WO2015107968A1 - Method for manufacturing transparent conductor and transparent conductor - Google Patents

Method for manufacturing transparent conductor and transparent conductor Download PDF

Info

Publication number
WO2015107968A1
WO2015107968A1 PCT/JP2015/050319 JP2015050319W WO2015107968A1 WO 2015107968 A1 WO2015107968 A1 WO 2015107968A1 JP 2015050319 W JP2015050319 W JP 2015050319W WO 2015107968 A1 WO2015107968 A1 WO 2015107968A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
refractive index
transparent
high refractive
index layer
Prior art date
Application number
PCT/JP2015/050319
Other languages
French (fr)
Japanese (ja)
Inventor
一成 多田
仁一 粕谷
健一郎 平田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015557807A priority Critical patent/JPWO2015107968A1/en
Publication of WO2015107968A1 publication Critical patent/WO2015107968A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Definitions

  • the present invention relates to a method for producing a transparent conductor having a transparent metal layer and a transparent conductor, and more specifically, production of a transparent conductor having excellent productivity, flexibility, transparency, coloration resistance and low resistance characteristics.
  • the present invention relates to a method and a transparent conductor obtained thereby.
  • display devices such as touch panel materials, liquid crystal displays and plasma displays, inorganic and organic EL (electroluminescence) displays, and various devices such as solar cells have demanded transparent conductive films having low resistance characteristics.
  • metals such as Au, Ag, Pt, Cu, Rh, Pd, Al, and Cr, In 2 O 3 , CdO, CdIn 2 O 4 , and Cd 2 SnO 4 are used.
  • TiO 2 , SnO 2 , ZnO, ITO (indium tin oxide), and other metal oxide semiconductors are known.
  • a wiring composed of a transparent conductive film or the like is disposed on the image display surface of the display device. Therefore, the transparent conductive film is required to have high light transmittance.
  • a transparent conductive film made of ITO having a high light transmittance is frequently used in various display devices.
  • Japanese Patent Application Laid-Open Nos. 2011-138628 and 2011-171292 disclose a method for manufacturing a conductive element to which a silver mesh is applied.
  • these methods using silver mesh have a mesh diameter of about 20 ⁇ m and can be visually recognized by human eyes, so that it is difficult to apply to touch panel display devices that require light transmission. It is.
  • silver nanowires that are commercially available from some manufacturers have a microscopic size that is not visible to the naked eye and expresses electrical conductivity in the film, but the surface resistance value is only about 60 ⁇ / ⁇ . Therefore, the quality required for the current touch panel display device is insufficient.
  • the film thickness of the conductive film needs to be laminated to about 200 nm, and it was formed in the manufacturing process.
  • stress is applied to the conductive film, cracks and the like are likely to occur in the film, resulting in a decrease in yield and a problem in terms of production efficiency.
  • the conductive film having such characteristics is difficult to apply to flexible touch panels and curved members that are expected to be put to practical use in the near future.
  • a method of applying a silver vapor-deposited film as a transparent conductive film has been actively studied in recent years (see, for example, Patent Document 1). Further, in order to increase the light transmittance of the transparent conductor, a silver film having high conductivity is formed from a metal film having a high refractive index formed by sputtering (for example, niobium oxide (Nb 2 O 5 ), IZO (indium oxide).
  • a metal film having a high refractive index formed by sputtering for example, niobium oxide (Nb 2 O 5 ), IZO (indium oxide).
  • a transparent conductive film having a structure sandwiched between zinc oxide), ICO (indium cerium oxide), a-GIO (a film of amorphous oxide made of gallium, indium, and oxygen) has also been proposed (for example, (See Patent Documents 2 to 4 and Non-Patent Document 3.) Furthermore, a method of sandwiching a silver thin film with a zinc sulfide film has also been proposed (see, for example, Non-Patent Documents 1 and 2).
  • Patent Documents 2 to 4 and Non-Patent Documents 1 to 3 for example, ITO / silver thin film / ITO, Nb 2 O 5 / silver thin film / IZO, and zinc sulfide / silver thin film / zinc sulfide.
  • the transparent conductor manufactured by the sputtering method having such a configuration has the following problems.
  • a transparent conductor having a structure in which a silver thin film layer is sandwiched between metal oxide layers such as niobium oxide and IZO has insufficient moisture resistance.
  • the formed silver thin film tends to corrode.
  • the moisture resistance of the transparent conductor is sufficiently high, but it moves from the adjacent layer when the silver thin film layer is formed or when the zinc sulfide layer is formed.
  • Silver is sulfided easily by the sulfur component, and silver sulfide is easily generated. As a result, the transparent conductor is discolored and the light transmittance is lowered.
  • the present invention has been made in view of the above problems, and its solution is a transparent conductor having high productivity, flexibility, excellent transparency and coloring resistance, and low resistance characteristics. And a transparent conductor obtained thereby.
  • the present inventors have laminated at least a first high refractive index layer, a transparent metal layer, and a second high refractive index layer in this order on a transparent substrate.
  • a method for producing a transparent conductor to be produced wherein at least one of the first high refractive index layer and the second high refractive index layer is at least selected from zinc sulfide, metal oxide, metal fluoride, and metal nitride.
  • a production method of a transparent conductor characterized by forming a mixed film with a kind of metal compound by a co-evaporation method has high productivity, has flexibility, excellent transparency and coloring resistance,
  • the inventors have found that a method for producing a transparent conductor having low resistance characteristics can be provided, and have reached the present invention.
  • At least a first high refractive index layer, a transparent metal layer, and a second high refractive index layer are laminated in this order to produce a transparent conductor, At least one layer of the first high-refractive index layer and the second high-refractive index layer is a co-evaporation of a mixed film of zinc sulfide and at least one metal compound selected from metal oxide, metal fluoride, and metal nitride.
  • a method for producing a transparent conductor characterized by being formed by a method.
  • the first high refractive index layer or the second high refractive index layer has an average zinc sulfide concentration in an interface region adjacent to the transparent metal layer (10% of the total thickness in the thickness direction from the adjacent interface). It forms on the conditions used as 50 volume% or more, The manufacturing method of the transparent conductor as described in any one of 1st term
  • Each of the first high refractive index layer and the second high refractive index layer has an average zinc sulfide concentration of 70 volumes in an interface region adjacent to the transparent metal layer (10% region in the thickness direction from the surface of the total thickness). It forms on the conditions used as% or more, The manufacturing method of the transparent conductor as described in any one of Claim 1 to 3 characterized by the above-mentioned.
  • One layer is a mixed film of zinc sulfide and at least one metal compound selected from metal oxides, metal fluorides, and metal nitrides.
  • the first high refractive index layer or the second high refractive index layer has an average zinc sulfide concentration of 50% by volume in an interface region adjacent to the transparent metal layer (10% in the thickness direction from the surface of the entire layer thickness).
  • Each of the first high refractive index layer and the second high refractive index layer has an average zinc sulfide concentration of 70 volumes in an interface region adjacent to the transparent metal layer (10% in the thickness direction from the surface of the total thickness). % Or more of the transparent conductor according to item 9 or 10.
  • Item 9 to Item 12 including an antisulfurization layer between the first high refractive index layer and the transparent metal layer, or between the second high refractive index layer and the transparent metal layer.
  • the transparent conductor as described in any one of these.
  • At least one of the first high-refractive index layer and the second high-refractive index layer is at least one selected from zinc sulfide, metal oxide, metal fluoride, and metal nitride. It is characterized by being formed by a co-evaporation method as a mixed film with the above metal compound.
  • Zinc sulfide has a good barrier property, and can improve the moisture resistance of a transparent metal layer made of, for example, Ag. That is, since zinc sulfide is abundantly present in the vicinity of a transparent metal layer, for example, a silver thin film layer, silver atoms can be gripped and migration of silver atoms can be prevented. As a result, an extremely thin and uniform silver layer of 10 nm or less can be formed. Thereby, silver plasmon absorption can be reduced.
  • a sulfide prevention layer with a layer thickness of 10 nm or less between the high refractive index layer containing zinc sulfide and the transparent metal layer composed of silver or the like, the sulfide of the transparent metal layer is prevented, Increase in absorption can be prevented.
  • the sulfur sulfide is used for forming the second high refractive index layer provided on the transparent metal layer, the zinc sulfide can be formed without introducing oxygen. Attack (oxidation) to the layer can be reduced. As a result, it is possible to improve the moisture resistance of the transparent metal layer and to suppress the occurrence of plasmon absorption due to the roughening of constituent elements such as silver.
  • the high refractive index layer containing zinc sulfide can be easily etched with a weak acid, and an arbitrary wiring pattern can be formed using the high refractive index layer. Further, when the high refractive index layer is formed by mixing the second component with zinc sulfide, the crystallinity of the zinc sulfide is impaired, so that etching becomes easier. In addition, by mixing the second component (for example, metal oxide, metal fluoride, metal nitride, etc.) with zinc sulfide, it is possible to prevent crystal growth of the zinc sulfide layer. Amorphous and flexible.
  • the thin film formation method by the sputtering method has a problem that the film formation speed is slow because the thin film is formed by forming the surface of the thin film and hitting only the atoms on the target surface. Further, in the sputtering method, the target is cracked or heat is generated when the output is increased in order to increase the formation speed of the thin film, so that the resin base material and the thin film metal layer to be formed are damaged.
  • the formation speed also plays an important role from the viewpoint of transmittance. If the silver formation speed is slow, silver absorbs and the transmittance decreases, so the silver formation speed cannot be less than 0.3 nm / second.
  • the film material formation speed other than silver must be high.
  • a high refractive index material having a film thickness larger than that of silver is required to have a formation speed higher than that of silver.
  • sputtering has a problem that a high refractive index material cannot be formed at such a speed.
  • the vapor deposition method used for forming the high refractive index layer can give energy to a narrow region, and the entire material evaporates.
  • the formation speed of the thin film is dramatically improved as compared with the sputtering method.
  • zinc sulfide used for forming a high refractive index layer has sublimation properties and can be deposited with low energy and without generating heat.
  • the melting points of zinc sulfide and the second component are different by using different heating sources for the zinc sulfide and the second component, respectively, the respective proportions can be accurately maintained.
  • it can be formed by co-evaporation without slowing down the formation speed of the thin film.
  • a high refractive index layer containing zinc sulfide and at least one second component selected from metal oxides, metal fluorides, and metal nitrides is co-evaporated.
  • the formation speed could be increased without limitation.
  • Schematic sectional view showing an example of the configuration of the transparent conductor of the present invention Schematic sectional view showing another example of the configuration of the transparent conductor of the present invention
  • region of the transparent conductor of this invention Schematic diagram showing an example of a process flow for producing a transparent conductor in an online process
  • the method for producing a transparent conductor according to the present invention includes a transparent conductor produced by laminating at least a first high refractive index layer, a transparent metal layer, and a second high refractive index layer in this order on a transparent substrate.
  • at least one of the first high-refractive index layer and the second high-refractive index layer includes zinc sulfide and at least one metal compound selected from metal oxide, metal fluoride, and metal nitride.
  • the mixed film is formed by a co-evaporation method.
  • the metal oxide contained in the first high-refractive index layer or the second high-refractive index layer is silicon dioxide from the viewpoint that the effect of the present invention can be further expressed. Furthermore, it is preferable from the point which can form the refractive index layer which has high transparency. Furthermore, the formation rate is more preferably in the range of 0.5 to 30 nm / second, and particularly preferably in the range of 1.0 to 15 nm / second.
  • the transparent metal layer with silver as a main component under the condition that the formation speed is 0.3 nm / second or more.
  • the conductive layer has low resistance, high uniformity, and no improper absorption. Is preferable in that it can be stably formed.
  • the average zinc sulfide concentration in the interface region adjacent to the transparent metal layer (10% region in the thickness direction from the surface of the total layer thickness) of the first high refractive index layer or the second high refractive index layer is 50% by volume.
  • Forming under the above conditions is to form a transparent metal layer formed adjacent to each refractive index layer, particularly when forming a transparent metal layer mainly composed of silver, or a refractive layer on the transparent conductor layer.
  • the constituent layer coating solution is repelled to prevent the occurrence of sea-striped film surface unevenness, and it is preferable from the viewpoint that a highly uniform coating film can be formed.
  • Both the refractive index layer and the second high refractive index layer have an average zinc sulfide concentration of 70% by volume or more in the interface region adjacent to the transparent metal layer (10% in the thickness direction from the surface of the total thickness). It is preferable to form under conditions.
  • an antisulfurization layer may be formed between the first high refractive index layer and the transparent metal layer or between the second high refractive index layer and the transparent metal layer.
  • High transparency and stability by preventing the discoloration caused by the sulfur component of the zinc sulfide used to form the high refractive index layer being a constituent component of the transparent metal layer, specifically, silver is sulfided and becomes silver sulfide.
  • a material containing a zinc metal element for example, zinc oxide or the like is preferably applied.
  • a method for producing a transparent conductor of the present invention it is preferable to form a metal pattern electrode by patterning a transparent metal layer into a predetermined shape.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • ⁇ Basic structure of transparent conductor ⁇ 1A to 1C are schematic cross-sectional views showing examples of the configuration of the transparent conductor of the present invention.
  • a first high refractive index layer 3A, a transparent metal layer 4, and a second high refractive index layer 3B are laminated in this order on a transparent substrate 2. It has a configuration.
  • At least one of the first high-refractive index layer 3A or the second high-refractive index layer 3B is zinc oxide (hereinafter also referred to as ZnS), a metal oxide, A mixed film containing at least one metal compound selected from metal fluorides and metal nitrides is formed by a co-evaporation method.
  • the first high refractive index layer 3A or the second high refractive index layer 3B is an interface region 0.1 T A adjacent to the transparent metal layer 4 or 0. (in the thickness direction from the adjacent surface, 10 percent of the total layer thickness T a or T B) 1T B average zinc sulfide concentrations in is preferably formed under the condition that a 50% by volume or more, more preferably , the average zinc sulfide concentration in the interface region 0.1 T a which is adjacent to the transparent metal layer 4 of the first high refractive index layer 3A, and the second interface region 0.1 T B which is adjacent to the transparent metal layer 4 of the high refractive index layer 3B It is a preferable aspect that the average zinc sulfide concentration in each is 70% by volume or more. Furthermore, it is preferably 80% by volume or more, particularly preferably 90% by volume or more.
  • the average zinc sulfide concentration at the interface region adjacent to the transparent metal layer 4 of the high-refractive index layer in the present invention as shown in FIG. 1A, the high refractive index layer 3A, the total thickness of each T A of 3B, when the T B, the average content of each high refractive index layer transparent metal layer 4 and the region 0.1 T a from the adjacent side up to 10% in the depth direction of the layer thickness, zinc sulfide in 0.1 T B
  • Each atomic ratio is determined by using a conventionally known method, for example, an analyzer using X-ray photoelectron spectroscopy (XPS) or the like in a predetermined region range of 0.1 T A and 0.1 T. After randomly measuring 50 or more points for B , the average value can be calculated.
  • XPS X-ray photoelectron spectroscopy
  • the transparent conductor 1 of the present invention preferably has a structure having an antisulfurization layer 5 between at least the first high refractive index layer 3A or the second high refractive index layer 3B and the transparent metal layer 4. It is an aspect.
  • the transparent conductor 1 shown in FIG. 1B shows a configuration example in which the first sulfidation preventing layer 5A is formed between the first high refractive index layer 3A and the transparent metal layer 4, and FIG. 1C shows the first high refractive index.
  • a configuration example is shown in which a first sulfidation preventing layer 5A is formed between the layer 3A and the transparent metal layer 4, and a second sulfidation preventing layer 5B is formed between the second high refractive index layer 3B and the transparent metal layer 4. .
  • the antisulfurization layer 5A or 5B between the first high refractive index layer 3A or the second high refractive index layer 3B and the transparent metal layer 4, the first high refractive index layer 3A or the second high refractive index layer 3A or second This is a preferred embodiment because the sulfur atoms constituting the zinc sulfide contained in the high refractive index layer 3B can be prevented from moving or mixing into the transparent metal layer 4.
  • the transparent metal layer 4 for example, silver layer
  • the first high-refractive index layer 3A or the second high-refractive index layer 3B containing at least ZnS are formed adjacent to each other, an interface region between the transparent metal layer 4 and the transparent metal layer 4 is formed. Further, there is a problem that metal sulfide (for example, silver sulfide) is easily generated, and the light transmittance of the transparent conductor 1 is easily lowered.
  • the transparent metal layer 4 in the first high refractive index layer 3A containing zinc sulfide is not yet formed.
  • the sulfur component of the reaction is expelled into the forming atmosphere by the material of the transparent metal layer 4 (eg, silver).
  • the ejected sulfur component reacts with a metal, for example, a sulfur atom and a silver atom, and a metal sulfide is deposited on the first high refractive index layer 3A containing zinc sulfide.
  • the unbonded active sulfur component becomes transparent metal.
  • the constituent atoms of the layer 4 for example, silver, silver sulfide is produced.
  • the metal in the transparent metal layer 4 is a material of the second high refractive index layer 3B containing zinc sulfide. Is played in the forming atmosphere.
  • the ejected metal reacts with the sulfur component, and metal sulfide is deposited on the surface of the transparent metal layer 4.
  • a metal sulfide is also generated on the surface of the transparent metal layer 4 when the surface of the transparent metal layer 4 comes into contact with the sulfur component in the forming atmosphere.
  • the zinc and sulfur are partly present in the atmosphere, and the released sulfur is a constituent atom of the transparent metal layer. For example, combined with silver.
  • the first sulfidation preventing layer 5A is formed on the first high refractive index layer 3A. Since the first high refractive index layer 3A is protected by the first sulfidation preventing layer 5A by adopting the configuration specified in the present invention, the sulfur component in the first high refractive index layer 3A is not formed when the transparent metal layer 4 is formed. It is difficult to play. Even if the first high refractive index layer 3A and the transparent metal layer 4 are continuously formed, the sulfur component contained in the atmosphere in which the first high refractive index layer 3A is formed is a constituent component of the first antisulfurization layer 5A. Reaction with each other, or adsorption to the constituent components of the first sulfidation preventing layer 5A, the atmosphere in which the transparent metal layer 4 is formed does not easily contain sulfur, and the formation of metal sulfide is suppressed.
  • the second sulfidation preventing layer 5B is laminated on the transparent metal layer 4.
  • the transparent metal layer 4 is protected by the second antisulfurization layer 5B, it is difficult for the metal in the transparent metal layer 4 to be ejected when the second high refractive index layer 3B is formed.
  • the sulfur component in the atmosphere in which the second high refractive index layer 3 ⁇ / b> B is formed is difficult to come into contact with the surface of the transparent metal layer 4. As a result, a metal sulfide is hardly generated on the surface of the transparent metal layer 4.
  • the transparent metal layer 4 may be laminated on the entire surface of the transparent substrate 2.
  • the transparent electrode unit EU including the refractive index layer 3A, the first antisulfurization layer 5A, the transparent metal layer 4, the second antisulfation layer 5B, and the second high refractive index layer 3B may be patterned into a desired shape.
  • the region a where the transparent electrode unit EU is laminated is a region where electricity is conducted (hereinafter also referred to as “conduction region”).
  • the region b that does not have the transparent electrode unit EU is an insulating region.
  • the pattern composed of the conductive region a and the insulating region b is appropriately selected according to the use of the transparent conductor 1. Details of the pattern applied to the electrostatic touch panel will be described later.
  • the transparent conductor 1 of the present invention includes a transparent substrate 2, a first high refractive index layer 3A, a transparent metal layer 4, a second high refractive index layer 3B, a first antisulfurization layer 5A, and a second antisulfurization.
  • a known functional layer may be provided as necessary.
  • an underlayer that can be a growth nucleus when the transparent metal layer 4 is formed may be included between the transparent metal layer 4 and the first high refractive index layer 3 ⁇ / b> A adjacent to the transparent metal layer 4.
  • it is preferable that all the layers included in the transparent conductor 1 of the present invention are layers made of an inorganic material except for the transparent substrate 2.
  • the laminated body from the transparent substrate 2 to the second high refractive index layer 3B is the transparent conductor 1 of the present invention. Define that there is.
  • the method for producing a transparent conductor according to the present invention includes a transparent conductor produced by laminating at least a first high refractive index layer, a transparent metal layer, and a second high refractive index layer in this order on a transparent substrate.
  • at least one of the first high-refractive index layer and the second high-refractive index layer includes zinc sulfide and at least one metal compound selected from metal oxide, metal fluoride, and metal nitride.
  • the mixed film is formed by a co-evaporation method.
  • a method of manufacturing the transparent conductor 1 by a continuous online process is preferable.
  • FIG. 3 is a schematic diagram showing an example of a process for manufacturing a transparent conductor in an online process that can be applied to the manufacturing method of the present invention and continuously forms each constituent layer while continuously transporting a transparent substrate. .
  • the first high refractive index layer 3A, the first antisulfurization layer 5A, the transparent metal layer 4, the second antisulfurization layer 5B, and the second high refractive index layer 3B are formed on the transparent substrate 2 illustrated in FIG. 1C.
  • stacked in order is demonstrated.
  • the first high refractive index layer 3 ⁇ / b> A is formed by the co-evaporation method in the vacuum vapor deposition chamber 11 in step 1
  • the first sulfurization prevention layer 5 ⁇ / b> A is formed in the vacuum vapor deposition chamber in step 2
  • the vacuum vapor deposition in step 3 The transparent metal layer 4 is formed in the chamber
  • the second sulfidation prevention layer 5B is formed in the vacuum deposition chamber in step 4
  • the second high refractive index layer 3B is formed in the vacuum deposition chamber in step 5 by co-evaporation.
  • step 1 the first resistance heating boat T1a is charged with ZnS, and the second resistance heating boat T1b is charged with at least one metal compound selected from metal oxide, metal fluoride, and metal nitride, for example, SiO 2 .
  • each target is energized and heated under reduced pressure to form a first high refractive index layer 3A composed of ZnS—SiO 2 on the continuously transported transparent substrate 2 by co-evaporation.
  • at least one metal selected from ZnS, metal oxide, metal fluoride, and metal nitride is used. The ratio of the compound and the ratio in the layer can be adjusted.
  • step 2 the resistance heating boat T2 is charged with a sulfidation prevention layer forming material, for example, ZnO, energized and heated under predetermined conditions, and on the first high refractive index layer 3A of the transparent substrate 2 being continuously conveyed. Then, the first sulfidation preventing layer 5A is formed.
  • a sulfidation prevention layer forming material for example, ZnO
  • step 3 the resistance heating boat T3 is charged with a transparent metal layer forming material, for example, Ag, and is heated by energization under a predetermined condition, on the first sulfidation prevention layer 5A of the transparent substrate 2 being continuously conveyed.
  • the transparent metal layer 4 is formed.
  • the transparent metal layer 4 is formed of silver and the formation rate of the silver layer is 0.3 nm / second or more.
  • the formation rate is more preferably in the range of 0.5 to 30 nm / second, and particularly preferably in the range of 1.0 to 15 nm / second.
  • the vapor deposition method applied in the present invention is characterized by extremely high production efficiency compared to the sputtering method.
  • the formation speed S (nm / second) referred to in the present invention means that, in Step 3 shown in FIG. 3, a transparent metal layer forming material is loaded on the resistance heating boat T3 as an evaporation source, and a monitor glass is directly above the evaporation source.
  • the transparent metal layer 4 is formed on the monitor glass in a state where the monitor glass is placed so as not to move, and the formation time (seconds) required for forming the transparent metal layer 4 is formed on the monitor glass.
  • the layer thickness of the transparent metal layer 4 is measured, and the formation speed S (nm / second) is calculated from the layer thickness (nm) of the transparent metal layer / formation time (seconds).
  • step 4 the resistance heating boat T4 is charged with a sulfidation prevention layer forming material, for example, ZnO, energized and heated under predetermined conditions, and on the transparent metal layer 4 of the transparent substrate 2 being continuously conveyed, A disulfide prevention layer 5B is formed.
  • a sulfidation prevention layer forming material for example, ZnO
  • the first resistance heating boat T5a is made of ZnS
  • the second resistance heating boat T5b is at least one metal compound selected from metal oxide, metal fluoride and metal nitride, for example, was charged with SiO 2, by energizing heating each target under reduced pressure, the second refractive index configured on the transparent metal layer 4 of the transparent substrate 2 which is continuously conveyed, by a co-evaporation method with ZnS-SiO 2 Layer 3B is formed.
  • the heating conditions and vapor deposition rate of the first resistance heating boat T5a and the second resistance heating boat T5b at least one metal selected from ZnS, metal oxide, metal fluoride, and metal nitride. The ratio of the compound and the ratio in the layer can be adjusted.
  • the transparent conductor 1 of this invention can be manufactured through the above processes.
  • the pressure P 3 in the vacuum deposition chamber 11 of the step 3 of forming a transparent metal layer 4 and the pressure P 1 of the vacuum deposition chamber 11 of the step 1 of forming a first high refractive index layer 3A be set higher than the pressure P 5 in the vacuum deposition chamber 11 of the step 5 of forming a second high refractive index layer 3B, prevents the inflow of the sulfur component from step 1 to step 3 of forming a transparent metal layer 4 From the viewpoint of being able to do so.
  • a cooling system that can suppress the temperature rise of the transparent substrate during formation and can control the temperature in the range of ⁇ 20 to 65 ° C.
  • the pressure in each vacuum deposition chamber is preferably in the range of 1 ⁇ 10 ⁇ 4 to 1 ⁇ 10 ⁇ 3 Pa.
  • the transparent conductor of the present invention has a configuration in which at least the first high refractive index layer 3A, the transparent metal layer 4, and the second high refractive index layer 3B are laminated in this order on the transparent substrate 2. Furthermore, it has antisulfurization layers 5A and 5B between the first high refractive index layer 3A and the transparent metal layer 4, or between the second high refractive index layer 3B and the transparent metal layer 4. It is a preferable aspect.
  • Examples of the transparent substrate 2 applicable to the transparent conductor 1 of the present invention include materials used for transparent substrates of various display devices.
  • a glass substrate a cellulose ester resin (for example, triacetyl cellulose (abbreviation: TAC), diacetyl cellulose, acetylpropionyl cellulose, etc.), a polycarbonate resin (for example, Panlite, Multilon (above, manufactured by Teijin Ltd.)) ), Cycloolefin resin (for example, ZEONOR (manufactured by ZEON), ARTON (manufactured by JSR), APPEL (manufactured by Mitsui Chemicals)), acrylic resin (for example, polymethyl methacrylate, acrylite (manufactured by Mitsubishi Rayon)), Sumipex (manufactured by Sumitomo Chemical Co., Ltd.)), polyimide, phenol resin, epoxy resin, polyphenylene ether (abbreviation: PPE) resin, polyester resin (for example, polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate
  • TAC tri
  • the transparent substrate 2 applied to the present invention includes a glass substrate, a cellulose ester resin, a polycarbonate resin, a polyester resin (particularly polyethylene terephthalate), a triacetyl cellulose, a cycloolefin resin, Resin components such as phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyether sulfone, ABS / AS resin, MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), styrene block copolymer resin It is preferable that it is a film comprised from these.
  • the transparent substrate 2 preferably has high transparency to visible light, and the average transmittance of light having a wavelength of 450 to 800 nm is preferably 70% or more, more preferably 80% or more, and 85% or more. More preferably it is. When the average light transmittance of the transparent substrate 2 is 70% or more, the light transmittance of the transparent conductor 1 is likely to increase. Further, the average absorptance of light having a wavelength of 450 to 800 nm of the transparent substrate 2 is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
  • the average transmittance is measured by making light incident from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent substrate 2.
  • the average absorptance is measured by measuring the average reflectance of the transparent substrate 2 by making light incident from the same angle as the average transmittance.
  • Average absorptivity 100 ⁇ (average transmittance + average reflectance) Calculate as The average transmittance and the average reflectance can be measured using a spectrophotometer.
  • the refractive index of light having a wavelength of 570 nm of the transparent substrate 2 is preferably in the range of 1.40 to 1.95, more preferably in the range of 1.45 to 1.75, and still more preferably 1.45. Within the range of ⁇ 1.70.
  • the refractive index of the transparent substrate 2 is usually determined by the material of the transparent substrate 2.
  • the refractive index of the transparent substrate 2 can be determined by measurement under an environment of 25 ° C. using an ellipsometer.
  • the haze value of the transparent substrate 2 is preferably in the range of 0.01 to 2.5, more preferably in the range of 0.1 to 1.2. It is preferable that the haze value of the transparent substrate is 2.5 or less because the haze value as the transparent conductor can be suppressed.
  • the haze value can be measured using a haze meter.
  • the thickness of the transparent substrate 2 is preferably in the range of 1 ⁇ m to 20 mm, more preferably in the range of 10 ⁇ m to 2 mm. If the thickness of the transparent substrate is 1 ⁇ m or more, the strength of the transparent substrate 2 is increased, and it is possible to prevent the first high refractive index layer 3A from being cracked or torn during production. On the other hand, if the thickness of the transparent substrate 2 is 20 mm or less, sufficient flexibility of the transparent conductor 1 can be obtained. Furthermore, the thickness of the electronic device apparatus etc. which comprised the transparent conductor 1 can be made thin. Moreover, the electronic device apparatus etc. which used the transparent conductor 1 can also be reduced in weight.
  • the transparent substrate 2 to be used is formed by removing moisture contained in the substrate and remaining solvent in advance using a cryopump or the like before forming each constituent layer. It is preferable to use in the process.
  • a known clear hard coat layer may be provided on the transparent substrate applied to the present invention from the viewpoint of ensuring the smoothness of the first high refractive index layer formed thereafter.
  • the first high refractive index layer 3 ⁇ / b> A is a layer that adjusts the light transmittance (optical admittance) of the conductive region a of the transparent conductor, that is, the region where the transparent metal layer 4 is formed, and at least the conduction of the transparent conductor 1. Formed in region a.
  • the first high-refractive index layer 3A may be formed also in the insulating region b of the transparent conductor 1, but is illustrated in FIG. 2 from the viewpoint of making it difficult to visually recognize the pattern including the conductive region a and the insulating region b. Thus, it is preferably formed only in the conduction region a.
  • the first high refractive index layer 3A includes a dielectric material or metal oxide semiconductor material having a refractive index higher than that of the transparent substrate 2 described above.
  • the refractive index of light with a wavelength of 570 nm of the dielectric material or metal oxide semiconductor material is preferably about 0.1 to 1.1 higher than the refractive index of light with a wavelength of 570 nm of the transparent substrate 1, and 0.4 to 1 More preferably, it is about 0.0 larger.
  • the refractive index as used in the present invention is a refractive index value measured in an environment of 25 ° C. The refractive index can be determined by measuring using a commercially available ellipsometer.
  • the specific refractive index of light having a wavelength of 570 nm of the dielectric material or metal oxide semiconductor material contained in the first high refractive index layer 3A is preferably greater than 1.5, and is preferably 1.7 to 2.5. More preferably, it is within the range, and more preferably within the range of 1.8 to 2.5.
  • the refractive index of the dielectric material or the metal oxide semiconductor material is larger than 1.5, the optical admittance of the conductive region a of the transparent conductor 1 is sufficiently adjusted by the first high refractive index layer 3A.
  • the refractive index of the first high refractive index layer 3A is adjusted by the refractive index of the material included in the first high refractive index layer 3A and the density of the material included in the first high refractive index layer 3A.
  • At least one of the first high-refractive index layer and the second high-refractive index layer described later is composed of zinc sulfide and at least one metal compound selected from metal oxide, metal fluoride, and metal nitride.
  • the mixed film is formed by a co-evaporation method.
  • Examples of the metal oxide that can be used with zinc sulfide include TiO 2 , ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO (indium zinc oxide), AZO (Al-doped ZnO), GZO (Ga-doped ZnO), ATO (Sb-doped SnO) ), ICO (indium cerium oxide), Bi 2 O 3 , a-GIO, Ga 2 O 3 , GeO 2 , SiO 2 , Al 2 O 3 , HfO 2 , SiO, MgO, Y 2 O 3 , WO 3 , A-GIO (amorphous oxide composed of gallium, indium, and oxygen).
  • silicon dioxide (SiO 2 ) is particularly preferable
  • metal fluoride examples include LaF 3 , BaF 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , BaF 2 , CeF 3 , NdF 3 , YF 3 and the like. Can do.
  • examples of the metal nitride include boron nitride, aluminum nitride, chromium nitride, silicon nitride, tungsten nitride, magnesium nitride, molybdenum nitride, lithium nitride, and titanium nitride.
  • the first high-refractive index layer 3A or the second high-refractive index layer 3B according to the present invention is characterized by containing at least ZnS as a dielectric material.
  • the first high refractive index layer 3A is formed by co-evaporating at least one metal compound selected from metal oxide, metal fluoride and metal nitride together with zinc sulfide. Tends to be amorphous, and the flexibility of the transparent conductor is likely to increase.
  • the average content of zinc sulfide is in the range of 0.5 to 99% by mass with respect to the total number of moles of the material constituting the first high refractive index layer 3A. Preferably, it is in the range of 50 to 95% by mass, and more preferably in the range of 60 to 85% by mass.
  • the ratio of ZnS is high, the co-evaporation rate is increased, and the formation rate of the first high refractive index layer 3A is increased.
  • the ratio of zinc sulfide is high, the refractive index is increased, and the absorption of Ag can be reduced.
  • the amorphousness of the first high refractive index layer 3A is increased, and the occurrence of cracks in the first high refractive index layer 3A is suppressed.
  • the first high refractive index layer 3A or the second high refractive index layer 3B further includes an interface region 0.1T (adjacent interface) adjacent to the transparent metal layer 4.
  • the average zinc sulfide concentration in the region of 10% of the total layer thickness is preferably 50% by volume or more, more preferably the transparent metal of the first high refractive index layer 3A.
  • mean zinc sulfide concentration, and the average zinc sulfide concentration in the interface region 0.1 T B which is adjacent to the transparent metal layer 5 of the second high refractive index layer 3B are both 70 volume in the interface region 0.1 T a and the adjacent layer 5 % Is a preferred embodiment.
  • it is preferably 80% by volume or more, particularly preferably 90% by volume or more.
  • the thickness of the first high refractive index layer 3A is preferably in the range of 10 to 150 nm, more preferably in the range of 10 to 80 nm.
  • the thickness of the first high refractive index layer 3A is 10 nm or more, the optical admittance of the conductive region a of the transparent conductor 1 is sufficiently adjusted by the first high refractive index layer 3A.
  • the thickness of the first high refractive index layer 3A is 150 nm or less, the light transmittance of the region including the first high refractive index layer 3A is unlikely to decrease.
  • the thickness of the first high refractive index layer 3A is measured with an ellipsometer.
  • the first high refractive index layer 3A is formed by a co-evaporation method.
  • Deposition methods applicable to the present invention include resistance heating vapor deposition, electron beam vapor deposition, ion plating, and ion beam vapor deposition.
  • a vapor deposition apparatus for example, a BMC-800T vapor deposition machine manufactured by SYNCHRON Co., Ltd. can be used.
  • the patterning method is not particularly limited.
  • the first high refractive index layer 3A may be, for example, a layer formed in a pattern by a vapor phase forming method by placing a mask having a desired pattern on the surface to be formed, and may be a known etching method, For example, it may be a layer patterned by photolithography.
  • the first high refractive index layer 3A or the second high refractive index layer 3B according to the present invention is characterized by containing zinc sulfide.
  • the first high-refractive index layer 3A is a layer containing zinc sulfide, as shown in FIGS. 1B and 1C
  • the first anti-sulfurization layer is provided between the first high-refractive index layer 3A and the transparent metal layer 4. It is a preferred embodiment to form the layer 5A.
  • the first sulfidation preventing layer 5A may be formed also in the insulating region b of the transparent conductor 1, as shown in FIG. 2 from the viewpoint of making it difficult to visually recognize the pattern composed of the conductive region a and the insulating region b.
  • it is formed only in the conduction region a.
  • the first antisulfurization layer 5A can be configured as a metal oxide, metal nitride, metal fluoride, or the like, or a layer containing Zn.
  • the first sulfidation preventing layer 5A may contain only one kind, or two or more kinds, but preferably contains a compound containing a zinc metal element.
  • the metal oxide can react with sulfur or adsorb sulfur. A compound is preferred.
  • the reaction product of the metal oxide and sulfur preferably has high visible light permeability.
  • Examples of the metal oxide, metal nitride, and metal fluoride applicable to the first sulfidation preventing layer 5A according to the present invention include the metal oxide, metal nitride, and metal described in the description of the first high refractive index layer 3A.
  • the metal compound similar to a fluoride can be mentioned.
  • Zn, ZnO, IZO (indium oxide / zinc oxide) and GZO (gallium-doped zinc oxide) are particularly preferable.
  • the thickness of the first antisulfurization layer 5A is preferably a thickness capable of protecting the surface of the first high refractive index layer 3A from an impact when forming the transparent metal layer 4 described later.
  • ZnS that can be included in the first high refractive index layer 3 ⁇ / b> A has a high affinity with the metal included in the transparent metal layer 4. Therefore, if the thickness of the first anti-sulfurization layer 5A is very thin and a part of the first high refractive index layer 3A is slightly exposed, a transparent metal layer grows around the exposed part, and the transparent metal Layer 4 tends to be dense.
  • the first antisulfurization layer 5A is preferably relatively thin, preferably in the range of 0.1 to 15 nm, more preferably in the range of 0.5 to 10 nm, and still more preferably 1 to 5 nm. Is within the range.
  • the thickness of the first sulfurization preventing layer 5A can be measured using an ellipsometer.
  • the first sulfurization preventing layer 5A can be formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, etc. It is preferable to do.
  • a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, etc. It is preferable to do.
  • the first antisulfurization layer 5A is a layer patterned into a desired shape
  • the patterning method is not particularly limited.
  • the first sulfidation preventing layer 5A may be a layer formed in a pattern by a vapor phase forming method by placing a mask having a desired pattern on the surface to be formed, and patterned by a known etching method, for example. It may be a layer formed.
  • the transparent metal layer 4 is a film for conducting electricity in the transparent conductor 1.
  • the transparent metal layer 4 may be formed on the entire surface of the transparent substrate 2 as shown in FIGS. 1A to 1C, or may be patterned into a desired shape as shown in FIG.
  • the metal contained in the transparent metal layer 4 is not particularly limited as long as it is a highly conductive metal, and examples thereof include silver, copper, gold, platinum group, titanium, and chromium.
  • the transparent metal layer 4 may contain only one kind of these metals or two or more kinds.
  • the metal element constituting the transparent metal layer 4 is preferably made of silver or an alloy containing 90 atomic% or more of silver.
  • the metal combined with silver include zinc, gold, copper, palladium, aluminum, manganese, bismuth, neodymium, and molybdenum.
  • the sulfide resistance of the transparent metal layer is increased.
  • salt resistance (NaCl) resistance increases.
  • silver and copper are combined, the oxidation resistance increases.
  • the plasmon absorption rate of the transparent metal layer 4 is preferably 10% or less (over the entire range) over a wavelength range of 400 to 800 nm, more preferably 7% or less, and even more preferably 5% or less. If there is a region having a large plasmon absorption rate in a part of the wavelength of 400 to 800 nm, the transmitted light of the conductive region a of the transparent conductor 1 is likely to be colored.
  • the plasmon absorption rate at a wavelength of 400 to 800 nm of the transparent metal layer 4 is measured by the following procedure.
  • platinum palladium is formed with a layer thickness of 0.1 nm by a BMC-800T vapor deposition apparatus manufactured by SYNCHRON.
  • the average thickness of platinum palladium is calculated from the formation rate of the manufacturer's nominal value of the vapor deposition apparatus.
  • a metal film made of metal is formed with a thickness of 20 nm on the substrate to which platinum palladium is adhered by a vacuum deposition method.
  • the thickness of the transparent metal layer 4 is preferably 10 nm or less, more preferably in the range of 3 to 9 nm, and still more preferably in the range of 5 to 8 nm.
  • the thickness of the transparent metal layer 4 is 10 nm or less, the metal inherent reflection hardly occurs in the transparent metal layer 4.
  • the optical admittance of the transparent conductor 1 can be easily adjusted by the first high refractive index layer 3A and the second high refractive index layer 3B, and the surface of the conductive region a can be adjusted. Light reflection is easily suppressed.
  • the thickness of the transparent metal layer 4 can be determined by measurement using an ellipsometer.
  • the transparent metal layer 4 may be a layer formed by any formation method, but is preferably a layer formed by a vacuum deposition method.
  • a transparent substrate will not be exposed to a high temperature environment, but a transparent metal layer with high flatness can be formed at a very high formation rate.
  • the transparent metal layer 4 when the transparent metal layer 4 is formed on an underlayer described later, since the underlayer becomes a growth nucleus when the transparent metal layer 4 is formed, the transparent metal layer 4 tends to be a smooth film. As a result, even if the transparent metal layer 4 is thin, plasmon absorption hardly occurs.
  • the patterning method is not particularly limited.
  • the transparent metal layer 4 may be, for example, a layer formed by arranging a mask having a desired pattern; it may be a film patterned by a known etching method.
  • the second high refractive index layer 3B is a layer containing at least zinc sulfide. As illustrated in FIG. 1C, the second antisulfuric layer 5B is formed between the transparent metal layer 4 and the second high refractive index layer 3B. It is preferable that it is the structure comprised.
  • the second sulfidation preventing layer 5B may be formed also in the insulating region b of the transparent conductor 1, but from the viewpoint of making it difficult to visually recognize the pattern composed of the conductive region a and the insulating region b, only the conductive region a. Preferably it is formed.
  • the second sulfidation preventing layer 5B can be formed by the same material and method as the first sulfidation preventing layer.
  • the thickness of the second antisulfurization layer 5B is preferably a thickness capable of protecting the surface of the transparent metal layer 4 from an impact during film formation of the second high refractive index layer 3B described later.
  • the thickness of the second antisulfurization layer 5B is very thin. If a part of the layer is slightly exposed, the adhesion between the transparent metal layer 4 or the second antisulfurization layer 5B and the second high refractive index layer 3B is likely to increase.
  • the specific thickness of the second antisulfurization layer 5B is preferably in the range of 0.1 to 10 nm, more preferably in the range of 0.5 to 5 nm, and still more preferably in the range of 1 to 3 nm. Within range.
  • the thickness of the second sulfidation preventive layer 5B is measured with an ellipsometer.
  • the second high refractive index layer 3B is a layer for adjusting the light transmittance (optical admittance) of the conductive region a of the transparent conductor 1, that is, the region where the transparent metal layer 4 is formed, and at least the transparent conductor 1 conductive region a.
  • the second high-refractive index layer 3B may be formed in the insulating region b of the transparent conductor 1, but is formed only in the conductive region a from the viewpoint of making it difficult to visually recognize the pattern including the conductive region a and the insulating region b. It is preferable that
  • the second high refractive index layer 3B is at least selected from zinc sulfide, metal oxide, metal fluoride, and metal nitride.
  • the high refractive index layer according to the present invention is formed by co-evaporation with a kind of metal compound. Further, both the first high refractive index layer 3A and the second high refractive index layer 3B are prepared by co-evaporation of zinc sulfide and at least one metal compound selected from metal oxide, metal fluoride, and metal nitride. It may be a formed layer.
  • the second high-refractive index layer 3B according to the present invention can be formed by using the same constituent material as that of the first high-refractive index layer 3A described above, under the same method and conditions, and detailed description thereof is omitted. .
  • the underlayer is a layer disposed on the transparent substrate 1 side with respect to the transparent metal layer 4 and at a position adjacent to the transparent metal layer 4, and between the first high refractive index layer 3A and the transparent metal layer 4, or the first 1 It is preferable to form between the sulfidation prevention layer 5A and the transparent metal layer 4.
  • the underlayer is preferably formed at least in the conductive region a of the transparent conductor 1, and may be formed in the insulating region b of the transparent conductor 1.
  • the base layer on the transparent conductor 1 By providing the base layer on the transparent conductor 1, even when the transparent metal layer 4 is thin, the smoothness of the surface of the transparent metal layer 4 can be improved. The reason is as follows.
  • the material of the transparent metal layer 4 is vapor-deposited on the first high refractive index layer 3A by a general vacuum vapor deposition method, for example, at the initial stage of formation, atoms attached on the first high refractive index layer 3A, for example, Silver atoms migrate (move), and atoms gather together to form a mass (sea-island structure). And a film grows clinging to this lump. Therefore, in the film at the initial stage of formation, there is a gap between the lumps, and the film is not conductive. When a lump further grows from this state, a part of the lump is connected and barely conducted. However, since there is still a gap between the lumps, plasmon absorption occurs. As the formation proceeds further, the lumps are completely connected and plasmon absorption is reduced. However, on the other hand, the intrinsic reflection of the metal occurs, and the light transmittance of the film decreases.
  • the transparent metal layer 4 grows using the base layer as a growth nucleus. That is, the material of the transparent metal layer 4 is difficult to migrate, and the film grows without forming the island-like structure described above. As a result, a smooth transparent metal layer 4 can be easily obtained even if the thickness is small.
  • the underlayer preferably contains palladium, molybdenum, zinc, germanium, niobium or indium, an alloy of these metals with other metals, or an oxide or sulfide of these metals (for example, ZnS). .
  • the underlayer may contain only one kind, or two or more kinds.
  • the amount of palladium, molybdenum, zinc, germanium, niobium or indium contained in the underlayer is preferably 20% by mass or more, more preferably 40% by mass or more, and further preferably 60% by mass or more.
  • the underlayer contains palladium or molybdenum.
  • the metal that forms an alloy with palladium, molybdenum, zinc, germanium, niobium, or indium is not particularly limited, and examples thereof include platinum group other than palladium, gold, cobalt, nickel, titanium, aluminum, and chromium.
  • the layer thickness of the underlayer is preferably 3 nm or less, more preferably 0.5 nm or less, and particularly preferably a monoatomic film.
  • the underlayer can also be a film in which metal atoms are deposited on the transparent substrate 2 so as to be separated from each other.
  • the adhesion amount of the underlayer is 3 nm or less, the underlayer hardly affects the light transmittance and optical admittance of the transparent conductor 1.
  • the presence or absence of the underlayer is confirmed by the ICP-MS method.
  • the layer thickness of the underlayer is calculated from the product of the formation speed and the formation time.
  • the underlayer is preferably a layer formed by a vapor deposition method.
  • the vapor deposition method includes a vacuum vapor deposition method, an electron beam vapor deposition method, an ion plating method, an ion beam vapor deposition method and the like.
  • the deposition time is appropriately selected according to the desired thickness of the underlying layer and the formation speed.
  • the deposition rate is preferably 0.01 to 1.5 nm / second, more preferably 0.01 to 0.7 nm / second.
  • the underlayer may be, for example, a layer formed in a pattern by a vapor phase forming method by placing a mask having a desired pattern on the surface to be formed; a layer patterned by a known etching method There may be.
  • a low refractive index layer (not shown) is provided on the second high refractive index layer 3B for the purpose of adjusting the light transmittance (optical admittance) of the conductive region a of the transparent conductor. You may have.
  • the low refractive index layer may be formed only in the conductive region a of the transparent conductor 1 or may be formed in both the conductive region a and the insulating region b of the transparent conductor 1.
  • the low refractive index layer includes a dielectric material or oxide having a lower refractive index than that of the dielectric material or oxide semiconductor material included in the first high refractive index layer 3A and the second high refractive index layer 3B in light having a wavelength of 570 nm.
  • Semiconductor material is included.
  • the refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the low refractive index layer is the light of wavelength 570 nm of the above material contained in the first high refractive index layer 3A and the second high refractive index layer 3B.
  • the refractive index is preferably 0.2 or more lower and more preferably 0.4 or more lower.
  • the average transmittance of light having a wavelength of 450 to 800 nm of the transparent conductor of the present invention is preferably 83% or more, more preferably 85% or more, and even more preferably in both the conduction region a and the insulation region b. Is 88% or more.
  • the transparent conductor can be applied to applications that require high transparency to visible light, such as touch panels.
  • the average transmittance of light having a wavelength of 400 to 1000 nm of the transparent conductor is preferably 80% or more in both the conduction region a and the insulation region b, more preferably 83% or more, and still more preferably 85%. That's it.
  • the transparent conductor is also applied to applications requiring transparency with respect to light in a wide wavelength range, such as a transparent conductive film for solar cells. can do.
  • the average absorptance of light having a wavelength of 400 to 800 nm of the transparent conductor is preferably 10% or less, more preferably 8% or less, and even more preferably in both the conduction region a and the insulation region b. 7% or less.
  • the maximum value of the light absorptance of the transparent conductor having a wavelength of 450 to 800 nm is preferably 15% or less, more preferably 10% or less, both in the conduction region a and the insulation region b. Preferably it is 9% or less.
  • the average reflectance of light having a wavelength of 500 to 700 nm of the transparent conductor is preferably 20% or less, more preferably 15% or less, and even more preferably in both the conduction region a and the insulation region b. Is 10% or less.
  • the average transmittance, average absorptance, and average reflectance are preferably the average transmittance, average absorptivity, and average reflectance measured in the environment where the transparent conductor is used. Specifically, when the transparent conductor is used by being bonded to an organic resin, it is preferable to measure the average transmittance and the average reflectance by disposing a layer made of the organic resin on the transparent conductor. On the other hand, when the transparent conductor is used in the air, it is preferable to measure the average transmittance and the average reflectance in the air. The transmittance and the reflectance are measured with a spectrophotometer by allowing measurement light to enter from an angle inclined by 5 ° with respect to the normal of the surface of the transparent conductor. The absorptance is calculated from a calculation formula of 100 ⁇ (transmittance + reflectance).
  • the transparent conductor 1 has the conductive region a and the insulating region b as shown in FIG. 2, it is preferable that the reflectance of the conductive region a and the reflectance of the insulating region b are approximated.
  • the difference ⁇ R between the luminous reflectance of the conduction region a and the luminous reflectance of the insulating region b is preferably 5% or less, more preferably 3% or less, and still more preferably It is 1% or less, particularly preferably 0.3% or less.
  • the luminous reflectances of the conductive region a and the insulating region b are each preferably 5% or less, more preferably 3% or less, and further preferably 1% or less.
  • the luminous reflectance is a Y value measured with a spectrophotometer (U4100; manufactured by Hitachi High-Technologies Corporation).
  • the a * value and the b * value in the L * a * b * color system are preferably within ⁇ 30 in any region. More preferably, it is within ⁇ 5.0, more preferably within ⁇ 3.0, and particularly preferably within ⁇ 2.0. If the a * value and the b * value in the L * a * b * color system are within ⁇ 30, both the conduction region a and the insulation region b are observed as colorless and transparent. The a * value and b * value in the L * a * b * color system are measured with a commercially available spectrophotometer.
  • the surface electric resistance of the conductive region a of the transparent conductor is preferably 50 ⁇ / ⁇ or less, more preferably 30 ⁇ / ⁇ or less.
  • a transparent conductor having a surface electric resistance value of 50 ⁇ / ⁇ or less in the conduction region can be applied to a transparent conductive panel for a capacitive touch panel.
  • the surface electrical resistance value of the conduction region a is adjusted by the thickness of the transparent metal layer and the like.
  • the surface electrical resistance value of the conduction region a is measured in accordance with, for example, JIS K7194, ASTM D257, and the like. It is also measured by a commercially available surface electrical resistivity meter.
  • the reflectance R of the surface of the transparent conductor transmission region a (the surface of the transparent conductor opposite to the transparent substrate) is determined by the optical admittance Y env of the medium on which light is incident and the surface of the transparent conductor transmission region a. determined from the equivalent admittance Y E.
  • the medium on which light is incident refers to a member or environment through which light incident on the transparent conductor passes immediately before the incident; a member or environment made of an organic resin.
  • the relationship between the optical admittance Y env of the medium on which light is incident and the equivalent admittance Y E of the surface of the transparent conductor is expressed by the following equation.
  • R is the reflectance of the surface. Based on the above formula, the closer the value of
  • the optical admittance Y env of the medium is obtained from the ratio (H / E) of the electric field strength and the magnetic field strength, and is usually the same as the refractive index n env of the medium.
  • the equivalent admittance Y E of the surface of the transparent region a of the transparent conductor is determined from the optical admittance Y of the layers constituting the transparent region a. For example, when the transparent conductor (transmission region a) is composed of one is equivalent admittance Y E of the transparent conductor is equal to the of the layer optical admittance Y (refractive index).
  • the optical admittance Y x (E x H x ) of the laminate from the first layer to the x-th layer is from the first layer to (x ⁇ 1) It is represented by the product of the optical admittance Y x-1 (E x-1 H x-1 ) of the laminate up to the layer and a specific matrix; specifically, the following formula (1) or formula (2) Is required.
  • the x-th layer is a layer made of a dielectric material or an oxide semiconductor material
  • 2 ⁇ nd / ⁇
  • y n (admittance of the x-th layer film)
  • d is the thickness of the x-th layer film.
  • 2 ⁇ / ⁇ ⁇ kd
  • d is the thickness of the x-th layer film
  • k is the refractive index (imaginary part) of the film.
  • the optical admittance Yx (E x H x ) of the laminate from the transparent substrate to the outermost layer becomes the equivalent admittance Y E of the transparent conductor.
  • transparent substrate 2 / first high refractive index layer 3A (ZnS—SiO 2 ) / first antisulfurization layer 5A (ITO) / transparent metal layer 4 (Ag) / second high Refractive index layer 3B (the admittance locus of wavelength 570 nm of the conductive region a of the transparent conductor 1 composed of ZnS—SiO 2 is shown.
  • the horizontal axis of the graph represents the optical admittance Y of the region expressed as x + ii.
  • the vertical part is the imaginary part of the optical admittance, that is, y in the formula (1)
  • the first antisulfurization layer Since 5A (ITO) is sufficiently thin, its optical admittance is negligible.
  • the last coordinate in the admittance locus is equivalent admittance Y E conductive region a.
  • the distance between the coordinate (x E , y E ) of the equivalent admittance Y E and the admittance coordinate Y env (n env , 0) (not shown) of the medium on which the light is incident is determined by the conduction region a of the transparent conductor. It is proportional to the surface reflectance R.
  • it is preferable that either one or both of x 1 and x 2 is 1.6 or more.
  • either one of x 1 and x 2 are, it tends enhanced light transmission of the transparent conductor If it is 1.6 or more. The reason will be described below.
  • x 1 and x 2 are preferably 1.6 or more, more preferably 1.8 or more, and further preferably 2.0 or more. Any one of x 1 and x 2 may be 1.6 or more, but x 1 is particularly preferably 1.6 or more.
  • the x 1 and x 2 is preferably 7.0 or less, more preferably 5.5 or less.
  • x 1 is the refractive index and the first high refractive index layer 3A, is adjusted by the thickness of the first high refractive index layer 3A and the like.
  • x 2 is the refractive index of x 1 values and the transparent metal layer 4 is adjusted by the thickness and the like of the first transparent metal layer 3A.
  • ) of the difference between x 1 and x 2 is preferably 1.5 or less, more preferably 1.0 or less, and even more preferably 0.8 or less. is there.
  • the admittance locus at a specific wavelength is preferably line symmetric with respect to the horizontal axis of the graph.
  • the coordinates of the equivalent admittance Y E is at a wavelength other than the specific wavelength (e.g. 450nm or 700 nm), likely to be constant, at any wavelength, reflectance R becomes smaller. Therefore, a coordinate y 1 of the imaginary part of the Y1, the coordinate y 2 of the imaginary part of the Y2, it is preferable to satisfy the y 1 ⁇ y 2 ⁇ 0.
  • the aforementioned y 1 is sufficiently large.
  • the optical admittance of the transparent metal layer 4 has a large imaginary part value, and the admittance locus greatly moves in the direction of the vertical axis (imaginary part). Therefore, if y 1 is sufficiently large, the absolute value of the imaginary part of the admittance coordinates is likely to be within an appropriate range, and the admittance locus is likely to be line symmetric.
  • y 1 is preferably 0.2 or more, more preferably 0.3 to 1.5, and still more preferably 0.3 to 1.0.
  • y 2 described above is preferably ⁇ 0.3 to ⁇ 2.0, and more preferably ⁇ 0.6 to ⁇ 1.5.
  • the equivalent admittance coordinates (n env , 0) of the distance ((x E ⁇ n env ) 2 + (y E ) 2 ) 0.5 ) is preferably less than 0.5, more preferably 0. 3 or less. When the distance is less than 0.5, the reflectance Ra of the surface of the conduction region a is sufficiently small, and the light transmittance of the conduction region a is increased.
  • an equivalent admittance coordinate (x E , y E ) of light with a wavelength of 570 nm in the conduction region a and an equivalent admittance coordinate (( x ( b , y b ))), ((x E ⁇ x b ) 2 + (y E ⁇ y b ) 2 ) 0.5 ) is preferably less than 0.5, more preferably 0.3 or less.
  • the coordinates of the equivalent admittance Y E conductive region a, the coordinate of the equivalent admittance Y b of the insulating region b is sufficiently close, so these patterns are hardly visually recognized.
  • the transparent conductor of the present invention at least the first high refractive index layer, the transparent metal layer, and the second high refractive index layer are laminated in this order on the transparent substrate 1 by the method described above.
  • the line width (conducting region a) of the electrode to be formed is preferably 50 ⁇ m or less, and particularly preferably 20 ⁇ m or less.
  • the photolithographic method applied to the present invention includes resist coating such as curable resin, preheating, exposure, development (removal of uncured resin), rinsing, etching treatment with an etching solution, and resist stripping.
  • resist coating such as curable resin, preheating, exposure, development (removal of uncured resin), rinsing, etching treatment with an etching solution, and resist stripping.
  • the transparent metal layer for example, a silver thin film layer is processed into a desired pattern as shown in FIGS.
  • a conventionally known general photolithography method can be used as appropriate.
  • the resist either positive or negative resist can be used.
  • preheating or prebaking can be performed as necessary.
  • a pattern mask having a desired pattern may be disposed, and light having a wavelength suitable for the resist used, generally active energy rays such as ultraviolet rays and electron beams may be irradiated thereon.
  • development is performed with a developer suitable for the resist used.
  • the resist pattern is formed by stopping the development with a rinse solution such as water and washing.
  • the formed resist pattern is pretreated or post-baked as necessary, and then is etched with an etching solution containing an organic solvent to dissolve each constituent layer in a region not protected by the resist and to form a transparent metal.
  • the layer (silver thin film electrode) is removed. After etching, the remaining resist is removed to obtain a transparent electrode having an intended pattern.
  • the photolithography method applied to the present invention is a method generally recognized by those skilled in the art, and the specific application mode is easily selected by those skilled in the art according to the intended purpose. be able to.
  • FIG. 5 is a process diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by a photolithography method.
  • the first high refractive index layer 3A, the first antisulfuration layer 5A, the transparent metal layer 4, the second antisulfurization layer 5B, the second high The transparent conductor 1 in which the refractive index layer 3B is laminated in this order is produced.
  • ultrasonic cleaning for example, ultrasonic cleaning and washing with pure water are performed several times using a detergent clean-through 3030 manufactured by Kao Corporation, and then water is blown off with a spin coater and dried in an oven.
  • a resist film 6 composed of a photosensitive resin composition or the like is uniformly coated on the transparent conductor 1.
  • a photosensitive resin composition a negative photosensitive resin composition or a positive photosensitive resin composition can be used.
  • FIG. 5 shows an example of a positive type.
  • the resist for example, OFPR-800LB manufactured by Tokyo Ohka Kogyo Co., Ltd. can be used.
  • a coating method it is applied on the transparent conductor 1 by a known method such as micro gravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating, slit coating, etc., and heated by a hot plate, oven or the like. It can be pre-baked in the apparatus. Pre-baking can be performed, for example, using a hot plate or the like in a temperature range of 50 to 150 ° C. for 30 seconds to 30 minutes.
  • the exposure apparatus 8 such as a stepper, a mirror projection mask aligner (MPA), a parallel light mask aligner or the like is used through a mask 7 made with a predetermined electrode pattern.
  • the resist film 6A to be removed in the next step is irradiated with light of about 4000 J / m 2 (wavelength 365 nm exposure amount conversion).
  • the exposure light source is not limited, and ultraviolet rays, electron beams, KrF (wavelength 248 nm) laser, ArF (wavelength 193 nm) laser, and the like can be used.
  • a positive photosensitive resin composition when used by immersing the exposed transparent conductor in a developer, the solubility in the developer by irradiation with light.
  • the resist film 6A in the region where the improvement is made is dissolved.
  • a developer for positive photoresist “Tokuso SD” series tetramethylammonium hydroxide manufactured by Tokuyama Corporation should be used. Can do.
  • a developing method it is preferable to immerse in a developer for 5 seconds to 10 minutes by a method such as showering, dipping, or paddle.
  • a known alkali developer can be used.
  • inorganic alkalis such as alkali metal hydroxides, carbonates, phosphates, silicates and borates, amines such as 2-diethylaminoethanol, monoethanolamine and diethanolamine, tetramethylammonium hydroxide.
  • examples thereof include an aqueous solution containing one or more quaternary ammonium salts such as side and choline. After development, it is preferable to rinse with water, and then dry baking may be performed at a temperature range of 50 to 150 ° C.
  • etching solution a solution containing an inorganic acid or an organic acid is preferable, and oxalic acid, hydrochloric acid, acetic acid, and phosphoric acid can be mentioned, and oxalic acid, acetic acid, and phosphoric acid are particularly preferable.
  • Commercially available products can also be used as the etchant, for example, Pure Etch DE100 (oxalic acid) manufactured by Hayashi Junyaku Kogyo Co., Ltd., and “Mixed liquid SEA-5” manufactured by Kanto Chemical Co. (phosphoric acid: 55% by mass, Acetic acid: 30% by mass, water and other components: 15% by mass) and the like can be used.
  • the transparent conductor 1 having the resist film 6 is immersed in an etching solution containing an organic acid or the like, and the transparent electrode unit EU in the insulating region b not protected by the resist film 6 is dissolved.
  • the transparent electrode unit EU in the conductive region a protected by the film 6 is formed as a predetermined electrode pattern.
  • the etching time varies depending on the type of acid to be applied, but is preferably adjusted within a range of 30 to 120 seconds.
  • the transparent conductive film is etched using, for example, acetone, sodium hydroxide solution as a resist film remover, or N-300 manufactured by Nagase ChemteX as a commercial product.
  • a transparent conductor having an electrode pattern can be produced by immersing the body and removing the resist film 6.
  • the transparent conductor of the present invention having the above-described configuration includes various displays such as a liquid crystal system, a plasma system, an organic electroluminescence system, a field emission system, a touch panel, a mobile phone, electronic paper, various solar cells, and various electroluminescence light control elements. It can preferably be used for substrates of various optoelectronic devices.
  • the surface of the transparent conductor 1 (for example, the surface opposite to the transparent substrate 2) may be bonded to another member via an adhesive layer or the like.
  • the equivalent admittance coordinates of the surface of the transparent conductor and the admittance coordinates of the adhesive layer approximate each other. Thereby, reflection at the interface between the transparent conductor and the adhesive layer is suppressed.
  • the admittance coordinates of the surface of the transparent conductor and the admittance coordinates of the air approximate each other. Thereby, reflection of light at the interface between the transparent conductor and air is suppressed.
  • FIG. 6 is a perspective view showing an example of a configuration of a touch panel including a transparent conductor having an electrode pattern.
  • a touch panel 21 shown in FIG. 6 is a projected capacitive touch panel.
  • the touch panel 21 includes a transparent conductor 1-1 having a first transparent electrode unit EU-1 on the main surface of the transparent substrate 2-1, and a second transparent on the main surface of the transparent substrate 2-2.
  • the transparent conductor 1-2 having the electrode unit EU-2 is arranged in this order, and the upper part is covered with the front plate 13.
  • the first transparent electrode unit EU-1 and the second transparent electrode unit EU-2 are each a conductive region a of a transparent conductor on which the electrode pattern described with reference to FIGS. 2 and 5 is formed. Therefore, the first transparent electrode unit EU-1 includes the first high refractive index layer 3A, the first sulfidation preventing layer 5A, the transparent metal layer 4, the second sulfidation preventing layer 5B, the second on the transparent substrate 2-1. The high refractive index layer 3B is laminated in this order. Similarly, the second transparent electrode unit EU-2 has the same configuration.
  • first high refractive index layer ZnS—TiO 2
  • a vacuum deposition apparatus a BMC-800T deposition apparatus manufactured by SYNCHRON Co., Ltd. was used, ZnS was loaded on the first molybdenum resistance heating boat, TiO 2 was loaded on the second resistance heating boat made of molybdenum, and the vacuum chamber was 1 ⁇ 10 ⁇ 10.
  • the first high refractive index layer having a layer thickness of 36 nm was formed by co-evaporation on the COP film under the conditions of 20 at a formation rate of 0.3 nm / second and a formation time of 120 seconds.
  • the volume ratio of ZnS to TiO 2 in the first high refractive index layer was measured using X-ray photoelectron spectroscopy (XPS). As a result, the volume ratio of ZnS to TiO 2 was 80:20. It was confirmed that.
  • the COP film on which the first high refractive index layer is formed is fixed to a vacuum vapor deposition apparatus similar to the above, Ag is loaded into a resistance heating boat T3 made of molybdenum, and the vacuum chamber is decompressed to 1 ⁇ 10 ⁇ 4 Pa. did. Subsequently, the resistance heating boat was energized and heated, and was vacuum-deposited on the first high refractive index layer of the COP film under the condition that the formation time was 6 seconds, thereby forming a transparent metal layer having a layer thickness of 7.7 nm. The formation speed at this time was 2.7 nm / second as a result of measurement by the following method.
  • step 3 shown in FIG. 3 Ag is loaded in a resistance heating boat T3 as an evaporation source in the step 3 shown in FIG. 3, and a monitor glass is disposed immediately above the evaporation source, and the monitor glass is fixed and not moved.
  • a transparent metal layer was formed.
  • the first resistance heating boat and the second resistance heating boat were energized and heated, and the energization heating conditions of both resistance heating boats were adjusted as appropriate, so that ZnS and TiO 2
  • the second high refractive index layer having a layer thickness of 44 nm was formed by co-evaporation on the COP film under the conditions of a volume ratio of 80:20 and a formation speed of 0.37 nm / second and a formation time of 120 seconds. Thus, a transparent conductor 1 was produced.
  • the produced transparent conductor 1 was subjected to ultrasonic cleaning treatment.
  • an ultrasonic cleaning process was performed at 25 ° C. for 4 minutes using a detergent “Clean Through 3030 (10%)” manufactured by Kao Corporation.
  • ultrasonic washing was performed twice with pure water at 25 ° C. for 4 minutes.
  • water was scattered with a spin coater and then dried in an oven.
  • ultraviolet rays were irradiated through the mask 7 under conditions of 60 mJ, and developed using a developer for positive photoresist “Tokuso SD-1” (tetramethylammonium hydroxide) manufactured by Tokuyama Corporation as a developer. .
  • Yamaso SD-1 tetramethylammonium hydroxide
  • etching solution “mixed liquid SEA-5” (phosphoric acid: 55% by mass, acetic acid: 30% by mass, water and other components: 15% by mass) manufactured by Kanto Chemical Co., Ltd. was used, as shown in FIG.
  • An electrode pattern comprising an insulating region b having only the transparent substrate (2) and an energizing region a having the transparent electrode unit EU was formed.
  • the width of the line-shaped insulating region b was 16 ⁇ m.
  • Table 1 shows the types of the transparent substrate, the types and thicknesses of the constituent materials of the first high refractive index layer and the second high refractive index layer, and the formation speed and thickness of the transparent metal layer in the production of the transparent conductor 1.
  • a transparent conductor 2 and a transparent conductor 3 were produced in the same manner except that the conditions were changed.
  • a long polycarbonate (abbreviation: PC) film is used as the transparent substrate, and the first high refractive index layer (ZnS—SiO 2 ) / transparent metal layer (Ag) / second high is formed on the PC film according to the following method.
  • a refractive index layer (ZnS—SiO 2 ) was successively laminated in this order by a roll-to-roll method using a vacuum deposition method.
  • this laminate was patterned by the same method as used for the transparent conductor 1 to produce a transparent conductor 4 having wiring.
  • the thickness of each layer is J. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
  • the production of the transparent conductor 4 was performed using a roll-to-roll type transparent conductor manufacturing apparatus having Steps 1 to 5 shown in FIG. 3 in which five vacuum deposition chambers are continuously arranged.
  • the first high refractive index layer (ZnS—SiO 2 ) is formed in Step 1
  • the transparent metal layer (Ag) is formed in Step 3
  • the second high refractive index layer is formed. (ZnS—SiO 2 ) was formed in Step 5.
  • a first high refractive index layer was formed by a co-evaporation method while continuously transporting the PC film as the transparent substrate (2) into the vacuum deposition chamber (11) of Step 1 shown in FIG.
  • Vacuum deposition chamber a first ZnS to molybdenum resistance heating boat (T1a) of (11), the SiO 2 was loaded into a second resistive heating molybdenum boat (T1b), the pressure P 1 in the vacuum deposition chamber 1 ⁇ After depressurizing to 10 ⁇ 4 Pa, the first resistance heating boat (T1a) and the second resistance heating boat (T1b) are energized and heated.
  • the first high refractive index layer having a layer thickness of 43 nm is formed by co-evaporation on a PC film with a formation rate of 4.3 nm / second and a formation time of 10 seconds under the condition that the volume ratio of 2 is 99: 1. did.
  • Step 3 the PC film having the first high refractive index layer formed in Step 1 is conveyed, Ag is loaded into the molybdenum resistance heating boat (T3) in the vacuum deposition chamber (11), and the pressure P in the vacuum deposition chamber is set. 3 was depressurized to 1 ⁇ 10 ⁇ 3 Pa.
  • the resistance heating boat (T3) was heated by energization, and was vacuum-deposited on the first high refractive index layer of the PC film under the conditions of a formation speed of 1.8 nm / second and a formation time of 4.4 seconds. A transparent electrode layer of 8.0 nm was formed.
  • Vacuum deposition chamber of step 5 the first ZnS to molybdenum resistance heating boat (T5a) of (11), the SiO 2 was loaded into a second resistive heating molybdenum boat (T5b), the pressure P 5 in the vacuum deposition chamber After the pressure is reduced to 1 ⁇ 10 ⁇ 4 Pa, the first resistance heating boat (T5a) and the second resistance heating boat (T5b) are energized and heated, and the energization heating conditions of both resistance heating boats are appropriately adjusted, A second high refractive index layer having a layer thickness of 42 nm is formed by co-evaporation on a PC film at a formation rate of 4.2 nm / second and a formation time of 10 seconds under the condition that the volume ratio of ZnS and SiO 2 is 99: 1. Then, a transparent conductor 4 was produced.
  • TAC triacetyl cellulose
  • ZnS-AZO first high refractive index layer
  • Al transparent metal layer
  • ZnS-AZO second high refractive index layer
  • TiO 2 anti-sulfurization layer
  • ZnS-AZO second high refractive index layer
  • the thickness of each layer is J. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
  • AZO described in the above abbreviations is ZnO doped with Al.
  • the production of the transparent conductor 8 was performed using a roll-to-roll type transparent conductor manufacturing apparatus provided with five vacuum deposition chambers of Step 1 to Step 5 shown in FIG.
  • the first high refractive index layer (ZnS-AZO) is formed in Step 1
  • the transparent metal layer (Ag) is formed in Step 3
  • the second antisulfurization layer (TiO 2) is formed. 2
  • the second high refractive index layer (ZnS-AZO) was formed in Step 5.
  • a first high refractive index layer was formed by a co-evaporation method while continuously transporting the TAC film as the transparent substrate (2) to the vacuum deposition chamber (11) of Step 1 shown in FIG.
  • the first resistance heating boat (T1a) and the second resistance heating boat (T1b) are energized and heated, and the energization heating conditions of both resistance heating boats are adjusted as appropriate, and ZnS and AZO
  • a first high refractive index layer having a layer thickness of 42 nm was formed by co-evaporation on the TAC film at a formation rate of 2.1 nm / second and a formation time of 20 seconds under the condition that the volume ratio was 80:20.
  • the TAC film on which the first high refractive index layer is formed in Step 1 is conveyed to Step 3, and Ag is loaded into the molybdenum resistance heating boat (T3) in the vacuum deposition chamber (11), and the pressure P 3 in the vacuum deposition chamber is set. The pressure was reduced to 1 ⁇ 10 ⁇ 3 Pa.
  • the resistance heating boat (T3) was heated by energization, and was vacuum-deposited on the first high refractive index layer of the TAC film under the conditions that the formation speed was 1.4 nm / second and the formation time was 5.3 seconds, and the layer thickness was Formed a transparent metal layer of 7.4 nm.
  • Step 4 the TAC film on which the transparent metal layer has been formed in Step 3 is transported, and in the vacuum deposition chamber (11), TiO 2 is loaded into the molybdenum resistance heating boat (T4), and the pressure P 4 in the vacuum deposition chamber is set. The pressure was reduced to 5 ⁇ 10 ⁇ 4 Pa.
  • the resistance heating boat (T4) was heated by energization, and was vacuum-deposited on the transparent metal layer of the TAC film under the conditions of a formation rate of 0.50 nm / second and a formation time of 20 seconds. A disulfide prevention layer was formed.
  • the first resistance heating boat (T5a) and the second resistance heating boat (T5b) are energized and heated, and the energization heating conditions of both resistance heating boats are adjusted as appropriate, so that ZnS and AZO
  • a second high refractive index layer having a layer thickness of 44 nm was formed by co-evaporation on the TAC film under the conditions of a volume ratio of 80:20 and a formation speed of 2.1 nm / second and a formation time of 20 seconds.
  • a long thin glass is used as the transparent substrate, and the first high refractive index layer (ZnS—SiO 2 ) / first antisulfuration layer (ZnO) / transparent metal layer (Ag) is formed on the thin glass according to the following method.
  • / Second anti-sulfurization layer (ZnO) / second high refractive index layer (ZnS—SiO 2 ) were successively laminated in this order by a roll-to-roll method using a vacuum deposition method.
  • the laminate was patterned by the same method as that used for the transparent conductor 1 to produce a transparent conductor 13 having wiring.
  • the thickness of each layer is J. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
  • a roll-to-roll type transparent conductor manufacturing apparatus including the five vacuum deposition chambers, which includes the steps 1 to 5 shown in FIG. 3, was used.
  • the first high refractive index layer (ZnS—SiO 2 ) is formed in Step 1
  • the first antisulfurization layer (ZnO) is formed in Step 2
  • the transparent metal layer (Ag ) was formed in Step 3
  • the second anti-sulfurization layer (ZnO) was formed in Step 4
  • the second high refractive index layer (ZnS—SiO 2 ) was formed in Step 5.
  • the first high refractive index layer was formed by a co-evaporation method while continuously transporting the thin glass as the transparent substrate (2) into the vacuum deposition chamber (11) of Step 1 shown in FIG.
  • Vacuum deposition chamber a first ZnS to molybdenum resistance heating boat (T1a) of (11), the SiO 2 was loaded into a second resistive heating molybdenum boat (T1b), the pressure P 1 in the vacuum deposition chamber 1 ⁇ After depressurizing to 10 ⁇ 4 Pa, the first resistance heating boat (T1a) and the second resistance heating boat (T1b) are energized and heated.
  • the first high refractive index layer having a layer thickness of 42 nm was formed by co-evaporation on the thin glass under the condition that the volume ratio of 2 was 90:10 and the formation rate was 42 nm / second and the formation time was 1 second.
  • Step 2 the thin glass on which the first high refractive index layer is formed in Step 1 is transported, and in the vacuum deposition chamber (11), the molybdenum resistance heating boat (T2) is loaded with ZnO, and the pressure P in the vacuum deposition chamber is increased. 2 was depressurized to 5 ⁇ 10 ⁇ 4 Pa.
  • the resistance heating boat (T2) was heated by energization, and was vacuum-deposited on the first high refractive index layer of thin glass under the conditions of a formation rate of 0.3 nm / second and a formation time of 1 second, and the layer thickness was 0.
  • a first anti-sulfurization layer having a thickness of 3 nm was formed.
  • Step 3 the thin glass on which the first sulfidation-preventing layer is formed in Step 2 is conveyed, Ag is loaded into the molybdenum resistance heating boat (T3) in the vacuum deposition chamber (11), and the pressure P 3 in the vacuum deposition chamber is set. The pressure was reduced to 1 ⁇ 10 ⁇ 3 Pa.
  • the resistance heating boat (T3) was heated by energization, and was vacuum-deposited on the first sulfidation prevention layer of thin glass under the conditions of a formation speed of 7.7 nm / second and a formation time of 0.87 second. A transparent metal layer of 6.7 nm was formed.
  • Step 4 Formation of second anti-sulfurization layer (ZnO)
  • Step 4 the thin glass on which the transparent metal layer was formed in Step 3 was continuously conveyed to Step 4, and a second antisulfurization layer was formed according to the following method.
  • Step 4 the thin glass on which the transparent metal layer is formed in Step 3 is transported, and in the vacuum deposition chamber (11), ZnO is loaded into the molybdenum resistance heating boat (T4), and the pressure P 4 in the vacuum deposition chamber is 5 The pressure was reduced to 10-4 Pa.
  • the resistance heating boat (T4) was heated by energization, and was vacuum-deposited on the transparent metal layer of thin glass under the conditions that the formation rate was 1.0 nm / second and the formation time was 1 second, and the layer thickness was 1.0 nm. A second antisulfurization layer was formed.
  • Step 4 Formation of Second High Refractive Index Layer (ZnS—SiO 2 )
  • Step 5 the thin glass on which the second sulfidation-preventing layer was formed in Step 4 was transferred to the vacuum vapor deposition chamber in Step 5, and a second high refractive index layer was formed according to the following method to produce a transparent conductor 13.
  • Vacuum deposition chamber a first ZnS to molybdenum resistance heating boat (T5a) of (11), the SiO 2 was loaded into a second resistive heating molybdenum boat (T5b), the pressure P 5 in the vacuum deposition chamber 1 ⁇ After depressurizing to 10 ⁇ 4 Pa, the first resistance heating boat (T5a) and the second resistance heating boat (T5b) are energized and heated, and the energization heating conditions of both resistance heating boats are adjusted as appropriate, so that ZnS and SiO 2 under the condition that the volume ratio of 2 is 90:10, a second high refractive index layer having a layer thickness of 47 nm is formed by co-evaporation on a thin glass with a formation rate of 47 nm / second and a formation time of 1 second, and transparent conductive A body 13 was produced.
  • transparent conductor 14 and transparent conductor 29 In the production of the transparent conductor 13, the type of transparent substrate, the types of constituent materials of the first high refractive index layer and the second high refractive index layer, the constituent ratio and the layer thickness to be formed, the formation speed and the layer thickness of the transparent metal layer
  • the transparent conductor 14 and the transparent conductor 29 were produced in the same manner except that the film thicknesses of the first sulfidation prevention layer and the second sulfidation prevention layer were changed to the conditions shown in Tables 1 and 2. In the transparent conductor 29, no wiring was formed.
  • a long polycarbonate (abbreviation: PC) film is used as a transparent substrate, and the first high refractive index layer (TiO 2 ) / first antisulfuration layer (Ge) / transparent metal layer is formed on the PC film according to the following method.
  • the (Ag) / second high refractive index layer (ZnS—SiO 2 ) was successively laminated in this order by a roll-to-roll method using a vacuum deposition method. Subsequently, the laminated body was patterned by the same patterning method as that used for the transparent conductor 1 to produce a transparent conductor 15 having wiring.
  • the thickness of each layer is J. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
  • the first high refractive index layer (TiO 2 ) is formed in Step 1
  • the first antisulfurization layer (Ge) is formed in Step 2
  • the transparent metal layer (Ag) is formed.
  • the formation was performed in Step 3, and the formation of the second high refractive index layer (ZnS—SiO 2 ) was performed using Step 5.
  • the first high-refractive-index layer was formed by a vapor deposition method while continuously conveying the PC film as the transparent substrate (2) to the vacuum vapor deposition chamber (11) in Step 1 shown in FIG.
  • the first resistance heating boat (T1a) made of molybdenum in the vacuum deposition chamber (11) is charged with TiO 2 and the pressure P 1 in the vacuum deposition chamber is reduced to 1 ⁇ 10 ⁇ 4 Pa, and then the first resistance heating boat (T1a) is energized and heated, and vapor-deposited on a PC film under conditions of a formation speed of 4.6 nm / second and a formation time of 10 seconds to form a first high refractive index layer composed of TiO 2 having a layer thickness of 46 nm. did.
  • Step 2 the PC film on which the first high refractive index layer is formed in Step 1 is transported, and in the vacuum deposition chamber (11), the molybdenum simple heating boat (T2) is loaded with Ge alone, and the pressure in the vacuum deposition chamber is increased. P 2 was depressurized to 5 ⁇ 10 ⁇ 4 Pa.
  • the resistance heating boat (T2) was heated by energization, and was vacuum-deposited on the first high refractive index layer of the PC film under the conditions that the formation speed was 0.01 nm / second and the formation time was 10 seconds. A 1 nm first antisulfurization layer was formed.
  • Step 3 the PC film on which the first sulfidation-preventing layer is formed in Step 2 is conveyed, Ag is loaded into the molybdenum resistance heating boat (T3) in the vacuum deposition chamber (11), and the pressure P 3 in the vacuum deposition chamber is set. The pressure was reduced to 1 ⁇ 10 ⁇ 3 Pa.
  • the resistance heating boat (T3) was heated by energization, and was vacuum-deposited on the first antisulfurization layer of the PC film under the conditions of a formation rate of 1.6 nm / second and a formation time of 3.56 seconds. A 5.7 nm transparent metal layer was formed.
  • Vacuum deposition chamber a first ZnS to molybdenum resistance heating boat (T5a) of (11), the SiO 2 was loaded into a second resistive heating molybdenum boat (T5b), the pressure P 5 in the vacuum deposition chamber 1 ⁇ After depressurizing to 10 ⁇ 4 Pa, the first resistance heating boat (T5a) and the second resistance heating boat (T5b) are energized and heated, and the energization heating conditions of both resistance heating boats are adjusted as appropriate, so that ZnS and SiO
  • the second high refractive index layer having a layer thickness of 45 nm is formed by co-evaporation on a thin glass under the conditions that the volume ratio of 2 is 80:20 and the formation speed is 4.5 nm / second and the formation time is 10 seconds. did.
  • the production of the transparent conductor 17 is carried out by using two roll-to-roll type transparent conductor manufacturing apparatuses equipped with five vacuum deposition chambers of Step 1 to Step 5 shown in FIG.
  • the vapor deposition chambers (vacuum vapor deposition chambers 1A and 1B, vacuum vapor deposition chambers 5A and 5B) are configured, and the formation of the first high refractive index layer (ZnS—TiO 2 ) having two regions is performed in the vacuum vapor deposition chamber 1A and the vacuum vapor deposition chamber 1B.
  • the transparent metal layer (Ag) is formed in Step 3
  • the second antisulfurization layer (ZnO) is formed in Step 4
  • the second high refractive index layer (ZnS—TiO 2 ) having two regions is formed.
  • first high refractive index layer (ZnS—TiO 2 )) 3 is divided into a process 1A (vacuum deposition chamber 1A) and a process 1B (vacuum deposition chamber 1B), and a polyethylene terephthalate (substantially equipped: PET) film as a transparent substrate (2) is continuously conveyed.
  • the first high refractive index layer having two regions having different composition ratios was formed by a co-evaporation method.
  • the first molybdenum resistance heating boat (T1Aa) in the vacuum deposition chamber 1A is charged with ZnS
  • the second molybdenum resistance heating boat (T1Ab) is charged with TiO 2
  • the pressure P 1 in the vacuum deposition chamber is set to 1 ⁇ 10 ⁇ . The pressure was reduced to 4 Pa.
  • step 1B vacuum deposition chamber 1B
  • TiO 2 is loaded into the second molybdenum resistance heating boat (T1Bb)
  • the pressure P in the vacuum deposition chamber is increased. 1 was depressurized to 1 ⁇ 10 ⁇ 4 Pa.
  • the region 1 of the first high refractive index layer was formed by co-evaporation while continuously transporting the PET film as the transparent substrate (2) to the process 1A (vacuum deposition chamber 1A).
  • the first resistance heating boat (T1Aa) and the second resistance heating boat (T1Ab) are energized and heated, and the energization heating conditions of both resistance heating boats are adjusted as appropriate, and the volume ratio of ZnS and TiO 2 is adjusted.
  • the region 1 was formed under the condition that the layer thickness was 32 nm.
  • the PET film which is the transparent substrate (2) in which the region 1 is formed is transported to the process 1B (vacuum deposition chamber 1B), and the first resistance heating boat (T1Ba) and the second resistance heating are performed.
  • the boat (T1Bb) is energized and heated, and the energization and heating conditions of both resistance heating boats are adjusted as appropriate to form region 2 under the condition that the volume ratio of ZnS and TiO 2 is 80:20 and the layer thickness is 10 nm.
  • a first high refractive index layer having a layer thickness of 42 nm was formed.
  • the region 1 formed in the step 1A is a region constituting the transparent substrate side of the first high refractive index layer, and the details are shown in the upper part of the “first high refractive index layer” column in Table 2. Described.
  • the region 2 formed in the step 1B is a region constituting the transparent metal layer side, and details are described in the lower part of the “first high refractive index layer” column in Table 2.
  • the volume ratio of ZnS and TiO 2 in each layer in the first high refractive index layer was confirmed to be the above-described ratio using X-ray photoelectron spectroscopy (XPS).
  • the PET film on which the first high refractive index layer is formed in step 1 is conveyed to step 3, and Ag is loaded into the molybdenum resistance heating boat (T3) in the vacuum deposition chamber (11), and the pressure P 3 in the vacuum deposition chamber is set. The pressure was reduced to 1 ⁇ 10 ⁇ 3 Pa.
  • the resistance heating boat (T3) was heated by energization, and was vacuum-deposited on the first high refractive index layer of the PET film under the conditions that the formation speed was 0.7 nm / second and the formation time was 10.6 seconds, and the layer thickness was Formed a transparent metal layer of 7.4 nm.
  • Step 4 the PET film on which the transparent metal layer is formed in Step 3 is transported, and in the vacuum vapor deposition chamber (11), ZnO is loaded into the molybdenum resistance heating boat (T4), and the pressure P 4 in the vacuum vapor deposition chamber is 5 The pressure was reduced to 10-4 Pa.
  • the resistance heating boat (T4) was heated by energization, and was vacuum-deposited on the transparent metal layer of the PET film under the conditions of a formation rate of 1.0 nm / second and a formation time of 1 second. A disulfide prevention layer was formed.
  • Step 5 shown in FIG. 3 is divided into step 5A (vacuum deposition chamber 5A) and step 5B (vacuum deposition chamber 5B), and the first high refractive index layer, the transparent electrode layer, and the second sulfurization prevention by the above method.
  • step 5A vacuum deposition chamber 5A
  • step 5B vacuum deposition chamber 5B
  • the first high refractive index layer, the transparent electrode layer, and the second sulfurization prevention by the above method While continuously transporting the transparent substrate (2) (PET film) on which the layer was formed, a second high refractive index layer having regions having two different composition ratios was formed by a co-evaporation method.
  • ZnS was charged in the first molybdenum resistance heating boat (T5Aa) in the vacuum evaporation chamber 5A, TiO 2 was charged in the second molybdenum resistance heating boat (T5Ab), and the pressure P 1 in the vacuum evaporation chamber was set to 1 ⁇ 10 ⁇ . The pressure was reduced to 4 Pa.
  • step 5B vacuum deposition chamber 5B
  • TiO 2 is loaded into the second molybdenum resistance heating boat (T5Bb)
  • the pressure P in the vacuum deposition chamber is increased. 1 was depressurized to 1 ⁇ 10 ⁇ 4 Pa.
  • the region 1 of the second high-refractive-index layer is formed by co-evaporation while continuously transporting the PET film having the second anti-sulfurization layer (ZnO) formed in the process 5A (vacuum deposition chamber 5A). Formed. Specifically, the first resistance heating boat (T5Aa) and the second resistance heating boat (T5Ab) are energized and heated, and the energization heating conditions of both resistance heating boats are adjusted as appropriate, and the volume ratio of ZnS and TiO 2 is adjusted. Was 80:20, and the region 1 was formed under the condition that the layer thickness was 10 nm.
  • the PET film in which the region 1 is formed is transported to the process 5B (vacuum deposition chamber 5B), and the first resistance heating boat (T5Ba) and the second resistance heating boat (T5Bb) are energized and heated.
  • a second high refraction with a total layer thickness of 44 nm is formed by appropriately adjusting the current heating conditions of both resistance heating boats, forming region 2 under the condition that the volume ratio of ZnS and TiO 2 is 50:50, and the layer thickness is 34 nm. A rate layer was formed.
  • Region 1 formed in step 5A is a region constituting the transparent metal layer side of the second high refractive index layer, and the details are shown in the upper part of the “second high refractive index layer” column in Table 2.
  • the region 2 formed in the step 5B is a region constituting the surface side of the second high refractive index layer, and the details are shown in the lower part of the “second high refractive index layer” column in Table 2.
  • volume ratio of ZnS and TiO 2 in each layer in the second high refractive index layer was confirmed to be the above-described ratio using X-ray photoelectron spectroscopy (XPS).
  • the following high-refractive index layer (ZnS) / transparent metal layer (Ag) / second high-refractive index layer (ZnS) are sequentially deposited on the quartz by the following method. Laminated by the method. Next, the laminate was patterned by the following method, and the transparent conductor 30 having the wiring shown in FIG. 6 was produced by a batch method. The thickness of each layer is J. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
  • the first high refractive index layer and the second high refractive index layer are each made of ZnS alone.
  • first high refractive index layer (ZnS)
  • a vacuum deposition device a BMC-800T deposition device manufactured by SYNCHRON Co., Ltd. was used, ZnS was loaded into a resistance heating boat made of molybdenum, the vacuum chamber was depressurized to 1 ⁇ 10 ⁇ 4 Pa, and then the resistance heating boat was energized and heated.
  • a first high refractive index layer having a layer thickness of 40 nm was formed.
  • a PET film is used as a transparent substrate, and a first high refractive index layer (Nb 2 O 5 ) / transparent metal layer (Ag) / second high refractive index layer (IZO) are sequentially formed on the PET film by the following sputtering method.
  • the transparent conductor 31 was prepared by laminating by the sputtering method.
  • Nb 2 O 5 (Formation of the first high refractive index layer (Nb 2 O 5 )) Using a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target side power 150 W, formation rate 0.3. Nb 2 O 5 was RF sputtered at nm / second. A target-substrate distance was 90 mm, and a first high refractive index layer having a layer thickness of 28 nm was formed.
  • Formation of transparent metal layer (Ag) Using an opposing sputtering machine manufactured by FTS Corporation, facing sputtering with Ar 20 sccm, sputtering pressure 0.5 Pa, room temperature, target side power 150 W, formation rate 1.4 nm / s, and Ag layer thickness of 7.3 nm did.
  • the target-substrate distance was 90 mm.
  • a transparent substrate (TAC) / first high refractive index layer (ICO: 27 nm, Cr: 0.8 nm) is formed by sputtering using a TAC film as the transparent substrate and according to the method described in Examples of Japanese Patent Application Laid-Open No. 2006-184849.
  • Transparent metal layer (Ag / Au: 9 nm) / Second anti-sulfurization layer (Cr: 0.8 nm) / Second high refractive index layer (ICO: 20 nm, SiO2: 40 nm, KP801M: 8 nm) are laminated in this order
  • a transparent conductor 32 was produced.
  • KP501M is a fluorine-based silane compound (fluoroalkylsilazane, manufactured by Shin-Etsu Chemical Co., Ltd.).
  • a PET film is used as a transparent substrate, and according to the method described in Examples of Japanese Patent Application Laid-Open No. 2002-15623, a transparent substrate (TAC) / first high refractive index layer (ITO: 40 nm) / transparent metal layer (APC) is formed by sputtering. : 9 nm) / second high refractive index layer (ITO: 40 nm) was laminated in this order to produce a transparent conductor 33.
  • TAC transparent substrate
  • ITO first high refractive index layer
  • APC transparent metal layer
  • the alloy which consists of Ag (40 atomic%) * Pd (40 atomic%) * Cu (20 atomic%) was used.
  • a transparent substrate (glass substrate) / first high-refractive index layer (a-GIO: 50 nm) / transparent metal layer is formed by sputtering according to the method described in the examples of JP-A-2008-226581 (Ag: 10 nm) / second high refractive index layer (a-GIO: 50 nm) were laminated in this order to produce a transparent conductor 34.
  • a-GIO is an amorphous oxide film made of gallium, indium and oxygen.
  • Glass is used as the transparent substrate, and the transparent substrate (glass substrate) / first high refractive index layer (ZnO.SiO 2 : 45 nm) / transparent is formed by sputtering according to the method described in the example of CN1026777012A, which is a Chinese patent.
  • a metal layer (Ag: 11 nm) / second high refractive index layer (ZnO.SiO 2 : 45 nm) was laminated in this order to produce a transparent conductor 35.
  • Tables 1 and 2 show the structures of the transparent conductors 1 to 35 produced as described above.
  • COP cycloolefin polymer
  • TAC triacetyl cellulose
  • PET polyethylene terephthalate
  • Corrosion is not observed over the entire area (corrosion number: 0)
  • The number of corrosion occurrences is 1 or more and less than 50 in the entire area range
  • The number of corrosion occurrences is 50 or more in the entire area range [Average transmittance, average reflectance and average absorption rate Measurement) (Measurement of transparent conductor with wiring)
  • the average transmittance, average reflectance, and average absorptance were measured according to the following method.
  • EAGLE XG thinness 7 mm ⁇ length 30 mm ⁇ width 30 mm
  • Measurement light (for example, light having a wavelength of 450 nm to 800 nm) was made incident on the conduction region from the measured angle, and light transmittance and reflectance were measured with a spectrophotometer U4100 manufactured by Hitachi, Ltd.
  • the average absorptance was calculated from a calculation formula of 100 ⁇ (transmittance + reflectance).
  • the value obtained by subtracting the reflection at the interface between the alkali-free glass substrate and the atmosphere (4%) and the reflection at the interface between the transparent substrate and the atmosphere (4%) from the measured average reflectance. was defined as the average reflectance of the transparent conductor. Also, regarding the average transmittance, the reflection at the interface between the non-alkali glass substrate and the atmosphere and the reflection at the interface between the transparent substrate and the atmosphere of the transparent conductor are taken into account by 8%. The obtained value was defined as each average transmittance of the transparent conductor.
  • the transparent conductors 26 to 35 having no wiring are used in contact with air, and the measurement light (for example, wavelength) is applied to the conduction region without bonding an alkali-free glass substrate on the transparent conductor.
  • the measurement light for example, wavelength
  • Hitachi Co., Ltd .: spectrophotometer U4100, transparent conductor average transmittance (%) in the wavelength range of 450 to 800 nm, average transmittance in the wavelength range of 400 to 1000 nm (%) And average reflectance were measured.
  • the average absorptance was calculated from a calculation formula of 100 ⁇ (average transmittance + average reflectance).
  • the measurement light was incident from the second high refractive index layer side.
  • a value obtained by subtracting the reflection (4%) at the interface between the transparent substrate and the atmosphere of the transparent conductor from the measured value of the average reflectance was defined as the average reflectance of the transparent conductor.
  • the reflection of the transparent conductor at the interface between the transparent substrate and the atmosphere is taken into consideration, and the value obtained by adding 4% to the measured value of the average transmittance is defined as the transmittance of the transparent conductor.
  • A: b * value is in a range of ⁇ 1.0 or more and less than +1.0 ⁇ : b * value is ⁇ 2.0 or more and less than ⁇ 1.0 X: b * value is less than ⁇ 2.0 or more than +2.0 [Measurement of sheet resistance value] Measure the sheet resistance value ( ⁇ / ⁇ ) of the conductive region (a) by bringing a resistivity meter “Loresta EP MCP-T360” made by Mitsubishi Chemical Analytech into contact with the conductive region (a) of each transparent conductor. did.
  • the first high refractive index layer has the first high refractive index layer, the transparent metal layer, and the second high refractive index layer on the transparent substrate defined in the present invention.
  • at least one layer of the second high refractive index layer was produced by forming a mixed film of zinc sulfide and at least one metal compound selected from metal oxide, metal fluoride and metal nitride by a co-evaporation method.
  • the transparent conductor of this invention is excellent in corrosion resistance and flexibility with respect to a comparative example, is excellent in the average transmittance
  • the low sheet resistance value as a transparent conductor was able to be obtained.
  • the metal oxide constituting the first high-refractive index layer or the second high-refractive index layer is silicon dioxide
  • the transparent metal layer is mainly composed of silver
  • the formation rate is 0.8.
  • the production rate (m / min) represented by the production amount (m) per unit time (min) is 3 m / min or more, and the sputtering is performed.
  • the production rate is less than 3 m / min, the production rate is extremely low, and the transparent conductor production method (evaporation method) of the present invention is a comparative example (sputtering method).
  • the transparent conductor production method (evaporation method) of the present invention is a comparative example (sputtering method).
  • the production efficiency is extremely superior.
  • the transparent conductor produced by the method for producing a transparent conductor of the present invention has flexibility, excellent transparency and resistance to coloring, and has low resistance characteristics, such as a liquid crystal method, a plasma method, an organic electroluminescence method, a field emission. It can be suitably used for various optoelectronic device substrates such as various types of displays, touch panels, mobile phones, electronic paper, various solar cells, various electroluminescence light control elements, and the like.

Abstract

 The present invention addresses the problem of providing a method for manufacturing a transparent conductor that is highly productive, exhibits excellent flexibility, transparency, and coloring resistance, and exhibits low resistance characteristics, and a transparent conductor obtained using the method for manufacturing a transparent conductor. This method for manufacturing a transparent conductor is characterized in laminating, in the stated order, at least a first high refractive index layer, a transparent metal layer, and a second high refractive index layer on a transparent substrate, the first high refractive index layer and/or the second high refractive index layer being formed by co-deposition of a mixed film of zinc sulfide and at least one metal compound selected from metal oxides, metal fluorides, and metal nitrides.

Description

透明導電体の製造方法及び透明導電体Method for producing transparent conductor and transparent conductor
 本発明は、透明金属層を有する透明導電体の製造方法及び透明導電体に関し、更に詳しくは、生産性、フレキシブル性、透明性、着色耐性に優れ、低い抵抗特性を備えた透明導電体の製造方法と、それにより得られる透明導電体に関する。 The present invention relates to a method for producing a transparent conductor having a transparent metal layer and a transparent conductor, and more specifically, production of a transparent conductor having excellent productivity, flexibility, transparency, coloration resistance and low resistance characteristics. The present invention relates to a method and a transparent conductor obtained thereby.
 近年、タッチパネル材料、液晶ディスプレイやプラズマディスプレイ、無機及び有機EL(エレクトロルミネッセンス)ディスプレイ等の表示装置、太陽電池等の各種装置においては、低い抵抗特性を備えた透明導電膜が求められている。 Recently, display devices such as touch panel materials, liquid crystal displays and plasma displays, inorganic and organic EL (electroluminescence) displays, and various devices such as solar cells have demanded transparent conductive films having low resistance characteristics.
 このような低抵抗な透明導電膜を構成する材料として、Au、Ag、Pt、Cu、Rh、Pd、Al、Cr等の金属やIn、CdO、CdIn、CdSnO、TiO、SnO、ZnO、ITO(インジウムスズ酸化物)等の金属酸化物半導体が知られている。 As a material constituting such a low-resistance transparent conductive film, metals such as Au, Ag, Pt, Cu, Rh, Pd, Al, and Cr, In 2 O 3 , CdO, CdIn 2 O 4 , and Cd 2 SnO 4 are used. , TiO 2 , SnO 2 , ZnO, ITO (indium tin oxide), and other metal oxide semiconductors are known.
 ここで、タッチパネル型の表示装置等では、表示装置の画像表示面上に、透明導電膜等により構成される配線が配置される。したがって、透明導電膜には、光の透過性が高いことが求められる。上記要求に対し、各種表示装置には、光透過性の高いITOからなる透明導電膜が多用されている。 Here, in a touch panel type display device or the like, a wiring composed of a transparent conductive film or the like is disposed on the image display surface of the display device. Therefore, the transparent conductive film is required to have high light transmittance. In response to the above requirements, a transparent conductive film made of ITO having a high light transmittance is frequently used in various display devices.
 近年、静電容量方式のタッチパネル表示装置が開発され、透明導電膜の表面電気抵抗をさらに低く設定する、具体的には、50Ω/□以下の抵抗値とすることが強く求められている。しかし、上述のような、現在広く用いられているITO膜では、抵抗値としては150Ω/□程度にとどまっており、上記の要望に対しては不十分な特性であった。 In recent years, a capacitive touch panel display device has been developed, and there is a strong demand for setting the surface electrical resistance of the transparent conductive film to be lower, specifically, a resistance value of 50Ω / □ or less. However, the ITO film currently widely used as described above has a resistance value of only about 150Ω / □, which is insufficient for the above-mentioned demand.
 このような背景から、近年、ITOに代わる次世代の透明導電膜の開発が盛んになされてきた。 Against this background, the development of next-generation transparent conductive films to replace ITO has been actively carried out in recent years.
 上記課題に対し、例えば、特開2011-138628号公報、特開2011-171292号公報等には、銀メッシュを適用する導電性要素の製造方法が開示されている。しかしながら、これら銀メッシュを用いた方法では、メッシュの径が20μm程度であるため、人間の目で視認できてしまうため、光透過性が要求されるタッチパネル表示装置等への適用は難しいのが現状である。また、一部メーカーより市販されている銀ナノワイヤーでは、肉眼で視認されない程度の微小サイズを有し、膜内での導電性を発現するものの、面抵抗値としては、60Ω/□程度に留まっており、現在のタッチパネル表示装置等で要求されている品質に対しては不十分であった。 In response to the above problems, for example, Japanese Patent Application Laid-Open Nos. 2011-138628 and 2011-171292 disclose a method for manufacturing a conductive element to which a silver mesh is applied. However, these methods using silver mesh have a mesh diameter of about 20 μm and can be visually recognized by human eyes, so that it is difficult to apply to touch panel display devices that require light transmission. It is. In addition, silver nanowires that are commercially available from some manufacturers have a microscopic size that is not visible to the naked eye and expresses electrical conductivity in the film, but the surface resistance value is only about 60Ω / □. Therefore, the quality required for the current touch panel display device is insufficient.
 そのほかにも、酸化亜鉛等を用いることにより低抵抗化する試みがなされているが、このような方法では、導電膜の膜厚としては、200nm程度まで積層する必要があり、製造過程で形成した導電膜に応力が掛かった際、膜内にクラック等が発生しやすくなるため歩留まりが低下し、また、生産効率の点で課題を有している。またこのような特性を抱えた導電膜は、近い将来に実用化が予測されているフレキシブルタッチパネルや曲面部材への適用が難しい。 In addition, attempts have been made to reduce the resistance by using zinc oxide or the like, but in such a method, the film thickness of the conductive film needs to be laminated to about 200 nm, and it was formed in the manufacturing process. When stress is applied to the conductive film, cracks and the like are likely to occur in the film, resulting in a decrease in yield and a problem in terms of production efficiency. In addition, the conductive film having such characteristics is difficult to apply to flexible touch panels and curved members that are expected to be put to practical use in the near future.
 上記問題を踏まえ、近年、銀の蒸着膜を透明導電膜として適用する方法が、盛んに検討されている(例えば、特許文献1参照。)。また、透明導電体の光透過性を高めるため、高い導電性を備えた銀薄膜を、スパッタ法により形成した屈折率の高い金属膜(例えば、酸化ニオブ(Nb)、IZO(酸化インジウム・酸化亜鉛)、ICO(インジウム・セリウム酸化物)、a-GIO(ガリウム、インジウム、及び酸素からなる非晶質酸化物等の膜)で挟持する構成の透明導電膜も提案されている(例えば、特許文献2~4、非特許文献3参照。)。さらに、銀薄膜を硫化亜鉛膜で挟み込む方法も提案されている(例えば、非特許文献1及び2参照)。 In view of the above problems, a method of applying a silver vapor-deposited film as a transparent conductive film has been actively studied in recent years (see, for example, Patent Document 1). Further, in order to increase the light transmittance of the transparent conductor, a silver film having high conductivity is formed from a metal film having a high refractive index formed by sputtering (for example, niobium oxide (Nb 2 O 5 ), IZO (indium oxide). A transparent conductive film having a structure sandwiched between zinc oxide), ICO (indium cerium oxide), a-GIO (a film of amorphous oxide made of gallium, indium, and oxygen) has also been proposed (for example, (See Patent Documents 2 to 4 and Non-Patent Document 3.) Furthermore, a method of sandwiching a silver thin film with a zinc sulfide film has also been proposed (see, for example, Non-Patent Documents 1 and 2).
 しかしながら、特許文献2~4や非特許文献1~3で開示されているような、例えば、ITO/銀薄膜/ITO、Nb/銀薄膜/IZO、硫化亜鉛/銀薄膜/硫化亜鉛というような構成を、スパッタ法により作製した透明導電体では、下記のような問題を抱えていた。 However, as disclosed in Patent Documents 2 to 4 and Non-Patent Documents 1 to 3, for example, ITO / silver thin film / ITO, Nb 2 O 5 / silver thin film / IZO, and zinc sulfide / silver thin film / zinc sulfide. The transparent conductor manufactured by the sputtering method having such a configuration has the following problems.
 すなわち、
 1)酸化ニオブやIZO等の金属酸化物層で銀薄膜層を挟み込んだ構成の透明導電体では、耐湿性が十分でなかった。その結果、湿度環境下で透明導電体を使用すると、形成した銀薄膜が腐食しやすい、
 2)銀薄膜が硫化亜鉛層に挟持された構成の透明導電体では、透明導電体の耐湿性は十分高いものの、銀薄膜層の形成時、もしくは硫化亜鉛層の形成時に、隣接層から移動する硫黄成分により銀が硫化されて硫化銀が生じやすい。その結果、透明導電体が変色し、光透過性が低くなる、
 3)形成時に酸素導入が必要となり、形成した銀薄膜層の平面性が低下し、不要な吸収が増加する、
 4)形成した透明導電体にフレキシブル性がなく、折り曲げ応力等を受けた際にクラック等が発生しやすい、
 5)金属酸化物層の形成速度が低く、製造コストが高い(生産効率が低い)、
 6)透明導電体製造時に高温になりやすく、銀薄膜層や、透明基板としてプラスチック基材を適用した際に、熱によるダメージを受けやすく、不要な吸収が増加しやすくなる、
 7)タッチパネル等で必要となる配線を形成することができない、
 8)硫化により、不要な吸収が増加する、
 9)挟持する構成要素と、銀との相性が悪く、銀膜を薄膜化すると、プラズモン吸収が増加する、
 10)銀薄膜層の隣接層の形成速度を上げることができないため、銀薄膜の膜質が劣化し、不正な吸収が増加する、
 等の様々な問題を抱えていた。
That is,
1) A transparent conductor having a structure in which a silver thin film layer is sandwiched between metal oxide layers such as niobium oxide and IZO has insufficient moisture resistance. As a result, when using a transparent conductor in a humidity environment, the formed silver thin film tends to corrode.
2) In a transparent conductor having a silver thin film sandwiched between zinc sulfide layers, the moisture resistance of the transparent conductor is sufficiently high, but it moves from the adjacent layer when the silver thin film layer is formed or when the zinc sulfide layer is formed. Silver is sulfided easily by the sulfur component, and silver sulfide is easily generated. As a result, the transparent conductor is discolored and the light transmittance is lowered.
3) It is necessary to introduce oxygen at the time of formation, the planarity of the formed silver thin film layer is lowered, and unnecessary absorption is increased.
4) The formed transparent conductor is not flexible and is likely to crack when subjected to bending stress, etc.
5) The formation rate of the metal oxide layer is low, and the manufacturing cost is high (production efficiency is low).
6) It is likely to become high temperature during the production of the transparent conductor, and when applying a plastic base material as a silver thin film layer or a transparent substrate, it is easily damaged by heat, and unnecessary absorption tends to increase
7) The wiring required for the touch panel etc. cannot be formed.
8) Sulfurization increases unnecessary absorption.
9) The compatibility between the component to be sandwiched and silver is poor, and plasmon absorption increases when the silver film is thinned.
10) Since the formation speed of the adjacent layer of the silver thin film layer cannot be increased, the film quality of the silver thin film is deteriorated and illegal absorption increases.
We had various problems such as.
 従って、上記のような問題を克服し、耐久性、生産性、品質安定性(膜品質、吸収安定性等)に優れた透明導電体の製造方法の開発が、要望されている。 Therefore, there is a demand for the development of a transparent conductor manufacturing method that overcomes the above problems and is excellent in durability, productivity, and quality stability (film quality, absorption stability, etc.).
特表2011-508400号公報Special table 2011-508400 gazette 特開2006-184849号公報JP 2006-184849 A 特開2002-015623号公報JP 2002-015623 A 特開2008-226581号公報JP 2008-226581 A
 本発明は、上記問題に鑑みてなされたものであり、その解決課題は、高い生産性を有し、フレキシブル性を有し、透明性、着色耐性に優れ、低い抵抗特性を備えた透明導電体の製造方法と、それにより得られる透明導電体を提供することである。 The present invention has been made in view of the above problems, and its solution is a transparent conductor having high productivity, flexibility, excellent transparency and coloring resistance, and low resistance characteristics. And a transparent conductor obtained thereby.
 本発明者は、上記課題に鑑み鋭意検討を進めた結果、透明基板上に、少なくとも、第1高屈折率層と、透明金属層と、第2高屈折率層とをこの順で積層して製造する透明導電体の製造方法であって、前記第1高屈折率層及び第2高屈折率層の少なくとも一層は、硫化亜鉛と、金属酸化物、金属フッ化物及び金属窒化物から選ばれる少なくとも一種の金属化合物との混合膜を、共蒸着法により形成することを特徴とする透明導電体の製造方法により、高い生産性を有し、フレキシブル性を有し、透明性、着色耐性に優れ、低い抵抗特性を備えた透明導電体の製造方法を提供することができることを見出し、本発明に至った。 As a result of intensive studies in view of the above problems, the present inventors have laminated at least a first high refractive index layer, a transparent metal layer, and a second high refractive index layer in this order on a transparent substrate. A method for producing a transparent conductor to be produced, wherein at least one of the first high refractive index layer and the second high refractive index layer is at least selected from zinc sulfide, metal oxide, metal fluoride, and metal nitride. A production method of a transparent conductor characterized by forming a mixed film with a kind of metal compound by a co-evaporation method, has high productivity, has flexibility, excellent transparency and coloring resistance, The inventors have found that a method for producing a transparent conductor having low resistance characteristics can be provided, and have reached the present invention.
 すなわち、本発明の上記課題は、下記の手段により解決される。 That is, the above-mentioned problem of the present invention is solved by the following means.
 1.透明基板上に、少なくとも、第1高屈折率層と、透明金属層と、第2高屈折率層とをこの順で積層して製造する透明導電体の製造方法であって、
 前記第1高屈折率層及び第2高屈折率層の少なくとも一層は、硫化亜鉛と、金属酸化物、金属フッ化物及び金属窒化物から選ばれる少なくとも一種の金属化合物との混合膜を、共蒸着法により形成することを特徴とする透明導電体の製造方法。
1. On the transparent substrate, at least a first high refractive index layer, a transparent metal layer, and a second high refractive index layer are laminated in this order to produce a transparent conductor,
At least one layer of the first high-refractive index layer and the second high-refractive index layer is a co-evaporation of a mixed film of zinc sulfide and at least one metal compound selected from metal oxide, metal fluoride, and metal nitride. A method for producing a transparent conductor, characterized by being formed by a method.
 2.前記金属酸化物が、二酸化ケイ素であることを特徴とする第1項に記載の透明導電体の製造方法。 2. 2. The method for producing a transparent conductor according to item 1, wherein the metal oxide is silicon dioxide.
 3.前記透明金属層を、銀を主成分として構成し、形成速度0.3nm/秒以上の条件で形成することを特徴とする第1項又は第2項に記載の透明導電体の製造方法。 3. 3. The method for producing a transparent conductor according to item 1 or 2, wherein the transparent metal layer is composed of silver as a main component and is formed under conditions of a formation rate of 0.3 nm / second or more.
 4.前記第1高屈折率層又は第2高屈折率層を、前記透明金属層と隣接する界面領域(隣接する界面から厚さ方向で、全層厚の10%の領域)における平均硫化亜鉛濃度が50体積%以上となる条件で形成することを特徴とする第1項から第3項までのいずれか一項に記載の透明導電体の製造方法。 4. The first high refractive index layer or the second high refractive index layer has an average zinc sulfide concentration in an interface region adjacent to the transparent metal layer (10% of the total thickness in the thickness direction from the adjacent interface). It forms on the conditions used as 50 volume% or more, The manufacturing method of the transparent conductor as described in any one of 1st term | claim to 3rd term | claim characterized by the above-mentioned.
 5.前記第1高屈折率層及び第2高屈折率層を、それぞれ前記透明金属層と隣接する界面領域(全層厚の表面から厚さ方向で10%の領域)における平均硫化亜鉛濃度が70体積%以上となる条件で形成することを特徴とする第1項から第3項までのいずれか一項に記載の透明導電体の製造方法。 5. Each of the first high refractive index layer and the second high refractive index layer has an average zinc sulfide concentration of 70 volumes in an interface region adjacent to the transparent metal layer (10% region in the thickness direction from the surface of the total thickness). It forms on the conditions used as% or more, The manufacturing method of the transparent conductor as described in any one of Claim 1 to 3 characterized by the above-mentioned.
 6.前記第1高屈折率層と透明金属層との間、又は前記第2高屈折率層と透明金属層との間に、硫化防止層を形成することを特徴とする第1項から第5項までのいずれか一項に記載の透明導電体の製造方法。 6. Items 1 to 5, wherein an antisulfurization layer is formed between the first high refractive index layer and the transparent metal layer, or between the second high refractive index layer and the transparent metal layer. The manufacturing method of the transparent conductor as described in any one of the above.
 7・前記硫化防止層を、亜鉛金属元素を含む材料で形成することを特徴とする第6項に記載の透明導電体の製造方法。 7. The method for producing a transparent conductor according to item 6, wherein the antisulfurization layer is formed of a material containing a zinc metal element.
 8.前記透明金属層を所定の形状にパターニングして、金属パターン電極を形成することを特徴とする第1項から第7項までのいずれか一項に記載の透明導電体の製造方法。 8. The method for producing a transparent conductor according to any one of claims 1 to 7, wherein the transparent metal layer is patterned into a predetermined shape to form a metal pattern electrode.
 9.第1項から第8項までのいずれか一項に記載の透明導電体の製造方法により製造された透明導電体であって、
 透明基板上に、少なくとも、第1高屈折率層と、透明金属層と、第2高屈折率層とをこの順で有し、前記第1高屈折率層及び第2高屈折率層の少なくとも一層が、硫化亜鉛と、金属酸化物、金属フッ化物及び金属窒化物から選ばれる少なくとも一種の金属化合物との混合膜であることを特徴とする透明導電体。
9. A transparent conductor produced by the method for producing a transparent conductor according to any one of items 1 to 8,
On the transparent substrate, at least a first high refractive index layer, a transparent metal layer, and a second high refractive index layer are provided in this order, and at least of the first high refractive index layer and the second high refractive index layer. One layer is a mixed film of zinc sulfide and at least one metal compound selected from metal oxides, metal fluorides, and metal nitrides.
 10.前記金属酸化物が、二酸化ケイ素であることを特徴とする第9項に記載の透明導電体。 10. The transparent conductor according to item 9, wherein the metal oxide is silicon dioxide.
 11.前記第1高屈折率層又は第2高屈折率層が、前記透明金属層と隣接する界面領域(全層厚の表面から厚さ方向で10%の領域)における平均硫化亜鉛濃度が50体積%以上であることを特徴とする第9項又は第10項に記載の透明導電体。 11. The first high refractive index layer or the second high refractive index layer has an average zinc sulfide concentration of 50% by volume in an interface region adjacent to the transparent metal layer (10% in the thickness direction from the surface of the entire layer thickness). The transparent conductor according to Item 9 or 10, which is as described above.
 12.前記第1高屈折率層及び第2高屈折率層が、それぞれ前記透明金属層と隣接する界面領域(全層厚の表面から厚さ方向で10%の領域)における平均硫化亜鉛濃度が70体積%以上であることを特徴とする第9項又は第10項に記載の透明導電体。 12. Each of the first high refractive index layer and the second high refractive index layer has an average zinc sulfide concentration of 70 volumes in an interface region adjacent to the transparent metal layer (10% in the thickness direction from the surface of the total thickness). % Or more of the transparent conductor according to item 9 or 10.
 13.前記第1高屈折率層と透明金属層との間、又は前記第2高屈折率層と透明金属層との間に、硫化防止層を有することを特徴とする第9項から第12項までのいずれか一項に記載の透明導電体。 13. Item 9 to Item 12 including an antisulfurization layer between the first high refractive index layer and the transparent metal layer, or between the second high refractive index layer and the transparent metal layer. The transparent conductor as described in any one of these.
 14.前記硫化防止層が、亜鉛金属元素を含有することを特徴とする第13項に記載の透明導電体。 14. 14. The transparent conductor according to item 13, wherein the sulfidation preventing layer contains a zinc metal element.
 15.前記透明金属層が、所定の形状にパターニングされている金属パターン電極であることを特徴とする第9項から第14項までのいずれか一項に記載の透明導電体。 15. 15. The transparent conductor according to any one of items 9 to 14, wherein the transparent metal layer is a metal pattern electrode patterned in a predetermined shape.
 本発明の上記手段により、高い生産性を有し、可撓性、透明性、着色耐性に優れ、低い抵抗特性を備えた透明導電体の製造方法と、それにより得られる透明導電体を提供することができる。 By the above means of the present invention, there is provided a method for producing a transparent conductor having high productivity, excellent flexibility, transparency, coloring resistance and low resistance characteristics, and a transparent conductor obtained thereby. be able to.
 本発明の上記目的効果を達成することができた発現機構・作用機構については、明確にはなっていないが、以下のように推察している。 The expression mechanism / action mechanism that has achieved the above-described object effect of the present invention is not clear, but is presumed as follows.
 本発明の透明導電体の製造方法においては、第1高屈折率層及び第2高屈折率層の少なくとも一層を、硫化亜鉛と、金属酸化物、金属フッ化物及び金属窒化物から選ばれる少なくとも一種の金属化合物との混合膜として、共蒸着法により形成することを特徴としている。硫化亜鉛は良好なバリア性を有しており、例えば、Ag等から構成されている透明金属層の耐湿性を向上させることができる。すなわち、硫化亜鉛が透明金属層、例えば、銀薄膜層近傍に豊富に存在することにより銀原子をグリップし、銀原子のマイグレーション(移動)を防止することができる。その結果、10nm以下という極めて薄膜で均一な銀層を形成することができる。これにより、銀のプラズモン吸収を低減することができる。 In the method for producing a transparent conductor of the present invention, at least one of the first high-refractive index layer and the second high-refractive index layer is at least one selected from zinc sulfide, metal oxide, metal fluoride, and metal nitride. It is characterized by being formed by a co-evaporation method as a mixed film with the above metal compound. Zinc sulfide has a good barrier property, and can improve the moisture resistance of a transparent metal layer made of, for example, Ag. That is, since zinc sulfide is abundantly present in the vicinity of a transparent metal layer, for example, a silver thin film layer, silver atoms can be gripped and migration of silver atoms can be prevented. As a result, an extremely thin and uniform silver layer of 10 nm or less can be formed. Thereby, silver plasmon absorption can be reduced.
 また、硫化亜鉛を含有する高屈折率層と、銀等で構成される透明金属層との間に、硫化防止層を層厚として10nm以下で設けることにより、透明金属層の硫化を防止し、吸収の増大を防ぐことができる。 In addition, by providing a sulfide prevention layer with a layer thickness of 10 nm or less between the high refractive index layer containing zinc sulfide and the transparent metal layer composed of silver or the like, the sulfide of the transparent metal layer is prevented, Increase in absorption can be prevented.
 また、本発明においては、透明金属層上に設ける第2高屈折率層の形成に、硫化硫黄を用いることにより、硫化亜鉛は酸素の導入なしで成膜することができるため、酸素による透明金属層へのアタック(酸化)を低減することができる。この結果、透明金属層の耐湿性向上と、構成元素、例えば、銀が荒れることによるプラズモン吸収の発生を抑えることができる。 Further, in the present invention, since the sulfur sulfide is used for forming the second high refractive index layer provided on the transparent metal layer, the zinc sulfide can be formed without introducing oxygen. Attack (oxidation) to the layer can be reduced. As a result, it is possible to improve the moisture resistance of the transparent metal layer and to suppress the occurrence of plasmon absorption due to the roughening of constituent elements such as silver.
 また、硫化亜鉛を含む高屈折率層は、弱酸により容易にエッチングすることが可能であり、それを用いて、任意の配線パターンを形成することができる。さらに、硫化亜鉛に第2の成分を混在させて高屈折率層を形成した場合、硫化亜鉛の結晶性が損なわれる為、エッチングがさらに容易となる。また、硫化亜鉛に第2の成分(例えば、金属酸化物、金属フッ化物、金属窒化物等)を混在させることにより、硫化亜鉛層の結晶成長を妨げることができ、その結果、硫化亜鉛層はアモルファスとなりフレキシブル性が発現することになる。 Further, the high refractive index layer containing zinc sulfide can be easily etched with a weak acid, and an arbitrary wiring pattern can be formed using the high refractive index layer. Further, when the high refractive index layer is formed by mixing the second component with zinc sulfide, the crystallinity of the zinc sulfide is impaired, so that etching becomes easier. In addition, by mixing the second component (for example, metal oxide, metal fluoride, metal nitride, etc.) with zinc sulfide, it is possible to prevent crystal growth of the zinc sulfide layer. Amorphous and flexible.
 一方、スパッタ法による薄膜形成方法では、薄膜の形成源が面であることと、ターゲット表面の原子のみを叩きだすことでは薄膜形成している為、成膜速度が遅いという問題を抱えている。また、スパッタ法においては、薄膜の形成速度を上げる為、出力を上げるとターゲットが割れる、あるいは熱が発生するため、樹脂基材や形成する薄膜金属層を傷めることになる。また、形成スピードは透過率の観点からも重要な役割を果たす。銀の形成スピードが遅いと銀が吸収を持ち透過率が落ちる為、銀の形成スピードは、0.3nm/秒を下回れない。つまり、この条件を守りつつ、ロールtoロールで成膜する場合は、銀以外の膜材料の形成スピードも速くなければならない。銀より膜厚が厚い高屈折率材料は、当然銀以上の形成スピードが要求される。しかしながら、スパッタでは高屈折率材料をそのような速度で成膜することができないという問題を抱えている。 On the other hand, the thin film formation method by the sputtering method has a problem that the film formation speed is slow because the thin film is formed by forming the surface of the thin film and hitting only the atoms on the target surface. Further, in the sputtering method, the target is cracked or heat is generated when the output is increased in order to increase the formation speed of the thin film, so that the resin base material and the thin film metal layer to be formed are damaged. The formation speed also plays an important role from the viewpoint of transmittance. If the silver formation speed is slow, silver absorbs and the transmittance decreases, so the silver formation speed cannot be less than 0.3 nm / second. That is, when film formation is performed roll-to-roll while keeping this condition, the film material formation speed other than silver must be high. Naturally, a high refractive index material having a film thickness larger than that of silver is required to have a formation speed higher than that of silver. However, sputtering has a problem that a high refractive index material cannot be formed at such a speed.
 これに対し、本発明の製造方法において、高屈折率層の形成で用いる蒸着法(例えば、抵抗加熱方式や電子ビーム方式)は、エネルギーを狭い領域に与えることができ、材料全体が蒸発するため、薄膜の形成速度がスパッタ法に比べ、飛躍的に向上する。特に、本発明において、高屈折率層の形成で用いる硫化亜鉛は、昇華性を有し、低エネルギーで熱を発生させることなく蒸着することが可能である。また、硫化亜鉛と第2の成分を別々の加熱源を使って、それぞれに最適なエネルギーを投入することにより、硫化亜鉛と第2の成分の融点が異なる場合でも、それぞれの割合を正確に保ちながら、かつ薄膜の形成スピードを落とすことなく、共蒸着して形成することが可能となる。 On the other hand, in the manufacturing method of the present invention, the vapor deposition method (for example, resistance heating method or electron beam method) used for forming the high refractive index layer can give energy to a narrow region, and the entire material evaporates. The formation speed of the thin film is dramatically improved as compared with the sputtering method. In particular, in the present invention, zinc sulfide used for forming a high refractive index layer has sublimation properties and can be deposited with low energy and without generating heat. Moreover, even if the melting points of zinc sulfide and the second component are different by using different heating sources for the zinc sulfide and the second component, respectively, the respective proportions can be accurately maintained. However, it can be formed by co-evaporation without slowing down the formation speed of the thin film.
 すなわち、本発明で規定する構成とすることにより、硫化亜鉛と、金属酸化物、金属フッ化物及び金属窒化物から選ばれる少なくとも一種の第二の成分と含有する高屈折率層を共蒸着法で形成することにより、形成速度を無制限に速めることができた。 That is, by adopting the configuration defined in the present invention, a high refractive index layer containing zinc sulfide and at least one second component selected from metal oxides, metal fluorides, and metal nitrides is co-evaporated. By forming, the formation speed could be increased without limitation.
 また、共蒸着法を適用することにより、スパッタ法等で問題となる形成時の温度上昇に伴う金属層のダメージや透明基板の変形等のダメージを回避することができ、透明基板の選択の幅が広がるとともに、均質性に優れた高品位の透明金属層を形成することができる。さらに、高屈折率層と透明金属層との間に、硫化防止層を設けることにより、硫化物の透明金属層への悪影響を遮断することで、更に透明度の高い透明導電体を得ることができた。 In addition, by applying the co-evaporation method, it is possible to avoid damage such as damage to the metal layer and deformation of the transparent substrate due to temperature rise during formation, which is a problem with sputtering, etc. As a result, a high-quality transparent metal layer excellent in homogeneity can be formed. Furthermore, by providing an anti-sulfurization layer between the high refractive index layer and the transparent metal layer, it is possible to obtain a transparent conductor with higher transparency by blocking the adverse effects of sulfide on the transparent metal layer. It was.
本発明の透明導電体の構成の一例を示す概略断面図Schematic sectional view showing an example of the configuration of the transparent conductor of the present invention 本発明の透明導電体の構成の他の一例を示す概略断面図Schematic sectional view showing another example of the configuration of the transparent conductor of the present invention 本発明の透明導電体の構成の他の一例を示す概略断面図Schematic sectional view showing another example of the configuration of the transparent conductor of the present invention 本発明の透明導電体の導通領域及び絶縁領域を有するパターンの一例を示す模式図The schematic diagram which shows an example of the pattern which has the conduction | electrical_connection area and insulation area | region of the transparent conductor of this invention オンライン工程で、透明導電体を製造する工程フローの一例を示す模式図Schematic diagram showing an example of a process flow for producing a transparent conductor in an online process 透明導電体の波長570nmにおけるアドミッタンス軌跡の一例を示すグラフThe graph which shows an example of the admittance locus | trajectory in wavelength 570nm of a transparent conductor 本発明の透明導電体に電極パターンをフォトリソグラフィー法で形成する一例を示す工程図Process drawing showing an example of forming an electrode pattern by a photolithography method on the transparent conductor of the present invention 電極パターンを有する本発明の透明導電体を具備したタッチパネルの構成の一例を示す斜視図The perspective view which shows an example of a structure of the touchscreen which comprised the transparent conductor of this invention which has an electrode pattern.
 本発明の透明導電体の製造方法は、透明基板上に、少なくとも、第1高屈折率層と、透明金属層と、第2高屈折率層とをこの順で積層して製造する透明導電体の製造方法であって、前記第1高屈折率層及び第2高屈折率層の少なくとも一層は、硫化亜鉛と、金属酸化物、金属フッ化物及び金属窒化物から選ばれる少なくとも一種の金属化合物との混合膜を、共蒸着法により形成することを特徴とする。この特徴は、請求項1から請求項15に係る発明に共通する技術的特徴である。 The method for producing a transparent conductor according to the present invention includes a transparent conductor produced by laminating at least a first high refractive index layer, a transparent metal layer, and a second high refractive index layer in this order on a transparent substrate. Wherein at least one of the first high-refractive index layer and the second high-refractive index layer includes zinc sulfide and at least one metal compound selected from metal oxide, metal fluoride, and metal nitride. The mixed film is formed by a co-evaporation method. This feature is a technical feature common to the inventions according to claims 1 to 15.
 本発明の実施態様としては、本発明の目的とする効果をより発現できる観点から、第1高屈折率層又は第2高屈折率層が含有する金属酸化物が、二酸化ケイ素であることが、更に高い透明性を有する屈折率層を形成することができる点から好ましい。さらに、形成速度としては、0.5~30nm/秒の範囲内であることがより好ましく、特に好ましくは1.0~15nm/秒の範囲内である。 As an embodiment of the present invention, the metal oxide contained in the first high-refractive index layer or the second high-refractive index layer is silicon dioxide from the viewpoint that the effect of the present invention can be further expressed. Furthermore, it is preferable from the point which can form the refractive index layer which has high transparency. Furthermore, the formation rate is more preferably in the range of 0.5 to 30 nm / second, and particularly preferably in the range of 1.0 to 15 nm / second.
 また、透明金属層を、銀を主成分として構成し、形成速度が0.3nm/秒以上の条件で形成することが、低抵抗性を備え、均一性が高く、不正吸収のない導電性層を安定して形成することができる点で好ましい。 In addition, it is possible to form the transparent metal layer with silver as a main component under the condition that the formation speed is 0.3 nm / second or more. The conductive layer has low resistance, high uniformity, and no improper absorption. Is preferable in that it can be stably formed.
 また、第1高屈折率層又は第2高屈折率層を、透明金属層と隣接する界面領域(全層厚の表面から厚さ方向で10%の領域)における平均硫化亜鉛濃度が50体積%以上となる条件で形成することが、各屈折率層に隣接して形成する透明金属層、特に、銀を主成分とする透明金属層を形成する際、あるいは透明導電体層上に屈折層を形成する際に、構成層塗布液がはじかれて、海縞状の膜面ムラの発生を防止し、均一性の高い塗膜を形成することができる観点から好ましく、更に好ましくは、第1高屈折率層及び第2高屈折率層が、共に透明金属層と隣接する界面領域(全層厚の表面から厚さ方向で10%の領域)における平均硫化亜鉛濃度として、70体積%以上となる条件で形成することが好ましい。 In addition, the average zinc sulfide concentration in the interface region adjacent to the transparent metal layer (10% region in the thickness direction from the surface of the total layer thickness) of the first high refractive index layer or the second high refractive index layer is 50% by volume. Forming under the above conditions is to form a transparent metal layer formed adjacent to each refractive index layer, particularly when forming a transparent metal layer mainly composed of silver, or a refractive layer on the transparent conductor layer. When forming, the constituent layer coating solution is repelled to prevent the occurrence of sea-striped film surface unevenness, and it is preferable from the viewpoint that a highly uniform coating film can be formed. Both the refractive index layer and the second high refractive index layer have an average zinc sulfide concentration of 70% by volume or more in the interface region adjacent to the transparent metal layer (10% in the thickness direction from the surface of the total thickness). It is preferable to form under conditions.
 また、第1高屈折率層と透明金属層との間、あるいは第2高屈折率層と透明金属層との間に、硫化防止層を形成することが、第1高屈折率層あるいは第2高屈折率層の形成に用いた硫化亜鉛のイオウ成分が、透明金属層の構成成分、具体的には銀が硫化し、硫化銀になることによる変色を防止することにより、高い透明性と安定した色調を有する透明金属層を得ることができる観点から好ましく、更には、亜鉛金属元素を含む材料、例えば、酸化亜鉛等を適用することが好ましい態様である。 In addition, an antisulfurization layer may be formed between the first high refractive index layer and the transparent metal layer or between the second high refractive index layer and the transparent metal layer. High transparency and stability by preventing the discoloration caused by the sulfur component of the zinc sulfide used to form the high refractive index layer being a constituent component of the transparent metal layer, specifically, silver is sulfided and becomes silver sulfide. From the viewpoint of obtaining a transparent metal layer having a desired color tone, a material containing a zinc metal element, for example, zinc oxide or the like is preferably applied.
 また、本発明の透明導電体の製造方法として、透明金属層を所定の形状にパターニングして、金属パターン電極を形成することが好ましい。 Also, as a method for producing a transparent conductor of the present invention, it is preferable to form a metal pattern electrode by patterning a transparent metal layer into a predetermined shape.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、以下の説明において示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the following description, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 《透明導電体の基本的な構成》
 図1A~図1Cは、それぞれ本発明の透明導電体の構成の一例を示す概略断面図である。
《Basic structure of transparent conductor》
1A to 1C are schematic cross-sectional views showing examples of the configuration of the transparent conductor of the present invention.
 図1Aに示す構成の本発明の透明導電体1は、透明基板2上に、少なくとも第1高屈折率層3Aと、透明金属層4と、第2高屈折率層3Bをこの順で積層した構成を有している。 In the transparent conductor 1 of the present invention having the configuration shown in FIG. 1A, at least a first high refractive index layer 3A, a transparent metal layer 4, and a second high refractive index layer 3B are laminated in this order on a transparent substrate 2. It has a configuration.
 図1Aに記載の構成の透明導電体1において、第1高屈折率層3A又は第2高屈折率層3Bの少なくとも一方が、硫化亜鉛(以下、ZnSとも記載する。)と共に、金属酸化物、金属フッ化物及び金属窒化物から選ばれる少なくとも一種の金属化合物を含む混合膜を、共蒸着法により形成することを特徴とする。 In the transparent conductor 1 having the configuration shown in FIG. 1A, at least one of the first high-refractive index layer 3A or the second high-refractive index layer 3B is zinc oxide (hereinafter also referred to as ZnS), a metal oxide, A mixed film containing at least one metal compound selected from metal fluorides and metal nitrides is formed by a co-evaporation method.
 本発明の透明導電体においては、図1Aで例示するように、第1高屈折率層3A又は第2高屈折率層3Bは、透明金属層4と隣接する界面領域0.1T又は0.1T(隣接する界面から厚さ方向で、全層厚T又はTの10%の領域)における平均硫化亜鉛濃度が、50体積%以上となる条件で形成することが好ましく、さらに好ましくは、第1高屈折率層3Aの透明金属層4と隣接する界面領域0.1Tにおける平均硫化亜鉛濃度、及び第2高屈折率層3Bの透明金属層4と隣接する界面領域0.1Tにおける平均硫化亜鉛濃度が、いずれも70体積%以上であることが好ましい態様である。さらには、80体積%以上であることが好ましく、特に好ましくは90体積%以上の構成である。 In the transparent conductor of the present invention, as illustrated in FIG. 1A, the first high refractive index layer 3A or the second high refractive index layer 3B is an interface region 0.1 T A adjacent to the transparent metal layer 4 or 0. (in the thickness direction from the adjacent surface, 10 percent of the total layer thickness T a or T B) 1T B average zinc sulfide concentrations in is preferably formed under the condition that a 50% by volume or more, more preferably , the average zinc sulfide concentration in the interface region 0.1 T a which is adjacent to the transparent metal layer 4 of the first high refractive index layer 3A, and the second interface region 0.1 T B which is adjacent to the transparent metal layer 4 of the high refractive index layer 3B It is a preferable aspect that the average zinc sulfide concentration in each is 70% by volume or more. Furthermore, it is preferably 80% by volume or more, particularly preferably 90% by volume or more.
 本発明でいう各高屈折率層の透明金属層4と隣接する界面領域における平均硫化亜鉛濃度とは、図1Aで示すように、高屈折率層3A、3Bの全層厚をそれぞれT、Tとしたとき、各高屈折率層の透明金属層4と隣接する面側から層厚の深さ方向で10%までの領域0.1T、0.1Tにおける硫化亜鉛の平均含有量をいい、各原子数比を、従来公知の方法、例えば、X線光電子分光法(X-ray Photoelectron Spectroscopy:XPS)を用いた分析装置等で、所定の領域範囲0.1T、0.1Tについて50点以上ランダムに測定した後、その平均値を算出することにより求めることができる。 The average zinc sulfide concentration at the interface region adjacent to the transparent metal layer 4 of the high-refractive index layer in the present invention, as shown in FIG. 1A, the high refractive index layer 3A, the total thickness of each T A of 3B, when the T B, the average content of each high refractive index layer transparent metal layer 4 and the region 0.1 T a from the adjacent side up to 10% in the depth direction of the layer thickness, zinc sulfide in 0.1 T B Each atomic ratio is determined by using a conventionally known method, for example, an analyzer using X-ray photoelectron spectroscopy (XPS) or the like in a predetermined region range of 0.1 T A and 0.1 T. After randomly measuring 50 or more points for B , the average value can be calculated.
 また、本発明の透明導電体1においては、少なくとも第1高屈折率層3A又は第2高屈折率層3Bと、透明金属層4の間に、硫化防止層5を有する構成であることが好ましい態様である。 In addition, the transparent conductor 1 of the present invention preferably has a structure having an antisulfurization layer 5 between at least the first high refractive index layer 3A or the second high refractive index layer 3B and the transparent metal layer 4. It is an aspect.
 図1Bに示す透明導電体1では、第1高屈折率層3Aと透明金属層4との間に、第1硫化防止層5Aを形成した構成例を示し、図1Cでは、第1高屈折率層3Aと透明金属層4との間に第1硫化防止層5A、及び第2高屈折率層3Bと透明金属層4との間に第2硫化防止層5Bを形成した構成例を示してある。 The transparent conductor 1 shown in FIG. 1B shows a configuration example in which the first sulfidation preventing layer 5A is formed between the first high refractive index layer 3A and the transparent metal layer 4, and FIG. 1C shows the first high refractive index. A configuration example is shown in which a first sulfidation preventing layer 5A is formed between the layer 3A and the transparent metal layer 4, and a second sulfidation preventing layer 5B is formed between the second high refractive index layer 3B and the transparent metal layer 4. .
 このように、第1高屈折率層3A又は第2高屈折率層3Bと、透明金属層4の間に、硫化防止層5A又は5Bを設けることにより、第1高屈折率層3A又は第2高屈折率層3Bが含有する硫化亜鉛を構成する硫黄原子が、透明金属層4へ移動や混入することを防止することができ、好ましい態様である。 As described above, by providing the antisulfurization layer 5A or 5B between the first high refractive index layer 3A or the second high refractive index layer 3B and the transparent metal layer 4, the first high refractive index layer 3A or the second high refractive index layer 3A or second This is a preferred embodiment because the sulfur atoms constituting the zinc sulfide contained in the high refractive index layer 3B can be prevented from moving or mixing into the transparent metal layer 4.
 すなわち、透明金属層4(例えば、銀層)と、少なくともZnSを含む第1高屈折率層3A又は第2高屈折率層3Bが隣接して形成されると、透明金属層4との界面領域に金属硫化物(例えば、硫化銀)が生成されやすく、透明導電体1の光透過性が低下しやすいという問題があった。 That is, when the transparent metal layer 4 (for example, silver layer) and the first high-refractive index layer 3A or the second high-refractive index layer 3B containing at least ZnS are formed adjacent to each other, an interface region between the transparent metal layer 4 and the transparent metal layer 4 is formed. Further, there is a problem that metal sulfide (for example, silver sulfide) is easily generated, and the light transmittance of the transparent conductor 1 is easily lowered.
 透明金属層4において、金属硫化物は、以下の状況により生成されると推察される。 In the transparent metal layer 4, it is assumed that the metal sulfide is generated in the following situation.
 少なくとも硫化亜鉛を含有する第1高屈折率層3A上に、蒸着法等の気相成膜法で透明金属層4を形成する場合、硫化亜鉛を含有する第1高屈折率層3A中の未反応の硫黄成分が、透明金属層4の材料(例えば、銀)によって形成雰囲気中に弾き出される。そして、弾き出された硫黄成分と金属、例えば、硫黄原子と銀原子とが反応し、金属硫化物が硫化亜鉛を含有する第1高屈折率層3A上に堆積する。また、連続した蒸着工程で透明導電体を形成する場合、硫化亜鉛を含有する第1高屈折率層3A上に、蒸着法等の気相成膜法で透明金属層を形成する場合、硫化亜鉛を含有する第1高屈折率層3Aの形成雰囲気に含まれる硫黄成分が透明金属層雰囲気内に残存する。そして、この硫黄成分と金属とが反応し、金属硫化物が硫化亜鉛を含有する第1高屈折率層3A上に堆積する。または、第1高屈折率層3Aの最表面に、Znと未結合の硫黄がいくつか存在し、次に、透明金属層4を積層させたときに、未結合の活性硫黄成分が、透明金属層4の構成原子、例えば、銀と結合して、硫化銀を生成する。 In the case where the transparent metal layer 4 is formed on the first high refractive index layer 3A containing at least zinc sulfide by a vapor phase film forming method such as a vapor deposition method, the transparent metal layer 4 in the first high refractive index layer 3A containing zinc sulfide is not yet formed. The sulfur component of the reaction is expelled into the forming atmosphere by the material of the transparent metal layer 4 (eg, silver). Then, the ejected sulfur component reacts with a metal, for example, a sulfur atom and a silver atom, and a metal sulfide is deposited on the first high refractive index layer 3A containing zinc sulfide. Further, when forming a transparent conductor by a continuous vapor deposition process, when forming a transparent metal layer by vapor phase film formation such as vapor deposition on the first high refractive index layer 3A containing zinc sulfide, zinc sulfide The sulfur component contained in the formation atmosphere of the first high refractive index layer 3 </ b> A containing is left in the transparent metal layer atmosphere. Then, the sulfur component reacts with the metal, and the metal sulfide is deposited on the first high refractive index layer 3A containing zinc sulfide. Alternatively, there are some Zn and unbonded sulfur on the outermost surface of the first high refractive index layer 3A, and then when the transparent metal layer 4 is laminated, the unbonded active sulfur component becomes transparent metal. Combined with the constituent atoms of the layer 4, for example, silver, silver sulfide is produced.
 一方、透明金属層4上に、少なくとも硫化亜鉛を含有する第2高屈折率層3Bを形成する場合、透明金属層4中の金属が、硫化亜鉛を含有する第2高屈折率層3Bの材料によって、形成雰囲気中に弾き出される。そして、弾き出された金属と硫黄成分とが反応し、金属硫化物が透明金属層4の表面に堆積する。さらに、透明金属層4の表面と、形成雰囲気中の硫黄成分とが接触することでも、透明金属層4の表面に金属硫化物が生成する。または、第2高屈折率層3Bを構成する硫化亜鉛を蒸着する際、一部、亜鉛と硫黄が遊離した状態で雰囲気中に存在することになり、遊離した硫黄が、透明金属層の構成原子、例えば、銀と結合する。 On the other hand, when the second high refractive index layer 3B containing at least zinc sulfide is formed on the transparent metal layer 4, the metal in the transparent metal layer 4 is a material of the second high refractive index layer 3B containing zinc sulfide. Is played in the forming atmosphere. The ejected metal reacts with the sulfur component, and metal sulfide is deposited on the surface of the transparent metal layer 4. Furthermore, a metal sulfide is also generated on the surface of the transparent metal layer 4 when the surface of the transparent metal layer 4 comes into contact with the sulfur component in the forming atmosphere. Alternatively, when depositing the zinc sulfide constituting the second high refractive index layer 3B, the zinc and sulfur are partly present in the atmosphere, and the released sulfur is a constituent atom of the transparent metal layer. For example, combined with silver.
 これに対し、本発明の透明導電体1では、例えば、図1Bに示されるように、第1高屈折率層3A上に、第1硫化防止層5Aが形成されている。本発明で規定する構成とすることにより、第1高屈折率層3Aが第1硫化防止層5Aで保護されるため、透明金属層4の形成時に第1高屈折率層3A中の硫黄成分が弾き出され難い。また、第1高屈折率層3Aと透明金属層4とを連続的に形成したとしても、第1高屈折率層3Aの形成雰囲気に含まれる硫黄成分が、第1硫化防止層5Aの構成成分と反応、あるいは第1硫化防止層5Aの構成成分に吸着されることにより、透明金属層4の形成雰囲気には硫黄が含まれ難くなり、金属硫化物の生成が抑制される。 On the other hand, in the transparent conductor 1 of the present invention, for example, as shown in FIG. 1B, the first sulfidation preventing layer 5A is formed on the first high refractive index layer 3A. Since the first high refractive index layer 3A is protected by the first sulfidation preventing layer 5A by adopting the configuration specified in the present invention, the sulfur component in the first high refractive index layer 3A is not formed when the transparent metal layer 4 is formed. It is difficult to play. Even if the first high refractive index layer 3A and the transparent metal layer 4 are continuously formed, the sulfur component contained in the atmosphere in which the first high refractive index layer 3A is formed is a constituent component of the first antisulfurization layer 5A. Reaction with each other, or adsorption to the constituent components of the first sulfidation preventing layer 5A, the atmosphere in which the transparent metal layer 4 is formed does not easily contain sulfur, and the formation of metal sulfide is suppressed.
 また、本発明の透明導電体1では、例えば、図1Cで示めすように、透明金属層4上に第2硫化防止層5Bが積層される。当該構成では、透明金属層4が第2硫化防止層5Bで保護されるため、第2高屈折率層3Bの形成時に透明金属層4中の金属が弾き出され難い。また、第2高屈折率層3Bの形成雰囲気中の硫黄成分が、透明金属層4の表面と接触し難くなる。その結果、透明金属層4表面に金属硫化物が生成し難い。 Moreover, in the transparent conductor 1 of the present invention, for example, as shown in FIG. 1C, the second sulfidation preventing layer 5B is laminated on the transparent metal layer 4. In this configuration, since the transparent metal layer 4 is protected by the second antisulfurization layer 5B, it is difficult for the metal in the transparent metal layer 4 to be ejected when the second high refractive index layer 3B is formed. Further, the sulfur component in the atmosphere in which the second high refractive index layer 3 </ b> B is formed is difficult to come into contact with the surface of the transparent metal layer 4. As a result, a metal sulfide is hardly generated on the surface of the transparent metal layer 4.
 本発明の透明導電体1では、図1A~図1Cで例示するように、透明金属層4が透明基板2の全面に積層されていてもよく、図2に示すように、例えば、第1高屈折率層3A、第1硫化防止層5A、透明金属層4、第2硫化防止層5B及び第2高屈折率層3Bから構成される透明電極ユニットEUが所望の形状にパターニングされていてもよい。本発明の透明導電体1において、透明電極ユニットEUが積層されている領域aが、電気が導通する領域(以下、「導通領域」とも称する)である。一方、図2に示されるように、透明電極ユニットEUを有していない領域bが絶縁領域である。 In the transparent conductor 1 of the present invention, as illustrated in FIGS. 1A to 1C, the transparent metal layer 4 may be laminated on the entire surface of the transparent substrate 2. As shown in FIG. The transparent electrode unit EU including the refractive index layer 3A, the first antisulfurization layer 5A, the transparent metal layer 4, the second antisulfation layer 5B, and the second high refractive index layer 3B may be patterned into a desired shape. . In the transparent conductor 1 of the present invention, the region a where the transparent electrode unit EU is laminated is a region where electricity is conducted (hereinafter also referred to as “conduction region”). On the other hand, as shown in FIG. 2, the region b that does not have the transparent electrode unit EU is an insulating region.
 導通領域a及び絶縁領域bから構成されるパターンは、透明導電体1の用途に応じて、適宜選択される。静電方式のタッチパネルに適用するパターンの詳細については、後述する。 The pattern composed of the conductive region a and the insulating region b is appropriately selected according to the use of the transparent conductor 1. Details of the pattern applied to the electrostatic touch panel will be described later.
 また、本発明の透明導電体1には、透明基板2、第1高屈折率層3A、透明金属層4、及び第2高屈折率層3B、及び第1硫化防止層5A、第2硫化防止層5Bの他に、必要に応じて公知の機能性層を設けてもよい。例えば、透明金属層4の形成時に成長核になり得る下地層が、透明金属層4と第1高屈折率層3Aとの間に、透明金属層4に隣接して含まれてもよい。ただし、本発明の透明導電体1に含まれる層は、透明基板2を除いて、いずれも無機材料からなる層であることが好ましい。例えば、第2高屈折率層3B上に有機樹脂からなる接着層が積層されていたとしても、透明基板2から第2高屈折率層3Bまでの積層体が、本発明の透明導電体1であると定義する。 Further, the transparent conductor 1 of the present invention includes a transparent substrate 2, a first high refractive index layer 3A, a transparent metal layer 4, a second high refractive index layer 3B, a first antisulfurization layer 5A, and a second antisulfurization. In addition to the layer 5B, a known functional layer may be provided as necessary. For example, an underlayer that can be a growth nucleus when the transparent metal layer 4 is formed may be included between the transparent metal layer 4 and the first high refractive index layer 3 </ b> A adjacent to the transparent metal layer 4. However, it is preferable that all the layers included in the transparent conductor 1 of the present invention are layers made of an inorganic material except for the transparent substrate 2. For example, even if an adhesive layer made of an organic resin is laminated on the second high refractive index layer 3B, the laminated body from the transparent substrate 2 to the second high refractive index layer 3B is the transparent conductor 1 of the present invention. Define that there is.
 《透明導電体の製造方法》
 本発明の透明導電体の製造方法は、透明基板上に、少なくとも、第1高屈折率層と、透明金属層と、第2高屈折率層とをこの順で積層して製造する透明導電体の製造方法であって、前記第1高屈折率層及び第2高屈折率層の少なくとも一層は、硫化亜鉛と、金属酸化物、金属フッ化物及び金属窒化物から選ばれる少なくとも一種の金属化合物との混合膜を、共蒸着法により形成することを特徴とする。
<< Method for producing transparent conductor >>
The method for producing a transparent conductor according to the present invention includes a transparent conductor produced by laminating at least a first high refractive index layer, a transparent metal layer, and a second high refractive index layer in this order on a transparent substrate. Wherein at least one of the first high-refractive index layer and the second high-refractive index layer includes zinc sulfide and at least one metal compound selected from metal oxide, metal fluoride, and metal nitride. The mixed film is formed by a co-evaporation method.
 本発明においては、生産効率の観点から、連続したオンライン工程で透明導電体1を製造する方法が好ましい。 In the present invention, from the viewpoint of production efficiency, a method of manufacturing the transparent conductor 1 by a continuous online process is preferable.
 図3は、本発明の製造方法に適用可能で、透明基板を連続搬送しながら各構成層を連続して成膜するオンライン工程で、透明導電体を製造する工程の一例を示す模式図である。 FIG. 3 is a schematic diagram showing an example of a process for manufacturing a transparent conductor in an online process that can be applied to the manufacturing method of the present invention and continuously forms each constituent layer while continuously transporting a transparent substrate. .
 以下に、図1Cで例示した透明基板2上に、第1高屈折率層3A、第1硫化防止層5A、透明金属層4、第2硫化防止層5B、第2高屈折率層3Bをこの順で積層する透明導電体の製造方法の概略について説明する。 Hereinafter, on the transparent substrate 2 illustrated in FIG. 1C, the first high refractive index layer 3A, the first antisulfurization layer 5A, the transparent metal layer 4, the second antisulfurization layer 5B, and the second high refractive index layer 3B are formed. The outline of the manufacturing method of the transparent conductor laminated | stacked in order is demonstrated.
 図3では、工程1の真空蒸着室11で、共蒸着法により第1高屈折率層3Aを形成し、工程2の真空蒸着室で第1硫化防止層5Aを形成し、工程3の真空蒸着室で透明金属層4を形成し、工程4の真空蒸着室で第2硫化防止層5Bを製膜し、最後に、工程5の真空蒸着室で、共蒸着法により第2高屈折率層3Bを製膜し、本発明の透明導電体1を製造する。 In FIG. 3, the first high refractive index layer 3 </ b> A is formed by the co-evaporation method in the vacuum vapor deposition chamber 11 in step 1, the first sulfurization prevention layer 5 </ b> A is formed in the vacuum vapor deposition chamber in step 2, and the vacuum vapor deposition in step 3. The transparent metal layer 4 is formed in the chamber, the second sulfidation prevention layer 5B is formed in the vacuum deposition chamber in step 4, and finally, the second high refractive index layer 3B is formed in the vacuum deposition chamber in step 5 by co-evaporation. To produce the transparent conductor 1 of the present invention.
 工程1では、第1の抵抗加熱ボートT1aにZnSを、第2の抵抗加熱ボートT1bには金属酸化物、金属フッ化物及び金属窒化物から選ばれる少なくとも一種の金属化合物、例えば、SiOを装填し、減圧下で各ターゲットを通電加熱して、連続搬送されている透明基板2上に、共蒸着法により、ZnS-SiOで構成される第1高屈折率層3Aを形成する。この時、第1の抵抗加熱ボートT1aと第2の抵抗加熱ボートT1bの加熱条件及び蒸着速度を制御することにより、ZnSと金属酸化物、金属フッ化物及び金属窒化物から選ばれる少なくとも一種の金属化合物の比率や層内における比率を調整することができる。 In step 1, the first resistance heating boat T1a is charged with ZnS, and the second resistance heating boat T1b is charged with at least one metal compound selected from metal oxide, metal fluoride, and metal nitride, for example, SiO 2 . Then, each target is energized and heated under reduced pressure to form a first high refractive index layer 3A composed of ZnS—SiO 2 on the continuously transported transparent substrate 2 by co-evaporation. At this time, by controlling the heating conditions and vapor deposition rate of the first resistance heating boat T1a and the second resistance heating boat T1b, at least one metal selected from ZnS, metal oxide, metal fluoride, and metal nitride is used. The ratio of the compound and the ratio in the layer can be adjusted.
 次いで、工程2では、抵抗加熱ボートT2に硫化防止層形成材料、例えば、ZnOを装填し、所定の条件で通電加熱して、連続搬送されている透明基板2の第1高屈折率層3A上に、第1硫化防止層5Aを形成する。 Next, in step 2, the resistance heating boat T2 is charged with a sulfidation prevention layer forming material, for example, ZnO, energized and heated under predetermined conditions, and on the first high refractive index layer 3A of the transparent substrate 2 being continuously conveyed. Then, the first sulfidation preventing layer 5A is formed.
 次いで、工程3で、抵抗加熱ボートT3に透明金属層形成材料、例えば、Agを装填し、所定の条件で通電加熱して、連続搬送されている透明基板2の第1硫化防止層5A上に、透明金属層4を形成する。この時、工程3においては、透明金属層4を銀で形成し、銀層の形成速度を0.3nm/秒以上とすることが好ましい。 Next, in step 3, the resistance heating boat T3 is charged with a transparent metal layer forming material, for example, Ag, and is heated by energization under a predetermined condition, on the first sulfidation prevention layer 5A of the transparent substrate 2 being continuously conveyed. The transparent metal layer 4 is formed. At this time, in step 3, it is preferable that the transparent metal layer 4 is formed of silver and the formation rate of the silver layer is 0.3 nm / second or more.
 更に高い生産性を実現する観点からは、形成速度が0.5~30nm/秒の範囲内であることがより好ましく、特に好ましくは1.0~15nm/秒の範囲内である。本発明で適用する蒸着法は、スパッタ法に対し、極めて高い生産効率を有していることが特徴である。 From the viewpoint of realizing higher productivity, the formation rate is more preferably in the range of 0.5 to 30 nm / second, and particularly preferably in the range of 1.0 to 15 nm / second. The vapor deposition method applied in the present invention is characterized by extremely high production efficiency compared to the sputtering method.
 本発明でいう形成速度S(nm/秒)とは、図3に示す工程3において、蒸発源として、抵抗加熱ボートT3に透明金属層形成材料を装填し、その蒸発源の真上にモニターガラスを配置し、モニターガラスを動かさないように静置した状態で、モニターガラス上に透明金属層4を形成し、透明金属層4の形成に要した形成時間(秒)と、モニターガラス上に形成された透明金属層4の層厚を測定し、透明金属層の層厚(nm)/形成時間(秒)により、形成速度S(nm/秒)を算出する。 The formation speed S (nm / second) referred to in the present invention means that, in Step 3 shown in FIG. 3, a transparent metal layer forming material is loaded on the resistance heating boat T3 as an evaporation source, and a monitor glass is directly above the evaporation source. The transparent metal layer 4 is formed on the monitor glass in a state where the monitor glass is placed so as not to move, and the formation time (seconds) required for forming the transparent metal layer 4 is formed on the monitor glass. The layer thickness of the transparent metal layer 4 is measured, and the formation speed S (nm / second) is calculated from the layer thickness (nm) of the transparent metal layer / formation time (seconds).
 次いで、工程4では、抵抗加熱ボートT4に硫化防止層形成材料、例えば、ZnOを装填し、所定の条件で通電加熱して、連続搬送されている透明基板2の透明金属層4上に、第2硫化防止層5Bを形成する。 Next, in step 4, the resistance heating boat T4 is charged with a sulfidation prevention layer forming material, for example, ZnO, energized and heated under predetermined conditions, and on the transparent metal layer 4 of the transparent substrate 2 being continuously conveyed, A disulfide prevention layer 5B is formed.
 そして、最後に、工程5で、第1の抵抗加熱ボートT5aにZnSを、第2の抵抗加熱ボートT5bには金属酸化物、金属フッ化物及び金属窒化物から選ばれる少なくとも一種の金属化合物、例えば、SiOを装填し、減圧下で各ターゲットを通電加熱して、連続搬送されている透明基板2の透明金属層4上に、共蒸着法によりZnS-SiOで構成される第2屈折率層3Bを形成する。この時、第1の抵抗加熱ボートT5aと第2の抵抗加熱ボートT5bの加熱条件及び蒸着速度を制御することにより、ZnSと金属酸化物、金属フッ化物及び金属窒化物から選ばれる少なくとも一種の金属化合物の比率や層内における比率を調整することができる。 Finally, in step 5, the first resistance heating boat T5a is made of ZnS, and the second resistance heating boat T5b is at least one metal compound selected from metal oxide, metal fluoride and metal nitride, for example, was charged with SiO 2, by energizing heating each target under reduced pressure, the second refractive index configured on the transparent metal layer 4 of the transparent substrate 2 which is continuously conveyed, by a co-evaporation method with ZnS-SiO 2 Layer 3B is formed. At this time, by controlling the heating conditions and vapor deposition rate of the first resistance heating boat T5a and the second resistance heating boat T5b, at least one metal selected from ZnS, metal oxide, metal fluoride, and metal nitride. The ratio of the compound and the ratio in the layer can be adjusted.
 なお、上記では、一例として、抵抗加熱ボートを用いた蒸着法について説明したが、例えば、電子ビーム等を用いた他の蒸着法を適用してもよい。 In addition, although the vapor deposition method using a resistance heating boat was demonstrated as an example in the above, you may apply the other vapor deposition method using an electron beam etc., for example.
 以上のような工程を経て、本発明の透明導電体1を製造することができる。 The transparent conductor 1 of this invention can be manufactured through the above processes.
 図3に示す工程において、透明金属層4を形成する工程3の真空蒸着室11の圧力Pを、第1高屈折率層3Aを形成する工程1の真空蒸着室11の圧力Pや、第2高屈折率層3Bを形成する工程5の真空蒸着室11の圧力Pより高く設定することが、透明金属層4を形成する工程3への工程1からの硫黄成分の流入を防止することができる観点から好ましい。さらには、第1高屈折率層3Aを形成する工程1の真空蒸着室11の圧力P、第1硫化防止層5Aを形成する工程2の真空蒸着室11の圧力P、透明金属層4を形成する工程3の真空蒸着室11の圧力P3、第2硫化防止層5Bを形成する工程4の真空蒸着室11の圧力P、第2高屈折率層3Bを形成する工程5の真空蒸着室11の圧力Pとして、
   圧力P<圧力P<圧力P>圧力P>圧力P
の圧力関係を維持することが、透明金属層4の形成である工程3への硫黄成分の流入を、さらに効率的に防止することができる観点から、好ましい態様である。
In the step shown in FIG. 3, the pressure P 3 in the vacuum deposition chamber 11 of the step 3 of forming a transparent metal layer 4, and the pressure P 1 of the vacuum deposition chamber 11 of the step 1 of forming a first high refractive index layer 3A, be set higher than the pressure P 5 in the vacuum deposition chamber 11 of the step 5 of forming a second high refractive index layer 3B, prevents the inflow of the sulfur component from step 1 to step 3 of forming a transparent metal layer 4 From the viewpoint of being able to do so. Furthermore, the pressure P 2 of the first pressure P 1 in the vacuum deposition chamber 11 of the step 1 of forming a high-refractive index layer 3A, the vacuum deposition chamber 11 of the step 2 of forming a first anti-sulfuration layer 5A, the transparent metal layer 4 vacuum deposition chamber 11 the pressure P 3 of the step 3 of forming the pressure P 4 in the vacuum deposition chamber 11 of the step 4 of forming a second anti-sulfuration layer 5B, the vacuum step 5 of forming a second high refractive index layer 3B as the pressure P 5 of the deposition chamber 11,
Pressure P 1 <Pressure P 2 <Pressure P 3 > Pressure P 4 > Pressure P 5
Maintaining this pressure relationship is a preferred embodiment from the viewpoint of more efficiently preventing the inflow of the sulfur component into Step 3 which is the formation of the transparent metal layer 4.
 上記透明導電体の製造工程においては、形成時の透明基板の温度上昇を抑制し、-20~65℃の範囲で温度制御することができる冷却システムを備えていることが好ましい。 In the manufacturing process of the transparent conductor, it is preferable to provide a cooling system that can suppress the temperature rise of the transparent substrate during formation and can control the temperature in the range of −20 to 65 ° C.
 また、各真空蒸着室内の圧力としては、1×10-4~1×10-3Paの範囲内とすることが好ましい。また、各工程内には、所望の層厚となるように層厚モニターで、オンラインで監視することが好ましい。 The pressure in each vacuum deposition chamber is preferably in the range of 1 × 10 −4 to 1 × 10 −3 Pa. In each step, it is preferable to monitor online with a layer thickness monitor so as to obtain a desired layer thickness.
 《透明導電体の各構成要素》
 本発明の透明導電体は、透明基板2上に、少なくとも第1高屈折率層3Aと、透明金属層4と、第2高屈折率層3Bをこの順で積層した構成を有していることを特徴とし、更には、第1高屈折率層3Aと透明金属層4との間、又は第2高屈折率層3Bと透明金属層4との間に、硫化防止層5A、5Bを有していることが好ましい態様である。
<< Each component of transparent conductor >>
The transparent conductor of the present invention has a configuration in which at least the first high refractive index layer 3A, the transparent metal layer 4, and the second high refractive index layer 3B are laminated in this order on the transparent substrate 2. Furthermore, it has antisulfurization layers 5A and 5B between the first high refractive index layer 3A and the transparent metal layer 4, or between the second high refractive index layer 3B and the transparent metal layer 4. It is a preferable aspect.
 〔透明基板〕
 本発明の透明導電体1に適用可能な透明基板2としては、各種表示デバイスの透明基板に用いられている材料を挙げることができる。
[Transparent substrate]
Examples of the transparent substrate 2 applicable to the transparent conductor 1 of the present invention include materials used for transparent substrates of various display devices.
 透明基板2としては、ガラス基板や、セルロースエステル樹脂(例えば、トリアセチルセルロース(略称:TAC)、ジアセチルセルロース、アセチルプロピオニルセルロース等)、ポリカーボネート樹脂(例えば、パンライト、マルチロン(以上、帝人社製))、シクロオレフィン樹脂(例えば、ゼオノア(日本ゼオン社製)、アートン(JSR社製)、アペル(三井化学社製))、アクリル樹脂(例えば、ポリメチルメタクリレート、アクリライト(三菱レイヨン社製)、スミペックス(住友化学社製))、ポリイミド、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(略称:PPE)樹脂、ポリエステル樹脂(例えば、ポリエチレンテレフタレート(略称:PET)、ポリエチレンナフタレート(略称:PEN))、ポリエーテルスルホン樹脂、アクリロニトリル・ブタジエン・スチレン樹脂(略称:ABS樹脂)/アクリロニトリル・スチレン樹脂(略称:AS樹脂)、メチルメタクリレート・ブタジエン・スチレン樹脂(略称:MBS樹脂)、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/エチレンビニルアルコール樹脂(略称:EVOH)、スチレン系ブロックコポリマー樹脂等からなる透明樹脂フィルム等を挙げることができる。透明基板2が透明樹脂フィルムである場合、当該フィルムには2種以上の樹脂が含まれてもよい。 As the transparent substrate 2, a glass substrate, a cellulose ester resin (for example, triacetyl cellulose (abbreviation: TAC), diacetyl cellulose, acetylpropionyl cellulose, etc.), a polycarbonate resin (for example, Panlite, Multilon (above, manufactured by Teijin Ltd.)) ), Cycloolefin resin (for example, ZEONOR (manufactured by ZEON), ARTON (manufactured by JSR), APPEL (manufactured by Mitsui Chemicals)), acrylic resin (for example, polymethyl methacrylate, acrylite (manufactured by Mitsubishi Rayon)), Sumipex (manufactured by Sumitomo Chemical Co., Ltd.)), polyimide, phenol resin, epoxy resin, polyphenylene ether (abbreviation: PPE) resin, polyester resin (for example, polyethylene terephthalate (abbreviation: PET), polyethylene naphthalate (abbreviation: PEN)), poly -Tersulfone resin, acrylonitrile / butadiene / styrene resin (abbreviation: ABS resin) / acrylonitrile / styrene resin (abbreviation: AS resin), methyl methacrylate / butadiene / styrene resin (abbreviation: MBS resin), polystyrene, methacrylic resin, polyvinyl alcohol / ethylene The transparent resin film etc. which consist of vinyl alcohol resin (abbreviation: EVOH), a styrene-type block copolymer resin, etc. can be mentioned. When the transparent substrate 2 is a transparent resin film, the film may contain two or more kinds of resins.
 高い透明性を達成することができる観点から、本発明に適用する透明基板2としては、ガラス基板や、セルロースエステル樹脂、ポリカーボネート樹脂、ポリエステル樹脂(特にポリエチレンテレフタレート)、トリアセチルセルロース、シクロオレフィン樹脂、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリエーテルスルホン、ABS/AS樹脂、MBS樹脂、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/EVOH(エチレンビニルアルコール樹脂)、スチレン系ブロックコポリマー樹脂等の樹脂成分から構成されるフィルムであることが好ましい。 From the viewpoint of achieving high transparency, the transparent substrate 2 applied to the present invention includes a glass substrate, a cellulose ester resin, a polycarbonate resin, a polyester resin (particularly polyethylene terephthalate), a triacetyl cellulose, a cycloolefin resin, Resin components such as phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyether sulfone, ABS / AS resin, MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), styrene block copolymer resin It is preferable that it is a film comprised from these.
 透明基板2は、可視光に対する透明性が高いことが好ましく、波長450~800nmの光の平均透過率が70%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることがさらに好ましい。透明基板2の光の平均透過率が70%以上であると、透明導電体1の光透過性が高まりやすい。また、透明基板2の波長450~800nmの光の平均吸収率は10%以下であることが好ましく、より好ましくは5%以下、さらに好ましくは3%以下である。 The transparent substrate 2 preferably has high transparency to visible light, and the average transmittance of light having a wavelength of 450 to 800 nm is preferably 70% or more, more preferably 80% or more, and 85% or more. More preferably it is. When the average light transmittance of the transparent substrate 2 is 70% or more, the light transmittance of the transparent conductor 1 is likely to increase. Further, the average absorptance of light having a wavelength of 450 to 800 nm of the transparent substrate 2 is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
 上記平均透過率は、透明基板2の表面の法線に対して、5°傾けた角度から光を入射させて測定する。一方、平均吸収率は、平均透過率と同様の角度から光を入射させて、透明基板2の平均反射率を測定し、
 平均吸収率=100-(平均透過率+平均反射率)
として算出する。平均透過率及び平均反射率は、分光光度計を用いて測定することができる。
The average transmittance is measured by making light incident from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent substrate 2. On the other hand, the average absorptance is measured by measuring the average reflectance of the transparent substrate 2 by making light incident from the same angle as the average transmittance.
Average absorptivity = 100− (average transmittance + average reflectance)
Calculate as The average transmittance and the average reflectance can be measured using a spectrophotometer.
 透明基板2の波長570nmの光における屈折率は1.40~1.95の範囲内であることが好ましく、より好ましくは1.45~1.75の範囲内であり、さらに好ましくは1.45~1.70の範囲内である。透明基板2の屈折率は、通常、透明基板2の材質によって定まる。透明基板2の屈折率は、エリプソメーターを用い、25℃の環境下での測定により求めることができる。 The refractive index of light having a wavelength of 570 nm of the transparent substrate 2 is preferably in the range of 1.40 to 1.95, more preferably in the range of 1.45 to 1.75, and still more preferably 1.45. Within the range of ~ 1.70. The refractive index of the transparent substrate 2 is usually determined by the material of the transparent substrate 2. The refractive index of the transparent substrate 2 can be determined by measurement under an environment of 25 ° C. using an ellipsometer.
 透明基板2のヘイズ値は、0.01~2.5の範囲内であることが好ましく、より好ましくは0.1~1.2の範囲内である。透明基板のヘイズ値が2.5以下であると、透明導電体としてのヘイズ値を抑制することができ、好ましい。ヘイズ値は、ヘイズメーターを用いて測定することができる。 The haze value of the transparent substrate 2 is preferably in the range of 0.01 to 2.5, more preferably in the range of 0.1 to 1.2. It is preferable that the haze value of the transparent substrate is 2.5 or less because the haze value as the transparent conductor can be suppressed. The haze value can be measured using a haze meter.
 透明基板2の厚さは、1μm~20mmの範囲内であることが好ましく、より好ましくは10μm~2mmの範囲内である。透明基板の厚さが1μm以上であれば、透明基板2の強度が高まり、第1高屈折率層3Aの作製時に割れたり、裂けたりすることを防止することができる。一方、透明基板2の厚さが20mm以下であれば、透明導電体1の十分なフレキシブル性を得ることができる。さらに、透明導電体1を具備した電子デバイス機器等の厚さを薄くできる。また、透明導電体1を用いた電子デバイス機器等を軽量化することもできる。 The thickness of the transparent substrate 2 is preferably in the range of 1 μm to 20 mm, more preferably in the range of 10 μm to 2 mm. If the thickness of the transparent substrate is 1 μm or more, the strength of the transparent substrate 2 is increased, and it is possible to prevent the first high refractive index layer 3A from being cracked or torn during production. On the other hand, if the thickness of the transparent substrate 2 is 20 mm or less, sufficient flexibility of the transparent conductor 1 can be obtained. Furthermore, the thickness of the electronic device apparatus etc. which comprised the transparent conductor 1 can be made thin. Moreover, the electronic device apparatus etc. which used the transparent conductor 1 can also be reduced in weight.
 本発明においては、使用する透明基板2は、各構成層を成膜する前に、基板中に含まれている水分や残留している溶媒を、クライオポンプ等を用いてあらかじめ除いたのち、形成工程で使用することが好ましい。 In the present invention, the transparent substrate 2 to be used is formed by removing moisture contained in the substrate and remaining solvent in advance using a cryopump or the like before forming each constituent layer. It is preferable to use in the process.
 また、本発明に適用する透明基板上には、そのあとに形成する第1高屈折率層の平滑性を担保する観点から、公知のクリアハードコート層を設けてもよい。 Moreover, a known clear hard coat layer may be provided on the transparent substrate applied to the present invention from the viewpoint of ensuring the smoothness of the first high refractive index layer formed thereafter.
 〔第1高屈折率層〕
 第1高屈折率層3Aは、透明導電体の導通領域a、つまり透明金属層4が形成されている領域の光透過性(光学アドミッタンス)を調整する層であり、少なくとも透明導電体1の導通領域aに形成される。第1高屈折率層3Aは、透明導電体1の絶縁領域bにも形成されていてもよいが、導通領域a及び絶縁領域bからなるパターンを視認され難くするとの観点から、図2に例示するように導通領域aのみに形成されていることが好ましい。
[First high refractive index layer]
The first high refractive index layer 3 </ b> A is a layer that adjusts the light transmittance (optical admittance) of the conductive region a of the transparent conductor, that is, the region where the transparent metal layer 4 is formed, and at least the conduction of the transparent conductor 1. Formed in region a. The first high-refractive index layer 3A may be formed also in the insulating region b of the transparent conductor 1, but is illustrated in FIG. 2 from the viewpoint of making it difficult to visually recognize the pattern including the conductive region a and the insulating region b. Thus, it is preferably formed only in the conduction region a.
 第1高屈折率層3Aには、前述の透明基板2の屈折率より高い屈折率を有する誘電性材料又は金属酸化物半導体材料が含まれる。当該誘電性材料又は金属酸化物半導体材料の波長570nmの光の屈折率は、透明基板1の波長570nmの光の屈折率より0.1~1.1程度大きいことが好ましく、0.4~1.0程度大きいことがより好ましい。本発明でいう屈折率とは、25℃の環境下で測定した屈折率の値を用いる。また、屈折率は、市販のエリプソメーターを用いて測定して求めることができる。 The first high refractive index layer 3A includes a dielectric material or metal oxide semiconductor material having a refractive index higher than that of the transparent substrate 2 described above. The refractive index of light with a wavelength of 570 nm of the dielectric material or metal oxide semiconductor material is preferably about 0.1 to 1.1 higher than the refractive index of light with a wavelength of 570 nm of the transparent substrate 1, and 0.4 to 1 More preferably, it is about 0.0 larger. The refractive index as used in the present invention is a refractive index value measured in an environment of 25 ° C. The refractive index can be determined by measuring using a commercially available ellipsometer.
 一方、第1高屈折率層3Aに含まれる誘電性材料又は金属酸化物半導体材料の波長570nmの光の具体的な屈折率は1.5より大きいことが好ましく、1.7~2.5の範囲内であることがより好ましく、さらに好ましくは1.8~2.5の範囲内である。誘電性材料又は金属酸化物半導体材料の屈折率が1.5より大きいと、第1高屈折率層3Aによって、透明導電体1の導通領域aの光学アドミッタンスが十分に調整される。なお、第1高屈折率層3Aの屈折率は、第1高屈折率層3Aに含まれる材料の屈折率や、第1高屈折率層3Aに含まれる材料の密度で調整される。 On the other hand, the specific refractive index of light having a wavelength of 570 nm of the dielectric material or metal oxide semiconductor material contained in the first high refractive index layer 3A is preferably greater than 1.5, and is preferably 1.7 to 2.5. More preferably, it is within the range, and more preferably within the range of 1.8 to 2.5. When the refractive index of the dielectric material or the metal oxide semiconductor material is larger than 1.5, the optical admittance of the conductive region a of the transparent conductor 1 is sufficiently adjusted by the first high refractive index layer 3A. The refractive index of the first high refractive index layer 3A is adjusted by the refractive index of the material included in the first high refractive index layer 3A and the density of the material included in the first high refractive index layer 3A.
 本発明においては、第1高屈折率層及び後述する第2高屈折率層の少なくとも一層が、硫化亜鉛と、金属酸化物、金属フッ化物及び金属窒化物から選ばれる少なくとも一種の金属化合物との混合膜を、共蒸着法により形成されていることを特徴とする。 In the present invention, at least one of the first high-refractive index layer and the second high-refractive index layer described later is composed of zinc sulfide and at least one metal compound selected from metal oxide, metal fluoride, and metal nitride. The mixed film is formed by a co-evaporation method.
 硫化亜鉛と共に用いることができる金属酸化物としては、例えば、TiO、ITO(インジウム・スズ酸化物)、ZnO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO(インジウム・亜鉛酸化物)、AZO(AlドープZnO)、GZO(GaドープZnO)、ATO(SbドープSnO)、ICO(インジウム・セリウム酸化物)、Bi、a-GIO、Ga、GeO、SiO、Al、HfO、SiO、MgO、Y、WO、a-GIO(ガリウム、インジウム、及び酸素からなる非晶質酸化物)等が含まれる。上記金属酸化物の中でも、特に、二酸化ケイ素(SiO)が好ましい。 Examples of the metal oxide that can be used with zinc sulfide include TiO 2 , ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO (indium zinc oxide), AZO (Al-doped ZnO), GZO (Ga-doped ZnO), ATO (Sb-doped SnO) ), ICO (indium cerium oxide), Bi 2 O 3 , a-GIO, Ga 2 O 3 , GeO 2 , SiO 2 , Al 2 O 3 , HfO 2 , SiO, MgO, Y 2 O 3 , WO 3 , A-GIO (amorphous oxide composed of gallium, indium, and oxygen). Among the metal oxides, silicon dioxide (SiO 2 ) is particularly preferable.
 また、金属フッ化物としては、LaF、BaF、NaAl14、NaAlF、AlF、MgF、CaF、BaF、CeF、NdF、YF等を挙げることができる。 Examples of the metal fluoride include LaF 3 , BaF 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , BaF 2 , CeF 3 , NdF 3 , YF 3 and the like. Can do.
 また、金属窒化物としては、窒化ホウ素、窒化アルミニウム、窒化クロム、窒化ケイ素、窒化タングステン、窒化マグネシウム、窒化モリブデン、窒化リチウム、窒化チタン等を挙げることができる。 Further, examples of the metal nitride include boron nitride, aluminum nitride, chromium nitride, silicon nitride, tungsten nitride, magnesium nitride, molybdenum nitride, lithium nitride, and titanium nitride.
 本発明に係る第1高屈折率層3A又は第2高屈折率層3Bでは、誘電性材料として、少なくともZnSを含有することを特徴とするが、第1高屈折率層3A又は第2高屈折率層3BにZnSを共存させることにより、透明基板2側から水分が透過し難くなり、透明金属層4の腐食が抑制される。 The first high-refractive index layer 3A or the second high-refractive index layer 3B according to the present invention is characterized by containing at least ZnS as a dielectric material. By making ZnS coexist in the rate layer 3B, it becomes difficult for water to permeate from the transparent substrate 2 side, and corrosion of the transparent metal layer 4 is suppressed.
 本発明においては、第1高屈折率層3Aで、硫化亜鉛と共に、金属酸化物、金属フッ化物及び金属窒化物から選ばれる少なくとも一種の金属化合物を共蒸着させることにより、第1高屈折率層が非晶質になりやすく、透明導電体のフレキシブル性が高まりやすい。 In the present invention, the first high refractive index layer 3A is formed by co-evaporating at least one metal compound selected from metal oxide, metal fluoride and metal nitride together with zinc sulfide. Tends to be amorphous, and the flexibility of the transparent conductor is likely to increase.
 第1高屈折率層3Aにおいて、硫化亜鉛の平均含有量は、第1高屈折率層3Aを構成する材料の総モル数に対して、0.5~99質量%の範囲内であることが好ましく、50~95質量%の範囲内であることがより好ましく、さらに好ましくは60~85質量%の範囲内である。ZnSの比率が高いと共蒸着速度が速くなり、第1高屈折率層3Aの形成速度が速くなる。また、硫化亜鉛の比率が高いと屈折率が高くなり、Agの吸収を低減することができる。一方、ZnS以外の成分が多く含まれると、第1高屈折率層3Aの非晶質性が高まり、第1高屈折率層3Aの割れ(クラック)の発生が抑制される。 In the first high refractive index layer 3A, the average content of zinc sulfide is in the range of 0.5 to 99% by mass with respect to the total number of moles of the material constituting the first high refractive index layer 3A. Preferably, it is in the range of 50 to 95% by mass, and more preferably in the range of 60 to 85% by mass. When the ratio of ZnS is high, the co-evaporation rate is increased, and the formation rate of the first high refractive index layer 3A is increased. Further, when the ratio of zinc sulfide is high, the refractive index is increased, and the absorption of Ag can be reduced. On the other hand, when many components other than ZnS are contained, the amorphousness of the first high refractive index layer 3A is increased, and the occurrence of cracks in the first high refractive index layer 3A is suppressed.
 本発明の透明導電体においては、更には、前述のように、第1高屈折率層3A又は第2高屈折率層3Bは、透明金属層4と隣接する界面領域0.1T(隣接する界面から厚さ方向で、全層厚の10%の領域)における平均硫化亜鉛濃度が、50体積%以上となる条件で形成することが好ましく、さらに好ましくは、第1高屈折率層3Aの透明金属層5と隣接する界面領域0.1Tにおける平均硫化亜鉛濃度、及び第2高屈折率層3Bの透明金属層5と隣接する界面領域0.1Tにおける平均硫化亜鉛濃度が、いずれも70体積%以上であることが好ましい態様である。さらには、80体積%以上であることが好ましく、特に好ましくは90体積%以上の構成である。 In the transparent conductor of the present invention, as described above, the first high refractive index layer 3A or the second high refractive index layer 3B further includes an interface region 0.1T (adjacent interface) adjacent to the transparent metal layer 4. To the thickness direction, and the average zinc sulfide concentration in the region of 10% of the total layer thickness) is preferably 50% by volume or more, more preferably the transparent metal of the first high refractive index layer 3A. mean zinc sulfide concentration, and the average zinc sulfide concentration in the interface region 0.1 T B which is adjacent to the transparent metal layer 5 of the second high refractive index layer 3B are both 70 volume in the interface region 0.1 T a and the adjacent layer 5 % Is a preferred embodiment. Furthermore, it is preferably 80% by volume or more, particularly preferably 90% by volume or more.
 第1高屈折率層3Aの厚さは、10~150nmの範囲内であることが好ましく、より好ましくは10~80nmの範囲内である。第1高屈折率層3Aの厚さが10nm以上であると、第1高屈折率層3Aによって、透明導電体1の導通領域aの光学アドミッタンスが十分に調整される。一方、第1高屈折率層3Aの厚さが150nm以下であれば、第1高屈折率層3Aが含まれる領域の光透過性が低下し難い。第1高屈折率層3Aの厚さは、エリプソメーターで測定される。 The thickness of the first high refractive index layer 3A is preferably in the range of 10 to 150 nm, more preferably in the range of 10 to 80 nm. When the thickness of the first high refractive index layer 3A is 10 nm or more, the optical admittance of the conductive region a of the transparent conductor 1 is sufficiently adjusted by the first high refractive index layer 3A. On the other hand, if the thickness of the first high refractive index layer 3A is 150 nm or less, the light transmittance of the region including the first high refractive index layer 3A is unlikely to decrease. The thickness of the first high refractive index layer 3A is measured with an ellipsometer.
 第1高屈折率層3Aは、共蒸着法により形成することを特徴とする。本発明に適用可能な蒸着法としては、抵抗加熱蒸着法、電子線蒸着法、イオンプレーティング法、イオンビーム蒸着法等が含まれる。蒸着装置としては、例えば、シンクロン社製のBMC-800T蒸着機等を用いることができる。 The first high refractive index layer 3A is formed by a co-evaporation method. Deposition methods applicable to the present invention include resistance heating vapor deposition, electron beam vapor deposition, ion plating, and ion beam vapor deposition. As the vapor deposition apparatus, for example, a BMC-800T vapor deposition machine manufactured by SYNCHRON Co., Ltd. can be used.
 また、第1高屈折率層3Aが所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。第1高屈折率層3Aは、例えば、所望のパターンを有するマスク等を被形成面に配置して、気相形成法でパターン状に形成された層であってもよく、公知のエッチング法、例えば、フォトリソグラフィー法によってパターニングされた層であってもよい。 Further, when the first high refractive index layer 3A is a layer patterned into a desired shape, the patterning method is not particularly limited. The first high refractive index layer 3A may be, for example, a layer formed in a pattern by a vapor phase forming method by placing a mask having a desired pattern on the surface to be formed, and may be a known etching method, For example, it may be a layer patterned by photolithography.
 〔第1硫化防止層〕
 本発明に係る第1高屈折率層3A又は第2高屈折率層3Bでは、硫化亜鉛を含有することを特徴とする。例えば、第1高屈折率層3Aが硫化亜鉛を含有する層である場合、図1B及び図1Cに示すように、第1高屈折率層3Aと透明金属層4との間に第1硫化防止層5Aを形成することが好ましい態様である。第1硫化防止層5Aは、透明導電体1の絶縁領域bにも形成されていてもよいが、導通領域a及び絶縁領域bからなるパターンを視認され難くするとの観点から、図2に示すように導通領域aのみに形成されていることが好ましい。
[First sulfurization prevention layer]
The first high refractive index layer 3A or the second high refractive index layer 3B according to the present invention is characterized by containing zinc sulfide. For example, when the first high-refractive index layer 3A is a layer containing zinc sulfide, as shown in FIGS. 1B and 1C, the first anti-sulfurization layer is provided between the first high-refractive index layer 3A and the transparent metal layer 4. It is a preferred embodiment to form the layer 5A. Although the first sulfidation preventing layer 5A may be formed also in the insulating region b of the transparent conductor 1, as shown in FIG. 2 from the viewpoint of making it difficult to visually recognize the pattern composed of the conductive region a and the insulating region b. Preferably, it is formed only in the conduction region a.
 本発明に係る第1硫化防止層5Aは、金属酸化物、金属窒化物、金属フッ化物等、又はZnを含む層として構成することができる。第1硫化防止層5Aには、これらが一種のみ含まれてもよく、二種以上含まれてもよいが、亜鉛金属元素を含む化合物を含有することが好ましい。ただし、第1高屈折率層3Aと、第1硫化防止層5Aと、透明金属層4とが連続的に形成される場合には、金属酸化物が硫黄と反応可能、もしくは硫黄を吸着可能な化合物であることが好ましい。金属酸化物が、硫黄と反応する化合物である場合、金属酸化物と硫黄との反応物は、可視光の透過性が高いことが好ましい。 The first antisulfurization layer 5A according to the present invention can be configured as a metal oxide, metal nitride, metal fluoride, or the like, or a layer containing Zn. The first sulfidation preventing layer 5A may contain only one kind, or two or more kinds, but preferably contains a compound containing a zinc metal element. However, when the first high refractive index layer 3A, the first sulfidation preventing layer 5A, and the transparent metal layer 4 are continuously formed, the metal oxide can react with sulfur or adsorb sulfur. A compound is preferred. In the case where the metal oxide is a compound that reacts with sulfur, the reaction product of the metal oxide and sulfur preferably has high visible light permeability.
 本発明に係る第1硫化防止層5Aに適用可能な金属酸化物、金属窒化物、金属フッ化物としては、上記第1高屈折率層3Aの説明で記載した金属酸化物、金属窒化物、金属フッ化物と同様の金属化合物を挙げることができる。本発明においては、特に、Zn、ZnO、IZO(酸化インジウム・酸化亜鉛)、GZO(ガリウムドープの酸化亜鉛)であることが好ましい。 Examples of the metal oxide, metal nitride, and metal fluoride applicable to the first sulfidation preventing layer 5A according to the present invention include the metal oxide, metal nitride, and metal described in the description of the first high refractive index layer 3A. The metal compound similar to a fluoride can be mentioned. In the present invention, Zn, ZnO, IZO (indium oxide / zinc oxide) and GZO (gallium-doped zinc oxide) are particularly preferable.
 ここで、第1硫化防止層5Aの厚さは、後述する透明金属層4の形成時の衝撃から、第1高屈折率層3Aの表面を保護可能な厚さであることが好ましい。一方で、第1高屈折率層3Aに含まれ得るZnSは、透明金属層4に含まれる金属との親和性が高い。そのため、第1硫化防止層5Aの厚さが非常に薄く、第1高屈折率層3Aの一部が僅かに露出していると、当該露出部分を中心に透明金属層が成長し、透明金属層4が緻密になりやすい。つまり、第1硫化防止層5Aは比較的薄いことが好ましく、0.1~15nmの範囲内であることが好ましく、より好ましくは0.5~10nmの範囲内であり、さらに好ましくは1~5nmの範囲内である。第1硫化防止層5Aの厚さは、エリプソメーターを用いて測定することができる。 Here, the thickness of the first antisulfurization layer 5A is preferably a thickness capable of protecting the surface of the first high refractive index layer 3A from an impact when forming the transparent metal layer 4 described later. On the other hand, ZnS that can be included in the first high refractive index layer 3 </ b> A has a high affinity with the metal included in the transparent metal layer 4. Therefore, if the thickness of the first anti-sulfurization layer 5A is very thin and a part of the first high refractive index layer 3A is slightly exposed, a transparent metal layer grows around the exposed part, and the transparent metal Layer 4 tends to be dense. In other words, the first antisulfurization layer 5A is preferably relatively thin, preferably in the range of 0.1 to 15 nm, more preferably in the range of 0.5 to 10 nm, and still more preferably 1 to 5 nm. Is within the range. The thickness of the first sulfurization preventing layer 5A can be measured using an ellipsometer.
 第1硫化防止層5Aは、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相形成法で形成することができるが、特に真空蒸着法を適用することが好ましい。 The first sulfurization preventing layer 5A can be formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, etc. It is preferable to do.
 第1硫化防止層5Aが、所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。第1硫化防止層5Aは、例えば、所望のパターンを有するマスク等を被形成面に配置して、気相形成法でパターン状に形成された層であってもよく、公知のエッチング法によってパターニングされた層であってもよい。 When the first antisulfurization layer 5A is a layer patterned into a desired shape, the patterning method is not particularly limited. The first sulfidation preventing layer 5A may be a layer formed in a pattern by a vapor phase forming method by placing a mask having a desired pattern on the surface to be formed, and patterned by a known etching method, for example. It may be a layer formed.
 〔透明金属層〕
 透明金属層4は、透明導電体1において電気を導通させるための膜である。透明金属層4は、図1A~図1Cに記載の様に透明基板2の全面に形成されていてもよく、また、図2に示すように所望の形状にパターニングされていてもよい。
(Transparent metal layer)
The transparent metal layer 4 is a film for conducting electricity in the transparent conductor 1. The transparent metal layer 4 may be formed on the entire surface of the transparent substrate 2 as shown in FIGS. 1A to 1C, or may be patterned into a desired shape as shown in FIG.
 透明金属層4に含まれる金属は、導電性の高い金属であれば特に制限されず、例えば、銀、銅、金、白金族、チタン、クロム等を挙げることができる。透明金属層4には、これらの金属が1種のみ含まれてもよく、2種以上含まれてもよい。 The metal contained in the transparent metal layer 4 is not particularly limited as long as it is a highly conductive metal, and examples thereof include silver, copper, gold, platinum group, titanium, and chromium. The transparent metal layer 4 may contain only one kind of these metals or two or more kinds.
 導電性が高いという観点から、透明金属層4を構成する金属元素としては銀、又は銀が90原子%以上含まれる合金からなることが好ましい。銀と組み合わされる金属は、亜鉛、金、銅、パラジウム、アルミニウム、マンガン、ビスマス、ネオジム、モリブデン等を挙げることができる。例えば、銀と亜鉛とが組み合わされると、透明金属層の耐硫化性が高まる。銀と金とが組み合わされると、耐塩(NaCl)性が高まる。さらに銀と銅とが組み合わされると、耐酸化性が高まる。 From the viewpoint of high conductivity, the metal element constituting the transparent metal layer 4 is preferably made of silver or an alloy containing 90 atomic% or more of silver. Examples of the metal combined with silver include zinc, gold, copper, palladium, aluminum, manganese, bismuth, neodymium, and molybdenum. For example, when silver and zinc are combined, the sulfide resistance of the transparent metal layer is increased. When silver and gold are combined, salt resistance (NaCl) resistance increases. Furthermore, when silver and copper are combined, the oxidation resistance increases.
 透明金属層4のプラズモン吸収率は、波長400~800nmにわたって(全範囲で)10%以下であることが好ましく、7%以下であることがより好ましく、さらに好ましくは5%以下である。波長400~800nmの一部にプラズモン吸収率が大きい領域があると、透明導電体1の導通領域aの透過光が着色しやすくなる。 The plasmon absorption rate of the transparent metal layer 4 is preferably 10% or less (over the entire range) over a wavelength range of 400 to 800 nm, more preferably 7% or less, and even more preferably 5% or less. If there is a region having a large plasmon absorption rate in a part of the wavelength of 400 to 800 nm, the transmitted light of the conductive region a of the transparent conductor 1 is likely to be colored.
 透明金属層4の波長400~800nmにおけるプラズモン吸収率は、以下の手順で測定される。 The plasmon absorption rate at a wavelength of 400 to 800 nm of the transparent metal layer 4 is measured by the following procedure.
 (i)ガラス基板上に、白金パラジウムをシンクロン社製のBMC-800T蒸着装置にて層厚0.1nmで形成する。白金パラジウムの平均厚さは、蒸着装置のメーカー公称値の形成速度等から算出する。その後、白金パラジウムが付着した基板上に、真空蒸着法で金属からなる金属膜を20nmの厚さで形成する。 (I) On a glass substrate, platinum palladium is formed with a layer thickness of 0.1 nm by a BMC-800T vapor deposition apparatus manufactured by SYNCHRON. The average thickness of platinum palladium is calculated from the formation rate of the manufacturer's nominal value of the vapor deposition apparatus. Thereafter, a metal film made of metal is formed with a thickness of 20 nm on the substrate to which platinum palladium is adhered by a vacuum deposition method.
 (ii)そして、得られた金属膜の表面の法線に対して、5°傾けた角度から測定光を入射させ、金属膜の透過率及び反射率を測定する。そして各波長における透過率及び反射率から、吸収率=100-(透過率+反射率)を算出し、これをリファレンスデータとする。透過率及び反射率は、分光光度計で測定する。 (Ii) Then, measurement light is incident from an angle inclined by 5 ° with respect to the normal of the surface of the obtained metal film, and the transmittance and reflectance of the metal film are measured. Then, from the transmittance and reflectance at each wavelength, absorption rate = 100− (transmittance + reflectance) is calculated and used as reference data. The transmittance and reflectance are measured with a spectrophotometer.
 (iii)続いて、測定対象の透明金属層を同様のガラス基板上に形成する。そして、当該透明金属層について、同様に透過率及び反射率を測定する。得られた吸収率から上記リファレンスデータを差し引き、算出された値を、プラズモン吸収率とする。 (Iii) Subsequently, a transparent metal layer to be measured is formed on the same glass substrate. And about the said transparent metal layer, the transmittance | permeability and a reflectance are measured similarly. The reference data is subtracted from the obtained absorption rate, and the calculated value is defined as the plasmon absorption rate.
 透明金属層4の厚さは10nm以下であることが好ましく、より好ましくは3~9nmの範囲内であり、さらに好ましくは5~8nmの範囲内である。本発明の透明導電体1では、透明金属層4の厚さが10nm以下であるため、透明金属層4に金属本来の反射が生じ難い。さらに、透明金属層4の厚さを10nm以下にすると、第1高屈折率層3A及び第2高屈折率層3Bによって、透明導電体1の光学アドミッタンスが調整されやすく、導通領域a表面での光の反射が抑制されやすい。透明金属層4の厚さは、エリプソメーターを用いて測定して求めることができる。 The thickness of the transparent metal layer 4 is preferably 10 nm or less, more preferably in the range of 3 to 9 nm, and still more preferably in the range of 5 to 8 nm. In the transparent conductor 1 of the present invention, since the thickness of the transparent metal layer 4 is 10 nm or less, the metal inherent reflection hardly occurs in the transparent metal layer 4. Furthermore, when the thickness of the transparent metal layer 4 is 10 nm or less, the optical admittance of the transparent conductor 1 can be easily adjusted by the first high refractive index layer 3A and the second high refractive index layer 3B, and the surface of the conductive region a can be adjusted. Light reflection is easily suppressed. The thickness of the transparent metal layer 4 can be determined by measurement using an ellipsometer.
 透明金属層4は、いずれの形成方法で形成された層でもよいが、真空蒸着法で形成された層であることが好ましい。 The transparent metal layer 4 may be a layer formed by any formation method, but is preferably a layer formed by a vacuum deposition method.
 真空蒸着法であれば、高温環境に透明基板を晒すことがなく、平面性の高い透明金属層を、極めて速い形成速度で形成することができる。 If it is a vacuum evaporation method, a transparent substrate will not be exposed to a high temperature environment, but a transparent metal layer with high flatness can be formed at a very high formation rate.
 一方、透明金属層4が後述する下地層上に形成する場合には、透明金属層4の形成時に下地層が成長核となるため、透明金属層4が平滑な膜になりやすい。その結果、透明金属層4が薄くとも、プラズモン吸収が生じ難くなる。 On the other hand, when the transparent metal layer 4 is formed on an underlayer described later, since the underlayer becomes a growth nucleus when the transparent metal layer 4 is formed, the transparent metal layer 4 tends to be a smooth film. As a result, even if the transparent metal layer 4 is thin, plasmon absorption hardly occurs.
 また、透明金属層4が所望の形状にパターニングされた膜である場合、パターニング方法は特に制限されない。透明金属層4は、例えば、所望のパターンを有するマスクを配置して形成された層であってもよく;公知のエッチング法によってパターニングされた膜であってもよい。 Further, when the transparent metal layer 4 is a film patterned in a desired shape, the patterning method is not particularly limited. The transparent metal layer 4 may be, for example, a layer formed by arranging a mask having a desired pattern; it may be a film patterned by a known etching method.
 〔第2硫化防止層〕
 第2高屈折率層3Bは少なくとも硫化亜鉛を含有する層であり、図1Cに例示するように、透明金属層4と第2高屈折率層3Bとの間に第2硫化防止層5Bが形成された構成であることが好ましい。
[Second anti-sulfurization layer]
The second high refractive index layer 3B is a layer containing at least zinc sulfide. As illustrated in FIG. 1C, the second antisulfuric layer 5B is formed between the transparent metal layer 4 and the second high refractive index layer 3B. It is preferable that it is the structure comprised.
 第2硫化防止層5Bは、透明導電体1の絶縁領域bにも形成されていてもよいが、導通領域a及び絶縁領域bからなるパターンを視認され難くするとの観点から、導通領域aのみに形成されていることが好ましい。 The second sulfidation preventing layer 5B may be formed also in the insulating region b of the transparent conductor 1, but from the viewpoint of making it difficult to visually recognize the pattern composed of the conductive region a and the insulating region b, only the conductive region a. Preferably it is formed.
 当該第2硫化防止層5Bは、前述の第1硫化防止層と同様の構成材料及び構成方法で形成することができる。 The second sulfidation preventing layer 5B can be formed by the same material and method as the first sulfidation preventing layer.
 第2硫化防止層5Bの厚さは、後述する第2高屈折率層3Bの成膜時の衝撃から、透明金属層4の表面を保護するのに可能な厚さであることが好ましい。一方で、透明金属層4に含まれる金属と、第2高屈折率層3Bに含まれるZnSは親和性が高いため、第2硫化防止層5Bの厚さが非常に薄く、透明金属層4の一部が僅かに露出していると、透明金属層4や第2硫化防止層5Bと第2高屈折率層3Bとの密着性が高まりやすい。したがって、第2硫化防止層5Bの具体的な厚さは0.1~10nmの範囲内であることが好ましく、より好ましくは0.5~5nmの範囲内であり、さらに好ましくは1~3nmの範囲内である。第2硫化防止層5Bの厚さは、エリプソメーターで測定される。 The thickness of the second antisulfurization layer 5B is preferably a thickness capable of protecting the surface of the transparent metal layer 4 from an impact during film formation of the second high refractive index layer 3B described later. On the other hand, since the metal contained in the transparent metal layer 4 and ZnS contained in the second high refractive index layer 3B have high affinity, the thickness of the second antisulfurization layer 5B is very thin. If a part of the layer is slightly exposed, the adhesion between the transparent metal layer 4 or the second antisulfurization layer 5B and the second high refractive index layer 3B is likely to increase. Therefore, the specific thickness of the second antisulfurization layer 5B is preferably in the range of 0.1 to 10 nm, more preferably in the range of 0.5 to 5 nm, and still more preferably in the range of 1 to 3 nm. Within range. The thickness of the second sulfidation preventive layer 5B is measured with an ellipsometer.
 〔第2高屈折率層〕
 第2高屈折率層3Bは、透明導電体1の導通領域a、すなわち透明金属層4が形成されている領域の光透過性(光学アドミッタンス)を調整するための層であり、少なくとも透明導電体1の導通領域aに形成される。第2高屈折率層3Bは、透明導電体1の絶縁領域bに形成されてもよいが、導通領域a及び絶縁領域bからなるパターンを視認され難くするとの観点から、導通領域aのみに形成されていることが好ましい。
[Second high refractive index layer]
The second high refractive index layer 3B is a layer for adjusting the light transmittance (optical admittance) of the conductive region a of the transparent conductor 1, that is, the region where the transparent metal layer 4 is formed, and at least the transparent conductor 1 conductive region a. The second high-refractive index layer 3B may be formed in the insulating region b of the transparent conductor 1, but is formed only in the conductive region a from the viewpoint of making it difficult to visually recognize the pattern including the conductive region a and the insulating region b. It is preferable that
 前述の第1高屈折率層3Aが硫化亜鉛を含まない層である場合には、第2高屈折率層3Bは、硫化亜鉛と、金属酸化物、金属フッ化物及び金属窒化物から選ばれる少なくとも一種の金属化合物とを共蒸着法により形成した本発明に係る高屈折率層となる。また、第1高屈折率層3Aと第2高屈折率層3Bが、共に、硫化亜鉛と、金属酸化物、金属フッ化物及び金属窒化物から選ばれる少なくとも一種の金属化合物とを共蒸着法により形成した層であってもよい。 When the first high refractive index layer 3A is a layer not containing zinc sulfide, the second high refractive index layer 3B is at least selected from zinc sulfide, metal oxide, metal fluoride, and metal nitride. The high refractive index layer according to the present invention is formed by co-evaporation with a kind of metal compound. Further, both the first high refractive index layer 3A and the second high refractive index layer 3B are prepared by co-evaporation of zinc sulfide and at least one metal compound selected from metal oxide, metal fluoride, and metal nitride. It may be a formed layer.
 本発明に係る第2高屈折率層3Bは、先に説明した第1高屈折率層3Aと同様の構成材料を用い、同様の方法及び条件で形成することができ、詳細な説明は省略する。 The second high-refractive index layer 3B according to the present invention can be formed by using the same constituent material as that of the first high-refractive index layer 3A described above, under the same method and conditions, and detailed description thereof is omitted. .
 〔その他の構成層〕
 (下地層)
 本発明の透明導電体1においては、必要に応じて、透明金属層4の形成時に成長核となる下地層を設けてもよい。下地層は、透明金属層4より透明基板1側で、かつ透明金属層4に隣接した位置に配置される層であり、第1高屈折率層3Aと透明金属層4との間、もしくは第1硫化防止層5Aと透明金属層4との間に形成されること好ましい。下地層は、少なくとも透明導電体1の導通領域aに形成されていることが好ましく、透明導電体1の絶縁領域bに形成されていてもよい。
[Other component layers]
(Underlayer)
In the transparent conductor 1 of this invention, you may provide the base layer used as a growth nucleus at the time of formation of the transparent metal layer 4 as needed. The underlayer is a layer disposed on the transparent substrate 1 side with respect to the transparent metal layer 4 and at a position adjacent to the transparent metal layer 4, and between the first high refractive index layer 3A and the transparent metal layer 4, or the first 1 It is preferable to form between the sulfidation prevention layer 5A and the transparent metal layer 4. The underlayer is preferably formed at least in the conductive region a of the transparent conductor 1, and may be formed in the insulating region b of the transparent conductor 1.
 透明導電体1に下地層を設けることにより、透明金属層4の厚さが薄い場合でも、透明金属層4表面の平滑性が高めることができる。その理由は以下の通りである。 By providing the base layer on the transparent conductor 1, even when the transparent metal layer 4 is thin, the smoothness of the surface of the transparent metal layer 4 can be improved. The reason is as follows.
 一般的な真空蒸着法で透明金属層4の材料を、例えば、第1高屈折率層3A上に蒸着させると、形成初期には、第1高屈折率層3A上に付着した原子、例えば、銀原子がマイグレート(移動)し、原子が寄り集まって塊(海島状構造)を形成する。そして、この塊にまとわりつきながら膜が成長する。そのため、形成初期の膜では、塊同士の間に隙間があり、導通しない。この状態からさらに塊が成長すると、塊同士の一部が繋がり、かろうじて導通する。しかし、塊同士の間に未だ隙間があるため、プラズモン吸収が生じる。そして、さらに形成が進むと、塊同士が完全に繋がって、プラズモン吸収が少なくなる。しかしその一方で、金属本来の反射が生じ、膜の光透過性が低下する。 When the material of the transparent metal layer 4 is vapor-deposited on the first high refractive index layer 3A by a general vacuum vapor deposition method, for example, at the initial stage of formation, atoms attached on the first high refractive index layer 3A, for example, Silver atoms migrate (move), and atoms gather together to form a mass (sea-island structure). And a film grows clinging to this lump. Therefore, in the film at the initial stage of formation, there is a gap between the lumps, and the film is not conductive. When a lump further grows from this state, a part of the lump is connected and barely conducted. However, since there is still a gap between the lumps, plasmon absorption occurs. As the formation proceeds further, the lumps are completely connected and plasmon absorption is reduced. However, on the other hand, the intrinsic reflection of the metal occurs, and the light transmittance of the film decreases.
 これに対し、第1高屈折率層3A上をマイグレートし難い金属からなる下地層が形成されていると、当該下地層を成長核として、透明金属層4が成長する。つまり、透明金属層4の材料がマイグレートし難くなり、前述の島状構造を形成せずに膜が成長する。その結果、厚さが薄くとも平滑な透明金属層4が得られやすくなる。 On the other hand, when a base layer made of a metal that is difficult to migrate is formed on the first high refractive index layer 3A, the transparent metal layer 4 grows using the base layer as a growth nucleus. That is, the material of the transparent metal layer 4 is difficult to migrate, and the film grows without forming the island-like structure described above. As a result, a smooth transparent metal layer 4 can be easily obtained even if the thickness is small.
 下地層には、パラジウム、モリブデン、亜鉛、ゲルマニウム、ニオブ又はインジウム、あるいはこれらの金属と他の金属との合金や、これらの金属の酸化物や硫化物(例えば、ZnS)が含まれることが好ましい。下地層には、これらが一種のみ含まれてもよく、二種以上が含まれてもよい。 The underlayer preferably contains palladium, molybdenum, zinc, germanium, niobium or indium, an alloy of these metals with other metals, or an oxide or sulfide of these metals (for example, ZnS). . The underlayer may contain only one kind, or two or more kinds.
 下地層に含まれるパラジウム、モリブデン、亜鉛、ゲルマニウム、ニオブ又はインジウムの量は、20質量%以上であることが好ましく、より好ましくは40質量%以上であり、さらに好ましくは60質量%以上である。下地層に上記金属が20質量%以上含まれると、下地層と透明金属層4との親和力が高まり、下地層と透明金属層4との密着性が高まりやすい。下地層には、パラジウム又はモリブデンが含まれることが特に好ましい。 The amount of palladium, molybdenum, zinc, germanium, niobium or indium contained in the underlayer is preferably 20% by mass or more, more preferably 40% by mass or more, and further preferably 60% by mass or more. When the metal is contained in the base layer in an amount of 20% by mass or more, the affinity between the base layer and the transparent metal layer 4 increases, and the adhesion between the base layer and the transparent metal layer 4 tends to increase. It is particularly preferable that the underlayer contains palladium or molybdenum.
 一方、パラジウム、モリブデン、亜鉛、ゲルマニウム、ニオブ又はインジウムと合金を形成する金属は特に制限されないが、例えば、パラジウム以外の白金族、金、コバルト、ニッケル、チタン、アルミニウム、クロム等が挙げられる。 On the other hand, the metal that forms an alloy with palladium, molybdenum, zinc, germanium, niobium, or indium is not particularly limited, and examples thereof include platinum group other than palladium, gold, cobalt, nickel, titanium, aluminum, and chromium.
 下地層の層厚は3nm以下であることが好ましく、より好ましくは0.5nm以下であり、特に好ましくは単原子膜である。下地層は、透明基板2上に金属原子が互いに離間して付着している膜でもありうる。下地層の付着量が3nm以下であれば、下地層が透明導電体1の光透過性や光学アドミッタンスに影響を及ぼし難い。下地層の有無はICP-MS法で確認される。また、下地層の層厚は、形成速度と形成時間との積から算出される。 The layer thickness of the underlayer is preferably 3 nm or less, more preferably 0.5 nm or less, and particularly preferably a monoatomic film. The underlayer can also be a film in which metal atoms are deposited on the transparent substrate 2 so as to be separated from each other. When the adhesion amount of the underlayer is 3 nm or less, the underlayer hardly affects the light transmittance and optical admittance of the transparent conductor 1. The presence or absence of the underlayer is confirmed by the ICP-MS method. The layer thickness of the underlayer is calculated from the product of the formation speed and the formation time.
 下地層は、蒸着法で形成された層であることが好ましい。蒸着法には、真空蒸着法、電子線蒸着法、イオンプレーティング法、イオンビーム蒸着法等が含まれる。蒸着時間は、所望の下地層の厚さ、及び形成速度に合わせて適宜選択される。蒸着速度は、好ましくは0.01~1.5nm/秒であり、より好ましくは0.01~0.7nm/秒である。 The underlayer is preferably a layer formed by a vapor deposition method. The vapor deposition method includes a vacuum vapor deposition method, an electron beam vapor deposition method, an ion plating method, an ion beam vapor deposition method and the like. The deposition time is appropriately selected according to the desired thickness of the underlying layer and the formation speed. The deposition rate is preferably 0.01 to 1.5 nm / second, more preferably 0.01 to 0.7 nm / second.
 下地層が所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。下地層は、例えば、所望のパターンを有するマスク等を被形成面に配置して、気相形成法でパターン状に形成された層であってもよく;公知のエッチング法によってパターニングされた層であってもよい。 When the ground layer is a layer patterned into a desired shape, the patterning method is not particularly limited. The underlayer may be, for example, a layer formed in a pattern by a vapor phase forming method by placing a mask having a desired pattern on the surface to be formed; a layer patterned by a known etching method There may be.
 (低屈折率層)
 本発明の透明導電体1には、第2高屈折率層3B上に、透明導電体の導通領域aの光透過性(光学アドミッタンス)を調整する目的で、低屈折率層(図示せず)を有していてもよい。低屈折率層は、透明導電体1の導通領域aにのみ形成されていてもよく、透明導電体1の導通領域a及び絶縁領域bの両方に形成されていてもよい。
(Low refractive index layer)
In the transparent conductor 1 of the present invention, a low refractive index layer (not shown) is provided on the second high refractive index layer 3B for the purpose of adjusting the light transmittance (optical admittance) of the conductive region a of the transparent conductor. You may have. The low refractive index layer may be formed only in the conductive region a of the transparent conductor 1 or may be formed in both the conductive region a and the insulating region b of the transparent conductor 1.
 低屈折率層には、第1高屈折率層3A及び第2高屈折率層3Bに含まれる誘電性材料又は酸化物半導材料の波長570nmの光における屈折率より低い誘電性材料又は酸化物半導体材料が含まれる。低屈折率層に含まれる誘電性材料又は酸化物半導体材料の波長570nmの光の屈折率は、第1高屈折率層3A及び第2高屈折率層3Bに含まれる上記材料の波長570nmの光の屈折率より、それぞれ0.2以上低いことが好ましく、0.4以上低いことがより好ましい。 The low refractive index layer includes a dielectric material or oxide having a lower refractive index than that of the dielectric material or oxide semiconductor material included in the first high refractive index layer 3A and the second high refractive index layer 3B in light having a wavelength of 570 nm. Semiconductor material is included. The refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the low refractive index layer is the light of wavelength 570 nm of the above material contained in the first high refractive index layer 3A and the second high refractive index layer 3B. The refractive index is preferably 0.2 or more lower and more preferably 0.4 or more lower.
 〔透明導電体の物性〕
 本発明の透明導電体の波長450~800nmの光の平均透過率は、導通領域a及び絶縁領域bのいずれにおいても83%以上であることが好ましく、より好ましくは85%以上であり、さらに好ましくは88%以上である。上記波長範囲における平均透過率が83%以上であると、透明導電体を、可視光に対して高い透明性が要求される用途、例えば、タッチパネル等に適用することができる。
[Physical properties of transparent conductor]
The average transmittance of light having a wavelength of 450 to 800 nm of the transparent conductor of the present invention is preferably 83% or more, more preferably 85% or more, and even more preferably in both the conduction region a and the insulation region b. Is 88% or more. When the average transmittance in the above wavelength range is 83% or more, the transparent conductor can be applied to applications that require high transparency to visible light, such as touch panels.
 一方、透明導電体の波長400~1000nmの光の平均透過率は、導通領域a及び絶縁領域bのいずれにおいても80%以上であることが好ましく、より好ましくは83%以上、さらに好ましくは85%以上である。波長400~1000nmの光の平均透過率が80%以上であると、広い波長範囲の光に対して透明性が要求される用途、例えば太陽電池用の透明導電膜等にも透明導電体を適用することができる。 On the other hand, the average transmittance of light having a wavelength of 400 to 1000 nm of the transparent conductor is preferably 80% or more in both the conduction region a and the insulation region b, more preferably 83% or more, and still more preferably 85%. That's it. When the average transmittance of light having a wavelength of 400 to 1000 nm is 80% or more, the transparent conductor is also applied to applications requiring transparency with respect to light in a wide wavelength range, such as a transparent conductive film for solar cells. can do.
 一方、透明導電体の波長400~800nmの光の平均吸収率は、導通領域a及び絶縁領域bのいずれにおいても10%以下であることが好ましく、より好ましくは8%以下であり、さらに好ましくは7%以下である。また、透明導電体の波長450~800nmの光の吸収率の最大値は、導通領域a及び絶縁領域bのいずれにおいても15%以下であることが好ましく、より好ましくは10%以下であり、さらに好ましくは9%以下である。一方、透明導電体の波長500~700nmの光の平均反射率は、導通領域a及び絶縁領域bのいずれにおいても、20%以下であることが好ましく、より好ましくは15%以下であり、さらに好ましくは10%以下である。透明導電体の平均吸収率及び平均反射率が低いほど、前述の平均透過率が高まる。 On the other hand, the average absorptance of light having a wavelength of 400 to 800 nm of the transparent conductor is preferably 10% or less, more preferably 8% or less, and even more preferably in both the conduction region a and the insulation region b. 7% or less. In addition, the maximum value of the light absorptance of the transparent conductor having a wavelength of 450 to 800 nm is preferably 15% or less, more preferably 10% or less, both in the conduction region a and the insulation region b. Preferably it is 9% or less. On the other hand, the average reflectance of light having a wavelength of 500 to 700 nm of the transparent conductor is preferably 20% or less, more preferably 15% or less, and even more preferably in both the conduction region a and the insulation region b. Is 10% or less. The lower the average absorptance and average reflectance of the transparent conductor, the higher the aforementioned average transmittance.
 上記平均透過率、平均吸収率、及び平均反射率は、透明導電体の使用環境下で測定した平均透過率、平均吸収率、及び平均反射率であることが好ましい。具体的には、透明導電体が有機樹脂と貼り合わせて使用される場合には、透明導電体上に有機樹脂からなる層を配置して平均透過率及び平均反射率測定することが好ましい。一方、透明導電体が大気中で使用される場合には、大気中での平均透過率及び平均反射率を測定することが好ましい。透過率及び反射率は、透明導電体の表面の法線に対して5°傾けた角度から測定光を入射させて分光光度計で測定する。吸収率は、100-(透過率+反射率)の計算式より算出される。 The average transmittance, average absorptance, and average reflectance are preferably the average transmittance, average absorptivity, and average reflectance measured in the environment where the transparent conductor is used. Specifically, when the transparent conductor is used by being bonded to an organic resin, it is preferable to measure the average transmittance and the average reflectance by disposing a layer made of the organic resin on the transparent conductor. On the other hand, when the transparent conductor is used in the air, it is preferable to measure the average transmittance and the average reflectance in the air. The transmittance and the reflectance are measured with a spectrophotometer by allowing measurement light to enter from an angle inclined by 5 ° with respect to the normal of the surface of the transparent conductor. The absorptance is calculated from a calculation formula of 100− (transmittance + reflectance).
 また、透明導電体1が、図2に示すように導通領域a及び絶縁領域bを有する場合、導通領域aの反射率及び絶縁領域bの反射率がそれぞれ近似することが好ましい。具体的には、導通領域aの視感反射率と、絶縁領域bの視感反射率との差ΔRが5%以下であることが好ましく、3%以下であることがより好ましく、さらに好ましくは1%以下であり、特に好ましくは0.3%以下である。一方、導通領域a及び絶縁領域bの視感反射率は、それぞれ5%以下であることが好ましく、より好ましくは3%以下であり、さらに好ましくは1%以下である。視感反射率は、分光光度計(U4100;日立ハイテクノロジーズ社製)で測定されるY値である。 Further, when the transparent conductor 1 has the conductive region a and the insulating region b as shown in FIG. 2, it is preferable that the reflectance of the conductive region a and the reflectance of the insulating region b are approximated. Specifically, the difference ΔR between the luminous reflectance of the conduction region a and the luminous reflectance of the insulating region b is preferably 5% or less, more preferably 3% or less, and still more preferably It is 1% or less, particularly preferably 0.3% or less. On the other hand, the luminous reflectances of the conductive region a and the insulating region b are each preferably 5% or less, more preferably 3% or less, and further preferably 1% or less. The luminous reflectance is a Y value measured with a spectrophotometer (U4100; manufactured by Hitachi High-Technologies Corporation).
 また透明導電体1に導通領域a及び絶縁領域bが含まれる場合、いずれの領域においても、L表色系におけるa値及びb値は±30以内であることが好ましく、より好ましくは±5.0以内であり、さらに好ましくは±3.0以内であり、特に好ましくは±2.0以内である。L表色系におけるa値及びb値が±30以内であれば、導通領域a及び絶縁領域bのいずれの領域も無色透明に観察される。L表色系におけるa値及びb値は、市販の分光光度計で測定される。 When the transparent conductor 1 includes the conduction region a and the insulation region b, the a * value and the b * value in the L * a * b * color system are preferably within ± 30 in any region. More preferably, it is within ± 5.0, more preferably within ± 3.0, and particularly preferably within ± 2.0. If the a * value and the b * value in the L * a * b * color system are within ± 30, both the conduction region a and the insulation region b are observed as colorless and transparent. The a * value and b * value in the L * a * b * color system are measured with a commercially available spectrophotometer.
 透明導電体の導通領域aの表面電気抵抗は、50Ω/□以下であることが好ましく、さらに好ましくは30Ω/□以下である。導通領域の表面電気抵抗値が50Ω/□以下である透明導電体は、静電容量方式のタッチパネル用の透明導電パネル等に適用できる。導通領域aの表面電気抵抗値は、透明金属層の厚さ等によって調整される。導通領域aの表面電気抵抗値は、例えば、JIS K7194、ASTM D257等に準拠して測定される。また、市販の表面電気抵抗率計によっても測定される。 The surface electric resistance of the conductive region a of the transparent conductor is preferably 50Ω / □ or less, more preferably 30Ω / □ or less. A transparent conductor having a surface electric resistance value of 50 Ω / □ or less in the conduction region can be applied to a transparent conductive panel for a capacitive touch panel. The surface electrical resistance value of the conduction region a is adjusted by the thickness of the transparent metal layer and the like. The surface electrical resistance value of the conduction region a is measured in accordance with, for example, JIS K7194, ASTM D257, and the like. It is also measured by a commercially available surface electrical resistivity meter.
 〔透明導電体の光学アドミッタンス〕
 透明導電体の透過領域aの表面(透明導電体において透明基板とは反対側の表面)の反射率Rは、光が入射する媒質の光学アドミッタンスYenvと、透明導電体の透過領域aの表面の等価アドミッタンスYとから定まる。ここで光が入射する媒質とは、透明導電体に入射する光が、その入射直前に通過する部材又は環境であって;有機樹脂からなる部材、もしくは環境をいう。光が入射する媒質の光学アドミッタンスYenvと、透明導電体の表面の等価アドミッタンスYとの関係は以下の式で表される。
[Optical admittance of transparent conductor]
The reflectance R of the surface of the transparent conductor transmission region a (the surface of the transparent conductor opposite to the transparent substrate) is determined by the optical admittance Y env of the medium on which light is incident and the surface of the transparent conductor transmission region a. determined from the equivalent admittance Y E. Here, the medium on which light is incident refers to a member or environment through which light incident on the transparent conductor passes immediately before the incident; a member or environment made of an organic resin. The relationship between the optical admittance Y env of the medium on which light is incident and the equivalent admittance Y E of the surface of the transparent conductor is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記式において、Rは表面の反射率である。上記の式に基づけば、|Yenv-Y|が0に近い程、透明導電体(透過領域a)の表面の反射率Rが低くなる。 In the above formula, R is the reflectance of the surface. Based on the above formula, the closer the value of | Y env −Y E | is to 0, the lower the reflectance R of the surface of the transparent conductor (transmission region a).
 前記媒質の光学アドミッタンスYenvは、電場強度と磁場強度との比(H/E)から求められ、通常、媒質の屈折率nenvと同一である。一方、透明導電体の透過領域aの表面の等価アドミッタンスYは、透過領域aを構成する層の光学アドミッタンスYから求められる。例えば透明導電体(透過領域a)が一層からなる場合には、透明導電体の等価アドミッタンスYは、当該層の光学アドミッタンスY(屈折率)と等しくなる。 The optical admittance Y env of the medium is obtained from the ratio (H / E) of the electric field strength and the magnetic field strength, and is usually the same as the refractive index n env of the medium. On the other hand, the equivalent admittance Y E of the surface of the transparent region a of the transparent conductor is determined from the optical admittance Y of the layers constituting the transparent region a. For example, when the transparent conductor (transmission region a) is composed of one is equivalent admittance Y E of the transparent conductor is equal to the of the layer optical admittance Y (refractive index).
 一方、透明導電体(透過領域a)が積層体からなる場合、1層目からx層目までの積層体の光学アドミッタンスY(E H)は、1層目から(x-1)層目までの積層体の光学アドミッタンスYx-1(Ex-1 Hx-1)と、特定のマトリクスとの積で表され;具体的には以下の式(1)又は式(2)にて求められる。 On the other hand, when the transparent conductor (transmission region a) is composed of a laminate, the optical admittance Y x (E x H x ) of the laminate from the first layer to the x-th layer is from the first layer to (x−1) It is represented by the product of the optical admittance Y x-1 (E x-1 H x-1 ) of the laminate up to the layer and a specific matrix; specifically, the following formula (1) or formula (2) Is required.
 (x層目が誘電性材料又は酸化物半導体材料からなる層である場合)
Figure JPOXMLDOC01-appb-M000002
(When the x-th layer is a layer made of a dielectric material or an oxide semiconductor material)
Figure JPOXMLDOC01-appb-M000002
 上記式(1)において、δ=2πnd/λであり、y=n(x層目の膜のアドミッタンス)、dはx層目の膜の厚さである。 In the above formula (1), δ = 2πnd / λ, y = n (admittance of the x-th layer film), and d is the thickness of the x-th layer film.
 (x層目が理想金属層である場合)
Figure JPOXMLDOC01-appb-M000003
(When the x-th layer is an ideal metal layer)
Figure JPOXMLDOC01-appb-M000003
 上記式(2)において、γ=2π/λ・kd、dはx層目の膜の厚さ、kは膜の屈折率(虚部)である。 In the above formula (2), γ = 2π / λ · kd, d is the thickness of the x-th layer film, and k is the refractive index (imaginary part) of the film.
 そして、x層目が最表層であるときの、透明基板から最表層までの積層物の光学アドミッタンスYx(E H)が、当該透明導電体の等価アドミッタンスYとなる。 When the x-th layer is the outermost layer, the optical admittance Yx (E x H x ) of the laminate from the transparent substrate to the outermost layer becomes the equivalent admittance Y E of the transparent conductor.
 図4に、透明導電体の一例として、透明基板2/第1高屈折率層3A(ZnS-SiO)/第1硫化防止層5A(ITO)/透明金属層4(Ag)/第2高屈折率層3B(ZnS-SiOから構成される透明導電体1の導通領域aの波長570nmのアドミッタンス軌跡を示す。グラフの横軸は、当該領域の光学アドミッタンスYをx+iyで表したときの実部、つまり当該式(1)におけるxであり、縦軸は光学アドミッタンスの虚部、すなわち当該式(1)におけるyである。なお、例示した透明導電体1では、第1硫化防止層5A(ITO)は厚さが十分に薄いため、その光学アドミッタンスは無視できる。 In FIG. 4, as an example of the transparent conductor, transparent substrate 2 / first high refractive index layer 3A (ZnS—SiO 2 ) / first antisulfurization layer 5A (ITO) / transparent metal layer 4 (Ag) / second high Refractive index layer 3B (the admittance locus of wavelength 570 nm of the conductive region a of the transparent conductor 1 composed of ZnS—SiO 2 is shown. The horizontal axis of the graph represents the optical admittance Y of the region expressed as x + ii. The vertical part is the imaginary part of the optical admittance, that is, y in the formula (1) In the illustrated transparent conductor 1, the first antisulfurization layer Since 5A (ITO) is sufficiently thin, its optical admittance is negligible.
 図4において、アドミッタンス軌跡の最終座標が、導通領域aの等価アドミッタンスYである。そして、等価アドミッタンスYの座標(x,y)と、光が入射する媒質のアドミッタンス座標Yenv(nenv,0)(図示せず)との距離が、透明導電体の導通領域aの表面の反射率Rに比例する。 4, the last coordinate in the admittance locus is equivalent admittance Y E conductive region a. The distance between the coordinate (x E , y E ) of the equivalent admittance Y E and the admittance coordinate Y env (n env , 0) (not shown) of the medium on which the light is incident is determined by the conduction region a of the transparent conductor. It is proportional to the surface reflectance R.
 ここで、本発明の透明導電体では、透明金属層4の高屈折率層側の表面の波長570nmにおける光学アドミッタンスをY1(=x+iy)とし、透明金属層4の中間層側の表面の波長570nmにおける光学アドミッタンスをY2(=x+iy)とした場合に、x及びxのうちいずれか一方、もしくは両方が1.6以上であることが好ましい。x又はxのうちいずれか一方が、1.6以上であると透明導電体の光透過性が高まりやすい。その理由を以下に説明する。 Here, in the transparent conductor of the present invention, the optical admittance at a wavelength of 570 nm of the surface of the transparent metal layer 4 on the high refractive index layer side is Y1 (= x 1 + iy 1 ), and the surface of the transparent metal layer 4 on the intermediate layer side When the optical admittance at a wavelength of 570 nm is Y2 (= x 2 + iy 2 ), it is preferable that either one or both of x 1 and x 2 is 1.6 or more. either one of x 1 and x 2 are, it tends enhanced light transmission of the transparent conductor If it is 1.6 or more. The reason will be described below.
 透明導電体を構成する各層どうしの界面のアドミッタンスYと、各層に存在する電場強度Eとの間には、下記関係式が成り立つ。 The following relational expression holds between the admittance Y at the interface between layers constituting the transparent conductor and the electric field strength E existing in each layer.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 上記関係式に基づけば、透明金属層4表面の光学アドミッタンスY1及びY2の実数部(x及びx)が大きくなれば、透明金属層4の電場強度Eが小さくなり、電場損失(光の吸収)が抑制される。すなわち、透明導電体の光透過性が十分に高まる。 Based on the above relational expression, if the real part (x 1 and x 2 ) of the optical admittances Y1 and Y2 on the surface of the transparent metal layer 4 is increased, the electric field strength E of the transparent metal layer 4 is decreased and the electric field loss (light Absorption) is suppressed. That is, the light transmittance of the transparent conductor is sufficiently increased.
 したがって、上記x及びxのうち、いずれか一方、もしくは両方が1.6以上であることが好ましく、より好ましくは1.8以上であり、さらに好ましくは2.0以上である。x及びxのうち、いずれか一方が1.6以上であればよいが、特にxが1.6以上であることが好ましい。またx及びxは、7.0以下であることが好ましく、より好ましくは5.5以下である。xは、第1高屈折率層3Aの屈折率や、第1高屈折率層3Aの厚さ等で調整される。xは、xの値や透明金属層4の屈折率、第1透明金属層3Aの厚さ等によって調整される。例えば、第1高屈折率層3Aの屈折率が高い場合や、第1高屈折率層3Aの厚さがある程度厚い場合には、x及びxの値が大きくなりやすい。またxとxとの差の絶対値(|x-x|)は1.5以下であることが好ましく、より好ましくは1.0以下であり、さらに好ましくは0.8以下である。 Accordingly, either one or both of x 1 and x 2 are preferably 1.6 or more, more preferably 1.8 or more, and further preferably 2.0 or more. Any one of x 1 and x 2 may be 1.6 or more, but x 1 is particularly preferably 1.6 or more. The x 1 and x 2 is preferably 7.0 or less, more preferably 5.5 or less. x 1 is the refractive index and the first high refractive index layer 3A, is adjusted by the thickness of the first high refractive index layer 3A and the like. x 2 is the refractive index of x 1 values and the transparent metal layer 4 is adjusted by the thickness and the like of the first transparent metal layer 3A. For example, if a high refractive index and the first high refractive index layer 3A, when the thickness of the first high refractive index layer 3A is somewhat thicker, the value of x 1 and x 2 tends to increase. The absolute value (| x 1 −x 2 |) of the difference between x 1 and x 2 is preferably 1.5 or less, more preferably 1.0 or less, and even more preferably 0.8 or less. is there.
 また、特定波長(本発明では570nm)におけるアドミッタンス軌跡は、グラフの横軸を中心に線対称であることが好ましい。アドミッタンス軌跡が、グラフの横軸を中心に線対称であると、特定波長以外の波長(例えば450nmや700nm)における等価アドミッタンスYの座標が、一定になりやすく、いずれの波長においても、反射率Rが小さくなる。したがって、上記Y1の虚部の座標yと、Y2の虚部の座標yが、y×y≦0を満たすことが好ましい。さらに、|y+y|が0.8未満であることが好ましく、より好ましくは0.5以下、さらに好ましくは0.3以下である。 In addition, the admittance locus at a specific wavelength (570 nm in the present invention) is preferably line symmetric with respect to the horizontal axis of the graph. Admittance locus and is centered symmetrically on the horizontal axis of the graph, the coordinates of the equivalent admittance Y E is at a wavelength other than the specific wavelength (e.g. 450nm or 700 nm), likely to be constant, at any wavelength, reflectance R becomes smaller. Therefore, a coordinate y 1 of the imaginary part of the Y1, the coordinate y 2 of the imaginary part of the Y2, it is preferable to satisfy the y 1 × y 2 ≦ 0. Furthermore, | y 1 + y 2 | is preferably less than 0.8, more preferably 0.5 or less, and still more preferably 0.3 or less.
 さらに、前述のyが十分に大きいことが好ましい。前述のように、透明金属層4の光学アドミッタンスは虚部の値が大きく、アドミッタンス軌跡が縦軸(虚部)方向に大きく移動する。そのため、yが十分に大きければ、アドミッタンス座標の虚部の絶対値が適切な範囲に収まりやすく、アドミッタンス軌跡が線対称になりやすい。yは0.2以上であることが好ましく、より好ましくは0.3~1.5であり、さらに好ましくは0.3~1.0である。一方、前述のyは、-0.3~-2.0であることが好ましく、より好ましくは-0.6~-1.5である。 Furthermore, it is preferable that the aforementioned y 1 is sufficiently large. As described above, the optical admittance of the transparent metal layer 4 has a large imaginary part value, and the admittance locus greatly moves in the direction of the vertical axis (imaginary part). Therefore, if y 1 is sufficiently large, the absolute value of the imaginary part of the admittance coordinates is likely to be within an appropriate range, and the admittance locus is likely to be line symmetric. y 1 is preferably 0.2 or more, more preferably 0.3 to 1.5, and still more preferably 0.3 to 1.0. On the other hand, y 2 described above is preferably −0.3 to −2.0, and more preferably −0.6 to −1.5.
 一方、導通領域aの波長570nmの光の等価アドミッタンス座標(x,y)と、透明導電体の第2高屈折率層3B側の表面と接する部材もしくは環境(媒質)の波長570nmの光の等価アドミッタンス座標(nenv,0)との距離((x-nenv+(y0.5)は、0.5未満であることが好ましく、さらに好ましくは0.3以下である。上記距離が0.5未満であれば、導通領域aの表面の反射率Rが十分に小さくなり、導通領域aの光の透過性が高まる。 On the other hand, an equivalent admittance coordinate (x E , y E ) of light having a wavelength of 570 nm in the conduction region a and light having a wavelength of 570 nm of a member or environment (medium) in contact with the surface on the second high refractive index layer 3B side of the transparent conductor. The equivalent admittance coordinates (n env , 0) of the distance ((x E −n env ) 2 + (y E ) 2 ) 0.5 ) is preferably less than 0.5, more preferably 0. 3 or less. When the distance is less than 0.5, the reflectance Ra of the surface of the conduction region a is sufficiently small, and the light transmittance of the conduction region a is increased.
 さらに、透明金属層4がパターニングされている場合には、導通領域aの波長570nmの光の等価アドミッタンス座標(x,y)と、絶縁領域bの波長570nmの光の等価アドミッタンス座標((x,y)で表す)との距離、((x-x+(y-y0.5)が0.5未満であることが好ましく、より好ましくは0.3以下である。導通領域aの等価アドミッタンスYの座標と、絶縁領域bの等価アドミッタンスYの座標とが十分に近くなると、これらのパターンが視認され難くなる。またさらに、|(xenv-x+(yenv-y-(xenv-x+(yenv-y|が0.1以下であることが好ましい。当該値を満たすと、導通領域a及び絶縁領域bがいずれも視認され難くなる。 Further, when the transparent metal layer 4 is patterned, an equivalent admittance coordinate (x E , y E ) of light with a wavelength of 570 nm in the conduction region a and an equivalent admittance coordinate (( x ( b , y b ))), ((x E −x b ) 2 + (y E −y b ) 2 ) 0.5 ) is preferably less than 0.5, more preferably 0.3 or less. The coordinates of the equivalent admittance Y E conductive region a, the coordinate of the equivalent admittance Y b of the insulating region b is sufficiently close, so these patterns are hardly visually recognized. Furthermore, it is preferable that | (x env −x b ) 2 + (y env −y b ) 2 − (x env −x E ) 2 + (y env −y E ) 2 | . If the said value is satisfy | filled, both the conduction | electrical_connection area | region a and the insulation area | region b will become difficult to visually recognize.
 〔電極パターンを有する透明導電体の形成方法〕
 本発明の透明導電体を用い、図2で示すような導通領域及び絶縁領域からなるパターンの形成方法について説明する。
[Method for forming transparent conductor having electrode pattern]
A method for forming a pattern comprising a conductive region and an insulating region as shown in FIG. 2 using the transparent conductor of the present invention will be described.
 本発明の透明導電体においては、上記のような方法で透明基板1上に、少なくとも、第1高屈折率層と、透明金属層と、第2高屈折率層とをこの順で積層して製造した後、透明金属層を所定の形状にパターニングして、金属パターン電極を形成することが好ましく、具体的には、フォトリソグラフィー法により、エッチング液を用いて、例えば、図2に示すような電極パターンを形成することが好ましい。形成する電極の線幅(導通領域a)としては、50μm以下であることが好ましく、特に好ましくは、20μm以下である。 In the transparent conductor of the present invention, at least the first high refractive index layer, the transparent metal layer, and the second high refractive index layer are laminated in this order on the transparent substrate 1 by the method described above. After the production, it is preferable to pattern the transparent metal layer into a predetermined shape to form a metal pattern electrode. Specifically, for example, as shown in FIG. It is preferable to form an electrode pattern. The line width (conducting region a) of the electrode to be formed is preferably 50 μm or less, and particularly preferably 20 μm or less.
 (製造工程)
 以下、フォトリソグラフィー法による電極パターンの形成方法の一例について説明する。
(Manufacturing process)
Hereinafter, an example of a method for forming an electrode pattern by photolithography will be described.
 本発明に適用するフォトリソグラフィー法とは、硬化性樹脂等のレジスト塗布、予備加熱、露光、現像(未硬化樹脂の除去)、リンス、エッチング液によるエッチング処理、レジスト剥離の各工程を経ることにより、透明金属層、例えば、銀薄膜層を、図3~図5に示すような所望のパターンに加工する方法である。 The photolithographic method applied to the present invention includes resist coating such as curable resin, preheating, exposure, development (removal of uncured resin), rinsing, etching treatment with an etching solution, and resist stripping. The transparent metal layer, for example, a silver thin film layer is processed into a desired pattern as shown in FIGS.
 本発明では、従来公知の一般的なフォトリソグラフィー法を適宜利用することができる。例えば、レジストとしてはポジ型又はネガ型のいずれのレジストでも使用可能である。また、レジスト塗布後、必要に応じて予備加熱又はプリベークを実施することができる。露光に際しては、所期のパターンを有するパターンマスクを配置し、その上から、用いたレジストに適合する波長の光、一般には紫外線や電子線等の活性エネルギー線を照射すればよい。露光後、用いたレジストに適合する現像液で現像を行う。現像後、水等のリンス液で現像を止めるとともに洗浄を行うことで、レジストパターンが形成される。次いで、形成されたレジストパターンを、必要に応じて前処理又はポストベークを実施してから、有機溶媒を含むエッチング液によるエッチングで、レジストで保護されていない領域の各構成層の溶解及び透明金属層(銀薄膜電極)の除去を行う。エッチング後、残留するレジストを剥離することによって、所期のパターンを有する透明電極が得られる。このように、本発明に適用されるフォトリソグラフィー法は、当業者に一般に認識されている方法であり、その具体的な適用態様は当業者であれば所期の目的に応じて容易に選定することができる。 In the present invention, a conventionally known general photolithography method can be used as appropriate. For example, as the resist, either positive or negative resist can be used. In addition, after applying the resist, preheating or prebaking can be performed as necessary. At the time of exposure, a pattern mask having a desired pattern may be disposed, and light having a wavelength suitable for the resist used, generally active energy rays such as ultraviolet rays and electron beams may be irradiated thereon. After the exposure, development is performed with a developer suitable for the resist used. After the development, the resist pattern is formed by stopping the development with a rinse solution such as water and washing. Next, the formed resist pattern is pretreated or post-baked as necessary, and then is etched with an etching solution containing an organic solvent to dissolve each constituent layer in a region not protected by the resist and to form a transparent metal. The layer (silver thin film electrode) is removed. After etching, the remaining resist is removed to obtain a transparent electrode having an intended pattern. As described above, the photolithography method applied to the present invention is a method generally recognized by those skilled in the art, and the specific application mode is easily selected by those skilled in the art according to the intended purpose. be able to.
 次いで、図を交えて、本発明に適用可能な電極パターンの形成方法の一例について説明する。 Next, an example of an electrode pattern forming method applicable to the present invention will be described with reference to the drawings.
 図5は、本発明の透明導電体に電極パターンをフォトリソグラフィー法で形成する一例を示す工程図である。 FIG. 5 is a process diagram showing an example of forming an electrode pattern on the transparent conductor of the present invention by a photolithography method.
 第1ステップとして、図5のAで示すように、透明基板2上に、第1高屈折率層3A、第1硫化防止層5A、透明金属層4、第2硫化防止層5B、第2高屈折率層3Bをこの順で積層した透明導電体1を作製する。 As a first step, as shown in FIG. 5A, on the transparent substrate 2, the first high refractive index layer 3A, the first antisulfuration layer 5A, the transparent metal layer 4, the second antisulfurization layer 5B, the second high The transparent conductor 1 in which the refractive index layer 3B is laminated in this order is produced.
 次いで、次工程でレジスト膜を形成する前に、透明導電体1に超音波洗浄処理を施すことが好ましい。超音波洗浄としては、例えば、花王社製の洗剤クリンスルー3030を用いて超音波洗浄と純水による水洗いを数回行った後、スピンコータで水を飛ばし、オーブンで乾燥させる。 Next, it is preferable to subject the transparent conductor 1 to an ultrasonic cleaning treatment before forming a resist film in the next step. As ultrasonic cleaning, for example, ultrasonic cleaning and washing with pure water are performed several times using a detergent clean-through 3030 manufactured by Kao Corporation, and then water is blown off with a spin coater and dried in an oven.
 次いで、図5のBで示すレジスト膜の形成工程で、透明導電体1上に感光性樹脂組成物等から構成されるレジスト膜6を均一に塗設する。感光性樹脂組成物としては、ネガ型感光性樹脂組成物又はポジ型感光性樹脂組成物を用いることができる。図5ではポジ型の例を示してある。レジストとしては、例えば、東京応化工業社製のOFPR-800LB等を用いることができる。 Next, in the resist film forming step shown by B in FIG. 5, a resist film 6 composed of a photosensitive resin composition or the like is uniformly coated on the transparent conductor 1. As the photosensitive resin composition, a negative photosensitive resin composition or a positive photosensitive resin composition can be used. FIG. 5 shows an example of a positive type. As the resist, for example, OFPR-800LB manufactured by Tokyo Ohka Kogyo Co., Ltd. can be used.
 塗布方法としては、マイクログラビアコーティング、スピンコーティング、ディップコーティング、カーテンフローコーティング、ロールコーティング、スプレーコーティング、スリットコーティングなどの公知の方法によって、透明導電体1上に塗布し、ホットプレート、オーブンなどの加熱装置でプリベークすることができる。プリベークは、例えば、ホットプレート等を用いて、50~150℃の温度範囲で、30秒~30分間の加熱処理を行うことができる。 As a coating method, it is applied on the transparent conductor 1 by a known method such as micro gravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating, slit coating, etc., and heated by a hot plate, oven or the like. It can be pre-baked in the apparatus. Pre-baking can be performed, for example, using a hot plate or the like in a temperature range of 50 to 150 ° C. for 30 seconds to 30 minutes.
 次いで、図5のCに示す露光工程で、所定の電極パターンにより作製したマスク7を介して、ステッパー、ミラープロジェクションマスクアライナー(MPA)、パラレルライトマスクアライナーなどの露光機8を用いて、10~4000J/m程度(波長365nm露光量換算)の光を、次工程で除去するレジスト膜6Aに照射する。露光光源に制限はなく、紫外線、電子線や、KrF(波長248nm)レーザー、ArF(波長193nm)レーザーなどを用いることができる。 Next, in the exposure process shown in FIG. 5C, the exposure apparatus 8 such as a stepper, a mirror projection mask aligner (MPA), a parallel light mask aligner or the like is used through a mask 7 made with a predetermined electrode pattern. The resist film 6A to be removed in the next step is irradiated with light of about 4000 J / m 2 (wavelength 365 nm exposure amount conversion). The exposure light source is not limited, and ultraviolet rays, electron beams, KrF (wavelength 248 nm) laser, ArF (wavelength 193 nm) laser, and the like can be used.
 次いで、図5のDに示す現像工程で、露光済みの透明導電体を、現像液に浸漬して、ポジ型感光性樹脂組成物を用いた場合には、光照射して現像液に対する溶解性が向上した領域のレジスト膜6Aを溶解する。現像液としては、例えば、レジストとしてポジ型感光性樹脂組成物を用いた場合には、トクヤマ社製のポジ型フォトレジスト用現像液「トクソーSD」シリーズ(テトラメチルアンモニウムヒドロキシド)等を用いることができる。
 現像方法としては、シャワー、ディッピング、パドルなどの方法で、現像液に5秒~10分間浸漬することが好ましい。現像液としては、公知のアルカリ現像液を用いることができる。具体例としては、アルカリ金属の水酸化物、炭酸塩、リン酸塩、ケイ酸塩、ホウ酸塩などの無機アルカリ、2-ジエチルアミノエタノール、モノエタノールアミン、ジエタノールアミンなどのアミン類、テトラメチルアンモニウムヒドロキサイド、コリンなどの4級アンモニウム塩を1種あるいは2種以上含む水溶液などが挙げられる。現像後は、水でリンスすることが好ましく、続いて50~150℃の温度範囲で乾燥ベークを行ってもよい。
Next, in the developing step shown in FIG. 5D, when a positive photosensitive resin composition is used by immersing the exposed transparent conductor in a developer, the solubility in the developer by irradiation with light. The resist film 6A in the region where the improvement is made is dissolved. As the developer, for example, when a positive photosensitive resin composition is used as a resist, a developer for positive photoresist “Tokuso SD” series (tetramethylammonium hydroxide) manufactured by Tokuyama Corporation should be used. Can do.
As a developing method, it is preferable to immerse in a developer for 5 seconds to 10 minutes by a method such as showering, dipping, or paddle. As the developer, a known alkali developer can be used. Specific examples include inorganic alkalis such as alkali metal hydroxides, carbonates, phosphates, silicates and borates, amines such as 2-diethylaminoethanol, monoethanolamine and diethanolamine, tetramethylammonium hydroxide. Examples thereof include an aqueous solution containing one or more quaternary ammonium salts such as side and choline. After development, it is preferable to rinse with water, and then dry baking may be performed at a temperature range of 50 to 150 ° C.
 次いで、図5のEに示すように、エッチング液9を用いたエッチング処理を行う。 Next, as shown in FIG. 5E, an etching process using an etching solution 9 is performed.
 本発明に適用可能なエッチング液としては、無機酸あるいは有機酸を含有する液が好ましく、シュウ酸、塩酸、酢酸、リン酸を挙げることができ、特に、シュウ酸、酢酸、リン酸が好ましい。また、エッチング液としては市販品を用いることもでき、例えば、林純薬工業社製のPure Etch DE100(シュウ酸)、関東化学社製の「混液 SEA-5」(リン酸:55質量%、酢酸:30質量%、水その他の成分:15質量%)等を用いることができる。 As the etching solution applicable to the present invention, a solution containing an inorganic acid or an organic acid is preferable, and oxalic acid, hydrochloric acid, acetic acid, and phosphoric acid can be mentioned, and oxalic acid, acetic acid, and phosphoric acid are particularly preferable. Commercially available products can also be used as the etchant, for example, Pure Etch DE100 (oxalic acid) manufactured by Hayashi Junyaku Kogyo Co., Ltd., and “Mixed liquid SEA-5” manufactured by Kanto Chemical Co. (phosphoric acid: 55% by mass, Acetic acid: 30% by mass, water and other components: 15% by mass) and the like can be used.
 具体的には、例えば、有機酸等を含むエッチング液に、レジスト膜6を有する透明導電体1を浸漬し、レジスト膜6で保護されていない絶縁領域bの透明電極ユニットEUを溶解し、レジスト膜6で保護している導電領域aの透明電極ユニットEUを所定の電極パターンとして形成する。エッチング時間は、適用する酸の種類により異なるが、30~120秒の範囲内で調整することが好ましい。 Specifically, for example, the transparent conductor 1 having the resist film 6 is immersed in an etching solution containing an organic acid or the like, and the transparent electrode unit EU in the insulating region b not protected by the resist film 6 is dissolved. The transparent electrode unit EU in the conductive region a protected by the film 6 is formed as a predetermined electrode pattern. The etching time varies depending on the type of acid to be applied, but is preferably adjusted within a range of 30 to 120 seconds.
 最後に、図5のFに示すように、レジスト膜剥離液として、例えば、アセトン、水酸化ナトリウム液、市販品としては、ナガセケムテックス社製のN-300等を用いて、エッチングした透明導電体を浸漬して、レジスト膜6を除去して、電極パターンを有する透明導電体を作製することができる。 Finally, as shown in FIG. 5F, the transparent conductive film is etched using, for example, acetone, sodium hydroxide solution as a resist film remover, or N-300 manufactured by Nagase ChemteX as a commercial product. A transparent conductor having an electrode pattern can be produced by immersing the body and removing the resist film 6.
 《透明導電体の適用分野》
 上記構成からなる本発明の透明導電体は、液晶方式、プラズマ方式、有機エレクトロルミネッセンス方式、フィールドエミッション方式など各種ディスプレイをはじめ、タッチパネルや携帯電話、電子ペーパー、各種太陽電池、各種エレクトロルミネッセンス調光素子など様々なオプトエレクトロニクスデバイスの基板等に好ましく用いることができる。
《Field of application of transparent conductors》
The transparent conductor of the present invention having the above-described configuration includes various displays such as a liquid crystal system, a plasma system, an organic electroluminescence system, a field emission system, a touch panel, a mobile phone, electronic paper, various solar cells, and various electroluminescence light control elements. It can preferably be used for substrates of various optoelectronic devices.
 このとき、透明導電体1の表面(例えば、透明基板2と反対側の表面)は、接着層等を介して、他の部材と貼り合わせられてもよい。この場合には、前述のように、透明導電体の表面の等価アドミッタンス座標と、接着層のアドミッタンス座標と、がそれぞれ近似することが好ましい。これにより、透明導電体と接着層との界面での反射が抑制される。 At this time, the surface of the transparent conductor 1 (for example, the surface opposite to the transparent substrate 2) may be bonded to another member via an adhesive layer or the like. In this case, as described above, it is preferable that the equivalent admittance coordinates of the surface of the transparent conductor and the admittance coordinates of the adhesive layer approximate each other. Thereby, reflection at the interface between the transparent conductor and the adhesive layer is suppressed.
 一方、透明導電体の表面が空気と接するような構成で使用される場合には、透明導電体の表面のアドミッタンス座標と、空気のアドミッタンス座標と、がそれぞれ近似することが好ましい。これにより、透明導電体と空気との界面での光の反射が抑制される。 On the other hand, when used in a configuration in which the surface of the transparent conductor is in contact with air, it is preferable that the admittance coordinates of the surface of the transparent conductor and the admittance coordinates of the air approximate each other. Thereby, reflection of light at the interface between the transparent conductor and air is suppressed.
 以下、本発明の透明導電体をタッチパネルに適用した一例を示す。 Hereinafter, an example in which the transparent conductor of the present invention is applied to a touch panel will be shown.
 図6は、電極パターンを有する透明導電体を具備したタッチパネルの構成の一例を示す斜視図である。 FIG. 6 is a perspective view showing an example of a configuration of a touch panel including a transparent conductor having an electrode pattern.
 図6に示すタッチパネル21は、投影型静電容量式のタッチパネルである。このタッチパネル21は、透明基板2-1の主面上に、第1の透明電極ユニットEU-1を有する透明導電体1-1と、透明基板2-2の主面上に、第2の透明電極ユニットEU-2を有する透明導電体1-2がこの順で配置され、この上部が前面板13で覆われている。 A touch panel 21 shown in FIG. 6 is a projected capacitive touch panel. The touch panel 21 includes a transparent conductor 1-1 having a first transparent electrode unit EU-1 on the main surface of the transparent substrate 2-1, and a second transparent on the main surface of the transparent substrate 2-2. The transparent conductor 1-2 having the electrode unit EU-2 is arranged in this order, and the upper part is covered with the front plate 13.
 第1の透明電極ユニットEU-1及び第2の透明電極ユニットEU-2は、それぞれが、図2及び図5を用いて説明した電極パターンが形成された透明導電体の導電領域aである。したがって、第1の透明電極ユニットEU-1は、透明基板2-1上に、第1高屈折率層3A、第1硫化防止層5A、透明金属層4、第2硫化防止層5B、第2高屈折率層3Bをこの順で積層した構成である。同様に第2の透明電極ユニットEU-2も同様の構成である。 The first transparent electrode unit EU-1 and the second transparent electrode unit EU-2 are each a conductive region a of a transparent conductor on which the electrode pattern described with reference to FIGS. 2 and 5 is formed. Therefore, the first transparent electrode unit EU-1 includes the first high refractive index layer 3A, the first sulfidation preventing layer 5A, the transparent metal layer 4, the second sulfidation preventing layer 5B, the second on the transparent substrate 2-1. The high refractive index layer 3B is laminated in this order. Similarly, the second transparent electrode unit EU-2 has the same configuration.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。また、以下の説明で、各構成要件の後の括弧内に記載した数値及び符号は、各図に示した符号を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "%" is used in an Example, unless otherwise indicated, "mass%" is represented. Moreover, in the following description, the numerical value and code | symbol described in the parenthesis after each structural element represent the code | symbol shown in each figure.
 《透明導電体の作製》
 〔透明導電体1の作製〕
 透明基板としてシクロオレフィンポリマー(略称:COP)フィルムを用い、COPフィルム上に、下記の方法に従って、蒸着法により第1高屈折率層3A(ZnS-TiO)/透明金属層4(Ag)/第2高屈折率層3B(ZnS-TiO)をこの順に積層して積層体を形成した。次いで、当該積層体を下記の方法でパターニングして、図6に示す配線を有する透明導電体1(1-1、1-2)を、バッチ方式で作製した。なお、各層の厚さは、J.A.Woollam Co.Inc.製のVB-250型VASEエリプソメーターで測定した。
<< Production of transparent conductor >>
[Preparation of transparent conductor 1]
Using a cycloolefin polymer (abbreviation: COP) film as a transparent substrate, the first high refractive index layer 3A (ZnS—TiO 2 ) / transparent metal layer 4 (Ag) / The second high refractive index layer 3B (ZnS—TiO 2 ) was laminated in this order to form a laminate. Next, the laminate was patterned by the following method, and transparent conductors 1 (1-1, 1-2) having wiring shown in FIG. 6 were produced by a batch method. The thickness of each layer is J. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
 (第1高屈折率層(ZnS-TiO)の形成)
 真空蒸着装置として、シンクロン社製のBMC-800T蒸着装置を用い、第1のモリブデン製抵抗加熱ボートにZnSを、第2のモリブデン製抵抗加熱ボートにTiOを装填し、真空槽を1×10-4Paまで減圧した後、第1の抵抗加熱ボート及び第2の抵抗加熱ボートに通電加熱し、両抵抗加熱ボートの通電加熱条件を適宜調整して、ZnSとTiOの体積比率が80:20となる条件で、形成速度0.3nm/秒、形成時間120秒の条件でCOPフィルム上に共蒸着して、層厚が36nmの第1高屈折率層を形成した。
(Formation of first high refractive index layer (ZnS—TiO 2 ))
As a vacuum deposition apparatus, a BMC-800T deposition apparatus manufactured by SYNCHRON Co., Ltd. was used, ZnS was loaded on the first molybdenum resistance heating boat, TiO 2 was loaded on the second resistance heating boat made of molybdenum, and the vacuum chamber was 1 × 10 × 10. After depressurizing to −4 Pa, the first resistance heating boat and the second resistance heating boat were energized and heated, and the energization heating conditions of both resistance heating boats were adjusted as appropriate, so that the volume ratio of ZnS and TiO 2 was 80: The first high refractive index layer having a layer thickness of 36 nm was formed by co-evaporation on the COP film under the conditions of 20 at a formation rate of 0.3 nm / second and a formation time of 120 seconds.
 なお、第1高屈折率層におけるZnSとTiOの体積比率は、X線光電子分光法(X-ray Photoelectron Spectroscopy:XPS)を用いて測定した結果、ZnSとTiOの体積比率が80:20であることを確認した。 The volume ratio of ZnS to TiO 2 in the first high refractive index layer was measured using X-ray photoelectron spectroscopy (XPS). As a result, the volume ratio of ZnS to TiO 2 was 80:20. It was confirmed that.
 (透明金属層(Ag)の形成)
 次いで、第1高屈折率層を形成したCOPフィルムを、上記と同様の真空蒸着装置に固定し、モリブデン製の抵抗加熱ボートT3にAgを装填し、真空槽を1×10-4Paまで減圧した。次いで、抵抗加熱ボートに通電加熱し、形成時間が6秒の条件で、COPフィルムの第1高屈折率層上に真空蒸着して、層厚が7.7nmの透明金属層を形成した。この時の形成速度は、下記の方法により測定した結果、2.7nm/秒であった。
(Formation of transparent metal layer (Ag))
Next, the COP film on which the first high refractive index layer is formed is fixed to a vacuum vapor deposition apparatus similar to the above, Ag is loaded into a resistance heating boat T3 made of molybdenum, and the vacuum chamber is decompressed to 1 × 10 −4 Pa. did. Subsequently, the resistance heating boat was energized and heated, and was vacuum-deposited on the first high refractive index layer of the COP film under the condition that the formation time was 6 seconds, thereby forming a transparent metal layer having a layer thickness of 7.7 nm. The formation speed at this time was 2.7 nm / second as a result of measurement by the following method.
 形成速度は、図3に示す工程3において、蒸発源として、抵抗加熱のボートT3にAgを装填し、その蒸発源の真上にモニターガラスを配置し、モニターガラスを固定して移動させない状態で透明金属層を形成した。薄膜形成に要した形成時間が2.85秒で、モニターカラス上に形成された透明金属層の層厚は7.7nmであった。以上の測定結果より、透明金属層の層厚(nm)/形成時間(秒)=7.7(nm)/2.85(秒)より、形成速度S(nm/秒)が2.7(nm/秒)であると算出した。 In step 3 shown in FIG. 3, Ag is loaded in a resistance heating boat T3 as an evaporation source in the step 3 shown in FIG. 3, and a monitor glass is disposed immediately above the evaporation source, and the monitor glass is fixed and not moved. A transparent metal layer was formed. The formation time required for forming the thin film was 2.85 seconds, and the thickness of the transparent metal layer formed on the monitor crow was 7.7 nm. From the above measurement results, the formation rate S (nm / second) is 2.7 (layer thickness (nm) / formation time (seconds) = 7.7 (nm) /2.85 (seconds) of the transparent metal layer. nm / second).
 (第2高屈折率層(ZnS-TiO)の形成)
 次いで、透明金属層を形成したCOPフィルムを、上記と同様の真空蒸着装置に固定し、第1のモリブデン製抵抗加熱ボートにZnSを、第2のモリブデン製抵抗加熱ボートにTiOを装填し、真空槽を1×10-4Paまで減圧した後、第1の抵抗加熱ボート及び第2の抵抗加熱ボートに通電加熱し、両抵抗加熱ボートの通電加熱条件を適宜調整して、ZnSとTiOの体積比率が80:20となる条件で、形成速度0.37nm/秒、形成時間120秒の条件でCOPフィルム上に共蒸着して、層厚が44nmの第2高屈折率層を形成して、透明導電体1を作製した。
(Formation of Second High Refractive Index Layer (ZnS—TiO 2 ))
Next, the COP film on which the transparent metal layer is formed is fixed to a vacuum vapor deposition apparatus similar to the above, and the first molybdenum resistance heating boat is charged with ZnS, and the second molybdenum resistance heating boat is charged with TiO 2 . After depressurizing the vacuum tank to 1 × 10 −4 Pa, the first resistance heating boat and the second resistance heating boat were energized and heated, and the energization heating conditions of both resistance heating boats were adjusted as appropriate, so that ZnS and TiO 2 The second high refractive index layer having a layer thickness of 44 nm was formed by co-evaporation on the COP film under the conditions of a volume ratio of 80:20 and a formation speed of 0.37 nm / second and a formation time of 120 seconds. Thus, a transparent conductor 1 was produced.
 (透明導電体のパターニング)
 次いで、上記作製した透明導電体1に対し、図5に記載のパターニング方法に従って、図2に記載の導通領域aと、絶縁領域bを有するパターンを形成した。
(Patterning of transparent conductor)
Next, a pattern having the conductive region a and the insulating region b shown in FIG. 2 was formed on the produced transparent conductor 1 according to the patterning method shown in FIG.
 レジスト層(6)を形成する前に、上記作製した透明導電体1について、超音波洗浄処理を行った。洗浄液として、花王社製の洗剤「クリンスルー3030(10%)」を用いて、超音波洗浄処理を、25℃で4分間行った。次いで、25℃の純水で水洗を5回行った後、25℃の純水にて超音波洗浄を4分間で2回行った。最後に、スピンコータで水を飛散させたのち、オーブンで乾燥させた。 Before forming the resist layer (6), the produced transparent conductor 1 was subjected to ultrasonic cleaning treatment. As a cleaning solution, an ultrasonic cleaning process was performed at 25 ° C. for 4 minutes using a detergent “Clean Through 3030 (10%)” manufactured by Kao Corporation. Subsequently, after washing 5 times with pure water at 25 ° C., ultrasonic washing was performed twice with pure water at 25 ° C. for 4 minutes. Finally, water was scattered with a spin coater and then dried in an oven.
 次いで、洗浄した透明導電体1上に、レジストとして、東京応化工業社製のOFPR-800LBをスピンコーティング法により、2000rpmで30秒間の塗布、乾燥を行い、厚さ1μmのレジスト層(6)を形成した。 Next, on the cleaned transparent conductor 1, OFPR-800LB manufactured by Tokyo Ohka Kogyo Co., Ltd. was applied as a resist by spin coating and dried at 2000 rpm for 30 seconds to form a resist layer (6) having a thickness of 1 μm. Formed.
 次いで、マスク7を介して、60mJの条件で紫外線を照射し、現像液として、トクヤマ社製のポジ型フォトレジスト用現像液「トクソーSD-1」(テトラメチルアンモニウムヒドロキシド)を用いて現像した。 Next, ultraviolet rays were irradiated through the mask 7 under conditions of 60 mJ, and developed using a developer for positive photoresist “Tokuso SD-1” (tetramethylammonium hydroxide) manufactured by Tokuyama Corporation as a developer. .
 次いで、エッチング液としては、関東化学社製の「混液 SEA-5」(リン酸:55質量%、酢酸:30質量%、水その他の成分:15質量%)を用い、図2に示すように、透明基板(2)のみを有する絶縁領域bと、透明電極ユニットEUを有する通電領域aからなる電極パターンを形成した。また、ライン状の絶縁領域bの幅は16μmとした。 Next, as the etching solution, “mixed liquid SEA-5” (phosphoric acid: 55% by mass, acetic acid: 30% by mass, water and other components: 15% by mass) manufactured by Kanto Chemical Co., Ltd. was used, as shown in FIG. An electrode pattern comprising an insulating region b having only the transparent substrate (2) and an energizing region a having the transparent electrode unit EU was formed. The width of the line-shaped insulating region b was 16 μm.
 最後に、アセトンを用いて、残留しているレジスト層(6)を剥離して、配線を有する電極パターンを形成した。 Finally, the remaining resist layer (6) was peeled off using acetone to form an electrode pattern having wiring.
 〔透明導電体2及び透明導電体3の作製〕
 上記透明導電体1の作製において、透明基板の種類、第1高屈折率層及び第2高屈折率層の構成材料の種類と層厚、透明金属層の形成速度と層厚を、表1に記載の条件に変更した以外は同様にして、透明導電体2及び透明導電体3を作製した。
[Preparation of transparent conductor 2 and transparent conductor 3]
Table 1 shows the types of the transparent substrate, the types and thicknesses of the constituent materials of the first high refractive index layer and the second high refractive index layer, and the formation speed and thickness of the transparent metal layer in the production of the transparent conductor 1. A transparent conductor 2 and a transparent conductor 3 were produced in the same manner except that the conditions were changed.
 〔透明導電体4の作製〕
 透明基板として、長尺のポリカーボネート(略称:PC)フィルムを用い、PCフィルム上に、下記の方法に従って、第1高屈折率層(ZnS-SiO)/透明金属層(Ag)/第2高屈折率層(ZnS-SiO)を、この順で、真空蒸着法を用いたロールtoロール方式で連続して積層した。次いで、この積層体を、透明導電体1で用いたのと同様の方法でパターニングして、配線を有する透明導電体4を作製した。なお、各層の厚さは、J.A.Woollam Co.Inc.製のVB-250型VASEエリプソメーターで測定した。
[Preparation of transparent conductor 4]
A long polycarbonate (abbreviation: PC) film is used as the transparent substrate, and the first high refractive index layer (ZnS—SiO 2 ) / transparent metal layer (Ag) / second high is formed on the PC film according to the following method. A refractive index layer (ZnS—SiO 2 ) was successively laminated in this order by a roll-to-roll method using a vacuum deposition method. Next, this laminate was patterned by the same method as used for the transparent conductor 1 to produce a transparent conductor 4 having wiring. The thickness of each layer is J. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
 透明導電体4の作製には、図3で示した工程1~工程5を有し、5つの真空蒸着室が連続配置されているロールtoロール方式の透明導電体の製造装置を用いた。 The production of the transparent conductor 4 was performed using a roll-to-roll type transparent conductor manufacturing apparatus having Steps 1 to 5 shown in FIG. 3 in which five vacuum deposition chambers are continuously arranged.
 なお、透明導電体4の作製では、第1高屈折率層(ZnS-SiO)の形成は工程1で行い、透明金属層(Ag)の形成は工程3で行い、第2高屈折率層(ZnS-SiO)の形成は、工程5で行った。 In the production of the transparent conductor 4, the first high refractive index layer (ZnS—SiO 2 ) is formed in Step 1, the transparent metal layer (Ag) is formed in Step 3, and the second high refractive index layer is formed. (ZnS—SiO 2 ) was formed in Step 5.
 (第1高屈折率層(ZnS-SiO)の形成)
 図3に記載の工程1の真空蒸着室(11)に、透明基板(2)であるPCフィルムを連続搬送しながら、共蒸着法により、第1高屈折率層を形成した。
(Formation of First High Refractive Index Layer (ZnS—SiO 2 ))
A first high refractive index layer was formed by a co-evaporation method while continuously transporting the PC film as the transparent substrate (2) into the vacuum deposition chamber (11) of Step 1 shown in FIG.
 真空蒸着室(11)の第1のモリブデン製抵抗加熱ボート(T1a)にZnSを、第2のモリブデン製抵抗加熱ボート(T1b)にSiOを装填し、真空蒸着室内の圧力Pを1×10-4Paまで減圧した後、第1の抵抗加熱ボート(T1a)及び第2の抵抗加熱ボート(T1b)を通電加熱し、両抵抗加熱ボートの通電加熱条件を適宜調整して、ZnSとSiOの体積比率が99:1となる条件で、形成速度が4.3nm/秒、形成時間が10秒でPCフィルム上に共蒸着して、層厚が43nmの第1高屈折率層を形成した。 Vacuum deposition chamber a first ZnS to molybdenum resistance heating boat (T1a) of (11), the SiO 2 was loaded into a second resistive heating molybdenum boat (T1b), the pressure P 1 in the vacuum deposition chamber 1 × After depressurizing to 10 −4 Pa, the first resistance heating boat (T1a) and the second resistance heating boat (T1b) are energized and heated. The first high refractive index layer having a layer thickness of 43 nm is formed by co-evaporation on a PC film with a formation rate of 4.3 nm / second and a formation time of 10 seconds under the condition that the volume ratio of 2 is 99: 1. did.
 (透明金属層(Ag)の形成)
 次いで、第1高屈折率層を形成したPCフィルムを連続して工程3に搬送し、下記の方法に従って、透明金属層を形成した。
(Formation of transparent metal layer (Ag))
Next, the PC film on which the first high refractive index layer was formed was continuously conveyed to Step 3, and a transparent metal layer was formed according to the following method.
 工程3に、工程1で第1高屈折率層を形成したPCフィルムを搬送し、真空蒸着室(11)で、モリブデン製抵抗加熱ボート(T3)にAgを装填し、真空蒸着室内の圧力Pを1×10-3Paまで減圧した。次いで、抵抗加熱ボート(T3)を通電加熱し、形成速度1.8nm/秒、形成時間4.4秒の条件で、PCフィルムの第1高屈折率層上に真空蒸着して、層厚が8.0nmの透明電極層を形成した。 In Step 3, the PC film having the first high refractive index layer formed in Step 1 is conveyed, Ag is loaded into the molybdenum resistance heating boat (T3) in the vacuum deposition chamber (11), and the pressure P in the vacuum deposition chamber is set. 3 was depressurized to 1 × 10 −3 Pa. Next, the resistance heating boat (T3) was heated by energization, and was vacuum-deposited on the first high refractive index layer of the PC film under the conditions of a formation speed of 1.8 nm / second and a formation time of 4.4 seconds. A transparent electrode layer of 8.0 nm was formed.
 (第2高屈折率層(ZnS-SiO)の形成)
 次いで、工程3で透明金属層を形成したPCフィルムを、工程5の真空蒸着室に搬送し、下記の方法に従って、第2高屈折率層を形成し、透明導電体4を作製した。
(Formation of Second High Refractive Index Layer (ZnS—SiO 2 ))
Next, the PC film on which the transparent metal layer was formed in Step 3 was conveyed to the vacuum vapor deposition chamber in Step 5, and a second high refractive index layer was formed according to the following method to produce a transparent conductor 4.
 工程5の真空蒸着室(11)の第1のモリブデン製抵抗加熱ボート(T5a)にZnSを、第2のモリブデン製抵抗加熱ボート(T5b)にSiOを装填し、真空蒸着室内の圧力Pを1×10-4Paまで減圧した後、第1の抵抗加熱ボート(T5a)及び第2の抵抗加熱ボート(T5b)を通電加熱し、両抵抗加熱ボートの通電加熱条件を適宜調整して、ZnSとSiOの体積比率が99:1となる条件で、形成速度4.2nm/秒、形成時間10秒でPCフィルム上に共蒸着して、層厚が42nmの第2高屈折率層を形成し、透明導電体4を作製した。 Vacuum deposition chamber of step 5 the first ZnS to molybdenum resistance heating boat (T5a) of (11), the SiO 2 was loaded into a second resistive heating molybdenum boat (T5b), the pressure P 5 in the vacuum deposition chamber After the pressure is reduced to 1 × 10 −4 Pa, the first resistance heating boat (T5a) and the second resistance heating boat (T5b) are energized and heated, and the energization heating conditions of both resistance heating boats are appropriately adjusted, A second high refractive index layer having a layer thickness of 42 nm is formed by co-evaporation on a PC film at a formation rate of 4.2 nm / second and a formation time of 10 seconds under the condition that the volume ratio of ZnS and SiO 2 is 99: 1. Then, a transparent conductor 4 was produced.
 〔透明導電体5~7、26及び27の作製〕
 上記透明導電体4の作製において、透明基板の種類、第1高屈折率層及び第2高屈折率層の構成材料の種類、構成比率と形成する層厚、透明金属層の形成速度と層厚を、表1及び表2に記載の条件に変更した以外は同様にして、透明導電体5~7、26及び27を作製した。ただし、透導電体26及び27では、配線は形成しなかった。
[Production of transparent conductors 5 to 7, 26 and 27]
In the production of the transparent conductor 4, the type of transparent substrate, the types of constituent materials of the first high refractive index layer and the second high refractive index layer, the constituent ratio and the layer thickness to be formed, the formation speed and the layer thickness of the transparent metal layer Transparent conductors 5 to 7, 26 and 27 were produced in the same manner except that the conditions were changed to those described in Tables 1 and 2. However, no wiring was formed in the transmissive conductors 26 and 27.
 〔透明導電体8の作製〕
 透明基板として、長尺のトリアセチルセルロース(略称:TAC)フィルムを用い、TACフィルム上に、下記の方法に従って、第1高屈折率層(ZnS-AZO)/透明金属層(Ag)/第2硫化防止層(TiO)/第2高屈折率層(ZnS-AZO)を、この順で、真空蒸着法を用いたロールtoロール方式で連続して積層した。次いで、積層体を、透明導電体1で用いたのと同様の方法でパターニングして、配線を有する透明導電体8を作製した。なお、各層の厚さは、J.A.Woollam Co.Inc.製のVB-250型VASEエリプソメーターで測定した。上記略称で記載したAZOは、AlをドープしたZnOである。
[Preparation of transparent conductor 8]
A long triacetyl cellulose (abbreviation: TAC) film is used as the transparent substrate, and the first high refractive index layer (ZnS-AZO) / transparent metal layer (Ag) / second is formed on the TAC film according to the following method. An anti-sulfurization layer (TiO 2 ) / second high refractive index layer (ZnS-AZO) were successively laminated in this order by a roll-to-roll method using a vacuum deposition method. Subsequently, the laminated body was patterned by the same method as that used for the transparent conductor 1 to produce a transparent conductor 8 having wiring. The thickness of each layer is J. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer. AZO described in the above abbreviations is ZnO doped with Al.
 透明導電体8の作製は、図3で示した工程1~工程5の5つの真空蒸着室を備えたロールtoロール方式の透明導電体の製造装置を用いた。 The production of the transparent conductor 8 was performed using a roll-to-roll type transparent conductor manufacturing apparatus provided with five vacuum deposition chambers of Step 1 to Step 5 shown in FIG.
 なお、透明導電体8の作製では、第1高屈折率層(ZnS-AZO)の形成を工程1で行い、透明金属層(Ag)の形成を工程3で行い、第2硫化防止層(TiO)の形成を工程4で行い、第2高屈折率層(ZnS-AZO)の形成を工程5で行った。 In the production of the transparent conductor 8, the first high refractive index layer (ZnS-AZO) is formed in Step 1, the transparent metal layer (Ag) is formed in Step 3, and the second antisulfurization layer (TiO 2) is formed. 2 ) was formed in Step 4, and the second high refractive index layer (ZnS-AZO) was formed in Step 5.
 (第1高屈折率層(ZnS-AZO)の形成)
 図3に記載の工程1の真空蒸着室(11)に、透明基板(2)であるTACフィルムを連続搬送しながら、共蒸着法により、第1高屈折率層を形成した。
(Formation of first high refractive index layer (ZnS-AZO))
A first high refractive index layer was formed by a co-evaporation method while continuously transporting the TAC film as the transparent substrate (2) to the vacuum deposition chamber (11) of Step 1 shown in FIG.
 真空蒸着室(11)の第1のモリブデン製抵抗加熱ボート(T1a)にZnSを、第2のモリブデン製抵抗加熱ボート(T1b)にAZOを装填し、真空蒸着室内の圧力Pを1×10-4Paまで減圧した後、第1の抵抗加熱ボート(T1a)及び第2の抵抗加熱ボート(T1b)を通電加熱し、両抵抗加熱ボートの通電加熱条件を適宜調整して、ZnSとAZOの体積比率が80:20となる条件で、形成速度2.1nm/秒、形成時間20秒でTACフィルム上に共蒸着して、層厚が42nmの第1高屈折率層を形成した。 The ZnS to first resistive heating molybdenum boat vacuum deposition chamber (11) (T1a), loaded with AZO to a second resistive heating molybdenum boat (T1b), a 1 × 10 pressure P 1 in the vacuum deposition chamber After depressurizing to -4 Pa, the first resistance heating boat (T1a) and the second resistance heating boat (T1b) are energized and heated, and the energization heating conditions of both resistance heating boats are adjusted as appropriate, and ZnS and AZO A first high refractive index layer having a layer thickness of 42 nm was formed by co-evaporation on the TAC film at a formation rate of 2.1 nm / second and a formation time of 20 seconds under the condition that the volume ratio was 80:20.
 (透明金属層(Ag)の形成)
 次いで、第1高屈折率層を形成したTACフィルムを連続して工程3に搬送し、下記の方法に従って、透明金属層を形成した。
(Formation of transparent metal layer (Ag))
Next, the TAC film on which the first high refractive index layer was formed was continuously conveyed to Step 3, and a transparent metal layer was formed according to the following method.
 工程1で第1高屈折率層を形成したTACフィルムを工程3に搬送し、真空蒸着室(11)で、モリブデン製抵抗加熱ボート(T3)にAgを装填し、真空蒸着室内の圧力Pを1×10-3Paまで減圧した。次いで、抵抗加熱ボート(T3)を通電加熱し、形成速度1.4nm/秒、形成時間が5.3秒の条件で、TACフィルムの第1高屈折率層上に真空蒸着して、層厚が7.4nmの透明金属層を形成した。 The TAC film on which the first high refractive index layer is formed in Step 1 is conveyed to Step 3, and Ag is loaded into the molybdenum resistance heating boat (T3) in the vacuum deposition chamber (11), and the pressure P 3 in the vacuum deposition chamber is set. The pressure was reduced to 1 × 10 −3 Pa. Next, the resistance heating boat (T3) was heated by energization, and was vacuum-deposited on the first high refractive index layer of the TAC film under the conditions that the formation speed was 1.4 nm / second and the formation time was 5.3 seconds, and the layer thickness was Formed a transparent metal layer of 7.4 nm.
 (第2硫化防止層(TiO)の形成)
 次いで、透明金属層を形成したTACフィルムを工程4に搬送し、下記の方法に従って、第2硫化防止層を形成した。
(Formation of second sulfidation preventive layer (TiO 2 ))
Next, the TAC film on which the transparent metal layer was formed was conveyed to step 4 and a second sulfidation preventive layer was formed according to the following method.
 工程4に、工程3で透明金属層を形成したTACフィルムを搬送し、真空蒸着室(11)で、モリブデン製抵抗加熱ボート(T4)にTiOを装填し、真空蒸着室内の圧力Pを5×10-4Paまで減圧した。次いで、抵抗加熱ボート(T4)を通電加熱し、形成速度0.50nm/秒、形成時間20秒の条件で、TACフィルムの透明金属層上に真空蒸着して、層厚が10.0nmの第2硫化防止層を形成した。 In Step 4, the TAC film on which the transparent metal layer has been formed in Step 3 is transported, and in the vacuum deposition chamber (11), TiO 2 is loaded into the molybdenum resistance heating boat (T4), and the pressure P 4 in the vacuum deposition chamber is set. The pressure was reduced to 5 × 10 −4 Pa. Next, the resistance heating boat (T4) was heated by energization, and was vacuum-deposited on the transparent metal layer of the TAC film under the conditions of a formation rate of 0.50 nm / second and a formation time of 20 seconds. A disulfide prevention layer was formed.
 (第2高屈折率層(ZnS-AZO)の形成)
 次いで、工程4で第2硫化防止層を形成したTACフィルムを、工程5の真空蒸着室に搬送し、下記の方法に従って、第2高屈折率層を形成し、透明導電体8を作製した。
(Formation of Second High Refractive Index Layer (ZnS-AZO))
Next, the TAC film on which the second sulfidation-preventing layer was formed in Step 4 was conveyed to the vacuum deposition chamber in Step 5, and a second high refractive index layer was formed according to the following method to produce a transparent conductor 8.
 真空蒸着室(11)の第1のモリブデン製抵抗加熱ボート(T5a)にZnSを、第2のモリブデン製抵抗加熱ボート(T5b)にAZOを装填し、真空蒸着室内の圧力Pを1×10-4Paまで減圧した後、第1の抵抗加熱ボート(T5a)及び第2の抵抗加熱ボート(T5b)を通電加熱し、両抵抗加熱ボートの通電加熱条件を適宜調整して、ZnSとAZOの体積比率が80:20となる条件で、形成速度2.1nm/秒、形成時間20秒の条件でTACフィルム上に共蒸着して、層厚が44nmの第2高屈折率層を形成した。 The ZnS to first resistive heating molybdenum boat vacuum deposition chamber (11) (T5a), loaded with AZO to a second resistive heating molybdenum boat (T5b), the pressure P 5 to 1 × 10 vacuum deposition chamber After depressurizing to -4 Pa, the first resistance heating boat (T5a) and the second resistance heating boat (T5b) are energized and heated, and the energization heating conditions of both resistance heating boats are adjusted as appropriate, so that ZnS and AZO A second high refractive index layer having a layer thickness of 44 nm was formed by co-evaporation on the TAC film under the conditions of a volume ratio of 80:20 and a formation speed of 2.1 nm / second and a formation time of 20 seconds.
 〔透明導電体9~12、16、21~25、28の作製〕
 上記透明導電体8の作製において、透明基板の種類、第1高屈折率層及び第2高屈折率層の構成材料の種類、構成比率と層厚、透明金属層の構成材料、形成速度と層厚、第2硫化防止層の構成材料と膜厚を、表1及び表2に記載の条件に変更した以外は同様にして、透明導電体9~12、16、21~25、28を作製した。なお、透明導電体28では、配線は形成しなかった。
[Production of transparent conductors 9 to 12, 16, 21 to 25, 28]
In the production of the transparent conductor 8, the type of the transparent substrate, the type of constituent material of the first high refractive index layer and the second high refractive index layer, the constituent ratio and layer thickness, the constituent material of the transparent metal layer, the forming speed and the layer Transparent conductors 9 to 12, 16, 21 to 25, and 28 were produced in the same manner except that the thickness, the constituent material and the film thickness of the second sulfurization prevention layer were changed to the conditions described in Tables 1 and 2. . In the transparent conductor 28, no wiring was formed.
 〔透明導電体13の作製〕
 透明基板として、長尺の薄ガラスを用い、下記の方法に従って、薄ガラス上に、第1高屈折率層(ZnS-SiO)/第1硫化防止層(ZnO)/透明金属層(Ag)/第2硫化防止層(ZnO)/第2高屈折率層(ZnS-SiO)を、この順で、真空蒸着法を用いたロールtoロール方式で連続して積層した。次いで、積層体を、透明導電体1で用いたのと同様の方法でパターニングして、配線を有する透明導電体13を作製した。なお、各層の厚さは、J.A.Woollam Co.Inc.製のVB-250型VASEエリプソメーターで測定した。
[Preparation of transparent conductor 13]
A long thin glass is used as the transparent substrate, and the first high refractive index layer (ZnS—SiO 2 ) / first antisulfuration layer (ZnO) / transparent metal layer (Ag) is formed on the thin glass according to the following method. / Second anti-sulfurization layer (ZnO) / second high refractive index layer (ZnS—SiO 2 ) were successively laminated in this order by a roll-to-roll method using a vacuum deposition method. Next, the laminate was patterned by the same method as that used for the transparent conductor 1 to produce a transparent conductor 13 having wiring. The thickness of each layer is J. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
 透明導電体13の作製には、図3で示した工程1~工程5から構成され、5つの真空蒸着室を備えたロールtoロール方式の透明導電体製造装置を用いた。 For production of the transparent conductor 13, a roll-to-roll type transparent conductor manufacturing apparatus including the five vacuum deposition chambers, which includes the steps 1 to 5 shown in FIG. 3, was used.
 透明導電体13の作製においては、第1高屈折率層(ZnS-SiO)の形成を工程1で行い、第1硫化防止層(ZnO)の形成を工程2で行い、透明金属層(Ag)の形成を工程3で行い、第2硫化防止層(ZnO)の形成を工程4で行い、第2高屈折率層(ZnS-SiO)の形成を工程5で行った。 In the production of the transparent conductor 13, the first high refractive index layer (ZnS—SiO 2 ) is formed in Step 1, the first antisulfurization layer (ZnO) is formed in Step 2, and the transparent metal layer (Ag ) Was formed in Step 3, the second anti-sulfurization layer (ZnO) was formed in Step 4, and the second high refractive index layer (ZnS—SiO 2 ) was formed in Step 5.
 (第1高屈折率層(ZnS-SiO)の形成)
 図3に記載の工程1の真空蒸着室(11)に、透明基板(2)である薄ガラスを連続搬送しながら、共蒸着法により、第1高屈折率層を形成した。
(Formation of First High Refractive Index Layer (ZnS—SiO 2 ))
The first high refractive index layer was formed by a co-evaporation method while continuously transporting the thin glass as the transparent substrate (2) into the vacuum deposition chamber (11) of Step 1 shown in FIG.
 真空蒸着室(11)の第1のモリブデン製抵抗加熱ボート(T1a)にZnSを、第2のモリブデン製抵抗加熱ボート(T1b)にSiOを装填し、真空蒸着室内の圧力Pを1×10-4Paまで減圧した後、第1の抵抗加熱ボート(T1a)及び第2の抵抗加熱ボート(T1b)を通電加熱し、両抵抗加熱ボートの通電加熱条件を適宜調整して、ZnSとSiOの体積比率が90:10となる条件で、形成速度42nm/秒、形成時間1秒の条件で薄ガラス上に共蒸着して、層厚が42nmの第1高屈折率層を形成した。 Vacuum deposition chamber a first ZnS to molybdenum resistance heating boat (T1a) of (11), the SiO 2 was loaded into a second resistive heating molybdenum boat (T1b), the pressure P 1 in the vacuum deposition chamber 1 × After depressurizing to 10 −4 Pa, the first resistance heating boat (T1a) and the second resistance heating boat (T1b) are energized and heated. The first high refractive index layer having a layer thickness of 42 nm was formed by co-evaporation on the thin glass under the condition that the volume ratio of 2 was 90:10 and the formation rate was 42 nm / second and the formation time was 1 second.
 (第1硫化防止層(ZnO)の形成)
 次いで、上記工程1で第1高屈折率層を形成した薄ガラスを工程2に搬送し、下記の方法に従って、第1硫化防止層を形成した。
(Formation of first antisulfurization layer (ZnO))
Next, the thin glass on which the first high refractive index layer was formed in Step 1 was conveyed to Step 2, and a first sulfurization prevention layer was formed according to the following method.
 工程2に、工程1で第1高屈折率層を形成した薄ガラスを搬送し、真空蒸着室(11)で、モリブデン製抵抗加熱ボート(T2)にZnOを装填し、真空蒸着室内の圧力Pを5×10-4Paまで減圧した。次いで、抵抗加熱ボート(T2)を通電加熱し、形成速度0.3nm/秒、形成時間が1秒の条件で、薄ガラスの第1高屈折率層上に真空蒸着して、層厚が0.3nmの第1硫化防止層を形成した。 In Step 2, the thin glass on which the first high refractive index layer is formed in Step 1 is transported, and in the vacuum deposition chamber (11), the molybdenum resistance heating boat (T2) is loaded with ZnO, and the pressure P in the vacuum deposition chamber is increased. 2 was depressurized to 5 × 10 −4 Pa. Next, the resistance heating boat (T2) was heated by energization, and was vacuum-deposited on the first high refractive index layer of thin glass under the conditions of a formation rate of 0.3 nm / second and a formation time of 1 second, and the layer thickness was 0. A first anti-sulfurization layer having a thickness of 3 nm was formed.
 (透明金属層(Ag)の形成)
 次いで、工程2で第1硫化防止層を形成した薄ガラスを工程3に搬送し、下記の方法に従って、透明金属層を形成した。
(Formation of transparent metal layer (Ag))
Subsequently, the thin glass in which the 1st sulfurization prevention layer was formed in process 2 was conveyed to process 3, and the transparent metal layer was formed according to the following method.
 工程3に、工程2で第1硫化防止層を形成した薄ガラスを搬送し、真空蒸着室(11)で、モリブデン製抵抗加熱ボート(T3)にAgを装填し、真空蒸着室内の圧力Pを1×10-3Paまで減圧した。次いで、抵抗加熱ボート(T3)を通電加熱し、形成速度7.7nm/秒、形成時間が0.87秒の条件で、薄ガラスの第1硫化防止層上に真空蒸着して、層厚が6.7nmの透明金属層を形成した。 In Step 3, the thin glass on which the first sulfidation-preventing layer is formed in Step 2 is conveyed, Ag is loaded into the molybdenum resistance heating boat (T3) in the vacuum deposition chamber (11), and the pressure P 3 in the vacuum deposition chamber is set. The pressure was reduced to 1 × 10 −3 Pa. Next, the resistance heating boat (T3) was heated by energization, and was vacuum-deposited on the first sulfidation prevention layer of thin glass under the conditions of a formation speed of 7.7 nm / second and a formation time of 0.87 second. A transparent metal layer of 6.7 nm was formed.
 (第2硫化防止層(ZnO)の形成)
 次いで、工程3で透明金属層を形成した薄ガラスを連続して工程4に搬送し、下記の方法に従って、第2硫化防止層を形成した。
(Formation of second anti-sulfurization layer (ZnO))
Next, the thin glass on which the transparent metal layer was formed in Step 3 was continuously conveyed to Step 4, and a second antisulfurization layer was formed according to the following method.
 工程4に、工程3で透明金属層を形成した薄ガラスを搬送し、真空蒸着室(11)で、モリブデン製抵抗加熱ボート(T4)にZnOを装填し、真空蒸着室内の圧力Pを5×10-4Paまで減圧した。次いで、抵抗加熱ボート(T4)を通電加熱し、形成速度1.0nm/秒、形成時間が1秒の条件で、薄ガラスの透明金属層上に真空蒸着して、層厚が1.0nmの第2硫化防止層を形成した。 In Step 4, the thin glass on which the transparent metal layer is formed in Step 3 is transported, and in the vacuum deposition chamber (11), ZnO is loaded into the molybdenum resistance heating boat (T4), and the pressure P 4 in the vacuum deposition chamber is 5 The pressure was reduced to 10-4 Pa. Next, the resistance heating boat (T4) was heated by energization, and was vacuum-deposited on the transparent metal layer of thin glass under the conditions that the formation rate was 1.0 nm / second and the formation time was 1 second, and the layer thickness was 1.0 nm. A second antisulfurization layer was formed.
 (第2高屈折率層(ZnS-SiO)の形成)
 次いで、工程4で第2硫化防止層を形成した薄ガラスを、工程5の真空蒸着室に搬送し、下記の方法に従って、第2高屈折率層を形成し、透明導電体13を作製した。
(Formation of Second High Refractive Index Layer (ZnS—SiO 2 ))
Next, the thin glass on which the second sulfidation-preventing layer was formed in Step 4 was transferred to the vacuum vapor deposition chamber in Step 5, and a second high refractive index layer was formed according to the following method to produce a transparent conductor 13.
 真空蒸着室(11)の第1のモリブデン製抵抗加熱ボート(T5a)にZnSを、第2のモリブデン製抵抗加熱ボート(T5b)にSiOを装填し、真空蒸着室内の圧力Pを1×10-4Paまで減圧した後、第1の抵抗加熱ボート(T5a)及び第2の抵抗加熱ボート(T5b)を通電加熱し、両抵抗加熱ボートの通電加熱条件を適宜調整して、ZnSとSiOの体積比率が90:10となる条件で、形成速度47nm/秒、形成時間1秒で薄ガラス上に共蒸着し、層厚が47nmの第2高屈折率層を形成して、透明導電体13を作製した。 Vacuum deposition chamber a first ZnS to molybdenum resistance heating boat (T5a) of (11), the SiO 2 was loaded into a second resistive heating molybdenum boat (T5b), the pressure P 5 in the vacuum deposition chamber 1 × After depressurizing to 10 −4 Pa, the first resistance heating boat (T5a) and the second resistance heating boat (T5b) are energized and heated, and the energization heating conditions of both resistance heating boats are adjusted as appropriate, so that ZnS and SiO 2 under the condition that the volume ratio of 2 is 90:10, a second high refractive index layer having a layer thickness of 47 nm is formed by co-evaporation on a thin glass with a formation rate of 47 nm / second and a formation time of 1 second, and transparent conductive A body 13 was produced.
 〔透明導電体14、透明導電体29の作製〕
 上記透明導電体13の作製において、透明基板の種類、第1高屈折率層及び第2高屈折率層の構成材料の種類、構成比率と形成する層厚、透明金属層の形成速度と層厚、第1硫化防止層及び第2硫化防止層の膜厚を、表1、表2に記載の条件に変更した以外は同様にして、透明導電体14と透明導電体29を作製した。なお、透明導電体29では、配線は形成しなかった。
[Preparation of transparent conductor 14 and transparent conductor 29]
In the production of the transparent conductor 13, the type of transparent substrate, the types of constituent materials of the first high refractive index layer and the second high refractive index layer, the constituent ratio and the layer thickness to be formed, the formation speed and the layer thickness of the transparent metal layer The transparent conductor 14 and the transparent conductor 29 were produced in the same manner except that the film thicknesses of the first sulfidation prevention layer and the second sulfidation prevention layer were changed to the conditions shown in Tables 1 and 2. In the transparent conductor 29, no wiring was formed.
 〔透明導電体15の作製〕
 透明基板として、長尺のポリカーボネート(略称:PC)フィルムを用い、PCフィルム上に、下記の方法に従って、第1高屈折率層(TiO)/第1硫化防止層(Ge)/透明金属層(Ag)/第2高屈折率層(ZnS-SiO)を、この順で、真空蒸着法を用いたロールtoロール方式で連続して積層した。次いで、積層体を、透明導電体1で用いたのと同様のパターニング法でパターニングして、配線を有する透明導電体15を作製した。なお、各層の厚さは、J.A.Woollam Co.Inc.製のVB-250型VASEエリプソメーターで測定した。
[Preparation of transparent conductor 15]
A long polycarbonate (abbreviation: PC) film is used as a transparent substrate, and the first high refractive index layer (TiO 2 ) / first antisulfuration layer (Ge) / transparent metal layer is formed on the PC film according to the following method. The (Ag) / second high refractive index layer (ZnS—SiO 2 ) was successively laminated in this order by a roll-to-roll method using a vacuum deposition method. Subsequently, the laminated body was patterned by the same patterning method as that used for the transparent conductor 1 to produce a transparent conductor 15 having wiring. The thickness of each layer is J. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
 透明導電体15の作製には、図3で示した工程1~工程5の5つの真空蒸着室を備えたロールtoロール方式の透明導電体の製造装置を用いた。 For production of the transparent conductor 15, a roll-to-roll type transparent conductor manufacturing apparatus provided with five vacuum deposition chambers of Step 1 to Step 5 shown in FIG. 3 was used.
 透明導電体15の作製においては、第1高屈折率層(TiO)の形成は工程1で行い、第1硫化防止層(Ge)の形成は工程2で行い、透明金属層(Ag)の形成は工程3で行い、第2高屈折率層(ZnS-SiO)の形成は、工程5を用いて行った。 In the production of the transparent conductor 15, the first high refractive index layer (TiO 2 ) is formed in Step 1, the first antisulfurization layer (Ge) is formed in Step 2, and the transparent metal layer (Ag) is formed. The formation was performed in Step 3, and the formation of the second high refractive index layer (ZnS—SiO 2 ) was performed using Step 5.
 (第1高屈折率層(TiO)の形成)
 図3に記載の工程1の真空蒸着室(11)に、透明基板(2)であるPCフィルムを連続搬送しながら、蒸着法により、第1高屈折率層を形成した。
(Formation of first high refractive index layer (TiO 2 ))
The first high-refractive-index layer was formed by a vapor deposition method while continuously conveying the PC film as the transparent substrate (2) to the vacuum vapor deposition chamber (11) in Step 1 shown in FIG.
 真空蒸着室(11)の第1のモリブデン製抵抗加熱ボート(T1a)にTiOを装填し、真空蒸着室内の圧力Pを1×10-4Paまで減圧した後、第1の抵抗加熱ボート(T1a)を通電加熱し、形成速度4.6nm/秒、形成時間10秒の条件でPCフィルム上に蒸着して、層厚が46nmのTiOから構成される第1高屈折率層を形成した。 The first resistance heating boat (T1a) made of molybdenum in the vacuum deposition chamber (11) is charged with TiO 2 and the pressure P 1 in the vacuum deposition chamber is reduced to 1 × 10 −4 Pa, and then the first resistance heating boat (T1a) is energized and heated, and vapor-deposited on a PC film under conditions of a formation speed of 4.6 nm / second and a formation time of 10 seconds to form a first high refractive index layer composed of TiO 2 having a layer thickness of 46 nm. did.
 (第1硫化防止層(Ge)の形成)
 次いで、第1高屈折率層を形成したPCフィルムを工程2に搬送し、下記の方法に従って、第1硫化防止層を形成した。
(Formation of first antisulfurization layer (Ge))
Next, the PC film on which the first high refractive index layer was formed was conveyed to step 2, and a first sulfidation prevention layer was formed according to the following method.
 工程2に、工程1で第1高屈折率層を形成したPCフィルムを搬送し、真空蒸着室(11)で、モリブデン製抵抗加熱ボート(T2)にGe単体を装填し、真空蒸着室内の圧力Pを5×10-4Paまで減圧した。次いで、抵抗加熱ボート(T2)を通電加熱し、形成速度0.01nm/秒、形成時間が10秒の条件で、PCフィルムの第1高屈折率層上に真空蒸着して、層厚が0.1nmの第1硫化防止層を形成した。 In Step 2, the PC film on which the first high refractive index layer is formed in Step 1 is transported, and in the vacuum deposition chamber (11), the molybdenum simple heating boat (T2) is loaded with Ge alone, and the pressure in the vacuum deposition chamber is increased. P 2 was depressurized to 5 × 10 −4 Pa. Next, the resistance heating boat (T2) was heated by energization, and was vacuum-deposited on the first high refractive index layer of the PC film under the conditions that the formation speed was 0.01 nm / second and the formation time was 10 seconds. A 1 nm first antisulfurization layer was formed.
 (透明金属層(Ag)の形成)
 次いで、工程2で第1硫化防止層を形成したPCフィルムを工程3に搬送し、下記の方法に従って、透明金属層を形成した。
(Formation of transparent metal layer (Ag))
Next, the PC film on which the first sulfidation-preventing layer was formed in Step 2 was conveyed to Step 3, and a transparent metal layer was formed according to the following method.
 工程3に、工程2で第1硫化防止層を形成したPCフィルムを搬送し、真空蒸着室(11)で、モリブデン製抵抗加熱ボート(T3)にAgを装填し、真空蒸着室内の圧力Pを1×10-3Paまで減圧した。次いで、抵抗加熱ボート(T3)を通電加熱し、形成速度1.6nm/秒、形成時間が3.56秒の条件で、PCフィルムの第1硫化防止層上に真空蒸着して、層厚が5.7nmの透明金属層を形成した。 In Step 3, the PC film on which the first sulfidation-preventing layer is formed in Step 2 is conveyed, Ag is loaded into the molybdenum resistance heating boat (T3) in the vacuum deposition chamber (11), and the pressure P 3 in the vacuum deposition chamber is set. The pressure was reduced to 1 × 10 −3 Pa. Next, the resistance heating boat (T3) was heated by energization, and was vacuum-deposited on the first antisulfurization layer of the PC film under the conditions of a formation rate of 1.6 nm / second and a formation time of 3.56 seconds. A 5.7 nm transparent metal layer was formed.
 (第2高屈折率層(ZnS-SiO)の形成)
 次いで、工程3で透明金属層を形成したPCフィルムを、工程5の真空蒸着室に搬送し、下記の方法に従って、第2高屈折率層を形成し、透明導電体15を作製した。
(Formation of Second High Refractive Index Layer (ZnS—SiO 2 ))
Next, the PC film on which the transparent metal layer was formed in Step 3 was conveyed to the vacuum vapor deposition chamber in Step 5, and a second high refractive index layer was formed according to the following method to produce a transparent conductor 15.
 真空蒸着室(11)の第1のモリブデン製抵抗加熱ボート(T5a)にZnSを、第2のモリブデン製抵抗加熱ボート(T5b)にSiOを装填し、真空蒸着室内の圧力Pを1×10-4Paまで減圧した後、第1の抵抗加熱ボート(T5a)及び第2の抵抗加熱ボート(T5b)を通電加熱し、両抵抗加熱ボートの通電加熱条件を適宜調整して、ZnSとSiOの体積比率が80:20となる条件で、形成速度4.5nm/秒、形成時間10秒の条件で薄ガラス上に共蒸着して、層厚が45nmの第2高屈折率層を形成した。 Vacuum deposition chamber a first ZnS to molybdenum resistance heating boat (T5a) of (11), the SiO 2 was loaded into a second resistive heating molybdenum boat (T5b), the pressure P 5 in the vacuum deposition chamber 1 × After depressurizing to 10 −4 Pa, the first resistance heating boat (T5a) and the second resistance heating boat (T5b) are energized and heated, and the energization heating conditions of both resistance heating boats are adjusted as appropriate, so that ZnS and SiO The second high refractive index layer having a layer thickness of 45 nm is formed by co-evaporation on a thin glass under the conditions that the volume ratio of 2 is 80:20 and the formation speed is 4.5 nm / second and the formation time is 10 seconds. did.
 〔透明導電体17の作製〕
 透明導電体17の作製は、図3で示した工程1~工程5の5つの真空蒸着室を備えたロールtoロール方式の透明導電体の製造装置において、工程1及び工程5をそれぞれ2つの真空蒸着室(真空蒸着室1Aと1B、真空蒸着室5Aと5B)の構成とし、2つの領域を有する第1高屈折率層(ZnS-TiO)の形成を真空蒸着室1A及び真空蒸着室1Bで行い、透明金属層(Ag)の形成を工程3で行い、第2硫化防止層(ZnO)の形成を工程4で行い、2つの領域を有する第2高屈折率層(ZnS-TiO)の形成を真空蒸着室5A及び真空蒸着室5Bで行った。
[Preparation of transparent conductor 17]
The production of the transparent conductor 17 is carried out by using two roll-to-roll type transparent conductor manufacturing apparatuses equipped with five vacuum deposition chambers of Step 1 to Step 5 shown in FIG. The vapor deposition chambers (vacuum vapor deposition chambers 1A and 1B, vacuum vapor deposition chambers 5A and 5B) are configured, and the formation of the first high refractive index layer (ZnS—TiO 2 ) having two regions is performed in the vacuum vapor deposition chamber 1A and the vacuum vapor deposition chamber 1B. The transparent metal layer (Ag) is formed in Step 3, the second antisulfurization layer (ZnO) is formed in Step 4, and the second high refractive index layer (ZnS—TiO 2 ) having two regions is formed. Was formed in the vacuum deposition chamber 5A and the vacuum deposition chamber 5B.
 (第1高屈折率層(ZnS-TiO)の形成)
 図3に記載の工程1を工程1A(真空蒸着室1A)と工程1B(真空蒸着室1B)に分割し、透明基板(2)であるポリエチレンテレフタレート(略装:PET)フィルムを連続搬送しながら、共蒸着法により、2つの構成比率の異なる領域を有する第1高屈折率層を形成した。
(Formation of first high refractive index layer (ZnS—TiO 2 ))
3 is divided into a process 1A (vacuum deposition chamber 1A) and a process 1B (vacuum deposition chamber 1B), and a polyethylene terephthalate (substantially equipped: PET) film as a transparent substrate (2) is continuously conveyed. The first high refractive index layer having two regions having different composition ratios was formed by a co-evaporation method.
 真空蒸着室1Aの第1のモリブデン製抵抗加熱ボート(T1Aa)にZnSを、第2のモリブデン製抵抗加熱ボート(T1Ab)にTiOを装填し、真空蒸着室内の圧力Pを1×10-4Paまで減圧した。 The first molybdenum resistance heating boat (T1Aa) in the vacuum deposition chamber 1A is charged with ZnS, the second molybdenum resistance heating boat (T1Ab) is charged with TiO 2, and the pressure P 1 in the vacuum deposition chamber is set to 1 × 10 −. The pressure was reduced to 4 Pa.
 また、工程1B(真空蒸着室1B)の第1のモリブデン製抵抗加熱ボート(T1Ba)にZnSを、第2のモリブデン製抵抗加熱ボート(T1Bb)にTiOを装填し、真空蒸着室内の圧力Pを1×10-4Paまで減圧した。 In addition, ZnS is loaded into the first molybdenum resistance heating boat (T1Ba) in step 1B (vacuum deposition chamber 1B), TiO 2 is loaded into the second molybdenum resistance heating boat (T1Bb), and the pressure P in the vacuum deposition chamber is increased. 1 was depressurized to 1 × 10 −4 Pa.
 第1のステップとして、工程1A(真空蒸着室1A)に透明基板(2)であるPETフィルムを連続搬送しながら、共蒸着法により、第1高屈折率層の領域1を形成した。具体的には、第1の抵抗加熱ボート(T1Aa)及び第2の抵抗加熱ボート(T1Ab)を通電加熱し、両抵抗加熱ボートの通電加熱条件を適宜調整して、ZnSとTiOの体積比率が50:50で、層厚が32nmの条件で領域1を形成した。 As a first step, the region 1 of the first high refractive index layer was formed by co-evaporation while continuously transporting the PET film as the transparent substrate (2) to the process 1A (vacuum deposition chamber 1A). Specifically, the first resistance heating boat (T1Aa) and the second resistance heating boat (T1Ab) are energized and heated, and the energization heating conditions of both resistance heating boats are adjusted as appropriate, and the volume ratio of ZnS and TiO 2 is adjusted. Was 50:50, and the region 1 was formed under the condition that the layer thickness was 32 nm.
 次いで、第2ステップとして、領域1を形成した透明基板(2)であるPETフィルムを、工程1B(真空蒸着室1B)に搬送し、第1の抵抗加熱ボート(T1Ba)及び第2の抵抗加熱ボート(T1Bb)を通電加熱し、両抵抗加熱ボートの通電加熱条件を適宜調整して、ZnSとTiOの体積比率が80:20で、層厚が10nmの条件で領域2を形成し、総層厚が42nmの第1高屈折率層を形成した。 Next, as a second step, the PET film which is the transparent substrate (2) in which the region 1 is formed is transported to the process 1B (vacuum deposition chamber 1B), and the first resistance heating boat (T1Ba) and the second resistance heating are performed. The boat (T1Bb) is energized and heated, and the energization and heating conditions of both resistance heating boats are adjusted as appropriate to form region 2 under the condition that the volume ratio of ZnS and TiO 2 is 80:20 and the layer thickness is 10 nm. A first high refractive index layer having a layer thickness of 42 nm was formed.
 工程1A(真空蒸着室1A)で形成した領域1は、第1高屈折率層の透明基板側を構成する領域であり、表2の「第1高屈折率層」欄の上段にその詳細を記載した。また、工程1B(真空蒸着室1B)で形成した領域2は、透明金属層側を構成する領域であり、表2の「第1高屈折率層」欄の下段にその詳細を記載した。 The region 1 formed in the step 1A (vacuum deposition chamber 1A) is a region constituting the transparent substrate side of the first high refractive index layer, and the details are shown in the upper part of the “first high refractive index layer” column in Table 2. Described. In addition, the region 2 formed in the step 1B (vacuum deposition chamber 1B) is a region constituting the transparent metal layer side, and details are described in the lower part of the “first high refractive index layer” column in Table 2.
 なお、第1高屈折率層における各層のZnSとTiOの体積比率は、X線光電子分光法(X-ray Photoelectron Spectroscopy:XPS)を用いて、上記記載の比率であることを確認した。 The volume ratio of ZnS and TiO 2 in each layer in the first high refractive index layer was confirmed to be the above-described ratio using X-ray photoelectron spectroscopy (XPS).
 (透明金属層(Ag)の形成)
 次いで、2つの領域から構成されている第1高屈折率層を形成したPETフィルムを連続して工程3に搬送し、下記の方法に従って、透明金属層を形成した。
(Formation of transparent metal layer (Ag))
Subsequently, the PET film on which the first high refractive index layer composed of two regions was formed was continuously conveyed to Step 3, and a transparent metal layer was formed according to the following method.
 工程1で第1高屈折率層を形成したPETフィルムを工程3に搬送し、真空蒸着室(11)で、モリブデン製抵抗加熱ボート(T3)にAgを装填し、真空蒸着室内の圧力Pを1×10-3Paまで減圧した。次いで、抵抗加熱ボート(T3)を通電加熱し、形成速度0.7nm/秒、形成時間が10.6秒の条件で、PETフィルムの第1高屈折率層上に真空蒸着して、層厚が7.4nmの透明金属層を形成した。 The PET film on which the first high refractive index layer is formed in step 1 is conveyed to step 3, and Ag is loaded into the molybdenum resistance heating boat (T3) in the vacuum deposition chamber (11), and the pressure P 3 in the vacuum deposition chamber is set. The pressure was reduced to 1 × 10 −3 Pa. Next, the resistance heating boat (T3) was heated by energization, and was vacuum-deposited on the first high refractive index layer of the PET film under the conditions that the formation speed was 0.7 nm / second and the formation time was 10.6 seconds, and the layer thickness was Formed a transparent metal layer of 7.4 nm.
 (第2硫化防止層(ZnO)の形成)
 次いで、透明金属層を形成したPETフィルムを工程4に搬送し、下記の方法に従って、第2硫化防止層を形成した。
(Formation of second anti-sulfurization layer (ZnO))
Subsequently, the PET film on which the transparent metal layer was formed was conveyed to Step 4 and a second sulfidation preventive layer was formed according to the following method.
 工程4に、工程3で透明金属層を形成したPETフィルムを搬送し、真空蒸着室(11)で、モリブデン製抵抗加熱ボート(T4)にZnOを装填し、真空蒸着室内の圧力Pを5×10-4Paまで減圧した。次いで、抵抗加熱ボート(T4)を通電加熱し、形成速度1.0nm/秒、形成時間1秒の条件で、PETフィルムの透明金属層上に真空蒸着して、層厚が1.0nmの第2硫化防止層を形成した。 In Step 4, the PET film on which the transparent metal layer is formed in Step 3 is transported, and in the vacuum vapor deposition chamber (11), ZnO is loaded into the molybdenum resistance heating boat (T4), and the pressure P 4 in the vacuum vapor deposition chamber is 5 The pressure was reduced to 10-4 Pa. Next, the resistance heating boat (T4) was heated by energization, and was vacuum-deposited on the transparent metal layer of the PET film under the conditions of a formation rate of 1.0 nm / second and a formation time of 1 second. A disulfide prevention layer was formed.
 (第2高屈折率層(ZnS-TiO)の形成)
 図3に記載の工程5を工程5A(真空蒸着室5A)と工程5B(真空蒸着室5B)に分割して構成し、上記方法で第1高屈折率層、透明電極層及び第2硫化防止層を形成した透明基板(2)(PETフィルム)を連続搬送しながら、共蒸着法により、2つの構成比率の異なる領域を有する第2高屈折率層を形成した。
(Formation of Second High Refractive Index Layer (ZnS—TiO 2 ))
Step 5 shown in FIG. 3 is divided into step 5A (vacuum deposition chamber 5A) and step 5B (vacuum deposition chamber 5B), and the first high refractive index layer, the transparent electrode layer, and the second sulfurization prevention by the above method. While continuously transporting the transparent substrate (2) (PET film) on which the layer was formed, a second high refractive index layer having regions having two different composition ratios was formed by a co-evaporation method.
 真空蒸着室5Aの第1のモリブデン製抵抗加熱ボート(T5Aa)にZnSを、第2のモリブデン製抵抗加熱ボート(T5Ab)にTiOを装填し、真空蒸着室内の圧力Pを1×10-4Paまで減圧した。 ZnS was charged in the first molybdenum resistance heating boat (T5Aa) in the vacuum evaporation chamber 5A, TiO 2 was charged in the second molybdenum resistance heating boat (T5Ab), and the pressure P 1 in the vacuum evaporation chamber was set to 1 × 10 −. The pressure was reduced to 4 Pa.
 また、工程5B(真空蒸着室5B)の第1のモリブデン製抵抗加熱ボート(T5Ba)にZnSを、第2のモリブデン製抵抗加熱ボート(T5Bb)にTiOを装填し、真空蒸着室内の圧力Pを1×10-4Paまで減圧した。 In addition, ZnS is loaded into the first molybdenum resistance heating boat (T5Ba) in step 5B (vacuum deposition chamber 5B), TiO 2 is loaded into the second molybdenum resistance heating boat (T5Bb), and the pressure P in the vacuum deposition chamber is increased. 1 was depressurized to 1 × 10 −4 Pa.
 第1のステップとして、工程5A(真空蒸着室5A)に第2硫化防止層(ZnO)までを形成したPETフィルムを連続搬送しながら、共蒸着法により、第2高屈折率層の領域1を形成した。具体的には、第1の抵抗加熱ボート(T5Aa)及び第2の抵抗加熱ボート(T5Ab)を通電加熱し、両抵抗加熱ボートの通電加熱条件を適宜調整して、ZnSとTiOの体積比率が80:20で、層厚が10nmの条件で領域1を形成した。 As a first step, the region 1 of the second high-refractive-index layer is formed by co-evaporation while continuously transporting the PET film having the second anti-sulfurization layer (ZnO) formed in the process 5A (vacuum deposition chamber 5A). Formed. Specifically, the first resistance heating boat (T5Aa) and the second resistance heating boat (T5Ab) are energized and heated, and the energization heating conditions of both resistance heating boats are adjusted as appropriate, and the volume ratio of ZnS and TiO 2 is adjusted. Was 80:20, and the region 1 was formed under the condition that the layer thickness was 10 nm.
 第2ステップとして、領域1を形成したPETフィルムを、工程5B(真空蒸着室5B)に搬送し、第1の抵抗加熱ボート(T5Ba)及び第2の抵抗加熱ボート(T5Bb)を通電加熱し、両抵抗加熱ボートの通電加熱条件を適宜調整して、ZnSとTiOの体積比率が50:50で、層厚が34nmの条件で領域2を形成し、総層厚が44nmの第2高屈折率層を形成した。 As a second step, the PET film in which the region 1 is formed is transported to the process 5B (vacuum deposition chamber 5B), and the first resistance heating boat (T5Ba) and the second resistance heating boat (T5Bb) are energized and heated. A second high refraction with a total layer thickness of 44 nm is formed by appropriately adjusting the current heating conditions of both resistance heating boats, forming region 2 under the condition that the volume ratio of ZnS and TiO 2 is 50:50, and the layer thickness is 34 nm. A rate layer was formed.
 工程5A(真空蒸着室5A)で形成した領域1は、第2高屈折率層の透明金属層側を構成する領域であり、表2の「第2高屈折率層」欄の上段にその詳細を記載した。また、工程5B(真空蒸着室5B)で形成した領域2は、第2高屈折率層の表面側を構成する領域であり、表2の「第2高屈折率層」欄の下段にその詳細を記載した。 Region 1 formed in step 5A (vacuum deposition chamber 5A) is a region constituting the transparent metal layer side of the second high refractive index layer, and the details are shown in the upper part of the “second high refractive index layer” column in Table 2. Was described. Further, the region 2 formed in the step 5B (vacuum deposition chamber 5B) is a region constituting the surface side of the second high refractive index layer, and the details are shown in the lower part of the “second high refractive index layer” column in Table 2. Was described.
 なお、第2高屈折率層における各層のZnSとTiOの体積比率は、X線光電子分光法(X-ray Photoelectron Spectroscopy:XPS)を用いて、上記記載の比率であることを確認した。 It should be noted that the volume ratio of ZnS and TiO 2 in each layer in the second high refractive index layer was confirmed to be the above-described ratio using X-ray photoelectron spectroscopy (XPS).
 〔透明導電体18~20の作製〕
 上記透明導電体17の作製において、それぞれの第1高屈折率層及び第2高屈折率層の構成比率の異なる各領域の構成材料の種類及び構成比率を、表2に記載の条件に変更した以外は同様にして、透明導電体18~20を作製した。
[Preparation of transparent conductors 18 to 20]
In the production of the transparent conductor 17, the types and constituent ratios of the constituent materials in the respective regions having different constituent ratios of the first high refractive index layer and the second high refractive index layer were changed to the conditions described in Table 2. Transparent conductors 18 to 20 were produced in the same manner except for the above.
 〔透明導電体30の作製〕
 透明基板として石英を用い、石英上に、下記の方法で、蒸着法により第1高屈折率層(ZnS)/透明金属層(Ag)/第2高屈折率層(ZnS)を順に下記の蒸着方法で積層した。次いで、当該積層体を下記の方法でパターニングして、図6に示す配線を有する透明導電体30を、バッチ方式で作製した。なお、各層の厚さは、J.A.Woollam
 Co.Inc.製のVB-250型VASEエリプソメーターで測定した。
[Preparation of transparent conductor 30]
Using quartz as the transparent substrate, the following high-refractive index layer (ZnS) / transparent metal layer (Ag) / second high-refractive index layer (ZnS) are sequentially deposited on the quartz by the following method. Laminated by the method. Next, the laminate was patterned by the following method, and the transparent conductor 30 having the wiring shown in FIG. 6 was produced by a batch method. The thickness of each layer is J. A. Woollam
Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
 透明導電体30では、第1高屈折率層及び第2高屈折率層は、それぞれZnS単独で形成されている。 In the transparent conductor 30, the first high refractive index layer and the second high refractive index layer are each made of ZnS alone.
 (第1高屈折率層(ZnS)の形成)
 真空蒸着装置として、シンクロン社製のBMC-800T蒸着装置を用い、モリブデン製抵抗加熱ボートにZnSを装填し、真空槽を1×10-4Paまで減圧した後、抵抗加熱ボートに通電加熱し、層厚が40nmの第1高屈折率層を形成した。
(Formation of first high refractive index layer (ZnS))
As a vacuum deposition device, a BMC-800T deposition device manufactured by SYNCHRON Co., Ltd. was used, ZnS was loaded into a resistance heating boat made of molybdenum, the vacuum chamber was depressurized to 1 × 10 −4 Pa, and then the resistance heating boat was energized and heated. A first high refractive index layer having a layer thickness of 40 nm was formed.
 (透明金属層(Ag)の形成)
 次いで、第1高屈折率層を形成した石英を、上記と同様の真空蒸着装置に固定し、モリブデン製抵抗加熱ボートにAgを装填し、真空槽を1×10-4Paまで減圧した。次いで、抵抗加熱ボートに通電加熱し、形成速度が0.2nm/秒の条件で、層厚が12nmの透明金属層を形成した。
(Formation of transparent metal layer (Ag))
Next, the quartz on which the first high refractive index layer was formed was fixed to a vacuum vapor deposition apparatus similar to the above, and Ag was loaded into a molybdenum resistance heating boat, and the vacuum chamber was decompressed to 1 × 10 −4 Pa. Subsequently, the resistance heating boat was energized and heated, and a transparent metal layer having a layer thickness of 12 nm was formed under the condition that the formation speed was 0.2 nm / second.
 (第2高屈折率層(ZnS)の形成)
 次いで、透明金属層を形成した石英を、上記と同様の真空蒸着装置に固定し、モリブデン製抵抗加熱ボートにZnSを装填し、真空槽を1×10-4Paまで減圧した後、抵抗加熱ボートを通電加熱し、層厚が40nmの第2高屈折率層を形成して、透明導電体30を作製した。
(Formation of Second High Refractive Index Layer (ZnS))
Next, the quartz on which the transparent metal layer was formed was fixed to a vacuum vapor deposition apparatus similar to the above, ZnS was loaded into a molybdenum resistance heating boat, and the vacuum chamber was decompressed to 1 × 10 −4 Pa, and then the resistance heating boat Was heated by electric current to form a second high refractive index layer having a layer thickness of 40 nm, and a transparent conductor 30 was produced.
 〔透明導電体31の作製〕
 透明基板としてPETフィルムを用い、PETフィルム上に、下記のスパッタ法により第1高屈折率層(Nb)/透明金属層(Ag)/第2高屈折率層(IZO)を順に下記のスパッタ法で積層して、透明導電体31を作製した。
[Preparation of transparent conductor 31]
A PET film is used as a transparent substrate, and a first high refractive index layer (Nb 2 O 5 ) / transparent metal layer (Ag) / second high refractive index layer (IZO) are sequentially formed on the PET film by the following sputtering method. The transparent conductor 31 was prepared by laminating by the sputtering method.
 (第1高屈折率層(Nb)の形成)
 大阪真空社製のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、形成速度0.3.nm/秒でNbをRFスパッタした。ターゲット-基板間距離は90mmで形成し、層厚が28nmの第1高屈折率層を形成した。
(Formation of the first high refractive index layer (Nb 2 O 5 ))
Using a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target side power 150 W, formation rate 0.3. Nb 2 O 5 was RF sputtered at nm / second. A target-substrate distance was 90 mm, and a first high refractive index layer having a layer thickness of 28 nm was formed.
 (透明金属層(Ag)の形成)
 FTSコーポレーション社の対向スパッタ機を用い、Ar 20sccm、スパッタ圧0.5Pa、室温下、ターゲット側電力150W、形成速度1.4nm/sで、Agを層厚が7.3nmとなる条件で対向スパッタした。ターゲット-基板間距離は90mmであった。
(Formation of transparent metal layer (Ag))
Using an opposing sputtering machine manufactured by FTS Corporation, facing sputtering with Ar 20 sccm, sputtering pressure 0.5 Pa, room temperature, target side power 150 W, formation rate 1.4 nm / s, and Ag layer thickness of 7.3 nm did. The target-substrate distance was 90 mm.
 (第2高屈折率層(IZO))
 前記透明金属層上に、アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力150W、形成速度0.2nm/sでIZOを、層厚が36nmとなる条件でDCスパッタした。ターゲット-基板間距離は86mmであった。
(Second high refractive index layer (IZO))
On the transparent metal layer, L-430S-FHS manufactured by Anelva Co., Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target side power 150 W, formation rate 0.2 nm / s, IZO, DC sputtering was performed under the condition that the layer thickness was 36 nm. The target-substrate distance was 86 mm.
 〔透明導電体32の作製〕
 透明基板としてTACフィルムを用い、特開2006-184849号公報の実施例に記載の方法に従って、スパッタ法により透明基板(TAC)/第1高屈折率層(ICO:27nm、Cr:0.8nm)/透明金属層(Ag・Au:9nm)/第2硫化防止層(Cr:0.8nm)/第2高屈折率層(ICO:20nm、SiO2:40nm、KP801M:8nm)をこの順で積層して、透明導電体32を作製した。
[Production of Transparent Conductor 32]
A transparent substrate (TAC) / first high refractive index layer (ICO: 27 nm, Cr: 0.8 nm) is formed by sputtering using a TAC film as the transparent substrate and according to the method described in Examples of Japanese Patent Application Laid-Open No. 2006-184849. / Transparent metal layer (Ag / Au: 9 nm) / Second anti-sulfurization layer (Cr: 0.8 nm) / Second high refractive index layer (ICO: 20 nm, SiO2: 40 nm, KP801M: 8 nm) are laminated in this order Thus, a transparent conductor 32 was produced.
 なお、KP501Mは、フッ素系シラン化合物(フルオロアルキルシラザン、信越化学工業社製)である。 KP501M is a fluorine-based silane compound (fluoroalkylsilazane, manufactured by Shin-Etsu Chemical Co., Ltd.).
 〔透明導電体33の作製〕
 透明基板としてPETフィルムを用い、特開2002-15623号公報の実施例に記載の方法に従って、スパッタ法により透明基板(TAC)/第1高屈折率層(ITO:40nm)/透明金属層(APC:9nm)/第2高屈折率層(ITO:40nm)をこの順で積層して、透明導電体33を作製した。
[Preparation of transparent conductor 33]
A PET film is used as a transparent substrate, and according to the method described in Examples of Japanese Patent Application Laid-Open No. 2002-15623, a transparent substrate (TAC) / first high refractive index layer (ITO: 40 nm) / transparent metal layer (APC) is formed by sputtering. : 9 nm) / second high refractive index layer (ITO: 40 nm) was laminated in this order to produce a transparent conductor 33.
 なお、APCとしては、Ag(40原子%)・Pd(40原子%)・Cu(20原子%)からなる合金を使用した。
〔透明導電体34の作製〕
 透明基板としてガラスを用い、特開2008-226581号公報の実施例に記載の方法に従って、スパッタ法により透明基板(ガラス基板)/第1高屈折率層(a-GIO:50nm)/透明金属層(Ag:10nm)/第2高屈折率層(a-GIO:50nm)をこの順で積層して、透明導電体34を作製した。
In addition, as APC, the alloy which consists of Ag (40 atomic%) * Pd (40 atomic%) * Cu (20 atomic%) was used.
[Preparation of transparent conductor 34]
Glass is used as the transparent substrate, and a transparent substrate (glass substrate) / first high-refractive index layer (a-GIO: 50 nm) / transparent metal layer is formed by sputtering according to the method described in the examples of JP-A-2008-226581 (Ag: 10 nm) / second high refractive index layer (a-GIO: 50 nm) were laminated in this order to produce a transparent conductor 34.
 なお、a-GIOとは、ガリウム・インジウム及び酸素からなる非晶質酸化物膜である。
〔透明導電体35の作製〕
 透明基板としてガラスを用い、中国特許であるCN102677012A号明細書の実施例に記載の方法に従って、スパッタ法により透明基板(ガラス基板)/第1高屈折率層(ZnO・SiO:45nm)/透明金属層(Ag:11nm)/第2高屈折率層(ZnO・SiO:45nm)をこの順で積層して、透明導電体35を作製した。
Note that a-GIO is an amorphous oxide film made of gallium, indium and oxygen.
[Preparation of transparent conductor 35]
Glass is used as the transparent substrate, and the transparent substrate (glass substrate) / first high refractive index layer (ZnO.SiO 2 : 45 nm) / transparent is formed by sputtering according to the method described in the example of CN1026777012A, which is a Chinese patent. A metal layer (Ag: 11 nm) / second high refractive index layer (ZnO.SiO 2 : 45 nm) was laminated in this order to produce a transparent conductor 35.
 以上により作製した透明導電体1~35の構成を、表1及び表2に示す。 Tables 1 and 2 show the structures of the transparent conductors 1 to 35 produced as described above.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 なお、表1及び表2に略称あるいは符号で記載した構成要素の詳細は、以下のとおりである。 The details of the constituent elements described in Table 1 and Table 2 with abbreviations or symbols are as follows.
 (透明基板)
 COP:シクロオレフィンポリマー
 TAC:トリアセチルセルロース
 PET:ポリエチレンテレフタレート
 PC:ポリカーボネート
 (高屈折率層の構成材料)
 *1:ZnS-TiO
 *2:ZnS-SiO
 *3:ZnS-Nb
 *4:CeO
 *5:ZnS-CeO
 *6:ZnS-AZO(AlドープZnO)
 *7:ZnS-HfO
 *8:ZnS-Al
 *9:ZnS-Y
 *10:ZnS-AlF
 *11:ZnS-LiF
 *12:ZnS-SiN
 *13:ZnS-TiN
 *14:ZnS-Ta
 *15:ICO-Cr=27/1(nm)
 *16:ICO-SiO-KP801M=20/40/6(nm)
 ITO:インジウム・スズ酸化物
 ICO:インジウム・セリウム酸化物
 IZO:インジウム・亜鉛酸化物
 ATO:SbドープSnO
 AZO:AlドープZnO
 TNO:NbドープTiO
 a-GIO:ガリウム・インジウム及び酸素からなる非晶質酸化物
 KP801M:フッ素系シラン化合物(フルオロアルキルシラザン、信越化学工業社製)
 (透明金属層の構成材料)
 APC:Ag(40原子%)・Pd(40原子%)・Cu(20原子%)からなる合金
 《透明導電体の評価》
 上記作製した各透明導電体について、下記の各特性値の測定及び評価を行った。
(Transparent substrate)
COP: cycloolefin polymer TAC: triacetyl cellulose PET: polyethylene terephthalate PC: polycarbonate (constituent material of high refractive index layer)
* 1: ZnS-TiO 2
* 2: ZnS-SiO 2
* 3: ZnS—Nb 2 O 5
* 4: CeO 2
* 5: ZnS-CeO 2
* 6: ZnS-AZO (Al-doped ZnO)
* 7: ZnS—HfO 2
* 8: ZnS—Al 2 O 3
* 9: ZnS—Y 2 O 3
* 10: ZnS-AlF 3
* 11: ZnS-LiF
* 12: ZnS-SiN
* 13: ZnS-TiN
* 14: ZnS—Ta 2 O 3
* 15: ICO-Cr = 27/1 (nm)
* 16: ICO-SiO 2 -KP801M = 20/40/6 (nm)
ITO: Indium tin oxide ICO: Indium cerium oxide IZO: Indium zinc oxide ATO: Sb-doped SnO
AZO: Al-doped ZnO
TNO: Nb-doped TiO 2
a-GIO: amorphous oxide composed of gallium, indium and oxygen KP801M: fluorinated silane compound (fluoroalkylsilazane, manufactured by Shin-Etsu Chemical Co., Ltd.)
(Constituent material of transparent metal layer)
APC: Alloy made of Ag (40 atomic%), Pd (40 atomic%), Cu (20 atomic%) << Evaluation of Transparent Conductor >>
About each produced said transparent conductor, the following characteristic value was measured and evaluated.
 〔腐食耐性の評価〕
 上記作製した各透明導電体30mm×30mmの面積範囲を、100倍のルーペを用いて観察し、サイズ20μm以上の腐食数を測定し、下記の基準に従って腐食耐性を評価した。
[Evaluation of corrosion resistance]
The area range of each of the produced transparent conductors 30 mm × 30 mm was observed using a 100-fold magnifier, the number of corrosions having a size of 20 μm or more was measured, and corrosion resistance was evaluated according to the following criteria.
 〇:全面積範囲で、腐食の発生が認められない(腐食数:0個)
 △:全面積範囲で、腐食の発生数が1個以上、5個未満である
 ×:全面積範囲で、腐食の発生数が5個以上である
 〔フレキシブル性の評価〕
 上記作製した各透明導電体について、透明電極ユニット面が外側になるようにφ5mmの金属棒に巻付及び開放を1000回繰り返した後、透明導電体の30mm×30mmの面積範囲を、100倍のルーペを用いて観察し、サイズ20μm以上の腐食数を測定し、下記の基準に従ってフレキシブル性を評価した。
○: Corrosion is not observed over the entire area (corrosion number: 0)
Δ: The number of occurrences of corrosion is 1 or more and less than 5 over the entire area range ×: The number of occurrences of corrosion is 5 or more over the entire area range [Evaluation of flexibility]
About each produced said transparent conductor, after winding and open | release 1000 times to a metal rod of (phi) 5mm so that a transparent electrode unit surface may become an outer side, the area range of 30 mm x 30 mm of a transparent conductor is 100 times. Observation was made using a magnifying glass, the number of corrosions having a size of 20 μm or more was measured, and flexibility was evaluated according to the following criteria.
 〇:全面積範囲で、腐食の発生が認められない(腐食数:0個)
 △:全面積範囲で、腐食の発生数が1個以上、50個未満である
 ×:全面積範囲で、腐食の発生数が50個以上である
 〔平均透過率、平均反射率及び平均吸収率の測定)
 (配線あり透明導電体の測定)
 透明導電体1~25については、以下の方法に従って平均透過率、平均反射率及び平均吸収率を測定した。
○: Corrosion is not observed over the entire area (corrosion number: 0)
Δ: The number of corrosion occurrences is 1 or more and less than 50 in the entire area range ×: The number of corrosion occurrences is 50 or more in the entire area range [Average transmittance, average reflectance and average absorption rate Measurement)
(Measurement of transparent conductor with wiring)
For the transparent conductors 1 to 25, the average transmittance, average reflectance, and average absorptance were measured according to the following method.
 透明導電体1~25の第2高屈折率層側の表面に、マッチングオイル(ニコン社製 屈折率=1.515)を塗布した。そして、透明導電体とコーニング社製無アルカリガラス基板(EAGLE XG(厚さ7mm×縦30mm×横30mm)とを貼り合わせた。そして、無アルカリガラス基板側から、透明導電体の450~800nmの波長範囲における平均透過率(%)、400~1000nmの波長範囲における平均透過率(%)及び平均反射率を測定した。このとき、無アルカリガラス基板の表面の法線に対して、5°傾けた角度から、導通領域に測定光(例えば、波長450nm~800nmの光)を入射させ、日立株式会社製:分光光度計 U4100にて、光の透過率及び反射率を測定した。 Matching oil (refractive index = 1.515 manufactured by Nikon Corporation) was applied to the surface of the transparent conductors 1 to 25 on the second high refractive index layer side. Then, a transparent conductor and a non-alkali glass substrate (EAGLE XG (thickness 7 mm × length 30 mm × width 30 mm) manufactured by Corning) were bonded together, and from the alkali-free glass substrate side, the transparent conductor 450 to 800 nm The average transmittance (%) in the wavelength range, the average transmittance (%) in the wavelength range of 400 to 1000 nm, and the average reflectance were measured and tilted by 5 ° with respect to the normal of the surface of the alkali-free glass substrate. Measurement light (for example, light having a wavelength of 450 nm to 800 nm) was made incident on the conduction region from the measured angle, and light transmittance and reflectance were measured with a spectrophotometer U4100 manufactured by Hitachi, Ltd.
 また、平均吸収率は、100-(透過率+反射率)の計算式より算出した。 The average absorptance was calculated from a calculation formula of 100− (transmittance + reflectance).
 なお、平均反射率の測定値から、無アルカリガラス基板と大気との界面での反射(4%)、及び透明導電体の透明基板と大気との界面での反射(4%)を差し引いた値を、透明導電体の平均反射率とした。また、平均透過率についても、上記無アルカリガラス基板と大気との界面での反射、及び透明導電体の透明基板と大気との界面での反射を考慮し、透過率の測定値に8%足した値を透明導電体の各平均透過率とした。 The value obtained by subtracting the reflection at the interface between the alkali-free glass substrate and the atmosphere (4%) and the reflection at the interface between the transparent substrate and the atmosphere (4%) from the measured average reflectance. Was defined as the average reflectance of the transparent conductor. Also, regarding the average transmittance, the reflection at the interface between the non-alkali glass substrate and the atmosphere and the reflection at the interface between the transparent substrate and the atmosphere of the transparent conductor are taken into account by 8%. The obtained value was defined as each average transmittance of the transparent conductor.
 (配線なし透明導電体の測定)
 一方、配線のない透明導電体26~35については、空気と接触して使用されるものとし、透明導電体上に、無アルカリガラス基板を貼り合わせずに、導通領域に測定光(例えば、波長450nm~800nmの光)を入射させ、日立株式会社製:分光光度計 U4100にて、透明導電体の450~800nmの波長範囲における平均透過率(%)、400~1000nmの波長範囲における平均透過率(%)及び平均反射率を測定した。
そして、平均吸収率は、100-(平均透過率+平均反射率)の計算式より算出した。なお、測定光は、第2高屈折率層側から入射させた。
(Measurement of transparent conductor without wiring)
On the other hand, the transparent conductors 26 to 35 having no wiring are used in contact with air, and the measurement light (for example, wavelength) is applied to the conduction region without bonding an alkali-free glass substrate on the transparent conductor. 450 nm to 800 nm light), and Hitachi Co., Ltd .: spectrophotometer U4100, transparent conductor average transmittance (%) in the wavelength range of 450 to 800 nm, average transmittance in the wavelength range of 400 to 1000 nm (%) And average reflectance were measured.
The average absorptance was calculated from a calculation formula of 100− (average transmittance + average reflectance). The measurement light was incident from the second high refractive index layer side.
 また、平均反射率の測定値から、透明導電体の透明基板と大気との界面での反射(4%)を差し引いた値を、透明導電体の平均反射率とした。また、平均透過率についても、上記透明導電体の透明基板と大気との界面での反射を考慮し、平均透過率の測定値に4%足した値を透明導電体の透過率とした。 Also, a value obtained by subtracting the reflection (4%) at the interface between the transparent substrate and the atmosphere of the transparent conductor from the measured value of the average reflectance was defined as the average reflectance of the transparent conductor. Further, regarding the average transmittance, the reflection of the transparent conductor at the interface between the transparent substrate and the atmosphere is taken into consideration, and the value obtained by adding 4% to the measured value of the average transmittance is defined as the transmittance of the transparent conductor.
 〔導通領域のb値の評価〕
 各透明導電体のL表色系におけるb値を、日立株式会社製:分光光度計 U4100で測定した。次いで、測定したb値をもとに、下記の基準に従ってランク分けを行った。
[Evaluation of b * value of conduction region]
The b * value in the L * a * b * color system of each transparent conductor was measured with a spectrophotometer U4100 manufactured by Hitachi, Ltd. Then, based on the measured b * value, ranking was performed according to the following criteria.
 ◎:b値が、-1.0以上、+1.0未満の範囲である
 ○:b値が、-2.0以上、-1.0未満、又は+1.0以上、+2.0未満の範囲である
 ×:b値が、-2.0未満、又は+2.0以上である
 〔シート抵抗値の測定〕
 各透明導電体の導電領域(a)に、三菱化学アナリテック社製の抵抗率計「ロレスタEP MCP-T360」を接触させて、導電領域(a)のシート抵抗値(Ω/□)を測定した。
A: b * value is in a range of −1.0 or more and less than +1.0 ○: b * value is −2.0 or more and less than −1.0 X: b * value is less than −2.0 or more than +2.0 [Measurement of sheet resistance value]
Measure the sheet resistance value (Ω / □) of the conductive region (a) by bringing a resistivity meter “Loresta EP MCP-T360” made by Mitsubishi Chemical Analytech into contact with the conductive region (a) of each transparent conductor. did.
 〔生産効率の評価〕
 各透明導電体の製造方法における単位時間(分)当たりの生産量(m)を測定して生産速度(m/分)を求め、下記の基準に従って生産効率を評価した。
[Evaluation of production efficiency]
The production rate (m / min) per unit time (min) in the method for producing each transparent conductor was measured to determine the production rate (m / min), and the production efficiency was evaluated according to the following criteria.
 ◎:生産速度が、10m/分以上である
 〇:生産速度が、5m/分以上、10m/分未満である
 △:生産速度が、3m/分以上、5m/分未満である
 ×:生産速度が、3m/分未満である
 以上により得られた結果を、表3に示す。
A: Production speed is 10 m / min or more. O: Production speed is 5 m / min or more and less than 10 m / min. Δ: Production speed is 3 m / min or more and less than 5 m / min. X: Production speed Table 3 shows the results obtained as described above.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表3に記載の結果より明らかなように、本発明で規定する透明基板上に第1高屈折率層と、透明金属層と、第2高屈折率層を有し、第1高屈折率層及び第2高屈折率層の少なくとも一層が、硫化亜鉛と、金属酸化物、金属フッ化物及び金属窒化物から選ばれる少なくとも一種の金属化合物との混合膜を、共蒸着法により形成して製造した本発明の透明導電体は、比較例に対し、腐食耐性及びフレキシブル性に優れ、透明導電体としての平均透過率、平均反射率、平均吸収率に優れ、b値も良好であることが分かる。また、透明導電体としての低いシート抵抗値を得ることができた。 As is clear from the results shown in Table 3, the first high refractive index layer has the first high refractive index layer, the transparent metal layer, and the second high refractive index layer on the transparent substrate defined in the present invention. And at least one layer of the second high refractive index layer was produced by forming a mixed film of zinc sulfide and at least one metal compound selected from metal oxide, metal fluoride and metal nitride by a co-evaporation method. It turns out that the transparent conductor of this invention is excellent in corrosion resistance and flexibility with respect to a comparative example, is excellent in the average transmittance | permeability, average reflectance, and average absorptivity as a transparent conductor, and b * value is also favorable. . Moreover, the low sheet resistance value as a transparent conductor was able to be obtained.
 また、上記特性は、第1高屈折率層又は第2高屈折率層を構成する金属酸化物が、二酸化ケイ素であること、透明金属層を、銀を主成分として構成し、形成速度0.3nm/秒以上の条件で銀膜を形成すること、透明導電体17~20で確認したように第1高屈折率層及び第2高屈折率層を、透明金属層と隣接する界面領域(隣接する界面から厚さ方向で、全層厚の10%の領域)における平均硫化亜鉛濃度として、70体積%以上となる条件で形成すること、第1高屈折率層と透明金属層との間、又は第2高屈折率層と透明金属層との間に、硫化防止層を形成すること、硫化防止層を、亜鉛金属元素を含む材料で形成することにより、上記各特性が更に向上しており、より好ましい条件であることが分かる。 Further, the above characteristics are that the metal oxide constituting the first high-refractive index layer or the second high-refractive index layer is silicon dioxide, the transparent metal layer is mainly composed of silver, and the formation rate is 0.8. Forming a silver film under the condition of 3 nm / second or more, as confirmed by the transparent conductors 17 to 20, the first high refractive index layer and the second high refractive index layer are adjacent to the transparent metal layer (adjacent region). Forming an average zinc sulfide concentration in the thickness direction from the interface to 10% of the total layer thickness) under the condition of 70% by volume or more, between the first high refractive index layer and the transparent metal layer, Alternatively, by forming a sulfidation prevention layer between the second high refractive index layer and the transparent metal layer, and forming the sulfidation prevention layer from a material containing a zinc metal element, the above characteristics are further improved. It can be seen that this is a more preferable condition.
 また、蒸着法により作製した本発明の透明導電体1~29では、単位時間(分)当たりの生産量(m)で表される生産速度(m/分)が3m/分以上であり、スパッタ法により作製した透明導電体31~35では、生産速度は、3m/分未満であり、極めて生産速度が低く、本発明の透明導電体の製造方法(蒸着法)が、比較例(スパッタ法)に対し、生産効率として極めて優位であることが分かる。 In addition, in the transparent conductors 1 to 29 of the present invention produced by the vapor deposition method, the production rate (m / min) represented by the production amount (m) per unit time (min) is 3 m / min or more, and the sputtering is performed. In the transparent conductors 31 to 35 produced by the method, the production rate is less than 3 m / min, the production rate is extremely low, and the transparent conductor production method (evaporation method) of the present invention is a comparative example (sputtering method). On the other hand, it can be seen that the production efficiency is extremely superior.
 本発明の透明導電体の製造方法により製造した透明導電体は、フレキシブル性を有し、透明性、着色耐性に優れ、低い抵抗特性を備え、液晶方式、プラズマ方式、有機エレクトロルミネッセンス方式、フィールドエミッション方式など各種ディスプレイをはじめ、タッチパネルや携帯電話、電子ペーパー、各種太陽電池、各種エレクトロルミネッセンス調光素子など様々なオプトエレクトロニクスデバイスの基板等に好適に利用できる。 The transparent conductor produced by the method for producing a transparent conductor of the present invention has flexibility, excellent transparency and resistance to coloring, and has low resistance characteristics, such as a liquid crystal method, a plasma method, an organic electroluminescence method, a field emission. It can be suitably used for various optoelectronic device substrates such as various types of displays, touch panels, mobile phones, electronic paper, various solar cells, various electroluminescence light control elements, and the like.
 1、1-1、1-2 透明導電体
 2、2-1、2-2 透明基板
 3A 第1高屈折率層
 3B 第2高屈折率層
 4 透明金属層
 5 硫化防止層
 5A 第1硫化防止層
 5B 第2硫化防止層
 6 レジスト膜
 6A 除去するレジスト膜
 7 マスク
 8 露光機
 9 エッチング液
 10 隔壁
 11 真空蒸着室
 13 前面版
 21 タッチパネル
 a 導通領域
 b 絶縁領域
 EU、EU-1、EU-2 透明電極ユニット
 L 形成範囲(m)
 T1aM、T1b、T2、T3、T4、T5a,T5b ターゲット(抵抗加熱ボート)
 P、P、P、P、P 真空蒸着室内の圧力
1, 1-1, 1-2 Transparent conductor 2, 2-1, 2-2 Transparent substrate 3A First high refractive index layer 3B Second high refractive index layer 4 Transparent metal layer 5 Antisulfuration layer 5A First antisulfuration Layer 5B Second sulfidation prevention layer 6 Resist film 6A Resist film to be removed 7 Mask 8 Exposure machine 9 Etching solution 10 Bulkhead 11 Vacuum deposition chamber 13 Front plate 21 Touch panel a Conduction area b Insulation area EU, EU-1, EU-2 Transparent Electrode unit L formation range (m)
T1aM, T1b, T2, T3, T4, T5a, T5b Target (resistance heating boat)
P 1 , P 2 , P 3 , P 4 , P 5 Pressure in the vacuum deposition chamber

Claims (15)

  1.  透明基板上に、少なくとも、第1高屈折率層と、透明金属層と、第2高屈折率層とをこの順で積層して製造する透明導電体の製造方法であって、
     前記第1高屈折率層及び第2高屈折率層の少なくとも一層は、硫化亜鉛と、金属酸化物、金属フッ化物及び金属窒化物から選ばれる少なくとも一種の金属化合物との混合膜を、共蒸着法により形成することを特徴とする透明導電体の製造方法。
    On the transparent substrate, at least a first high refractive index layer, a transparent metal layer, and a second high refractive index layer are laminated in this order to produce a transparent conductor,
    At least one layer of the first high-refractive index layer and the second high-refractive index layer is a co-evaporation of a mixed film of zinc sulfide and at least one metal compound selected from metal oxide, metal fluoride, and metal nitride. A method for producing a transparent conductor, characterized by being formed by a method.
  2.  前記金属酸化物が、二酸化ケイ素であることを特徴とする請求項1に記載の透明導電体の製造方法。 The method for producing a transparent conductor according to claim 1, wherein the metal oxide is silicon dioxide.
  3.  前記透明金属層を、銀を主成分として構成し、形成速度0.3nm/秒以上の条件で形成することを特徴とする請求項1又は請求項2に記載の透明導電体の製造方法。 3. The method for producing a transparent conductor according to claim 1, wherein the transparent metal layer is composed of silver as a main component and is formed under a condition of a formation rate of 0.3 nm / second or more.
  4.  前記第1高屈折率層又は第2高屈折率層を、前記透明金属層と隣接する界面領域(全層厚の表面から厚さ方向で10%の領域)における平均硫化亜鉛濃度が50体積%以上となる条件で形成することを特徴とする請求項1から請求項3までのいずれか一項に記載の透明導電体の製造方法。 The first high refractive index layer or the second high refractive index layer has an average zinc sulfide concentration of 50% by volume in an interface region adjacent to the transparent metal layer (10% in the thickness direction from the surface of the entire layer thickness). It forms on the conditions used as the above, The manufacturing method of the transparent conductor as described in any one of Claim 1- Claim 3 characterized by the above-mentioned.
  5.  前記第1高屈折率層及び第2高屈折率層を、それぞれ前記透明金属層と隣接する界面領域(全層厚の表面から厚さ方向で10%の領域)における平均硫化亜鉛濃度が70体積%以上となる条件で形成することを特徴とする請求項1から請求項3までのいずれか一項に記載の透明導電体の製造方法。 Each of the first high refractive index layer and the second high refractive index layer has an average zinc sulfide concentration of 70 volumes in an interface region adjacent to the transparent metal layer (10% region in the thickness direction from the surface of the total thickness). The method for producing a transparent conductor according to any one of claims 1 to 3, wherein the transparent conductor is formed under a condition of% or more.
  6.  前記第1高屈折率層と透明金属層との間、又は前記第2高屈折率層と透明金属層との間に、硫化防止層を形成することを特徴とする請求項1から請求項5までのいずれか一項に記載の透明導電体の製造方法。 6. An antisulfurization layer is formed between the first high refractive index layer and the transparent metal layer, or between the second high refractive index layer and the transparent metal layer. The manufacturing method of the transparent conductor as described in any one of the above.
  7.  前記硫化防止層を、亜鉛金属元素を含む材料で形成することを特徴とする請求項6に記載の透明導電体の製造方法。 The method for producing a transparent conductor according to claim 6, wherein the anti-sulfurization layer is formed of a material containing a zinc metal element.
  8.  前記透明金属層を所定の形状にパターニングして、金属パターン電極を形成することを特徴とする請求項1から請求項7までのいずれか一項に記載の透明導電体の製造方法。 The method for producing a transparent conductor according to any one of claims 1 to 7, wherein the transparent metal layer is patterned into a predetermined shape to form a metal pattern electrode.
  9.  請求項1から請求項8までのいずれか一項に記載の透明導電体の製造方法により製造された透明導電体であって、
     透明基板上に、少なくとも、第1高屈折率層と、透明金属層と、第2高屈折率層とをこの順で有し、前記第1高屈折率層及び第2高屈折率層の少なくとも一層が、硫化亜鉛と、金属酸化物、金属フッ化物及び金属窒化物から選ばれる少なくとも一種の金属化合物との混合膜であることを特徴とする透明導電体。
    A transparent conductor produced by the method for producing a transparent conductor according to any one of claims 1 to 8,
    On the transparent substrate, at least a first high refractive index layer, a transparent metal layer, and a second high refractive index layer are provided in this order, and at least of the first high refractive index layer and the second high refractive index layer. One layer is a mixed film of zinc sulfide and at least one metal compound selected from metal oxides, metal fluorides, and metal nitrides.
  10.  前記金属酸化物が、二酸化ケイ素であることを特徴とする請求項9に記載の透明導電体。 The transparent conductor according to claim 9, wherein the metal oxide is silicon dioxide.
  11.  前記第1高屈折率層又は第2高屈折率層が、前記透明金属層と隣接する界面領域(全層厚の表面から厚さ方向で10%の領域)における平均硫化亜鉛濃度が50体積%以上であることを特徴とする請求項9又は請求項10に記載の透明導電体。 The first high refractive index layer or the second high refractive index layer has an average zinc sulfide concentration of 50% by volume in an interface region adjacent to the transparent metal layer (10% in the thickness direction from the surface of the entire layer thickness). It is the above, The transparent conductor of Claim 9 or Claim 10 characterized by the above-mentioned.
  12.  前記第1高屈折率層及び第2高屈折率層が、それぞれ前記透明金属層と隣接する界面領域(全層厚の表面から厚さ方向で10%の領域)における平均硫化亜鉛濃度が70体積%以上であることを特徴とする請求項9又は請求項10に記載の透明導電体。 Each of the first high refractive index layer and the second high refractive index layer has an average zinc sulfide concentration of 70 volumes in an interface region adjacent to the transparent metal layer (10% in the thickness direction from the surface of the total thickness). The transparent conductor according to claim 9 or 10, wherein the transparent conductor is at least%.
  13.  前記第1高屈折率層と透明金属層との間、又は前記第2高屈折率層と透明金属層との間に、硫化防止層を有することを特徴とする請求項9から請求項12までのいずれか一項に記載の透明導電体。 13. A sulfidation preventing layer is provided between the first high refractive index layer and the transparent metal layer, or between the second high refractive index layer and the transparent metal layer. The transparent conductor as described in any one of these.
  14.  前記硫化防止層が、亜鉛金属元素を含有することを特徴とする請求項13に記載の透明導電体。 The transparent conductor according to claim 13, wherein the antisulfurization layer contains a zinc metal element.
  15.  前記透明金属層が、所定の形状にパターニングされている金属パターン電極であることを特徴とする請求項9から請求項14までのいずれか一項に記載の透明導電体。 The transparent conductor according to any one of claims 9 to 14, wherein the transparent metal layer is a metal pattern electrode patterned in a predetermined shape.
PCT/JP2015/050319 2014-01-15 2015-01-08 Method for manufacturing transparent conductor and transparent conductor WO2015107968A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015557807A JPWO2015107968A1 (en) 2014-01-15 2015-01-08 Method for producing transparent conductor and transparent conductor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014004991 2014-01-15
JP2014-004991 2014-01-15

Publications (1)

Publication Number Publication Date
WO2015107968A1 true WO2015107968A1 (en) 2015-07-23

Family

ID=53542858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050319 WO2015107968A1 (en) 2014-01-15 2015-01-08 Method for manufacturing transparent conductor and transparent conductor

Country Status (2)

Country Link
JP (1) JPWO2015107968A1 (en)
WO (1) WO2015107968A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114335392A (en) * 2021-12-31 2022-04-12 西南科技大学 Preparation process of antireflection film for OLED flexible display

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092913A (en) * 2007-10-09 2009-04-30 Toppan Printing Co Ltd Optical thin film laminate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009092913A (en) * 2007-10-09 2009-04-30 Toppan Printing Co Ltd Optical thin film laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114335392A (en) * 2021-12-31 2022-04-12 西南科技大学 Preparation process of antireflection film for OLED flexible display

Also Published As

Publication number Publication date
JPWO2015107968A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6314463B2 (en) Transparent conductor
TWI554410B (en) Transparent conductive film
JP2016081318A (en) Transparent conductor and touch panel
JP6292225B2 (en) Transparent conductor
JP6319302B2 (en) Transparent conductor and method for producing the same
JP6344095B2 (en) Transparent conductor and touch panel
JP6536575B2 (en) Transparent conductor and touch panel
JP2015156270A (en) Method of forming transparent electrode pattern
JP6206262B2 (en) Transparent conductor, method for producing the same, and conductive paste
WO2015068738A1 (en) Transparent conductive body
JP2016152182A (en) Transparent conductive film, method for producing transparent conductive film, and electronic apparatus
WO2015107968A1 (en) Method for manufacturing transparent conductor and transparent conductor
WO2015125677A1 (en) Transparent conductor
JP6493225B2 (en) Transparent conductive film
JP2016091071A (en) Transparent conductive film and method for producing the same
WO2015151677A1 (en) Transparent conductive member and method for producing transparent conductive member
JP6256253B2 (en) Transparent conductor and touch panel
WO2015190227A1 (en) Transparent conductor manufacturing method
JP2015173050A (en) Method of producing transparent conductor and patterned transparent conductor
WO2015122392A1 (en) Transparent conductor and method for producing same
JP2016171226A (en) Etchant and patterning method of transparent conductor
WO2015053371A1 (en) Transparent conductor
JP2016177940A (en) Method for producing transparent conductive body
JP6586738B2 (en) Transparent conductive member and method for manufacturing transparent conductive member
JPWO2016052158A1 (en) Transparent conductor and touch panel including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737846

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015557807

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15737846

Country of ref document: EP

Kind code of ref document: A1