材料又は酸化物半導体材料でありうる金属酸化物や二酸化ケイ素(SiO)等であり、特に好ましくは二酸化ケイ素(SiO)である。硫化亜鉛(ZnS)とともに二酸化ケイ素(SiO)が含まれると、第2高屈折率層が非晶質になりやすく、透明導電体のフレキシブル性が高まりやすい。このときの組成比は前記硫化亜鉛(ZnS)のみの場合に準じ、その組成比は亜鉛原子数100に対してイオウ原子数が50以上、100未満であることが好ましい。さらに好ましくは、亜鉛原子数100に対してイオウ原子数が83以上、90以下である。 The second high refractive index layer 4 may contain other materials together with zinc sulfide (ZnS). Materials included with zinc sulfide (ZnS), said dielectric material or metal may be an oxide semiconductor material oxide or silicon dioxide (SiO 2) and the like, particularly preferably silicon dioxide (SiO 2). When silicon dioxide (SiO 2 ) is contained together with zinc sulfide (ZnS), the second high refractive index layer is likely to be amorphous, and the flexibility of the transparent conductor is likely to be enhanced. The composition ratio at this time is the same as that of zinc sulfide (ZnS) alone, and the composition ratio is preferably 50 or more and less than 100 sulfur atoms with respect to 100 zinc atoms. More preferably, the number of sulfur atoms is 83 or more and 90 or less with respect to 100 zinc atoms.
 第2高屈折率層4に硫化亜鉛(ZnS)とともに他の材料が含まれる場合、硫化亜鉛(ZnS)の量は、第2高屈折率層4の総体積に対して、0.1~95体積%であることが好ましく、50~90体積%以下であることがより好ましく、さらに好ましくは60~85体積%である。ZnSの比率が高いとスパッタ速度が速くなり、第2高屈折率層4の成形成速度が速くなる。一方、ZnS以外の成分が多く含まれると、第2高屈折率層4の非晶質性が高まり、第2高屈折率層4の割れが抑制される。 When the second high refractive index layer 4 contains other materials together with zinc sulfide (ZnS), the amount of zinc sulfide (ZnS) is 0.1 to 95 with respect to the total volume of the second high refractive index layer 4. The volume is preferably 50%, more preferably 50 to 90% by volume, and still more preferably 60 to 85% by volume. When the ratio of ZnS is high, the sputtering rate increases and the formation rate of the second high refractive index layer 4 increases. On the other hand, when many components other than ZnS are contained, the amorphous nature of the second high refractive index layer 4 increases, and cracking of the second high refractive index layer 4 is suppressed.
 硫化亜鉛及び二酸化ケイ素(SiO)の組成を上記範囲内に制御する方法としては、例えば、適切な濃度で二酸化ケイ素(SiO)を含有した硫化亜鉛(ZnS)のターゲットを用いたスパッタリング法、二酸化ケイ素(SiO)と硫化亜鉛(ZnS)のターゲットを同時に用いた共スパッタリング法を利用することにより行うことができる。 As a method for controlling the composition of zinc sulfide and silicon dioxide (SiO 2 ) within the above range, for example, a sputtering method using a zinc sulfide (ZnS) target containing silicon dioxide (SiO 2 ) at an appropriate concentration, This can be performed by utilizing a co-sputtering method using silicon dioxide (SiO 2 ) and zinc sulfide (ZnS) targets simultaneously.
 硫化亜鉛とともに上記範囲内で二酸化ケイ素(SiO)が含まれると、第2高屈折率層が非晶質になりやすく、透明導電性フィルムのフレキシブル性が高まりやすい。 When silicon dioxide (SiO 2 ) is contained in the above range together with zinc sulfide, the second high refractive index layer is likely to be amorphous, and the flexibility of the transparent conductive film is likely to be enhanced.
 ZnSの比率が高いとスパッタ速度が速くなり、第2高屈折率層4の形成速度が早くなる。一方、ZnS以外の成分が多くなると、第2高屈折率層4の非晶質性が高まり、第2高屈折率層4の割れが抑制される。 When the ratio of ZnS is high, the sputtering rate increases and the formation rate of the second high refractive index layer 4 increases. On the other hand, when the amount of components other than ZnS increases, the amorphousness of the second high refractive index layer 4 increases, and cracking of the second high refractive index layer 4 is suppressed.
 第2高屈折率層4の層厚は、好ましくは15~150nmであり、さらに好ましくは20nm~80nmである。第2高屈折率層4の層厚が15nm以上であると、第2高屈折率層4によって、透明導電体100の導通領域aの光学アドミッタンスが十分に調整される。一方、第2高屈折率層4の層厚が150nm以下であれば、第2高屈折率層4が含まれる領域の光透過性が低下し難い。第2高屈折率層4の層厚は、エリプソメーターで測定される。 The layer thickness of the second high refractive index layer 4 is preferably 15 to 150 nm, and more preferably 20 to 80 nm. When the layer thickness of the second high refractive index layer 4 is 15 nm or more, the optical admittance of the conductive region a of the transparent conductor 100 is sufficiently adjusted by the second high refractive index layer 4. On the other hand, if the layer thickness of the second high refractive index layer 4 is 150 nm or less, the light transmittance of the region including the second high refractive index layer 4 is unlikely to decrease. The layer thickness of the second high refractive index layer 4 is measured with an ellipsometer.
 第2高屈折率層4の形成方法は特に制限されず、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で形成された層であり得る。第2高屈折率層4の透湿性が低くなるとの観点から、第2高屈折率層4はスパッタ法で形成された膜であることが特に好ましい。 The formation method of the second high refractive index layer 4 is not particularly limited, and is a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like. It can be. From the viewpoint that the moisture permeability of the second high refractive index layer 4 is lowered, the second high refractive index layer 4 is particularly preferably a film formed by a sputtering method.
 また、第2高屈折率層4が所望の形状にパターン化された層である場合、パターン化方法は特に制限されない。第2高屈折率層4は、例えば、所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に形成された層であってもよい。また、公知のエッチング法によってパターン化された層であってもよい。 Further, when the second high refractive index layer 4 is a layer patterned into a desired shape, the patterning method is not particularly limited. The second high refractive index layer 4 may be, for example, a layer formed in a pattern by a vapor deposition method by disposing a mask having a desired pattern on the deposition surface. Moreover, the layer patterned by the well-known etching method may be sufficient.
 <7.ハードコート層>
 透明導電性フィルムの製造時において透明樹脂支持体の表面に傷が発生するのを防止する目的で、透明樹脂支持体の少なくとも一方の面、好ましくは、透明導電層側にハードコート層が設けられていることが好ましい。
<7. Hard coat layer>
A hard coat layer is provided on at least one surface of the transparent resin support, preferably on the transparent conductive layer side, for the purpose of preventing scratches on the surface of the transparent resin support during the production of the transparent conductive film. It is preferable.
 透明樹脂支持体の少なくともどちらか一方の面にハードコート層を設けることによって、透明樹脂支持体の製膜時から本発明の透明導電性フィルムの作製過程において、フィルムの巻き取り・搬送・巻き出しにおけるフィルム表面間の面圧や摩擦による傷の発生を防止する効果を有する。 By providing a hard coat layer on at least one surface of the transparent resin support, the film can be wound, conveyed, and unwound in the production process of the transparent conductive film of the present invention from the time of forming the transparent resin support. It has the effect of preventing the occurrence of scratches due to surface pressure and friction between the film surfaces.
 ハードコート層は、紫外線硬化性アクリレート系樹脂を塗布乾燥、その後紫外線光源にて硬化されて提供される。 The hard coat layer is provided by applying and drying an ultraviolet curable acrylate resin and then curing with an ultraviolet light source.
 ハードコート層の層厚は、0.2~5.0μmの範囲内であることが好ましく、ハードコート層の層厚が、上記範囲内であると十分な耐傷効果が得られるので、製造過程における傷の発生を防止することができ、透明導電性フィルムとしたときに十分な透明性が得られる。 The layer thickness of the hard coat layer is preferably in the range of 0.2 to 5.0 μm, and if the layer thickness of the hard coat layer is in the above range, a sufficient scratch resistance effect can be obtained. Scratches can be prevented and sufficient transparency can be obtained when a transparent conductive film is formed.
 ハードコート層は、塗布の他、CVD法、スパッタリング法、蒸着法などによるSiO薄膜を100nm以下の層厚で積層することによって作製することもできる。 The hard coat layer can be produced by laminating a SiO 2 thin film by a CVD method, a sputtering method, a vapor deposition method or the like with a layer thickness of 100 nm or less in addition to the application.
 <8.ブロッキング防止層>
 本発明の透明導電性フィルムの透明樹脂支持体の透明導電層が設けられた面とは反対側の面に、十点平均粗さRzが、50nm以下のブロッキング防止層が設けられていることが好ましい。ブロッキング防止層とは、フィルムを巻き取りハンドリングする際のフィルム同士の貼付き防止のためになされるが、これはフィルムの表面に任意の粗さを設け、この隙間を空気が埋めることで、巻き出し・巻き取り操作時のフィルム同士の貼付きを防ぐことができる。
<8. Anti-blocking layer>
A blocking prevention layer having a 10-point average roughness Rz of 50 nm or less is provided on the surface of the transparent conductive film of the present invention opposite to the surface provided with the transparent conductive layer of the transparent resin support. preferable. The anti-blocking layer is used to prevent sticking between films when winding and handling the film. This is done by providing an arbitrary roughness on the surface of the film and filling this gap with air. It is possible to prevent sticking between films during unwinding and winding operations.
 十点平均粗さRzとは、JIS B0601:1994に規定されるRzをいう。 10-point average roughness Rz means Rz defined in JIS B0601: 1994.
 ブロッキング防止層は、アクリレート系樹脂などの樹脂に微粒子を混合した塗布液を塗布することによって設けることができる。微粒子としては、シリカなどの無機微粒子の他、樹脂の微粒子を用いることができる。上記微粒子の平均粒子径としては、10~300nmの範囲内のものを用いることが好ましい。 The anti-blocking layer can be provided by applying a coating liquid in which fine particles are mixed with a resin such as an acrylate resin. In addition to inorganic fine particles such as silica, resin fine particles can be used as the fine particles. The average particle diameter of the fine particles is preferably within the range of 10 to 300 nm.
 本発明の透明導電性フィルムにおいては、透明樹脂支持体上に設けられた高屈折率層、硫化防止層及び透明導電層の各薄膜層が、スパッタリング法又は蒸着法で形成されたものであることが好ましい。前記透明樹脂支持体上に設けられた各薄膜層が、スパッタリング法又は蒸着法で形成されたものであると生産性が向上し大量生産に好適な効果が得られる。ただし、化学気相蒸着法(CVD法)等他のあらゆる薄層製造方法によったものであっても、本発明によって得られる価値は損なわれない。 In the transparent conductive film of the present invention, each thin film layer of a high refractive index layer, an antisulfurization layer and a transparent conductive layer provided on a transparent resin support is formed by a sputtering method or a vapor deposition method. Is preferred. When each thin film layer provided on the transparent resin support is formed by a sputtering method or a vapor deposition method, productivity is improved and an effect suitable for mass production is obtained. However, the value obtained by the present invention is not impaired even if it is based on any other thin layer manufacturing method such as chemical vapor deposition (CVD).
 ≪透明導電層のパターン化≫
 本発明の透明導電性フィルムを用いて例えば、静電容量方式のタッチパネルを作製するためには、図3に示すように透明導電層を複数の導通領域aと、これを区切るライン状の絶縁領域bとを含む所定の形状にパターン化することが好ましい。
≪Patterning of transparent conductive layer≫
For example, in order to produce a capacitive touch panel using the transparent conductive film of the present invention, as shown in FIG. 3, the transparent conductive layer is divided into a plurality of conductive regions a and a line-shaped insulating region that divides the conductive regions a. It is preferable to pattern it into a predetermined shape including b.
 銀を含有する透明導電層の劣化因子としては、雰囲気中に含まれる水分や硫化物が挙げられる。これらは、透明樹脂支持体やハードコート層に取り込まれ、またハードコート層を透過して透明導電層まで到達する。したがって、透明樹脂支持体とハードコート層だけでは、透明導電層の銀の保護機能が十分ではなく、そのため第1高屈折率層、好ましくは第1硫化防止層がある場合は硫化防止層も含めて透明樹脂支持体上にパターン化されずに残存させることが、透明導電層の劣化防止の観点から好ましい。 Examples of the deterioration factor of the transparent conductive layer containing silver include moisture and sulfide contained in the atmosphere. These are taken into the transparent resin support and the hard coat layer, and pass through the hard coat layer to reach the transparent conductive layer. Therefore, the transparent resin support and the hard coat layer alone do not provide sufficient silver protective function for the transparent conductive layer. Therefore, if there is a first high refractive index layer, preferably a first antisulfurization layer, the antisulfurization layer is included. From the viewpoint of preventing the deterioration of the transparent conductive layer, it is preferable to leave it on the transparent resin support without being patterned.
 透明導電層をパターン化する方法としては、公知の方法を用いることができ、このようなパターン化の方法としては、具体的には、以下のようにして行うことができる。 As a method of patterning the transparent conductive layer, a known method can be used. Specifically, such a patterning method can be performed as follows.
 (パターン化工程)
 以下、フォトリソグラフィー法による電極パターンの形成方法について説明する。
(Patterning process)
Hereinafter, a method for forming an electrode pattern by photolithography will be described.
 本発明に適用するフォトリソグラフィー法とは、硬化性樹脂等のレジスト塗布、予備加熱、露光、現像(未硬化樹脂の除去)、リンス、エッチング液によるエッチング処理、レジスト剥離の各工程を経ることにより、透明導電層を、図3に示すような所望のパターンに加工する方法である。 The photolithographic method applied to the present invention includes resist coating such as curable resin, preheating, exposure, development (removal of uncured resin), rinsing, etching treatment with an etching solution, and resist stripping. The transparent conductive layer is processed into a desired pattern as shown in FIG.
 本発明では、従来公知の一般的なフォトリソグラフィー法を適宜利用することができる。例えば、レジストとしてはポジ型又はネガ型のいずれのレジストでも使用可能である。また、レジスト塗布後、必要に応じて予備加熱又はプリベークを実施することができる。露光に際しては、所期のパターンを有するパターンマスクを配置し、その上から、用いたレジストに適合する波長の光、一般には紫外線や電子線等を照射すればよい。露光後、用いたレジストに適合する現像液で現像を行う。 In the present invention, a conventionally known general photolithography method can be used as appropriate. For example, as the resist, either positive or negative resist can be used. In addition, after applying the resist, preheating or prebaking can be performed as necessary. At the time of exposure, a pattern mask having a desired pattern may be disposed, and light having a wavelength suitable for the resist used, generally ultraviolet rays, electron beams, or the like may be irradiated thereon. After the exposure, development is performed with a developer suitable for the resist used.
 現像後、水等のリンス液で現像を止めるとともに洗浄を行うことで、レジストパターンが形成される。次いで、形成されたレジストパターンを、必要に応じて前処理又はポストベークを実施してから、有機溶媒を含むエッチング液によるエッチングで、レジストで保護されていない領域の中間層の溶解及び銀薄膜電極の除去を行う。 After development, a resist pattern is formed by stopping development with a rinse solution such as water and washing. Next, the formed resist pattern is pretreated or post-baked as necessary, and then is etched with an etching solution containing an organic solvent to dissolve the intermediate layer in a region not protected by the resist and to form a silver thin film electrode Remove.
 エッチング後、残留するレジストを剥離することによって、所期のパターンを有する透明電極が得られる。このように、本発明に適用されるフォトリソグラフィー法は、当業者に一般に認識されている方法であり、その具体的な適用態様は当業者であれば所期の目的に応じて容易に選定することができる。 After etching, the remaining resist is removed to obtain a transparent electrode having the desired pattern. As described above, the photolithography method applied to the present invention is a method generally recognized by those skilled in the art, and the specific application mode is easily selected by those skilled in the art according to the intended purpose. be able to.
 次いで、図4を用いて、本発明に適用可能な電極パターンの形成方法について説明する。 Next, an electrode pattern forming method applicable to the present invention will be described with reference to FIG.
 図4は、本発明の透明導電体に電極パターンをフォトリソグラフィー法で形成する一例を示す工程フロー図である。 FIG. 4 is a process flow diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by a photolithography method.
 第1ステップとして、図4Aで示すように、透明樹脂支持体1上に、第1高屈折率層2、第1硫化防止層5a、透明導電層3、第2硫化防止層5b、第2高屈折率層4をこの順で積層した透明導電性フィルム100を作製する。 As a first step, as shown in FIG. 4A, on the transparent resin support 1, the first high refractive index layer 2, the first antisulfurization layer 5a, the transparent conductive layer 3, the second antisulfurization layer 5b, the second high A transparent conductive film 100 in which the refractive index layer 4 is laminated in this order is produced.
 次いで、図4Bで示すレジスト膜の形成工程で、透明導電性フィルム100上に感光性樹脂組成物等から構成されるレジスト膜6を均一に塗設する。感光性樹脂組成物としては、ネガ型感光性樹脂組成物あるいはポジ型感光性樹脂組成物を用いることができる。 Next, in the resist film forming step shown in FIG. 4B, a resist film 6 composed of a photosensitive resin composition or the like is uniformly coated on the transparent conductive film 100. As the photosensitive resin composition, a negative photosensitive resin composition or a positive photosensitive resin composition can be used.
 塗布方法としては、マイクログラビアコーティング、スピンコーティング、ディップコーティング、カーテンフローコーティング、ロールコーティング、スプレーコーティング、スリットコーティングなどの公知の方法によって、透明導電性フィルム100上に塗布し、ホットプレート、オーブンなどの加熱装置でプリベークすることができる。プリベークは、例えば、ホットプレート等を用いて、50℃以上、150℃以下の範囲で30秒~30分間行うことができる。 As a coating method, it is applied on the transparent conductive film 100 by a known method such as microgravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating, slit coating, hot plate, oven, etc. It can be pre-baked with a heating device. Pre-baking can be performed, for example, using a hot plate or the like in the range of 50 ° C. or higher and 150 ° C. or lower for 30 seconds to 30 minutes.
 次いで、図4C)に示す露光工程で、所定の電極パターンにより作製したマスク7を介して、ステッパー、ミラープロジェクションマスクアライナー(MPA)、パラレルライトマスクアライナーなどの露光機を用いて、10~4000J/m程度(波長365nm露光量換算)の光を、次工程で除去するレジスト膜6Aに照射する。露光光源に制限はなく、紫外線、電子線や、KrF(波長248nm)レーザー、ArF(波長193nm)レーザーなどを用いることができる。 Next, in the exposure process shown in FIG. 4C), an exposure machine such as a stepper, a mirror projection mask aligner (MPA), a parallel light mask aligner, or the like is used through a mask 7 made with a predetermined electrode pattern to obtain 10 to 4000 J / mm. The resist film 6A to be removed in the next step is irradiated with light of about m 2 (wavelength 365 nm exposure amount conversion). The exposure light source is not limited, and ultraviolet rays, electron beams, KrF (wavelength 248 nm) laser, ArF (wavelength 193 nm) laser, and the like can be used.
 次いで、図4Dに示す現像工程で、露光済みの透明導電性フィルムを、現像液に浸漬して、光照射した領域のレジスト膜6Aを溶解する。 Next, in the developing step shown in FIG. 4D, the exposed transparent conductive film is immersed in a developing solution to dissolve the resist film 6A in the region irradiated with light.
 現像方法としては、シャワー、ディッピング、パドルなどの方法で現像液に5秒~10分間浸漬することが好ましい。現像液としては、公知のアルカリ現像液を用いることができる。具体例としては、アルカリ金属の水酸化物、炭酸塩、リン酸塩、ケイ酸塩、ホウ酸塩などの無機アルカリ、2-ジエチルアミノエタノール、モノエタノールアミン、ジエタノールアミンなどのアミン類、テトラメチルアンモニウムヒドロキサイド、コリンなどの4級アンモニウム塩を一種あるいは二種以上含む水溶液などが挙げられる。現像後、水でリンスすることが好ましく、続いて50℃以上150℃以下の範囲で乾燥ベークを行ってもよい。 As the developing method, it is preferable to immerse in the developer for 5 seconds to 10 minutes by a method such as showering, dipping or paddle. As the developer, a known alkali developer can be used. Specific examples include inorganic alkalis such as alkali metal hydroxides, carbonates, phosphates, silicates and borates, amines such as 2-diethylaminoethanol, monoethanolamine and diethanolamine, tetramethylammonium hydroxide. Examples thereof include aqueous solutions containing one or more quaternary ammonium salts such as side and choline. After development, it is preferable to rinse with water, and then dry baking may be performed in the range of 50 ° C. to 150 ° C.
 この後、第2高屈折率層及び第2硫化防止層を除去すべく、エッチング液として林純薬工業(株)製「PURE ETCH 100」を使用する。(図4E)
 次いで、透明導電層、第1硫化防止層のみを溶解すべく関東化学(株)製「SEA-5」を短時間のエッチングにおいて実施する。(図4F)
 最後に、図4Gに示すように、レジスト膜剥離液、例えば、ナガセケムテックス社製の「N-300」に浸漬して、レジスト膜6を除去して、第1高屈折率層2を残した電極パターンを有する透明導電性フィルムを作製することができる。
Thereafter, “PURE ETCH 100” manufactured by Hayashi Pure Chemical Industries, Ltd. is used as an etchant to remove the second high refractive index layer and the second antisulfurization layer. (Fig. 4E)
Next, “SEA-5” manufactured by Kanto Chemical Co., Inc. is carried out in a short time etching in order to dissolve only the transparent conductive layer and the first antisulfuration layer. (Fig. 4F)
Finally, as shown in FIG. 4G, the resist film 6 is removed by immersing it in a resist film remover, for example, “N-300” manufactured by Nagase ChemteX Corporation, leaving the first high refractive index layer 2. A transparent conductive film having an electrode pattern can be produced.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 ≪透明導電性フィルムの作製≫
 透明導電性フィルムの作製には、以下の透明樹脂支持体及び導電性材料を用いた。
≪Preparation of transparent conductive film≫
For the production of the transparent conductive film, the following transparent resin support and conductive material were used.
 (透明樹脂支持体の素材)
 ここで、dは支持体の厚さであり、Roは面内リターデーションであり、Rtは厚さ方向のリターデーションである。Ro、Rtは測定波長589nmにおける値であり、代表値とする。
(Transparent resin support material)
Here, d is the thickness of the support, Ro is the in-plane retardation, and Rt is the retardation in the thickness direction. Ro and Rt are values at a measurement wavelength of 589 nm and are representative values.
 1.TPS1:コニカミノルタ(株)製「ゼロタック」、
d=50μm Ro=0nm Rt=0nm
 2.TPS2:コニカミノルタ(株)製「コニカミノルタタック」、
厚さ50μm Ro=5nm Rt=30nm
 3.PET:東洋紡製ポリエチレンテレフタレートフィルム「コスモシャインA4300」厚さ50μm Ro=5000nm Rt=10000nm
 4.PC :カネカ製ポリカーボネートフィルム「エルメック R40#435フィルム」厚さ40μm Ro=435nm Rt=600nm
 5.TPS3:日本ゼオン製シクロオレフィンフィルム「ゼオノアZ14(50μm)」厚さ50μm Ro=1.5nm Rt=10nm
 6.TPS4:コニカミノルタ(株)製「VA-TAC」厚さ80μm Ro=50nm Rt=130nm
 (導電性材料)
 7.APC:フルヤ金属製「Ag合金」(Pd、Cuを含有)
 8.APC-TR:フルヤ金属製「Ag合金」(Pd、Cuを含有)
 9.APC-SR:フルヤ金属製「Ag合金」(Pd、Cuを含有)
 上記3グレードの合金は、各々の組成が異なっている。
1. TPS1: “Zero Tack” manufactured by Konica Minolta Co., Ltd.
d = 50 μm Ro = 0 nm Rt = 0 nm
2. TPS2: “Konica Minolta Tac” manufactured by Konica Minolta, Inc.
Thickness 50 μm Ro = 5 nm Rt = 30 nm
3. PET: Toyobo polyethylene terephthalate film “Cosmo Shine A4300” thickness 50 μm Ro = 5000 nm Rt = 10000 nm
4). PC: Kaneka polycarbonate film “Elmec R40 # 435 film” thickness 40 μm Ro = 435 nm Rt = 600 nm
5. TPS3: ZEON cycloolefin film “ZEONOR Z14 (50 μm)” thickness 50 μm Ro = 1.5 nm Rt = 10 nm
6). TPS4: “VA-TAC” manufactured by Konica Minolta Co., Ltd., thickness 80 μm Ro = 50 nm Rt = 130 nm
(Conductive material)
7). APC: Furuya Metal "Ag alloy" (containing Pd and Cu)
8). APC-TR: “Ag alloy” made of Furuya Metal (containing Pd and Cu)
9. APC-SR: Furuya Metal's “Ag alloy” (containing Pd and Cu)
The above three grade alloys have different compositions.
 10.GB-100:コベルコ科研製「Ag合金」Ag(99.0atm%)/Bi(1.0atm%)
 11.GBR-15:コベルコ科研製「Ag合金」Ag(98.35atm%)/Bi(0.35atm%)/Ge(0.3atm%)/Au(1.0atm%)
 12.Ag:銀(純度99.9%以上)
 13.Cu:銅(純度99.9%以上)
 14.Au:金(純度99.9%以上)
 高屈折率層、硫化防止層には、以下の素材を使用した。
 15.ITO:インジウム・スズ酸化物
 16.SiN:窒化ケイ素 n=2.02(nは屈折率を表す。)
 17.Nb:五酸化ニオブ n=2.31
 18.ZnO:酸化亜鉛 n=1.95
 19.IZO:インジウム・亜鉛酸化物
 20.GZO:ガリウム・亜鉛酸化物
 21.IGZO:インジウム・ガリウム・亜鉛酸化物
 22.TiN:窒化チタン
 23.Ga:酸化ガリウム
 24.Bi:酸化ビスマス
 25.ZnS:ZnとSの組成が調整された焼結体
 26.ZnS-SiO:ZnSとSiOの組成が調整された混合物
 27.ZnO-Ga:ZnOとGaの組成が調整された混合物
 28.ZnO-SiN:ZnOとSiNの組成が調整された混合物
 29.Ga-SiN:GaとSiNの組成が調整された混合物
 30.ZnS-ZnO:ZnSとZnOの組成が調整された混合物
 31.ZnS-SiN:ZnSとSiNの組成が調整された混合物
 32.ZnS-TiN:ZnSとTiNの組成が調整された混合物
 33.ZnS-Bi:ZnSとBiの組成が調整された混合物
 また、上記26、30~33のZnSは25と同様ZnとSの組成が調整された焼結体を使用して混合物とした。
10. GB-100: “Ag alloy” manufactured by Kobelco Research Institute, Ag (99.0 atm%) / Bi (1.0 atm%)
11. GBR-15: “Ag alloy” manufactured by Kobelco Research Institute, Ag (98.35 atm%) / Bi (0.35 atm%) / Ge (0.3 atm%) / Au (1.0 atm%)
12 Ag: Silver (Purity 99.9% or more)
13. Cu: Copper (purity 99.9% or more)
14 Au: Gold (Purity 99.9% or more)
The following materials were used for the high refractive index layer and the sulfidation prevention layer.
15. ITO: indium tin oxide 16. SiN: silicon nitride n = 2.02 (n represents a refractive index)
17. Nb 2 O 5 : Niobium pentoxide n = 2.31
18. ZnO: zinc oxide n = 1.95
19. IZO: indium / zinc oxide 20. 20. GZO: gallium / zinc oxide IGZO: indium gallium zinc oxide 22. TiN: titanium nitride 23. Ga 2 O 3 : Gallium oxide 24. Bi 2 O 3 : Bismuth oxide 25. ZnS: Sintered body in which the composition of Zn and S is adjusted 26. ZnS—SiO 2 : a mixture in which the composition of ZnS and SiO 2 is adjusted 27. ZnO—Ga 2 O 3 : a mixture in which the composition of ZnO and Ga 2 O 3 is adjusted 28. ZnO—SiN: a mixture in which the composition of ZnO and SiN is adjusted 29. Ga 2 O 3 —SiN: mixture in which the composition of Ga 2 O 3 and SiN is adjusted 30. ZnS—ZnO: a mixture in which the composition of ZnS and ZnO is adjusted 31. ZnS—SiN: mixture in which the composition of ZnS and SiN is adjusted 32. ZnS—TiN: a mixture in which the composition of ZnS and TiN is adjusted 33. ZnS—Bi 2 O 3 : A mixture in which the composition of ZnS and Bi 2 O 3 is adjusted. In addition, the ZnS of 26, 30 to 33 is the same as 25, using a sintered body in which the composition of Zn and S is adjusted. A mixture was obtained.
 <透明導電性フィルム1の作製>
 (第1高屈折率層)
 透明樹脂支持体として100mm四方に切りだされたコニカミノルタ(株)製「ゼロタック」(TPS1)(Ro=0nm、Rt=0nm、d=50μm)を用いた。大阪真空社のマグネトロンスパッタ装置を用いてスパッタし、第1高屈折率層を形成した。
<Preparation of transparent conductive film 1>
(First high refractive index layer)
As a transparent resin support, “Zero tack” (TPS1) (Ro = 0 nm, Rt = 0 nm, d = 50 μm) manufactured by Konica Minolta Co., Ltd. cut into 100 mm square was used. The first high refractive index layer was formed by sputtering using a magnetron sputtering apparatus manufactured by Osaka Vacuum.
 カソードに組成を調整したZnSターゲットを配置し、Ar 20sccm、スパッタ圧0.2Pa、室温下にて全体の形成速度3.0Å/sec(0.3nm/sec)となるよう、ターゲット側電力を150Wとし、層厚40.0nmの第1高屈折率層を形成した。カソードにはRF電力を供給した。
 ターゲット-基板間の距離は90mmであった。後述する組成分析試験によれば、このときのZnとSの組成比は、Zn原子数100に対してS原子数は83であった。
A ZnS target with an adjusted composition is placed on the cathode, and the target-side power is 150 W so that the overall formation rate is 3.0 Å / sec (0.3 nm / sec) at Ar 20 sccm, sputtering pressure 0.2 Pa, and room temperature. A first high refractive index layer having a layer thickness of 40.0 nm was formed. RF power was supplied to the cathode.
The distance between the target and the substrate was 90 mm. According to the composition analysis test described later, the composition ratio of Zn and S at this time was 83 with respect to 100 Zn atoms.
 (第1硫化防止層)
 次いで、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下にて、ターゲット側電力を150Wとし、形成速度1.1Å/sec(0.11nm/sec)でZnOを層厚1.0nmになるようにしてRFスパッタした。
(First sulfurization prevention layer)
Next, Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, power on the target side is 150 W, and ZnO is formed to a layer thickness of 1.0 nm at a formation rate of 1.1 Å / sec (0.11 nm / sec). Thus, RF sputtering was performed.
 (透明導電層)
 続けて、前記第1硫化防止層上に、大阪真空社のマグネトロンスパッタ装置を用い、Ar 20sccm、スパッタ圧0.5Pa、室温下、形成速度14Å/sec(1.4nm/sec)で銀をスパッタし、層厚7.5nmの透明導電層を形成した。
(Transparent conductive layer)
Subsequently, silver is sputtered on the first antisulfurization layer by using a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., with Ar 20 sccm, sputtering pressure 0.5 Pa, room temperature, and a formation rate of 14 Å / sec (1.4 nm / sec). Then, a transparent conductive layer having a layer thickness of 7.5 nm was formed.
 (第2硫化防止層)
 さらに続けて、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、形成速度1.1Å/sec(0.11nm/sec)でZnOを層厚1.0nmになるようにしてRFスパッタした。
(Second anti-sulfur layer)
Subsequently, RF sputtering was performed with ArO 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, ZnO with a formation rate of 1.1 sec / sec (0.11 nm / sec) and a layer thickness of 1.0 nm. .
 (第2高屈折率層)
 次いで、第1高屈折率層と同一の方法でZnSをスパッタし、層厚40.0nmの第2高屈折率層を形成し、透明導電性フィルム1を作製した。このときのZnとSの組成比は、Zn原子数100に対してS原子数は83であった。
(Second high refractive index layer)
Subsequently, ZnS was sputtered by the same method as that for the first high refractive index layer to form a second high refractive index layer having a layer thickness of 40.0 nm, and the transparent conductive film 1 was produced. At this time, the composition ratio of Zn and S was 83 with respect to 100 Zn atoms.
 <透明導電性フィルム2~36及び101~107の作製>
 表1及び表2の構成にした他は、適宜ターゲット材料を交換しながら、前記透明導電性フィルム1と同様にして、本発明の透明導電性フィルム2~36及び比較例の透明導電性フィルム101~107を作製した。
<Preparation of transparent conductive films 2 to 36 and 101 to 107>
The transparent conductive films 2 to 36 of the present invention and the transparent conductive film 101 of the comparative example were used in the same manner as the transparent conductive film 1 except that the configurations shown in Tables 1 and 2 were used. To 107 were produced.
 ここでは、第1高屈折率層及び第2項屈折率層における亜鉛とイオウの各元素組成比の調整は、形成された層において所望の割合の元素組成比になるように調整された焼結体をターゲットとして用いてスパッタリングすることにより行った。また、その他の各層における二種類の素材を含有する層の形成についても、それぞれの素材が、表1及び表2に記載した割合になるようにあらかじめ調整された混合物をターゲットとして用いてスパッタリングすることにより層を形成した。 Here, adjustment of each elemental composition ratio of zinc and sulfur in the first high refractive index layer and the second term refractive index layer is performed by adjusting the element composition ratio of the desired ratio in the formed layer. This was done by sputtering using the body as a target. Moreover, also about formation of the layer containing two types of materials in each other layer, it sputters using the mixture prepared beforehand as a target so that each material may become the ratio indicated in Table 1 and Table 2 as a target. To form a layer.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (亜鉛及びイオウ原子数の組成比分析)
 亜鉛とイオウの元素定量分析には、所定のZnS薄層を単層でBK7ガラス上に形成した参照試料を作製し、これら試料に対して、超高純度過酸化水素(関東化学株式会社製)を用いてZnS層を十分溶解させ、超純水で希釈させて得られる、20ml溶液中に含まれる各元素に対し(株)日立ハイテクサイエンス製のICP発光分光分析装置「SPS3520UV」を用いてマトリックスマッチングを行った。
(Composition ratio analysis of the number of zinc and sulfur atoms)
For quantitative elemental analysis of zinc and sulfur, a reference sample in which a predetermined ZnS thin layer was formed as a single layer on BK7 glass was prepared, and ultra-high purity hydrogen peroxide (manufactured by Kanto Chemical Co., Ltd.) was used for these samples. For each element contained in a 20 ml solution obtained by sufficiently dissolving the ZnS layer using a solution and diluting with ultrapure water, a matrix using an ICP emission spectroscopic analyzer “SPS3520UV” manufactured by Hitachi High-Tech Science Co., Ltd. is used. Matching was done.
 定量にあたり、リファレンスとして亜鉛に対しては原子吸光分析用亜鉛標準液1000mg/l(関東化学株式会社製)、イオウに対しては硫黄標準液Sulfur 1000mg/l(SPEX)を用いていた。測定波長は、亜鉛が213.924nm、イオウが180.734nmである。なお、清浄なBK7ガラスについて同様処置を行って得られる溶液サンプルの分析を行い、本試験を妨げるバックグラウンド・ノイズとしての亜鉛、イオウ成分が検出限界以下であることを確認した。 In the determination, zinc reference solution for atomic absorption analysis 1000 mg / l (manufactured by Kanto Chemical Co., Inc.) was used for zinc as a reference, and sulfur standard solution Sulfur 1000 mg / l (SPEX) was used for sulfur. The measurement wavelength is 213.924 nm for zinc and 180.734 nm for sulfur. A solution sample obtained by performing the same treatment on clean BK7 glass was analyzed, and it was confirmed that the zinc and sulfur components as background noise that hinder the test were below the detection limit.
 ≪透明導電性フィルムの評価≫
 上記のようにして作製した本発明の透明導電性フィルム1~36及び比較例の透明導電性フィルム101~107について、以下の三種類の評価を、後述する信頼性加速試験の前後で試験した。
≪Evaluation of transparent conductive film≫
With respect to the transparent conductive films 1 to 36 of the present invention produced as described above and the transparent conductive films 101 to 107 of the comparative example, the following three types of evaluation were tested before and after the reliability acceleration test described later.
 <1.導電性評価(表面抵抗)>
 透明導電性フィルムの導電性評価は、低抵抗率計「ロレスタ-EP」((株)三菱化学アナリテック製)を用いて行った。
<1. Conductivity evaluation (surface resistance)>
The conductivity of the transparent conductive film was evaluated using a low resistivity meter “Loresta-EP” (manufactured by Mitsubishi Chemical Analytech Co., Ltd.).
 (評価判定基準)
 ◎:8Ω/□未満
 ○:8Ω/以上10Ω/□未満
 △:10Ω/□以上15Ω/□未満
 ×:15Ω/□以上
(Evaluation criteria)
◎: Less than 8 Ω / □ ○: 8 Ω / □ or more and less than 10 Ω / □ △: 10 Ω / □ or more and less than 15 Ω / □ ×: 15 Ω / □ or more
 <2.透明性評価>
 透明導電性フィルムの初期の透明性測定は、分光光度計「U4100」(日立ハイテク製)を用いて、測定波長400~800nmの平均透過率を測定することによって行った。
 この測定は、透過型静電容量タッチパネルに供されることを想定し、現実の系を反映すべく、支持体、高屈折率層、硫化防止層及び透明導電層からなる透明導電性フィルムを、油浸光学系で用いられるイマージョンオイル「タイプA(n=1.515)」((株)ニコン製)にてガラス基板に貼りつけ、上記の全透過率を測定することにより評価した。
<2. Transparency evaluation>
The initial transparency of the transparent conductive film was measured by measuring the average transmittance at a measurement wavelength of 400 to 800 nm using a spectrophotometer “U4100” (manufactured by Hitachi High-Tech).
Assuming that this measurement is applied to a transmissive capacitive touch panel, in order to reflect the actual system, a transparent conductive film comprising a support, a high refractive index layer, an antisulfurization layer and a transparent conductive layer is used. The evaluation was performed by pasting on a glass substrate with immersion oil “type A (n = 1.515)” (manufactured by Nikon Corporation) used in the oil immersion optical system and measuring the total transmittance.
 上記平均透過率は、透明導電性フィルムの透明樹脂支持体側の表面の法線に対して、5°傾けた角度から光を入射させて測定する。一方、平均吸収率は、平均透過率と同様の角度から光を入射させて、透明導電性フィルムの平均反射率を測定し、
 平均吸収率=100-(平均透過率+平均反射率)(%)
として算出した。平均透過率及び平均反射率は分光光度計で測定した。
The average transmittance is measured by making light incident from an angle inclined by 5 ° with respect to the normal of the surface of the transparent conductive film on the transparent resin support side. On the other hand, the average absorptivity is measured by measuring the average reflectance of the transparent conductive film by making light incident from the same angle as the average transmittance.
Average absorptance = 100− (average transmittance + average reflectance) (%)
Calculated as Average transmittance and average reflectance were measured with a spectrophotometer.
 (評価判定基準)
 ◎:平均透過率が、92%以上
 ○:平均透過率が、90%以上、92%未満
 △:平均透過率が、85%以上、90%未満
 ×:平均透過率が、85%未満
(Evaluation criteria)
◎: Average transmittance is 92% or more ○: Average transmittance is 90% or more and less than 92% △: Average transmittance is 85% or more and less than 90% ×: Average transmittance is less than 85%
 <3.外観評価>
 透明導電性フィルムの外観評価は、研究用実体顕微鏡「SZX10」(オリンパス社製)を用い、倍率60倍で試料(透明導電性フィルム)中央の30mm四方の範囲内を観察した。
 この観察方法により、膜割れ・膜浮きなどの類型的外観不良の観察範囲内における発生数をカウントし、以下基準により評価した。
<3. Appearance evaluation>
The appearance of the transparent conductive film was evaluated by using a research stereo microscope “SZX10” (manufactured by Olympus) and observing a 30 mm square in the center of the sample (transparent conductive film) at a magnification of 60 times.
With this observation method, the number of occurrences of typical appearance defects such as film cracking and film floating within the observation range was counted and evaluated according to the following criteria.
 (評価判定基準)
 ◎:4点以下の外観不良が存在する
 ○:5点~10点の外観不良が存在する
 △:11点~20点の外観不良が存在する
 ×:21点以上の外観不良が存在する
(Evaluation criteria)
◎: Appearance defect of 4 points or less exists ○: Appearance defect of 5 to 10 points exists Δ: Appearance defect of 11 to 20 points exists ×: Appearance defect of 21 points or more exists
 <4.信頼性加速試験>
 信頼性加速試験(耐久性試験)は、小型環境試験機「SH-222」(エスペック(株)製)を用い、80℃85%RHの環境下に168時間留置した。前述の導電性評価、透明性評価及び外観評価は、この信頼性加速試験の前後にてそれぞれ行った。
<4. Reliability Acceleration Test>
In the reliability acceleration test (durability test), a small environmental tester “SH-222” (manufactured by ESPEC CORP.) Was used and left in an environment of 80 ° C. and 85% RH for 168 hours. The above-described conductivity evaluation, transparency evaluation, and appearance evaluation were performed before and after this reliability acceleration test.
 初期及び信頼性加速試験の後の評価は、上記導電性評価、透明性評価及び外観評価と同じ評価判定基準で行った。
 以上の評価結果を表3に記載した。
The initial evaluation and the evaluation after the reliability acceleration test were performed according to the same evaluation criteria as the above-described conductivity evaluation, transparency evaluation, and appearance evaluation.
The above evaluation results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 以上の結果から本発明の透明導電性フィルム1~36が、良好な導電性と可視光域全体にわたる均質な透明性を有し、かつ耐久性の高い透明導電性フィルムを提供できることが分かる。 From the above results, it can be seen that the transparent conductive films 1 to 36 of the present invention can provide a transparent conductive film having good conductivity and uniform transparency over the entire visible light range and having high durability.
 一方、本発明の効果に対する比較例として作製した透明導電性フィルム101~107は、いずれも本発明に比して諸特性において初期性能で劣る傾向があった。 On the other hand, the transparent conductive films 101 to 107 produced as comparative examples for the effects of the present invention tended to be inferior in initial performance in various characteristics as compared with the present invention.
 また、比較例の透明導電性フィルム101~107は、信頼性加速試験を実施することにより、導電性、透明性、外観の三種評価のいずれかで最も低い評価となった。これは、本発明の透明導電性フィルム1~36が信頼性試験ののちにも高い評価を維持していることと好対照である。 In addition, the transparent conductive films 101 to 107 of the comparative example were evaluated to be the lowest in any of the three types of evaluation of conductivity, transparency, and appearance by performing a reliability acceleration test. This is in contrast to the fact that the transparent conductive films 1 to 36 of the present invention maintain a high evaluation after the reliability test.
 その主たる要因は、本発明の特徴である高屈折率層のイオウ捕獲機能と、硫化防止層による導電層の保護機能にあると推察され、上記の比較例は、本発明により提供される透明導電性フィルムの効果及び優位性を明らかに示すものである。 The main factor is presumed to be the sulfur trapping function of the high refractive index layer, which is a feature of the present invention, and the protective function of the conductive layer by the antisulfurization layer. The above comparative example is a transparent conductive layer provided by the present invention. It clearly shows the effect and superiority of the protective film.
 本発明の透明導電性フィルムは、良好な導電性と透明性を有し、かつ、高い耐久性を有し、液晶ディスプレイやプラズマディスプレイ、無機及び有機ELディスプレイ、タッチパネル、太陽電池等の各種装置に好適に利用することができる。 The transparent conductive film of the present invention has good conductivity and transparency and high durability, and is used in various devices such as liquid crystal displays, plasma displays, inorganic and organic EL displays, touch panels, and solar cells. It can be suitably used.
 100 透明導電性フィルム
 1 透明樹脂支持体
 2 第1高屈折率層
 3 透明導電層
 4 第2高屈折率層
 5a 第1硫化防止層
 5b 第2硫化防止層
 6 レジスト膜
 6A 除去するレジスト膜
 7 マスク
 8 露光機
 EU 透明電極ユニット
 a 導通領域
 b 絶縁領域
DESCRIPTION OF SYMBOLS 100 Transparent conductive film 1 Transparent resin support body 2 1st high refractive index layer 3 Transparent conductive layer 4 2nd high refractive index layer 5a 1st sulfidation prevention layer 5b 2nd sulfidation prevention layer 6 Resist film 6A Resist film 7 to remove 8 Exposure unit EU Transparent electrode unit a Conduction area b Insulation area

Claims (12)

  1.  透明樹脂支持体上に、少なくとも第1高屈折率層、透明導電層及び第2高屈折率層を、この順に有する透明導電性フィルムであって、
     前記透明導電層が銀を含有し、
     前記第1高屈折率層又は前記第2高屈折率層の少なくともどちらか一方が硫化亜鉛を含有する層であり、
     当該硫化亜鉛に含まれるイオウ原子数の割合が、亜鉛原子数100に対して、50以上、100未満であることを特徴とする透明導電性フィルム。
    On the transparent resin support, a transparent conductive film having at least a first high refractive index layer, a transparent conductive layer and a second high refractive index layer in this order,
    The transparent conductive layer contains silver;
    At least one of the first high refractive index layer or the second high refractive index layer is a layer containing zinc sulfide,
    The ratio of the number of sulfur atoms contained in the zinc sulfide is 50 or more and less than 100 with respect to 100 zinc atoms.
  2.  前記硫化亜鉛を含有する層が、第1高屈折率層であることを特徴とする請求項1に記載の透明導電性フィルム。 The transparent conductive film according to claim 1, wherein the layer containing zinc sulfide is a first high refractive index layer.
  3.  前記第1高屈折率層と前記透明導電層との間に第1硫化防止層を有し、当該第1硫化防止層が、酸化物又は窒化物を含有することを特徴とする請求項1又は請求項2に記載の透明導電性フィルム。 The first sulfidation prevention layer is provided between the first high refractive index layer and the transparent conductive layer, and the first sulfidation prevention layer contains an oxide or a nitride. The transparent conductive film according to claim 2.
  4.  前記第1硫化防止層が、前記酸化物として、酸化亜鉛又は酸化ガリウムを含有することを特徴とする請求項3に記載の透明導電性フィルム。 The transparent conductive film according to claim 3, wherein the first sulfidation preventing layer contains zinc oxide or gallium oxide as the oxide.
  5.  前記第1高屈折率層が、硫化亜鉛と、酸化物又は窒化物とを含有し、当該酸化物又は当該窒化物の含有量が、当該第1高屈折率層の総体積の5~30体積%の範囲内であることを特徴とする請求項1から請求項4までのいずれか一項に記載の透明導電性フィルム。 The first high refractive index layer contains zinc sulfide and an oxide or nitride, and the content of the oxide or nitride is 5 to 30 volumes of the total volume of the first high refractive index layer. % In the range of%, The transparent conductive film as described in any one of Claim 1- Claim 4 characterized by the above-mentioned.
  6.  前記第1高屈折率層が、硫化亜鉛と二酸化ケイ素を含有することを特徴とする請求項1から請求項5までのいずれか一項に記載の透明導電性フィルム。 The transparent conductive film according to any one of claims 1 to 5, wherein the first high refractive index layer contains zinc sulfide and silicon dioxide.
  7.  前記第2高屈折率層が、高屈折率材料として、硫化亜鉛、二酸化チタン、インジウム・スズ酸化物、酸化亜鉛、酸化ニオブ、二酸化スズ、インジウム・亜鉛酸化物、アルミニウム・亜鉛酸化物、ガリウム・亜鉛酸化物、アンチモン・スズ酸化物、インジウム・セリウム酸化物、インジウム・ガリウム・亜鉛酸化物、酸化ビスマス、三酸化タングステン、酸化インジウム及びガリウム・インジウム・及び酸素を含む非晶質酸化物から選ばれるいずれかを含有することを特徴とする請求項1から請求項6までのいずれか一項に記載の透明導電性フィルム。 The second high refractive index layer is made of zinc sulfide, titanium dioxide, indium tin oxide, zinc oxide, niobium oxide, tin dioxide, indium zinc oxide, aluminum zinc oxide, gallium. Selected from zinc oxide, antimony / tin oxide, indium / cerium oxide, indium / gallium / zinc oxide, bismuth oxide, tungsten trioxide, indium oxide and amorphous oxide containing gallium / indium / oxygen The transparent conductive film according to any one of claims 1 to 6, comprising any one of the above.
  8.  前記第2高屈折率層が、高屈折率材料として、硫化亜鉛を含有することを特徴とする請求項1から請求項7までのいずれか一項に記載の透明導電性フィルム。 The transparent conductive film according to any one of claims 1 to 7, wherein the second high refractive index layer contains zinc sulfide as a high refractive index material.
  9.  前記第2高屈折率層が、前記高屈折率材料として、さらに二酸化ケイ素を含有することを特徴とする請求項8に記載の透明導電性フィルム。 The transparent conductive film according to claim 8, wherein the second high refractive index layer further contains silicon dioxide as the high refractive index material.
  10.  前記第2高屈折率層が、高屈折率材料として、ガリウム・亜鉛酸化物を含有することを特徴とする請求項1から請求項7までのいずれか一項に記載の透明導電性フィルム。 The transparent conductive film according to any one of claims 1 to 7, wherein the second high refractive index layer contains gallium / zinc oxide as a high refractive index material.
  11.  前記透明導電層と第2高屈折率層の間に第2硫化防止層を有し、当該第2硫化防止層が、酸化物又は窒化物を含有することを特徴とする請求項1から請求項10までのいずれか一項に記載の透明導電性フィルム。 The second sulfidation prevention layer is provided between the transparent conductive layer and the second high refractive index layer, and the second sulfidation prevention layer contains an oxide or a nitride. The transparent conductive film according to any one of 10 to 10.
  12.  前記第2硫化防止層が、前記酸化物として、酸化亜鉛又はガリウム・亜鉛酸化物を含有することを特徴とする請求項11に記載の透明導電性フィルム。 The transparent conductive film according to claim 11, wherein the second antisulfurization layer contains zinc oxide or gallium / zinc oxide as the oxide.
PCT/JP2015/062181 2014-05-02 2015-04-22 Transparent electroconductive film WO2015166850A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016516332A JPWO2015166850A1 (en) 2014-05-02 2015-04-22 Transparent conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014094939 2014-05-02
JP2014-094939 2014-05-02

Publications (1)

Publication Number Publication Date
WO2015166850A1 true WO2015166850A1 (en) 2015-11-05

Family

ID=54358581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062181 WO2015166850A1 (en) 2014-05-02 2015-04-22 Transparent electroconductive film

Country Status (3)

Country Link
JP (1) JPWO2015166850A1 (en)
TW (1) TWI554410B (en)
WO (1) WO2015166850A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016104159A1 (en) * 2014-12-24 2017-04-27 住友金属鉱山株式会社 LAMINATE FILM, ELECTRODE SUBSTRATE FILM, AND METHOD FOR PRODUCING THE SAME
CN109872833A (en) * 2017-12-04 2019-06-11 富元精密科技股份有限公司 Transparent conductive body structure and its manufacturing method
WO2022050045A1 (en) * 2020-09-04 2022-03-10 デクセリアルズ株式会社 Conductive layered product, optical device using same, and manufacturing method for conductive layered product
JP2022043998A (en) * 2020-09-04 2022-03-16 デクセリアルズ株式会社 Conductive laminate and optical device using the same, and conductive laminate manufacturing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI625740B (en) * 2016-12-28 2018-06-01 國立清華大學 Transparent conductive film and optical device having the same
WO2020161984A1 (en) * 2019-02-07 2020-08-13 株式会社指月電機製作所 Film capacitor

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642646A (en) * 1979-09-14 1981-04-20 Teijin Ltd Selected light permeable laminate
JPS6448394A (en) * 1987-08-19 1989-02-22 Matsushita Electric Ind Co Ltd Manufacture of thin film el element
JP2000106044A (en) * 1998-09-30 2000-04-11 Nitto Denko Corp Surface resistance lowering method for transparent conductive film
JP2002313140A (en) * 2001-04-13 2002-10-25 Mitsui Chemicals Inc Transparent conductive film, optical filter and its manufacturing method
JP2003313651A (en) * 2002-04-24 2003-11-06 Mitsui Chemicals Inc Method for manufacturing transparent conductive film
JP2006092605A (en) * 2004-09-21 2006-04-06 Ricoh Co Ltd Optical information recording medium
JP2007098933A (en) * 2005-09-08 2007-04-19 Ricoh Co Ltd Optical recording medium
CN102677012A (en) * 2012-05-18 2012-09-19 中国科学院上海光学精密机械研究所 Preparation method of multi-layer transparent conductive film
JP2013174852A (en) * 2012-01-27 2013-09-05 Dainippon Printing Co Ltd Optical laminate, polarizing plate and image display device
WO2014167835A1 (en) * 2013-04-08 2014-10-16 コニカミノルタ株式会社 Translucent conductor
WO2015053371A1 (en) * 2013-10-09 2015-04-16 コニカミノルタ株式会社 Transparent conductor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642646A (en) * 1979-09-14 1981-04-20 Teijin Ltd Selected light permeable laminate
JPS6448394A (en) * 1987-08-19 1989-02-22 Matsushita Electric Ind Co Ltd Manufacture of thin film el element
JP2000106044A (en) * 1998-09-30 2000-04-11 Nitto Denko Corp Surface resistance lowering method for transparent conductive film
JP2002313140A (en) * 2001-04-13 2002-10-25 Mitsui Chemicals Inc Transparent conductive film, optical filter and its manufacturing method
JP2003313651A (en) * 2002-04-24 2003-11-06 Mitsui Chemicals Inc Method for manufacturing transparent conductive film
JP2006092605A (en) * 2004-09-21 2006-04-06 Ricoh Co Ltd Optical information recording medium
JP2007098933A (en) * 2005-09-08 2007-04-19 Ricoh Co Ltd Optical recording medium
JP2013174852A (en) * 2012-01-27 2013-09-05 Dainippon Printing Co Ltd Optical laminate, polarizing plate and image display device
CN102677012A (en) * 2012-05-18 2012-09-19 中国科学院上海光学精密机械研究所 Preparation method of multi-layer transparent conductive film
WO2014167835A1 (en) * 2013-04-08 2014-10-16 コニカミノルタ株式会社 Translucent conductor
WO2015053371A1 (en) * 2013-10-09 2015-04-16 コニカミノルタ株式会社 Transparent conductor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016104159A1 (en) * 2014-12-24 2017-04-27 住友金属鉱山株式会社 LAMINATE FILM, ELECTRODE SUBSTRATE FILM, AND METHOD FOR PRODUCING THE SAME
CN109872833A (en) * 2017-12-04 2019-06-11 富元精密科技股份有限公司 Transparent conductive body structure and its manufacturing method
WO2022050045A1 (en) * 2020-09-04 2022-03-10 デクセリアルズ株式会社 Conductive layered product, optical device using same, and manufacturing method for conductive layered product
JP2022043998A (en) * 2020-09-04 2022-03-16 デクセリアルズ株式会社 Conductive laminate and optical device using the same, and conductive laminate manufacturing method
JP7230131B2 (en) 2020-09-04 2023-02-28 デクセリアルズ株式会社 Conductive laminate, optical device using same, method for manufacturing conductive laminate

Also Published As

Publication number Publication date
JPWO2015166850A1 (en) 2017-04-20
TWI554410B (en) 2016-10-21
TW201605641A (en) 2016-02-16

Similar Documents

Publication Publication Date Title
WO2015166850A1 (en) Transparent electroconductive film
JP6314463B2 (en) Transparent conductor
KR102530121B1 (en) Transparent conductive film
JP6292225B2 (en) Transparent conductor
JP2016081318A (en) Transparent conductor and touch panel
JP6319302B2 (en) Transparent conductor and method for producing the same
JP2017214607A (en) Method for manufacturing light reflection mirror, and vapor deposition apparatus
WO2015068738A1 (en) Transparent conductive body
JP6536575B2 (en) Transparent conductor and touch panel
JP6344095B2 (en) Transparent conductor and touch panel
JP6206262B2 (en) Transparent conductor, method for producing the same, and conductive paste
JP2015156270A (en) Method of forming transparent electrode pattern
JP2016152182A (en) Transparent conductive film, method for producing transparent conductive film, and electronic apparatus
JP6493225B2 (en) Transparent conductive film
WO2015087895A1 (en) Transparent conductive body
WO2015125677A1 (en) Transparent conductor
WO2015107968A1 (en) Method for manufacturing transparent conductor and transparent conductor
WO2015151677A1 (en) Transparent conductive member and method for producing transparent conductive member
WO2015053371A1 (en) Transparent conductor
JP2016177940A (en) Method for producing transparent conductive body
JP6256253B2 (en) Transparent conductor and touch panel
JP6586738B2 (en) Transparent conductive member and method for manufacturing transparent conductive member
JP2016169420A (en) Apparatus and method for manufacturing transparent conductive member
JP2016160115A (en) Method for selecting transparent conductive member
KR20240004309A (en) Lightly transparent multilayer structures for optoelectronic devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15786501

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016516332

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15786501

Country of ref document: EP

Kind code of ref document: A1