WO2015190227A1 - Transparent conductor manufacturing method - Google Patents

Transparent conductor manufacturing method Download PDF

Info

Publication number
WO2015190227A1
WO2015190227A1 PCT/JP2015/064154 JP2015064154W WO2015190227A1 WO 2015190227 A1 WO2015190227 A1 WO 2015190227A1 JP 2015064154 W JP2015064154 W JP 2015064154W WO 2015190227 A1 WO2015190227 A1 WO 2015190227A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
refractive index
transparent conductor
conductive layer
conductive
Prior art date
Application number
PCT/JP2015/064154
Other languages
French (fr)
Japanese (ja)
Inventor
健一郎 平田
仁一 粕谷
一成 多田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2015190227A1 publication Critical patent/WO2015190227A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances

Definitions

  • the present invention relates to a method for producing a transparent conductor excellent in light transmittance and having good electrical connection between a connection wiring and a conductive layer.
  • transparent conductors have been used in various devices such as liquid crystal displays, plasma displays, display devices such as inorganic and organic EL (electroluminescence) displays, touch panels, and solar cells.
  • a transparent conductor In a touch panel type display device or the like, wiring including a transparent conductor is disposed on the image display surface of the display element. Therefore, the transparent conductor is required to have high light transmittance.
  • a transparent conductor using ITO (indium tin oxide) having high light transmittance is often used.
  • the Ag layer is made of a film having a high refractive index (for example, niobium oxide (Nb 2 O 5 ), IZO (indium / zinc oxide), ICO (indium / cerium oxide)).
  • a-GIO film made of an amorphous oxide of gallium, indium, oxygen, etc.
  • Patent Document 2 a transparent conductor in which an Ag layer is sandwiched between dielectric layers such as niobium oxide and IZO has not been sufficiently moisture-resistant. As a result, when a transparent conductor is used in a high humidity environment, there is a problem that the Ag layer is easily corroded.
  • a technique for forming a wiring circuit by printing a conductive paste on a substrate is known (see, for example, Patent Documents 3 and 4)
  • a high refractive index layer such as a ZnS-containing layer is laminated on the conductive layer.
  • the high-refractive-index layer is often an insulator or a high-resistance material, and there is a problem that conduction cannot be obtained when forming the connection wiring.
  • the present invention has been made in view of the above problems and situations, and its solution is to provide a method for producing a transparent conductor that has excellent light transmission and good electrical connection between a connection wiring and a conductive layer. It is.
  • the present inventor applied an AC voltage between the conductive layer and the connection wiring after arranging the connection wiring at the surface end of the insulating layer in the process of examining the cause of the problem. As a result, it was found that good conductivity between the conductive layer and the connection wiring can be obtained, and the present invention has been achieved.
  • a method of manufacturing a transparent conductor having at least a conductive layer, an insulating layer, and a connection wiring that conducts to the conductive layer, wherein an AC voltage is applied to the conductive layer after forming the connection wiring on a surface end of the insulating layer.
  • connection wiring is made of at least a silver paste.
  • Schematic sectional view showing an example of the layer structure of a transparent conductor Schematic sectional view showing an example of the layer structure of a patterned transparent conductor
  • the method for producing a transparent conductor according to the present invention is a method for producing a transparent conductor having at least a conductive layer, an insulating layer, and a connection wiring that conducts to the conductive layer, wherein the connection wiring is formed on the surface end of the insulating layer.
  • the conductive layer is electrically connected to the connection wiring through a conduction step in which an alternating voltage is applied between the conductive layer and the connection wiring after the formation of the conductive layer.
  • connection wiring is preferably made of at least a silver paste.
  • the conductive layer is preferably a conductive layer containing silver because high conductivity can be obtained.
  • the conductive layer is sandwiched between two insulating layers containing zinc sulfide because an effect of improving moisture resistance can be obtained.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the method for producing a transparent conductor according to the present invention is a method for producing a transparent conductor having at least a conductive layer, an insulating layer, and a connection wiring that conducts to the conductive layer, wherein the connection wiring is formed on the surface end of the insulating layer.
  • the conductive layer is electrically connected to the connection wiring through a conduction step in which an alternating voltage is applied between the conductive layer and the connection wiring after the formation of the conductive layer.
  • FIGS. 1A to 1C An outline of a process in which the conductive layer according to the present invention conducts to a connection wiring made of a conductive paste is shown in FIGS. 1A to 1C as an example.
  • FIG. 1A is a schematic sectional view showing an example of a layer structure of a transparent conductor.
  • the transparent conductor before the connection wiring is formed on the substrate 1, for example, the first high refractive index layer 2, the conductive layer 3, and zinc sulfide containing zinc sulfide having a high refractive index.
  • the laminated body 10 in which the insulating layer 3 (second high-refractive index layer) containing is laminated is formed.
  • the 1st high refractive index layer 2 is provided in order to make light transmittance high and to improve moisture resistance as a preferable aspect.
  • the conductive layer it is preferable to use silver because high conductivity can be obtained. Further, when silver is used as the conductive layer, an anti-sulfurization layer can be provided in a layer adjacent to the conductive layer to prevent light transmission deterioration due to the formation of silver sulfide. By setting it as such a structure, the laminated body 10 which has high light transmittance can be formed.
  • FIG. 1B is a schematic cross-sectional view showing an example of a layer structure of a patterned transparent conductor.
  • the laminated body 10 may be formed with a conductive region a and an insulating region b by patterning. It is preferable to have a lead-out wiring portion (hereinafter also simply referred to as “lead-out wiring”) drawn from the conduction region a.
  • lead-out wiring hereinafter also simply referred to as “lead-out wiring” drawn from the conduction region a.
  • FIG. 1C is a schematic cross-sectional view showing an example of a transparent conductor coated with a conductive paste.
  • a conductive paste is applied to the surface end portion of the insulating layer of the patterned transparent conductor.
  • This conductive paste has a function of electrically connecting the patterned conductive layer of the transparent conductor and the circuit board as connection wiring.
  • the high refractive index layer is often an insulator or a high resistance, and conduction is formed when the connection wiring is formed. There was a problem that could not be taken.
  • connection wiring conductive paste
  • an excellent voltage can be obtained between the conductive layer and the connection wiring by applying an AC voltage between the conductive layer and the connection wiring.
  • the method for producing a transparent conductor according to the present invention includes at least a film forming process for forming a conductive layer and an insulating layer, a connection wiring forming process on the surface end of the insulating layer after film formation, and then conducting an AC voltage. It includes at least a conduction step applied between the layer and the connection wiring, and may further include other steps such as a patterning step, if necessary.
  • ⁇ Film formation process> In the film forming process, at least a conductive layer and an insulating layer are formed on one surface of the substrate.
  • the insulating layer is preferably a layer having a high refractive index (second high refractive index layer).
  • a 1st high refractive index layer can also be provided between a conductive layer and a board
  • the first high refractive index layer 2, the first antisulfurization layer 5a, the conductive layer 3, and the second antisulfurization are formed on one surface of the substrate 1.
  • a laminate in which the layer 5b and the insulating layer (second high refractive index layer) 4 are formed in this order can be given.
  • the film forming method is not particularly limited as long as it is a process for forming such a laminate.
  • the thin film can be formed by a known method such as vacuum deposition or sputtering. If necessary, the thin film can be formed by a known wet method such as a spin coating method, an ink jet method, or a printing method.
  • connection wiring formation step connection wiring is formed between the surface end portion of the insulating layer located on the surface of the deposited laminate and the circuit board.
  • the connection wiring is provided to enable electrical connection between the conductive layer of the transparent conductor and the circuit board.
  • a conductive layer and a circuit board are disposed as connection wiring on a substrate using a conductive paste or metal. At the time of disposing, it is preferable to dispose the conductive layer and the circuit board using the lead wiring of the patterned laminated body.
  • connection wiring only needs to cover the edge of the surface of the insulating layer obtained by patterning. Specifically, the surface end portion of the insulating layer only needs to be covered by at least about 300 ⁇ m from the end.
  • the end face including the conductive layer is preferably in contact with the conductive paste, but is not necessarily in contact.
  • the surface end of the insulating layer only needs to be covered with the connection wiring.
  • the width of the connection wiring can be changed as necessary, but can be within a range of 10 to 100 ⁇ m.
  • the thickness can be in the range of 5 nm to 50 ⁇ m.
  • connection wiring is provided to enable electrical connection between the conductive layer of the transparent conductor and the circuit board. Specifically, it has a function of electrically connecting the lead wiring and the conductive layer. Therefore, a conductor having a resistance of 10 ⁇ 4 ⁇ / ⁇ or less is preferable. More preferably, the resistance is 10 ⁇ 5 ⁇ / ⁇ or less.
  • connection wiring is preferably a conductive paste or a metal.
  • the connection wiring is preferably made of a conductive paste, and more preferably at least a silver paste, because it can be formed inexpensively without using a large-scale device.
  • the metal wiring When using metal for the connection wiring, the metal wiring may be formed by sputtering or vapor deposition of metal. In this case, since uniform and accurate wiring can be performed, defects can be reduced.
  • metals Cu, Ag, Au, Cr, Ni, Mg, Ti, Mn, Fe, Co, Zn, In, Sn, Ta, W, Os, Pt, Zr, Nb, Mo, Ru, Pd, Bi and these From the viewpoint of conductivity, Cu, Ag, Au, and Pt are preferable, and from the viewpoint of durability, Cr and Ni are preferable.
  • a conductive paste is used for the connection wiring
  • a known method used for a wiring substrate such as inkjet, screen printing, or gravure printing can be appropriately used as a coating method for disposing the conductive paste on the transparent substrate.
  • printing methods such as screen printing and gravure printing are preferable because they are uniformly finished.
  • the conductive paste may contain copper.
  • the silver or copper contained in the conductive paste is preferably contained as spherical particles.
  • the silver particles or the copper particles preferably have a median diameter (D50) of each particle in the range of 0.2 to 0.9 ⁇ m.
  • CA-T30 manufactured by Daiken Chemical Manufacturing and Sales Co., Ltd. TEC-PR030 (paste A) manufactured by InkTec, TEC-PA010 (paste B) manufactured by InkTec, MDot-SLP manufactured by Mitsuboshi Belting Co., Ltd., Toyo Ink ( RA FS039, RA FS045, RA FS088, Nano Dotite XA-3541, XA-9053, LS-450-5, LS-450-7H, LS, manufactured by Asahi Chemical Laboratory -462H-2, LS-453-2, LS-470L-2, LS-460H-1, Pernox K-3100, Pertron K-3107S, K-3111, Taiyo Ink Manufacturing ECM- 100 AF6100 L10, EPH-300TR67004, Asahi Glass Co., Ltd. screen printing copper pace "EPRIMA CU", NAMICS Co., Ltd. XE108-6, it is possible to use a
  • the content of silver particles or copper particles in the conductive paste is preferably in the range of 70 to 97% by mass, and more preferably in the range of 75 to 92% by mass. Within this range, connection wiring having good conductivity can be provided.
  • the conductive paste preferably contains an organic solvent or a resin together with silver particles or copper particles.
  • the organic solvent and resin contained in the conductive paste may be any one that does not have reactivity with silver particles or copper particles.
  • organic solvent contained in the conductive paste a known organic solvent for the conductive paste can be used. Specifically, diethylene glycol mono-n-butyl ether acetate can be preferably used. These may be used individually by 1 type and may use 2 or more types together.
  • the boiling point of the organic solvent is preferably in the range of 120 to 180 ° C. from the viewpoint of the drying rate.
  • a vinyl acrylic resin can be used as the resin contained in the conductive paste.
  • a polyester resin, a vinyl chloride resin, an acrylic resin, a polyester resin, a polyurethane resin, and the like can be given. These may be used singly or in combination of two or more.
  • a conductive paste suitable for printing can be obtained by containing these organic solvents or resins.
  • connection wiring After arranging with the conductive paste, it is preferable to fix the connection wiring by sintering.
  • the resin is likely to be deformed when the temperature is high, so that the sintering temperature can be in the range of 90 to 160 ° C.
  • the sintering time is preferably in the range of 3 to 30 minutes. Sintering can be performed using a known heating furnace.
  • connection wiring is provided at both ends of the conductive layer, by applying an AC voltage between the connection wirings at both ends via the conductive layer, conduction at two locations on both ends of the conductive layer is possible with a single application of AC voltage. It can also be.
  • connection wiring Sufficient conductivity can be obtained by applying an AC voltage between the conductive layer and the connection wiring.
  • conducting means that the resistance is not more than 10 times the theoretical value of the conductive layer.
  • the voltage of the AC voltage to be applied is preferably 100 V (household power source) or less, particularly preferably in the range of 1 to 5 V.
  • the frequency used is preferably in the range of 2 Hz to 20 MHz, more preferably in the range of 10 Hz to 1 MHz, and particularly preferably in the range of 20 to 200 Hz.
  • a frequency of 13.56 MHz is also widely used for industrial applications, and is highly versatile and preferable.
  • the application time depends on the voltage, but is preferably 10 minutes or less, more preferably 1 minute or less, and particularly preferably in the range of 1 to 5 seconds.
  • a commercially available apparatus can be used as appropriate to apply the AC voltage.
  • HIOKI LCR HiTester model number 3522-50 manufactured by Hioki Electric Co., Ltd. can be used.
  • the transparent conductor according to the present invention has at least a conductive layer, an insulating layer, and a connection wiring. These layers are preferably provided on a transparent substrate.
  • the insulating layer is preferably a layer having a high refractive index (second high refractive index layer).
  • a 1st high refractive index layer can also be provided between a conductive layer and a board
  • the first high refractive index layer 2 As a specific example, the first high refractive index layer 2, the first antisulfurization layer 5 a, the conductive layer 3, the second antisulfurization layer 5 b, and the insulating layer (first layer) shown on FIG.
  • Each layer of the transparent conductor according to the present invention in which (2 high refractive index layers) 4 are laminated in this order will be described in detail.
  • the first high-refractive index layer is a layer that adjusts the light transmittance of the conductive region of the transparent conductor, that is, the region where the conductive layer is formed, and is formed at least in the conductive region of the transparent conductor.
  • the first high refractive index layer may be formed in the insulating region of the transparent conductor, but is formed only in the conductive region from the viewpoint of making it difficult to visually recognize the pattern including the conductive region and the insulating region. Is preferred.
  • the first high refractive index layer includes a dielectric material or an oxide semiconductor material having a refractive index higher than that of the substrate described later.
  • the refractive index of light with a wavelength of 570 nm (measurement temperature: 25 ° C.) of the dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 higher than the refractive index of light with a wavelength of 570 nm of the substrate. More preferably, it is larger by 1.0.
  • the specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the first high refractive index layer is preferably greater than 1.5, and is within a range of 1.7 to 2.5. More preferably, it is in the range of 1.8 to 2.5.
  • the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the light transmittance of the conductive region a of the transparent conductor is sufficiently adjusted by the first high refractive index layer.
  • the refractive index of the first high refractive index layer is adjusted by the refractive index of the material included in the first high refractive index layer and the density of the material included in the first high refractive index layer.
  • the dielectric material or oxide semiconductor material contained in the first high refractive index layer may be an insulating material or a conductive material.
  • the dielectric material or oxide semiconductor material can be a metal oxide. Examples of metal oxides are TiO 2 , ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O.
  • the first high refractive index layer may contain only one kind of the metal oxide or two or more kinds.
  • the dielectric material or the oxide semiconductor material included in the first high refractive index layer may be ZnS.
  • ZnS When ZnS is contained in the first high refractive index layer, it becomes difficult for moisture to permeate from the substrate side, and corrosion of the conductive layer is suppressed.
  • the first high refractive index layer may contain only ZnS, and may contain other materials together with ZnS.
  • Materials included with ZnS is a metal oxide or SiO 2 or the like, which may be the dielectric material or an oxide semiconductor material, particularly preferably SiO 2.
  • SiO 2 is contained together with ZnS, the first high refractive index layer is likely to be amorphous, and the flexibility of the transparent conductor is likely to be enhanced.
  • the amount of ZnS is in the range of 0.1 to 95 mass% with respect to the total number of moles of the material constituting the first high refractive index layer. It is preferably 50 to 90% by mass, more preferably 60 to 85% by mass.
  • the ratio of ZnS is high, the sputtering rate increases, and the formation rate of the first high refractive index layer increases.
  • the amorphousness of the first high refractive index layer is increased, and cracking of the first high refractive index layer is suppressed.
  • the thickness of the first high refractive index layer is preferably in the range of 15 to 150 nm, more preferably 20 to 80 nm.
  • the thickness of the first high refractive index layer is 15 nm or more, the light transmittance of the conductive region of the transparent conductor is sufficiently adjusted by the first high refractive index layer.
  • the thickness of the first high refractive index layer is 150 nm or less, the light transmittance of the region including the first high refractive index layer is unlikely to decrease.
  • the thickness of the first high refractive index layer is measured with an ellipsometer.
  • the first high refractive index layer may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, and a thermal CVD method.
  • the first high refractive index layer is preferably a layer formed by electron beam evaporation or sputtering.
  • the electron beam evaporation method in order to increase the film density, it is desirable that there is an assist by an ion assist method (ION Assisted Deposition: IAD).
  • the patterning method is not particularly limited.
  • the first high refractive index layer may be, for example, a layer formed in a pattern by a vapor deposition method by arranging a mask having a desired pattern on the surface to be formed, by a known etching method. It may be a patterned layer.
  • the first antisulfurization layer is provided between the first high refractive index layer and the conductive layer. It is preferable.
  • the first anti-sulfurization layer may be formed also in the insulating region of the transparent conductor, but from the viewpoint of making it difficult to visually recognize the pattern made of the conductive region and the insulating region, it may be formed only in the conductive region. preferable.
  • the first sulfidation preventing layer may be a metal oxide, metal nitride, metal fluoride, or the like, or a layer containing Zn.
  • the first sulfidation preventing layer may contain only one kind or two or more kinds.
  • the metal oxide in the case where the first high refractive index layer, the first antisulfurization layer, and the conductive layer are continuously formed, the metal oxide must be a compound capable of reacting with sulfur or adsorbing sulfur. Is preferred.
  • the reaction product of the metal oxide and sulfur preferably has high visible light permeability.
  • metal oxides include TiO 2 , ITO, ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2. , La 2 Ti 2 O 7 , IZO, AZO, GZO, ATO, ICO, Bi 2 O 3 , a-GIO, Ga 2 O 3 , GeO 2 , SiO 2 , Al 2 O 3 , HfO 2 , SiO, MgO, Y 2 O 3 , WO 3, IGZO and the like are included.
  • metal fluorides examples include LaF 3 , BaF 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , BaF 2 , CeF 3 , NdF 3 , YF 3 and the like. .
  • metal nitride examples include Si 3 N 4 , AlN, and the like.
  • the thickness of the first antisulfurization layer is preferably a thickness capable of protecting the surface of the first high refractive index layer from impact during formation of the conductive layer.
  • ZnS that can be contained in the first high refractive index layer has high affinity with the metal contained in the conductive layer. Therefore, if the thickness of the first antisulfurization layer is very thin and a part of the first high refractive index layer is slightly exposed, the conductive layer grows around the exposed portion, and the conductive layer becomes dense.
  • the first antisulfurization layer is preferably relatively thin, preferably 0.1 to 10 nm, more preferably 0.5 to 5 nm, and further preferably 1 to 3 nm. The thickness of the first antisulfurization layer is measured with an ellipsometer.
  • the first sulfidation preventing layer may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like.
  • a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like.
  • the first antisulfurization layer is a layer patterned into a desired shape
  • the patterning method is not particularly limited.
  • the first antisulfurization layer may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the surface to be formed, and patterned by a known etching method. It may be a layer formed.
  • the conductive layer is a layer for conducting electricity in the transparent conductor.
  • the conductive layer may be laminated on the entire surface of the substrate, and as shown in FIG. 3, it is patterned into a desired shape according to the intended device application. It may be.
  • the region where the conductive layer is laminated is a region where electricity is conducted (hereinafter also referred to as “conduction region”).
  • a region not including the conductive layer is an insulating region.
  • the pattern composed of the conductive region and the insulating region is appropriately selected according to the use of the transparent conductor.
  • a transparent conductor when applied to an electrostatic touch panel, it may be a pattern including a plurality of conductive regions and line-shaped insulating regions that divide the conductive regions.
  • the metal contained in the conductive layer is not particularly limited as long as it is a highly conductive metal, and can be, for example, silver, copper, gold, platinum, titanium, chromium, or the like.
  • the conductive layer may contain only one kind of these metals or two or more kinds. From the viewpoint of high conductivity, the conductive layer is preferably made of silver or an alloy containing 90 atomic% or more of silver.
  • the metal combined with silver can be zinc, gold, copper, palladium, aluminum, manganese, bismuth, neodymium, molybdenum or the like.
  • the sulfidation resistance of the conductive layer is increased.
  • salt resistance (NaCl) resistance increases.
  • silver and copper are combined, the oxidation resistance increases.
  • moisture resistance improves by containing palladium and copper.
  • the plasmon absorption rate of the conductive layer is preferably 10% or less over the wavelength range of 400 to 800 nm (over the entire range), more preferably 7% or less, and even more preferably 5% or less. If there is a region having a large plasmon absorption rate in a part of the wavelength of 400 to 800 nm, the transmitted light of the conductive region a of the transparent conductor is easily colored.
  • the plasmon absorption rate at a wavelength of 400 to 800 nm of the conductive layer is measured by the following procedure.
  • a platinum palladium film is formed to a thickness of 0.1 nm on a glass substrate using a magnetron sputtering apparatus.
  • the average thickness of platinum-palladium is calculated from the film formation rate of the manufacturer's nominal value of the sputtering apparatus. After that, a 20 nm thick metal film is formed by sputtering on the substrate to which platinum palladium is attached.
  • a conductive layer to be measured is formed on the same glass substrate. And about the said conductive layer, light transmittance and light reflectance are measured similarly. The reference data is subtracted from the obtained light absorption rate, and the calculated value is defined as the plasmon absorption rate.
  • the thickness of the conductive layer is preferably 10 nm or less, more preferably 3 to 9 nm, and further preferably 5 to 8 nm.
  • the transparent conductor according to the present invention when the thickness of the conductive layer is 10 nm or less, the original reflection of metal hardly occurs in the conductive layer. Furthermore, when the thickness of the conductive layer is 10 nm or less, the light transmittance of the transparent conductor is easily adjusted by the first high refractive index layer and the second high refractive index layer, and light reflection on the surface of the conductive region is prevented. It is easy to be suppressed.
  • the thickness of the conductive layer is measured with an ellipsometer.
  • the conductive layer may be a layer formed by any formation method, but in order to change the average transmittance of the conductive layer, a layer formed by a sputtering method or a layer formed on an underlayer described later is used. Preferably there is.
  • the sputtering method since a material collides with an object to be formed at a high speed during formation, a dense and smooth layer can be easily obtained, and the light transmittance of the conductive layer is likely to be increased. Further, when the conductive layer is a layer formed by sputtering, the conductive layer is unlikely to corrode even in an environment of high temperature and low humidity.
  • the type of the sputtering method is not particularly limited, and may be an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, a bias sputtering method, a counter sputtering method, or the like.
  • the conductive layer is particularly preferably a layer formed by a counter sputtering method. That is, when the conductive layer is a layer formed by a counter sputtering method, the conductive layer becomes dense and the surface smoothness is likely to increase. As a result, the surface electrical resistance of the conductive layer becomes lower and the light transmittance is likely to increase.
  • the method for forming the conductive layer is not particularly limited, and may be a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or a thermal CVD method.
  • the patterning method is not particularly limited.
  • the conductive layer may be a layer formed by arranging a mask having a desired pattern, or may be a layer patterned by a known etching method.
  • the second high refractive index layer to be described later is a zinc sulfide-containing layer
  • a second antisulfurization layer is formed between the conductive layer and the second high refractive index layer.
  • the second antisulfurization layer may be formed also in the insulating region of the transparent conductor, but from the viewpoint of making it difficult to visually recognize the pattern composed of the conductive region and the insulating region, it may be formed only in the conductive region. preferable.
  • the second antisulfurization layer is a layer containing metal oxide, metal nitride, metal fluoride, or the like, or Zn. Only one of these may be included in the second antisulfurization layer, or two or more thereof may be included.
  • the metal oxide, metal nitride, and metal fluoride may be the same as the metal oxide, metal nitride, and metal fluoride contained in the first high refractive index layer.
  • the thickness of the second antisulfurization layer is preferably a thickness capable of protecting the surface of the conductive layer from an impact during the formation of the second high refractive index layer.
  • the metal contained in the conductive layer and the ZnS contained in the second high refractive index layer have high affinity. Therefore, if the thickness of the second antisulfurization layer is very thin and a part of the conductive layer is slightly exposed, the adhesion between the conductive layer or the second antisulfurization layer and the second high refractive index layer is increased. Cheap.
  • the specific thickness of the second antisulfurization layer b is preferably 0.1 to 10 nm, more preferably 0.5 to 5 nm, and further preferably 1 to 3 nm.
  • the thickness of the second antisulfurization layer is measured with an ellipsometer.
  • the second sulfidation preventing layer may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like.
  • a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like.
  • the second antisulfurization layer is a layer patterned into a desired shape
  • the patterning method is not particularly limited.
  • the second antisulfurization layer may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the surface to be formed, and patterned by a known etching method. It may be a layer formed.
  • the gap is between the first high refractive index layer or the second high refractive index layer and the conductive layer.
  • an antisulfurization layer may be provided, but from the viewpoint of sufficiently increasing the light transmittance of the transparent conductor, each of the first high refractive index layer and the second high refractive index layer and the conductive layer, It is preferable to provide a sulfidation prevention layer.
  • first sulfidation prevention layer and the second sulfidation prevention layer are provided between the first high refractive index layer and the conductive layer and between the conductive layer and the second high refractive index layer, respectively.
  • the insulating layer is preferably a second high refractive index layer in order to increase the light transmittance.
  • the configuration in which the second high-refractive index layer such as a ZnS-containing layer is laminated on the conductive layer is often a problem that the high-refractive index layer is often an insulator or a high-resistance material, and cannot be electrically connected when forming the connection wiring. was there.
  • the present invention has an insulating high refractive index layer such as ZnS, excellent electrical conductivity between the conductive layer and the connection wiring can be obtained.
  • an insulating layer refers to a layer having a resistance value exceeding 10 times that of a conductive layer.
  • it can be preferably applied to a layer having a resistance exceeding 10 ⁇ 4 ⁇ / ⁇ .
  • the second high refractive index layer is a layer for adjusting the light transmittance of the conductive region of the transparent conductor, that is, the region where the conductive layer is formed, and is formed at least in the conductive region of the transparent conductor. Therefore, the second high refractive index layer may be formed in the insulating region of the transparent conductor, but it is formed only in the conductive region from the viewpoint of making it difficult to visually recognize the pattern including the conductive region and the insulating region. Is preferred.
  • the second high refractive index layer preferably contains a dielectric material or an oxide semiconductor material having a refractive index higher than that of the transparent substrate from the viewpoint of light transmittance.
  • the refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 larger than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1, and is preferably 0.4 to 1.0. Larger is more preferable.
  • the specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the second high refractive index layer is preferably larger than 1.5, and is preferably 1.7 to 2.5. Is more preferably 1.8 to 2.5.
  • the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the light transmittance of the conductive region of the transparent conductor is sufficiently adjusted by the second high refractive index layer.
  • the refractive index of the second high refractive index layer is adjusted by the refractive index of the material included in the second high refractive index layer and the density of the material included in the second high refractive index layer.
  • the dielectric material or oxide semiconductor material included in the second high refractive index layer is an insulating material and can be a metal oxide.
  • the metal oxide may be the same as the metal oxide included in the first high refractive index layer.
  • the second high refractive index layer may contain only one kind of the metal oxide, or two or more kinds.
  • the dielectric material or the oxide semiconductor material included in the second high refractive index layer may be ZnS.
  • ZnS When ZnS is contained in the second high refractive index layer, moisture hardly penetrates from the second high refractive index layer side, moisture resistance is improved, and corrosion of the conductive layer is suppressed.
  • both the second high refractive index layer and the first high refractive index layer contain ZnS. That is, the conductive layer is preferably sandwiched between two insulating layers containing ZnS.
  • the second high refractive index layer may contain only ZnS, and may contain other materials together with ZnS.
  • the material included together with ZnS is a metal oxide that can be the dielectric material or the oxide semiconductor material, or SiO 2 , and particularly preferably SiO 2 .
  • SiO 2 is contained together with ZnS, the second high refractive index layer is likely to be amorphous, and the flexibility of the transparent conductor is likely to be enhanced.
  • the amount of ZnS is 0.1% by mass or more and 95% by mass or less with respect to the total number of moles of components constituting the second high refractive index layer. It is preferable that it is 50 mass% or more and 90 mass% or less, More preferably, it is 60 mass% or more and 85 mass% or less.
  • the ratio of ZnS is high, the sputtering rate is increased and the formation rate of the second high refractive index layer is increased.
  • the amount of components other than ZnS increases, the amorphousness of the second high refractive index layer increases, and cracking of the second high refractive index layer is suppressed.
  • the thickness of the second high refractive index layer is preferably 15 to 150 nm, and more preferably 20 to 80 nm.
  • the thickness of the second high refractive index layer is 15 nm or more, the light transmittance of the conductive region of the transparent conductor is sufficiently adjusted by the second high refractive index layer.
  • the thickness of the second high refractive index layer is 150 nm or less, the light transmittance of the region including the second high refractive index layer is unlikely to decrease.
  • the thickness of the second high refractive index layer is measured with an ellipsometer.
  • the method for forming the second high refractive index layer is not particularly limited, and is a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or a thermal CVD method. possible. From the viewpoint of lowering the moisture permeability of the second high refractive index layer, the second high refractive index layer is particularly preferably a layer formed by a sputtering method.
  • the patterning method is not particularly limited.
  • the second high refractive index layer may be, for example, a layer formed in a pattern by a vapor deposition method by arranging a mask having a desired pattern on the surface to be formed.
  • the layer patterned by the well-known etching method may be sufficient.
  • the transparent conductor may be provided with an underlayer that becomes a growth nucleus when the conductive layer is formed.
  • the underlayer is a layer formed on the substrate side of the conductive layer and adjacent to the conductive layer, that is, between the first high refractive index layer and the conductive layer, or between the first antisulfurization layer and the conductive layer. It may be a formed layer.
  • the underlayer is preferably formed at least in the conductive region of the transparent conductor, and may be formed in the insulating region of the transparent conductor.
  • the smoothness of the surface of the conductive layer increases even if the thickness of the conductive layer is thin. The reason is as follows.
  • the material of the conductive layer is deposited, for example, on the first high refractive index layer by a general vapor deposition method
  • atoms attached on the first high refractive index layer migrate (move) at the initial stage of formation. Then, atoms gather and form a lump (island structure). And a film grows clinging to this lump. Therefore, in the layer at the initial stage of formation, there is a gap between the lumps and it does not conduct. If a lump further grows from this state, a part of the lump is connected and barely conducted. However, since there is still a gap between the lumps, plasmon absorption occurs. As the formation proceeds further, the lumps are completely connected and plasmon absorption is reduced. However, on the other hand, the intrinsic reflection of the metal occurs and the light transmittance of the layer is reduced.
  • the conductive layer grows with the base layer as a growth nucleus. That is, the material of the conductive layer is difficult to migrate, and the film grows without forming the aforementioned island structure. As a result, a smooth conductive layer can be easily obtained even if the thickness is small.
  • the base layer contains palladium, molybdenum, zinc, germanium, niobium or indium, an alloy of these metals with another metal, an oxide or a sulfide of these metals (for example, ZnS). Is preferred.
  • the underlayer may contain only one kind, or two or more kinds.
  • the amount of palladium, molybdenum, zinc, germanium, niobium or indium contained in the underlayer is preferably 20% by mass or more, more preferably 40% by mass or more, and further preferably 60% by mass or more. If the base layer contains 20% by mass or more of the metal, the affinity between the base layer and the conductive layer increases, and the adhesion between the base layer and the conductive layer tends to increase. It is particularly preferable that the underlayer contains palladium or molybdenum.
  • the metal that forms an alloy with palladium, molybdenum, zinc, germanium, niobium, or indium is not particularly limited, but may be a platinum group other than palladium, gold, cobalt, nickel, titanium, aluminum, chromium, or the like.
  • the thickness of the underlayer is preferably 3 nm or less, more preferably 0.5 nm or less, and even more preferably a monoatomic film.
  • the underlayer can also be a film in which metal atoms are adhered to each other on the substrate.
  • the adhesion amount of the underlayer is 3 nm or less, the underlayer hardly affects the light transmittance and optical admittance of the transparent conductor.
  • the presence or absence of the underlayer is confirmed by the ICP-MS method. Further, the thickness of the underlayer is calculated from the product of the formation speed and the formation time.
  • the underlayer can be a layer formed by sputtering or vapor deposition.
  • the sputtering method include an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, and a bias sputtering method.
  • the sputtering time for forming the underlayer is appropriately selected according to the desired average thickness and formation rate of the underlayer.
  • the sputter formation rate is preferably 0.1 to 15 ⁇ / second, more preferably 0.1 to 7 ⁇ / second.
  • examples of the vapor deposition method include vacuum vapor deposition method, electron beam vapor deposition method, ion plating method, ion beam vapor deposition method and the like.
  • the deposition time is appropriately selected according to the desired thickness and formation rate of the underlayer.
  • the deposition rate is preferably 0.1 to 15 ⁇ / second, more preferably 0.1 to 7 ⁇ / second.
  • the underlayer may be, for example, a layer formed in a pattern by a vapor deposition method by placing a mask having a desired pattern on the surface to be formed, or a layer patterned by a known etching method It may be.
  • the substrate which the transparent conductor has can be the same as the transparent substrate of various display devices.
  • the substrate may be a glass substrate, a cellulose ester resin (for example, triacetyl cellulose, diacetyl cellulose, acetylpropionyl cellulose, etc.), a polycarbonate resin (for example, Panlite, Multilon (both manufactured by Teijin Limited)), a cycloolefin resin (for example, Zeonor ( Nippon Zeon Co., Ltd., Arton (manufactured by JSR), Appel (manufactured by Mitsui Chemicals), acrylic resin (eg, polymethyl methacrylate, "Acrylite (manufactured by Mitsubishi Rayon Co., Ltd.), Sumipex (manufactured by Sumitomo Chemical Co., Ltd.)), polyimide , Phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyester resin (eg, polyethylene ethylene ethylene
  • the substrate is a glass substrate, or cellulose ester resin, polycarbonate resin, polyester resin (especially polyethylene terephthalate), triacetyl cellulose, cycloolefin resin, phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyether.
  • a film made of sulfone, ABS / AS resin, MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), or styrene block copolymer resin is preferable.
  • the substrate preferably has high transparency to visible light, and the average transmittance of light having a wavelength of 450 to 800 nm is preferably 70% or more, more preferably 80% or more, and 85% or more. Is more preferable. When the average light transmittance of the substrate is 70% or more, the light transmittance of the transparent conductor is likely to increase. Further, the average absorptance of light having a wavelength of 450 to 800 nm of the substrate is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
  • the average transmittance is measured by making light incident from an angle inclined by 5 ° with respect to the normal of the surface of the substrate.
  • Average transmittance and average reflectance are measured with a spectrophotometer.
  • the refractive index of light having a wavelength of 570 nm of the substrate is preferably in the range of 1.40 to 1.95, more preferably 1.45 to 1.75, and still more preferably 1.45 to 1.70. Within range.
  • the refractive index of the substrate is usually determined by the material of the substrate.
  • the refractive index of the substrate is measured with an ellipsometer.
  • the haze value of the substrate 1 is preferably 0.01 to 2.5%, more preferably 0.1 to 1.2%. When the haze value of the substrate is 2.5% or less, the haze value of the transparent conductor is suppressed. The haze value is measured with a haze meter.
  • the thickness of the substrate 1 is preferably in the range of 1 ⁇ m to 20 mm, more preferably in the range of 10 ⁇ m to 2 mm.
  • the thickness of the substrate is 1 ⁇ m or more, the strength of the substrate is increased, and it is difficult to crack or tear the first high refractive index layer.
  • the thickness of the substrate is 20 mm or less, the flexibility of the transparent conductor is sufficient.
  • the thickness of the apparatus using a transparent conductor can be reduced.
  • the apparatus using a transparent conductor can also be reduced in weight.
  • the average transmittance of light with a wavelength of 450 to 800 nm of the transparent conductor according to the present invention is preferably 83% or more, more preferably 85% or more, and still more preferably in both the conduction region and the insulation region. It is 88% or more.
  • the transparent conductor can be applied to applications requiring high transparency to visible light.
  • the average transmittance of light with a wavelength of 400 to 1000 nm of the transparent conductor is preferably 80% or more, more preferably 83% or more, and still more preferably 85% or more in both the conductive region and the insulating region. is there.
  • the transparent conductor can also be applied to applications requiring transparency with respect to light in a wide wavelength range, for example, solar cells.
  • the average absorptance of light having a wavelength of 450 to 800 nm of the transparent conductor is preferably 10% or less, more preferably 8% or less, and even more preferably 7% in both the conductive region and the insulating region. It is as follows. Further, the maximum value of the light absorptance of the transparent conductor having a wavelength of 450 to 800 nm is preferably 15% or less, more preferably 10% or less, and even more preferably in both the conduction region and the insulation region. 9% or less.
  • the average reflectance of light with a wavelength of 500 to 700 nm of the transparent conductor is preferably 20% or less, more preferably 15% or less, and even more preferably 10% in both the conductive region and the insulating region. % Or less.
  • the average transmittance, average absorptance, and average reflectance are preferably the average transmittance, average absorptance, and average reflectance under the usage environment of the transparent conductor.
  • the transparent conductor when the transparent conductor is used by being bonded to an organic resin, it is preferable to prepare a layer made of the organic resin on the transparent conductor and measure the average transmittance and the average reflectance.
  • the transparent conductor when the transparent conductor is used in the air, it is preferable to measure the average transmittance and the average reflectance in the air.
  • the transmittance and reflectance can be measured with a spectrophotometer by allowing measurement light to enter from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent conductor.
  • the absorptance is calculated from a calculation formula of 100 ⁇ (transmittance + reflectance).
  • the transparent conductor has a conduction region and an insulation region
  • the reflectance of the conduction region and the reflectance of the insulation region approximate.
  • the difference ⁇ R between the luminous reflectance of the conductive region and the luminous reflectance of the insulating region is preferably 5% or less, more preferably 3% or less, and still more preferably 0.8. It is 5% or less, and particularly preferably 0.3% or less.
  • the luminous reflectance of the conductive region and the insulating region is preferably 5% or less, more preferably 3% or less, and further preferably 1% or less.
  • the luminous reflectance is a Y value measured by a spectrocolorimeter (CM-5; manufactured by Konica Minolta, Inc.).
  • the a * value and the b * value in the L * a * b * color system are preferably within ⁇ 30, more preferably in any region. Is within ⁇ 5, more preferably within ⁇ 3.0, and particularly preferably the a * value is in the range of ⁇ 0.5 to 0 and the b * value is in the range of 0 to 2.0. L * a * b * if a * and b * values is within ⁇ 30 in the color system, any region of the conductive region and an insulating region b is also colorless and transparent observed.
  • the a * value and b * value in the L * a * b * color system are measured with a spectrophotometer.
  • the surface electric resistance of the conductive region of the transparent conductor is preferably 50 ⁇ / ⁇ or less, more preferably 30 ⁇ / ⁇ or less.
  • a transparent conductor having a surface electric resistance value of 50 ⁇ / ⁇ or less in the conduction region can be applied to a transparent conductive panel for a capacitive touch panel.
  • the surface electrical resistance value of the conduction region is adjusted by the thickness of the conductive layer and the like.
  • the surface electrical resistance value of the conduction region is measured in accordance with, for example, JIS K7194-1994, ASTM D257, and the like. It is also measured by a commercially available surface electrical resistivity meter.
  • the transparent conductor according to the present invention can be applied to touch sensors for various types of touch panels (hereinafter also referred to as “touch sensor electrode portions”). For example, it can be used in a surface capacitive touch panel, a projected capacitive touch panel, a resistive touch panel, and the like.
  • the layer structure of the touch sensor unit is a bonding method in which two transparent conductors are bonded as a transparent electrode, a method in which a transparent conductor is provided as a transparent electrode on both surfaces of a single substrate, a single-sided jumper or a through-hole method Or it is preferable that it is either a one area layer system.
  • the projected capacitive touch sensor is preferably AC driven rather than DC driven, and more preferably a drive method that requires less time to apply voltage to the electrodes.
  • FIG. 3 is a schematic view showing the entire patterned transparent conductor.
  • the transparent conductor according to the present invention is applied to a touch sensor, for example, as shown in FIG. 3, the transparent conductor has a pattern including a plurality of conductive regions a and a line-shaped insulating region b separating the conductive regions a. It can be molded and used as an electrode.
  • the touch panel 200 can be manufactured by further bonding the display panel 16, the transparent conductor 100, and the flexible substrate 8 having the wiring pattern 14 with the adhesive 15 (FIG. 4). reference).
  • the transparent conductive layer is electrically connected from the electrode 7 provided on the circuit board to the wiring pattern 14 by the connection wiring 6.
  • a region surrounded by a broken line shown in FIG. 3 functions as the touch sensor unit 13.
  • Method for forming transparent conductor having electrode pattern A method for forming a pattern composed of a conductive region a and an insulating region b as shown in FIG. 3 will be described for the transparent conductor according to the present invention.
  • the first high-refractive index layer 2, the conductive layer 3, and the insulating layer (second high-refractive index layer) 4 are formed on the substrate 1 by the above method. After being laminated in order, it is preferable to pattern the transparent conductor 100 into a predetermined shape to form a metal electrode.
  • an electrode pattern as shown in FIG. 3 is preferably formed by photolithography using an etching solution.
  • the line width of the electrode to be formed is preferably 50 ⁇ m or less, and particularly preferably 20 ⁇ m or less.
  • the photolithographic method applied to the present invention includes resist coating such as curable resin, preheating, exposure, development (removal of uncured resin), rinsing, etching treatment with an etching solution, and resist stripping.
  • the silver thin film layer can be processed into a pattern as shown in FIG. 3, for example, and the shape of the pattern can be changed as appropriate.
  • a conventionally known general photolithography method can be used as appropriate.
  • the resist either positive or negative resist can be used.
  • preheating or prebaking can be performed as necessary.
  • a pattern mask having a predetermined pattern may be disposed, and light having a wavelength suitable for the resist used, generally ultraviolet rays, electron beams, or the like may be irradiated thereon.
  • development is performed with a developer suitable for the resist used.
  • the resist pattern is formed by stopping the development with a rinse solution such as water and washing.
  • the formed resist pattern is pretreated or post-baked as necessary, and then is etched with an etching solution containing an organic solvent to dissolve the intermediate layer in a region not protected by the resist and to form a silver thin film electrode Remove. After etching, the remaining resist is peeled to obtain a transparent electrode having a predetermined pattern.
  • the applied photolithography method is a method generally recognized by those skilled in the art, and a specific application mode can be easily selected by a person skilled in the art according to a predetermined purpose.
  • a resist film composed of a photosensitive resin composition or the like is uniformly coated on the laminate.
  • a photosensitive resin composition a negative photosensitive resin composition or a positive photosensitive resin composition can be used.
  • a coating method it is applied on a laminate by a known method such as micro gravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating, slit coating, etc., and a heating device such as a hot plate or oven. Can be pre-baked. Pre-baking can be performed, for example, using a hot plate or the like within a range of 50 to 150 ° C. for 30 seconds to 30 minutes.
  • the exposure step through a mask manufactured by predetermined electrode patterns, a stepper, a mirror projection mask aligner (MPA), using an exposure apparatus, such as a parallel light mask aligner, 10 ⁇ 4000J / m 2 approximately (wavelength 365nm
  • An exposure apparatus such as a parallel light mask aligner, 10 ⁇ 4000J / m 2 approximately (wavelength 365nm
  • the resist film to be removed in the next step is irradiated with light in terms of exposure amount.
  • the exposure light source is not limited, and ultraviolet rays, electron beams, KrF (wavelength 248 nm) laser, ArF (wavelength 193 nm) laser, and the like can be used.
  • the exposed transparent conductor is immersed in a developer to dissolve the resist film in the region irradiated with light.
  • the developing method it is preferable to immerse in the developer for 5 seconds to 10 minutes by a method such as showering, dipping or paddle.
  • a known alkali developer can be used. Specific examples include inorganic alkalis such as alkali metal hydroxides, carbonates, phosphates, silicates and borates, amines such as 2-diethylaminoethanol, monoethanolamine and diethanolamine, tetramethylammonium hydroxide. Examples thereof include aqueous solutions containing one or more quaternary ammonium salts such as side and choline.
  • etching solution a solution containing an inorganic acid or an organic acid is preferable, and oxalic acid, hydrochloric acid, acetic acid, and phosphoric acid can be mentioned, and oxalic acid, acetic acid, and phosphoric acid are particularly preferable.
  • a laminate having a resist film is immersed in an etching solution containing an organic acid or the like, and the laminate of the insulating region b not protected by the resist film is dissolved and protected by the resist film.
  • region a is formed as a predetermined electrode pattern.
  • a resist film remover for example, N-300 manufactured by Nagase ChemteX Corporation, and the resist film is removed to produce a laminate having an electrode pattern.
  • the image display device used for the touch sensor according to the present invention is not particularly limited, and a liquid crystal display device or an organic EL device that is usually used for a small electronic terminal can be used.
  • Transparent conductors include various types of displays such as liquid crystal, plasma, organic electroluminescence, field emission, touch panel, mobile phone, electronic paper, various solar cells, various optoelectronic device substrates such as various electroluminescence dimming elements, etc. Can be preferably used. In particular, it can be preferably applied to electrodes for touch panels.
  • conductive layer (Ag) As a vacuum sputtering apparatus, a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., Ltd. was used, and Ar was 20 sccm, sputtering pressure 0.5 Pa, room temperature, target-side power 150 W, film formation rate 14 ⁇ / sec. .56 MHz). The target-substrate distance was 90 mm. The layer thickness of the Ag layer was 7 nm.
  • the target (ZnS—SiO 2 fired body) was radio frequency (RF) sputtered (frequency) at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target side power 150 W, and deposition rate 3.8 ⁇ / sec. 13.56 MHz).
  • RF radio frequency
  • the target-substrate distance was 90 mm.
  • the layer thickness was 40 nm.
  • the volume ratio of ZnS to SiO 2 in the second high refractive index layer was measured using X-ray photoelectron spectroscopy (XPS). As a result, the volume ratio of ZnS to SiO 2 was 80:20. It was confirmed that.
  • a resist layer is formed in a pattern by a photolithography method, and a conductive layer and an insulating layer (second high refractive index layer) are separated from a plurality of conductive regions by using an etchant, and in a line shape that divides this Etching was performed in a pattern including the insulating region.
  • the plurality of conductive regions are arranged on the connection terminals 11 via the lead wires 12 respectively.
  • etching solution “mixed liquid SEA-5” (phosphoric acid: 55 mass%, acetic acid: 30 mass%, water and other components: 15 mass%) manufactured by Kanto Chemical Co., Ltd. was used. Only the substrate was included in the insulating region. The width of the line-shaped insulating region was 16 ⁇ m.
  • the transparent conductor 1 was produced through the following conduction process. A specific manufacturing method will be described.
  • ⁇ Conduction process> For each connection wiring, a voltage of 3V and a frequency are applied to the connection wiring portion where only one conductive paste is applied and to the connection wiring portion where only the other conductive paste is applied via a laminate (conductive layer). An AC voltage of 100 Hz was applied for 3 seconds. The application of the AC voltage was performed using HIOKI LCR HiTester (manufactured by Hioki Electric Co., Ltd., model number 3522-50). Thus, the transparent conductor 1 was produced.
  • ⁇ substrate ⁇ Film PET film with clear hard coat manufactured by Kimoto Co., Ltd. Glass: BK7 (thickness 2 mm) manufactured by Yamanaka Hutech Co., Ltd.
  • [Formation of first high refractive index layer] (Formation of ZnS layer)
  • a vacuum sputtering apparatus a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., Ltd. was used.
  • the fired body was radio frequency (RF) sputtered (frequency 13.56 MHz).
  • the target-substrate distance was 90 mm.
  • the layer thickness was 40 nm.
  • a magnetron sputtering apparatus As a vacuum sputtering apparatus, a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., Ltd. is used. Ar (20 Zn), Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target side power 150 W, deposition rate 3.8 ⁇ / sec. the SiO 2 sintered body) was radio frequency (RF) sputtering (frequency 13.56 MHz). The target-substrate distance was 90 mm. The layer thickness was 40 nm.
  • RF radio frequency
  • the volume ratio of ZnS to SiO 2 in the first high refractive index layer was measured using X-ray photoelectron spectroscopy (XPS). As a result, the volume ratio of ZnS to SiO 2 was 80:20. It was confirmed that.
  • ZnS-GZO represents GZO (ZnO containing 10 mass% Ga) and further containing 4 at% ZnS.
  • Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.07 nm / second, layer thickness 40 nm, and composition ratio GZO (gallium / zinc oxide) and ZnS were radio-frequency (RF) sputtered (frequency 13.56 MHz) so as to achieve the above.
  • the target-substrate distance was 86 mm.
  • ZnO layer As a vacuum sputtering apparatus, a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., Ltd. is used. ArO 20 sccm, sputtering pressure 0.1 Pa, room temperature, target side power 150 W, film formation rate 1.1 ⁇ / sec. 13.56 MHz). The target-substrate distance was 90 mm. The thickness of the ZnO layer was 3 nm.
  • ZTO layer As a vacuum sputtering apparatus, a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., Ltd. was used, and ZTO was radio frequency (RF) sputtered with Ar 20 sccm, sputtering pressure 0.1 Pa, room temperature, target side power 150 W, film formation rate 1.1 ⁇ ⁇ ⁇ / sec ( (Frequency 13.56 MHz). The target-substrate distance was 90 mm. The layer thickness of the ZTO layer was 3 nm.
  • RF radio frequency
  • the formation of the ZnS layer, the TiO 2 layer, and the ZnS-GZO layer were performed in the same manner as described in the formation of the first high refractive index layer.
  • the conductive paste was used in the same manner as the connection wiring forming step and the sintering step in the production of the transparent conductor 1.
  • the conductive paste used in the production of the transparent conductor 1 is shown in Tables 1 and 2 as * 1.
  • the following three types were used as other conductive pastes. They are described as * 2, * 3, and * 4, respectively.
  • the sintering time and temperature were changed as follows.
  • Evaporated Cu wiring 6 Sputtered Cu wiring 7: Evaporated Cr wiring (Formation of evaporated Cu wiring)
  • Masking was performed with a SUS plate having a thickness of 0.1 mm other than the portion to be connected and wiring formed with a pattern hole, and Cu was deposited using a vapor deposition machine BMC-800T (manufactured by Syncron Co., Ltd.). Vapor deposition was performed by resistance heating using a tungsten boat, and 50 nm deposition was performed at a current value of 200 A at a rate of 10 ⁇ / sec.
  • EAGLE XG thinness 7 mm ⁇ length 30 mm ⁇ width 30 mm
  • the measurement light is incident on the conduction region from an angle inclined by 5 ° with respect to the normal of the surface of the alkali-free glass substrate, and the light transmittance is measured by Hitachi High-Technologies Corporation: Spectrophotometer U4100. And the reflectance was measured.
  • the transmittance is measured in consideration of the value obtained by subtracting the reflection (4%) at the interface between the alkali-free glass substrate and the atmosphere and the reflection at the interface between the transparent substrate and the atmosphere (4%).
  • a value obtained by adding 8% to the value was defined as each average transmittance of the transparent conductor. Based on the above measured values, the following ranking was performed.
  • Measurement was performed by a two-terminal method using a CDM-2000D manufactured by Custom. Specifically, it was confirmed that the connection terminals 11a and 11b shown in FIG. 3 among the plurality of connection terminals are connected by applying CDM-2000D manufactured by Custom Co., Ltd. This was performed for all connection wirings.
  • All of the 14 connection terminals 11 of the 10 electrode patterns in FIG. 3 are electrically connected and are 70% or more and less than 90%. Less than 70% of all the 14 connection terminals 11 of the 10 electrode patterns in FIG. 3 are electrically conductive
  • the resistance value of the insulating layer was measured separately and confirmed to be a value exceeding 10 times the theoretical value of the conductive layer.
  • the transparent conductor produced by the production method of the present invention was excellent in light transmittance and conductivity, and was useful as an electrode for a touch panel.
  • Example 2 In the production of the transparent conductor 13 of Example 1, the transparent conductors were respectively produced in the same manner as the transparent conductor 13 by changing the kind of the conductive paste, the sintering temperature, and the sintering time as follows.
  • each of the produced transparent conductors was evaluated for light transmittance, conductivity, and moisture resistance. As a result, good results similar to those of the transparent conductor 13 were obtained.
  • the transparent conductor produced by the method for producing a transparent conductor of the present invention is excellent in light transmittance, and has good conductivity between the connection wiring and the conductive layer, and is a liquid crystal display, plasma display, inorganic and organic EL (electroluminescence).
  • the present invention can be preferably applied to various devices such as a display device such as a display, a touch panel, and a solar cell.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)
  • Conductive Materials (AREA)
  • Inorganic Insulating Materials (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

The present invention addresses the problem of providing a method for manufacturing a transparent conductor, which has excellent light transmissivity, and excellent conductivity between connection wiring and a conductive layer. Disclosed is a method for manufacturing a transparent conductor that has at least a conductive layer, an insulating layer, and connection wiring electrically connected to the conductive layer. The method is characterized in electrically connecting the conductive layer and the connection wiring to each other by means of an electrically connecting step wherein the connection wiring is formed on a surface end section of the insulating layer, then, an alternating current voltage is applied between the conductive layer and the connection wiring.

Description

透明導電体の製造方法Method for producing transparent conductor
 本発明は、光透過性に優れ、接続配線と導電層との導通性が良好な透明導電体の製造方法に関する。 The present invention relates to a method for producing a transparent conductor excellent in light transmittance and having good electrical connection between a connection wiring and a conductive layer.
 近年、液晶ディスプレイやプラズマディスプレイ、無機及び有機EL(エレクトロルミネッセンス)ディスプレイ等の表示装置、タッチパネル、太陽電池等の各種装置に透明導電体が使用されている。 In recent years, transparent conductors have been used in various devices such as liquid crystal displays, plasma displays, display devices such as inorganic and organic EL (electroluminescence) displays, touch panels, and solar cells.
 タッチパネル型の表示装置等では、表示素子の画像表示面上に、透明導電体を含む配線が配置される。したがって、透明導電体には、光の透過性が高いことが求められる。このような各種表示装置には、光透過性の高いITO(インジウム・スズ酸化物)を用いた透明導電体が多用されている。 In a touch panel type display device or the like, wiring including a transparent conductor is disposed on the image display surface of the display element. Therefore, the transparent conductor is required to have high light transmittance. For such various display devices, a transparent conductor using ITO (indium tin oxide) having high light transmittance is often used.
 近年、静電容量方式のタッチパネル表示装置が開発され、透明導電体の表面電気抵抗をさらに低くすることが求められている。しかし、従来のITO膜では、表面電気抵抗を十分に下げられないという問題があった。 In recent years, a capacitive touch panel display device has been developed, and it is required to further reduce the surface electrical resistance of the transparent conductor. However, the conventional ITO film has a problem that the surface electric resistance cannot be sufficiently lowered.
 そこで、銀を蒸着又はスパッタして形成する層(以下、Ag層ともいう。)を透明導電層に用いることが検討されている(例えば、特許文献1参照。)。また、透明導電体の光透過性を高めるため、Ag層を屈折率の高い膜(例えば、酸化ニオブ(Nb)、IZO(インジウム・亜鉛酸化物)、ICO(インジウム・セリウム酸化物)、a-GIO(ガリウム・インジウム・酸素の非晶質酸化物)等からなる膜)で挟み込むことも提案されている(例えば、特許文献2及び非特許文献1参照。)。さらに、Ag層を、硫化亜鉛を含有する層(以下、ZnS含有層ともいう。)で挟み込むことが提案されている(例えば、非特許文献2~4参照。)。 Therefore, it has been studied to use a layer formed by vapor deposition or sputtering of silver (hereinafter also referred to as an Ag layer) for the transparent conductive layer (for example, see Patent Document 1). In order to increase the light transmittance of the transparent conductor, the Ag layer is made of a film having a high refractive index (for example, niobium oxide (Nb 2 O 5 ), IZO (indium / zinc oxide), ICO (indium / cerium oxide)). And a-GIO (film made of an amorphous oxide of gallium, indium, oxygen, etc.) have also been proposed (see, for example, Patent Document 2 and Non-Patent Document 1). Further, it has been proposed to sandwich the Ag layer with a layer containing zinc sulfide (hereinafter also referred to as a ZnS-containing layer) (see, for example, Non-Patent Documents 2 to 4).
 しかし、特許文献2に示されるように、酸化ニオブやIZO等の誘電体層でAg層が挟み込まれた透明導電体では、耐湿性が十分でなかった。その結果、高湿度環境下で透明導電体を使用すると、Ag層が腐食しやすい等の問題があった。 However, as shown in Patent Document 2, a transparent conductor in which an Ag layer is sandwiched between dielectric layers such as niobium oxide and IZO has not been sufficiently moisture-resistant. As a result, when a transparent conductor is used in a high humidity environment, there is a problem that the Ag layer is easily corroded.
 一方、Ag層がZnS含有層に挟み込まれた透明導電体では、透明導電体の耐湿性が十分に高いものの、Ag層を形成する際、又はZnS含有層を形成する際に、銀が硫化されて硫化銀が生じやすい。その結果、透明導電体の光透過性が低くなるという問題があった。 On the other hand, in the transparent conductor in which the Ag layer is sandwiched between the ZnS-containing layers, although the moisture resistance of the transparent conductor is sufficiently high, silver is sulfided when forming the Ag layer or forming the ZnS-containing layer. Therefore, silver sulfide is easily generated. As a result, there is a problem that the light transmittance of the transparent conductor is lowered.
 また、導電性ペーストを基板に印刷することで、配線回路を形成させる技術は公知であるが(例えば、特許文献3及び4参照。)、導電層にZnS含有層等の高屈折率層を積層する構成は、高屈折率層が絶縁体又は高抵抗体であることが多く、接続配線を形成する際導通がとれないといった問題があった。 Further, although a technique for forming a wiring circuit by printing a conductive paste on a substrate is known (see, for example, Patent Documents 3 and 4), a high refractive index layer such as a ZnS-containing layer is laminated on the conductive layer. However, the high-refractive-index layer is often an insulator or a high-resistance material, and there is a problem that conduction cannot be obtained when forming the connection wiring.
特表2011-508400号公報Special table 2011-508400 gazette 特開2008-226581号公報JP 2008-226581 A 特開2012-89252号公報JP 2012-89252 A 特開2012-38614号公報JP 2012-38614 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、光透過性に優れ、接続配線と導電層との導通性が良好な透明導電体の製造方法を提供することである。 The present invention has been made in view of the above problems and situations, and its solution is to provide a method for producing a transparent conductor that has excellent light transmission and good electrical connection between a connection wiring and a conductive layer. It is.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、絶縁層の表面端部に接続配線を配設した後に交流電圧を前記導電層と前記接続配線間に印加することにより導電層と接続配線間の良好な導通性が得られることを見いだし本発明に至った。 In order to solve the above problems, the present inventor applied an AC voltage between the conductive layer and the connection wiring after arranging the connection wiring at the surface end of the insulating layer in the process of examining the cause of the problem. As a result, it was found that good conductivity between the conductive layer and the connection wiring can be obtained, and the present invention has been achieved.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned problem according to the present invention is solved by the following means.
 1.少なくとも、導電層と絶縁層と前記導電層に導通する接続配線とを有する透明導電体の製造方法であって、前記絶縁層の表面端部に接続配線を形成した後に交流電圧を前記導電層と前記接続配線間に印加する導通工程を経て、前記導電層と前記接続配線とを導通させることを特徴とする透明導電体の製造方法。 1. A method of manufacturing a transparent conductor having at least a conductive layer, an insulating layer, and a connection wiring that conducts to the conductive layer, wherein an AC voltage is applied to the conductive layer after forming the connection wiring on a surface end of the insulating layer. A method of manufacturing a transparent conductor, wherein the conductive layer and the connection wiring are made conductive through a conduction step applied between the connection wirings.
 2.前記接続配線が、少なくとも銀ペーストからなることを特徴とする第1項に記載の透明導電体の製造方法。 2. 2. The method for manufacturing a transparent conductor according to item 1, wherein the connection wiring is made of at least a silver paste.
 3.前記導電層が、銀を含有する導電層であることを特徴とする第1項又は第2項に記載の透明導電体の製造方法。 3. The method for producing a transparent conductor according to item 1 or 2, wherein the conductive layer is a conductive layer containing silver.
 4.前記導電層が、硫化亜鉛を含有する二つの絶縁層で挟持されていることを特徴とする第1項から第3項までのいずれか一項に記載の透明導電体の製造方法。 4. The method for producing a transparent conductor according to any one of claims 1 to 3, wherein the conductive layer is sandwiched between two insulating layers containing zinc sulfide.
 本発明の上記手段により、光透過性に優れ、接続配線と導電層との導通性が良好な透明導電体の製造方法を提供することができる。 By the above means of the present invention, it is possible to provide a method for producing a transparent conductor that is excellent in light transmissivity and excellent in electrical connection between the connection wiring and the conductive layer.
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。 The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 導電層と接続配線間に交流電圧を印加することにより、高屈折率層中に存在する異物から電気トリーが成長し、導電性ペーストと導電層間で絶縁破壊が発生するためと考えられる。 It is considered that when an AC voltage is applied between the conductive layer and the connection wiring, an electrical tree grows from foreign matters existing in the high refractive index layer, and dielectric breakdown occurs between the conductive paste and the conductive layer.
透明導電体の層構成の一例を示す概略断面図Schematic sectional view showing an example of the layer structure of a transparent conductor パターニングされた透明導電体の層構成の一例を示す概略断面図Schematic sectional view showing an example of the layer structure of a patterned transparent conductor 導電性ペーストが塗布された透明導電体の一例を示す概略断面図Schematic sectional view showing an example of a transparent conductor coated with a conductive paste 透明導電体の層構成の他の一例を示す概略断面図Schematic sectional view showing another example of the layer configuration of the transparent conductor パターニングされた透明導電体の全体を示す模式図Schematic diagram showing the entire patterned transparent conductor タッチパネルの一例を示す概略断面図Schematic sectional view showing an example of a touch panel
 本発明の透明導電体の製造方法は、少なくとも、導電層と絶縁層と前記導電層に導通する接続配線とを有する透明導電体の製造方法であって、前記絶縁層の表面端部に接続配線を形成した後に交流電圧を前記導電層と前記接続配線間に印加する導通工程を経て、前記導電層と前記接続配線とを導通させることを特徴とする。この特徴は、請求項1から請求項4までの請求項に係る発明に共通する技術的特徴である。 The method for producing a transparent conductor according to the present invention is a method for producing a transparent conductor having at least a conductive layer, an insulating layer, and a connection wiring that conducts to the conductive layer, wherein the connection wiring is formed on the surface end of the insulating layer. The conductive layer is electrically connected to the connection wiring through a conduction step in which an alternating voltage is applied between the conductive layer and the connection wiring after the formation of the conductive layer. This feature is a technical feature common to the inventions according to claims 1 to 4.
 本発明の実施態様としては、接続配線が、少なくとも銀ペーストからなることが好ましい。また、導電層が、銀を含有する導電層であることが、高い導電性を得られることから好ましい。さらに、導電層が、硫化亜鉛を含有する二つの絶縁層で挟持されていることが、耐湿性向上の効果が得られることから、好ましい。 As an embodiment of the present invention, the connection wiring is preferably made of at least a silver paste. In addition, the conductive layer is preferably a conductive layer containing silver because high conductivity can be obtained. Furthermore, it is preferable that the conductive layer is sandwiched between two insulating layers containing zinc sulfide because an effect of improving moisture resistance can be obtained.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 ≪透明導電体の製造方法の概要≫
 本発明の透明導電体の製造方法は、少なくとも、導電層と絶縁層と前記導電層に導通する接続配線とを有する透明導電体の製造方法であって、前記絶縁層の表面端部に接続配線を形成した後に交流電圧を前記導電層と前記接続配線間に印加する導通工程を経て、前記導電層と前記接続配線とを導通させることを特徴とする。
≪Outline of manufacturing method of transparent conductor≫
The method for producing a transparent conductor according to the present invention is a method for producing a transparent conductor having at least a conductive layer, an insulating layer, and a connection wiring that conducts to the conductive layer, wherein the connection wiring is formed on the surface end of the insulating layer. The conductive layer is electrically connected to the connection wiring through a conduction step in which an alternating voltage is applied between the conductive layer and the connection wiring after the formation of the conductive layer.
 本発明に係る導電層が、導電性ペーストからなる接続配線に導通する工程の概略を、一例として図1A~図1Cに示す。 An outline of a process in which the conductive layer according to the present invention conducts to a connection wiring made of a conductive paste is shown in FIGS. 1A to 1C as an example.
 図1Aは透明導電体の層構成の一例を示す概略断面図である。接続配線を形成する前の透明導電体は、図1Aに示すように、基板1上に、例えば、高い屈折率を有する硫化亜鉛を含有する第1高屈折率層2と導電層3と硫化亜鉛を含有する絶縁層3(第2高屈折率層)とが積層した積層体10が形成されている。第1高屈折率層2は、好ましい態様として、光透過性を高くし、耐湿性を向上するために設けられている。 FIG. 1A is a schematic sectional view showing an example of a layer structure of a transparent conductor. As shown in FIG. 1A, the transparent conductor before the connection wiring is formed on the substrate 1, for example, the first high refractive index layer 2, the conductive layer 3, and zinc sulfide containing zinc sulfide having a high refractive index. The laminated body 10 in which the insulating layer 3 (second high-refractive index layer) containing is laminated is formed. The 1st high refractive index layer 2 is provided in order to make light transmittance high and to improve moisture resistance as a preferable aspect.
 導電層としては、銀を用いることが高い導電性を得られることから好ましい。また、導電層として銀を用いる場合、導電層に隣接する層に硫化防止層を設けて、硫化銀の生成に起因する光透過性の劣化を防ぐことができる。このような構成とすることで高い光透過性を有する積層体10を形成することができる。 As the conductive layer, it is preferable to use silver because high conductivity can be obtained. Further, when silver is used as the conductive layer, an anti-sulfurization layer can be provided in a layer adjacent to the conductive layer to prevent light transmission deterioration due to the formation of silver sulfide. By setting it as such a structure, the laminated body 10 which has high light transmittance can be formed.
 図1Bは、パターニングされた透明導電体の層構成の一例を示す概略断面図である。積層体10は、パターニングにより、導通領域aと絶縁領域bが形成されていてもよい。導通領域aから引き出されている引き出し配線部(以下、単に「引き出し配線」ともいう。)を有していることが好ましい。 FIG. 1B is a schematic cross-sectional view showing an example of a layer structure of a patterned transparent conductor. The laminated body 10 may be formed with a conductive region a and an insulating region b by patterning. It is preferable to have a lead-out wiring portion (hereinafter also simply referred to as “lead-out wiring”) drawn from the conduction region a.
 図1Cは、導電性ペーストが塗布された透明導電体の一例を示す概略断面図である。パターニングされた透明導電体の絶縁層の表面端部に導電性ペーストを塗布する。この導電性ペーストは接続配線として、パターニングされた透明導電体の導電層と回路基板を電気的に接続する機能を有している。しかし、導電層の上にZnS含有層等の第2高屈折率層を積層する構成は、高屈折率層が絶縁体又は高抵抗体であることが多く、接続配線を形成する際、導通がとれないといった問題があった。 FIG. 1C is a schematic cross-sectional view showing an example of a transparent conductor coated with a conductive paste. A conductive paste is applied to the surface end portion of the insulating layer of the patterned transparent conductor. This conductive paste has a function of electrically connecting the patterned conductive layer of the transparent conductor and the circuit board as connection wiring. However, in the configuration in which the second high refractive index layer such as the ZnS-containing layer is laminated on the conductive layer, the high refractive index layer is often an insulator or a high resistance, and conduction is formed when the connection wiring is formed. There was a problem that could not be taken.
 本発明では、接続配線(導電性ペースト)を形成した後に、交流電圧を前記導電層と前記接続配線間に印加することにより、導電層と接続配線間に良好な導通性を得ることができる。 In the present invention, after the connection wiring (conductive paste) is formed, an excellent voltage can be obtained between the conductive layer and the connection wiring by applying an AC voltage between the conductive layer and the connection wiring.
 この効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。 The expression mechanism or action mechanism of this effect is not clear, but is presumed as follows.
 導電層と接続配線間に交流電圧を印加することにより、高屈折率層中に存在する異物から電気トリーが成長し、導電性ペーストと導電層間で絶縁破壊が発生するためと考えられる。一般的に極性が逆転し高電圧が印加されること、電子の移動量が大きいこと、渦電流損失などにより配線等が加熱されることなどから交流の方が絶縁破壊しやすいと言われている。また、導電性ペーストを用いる場合、電解が導電性ペーストに含まれる金属粒子の最先端の粒子一点に集中するため絶縁破壊が起きやすいとも考えられる。 It is considered that when an AC voltage is applied between the conductive layer and the connection wiring, an electrical tree grows from foreign matters existing in the high refractive index layer, and dielectric breakdown occurs between the conductive paste and the conductive layer. In general, alternating current is said to be more susceptible to dielectric breakdown due to the fact that the polarity is reversed and a high voltage is applied, the amount of movement of electrons is large, wiring is heated due to eddy current loss, etc. . In addition, when using a conductive paste, it is considered that dielectric breakdown is likely to occur because electrolysis concentrates on one point of the most advanced particles of the metal particles contained in the conductive paste.
 ≪透明導電体の製造方法≫
 本発明の透明導電体の製造方法は、少なくとも、導電層と絶縁層を成膜する成膜工程と、成膜した後絶縁層の表面端部に接続配線形成工程と、その後に交流電圧を導電層と接続配線間に印加する導通工程とを少なくとも含み、更に必要に応じて、パターニングをする工程等のその他の工程を含むことができる。
≪Method for producing transparent conductor≫
The method for producing a transparent conductor according to the present invention includes at least a film forming process for forming a conductive layer and an insulating layer, a connection wiring forming process on the surface end of the insulating layer after film formation, and then conducting an AC voltage. It includes at least a conduction step applied between the layer and the connection wiring, and may further include other steps such as a patterning step, if necessary.
 以下に、透明導電体の製造方法をより詳細に説明する。 Hereinafter, the method for producing the transparent conductor will be described in more detail.
 <成膜工程>
 成膜工程としては、基板の一方の面上に少なくとも導電層とその上に絶縁層を成膜する。絶縁層は高屈折率を有する層(第2高屈折率層)であることが好ましい。必要に応じて導電層と基板との間に第1高屈折率層を設けることもできる。また目的に応じて、適宜硫化防止層、下地層などを選択することができる。
<Film formation process>
In the film forming process, at least a conductive layer and an insulating layer are formed on one surface of the substrate. The insulating layer is preferably a layer having a high refractive index (second high refractive index layer). A 1st high refractive index layer can also be provided between a conductive layer and a board | substrate as needed. Further, depending on the purpose, an antisulfurization layer, an underlayer, etc. can be selected as appropriate.
 透明導電体の好ましい層構成の一例として、図2に示したような、基板1の一方の面上に第1高屈折率層2、第1硫化防止層5a、導電層3、第2硫化防止層5b及び絶縁層(第2高屈折率層)4をこの順に形成した積層体を挙げることができる。 As an example of a preferable layer structure of the transparent conductor, as shown in FIG. 2, the first high refractive index layer 2, the first antisulfurization layer 5a, the conductive layer 3, and the second antisulfurization are formed on one surface of the substrate 1. A laminate in which the layer 5b and the insulating layer (second high refractive index layer) 4 are formed in this order can be given.
 このような積層体を形成する工程であれば、成膜方法は特に限定されない。例えば真空蒸着法やスパッタリング等の公知の方法により薄膜を形成することができる。また必要に応じて、スピンコート法、インクジェット法、印刷法等の公知の湿式法により薄膜を形成することもできる。 The film forming method is not particularly limited as long as it is a process for forming such a laminate. For example, the thin film can be formed by a known method such as vacuum deposition or sputtering. If necessary, the thin film can be formed by a known wet method such as a spin coating method, an ink jet method, or a printing method.
 <接続配線形成工程>
 接続配線形成工程では、成膜した積層体の表面に位置する絶縁層の表面端部と回路基板間に接続配線を形成する。接続配線は、透明導電体の導電層と回路基板との電気的接続を可能とするために設けられる。具体的には、導電性ペーストや金属を用い基板上に接続配線として導電層と回路基板とを配設する。配設する際、パターニングされた積層体の引き出し配線を用いて導電層と回路基板とを配設することが好ましい。
<Connection wiring formation process>
In the connection wiring formation step, connection wiring is formed between the surface end portion of the insulating layer located on the surface of the deposited laminate and the circuit board. The connection wiring is provided to enable electrical connection between the conductive layer of the transparent conductor and the circuit board. Specifically, a conductive layer and a circuit board are disposed as connection wiring on a substrate using a conductive paste or metal. At the time of disposing, it is preferable to dispose the conductive layer and the circuit board using the lead wiring of the patterned laminated body.
 接続配線は、パターニングして得られた絶縁層の表面の端が覆われていればよい。具体的には、絶縁層の表面端部とは、端から少なくとも300μm程度覆われていればよい。導電層を含む端面は導電性ペーストに接していることが好ましいが、必ずしも接していなくともよい。絶縁層の表面端部が、接続配線に覆われていればよい。 The connection wiring only needs to cover the edge of the surface of the insulating layer obtained by patterning. Specifically, the surface end portion of the insulating layer only needs to be covered by at least about 300 μm from the end. The end face including the conductive layer is preferably in contact with the conductive paste, but is not necessarily in contact. The surface end of the insulating layer only needs to be covered with the connection wiring.
 接続配線の幅は、必要に応じて変えることができるが、10~100μmの範囲内とすることができる。また厚さは5nm~50μmの範囲内とすることができる。 The width of the connection wiring can be changed as necessary, but can be within a range of 10 to 100 μm. The thickness can be in the range of 5 nm to 50 μm.
 (接続配線)
 接続配線は、透明導電体の導電層と回路基板との電気的接続を可能とするために設けられる。具体的には、引き出し配線と導電層を電気的に接続する機能を有する。したがって抵抗が10-4Ω/□以下の導電体であることが好ましい。より好ましくは抵抗が10-5Ω/□以下であることである。
(Connection wiring)
The connection wiring is provided to enable electrical connection between the conductive layer of the transparent conductor and the circuit board. Specifically, it has a function of electrically connecting the lead wiring and the conductive layer. Therefore, a conductor having a resistance of 10 −4 Ω / □ or less is preferable. More preferably, the resistance is 10 −5 Ω / □ or less.
 接続配線に用いられる材料は、導電性ペースト又は金属が好ましい。接続配線は、好ましくは大掛かりな装置を用いずに安価に形成できることから、導電性ペーストが好ましく、少なくとも銀ペーストからなることがより好ましい。 The material used for the connection wiring is preferably a conductive paste or a metal. The connection wiring is preferably made of a conductive paste, and more preferably at least a silver paste, because it can be formed inexpensively without using a large-scale device.
 接続配線に金属を用いる場合、金属配線は金属をスパッタ又は蒸着し配線を行ったものでも良い。この場合均一かつ正確に配線できるため、不良を少なくすることができる。金属としてはCu、Ag、Au、Cr、Ni、Mg、Ti、Mn、Fe、Co、Zn、In、Sn、Ta、W、Os、Pt、Zr、Nb、Mo、Ru、Pd、Bi及びこれらの合金などから選ぶことが可能であるが、導電性の面からCu、Ag、Au、Ptが好ましく、耐久性の面からCr、Niが好ましい。 When using metal for the connection wiring, the metal wiring may be formed by sputtering or vapor deposition of metal. In this case, since uniform and accurate wiring can be performed, defects can be reduced. As metals, Cu, Ag, Au, Cr, Ni, Mg, Ti, Mn, Fe, Co, Zn, In, Sn, Ta, W, Os, Pt, Zr, Nb, Mo, Ru, Pd, Bi and these From the viewpoint of conductivity, Cu, Ag, Au, and Pt are preferable, and from the viewpoint of durability, Cr and Ni are preferable.
 接続配線に導電性ペーストを用いる場合、導電性ペーストを透明基板上に配設する塗布方法は、インクジェット、スクリーン印刷、グラビア印刷等の配線基板に用いる公知の方法を適宜用いることができる。これらの中では均一に仕上がることからスクリーン印刷、グラビア印刷等の印刷法が好ましい。 When a conductive paste is used for the connection wiring, a known method used for a wiring substrate such as inkjet, screen printing, or gravure printing can be appropriately used as a coating method for disposing the conductive paste on the transparent substrate. Among these, printing methods such as screen printing and gravure printing are preferable because they are uniformly finished.
 導電性ペーストは、銅を含有していてもよい。導電性ペーストに含有される銀又は銅は、球状の粒子として含有されていることが好ましい。銀粒子又は銅粒子は、それぞれの粒子のメジアン径(D50)が、0.2~0.9μmの範囲内であることが好ましい。 The conductive paste may contain copper. The silver or copper contained in the conductive paste is preferably contained as spherical particles. The silver particles or the copper particles preferably have a median diameter (D50) of each particle in the range of 0.2 to 0.9 μm.
 例えば、大研化学製造販売(株)製CA-T30、InkTec社製TEC-PR030(ペーストA)、InkTec社製TEC-PA010(ペーストB)、三ツ星ベルト(株)製MDot-SLP、東洋インキ(株)製RA FS039、RA FS045、RA FS088、藤倉化成(株)製ナノドータイト XA-3541、同XA-9053、(株)アサヒ化学研究所製LS-450-5、LS-450-7H、LS-462H-2、LS-453-2、LS-470L-2、LS-460H-1、ペルノックス(株)製K-3100、ペルトロンK-3107S、K-3111、太陽インキ製造(株)製ECM-100 AF6100 L10、EPH-300TR67004、旭硝子(株)製スクリーン印刷用銅ペースト「EPRIMA CU」、ナミックス(株)製XE108-6、XE108-6K等を用いることができる。 For example, CA-T30 manufactured by Daiken Chemical Manufacturing and Sales Co., Ltd., TEC-PR030 (paste A) manufactured by InkTec, TEC-PA010 (paste B) manufactured by InkTec, MDot-SLP manufactured by Mitsuboshi Belting Co., Ltd., Toyo Ink ( RA FS039, RA FS045, RA FS088, Nano Dotite XA-3541, XA-9053, LS-450-5, LS-450-7H, LS, manufactured by Asahi Chemical Laboratory -462H-2, LS-453-2, LS-470L-2, LS-460H-1, Pernox K-3100, Pertron K-3107S, K-3111, Taiyo Ink Manufacturing ECM- 100 AF6100 L10, EPH-300TR67004, Asahi Glass Co., Ltd. screen printing copper pace "EPRIMA CU", NAMICS Co., Ltd. XE108-6, it is possible to use a XE108-6K like.
 銀粒子又は銅粒子の導電性ペースト中の含有率は、70~97質量%の範囲内であることが好ましく、75~92質量%の範囲内であることがより好ましい。この範囲であると、良好な導電性を有する接続配線を配設することができる。 The content of silver particles or copper particles in the conductive paste is preferably in the range of 70 to 97% by mass, and more preferably in the range of 75 to 92% by mass. Within this range, connection wiring having good conductivity can be provided.
 当該導電性ペーストは、銀粒子又は銅粒子とともに、有機溶媒や樹脂を含有することが好ましい。導電性ペーストが含有する有機溶媒及び樹脂は、銀粒子又は銅粒子と反応性を有さないものであればよい。 The conductive paste preferably contains an organic solvent or a resin together with silver particles or copper particles. The organic solvent and resin contained in the conductive paste may be any one that does not have reactivity with silver particles or copper particles.
 導電性ペーストが含有する有機溶媒として、導電性ペースト用の公知の有機溶媒を用いることができる。具体的には、ジエチレングリコールモノ-n-ブチルエーテルアセテートを好ましく用いることができる。これらは、一種を単独で用いてもよいし、二種以上を併用してもよい。また、有機溶媒の沸点は、乾燥速度の観点から、120~180℃の範囲内であることが好ましい。 As the organic solvent contained in the conductive paste, a known organic solvent for the conductive paste can be used. Specifically, diethylene glycol mono-n-butyl ether acetate can be preferably used. These may be used individually by 1 type and may use 2 or more types together. The boiling point of the organic solvent is preferably in the range of 120 to 180 ° C. from the viewpoint of the drying rate.
 また、導電性ペーストが含有する樹脂として、具体的には、ビニルアクリル樹脂を用いることができる。例えば、ポリエステル樹脂、塩化ビニル樹脂、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂等が挙げられる。これらは、一種を単独で用いてもよいし、二種以上を併用して用いてもよい。 Further, as the resin contained in the conductive paste, specifically, a vinyl acrylic resin can be used. For example, a polyester resin, a vinyl chloride resin, an acrylic resin, a polyester resin, a polyurethane resin, and the like can be given. These may be used singly or in combination of two or more.
 これらの有機溶媒又は樹脂を含有することで、印刷に適した導電性ペーストが得られる。 A conductive paste suitable for printing can be obtained by containing these organic solvents or resins.
 (焼結)
 導電性ペーストで配設したあと、焼結により、接続配線を固定することが好ましい。基板として樹脂を用いた場合、温度が高いと樹脂の変形が起きやすくなるため、焼結の温度は90~160℃の範囲内とすることができる。また焼結時間は3~30分の範囲が好ましい。焼結は公知の加熱炉を用いて行うことができる。
(Sintering)
After arranging with the conductive paste, it is preferable to fix the connection wiring by sintering. When a resin is used as the substrate, the resin is likely to be deformed when the temperature is high, so that the sintering temperature can be in the range of 90 to 160 ° C. The sintering time is preferably in the range of 3 to 30 minutes. Sintering can be performed using a known heating furnace.
 <導通工程>
 導通工程では、導電層と接続配線間に交流電圧を印加して、導電層と前記接続配線を導通させる。導電層の両端に接続配線を有する場合、導電層を介して両端の接続配線間に交流電圧を印加することにより、導電層の両端の2か所の導通を一回の交流電圧の印加で可能にすることもできる。
<Conduction process>
In the conduction step, an AC voltage is applied between the conductive layer and the connection wiring to cause conduction between the conductive layer and the connection wiring. When connection wiring is provided at both ends of the conductive layer, by applying an AC voltage between the connection wirings at both ends via the conductive layer, conduction at two locations on both ends of the conductive layer is possible with a single application of AC voltage. It can also be.
 単に接続配線を配設しただけでは、導通は不十分である。導電層と接続配線間に交流電圧を印加することにより、十分な導通性を得ることができる。なお、本発明において導通するとは、抵抗が導電層の理論値の10倍以下であることをいう。 導 通 Continuity is not sufficient simply by providing connection wiring. Sufficient conductivity can be obtained by applying an AC voltage between the conductive layer and the connection wiring. In the present invention, conducting means that the resistance is not more than 10 times the theoretical value of the conductive layer.
 印加する交流電圧の電圧としては、100V(家庭用電源)以下が好ましく、特に1~5Vの範囲内が好ましい。 The voltage of the AC voltage to be applied is preferably 100 V (household power source) or less, particularly preferably in the range of 1 to 5 V.
 用いる周波数としては、2Hz~20MHzの範囲内が好ましく、10Hz~1MHzの範囲内が更に好ましく、20~200Hzの範囲内が特に好ましい。また、13.56MHzの周波数も工業用途として広く用いられており汎用性が高く好ましい。 The frequency used is preferably in the range of 2 Hz to 20 MHz, more preferably in the range of 10 Hz to 1 MHz, and particularly preferably in the range of 20 to 200 Hz. A frequency of 13.56 MHz is also widely used for industrial applications, and is highly versatile and preferable.
 印加時間は、電圧にもよるが、10分以下が好ましく、1分以下が更に好ましく、1~5秒の範囲内が特に好ましい。 The application time depends on the voltage, but is preferably 10 minutes or less, more preferably 1 minute or less, and particularly preferably in the range of 1 to 5 seconds.
 交流電圧を印加するには、市販の装置を適宜用いることができる。例えば、日置電機社製、HIOKI LCR HiTester(型番3522-50)等を用いることができる。 A commercially available apparatus can be used as appropriate to apply the AC voltage. For example, HIOKI LCR HiTester (model number 3522-50) manufactured by Hioki Electric Co., Ltd. can be used.
 ≪透明導電体の構成要素≫
 本発明に係る透明導電体は、少なくとも導電層と絶縁層と接続配線とを有する。これらの層は透明基板上に有していることが好ましい。絶縁層は高屈折率を有する層(第2高屈折率層)であることが好ましい。必要に応じて導電層と基板との間に第1高屈折率層を設けることもできる。また目的に応じて、適宜硫化防止層、下地層などを選択することができる。具体的な一例として、図2に示した、基板1の一方の面上に第1高屈折率層2、第1硫化防止層5a、導電層3、第2硫化防止層5b及び絶縁層(第2高屈折率層)4をこの順に積層した本発明に係る透明導電体の各層について詳細に説明する。
<< Constituent elements of transparent conductor >>
The transparent conductor according to the present invention has at least a conductive layer, an insulating layer, and a connection wiring. These layers are preferably provided on a transparent substrate. The insulating layer is preferably a layer having a high refractive index (second high refractive index layer). A 1st high refractive index layer can also be provided between a conductive layer and a board | substrate as needed. Further, depending on the purpose, an antisulfurization layer, an underlayer, etc. can be selected as appropriate. As a specific example, the first high refractive index layer 2, the first antisulfurization layer 5 a, the conductive layer 3, the second antisulfurization layer 5 b, and the insulating layer (first layer) shown on FIG. Each layer of the transparent conductor according to the present invention in which (2 high refractive index layers) 4 are laminated in this order will be described in detail.
 〔第1高屈折率層〕
 第1高屈折率層は、透明導電体の導通領域、つまり導電層が形成されている領域の光透過性を調整する層であり、少なくとも透明導電体の導通領域に形成される。第1高屈折率層は、透明導電体の絶縁領域にも形成されていてもよいが、導通領域及び絶縁領域からなるパターンを視認され難くするとの観点から、導通領域のみに形成されていることが好ましい。
[First high refractive index layer]
The first high-refractive index layer is a layer that adjusts the light transmittance of the conductive region of the transparent conductor, that is, the region where the conductive layer is formed, and is formed at least in the conductive region of the transparent conductor. The first high refractive index layer may be formed in the insulating region of the transparent conductor, but is formed only in the conductive region from the viewpoint of making it difficult to visually recognize the pattern including the conductive region and the insulating region. Is preferred.
 第1高屈折率層には、後述する基板の屈折率より高い屈折率を有する誘電性材料又は酸化物半導体材料が含まれることが好ましい。当該誘電性材料又は酸化物半導体材料の波長570nmの光の屈折率(測定温度25℃)は、基板の波長570nmの光の屈折率より0.1~1.1大きいことが好ましく、0.4~1.0大きいことがより好ましい。 It is preferable that the first high refractive index layer includes a dielectric material or an oxide semiconductor material having a refractive index higher than that of the substrate described later. The refractive index of light with a wavelength of 570 nm (measurement temperature: 25 ° C.) of the dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 higher than the refractive index of light with a wavelength of 570 nm of the substrate. More preferably, it is larger by 1.0.
 一方、第1高屈折率層に含まれる誘電性材料又は酸化物半導体材料の波長570nmの光の具体的な屈折率は1.5より大きいことが好ましく、1.7~2.5の範囲内であることがより好ましく、さらに好ましくは1.8~2.5の範囲内である。誘電性材料又は酸化物半導体材料の屈折率が1.5より大きいと、第1高屈折率層によって、透明導電体の導通領域aの光透過性が十分に調整される。 On the other hand, the specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the first high refractive index layer is preferably greater than 1.5, and is within a range of 1.7 to 2.5. More preferably, it is in the range of 1.8 to 2.5. When the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the light transmittance of the conductive region a of the transparent conductor is sufficiently adjusted by the first high refractive index layer.
 なお、第1高屈折率層の屈折率は、第1高屈折率層に含まれる材料の屈折率や、第1高屈折率層に含まれる材料の密度で調整される。 The refractive index of the first high refractive index layer is adjusted by the refractive index of the material included in the first high refractive index layer and the density of the material included in the first high refractive index layer.
 第1高屈折率層に含まれる誘電性材料又は酸化物半導体材料は、絶縁性の材料であってもよく、導電性の材料であってもよい。誘電性材料又は酸化物半導体材料は、金属酸化物でありうる。金属酸化物の例にはTiO、ITO(インジウム・スズ酸化物)、ZnO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO(インジウム・亜鉛酸化物)、AZO(アルミニウム・亜鉛酸化物)、GZO(ガリウム・亜鉛酸化物)、ATO(アンチモン・スズ酸化物)、ICO(インジウム・セリウム酸化物)、Bi、Ga、GeO、WO、HfO、a-GIO(ガリウム・インジウム・酸素の非晶質酸化物)、IGZO(インジウム・ガリウム・亜鉛酸化物)等が含まれる。第1高屈折率層には、当該金属酸化物が一種のみ含まれてもよく、二種以上が含まれてもよい。 The dielectric material or oxide semiconductor material contained in the first high refractive index layer may be an insulating material or a conductive material. The dielectric material or oxide semiconductor material can be a metal oxide. Examples of metal oxides are TiO 2 , ITO (indium tin oxide), ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O. 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO (indium zinc oxide), AZO (aluminum zinc oxide), GZO (gallium zinc oxide), ATO (antimony tin oxide), ICO (indium cerium oxide), Bi 2 O 3 , Ga 2 O 3 , GeO 2 , WO 3 , HfO 2 , a-GIO (gallium / indium / oxygen amorphous oxide), IGZO (indium / gallium)・ Zinc oxide). The first high refractive index layer may contain only one kind of the metal oxide or two or more kinds.
 また、第1高屈折率層に含まれる誘電性材料又は酸化物半導体材料は、ZnSでもありうる。第1高屈折率層にZnSが含まれると、基板側から水分が透過し難くなり、導電層の腐食が抑制される。第1高屈折率層には、ZnSのみが含まれてもよく、ZnSとともに他の材料が含まれてもよい。ZnSとともに含まれる材料は、上記誘電性材料又は酸化物半導体材料でありうる金属酸化物やSiO等であり、特に好ましくはSiOである。ZnSとともにSiOが含まれると、第1高屈折率層が非晶質になりやすく、透明導電体のフレキシブル性が高まりやすい。 In addition, the dielectric material or the oxide semiconductor material included in the first high refractive index layer may be ZnS. When ZnS is contained in the first high refractive index layer, it becomes difficult for moisture to permeate from the substrate side, and corrosion of the conductive layer is suppressed. The first high refractive index layer may contain only ZnS, and may contain other materials together with ZnS. Materials included with ZnS is a metal oxide or SiO 2 or the like, which may be the dielectric material or an oxide semiconductor material, particularly preferably SiO 2. When SiO 2 is contained together with ZnS, the first high refractive index layer is likely to be amorphous, and the flexibility of the transparent conductor is likely to be enhanced.
 第1高屈折率層にZnSとともに他の材料が含まれる場合、ZnSの量は、第1高屈折率層を構成する材料の総モル数に対して、0.1~95質量%の範囲内であることが好ましく、50~90質量%であることがより好ましく、さらに好ましくは60~85質量%の範囲内である。 When the first high refractive index layer contains other materials together with ZnS, the amount of ZnS is in the range of 0.1 to 95 mass% with respect to the total number of moles of the material constituting the first high refractive index layer. It is preferably 50 to 90% by mass, more preferably 60 to 85% by mass.
 ZnSの比率が高いとスパッタ速度が速くなり、第1高屈折率層の形成速度が速くなる。一方、ZnS以外の成分が多く含まれると、第1高屈折率層の非晶質性が高まり、第1高屈折率層の割れが抑制される。 When the ratio of ZnS is high, the sputtering rate increases, and the formation rate of the first high refractive index layer increases. On the other hand, when many components other than ZnS are contained, the amorphousness of the first high refractive index layer is increased, and cracking of the first high refractive index layer is suppressed.
 第1高屈折率層の厚さは、15~150nmの範囲内であることが好ましく、より好ましくは20~80nmである。第1高屈折率層の厚さが15nm以上であると、第1高屈折率層によって、透明導電体の導通領域の光透過性が十分に調整される。一方、第1高屈折率層の厚さが150nm以下であれば、第1高屈折率層が含まれる領域の光透過性が低下し難い。第1高屈折率層の厚さは、エリプソメーターで測定される。 The thickness of the first high refractive index layer is preferably in the range of 15 to 150 nm, more preferably 20 to 80 nm. When the thickness of the first high refractive index layer is 15 nm or more, the light transmittance of the conductive region of the transparent conductor is sufficiently adjusted by the first high refractive index layer. On the other hand, if the thickness of the first high refractive index layer is 150 nm or less, the light transmittance of the region including the first high refractive index layer is unlikely to decrease. The thickness of the first high refractive index layer is measured with an ellipsometer.
 第1高屈折率層は、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法及び熱CVD法等の一般的な気相成膜法で形成された層でありうる。第1高屈折率層の屈折率(密度)が高まるとの観点から、第1高屈折率層は、電子ビーム蒸着法又はスパッタ法で形成された層であることが好ましい。電子ビーム蒸着法の場合は膜密度を高めるため、イオンアシスト法(Ion Assisted Deposition:IAD)などによるアシストがあることが望ましい。 The first high refractive index layer may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, and a thermal CVD method. From the viewpoint of increasing the refractive index (density) of the first high refractive index layer, the first high refractive index layer is preferably a layer formed by electron beam evaporation or sputtering. In the case of the electron beam evaporation method, in order to increase the film density, it is desirable that there is an assist by an ion assist method (ION Assisted Deposition: IAD).
 また、第1高屈折率層が所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。第1高屈折率層は、例えば、所望のパターンを有するマスク等を被形成面に配置して、気相成膜法でパターン状に形成された層であってもよく、公知のエッチング法によってパターニングされた層であってもよい。 Further, when the first high refractive index layer is a layer patterned into a desired shape, the patterning method is not particularly limited. The first high refractive index layer may be, for example, a layer formed in a pattern by a vapor deposition method by arranging a mask having a desired pattern on the surface to be formed, by a known etching method. It may be a patterned layer.
 〔第1硫化防止層〕
 第1高屈折率層にZnSが含まれる場合、つまり第1高屈折率層が硫化亜鉛含有層である場合、第1高屈折率層と導電層との間に第1硫化防止層が設けられることが好ましい。第1硫化防止層は、透明導電体の絶縁領域にも形成されていてもよいが、導通領域及び絶縁領域からなるパターンを視認され難くするとの観点から、導通領域のみに形成されていることが好ましい。
[First sulfurization prevention layer]
When the first high refractive index layer contains ZnS, that is, when the first high refractive index layer is a zinc sulfide-containing layer, the first antisulfurization layer is provided between the first high refractive index layer and the conductive layer. It is preferable. The first anti-sulfurization layer may be formed also in the insulating region of the transparent conductor, but from the viewpoint of making it difficult to visually recognize the pattern made of the conductive region and the insulating region, it may be formed only in the conductive region. preferable.
 当該第1硫化防止層は、金属酸化物、金属窒化物、金属フッ化物等、又はZnを含む層でありうる。第1硫化防止層には、これらが一種のみ含まれてもよく、二種以上含まれてもよい。ただし、第1高屈折率層と、第1硫化防止層と、導電層とが連続的に形成される場合には、金属酸化物が硫黄と反応可能、又は硫黄を吸着可能な化合物であることが好ましい。金属酸化物が、硫黄と反応する化合物である場合、金属酸化物と硫黄との反応物は、可視光の透過性が高いことが好ましい。 The first sulfidation preventing layer may be a metal oxide, metal nitride, metal fluoride, or the like, or a layer containing Zn. The first sulfidation preventing layer may contain only one kind or two or more kinds. However, in the case where the first high refractive index layer, the first antisulfurization layer, and the conductive layer are continuously formed, the metal oxide must be a compound capable of reacting with sulfur or adsorbing sulfur. Is preferred. In the case where the metal oxide is a compound that reacts with sulfur, the reaction product of the metal oxide and sulfur preferably has high visible light permeability.
 金属酸化物の例には、TiO、ITO、ZnO、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO、AZO、GZO、ATO、ICO、Bi、a-GIO、Ga、GeO、SiO、Al、HfO、SiO、MgO、Y、WO3、IGZO等が含まれる。 Examples of metal oxides include TiO 2 , ITO, ZnO, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2. , La 2 Ti 2 O 7 , IZO, AZO, GZO, ATO, ICO, Bi 2 O 3 , a-GIO, Ga 2 O 3 , GeO 2 , SiO 2 , Al 2 O 3 , HfO 2 , SiO, MgO, Y 2 O 3 , WO 3, IGZO and the like are included.
 金属フッ化物の例には、LaF、BaF、NaAl14、NaAlF、AlF、MgF、CaF、BaF、CeF、NdF、YF等が含まれる。 Examples of metal fluorides include LaF 3 , BaF 2 , Na 5 Al 3 F 14 , Na 3 AlF 6 , AlF 3 , MgF 2 , CaF 2 , BaF 2 , CeF 3 , NdF 3 , YF 3 and the like. .
 金属窒化物の例には、Si、AlN等が含まれる。 Examples of the metal nitride include Si 3 N 4 , AlN, and the like.
 上記の化合物を用いることができるが、十分な硫化防止機能、耐久性を持たせるために、特にZnO、GZO、IGZOを用いることが好ましい。 Although the above compounds can be used, it is particularly preferable to use ZnO, GZO, or IGZO in order to provide a sufficient antisulfurization function and durability.
 ここで、第1硫化防止層の厚さは、導電層の形成時の衝撃から、第1高屈折率層の表面を保護可能な厚さであることが好ましい。一方で、第1高屈折率層に含まれ得るZnSは、導電層に含まれる金属との親和性が高い。そのため、第1硫化防止層の厚さが非常に薄く、第1高屈折率層の一部が僅かに露出していると、当該露出部分を中心に導電層が成長し、導電層が緻密になりやすい。つまり、第1硫化防止層は比較的薄いことが好ましく、0.1~10nmであることが好ましく、より好ましくは0.5~5nmであり、さらに好ましくは1~3nmである。第1硫化防止層の厚さは、エリプソメーターで測定される。 Here, the thickness of the first antisulfurization layer is preferably a thickness capable of protecting the surface of the first high refractive index layer from impact during formation of the conductive layer. On the other hand, ZnS that can be contained in the first high refractive index layer has high affinity with the metal contained in the conductive layer. Therefore, if the thickness of the first antisulfurization layer is very thin and a part of the first high refractive index layer is slightly exposed, the conductive layer grows around the exposed portion, and the conductive layer becomes dense. Prone. That is, the first antisulfurization layer is preferably relatively thin, preferably 0.1 to 10 nm, more preferably 0.5 to 5 nm, and further preferably 1 to 3 nm. The thickness of the first antisulfurization layer is measured with an ellipsometer.
 第1硫化防止層は、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で形成された層でありうる。 The first sulfidation preventing layer may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like.
 第1硫化防止層が、所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。第1硫化防止層は、例えば、所望のパターンを有するマスク等を被形成面に配置して、気相成膜法でパターン状に形成された層であってもよく、公知のエッチング法によってパターニングされた層であってもよい。 When the first antisulfurization layer is a layer patterned into a desired shape, the patterning method is not particularly limited. The first antisulfurization layer may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the surface to be formed, and patterned by a known etching method. It may be a layer formed.
 〔導電層〕
 導電層は、透明導電体において電気を導通させるための層である。本発明に係る透明導電体に設けられる導電層では、導電層が基板の全面に積層されていてもよく、図3に示すように、目的とするデバイスの用途に合わせて所望の形状にパターニングされていてもよい。本発明に係る透明導電体において、導電層が積層されている領域が、電気が導通する領域(以下、「導通領域」とも称する。)である。一方、導電層が含まれない領域が絶縁領域である。
[Conductive layer]
The conductive layer is a layer for conducting electricity in the transparent conductor. In the conductive layer provided in the transparent conductor according to the present invention, the conductive layer may be laminated on the entire surface of the substrate, and as shown in FIG. 3, it is patterned into a desired shape according to the intended device application. It may be. In the transparent conductor according to the present invention, the region where the conductive layer is laminated is a region where electricity is conducted (hereinafter also referred to as “conduction region”). On the other hand, a region not including the conductive layer is an insulating region.
 導通領域及び絶縁領域からなるパターンは、透明導電体の用途に応じて、適宜選択される。例えば透明導電体が静電方式のタッチパネルに適用される場合には、複数の導通領域と、これを区切るライン状の絶縁領域とを含むパターン等でありうる。 The pattern composed of the conductive region and the insulating region is appropriately selected according to the use of the transparent conductor. For example, when a transparent conductor is applied to an electrostatic touch panel, it may be a pattern including a plurality of conductive regions and line-shaped insulating regions that divide the conductive regions.
 導電層に含まれる金属は、導電性の高い金属であれば特に制限されず、例えば、銀、銅、金、白金、チタン、クロム等でありうる。導電層には、これらの金属が一種のみ含まれてもよく、二種以上含まれてもよい。導電性が高いとの観点から、導電層は銀、又は銀が90原子%以上含まれる合金からなることが好ましい。 The metal contained in the conductive layer is not particularly limited as long as it is a highly conductive metal, and can be, for example, silver, copper, gold, platinum, titanium, chromium, or the like. The conductive layer may contain only one kind of these metals or two or more kinds. From the viewpoint of high conductivity, the conductive layer is preferably made of silver or an alloy containing 90 atomic% or more of silver.
 銀と組み合わされる金属としては、亜鉛、金、銅、パラジウム、アルミニウム、マンガン、ビスマス、ネオジム、モリブデン等でありうる。例えば銀と亜鉛とが組み合わされると、導電層の耐硫化性が高まる。銀と金とが組み合わされると、耐塩(NaCl)性が高まる。さらに銀と銅とが組み合わされると、耐酸化性が高まる。また、パラジウム、銅を含有することにより耐湿性が向上する。 The metal combined with silver can be zinc, gold, copper, palladium, aluminum, manganese, bismuth, neodymium, molybdenum or the like. For example, when silver and zinc are combined, the sulfidation resistance of the conductive layer is increased. When silver and gold are combined, salt resistance (NaCl) resistance increases. Furthermore, when silver and copper are combined, the oxidation resistance increases. Moreover, moisture resistance improves by containing palladium and copper.
 導電層のプラズモン吸収率は、波長400~800nmにわたって(全範囲で)10%以下であることが好ましく、7%以下であることがより好ましく、さらに好ましくは5%以下である。波長400~800nmの一部にプラズモン吸収率が大きい領域があると、透明導電体の導通領域aの透過光が着色しやすくなる。 The plasmon absorption rate of the conductive layer is preferably 10% or less over the wavelength range of 400 to 800 nm (over the entire range), more preferably 7% or less, and even more preferably 5% or less. If there is a region having a large plasmon absorption rate in a part of the wavelength of 400 to 800 nm, the transmitted light of the conductive region a of the transparent conductor is easily colored.
 導電層の波長400~800nmにおけるプラズモン吸収率は、以下の手順で測定される。 The plasmon absorption rate at a wavelength of 400 to 800 nm of the conductive layer is measured by the following procedure.
 (i)ガラス基板上に、白金パラジウムをマグネトロンスパッタ装置にて0.1nm成膜する。白金パラジウムの平均厚さは、スパッタ装置のメーカー公称値の成膜速度等から算出する。その後、白金パラジウムが付着した基板上にスパッタ法にて金属からなる膜を20nm形成する。 (I) A platinum palladium film is formed to a thickness of 0.1 nm on a glass substrate using a magnetron sputtering apparatus. The average thickness of platinum-palladium is calculated from the film formation rate of the manufacturer's nominal value of the sputtering apparatus. After that, a 20 nm thick metal film is formed by sputtering on the substrate to which platinum palladium is attached.
 (ii)そして、得られた金属膜の表面の法線に対して、5°傾けた角度から測定光を入射させ、金属膜の光透過率及び光反射率を測定する。そして各波長における光透過率及び光反射率から、光吸収率=100-(光透過率+光反射率)を算出し、これをリファレンスデータとする。光透過率及び光反射率は、分光光度計で測定する。 (Ii) Then, measurement light is incident from an angle inclined by 5 ° with respect to the normal of the surface of the obtained metal film, and the light transmittance and light reflectance of the metal film are measured. Then, light absorptivity = 100− (light transmittance + light reflectance) is calculated from the light transmittance and light reflectance at each wavelength, and this is used as reference data. The light transmittance and light reflectance are measured with a spectrophotometer.
 (iii)続いて、測定対象の導電層を同様のガラス基板上に形成する。そして、当該導電層について、同様に光透過率及び光反射率を測定する。得られた光吸収率から上記リファレンスデータを差し引き、算出された値を、プラズモン吸収率とする。 (Iii) Subsequently, a conductive layer to be measured is formed on the same glass substrate. And about the said conductive layer, light transmittance and light reflectance are measured similarly. The reference data is subtracted from the obtained light absorption rate, and the calculated value is defined as the plasmon absorption rate.
 導電層の厚さは10nm以下が好ましく、より好ましくは3~9nmであり、さらに好ましくは5~8nmである。本発明に係る透明導電体では、導電層の厚さが10nm以下であると、導電層に金属本来の反射が生じ難い。さらに、導電層の厚さが10nm以下であると、第1高屈折率層及び第2高屈折率層によって、透明導電体の光透過性が調整されやすく、導通領域表面での光の反射が抑制されやすい。導電層の厚さは、エリプソメーターで測定される。 The thickness of the conductive layer is preferably 10 nm or less, more preferably 3 to 9 nm, and further preferably 5 to 8 nm. In the transparent conductor according to the present invention, when the thickness of the conductive layer is 10 nm or less, the original reflection of metal hardly occurs in the conductive layer. Furthermore, when the thickness of the conductive layer is 10 nm or less, the light transmittance of the transparent conductor is easily adjusted by the first high refractive index layer and the second high refractive index layer, and light reflection on the surface of the conductive region is prevented. It is easy to be suppressed. The thickness of the conductive layer is measured with an ellipsometer.
 導電層は、いずれの形成方法で形成された層でありうるが、導電層の平均透過率を変えるためには、スパッタ法で形成された層、又は後述する下地層上に形成された層であることが好ましい。 The conductive layer may be a layer formed by any formation method, but in order to change the average transmittance of the conductive layer, a layer formed by a sputtering method or a layer formed on an underlayer described later is used. Preferably there is.
 スパッタ法では、形成時に材料が被形成体に高速で衝突するため、緻密かつ平滑な層が得られやすく、導電層の光透過性が高まりやすい。また、導電層がスパッタ法により形成された層であると、導電層が高温かつ低湿度な環境においても腐食し難くなる。スパッタ法の種類は特に制限されず、イオンビームスパッタ法や、マグネトロンスパッタ法、反応性スパッタ法、2極スパッタ法、バイアススパッタ法、対向スパッタ法等でありうる。導電層は、特に対向スパッタ法で形成された層であることが好ましい。すなわち、導電層が、対向スパッタ法で形成された層であると、導電層が緻密になり、表面平滑性が高まりやすい。その結果、導電層の表面電気抵抗がより低くなり、光の透過率も高まりやすい。 In the sputtering method, since a material collides with an object to be formed at a high speed during formation, a dense and smooth layer can be easily obtained, and the light transmittance of the conductive layer is likely to be increased. Further, when the conductive layer is a layer formed by sputtering, the conductive layer is unlikely to corrode even in an environment of high temperature and low humidity. The type of the sputtering method is not particularly limited, and may be an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, a bias sputtering method, a counter sputtering method, or the like. The conductive layer is particularly preferably a layer formed by a counter sputtering method. That is, when the conductive layer is a layer formed by a counter sputtering method, the conductive layer becomes dense and the surface smoothness is likely to increase. As a result, the surface electrical resistance of the conductive layer becomes lower and the light transmittance is likely to increase.
 一方、導電層が後述する下地層上に形成された層である場合、導電層の形成時に下地層が成長核となるため、導電層が平滑な層になりやすい。その結果、導電層が薄くとも、プラズモン吸収が生じ難くなる。この場合、導電層の形成方法は特に制限されず、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法でありうる。 On the other hand, when the conductive layer is a layer formed on an underlayer described later, the underlayer becomes a growth nucleus when the conductive layer is formed, so that the conductive layer tends to be a smooth layer. As a result, even if the conductive layer is thin, plasmon absorption hardly occurs. In this case, the method for forming the conductive layer is not particularly limited, and may be a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or a thermal CVD method.
 また、導電層が所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。導電層は、例えば、所望のパターンを有するマスクを配置して形成された層であってもよく、公知のエッチング法によってパターニングされた層であってもよい。 Further, when the conductive layer is a layer patterned into a desired shape, the patterning method is not particularly limited. For example, the conductive layer may be a layer formed by arranging a mask having a desired pattern, or may be a layer patterned by a known etching method.
 〔第2硫化防止層〕
 後述する第2高屈折率層が硫化亜鉛含有層である場合、導電層と第2高屈折率層との間に第2硫化防止層が形成されることが好ましい。第2硫化防止層は、透明導電体の絶縁領域にも形成されていてもよいが、導通領域及び絶縁領域からなるパターンを視認され難くするとの観点から、導通領域のみに形成されていることが好ましい。
[Second anti-sulfurization layer]
When the second high refractive index layer to be described later is a zinc sulfide-containing layer, it is preferable that a second antisulfurization layer is formed between the conductive layer and the second high refractive index layer. The second antisulfurization layer may be formed also in the insulating region of the transparent conductor, but from the viewpoint of making it difficult to visually recognize the pattern composed of the conductive region and the insulating region, it may be formed only in the conductive region. preferable.
 当該第2硫化防止層は、金属酸化物、金属窒化物、金属フッ化物等、又はZnを含む層である。第2硫化防止層には、これらが一種のみ含まれてもよく、二種以上が含まれてもよい。金属酸化物、金属窒化物、金属フッ化物は、第1高屈折率層に含まれる金属酸化物、金属窒化物、金属フッ化物と同様でありうる。 The second antisulfurization layer is a layer containing metal oxide, metal nitride, metal fluoride, or the like, or Zn. Only one of these may be included in the second antisulfurization layer, or two or more thereof may be included. The metal oxide, metal nitride, and metal fluoride may be the same as the metal oxide, metal nitride, and metal fluoride contained in the first high refractive index layer.
 一方、第2硫化防止層の厚さは、第2高屈折率層の形成時の衝撃から、導電層の表面を保護可能な厚さであることが好ましい。一方で、導電層に含まれる金属と、第2高屈折率層に含まれるZnSは、親和性が高い。そのため、第2硫化防止層の厚さが非常に薄く、導電層の一部が僅かに露出していると、導電層や第2硫化防止層と第2高屈折率層との密着性が高まりやすい。したがって、第2硫化防止層bの具体的な厚さは0.1~10nmであることが好ましく、より好ましくは0.5~5nmであり、さらに好ましくは1~3nmである。第2硫化防止層の厚さは、エリプソメーターで測定される。 On the other hand, the thickness of the second antisulfurization layer is preferably a thickness capable of protecting the surface of the conductive layer from an impact during the formation of the second high refractive index layer. On the other hand, the metal contained in the conductive layer and the ZnS contained in the second high refractive index layer have high affinity. Therefore, if the thickness of the second antisulfurization layer is very thin and a part of the conductive layer is slightly exposed, the adhesion between the conductive layer or the second antisulfurization layer and the second high refractive index layer is increased. Cheap. Accordingly, the specific thickness of the second antisulfurization layer b is preferably 0.1 to 10 nm, more preferably 0.5 to 5 nm, and further preferably 1 to 3 nm. The thickness of the second antisulfurization layer is measured with an ellipsometer.
 第2硫化防止層は、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で形成された層でありうる。 The second sulfidation preventing layer may be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, or the like.
 第2硫化防止層が、所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。第2硫化防止層は、例えば、所望のパターンを有するマスク等を被形成面に配置して、気相成膜法でパターン状に形成された層であってもよく、公知のエッチング法によってパターニングされた層であってもよい。 When the second antisulfurization layer is a layer patterned into a desired shape, the patterning method is not particularly limited. The second antisulfurization layer may be a layer formed in a pattern by a vapor deposition method, for example, by placing a mask having a desired pattern on the surface to be formed, and patterned by a known etching method. It may be a layer formed.
 なお、第1高屈折率層及び第2高屈折率層の両方が硫化亜鉛含有層である場合、いずれか一方の第1高屈折率層又は第2高屈折率層と導電層との間に、硫化防止層が設けられればよいが、透明導電体の光透過性を十分に高めるとの観点から、各第1高屈折率層及び第2高屈折率層と導電層との間に、それぞれ硫化防止層が設けられることが好ましい。つまり、第1高屈折率層と導電層との間、及び導電層と第2高屈折率層との間に、それぞれ、第1硫化防止層と第2硫化防止層とが設けられることが好ましい。 In addition, when both the first high refractive index layer and the second high refractive index layer are zinc sulfide-containing layers, the gap is between the first high refractive index layer or the second high refractive index layer and the conductive layer. In addition, an antisulfurization layer may be provided, but from the viewpoint of sufficiently increasing the light transmittance of the transparent conductor, each of the first high refractive index layer and the second high refractive index layer and the conductive layer, It is preferable to provide a sulfidation prevention layer. That is, it is preferable that the first sulfidation prevention layer and the second sulfidation prevention layer are provided between the first high refractive index layer and the conductive layer and between the conductive layer and the second high refractive index layer, respectively. .
 〔絶縁層〕
 絶縁層は第2高屈折率層であることが、光透過率を高める上で好ましい。しかし導電層にZnS含有層等の第2高屈折率層を積層する構成は、高屈折率層が絶縁体又は高抵抗体であることが多く、接続配線を形成する際導通が取れないといった問題があった。本発明はZnSのような絶縁性の高屈折率層を有していても、導電層と接続配線との優れた導通性を得ることができる。
[Insulating layer]
The insulating layer is preferably a second high refractive index layer in order to increase the light transmittance. However, the configuration in which the second high-refractive index layer such as a ZnS-containing layer is laminated on the conductive layer is often a problem that the high-refractive index layer is often an insulator or a high-resistance material, and cannot be electrically connected when forming the connection wiring. was there. Even if the present invention has an insulating high refractive index layer such as ZnS, excellent electrical conductivity between the conductive layer and the connection wiring can be obtained.
 ここで、本発明において絶縁層とは、導電層の10倍を超える抵抗値を有する層をいう。特に10-4Ω/□を超える抵抗を有する層に好ましく適用できる。 Here, in the present invention, an insulating layer refers to a layer having a resistance value exceeding 10 times that of a conductive layer. In particular, it can be preferably applied to a layer having a resistance exceeding 10 −4 Ω / □.
 第2高屈折率層は、透明導電体の導通領域、つまり導電層が形成されている領域の光透過性を調整するための層であり、少なくとも透明導電体の導通領域に形成される。したがって、第2高屈折率層は、透明導電体の絶縁領域に形成されてもよいが、導通領域及び絶縁領域からなるパターンを視認され難くするとの観点から、導通領域のみに形成されていることが好ましい。 The second high refractive index layer is a layer for adjusting the light transmittance of the conductive region of the transparent conductor, that is, the region where the conductive layer is formed, and is formed at least in the conductive region of the transparent conductor. Therefore, the second high refractive index layer may be formed in the insulating region of the transparent conductor, but it is formed only in the conductive region from the viewpoint of making it difficult to visually recognize the pattern including the conductive region and the insulating region. Is preferred.
 第2高屈折率層には透明基板の屈折率より高い屈折率を有する誘電性材料又は酸化物半導体材料が含まれることが、光透過性の観点から好ましい。当該誘電性材料又は酸化物半導体材料の波長570nmの光の屈折率は、透明基板1の波長570nmの光の屈折率より0.1~1.1大きいことが好ましく、0.4~1.0大きいことがより好ましい。一方、第2高屈折率層に含まれる誘電性材料又は酸化物半導体材料の波長570nmの光の具体的な屈折率は1.5より大きいことが好ましく、1.7~2.5であることがより好ましく、さらに好ましくは1.8~2.5である。誘電性材料又は酸化物半導体材料の屈折率が1.5より大きいと、第2高屈折率層によって、透明導電体の導通領域の光透過性が十分に調整される。なお、第2高屈折率層の屈折率は、第2高屈折率層に含まれる材料の屈折率や、第2高屈折率層に含まれる材料の密度で調整される。 The second high refractive index layer preferably contains a dielectric material or an oxide semiconductor material having a refractive index higher than that of the transparent substrate from the viewpoint of light transmittance. The refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 larger than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1, and is preferably 0.4 to 1.0. Larger is more preferable. On the other hand, the specific refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the second high refractive index layer is preferably larger than 1.5, and is preferably 1.7 to 2.5. Is more preferably 1.8 to 2.5. When the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the light transmittance of the conductive region of the transparent conductor is sufficiently adjusted by the second high refractive index layer. The refractive index of the second high refractive index layer is adjusted by the refractive index of the material included in the second high refractive index layer and the density of the material included in the second high refractive index layer.
 第2高屈折率層に含まれる誘電性材料又は酸化物半導体材料は、絶縁性の材料であり、金属酸化物でありうる。当該金属酸化物は、第1高屈折率層に含まれる金属酸化物と同様でありうる。第2高屈折率層には、当該金属酸化物が一種のみ含まれてもよく、二種以上が含まれてもよい。 The dielectric material or oxide semiconductor material included in the second high refractive index layer is an insulating material and can be a metal oxide. The metal oxide may be the same as the metal oxide included in the first high refractive index layer. The second high refractive index layer may contain only one kind of the metal oxide, or two or more kinds.
 また、第2高屈折率層に含まれる誘電性材料又は酸化物半導体材料は、ZnSでもありうる。第2高屈折率層にZnSが含まれると、第2高屈折率層側から水分が透過し難くなり耐湿性が向上し、導電層の腐食が抑制される。耐湿性向上の観点からは、第2高屈折率層及び第1高屈折率層の両方にZnSが含まれることが好ましい。すなわち導電層が、ZnSを含有する二つの絶縁層で挟持されていることが好ましい。第2高屈折率層には、ZnSのみが含まれてもよく、ZnSとともに他の材料が含まれてもよい。ZnSとともに含まれる材料は、上記誘電性材料又は酸化物半導体材料でありうる金属酸化物、若しくはSiOであり、特に好ましくはSiOである。ZnSとともにSiOが含まれると、第2高屈折率層が非晶質になりやすく、透明導電体のフレキシブル性が高まりやすい。 In addition, the dielectric material or the oxide semiconductor material included in the second high refractive index layer may be ZnS. When ZnS is contained in the second high refractive index layer, moisture hardly penetrates from the second high refractive index layer side, moisture resistance is improved, and corrosion of the conductive layer is suppressed. From the viewpoint of improving moisture resistance, it is preferable that both the second high refractive index layer and the first high refractive index layer contain ZnS. That is, the conductive layer is preferably sandwiched between two insulating layers containing ZnS. The second high refractive index layer may contain only ZnS, and may contain other materials together with ZnS. The material included together with ZnS is a metal oxide that can be the dielectric material or the oxide semiconductor material, or SiO 2 , and particularly preferably SiO 2 . When SiO 2 is contained together with ZnS, the second high refractive index layer is likely to be amorphous, and the flexibility of the transparent conductor is likely to be enhanced.
 第2高屈折率層にZnSとともに他の材料が含まれる場合、ZnSの量は、第2高屈折率層を構成する成分の総モル数に対して、0.1質量%以上95質量%以下であることが好ましく、50質量%以上90質量%以下であることがより好ましく、さらに好ましくは60質量%以上85質量%以下である。ZnSの比率が高いとスパッタ速度が速くなり、第2高屈折率層の形成速度が早くなる。一方、ZnS以外の成分が多くなると、第2高屈折率層の非晶質性が高まり、第2高屈折率層の割れが抑制される。 When the second high refractive index layer contains other materials together with ZnS, the amount of ZnS is 0.1% by mass or more and 95% by mass or less with respect to the total number of moles of components constituting the second high refractive index layer. It is preferable that it is 50 mass% or more and 90 mass% or less, More preferably, it is 60 mass% or more and 85 mass% or less. When the ratio of ZnS is high, the sputtering rate is increased and the formation rate of the second high refractive index layer is increased. On the other hand, when the amount of components other than ZnS increases, the amorphousness of the second high refractive index layer increases, and cracking of the second high refractive index layer is suppressed.
 第2高屈折率層の厚さは、好ましくは15~150nmであり、さらに好ましくは20~80nmである。第2高屈折率層の厚さが15nm以上であると、第2高屈折率層によって、透明導電体の導通領域の光透過性が十分に調整される。一方、第2高屈折率層の厚さが150nm以下であれば、第2高屈折率層が含まれる領域の光透過性が低下し難い。第2高屈折率層の厚さは、エリプソメーターで測定される。 The thickness of the second high refractive index layer is preferably 15 to 150 nm, and more preferably 20 to 80 nm. When the thickness of the second high refractive index layer is 15 nm or more, the light transmittance of the conductive region of the transparent conductor is sufficiently adjusted by the second high refractive index layer. On the other hand, if the thickness of the second high refractive index layer is 150 nm or less, the light transmittance of the region including the second high refractive index layer is unlikely to decrease. The thickness of the second high refractive index layer is measured with an ellipsometer.
 第2高屈折率層の形成方法は特に制限されず、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で形成された層であり得る。第2高屈折率層の透湿性が低くなるとの観点から、第2高屈折率層はスパッタ法で形成された層であることが特に好ましい。 The method for forming the second high refractive index layer is not particularly limited, and is a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or a thermal CVD method. possible. From the viewpoint of lowering the moisture permeability of the second high refractive index layer, the second high refractive index layer is particularly preferably a layer formed by a sputtering method.
 また、第2高屈折率層が所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。第2高屈折率層は、例えば、所望のパターンを有するマスク等を被形成面に配置して、気相成膜法でパターン状に形成された層であってもよい。また、公知のエッチング法によってパターニングされた層であってもよい。 Further, when the second high refractive index layer is a layer patterned into a desired shape, the patterning method is not particularly limited. The second high refractive index layer may be, for example, a layer formed in a pattern by a vapor deposition method by arranging a mask having a desired pattern on the surface to be formed. Moreover, the layer patterned by the well-known etching method may be sufficient.
 〔透明導電体のその他の構成〕
 透明導電体に設けられるその他の構成について説明する。
[Other configurations of transparent conductor]
The other structure provided in a transparent conductor is demonstrated.
 〔下地層〕
 透明導電体には、導電層の形成時に成長核となる下地層が設けられてもよい。下地層は、導電層より基板側、かつ導電層に隣接して形成された層、つまり、第1高屈折率層と導電層との間、又は第1硫化防止層と導電層との間に形成された層でありうる。下地層は、少なくとも透明導電体の導通領域に形成されていることが好ましく、透明導電体の絶縁領域に形成されていてもよい。
[Underlayer]
The transparent conductor may be provided with an underlayer that becomes a growth nucleus when the conductive layer is formed. The underlayer is a layer formed on the substrate side of the conductive layer and adjacent to the conductive layer, that is, between the first high refractive index layer and the conductive layer, or between the first antisulfurization layer and the conductive layer. It may be a formed layer. The underlayer is preferably formed at least in the conductive region of the transparent conductor, and may be formed in the insulating region of the transparent conductor.
 透明導電体下地層が設けられると、導電層の厚さが薄くとも、導電層の表面の平滑性が高まる。その理由は以下のとおりである。 When the transparent conductor base layer is provided, the smoothness of the surface of the conductive layer increases even if the thickness of the conductive layer is thin. The reason is as follows.
 一般的な気相成膜法で導電層の材料を、例えば第1高屈折率層上に堆積させると、形成初期には、第1高屈折率層上に付着した原子がマイグレート(移動)し、原子が寄り集まって塊(島状構造)を形成する。そして、この塊にまとわりつきながら膜が成長する。そのため、形成初期の層では、塊同士の間に隙間があり、導通しない。この状態からさらに塊が成長すると、塊同士の一部がつながり、辛うじて導通する。しかし、塊同士の間にいまだ隙間があるため、プラズモン吸収が生じる。そして、さらに形成が進むと、塊同士が完全につながって、プラズモン吸収が少なくなる。しかしその一方で、金属本来の反射が生じ、層の光透過性が低下する。 When the material of the conductive layer is deposited, for example, on the first high refractive index layer by a general vapor deposition method, atoms attached on the first high refractive index layer migrate (move) at the initial stage of formation. Then, atoms gather and form a lump (island structure). And a film grows clinging to this lump. Therefore, in the layer at the initial stage of formation, there is a gap between the lumps and it does not conduct. If a lump further grows from this state, a part of the lump is connected and barely conducted. However, since there is still a gap between the lumps, plasmon absorption occurs. As the formation proceeds further, the lumps are completely connected and plasmon absorption is reduced. However, on the other hand, the intrinsic reflection of the metal occurs and the light transmittance of the layer is reduced.
 これに対し、第1高屈折率層上をマイグレートし難い金属からなる下地層が形成されていると、当該下地層を成長核として、導電層が成長する。つまり、導電層の材料がマイグレートし難くなり、前述の島状構造を形成せずに膜が成長する。その結果、厚さが薄くとも平滑な導電層が得られやすくなる。 On the other hand, when a base layer made of a metal that is difficult to migrate is formed on the first high refractive index layer, the conductive layer grows with the base layer as a growth nucleus. That is, the material of the conductive layer is difficult to migrate, and the film grows without forming the aforementioned island structure. As a result, a smooth conductive layer can be easily obtained even if the thickness is small.
 ここで、下地層には、パラジウム、モリブデン、亜鉛、ゲルマニウム、ニオブ又はインジウム、あるいはこれらの金属と他の金属との合金や、これらの金属の酸化物や硫化物(例えばZnS)が含まれることが好ましい。下地層には、これらが一種のみ含まれてもよく、二種以上が含まれてもよい。 Here, the base layer contains palladium, molybdenum, zinc, germanium, niobium or indium, an alloy of these metals with another metal, an oxide or a sulfide of these metals (for example, ZnS). Is preferred. The underlayer may contain only one kind, or two or more kinds.
 下地層に含まれるパラジウム、モリブデン、亜鉛、ゲルマニウム、ニオブ又はインジウムの量は、20質量%以上であることが好ましく、より好ましくは40質量%以上であり、さらに好ましくは60質量%以上である。下地層に上記金属が20質量%以上含まれると、下地層と導電層との親和性が高まり、下地層と導電層との密着性が高まりやすい。下地層にはパラジウム又はモリブデンが含まれることが特に好ましい。 The amount of palladium, molybdenum, zinc, germanium, niobium or indium contained in the underlayer is preferably 20% by mass or more, more preferably 40% by mass or more, and further preferably 60% by mass or more. If the base layer contains 20% by mass or more of the metal, the affinity between the base layer and the conductive layer increases, and the adhesion between the base layer and the conductive layer tends to increase. It is particularly preferable that the underlayer contains palladium or molybdenum.
 一方、パラジウム、モリブデン、亜鉛、ゲルマニウム、ニオブ又はインジウムと合金を形成する金属は特に制限されないが、例えばパラジウム以外の白金族、金、コバルト、ニッケル、チタン、アルミニウム、クロム等でありうる。 On the other hand, the metal that forms an alloy with palladium, molybdenum, zinc, germanium, niobium, or indium is not particularly limited, but may be a platinum group other than palladium, gold, cobalt, nickel, titanium, aluminum, chromium, or the like.
 下地層の厚さは、3nm以下が好ましく、より好ましくは0.5nm以下であり、さらに好ましくは単原子膜である。下地層は、基板上に金属原子が互いに離間して付着している膜でもありうる。下地層の付着量が3nm以下であれば、下地層が透明導電体の光透過性や光学アドミッタンスに影響を及ぼし難い。下地層の有無はICP-MS法で確認される。また、下地層の厚さは、形成速度と形成時間との積から算出される。 The thickness of the underlayer is preferably 3 nm or less, more preferably 0.5 nm or less, and even more preferably a monoatomic film. The underlayer can also be a film in which metal atoms are adhered to each other on the substrate. When the adhesion amount of the underlayer is 3 nm or less, the underlayer hardly affects the light transmittance and optical admittance of the transparent conductor. The presence or absence of the underlayer is confirmed by the ICP-MS method. Further, the thickness of the underlayer is calculated from the product of the formation speed and the formation time.
 下地層は、スパッタ法又は蒸着法で形成された層でありうる。スパッタ法の例には、イオンビームスパッタ法や、マグネトロンスパッタ法、反応性スパッタ法、2極スパッタ法、バイアススパッタ法等が含まれる。下地層形成時のスパッタ時間は、所望の下地層の平均厚さ、及び形成速度に合わせて適宜選択される。スパッタ形成速度は、好ましくは0.1~15Å/秒であり、より好ましくは0.1~7Å/秒である。 The underlayer can be a layer formed by sputtering or vapor deposition. Examples of the sputtering method include an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, and a bias sputtering method. The sputtering time for forming the underlayer is appropriately selected according to the desired average thickness and formation rate of the underlayer. The sputter formation rate is preferably 0.1 to 15 Å / second, more preferably 0.1 to 7 Å / second.
 一方、蒸着法の例には、真空蒸着法、電子線蒸着法、イオンプレーティング法、イオンビーム蒸着法等が含まれる。蒸着時間は、所望の下地層の厚さ及び形成速度に合わせて適宜選択される。蒸着速度は、好ましくは0.1~15Å/秒であり、より好ましくは0.1~7Å/秒である。 On the other hand, examples of the vapor deposition method include vacuum vapor deposition method, electron beam vapor deposition method, ion plating method, ion beam vapor deposition method and the like. The deposition time is appropriately selected according to the desired thickness and formation rate of the underlayer. The deposition rate is preferably 0.1 to 15 Å / second, more preferably 0.1 to 7 Å / second.
 下地層が所望の形状にパターニングされた層である場合、パターニング方法は特に制限されない。下地層は、例えば、所望のパターンを有するマスク等を被形成面に配置して、気相成膜法でパターン状に形成された層であってもよく、公知のエッチング法によってパターニングされた層であってもよい。 When the ground layer is a layer patterned into a desired shape, the patterning method is not particularly limited. The underlayer may be, for example, a layer formed in a pattern by a vapor deposition method by placing a mask having a desired pattern on the surface to be formed, or a layer patterned by a known etching method It may be.
 〔基板〕
 透明導電体が有する基板は、各種表示デバイスの透明基板と同様でありうる。基板は、ガラス基板や、セルロースエステル樹脂(例えば、トリアセチルセルロース、ジアセチルセルロース、アセチルプロピオニルセルロース等)、ポリカーボネート樹脂(例えばパンライト、マルチロン(いずれも帝人社製))、シクロオレフィン樹脂(例えばゼオノア(日本ゼオン社製)、アートン(JSR社製)、アペル(三井化学社製))、アクリル樹脂(例えばポリメチルメタクリレート、「アクリライト(三菱レイヨン社製)、スミペックス(住友化学社製))、ポリイミド、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリエステル樹脂(例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート)、ポリエーテルスルホン、ABS/AS樹脂、MBS樹脂、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/EVOH(エチレンビニルアルコール樹脂)、スチレン系ブロックコポリマー樹脂等からなる透明樹脂フィルムでありうる。基板が透明樹脂フィルムである場合、当該フィルムには二種以上の樹脂が含まれてもよい。
〔substrate〕
The substrate which the transparent conductor has can be the same as the transparent substrate of various display devices. The substrate may be a glass substrate, a cellulose ester resin (for example, triacetyl cellulose, diacetyl cellulose, acetylpropionyl cellulose, etc.), a polycarbonate resin (for example, Panlite, Multilon (both manufactured by Teijin Limited)), a cycloolefin resin (for example, Zeonor ( Nippon Zeon Co., Ltd., Arton (manufactured by JSR), Appel (manufactured by Mitsui Chemicals), acrylic resin (eg, polymethyl methacrylate, "Acrylite (manufactured by Mitsubishi Rayon Co., Ltd.), Sumipex (manufactured by Sumitomo Chemical Co., Ltd.)), polyimide , Phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyester resin (eg, polyethylene terephthalate (PET), polyethylene naphthalate), polyether sulfone, ABS / AS resin, MBS resin, polystyrene It can be a transparent resin film made of methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), styrene block copolymer resin, etc. When the substrate is a transparent resin film, the film contains two or more kinds of resins. May be.
 透明性の観点から、基板はガラス基板、又はセルロースエステル樹脂、ポリカーボネート樹脂、ポリエステル樹脂(特にポリエチレンテレフタレート)、トリアセチルセルロース、シクロオレフィン樹脂、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリエーテルスルホン、ABS/AS樹脂、MBS樹脂、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/EVOH(エチレンビニルアルコール樹脂)、又はスチレン系ブロックコポリマー樹脂からなるフィルムであることが好ましい。 From the viewpoint of transparency, the substrate is a glass substrate, or cellulose ester resin, polycarbonate resin, polyester resin (especially polyethylene terephthalate), triacetyl cellulose, cycloolefin resin, phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyether. A film made of sulfone, ABS / AS resin, MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), or styrene block copolymer resin is preferable.
 基板は、可視光に対する透明性が高いことが好ましく、波長450~800nmの光の平均透過率が70%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることがさらに好ましい。基板の光の平均透過率が70%以上であると、透明導電体の光透過性が高まりやすい。また、基板の波長450~800nmの光の平均吸収率は10%以下であることが好ましく、より好ましくは5%以下、さらに好ましくは3%以下である。 The substrate preferably has high transparency to visible light, and the average transmittance of light having a wavelength of 450 to 800 nm is preferably 70% or more, more preferably 80% or more, and 85% or more. Is more preferable. When the average light transmittance of the substrate is 70% or more, the light transmittance of the transparent conductor is likely to increase. Further, the average absorptance of light having a wavelength of 450 to 800 nm of the substrate is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
 上記平均透過率は、基板の表面の法線に対して、5°傾けた角度から光を入射させて測定する。一方、平均吸収率は、平均透過率と同様の角度から光を入射させて、基板の平均反射率を測定し、平均吸収率=100-(平均透過率+平均反射率)として算出する。平均透過率及び平均反射率は分光光度計で測定される。 The average transmittance is measured by making light incident from an angle inclined by 5 ° with respect to the normal of the surface of the substrate. On the other hand, the average absorptance is calculated as average absorptance = 100− (average transmittance + average reflectance) by making light incident from the same angle as the average transmittance and measuring the average reflectance of the substrate. Average transmittance and average reflectance are measured with a spectrophotometer.
 基板の波長570nmの光の屈折率は1.40~1.95の範囲内であることが好ましく、より好ましくは1.45~1.75であり、さらに好ましくは1.45~1.70の範囲内である。基板の屈折率は、通常、基板の材質によって定まる。基板の屈折率は、エリプソメーターで測定される。 The refractive index of light having a wavelength of 570 nm of the substrate is preferably in the range of 1.40 to 1.95, more preferably 1.45 to 1.75, and still more preferably 1.45 to 1.70. Within range. The refractive index of the substrate is usually determined by the material of the substrate. The refractive index of the substrate is measured with an ellipsometer.
 基板1のヘイズ値は0.01~2.5%であることが好ましく、より好ましくは0.1~1.2%の範囲内である。基板のヘイズ値が2.5%以下であると、透明導電体のヘイズ値が抑制される。ヘイズ値は、ヘイズメーターで測定される。 The haze value of the substrate 1 is preferably 0.01 to 2.5%, more preferably 0.1 to 1.2%. When the haze value of the substrate is 2.5% or less, the haze value of the transparent conductor is suppressed. The haze value is measured with a haze meter.
 基板1の厚さは、1μm~20mmの範囲内であることが好ましく、より好ましくは10μm~2mmの範囲内である。基板の厚さが1μm以上であると、基板の強度が高まり、第1高屈折率層の作製時に割れたり、裂けたりし難くなる。一方、基板の厚さが20mm以下であれば、透明導電体のフレキシブル性が十分となる。さらに透明導電体を用いた機器の厚さを薄くできる。また、透明導電体を用いた機器を軽量化することもできる。 The thickness of the substrate 1 is preferably in the range of 1 μm to 20 mm, more preferably in the range of 10 μm to 2 mm. When the thickness of the substrate is 1 μm or more, the strength of the substrate is increased, and it is difficult to crack or tear the first high refractive index layer. On the other hand, if the thickness of the substrate is 20 mm or less, the flexibility of the transparent conductor is sufficient. Furthermore, the thickness of the apparatus using a transparent conductor can be reduced. Moreover, the apparatus using a transparent conductor can also be reduced in weight.
 〔透明導電体の物性〕
 本発明に係る透明導電体の波長450~800nmの光の平均透過率は、導通領域及び絶縁領域のいずれにおいても83%以上であることが好ましく、より好ましくは85%以上であり、さらに好ましくは88%以上である。上記波長範囲における平均透過率が83%以上であると、透明導電体を、可視光に対して高い透明性が要求される用途に適用することができる。
[Physical properties of transparent conductor]
The average transmittance of light with a wavelength of 450 to 800 nm of the transparent conductor according to the present invention is preferably 83% or more, more preferably 85% or more, and still more preferably in both the conduction region and the insulation region. It is 88% or more. When the average transmittance in the above wavelength range is 83% or more, the transparent conductor can be applied to applications requiring high transparency to visible light.
 一方、透明導電体の波長400~1000nmの光の平均透過率は、導通領域及び絶縁領域のいずれにおいても80%以上であることが好ましく、より好ましくは83%以上、さらに好ましくは85%以上である。波長400~1000nmの光の平均透過率が80%以上であると、広い波長範囲の光に対して透明性が要求される用途、例えば太陽電池にも透明導電体を適用することができる。 On the other hand, the average transmittance of light with a wavelength of 400 to 1000 nm of the transparent conductor is preferably 80% or more, more preferably 83% or more, and still more preferably 85% or more in both the conductive region and the insulating region. is there. When the average transmittance of light having a wavelength of 400 to 1000 nm is 80% or more, the transparent conductor can also be applied to applications requiring transparency with respect to light in a wide wavelength range, for example, solar cells.
 一方、透明導電体の波長450~800nmの光の平均吸収率は、導通領域及び絶縁領域のいずれにおいても10%以下であることが好ましく、より好ましくは8%以下であり、さらに好ましくは7%以下である。また、透明導電体の波長450~800nmの光の吸収率の最大値は、導通領域及び絶縁領域のいずれにおいても15%以下であることが好ましく、より好ましくは10%以下であり、さらに好ましくは9%以下である。一方、透明導電体の波長500~700nmの光の平均反射率は、導通領域及び絶縁領域のいずれにおいても、20%以下であることが好ましく、より好ましくは15%以下であり、さらに好ましくは10%以下である。透明導電体の平均吸収率及び平均反射率が低いほど、前述の平均透過率が高まる。 On the other hand, the average absorptance of light having a wavelength of 450 to 800 nm of the transparent conductor is preferably 10% or less, more preferably 8% or less, and even more preferably 7% in both the conductive region and the insulating region. It is as follows. Further, the maximum value of the light absorptance of the transparent conductor having a wavelength of 450 to 800 nm is preferably 15% or less, more preferably 10% or less, and even more preferably in both the conduction region and the insulation region. 9% or less. On the other hand, the average reflectance of light with a wavelength of 500 to 700 nm of the transparent conductor is preferably 20% or less, more preferably 15% or less, and even more preferably 10% in both the conductive region and the insulating region. % Or less. The lower the average absorptance and average reflectance of the transparent conductor, the higher the aforementioned average transmittance.
 上記平均透過率、平均吸収率、及び平均反射率は、透明導電体の使用環境下での平均透過率、平均吸収率、及び平均反射率であることが好ましい。具体的には、透明導電体が有機樹脂と貼り合わせて使用される場合には、透明導電体上に有機樹脂からなる層を作製して平均透過率及び平均反射率測定することが好ましい。一方、透明導電体が大気中で使用される場合には、大気中での平均透過率及び平均反射率を測定することが好ましい。透過率及び反射率は、透明導電体の表面の法線に対して5°傾けた角度から測定光を入射させて分光光度計で測定することができる。吸収率は、100-(透過率+反射率)の計算式より算出される。 The average transmittance, average absorptance, and average reflectance are preferably the average transmittance, average absorptance, and average reflectance under the usage environment of the transparent conductor. Specifically, when the transparent conductor is used by being bonded to an organic resin, it is preferable to prepare a layer made of the organic resin on the transparent conductor and measure the average transmittance and the average reflectance. On the other hand, when the transparent conductor is used in the air, it is preferable to measure the average transmittance and the average reflectance in the air. The transmittance and reflectance can be measured with a spectrophotometer by allowing measurement light to enter from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent conductor. The absorptance is calculated from a calculation formula of 100− (transmittance + reflectance).
 また、透明導電体が導通領域及び絶縁領域を有する場合、導通領域の反射率及び絶縁領域の反射率がそれぞれ近似することが好ましい。具体的には、導通領域の視感反射率と、絶縁領域の視感反射率との差ΔRが5%以下であることが好ましく、3%以下であることがより好ましく、さらに好ましくは0.5%以下であり、特に好ましくは0.3%以下である。一方、導通領域及び絶縁領域の視感反射率は、それぞれ5%以下であることが好ましく、より好ましくは3%以下であり、さらに好ましくは1%以下である。視感反射率は、分光測色計(CM-5;コニカミノルタ株式会社製)で測定されるY値である。 In addition, when the transparent conductor has a conduction region and an insulation region, it is preferable that the reflectance of the conduction region and the reflectance of the insulation region approximate. Specifically, the difference ΔR between the luminous reflectance of the conductive region and the luminous reflectance of the insulating region is preferably 5% or less, more preferably 3% or less, and still more preferably 0.8. It is 5% or less, and particularly preferably 0.3% or less. On the other hand, the luminous reflectance of the conductive region and the insulating region is preferably 5% or less, more preferably 3% or less, and further preferably 1% or less. The luminous reflectance is a Y value measured by a spectrocolorimeter (CM-5; manufactured by Konica Minolta, Inc.).
 また、透明導電体が導通領域及び絶縁領域を有する場合、いずれの領域においても、L表色系におけるa値及びb値は±30以内であることが好ましく、より好ましくは±5以内であり、さらに好ましくは±3.0以内であり、特に好ましくはa値が-0.5~0の範囲内、b値が0~2.0の範囲内である。L表色系におけるa値及びb値が±30以内であれば、導通領域及び絶縁領域bのいずれの領域も無色透明に観察される。L表色系におけるa値及びb値は、分光光度計で測定される。 When the transparent conductor has a conduction region and an insulation region, the a * value and the b * value in the L * a * b * color system are preferably within ± 30, more preferably in any region. Is within ± 5, more preferably within ± 3.0, and particularly preferably the a * value is in the range of −0.5 to 0 and the b * value is in the range of 0 to 2.0. L * a * b * if a * and b * values is within ± 30 in the color system, any region of the conductive region and an insulating region b is also colorless and transparent observed. The a * value and b * value in the L * a * b * color system are measured with a spectrophotometer.
 透明導電体の導通領域の表面電気抵抗は、50Ω/□以下であることが好ましく、さらに好ましくは30Ω/□以下である。導通領域の表面電気抵抗値が50Ω/□以下である透明導電体は、静電容量方式のタッチパネル用の透明導電パネル等に適用できる。導通領域の表面電気抵抗値は、導電層の厚さ等によって調整される。導通領域の表面電気抵抗値は、例えばJIS K7194-1994、ASTM D257等に準拠して測定される。また、市販の表面電気抵抗率計によっても測定される。 The surface electric resistance of the conductive region of the transparent conductor is preferably 50Ω / □ or less, more preferably 30Ω / □ or less. A transparent conductor having a surface electric resistance value of 50 Ω / □ or less in the conduction region can be applied to a transparent conductive panel for a capacitive touch panel. The surface electrical resistance value of the conduction region is adjusted by the thickness of the conductive layer and the like. The surface electrical resistance value of the conduction region is measured in accordance with, for example, JIS K7194-1994, ASTM D257, and the like. It is also measured by a commercially available surface electrical resistivity meter.
 〔タッチパネル〕
 本発明に係る透明導電体は、種々の方式のタッチパネルのタッチセンサー(以下において、「タッチセンサー電極部」ともいう。)に適用され得る。例えば、表面型静電容量方式タッチパネル、投影型静電容量方式タッチパネル、抵抗膜式タッチパネルなどにおいて用いることができる。
[Touch panel]
The transparent conductor according to the present invention can be applied to touch sensors for various types of touch panels (hereinafter also referred to as “touch sensor electrode portions”). For example, it can be used in a surface capacitive touch panel, a projected capacitive touch panel, a resistive touch panel, and the like.
 タッチセンサー部の層構成が、透明電極として2枚の透明導電体を貼合する貼合方式、一枚の基材の両面に透明電極として透明導電体を具備する方式、片面ジャンパー又はスルーホール方式又は片面積層方式のいずれかであることが好ましい。 The layer structure of the touch sensor unit is a bonding method in which two transparent conductors are bonded as a transparent electrode, a method in which a transparent conductor is provided as a transparent electrode on both surfaces of a single substrate, a single-sided jumper or a through-hole method Or it is preferable that it is either a one area layer system.
 また、投影型静電容量式タッチセンサーは、DC駆動よりAC駆動が好ましく、電極への電圧印加時間が少ない駆動方式がより好ましい。 Also, the projected capacitive touch sensor is preferably AC driven rather than DC driven, and more preferably a drive method that requires less time to apply voltage to the electrodes.
 図3は、パターニングされた透明導電体の全体を示す模式図である。本発明に係る透明導電体をタッチセンサーに適用する場合には、例えば、図3に示されるように、複数の導通領域aと、これを区切るライン状の絶縁領域bとを含むパターンを有する透明電極として成形して用いることができる。 FIG. 3 is a schematic view showing the entire patterned transparent conductor. When the transparent conductor according to the present invention is applied to a touch sensor, for example, as shown in FIG. 3, the transparent conductor has a pattern including a plurality of conductive regions a and a line-shaped insulating region b separating the conductive regions a. It can be molded and used as an electrode.
 図3に示す状態から、さらに接着剤15によって、ディスプレイパネル16と、透明導電体100と、配線パターン14を有するフレキシブル基板8とを貼り合わせることで、タッチパネル200を製造することができる(図4参照)。図4に示すように、透明導電層は、接続配線6により、回路基板に配設された電極7から配線パターン14へと電気的に接続されている。 From the state shown in FIG. 3, the touch panel 200 can be manufactured by further bonding the display panel 16, the transparent conductor 100, and the flexible substrate 8 having the wiring pattern 14 with the adhesive 15 (FIG. 4). reference). As shown in FIG. 4, the transparent conductive layer is electrically connected from the electrode 7 provided on the circuit board to the wiring pattern 14 by the connection wiring 6.
 透明導電体100にディスプレイパネル16を貼り合わせることで、タッチパネルとした場合、図3に示す破線で囲まれた領域がタッチセンサー部13として機能する。 When the display panel 16 is bonded to the transparent conductor 100 to form a touch panel, a region surrounded by a broken line shown in FIG. 3 functions as the touch sensor unit 13.
 透明導電体100にディスプレイパネル16を貼り合わせてタッチパネルを製造する方法については、公知の方法を適宜利用することができる。 As a method for manufacturing the touch panel by bonding the display panel 16 to the transparent conductor 100, a known method can be appropriately used.
 〔電極パターンを有する透明導電体の形成方法〕
 本発明に係る透明導電体に対し、図3で示すような導通領域a及び絶縁領域bからなるパターンの形成方法について説明する。
[Method for forming transparent conductor having electrode pattern]
A method for forming a pattern composed of a conductive region a and an insulating region b as shown in FIG. 3 will be described for the transparent conductor according to the present invention.
 本発明に係る透明導電体100においては、上記のような方法で基板1上に、第1高屈折率層2と、導電層3と、絶縁層(第2高屈折率層)4とをこの順で積層して製造した後、透明導電体100を所定の形状にパターニングして、金属電極を形成することが好ましい。 In the transparent conductor 100 according to the present invention, the first high-refractive index layer 2, the conductive layer 3, and the insulating layer (second high-refractive index layer) 4 are formed on the substrate 1 by the above method. After being laminated in order, it is preferable to pattern the transparent conductor 100 into a predetermined shape to form a metal electrode.
 具体的には、フォトリソグラフィー法により、エッチング液を用いて、例えば、図3に示すような電極パターンを形成することが好ましい。形成する電極の線幅としては、50μm以下であることが好ましく、特に好ましくは、20μm以下である。 Specifically, for example, an electrode pattern as shown in FIG. 3 is preferably formed by photolithography using an etching solution. The line width of the electrode to be formed is preferably 50 μm or less, and particularly preferably 20 μm or less.
 (製造工程)
 以下、フォトリソグラフィー法による電極パターンの形成方法について説明する。本発明に適用するフォトリソグラフィー法とは、硬化性樹脂等のレジスト塗布、予備加熱、露光、現像(未硬化樹脂の除去)、リンス、エッチング液によるエッチング処理、レジスト剥離の各工程を経ることにより、銀薄膜層を、例えば、図3に示すようなパターンに加工することができ、パターンの形状は適宜変更することができる。
(Manufacturing process)
Hereinafter, a method for forming an electrode pattern by photolithography will be described. The photolithographic method applied to the present invention includes resist coating such as curable resin, preheating, exposure, development (removal of uncured resin), rinsing, etching treatment with an etching solution, and resist stripping. The silver thin film layer can be processed into a pattern as shown in FIG. 3, for example, and the shape of the pattern can be changed as appropriate.
 本発明では、従来公知の一般的なフォトリソグラフィー法を適宜利用することができる。例えば、レジストとしてはポジ型又はネガ型のいずれのレジストでも使用可能である。また、レジスト塗布後、必要に応じて予備加熱又はプリベークを実施することができる。露光に際しては、所定のパターンを有するパターンマスクを配置し、その上から、用いたレジストに適合する波長の光、一般には紫外線や電子線等を照射すればよい。露光後、用いたレジストに適合する現像液で現像を行う。現像後、水等のリンス液で現像を止めるとともに洗浄を行うことで、レジストパターンが形成される。 In the present invention, a conventionally known general photolithography method can be used as appropriate. For example, as the resist, either positive or negative resist can be used. In addition, after applying the resist, preheating or prebaking can be performed as necessary. At the time of exposure, a pattern mask having a predetermined pattern may be disposed, and light having a wavelength suitable for the resist used, generally ultraviolet rays, electron beams, or the like may be irradiated thereon. After the exposure, development is performed with a developer suitable for the resist used. After the development, the resist pattern is formed by stopping the development with a rinse solution such as water and washing.
 次いで、形成されたレジストパターンを、必要に応じて前処理又はポストベークを実施してから、有機溶媒を含むエッチング液によるエッチングで、レジストで保護されていない領域の中間層の溶解及び銀薄膜電極の除去を行う。エッチング後、残留するレジストを剥離することによって、所定のパターンを有する透明電極が得られる。このように、適用されるフォトリソグラフィー法は、当業者に一般に認識されている方法であり、その具体的な適用態様は当業者であれば所定の目的に応じて容易に選定することができる。 Next, the formed resist pattern is pretreated or post-baked as necessary, and then is etched with an etching solution containing an organic solvent to dissolve the intermediate layer in a region not protected by the resist and to form a silver thin film electrode Remove. After etching, the remaining resist is peeled to obtain a transparent electrode having a predetermined pattern. Thus, the applied photolithography method is a method generally recognized by those skilled in the art, and a specific application mode can be easily selected by a person skilled in the art according to a predetermined purpose.
 次いで、本発明に適用可能な電極パターンの形成方法について説明する。 Next, an electrode pattern forming method applicable to the present invention will be described.
 第1ステップとして、基板上に、第1高屈折率層、第1硫化防止層、導電層、第2硫化防止層及び絶縁層(第2高屈折率層)をこの順で形成した積層体を作製する(図2参照。)。 As a first step, a laminate in which a first high refractive index layer, a first antisulfurization layer, a conductive layer, a second antisulfation layer, and an insulating layer (second high refractive index layer) are formed in this order on a substrate. It is produced (see FIG. 2).
 次いで、レジスト膜の形成工程で、積層体上に感光性樹脂組成物等から構成されるレジスト膜を均一に塗設する。感光性樹脂組成物としては、ネガ型感光性樹脂組成物あるいはポジ型感光性樹脂組成物を用いることができる。 Next, in the resist film forming step, a resist film composed of a photosensitive resin composition or the like is uniformly coated on the laminate. As the photosensitive resin composition, a negative photosensitive resin composition or a positive photosensitive resin composition can be used.
 塗布方法としては、マイクログラビアコーティング、スピンコーティング、ディップコーティング、カーテンフローコーティング、ロールコーティング、スプレーコーティング、スリットコーティングなどの公知の方法によって、積層体上に塗布し、ホットプレート、オーブンなどの加熱装置でプリベークすることができる。プリベークは、例えば、ホットプレート等を用いて、50~150℃の範囲内で30秒~30分間行うことができる。 As a coating method, it is applied on a laminate by a known method such as micro gravure coating, spin coating, dip coating, curtain flow coating, roll coating, spray coating, slit coating, etc., and a heating device such as a hot plate or oven. Can be pre-baked. Pre-baking can be performed, for example, using a hot plate or the like within a range of 50 to 150 ° C. for 30 seconds to 30 minutes.
 次いで、露光工程で、所定の電極パターンにより作製したマスクを介して、ステッパー、ミラープロジェクションマスクアライナー(MPA)、パラレルライトマスクアライナーなどの露光機を用いて、10~4000J/m程度(波長365nm露光量換算)の光を、次工程で除去するレジスト膜に照射する。露光光源に制限はなく、紫外線、電子線や、KrF(波長248nm)レーザー、ArF(波長193nm)レーザーなどを用いることができる。 Then, in the exposure step, through a mask manufactured by predetermined electrode patterns, a stepper, a mirror projection mask aligner (MPA), using an exposure apparatus, such as a parallel light mask aligner, 10 ~ 4000J / m 2 approximately (wavelength 365nm The resist film to be removed in the next step is irradiated with light in terms of exposure amount. The exposure light source is not limited, and ultraviolet rays, electron beams, KrF (wavelength 248 nm) laser, ArF (wavelength 193 nm) laser, and the like can be used.
 次いで、現像工程で、露光済みの透明導電体を、現像液に浸漬して、光照射した領域のレジスト膜を溶解する。 Next, in the development step, the exposed transparent conductor is immersed in a developer to dissolve the resist film in the region irradiated with light.
 現像方法としては、シャワー、ディッピング、パドルなどの方法で現像液に5秒~10分間浸漬することが好ましい。現像液としては、公知のアルカリ現像液を用いることができる。具体例としては、アルカリ金属の水酸化物、炭酸塩、リン酸塩、ケイ酸塩、ホウ酸塩などの無機アルカリ、2-ジエチルアミノエタノール、モノエタノールアミン、ジエタノールアミンなどのアミン類、テトラメチルアンモニウムヒドロキサイド、コリンなどの4級アンモニウム塩を一種あるいは二種以上含む水溶液などが挙げられる。現像後、水でリンスすることが好ましく、続いて50~150℃の範囲内で乾燥ベークを行ってもよい。 As the developing method, it is preferable to immerse in the developer for 5 seconds to 10 minutes by a method such as showering, dipping or paddle. As the developer, a known alkali developer can be used. Specific examples include inorganic alkalis such as alkali metal hydroxides, carbonates, phosphates, silicates and borates, amines such as 2-diethylaminoethanol, monoethanolamine and diethanolamine, tetramethylammonium hydroxide. Examples thereof include aqueous solutions containing one or more quaternary ammonium salts such as side and choline. After the development, it is preferable to rinse with water, followed by dry baking within a range of 50 to 150 ° C.
 次いで、エッチング液を用いたエッチング処理を行う。 Next, an etching process using an etching solution is performed.
 本発明に適用可能なエッチング液としては、無機酸あるいは有機酸を含有する液が好ましく、シュウ酸、塩酸、酢酸、リン酸を挙げることができ、特に、シュウ酸、酢酸、リン酸が好ましい。 As the etching solution applicable to the present invention, a solution containing an inorganic acid or an organic acid is preferable, and oxalic acid, hydrochloric acid, acetic acid, and phosphoric acid can be mentioned, and oxalic acid, acetic acid, and phosphoric acid are particularly preferable.
 具体的には、例えば、有機酸等を含むエッチング液に、レジスト膜を有する積層体を浸漬し、レジスト膜で保護されていない絶縁領域bの積層体を溶解し、レジスト膜で保護している導通領域aの積層体を所定の電極パターンとして形成する。 Specifically, for example, a laminate having a resist film is immersed in an etching solution containing an organic acid or the like, and the laminate of the insulating region b not protected by the resist film is dissolved and protected by the resist film. The laminated body of the conduction | electrical_connection area | region a is formed as a predetermined electrode pattern.
 最後に、レジスト膜剥離液、例えば、ナガセケムテックス社製のN-300に浸漬して、レジスト膜を除去して、電極パターンを有する積層体を作製することができる。 Finally, it is immersed in a resist film remover, for example, N-300 manufactured by Nagase ChemteX Corporation, and the resist film is removed to produce a laminate having an electrode pattern.
 なお、本発明に係るタッチセンサーに使用する画像表示装置は、特に制限されず、小型電子端末に通常使用される液晶表示装置や、有機EL装置などが使用できる。 Note that the image display device used for the touch sensor according to the present invention is not particularly limited, and a liquid crystal display device or an organic EL device that is usually used for a small electronic terminal can be used.
 〔透明導電体の用途〕
 透明導電体は、液晶、プラズマ、有機エレクトロルミネッセンス、フィールドエミッションなど各種方式のディスプレイをはじめ、タッチパネルや携帯電話、電子ペーパー、各種太陽電池、各種エレクトロルミネッセンス調光素子など様々なオプトエレクトロニクスデバイスの基板等に好ましく用いることができる。特にタッチパネル用の電極に好ましく適用することができる。
[Use of transparent conductors]
Transparent conductors include various types of displays such as liquid crystal, plasma, organic electroluminescence, field emission, touch panel, mobile phone, electronic paper, various solar cells, various optoelectronic device substrates such as various electroluminescence dimming elements, etc. Can be preferably used. In particular, it can be preferably applied to electrodes for touch panels.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "mass part" or "mass%" is represented.
 [実施例1]
 ≪透明導電体1の作製≫
 〈成膜工程〉
 〈積層体1の作製〉
 基板として、株式会社きもと製クリアハードコート付きPETフィルム(G1SBF、「HCPET」と称する。厚さ125μm)を用い、HCPETフィルム上に、下記の方法に従って、蒸着法により導電層(Ag)/絶縁層(第2高屈折率層:ZnS-SiO)をこの順に積層した。次いで、当該積層体を下記の方法でパターニングして、引き出し配線を有する積層体1を、バッチ方式で作製した。なお、各層の厚さは、J.A.Woollam Co.Inc.製のVB-250型VASEエリプソメーターで測定した。
[Example 1]
<< Production of transparent conductor 1 >>
<Film formation process>
<Production of Laminate 1>
A PET film with a clear hard coat (G1SBF, referred to as “HCPET”, thickness: 125 μm) manufactured by Kimoto Co., Ltd. is used as a substrate, and a conductive layer (Ag) / insulating layer is deposited on the HCPET film by the vapor deposition method according to the following method. (Second high refractive index layer: ZnS—SiO 2 ) was laminated in this order. Next, the laminate was patterned by the following method to produce a laminate 1 having a lead-out wiring by a batch method. The thickness of each layer is J. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
 (導電層(Ag)の形成)
 真空スパッタ装置として、大阪真空社製のマグネトロンスパッタ装置を用い、Ar 20sccm、スパッタ圧0.5Pa、室温下、ターゲット側電力150W、成膜レート14Å/秒でAgを高周波(RF)スパッタ(周波数13.56MHz)した。ターゲット-基板間距離は90mmであった。Ag層の層厚は7nmであった。
(Formation of conductive layer (Ag))
As a vacuum sputtering apparatus, a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., Ltd. was used, and Ar was 20 sccm, sputtering pressure 0.5 Pa, room temperature, target-side power 150 W, film formation rate 14 Å / sec. .56 MHz). The target-substrate distance was 90 mm. The layer thickness of the Ag layer was 7 nm.
 (絶縁層(第2高屈折率層(ZnS-SiO))の形成)
 次いで、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート3.8Å/秒でターゲット(ZnS-SiOの焼成体)を高周波(RF)スパッタ(周波数13.56MHz)した。ターゲット-基板間距離は90mmであった。層厚は40nmであった。
(Formation of insulating layer (second high refractive index layer (ZnS—SiO 2 )))
Next, the target (ZnS—SiO 2 fired body) was radio frequency (RF) sputtered (frequency) at Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target side power 150 W, and deposition rate 3.8 Å / sec. 13.56 MHz). The target-substrate distance was 90 mm. The layer thickness was 40 nm.
 なお、第2高屈折率層におけるZnSとSiOの体積比率は、X線光電子分光法(X-ray Photoelectron Spectroscopy:XPS)を用いて測定した結果、ZnSとSiOの体積比率が80:20であることを確認した。 The volume ratio of ZnS to SiO 2 in the second high refractive index layer was measured using X-ray photoelectron spectroscopy (XPS). As a result, the volume ratio of ZnS to SiO 2 was 80:20. It was confirmed that.
 〈パターニング工程〉
 〈積層体1のパターニング〉
 次いで、上記作製した導電層及び絶縁層(第2高屈折率層)を有する積層体に対し、前述したパターニング方法に従って、図3に示す導通領域と絶縁領域を有するパターン(引き出し配線を有する電極パターン)を形成した。
<Patterning process>
<Patterning of laminate 1>
Next, in accordance with the patterning method described above, a pattern having a conductive region and an insulating region shown in FIG. 3 (an electrode pattern having a lead-out wiring) is formed on the laminated body having the conductive layer and the insulating layer (second high refractive index layer). ) Was formed.
 積層体上に、フォトリソグラフィー法でレジスト層をパターン状に形成し、導電層及び絶縁層(第2高屈折率層)を、エッチング液を用いて、複数の導通領域と、これを区切るライン状の絶縁領域とを含むパターン状にエッチングした。複数の導通領域は、それぞれ引き出し配線12を介して接続端子11に配置した。 On the laminate, a resist layer is formed in a pattern by a photolithography method, and a conductive layer and an insulating layer (second high refractive index layer) are separated from a plurality of conductive regions by using an etchant, and in a line shape that divides this Etching was performed in a pattern including the insulating region. The plurality of conductive regions are arranged on the connection terminals 11 via the lead wires 12 respectively.
 エッチング液としては、関東化学社製の「混液 SEA-5」(リン酸:55質量%、酢酸:30質量%、水その他の成分:15質量%)を用いた。絶縁領域には、基板のみが含まれるものとした。また、ライン状の絶縁領域の幅は16μmとした。 As an etching solution, “mixed liquid SEA-5” (phosphoric acid: 55 mass%, acetic acid: 30 mass%, water and other components: 15 mass%) manufactured by Kanto Chemical Co., Ltd. was used. Only the substrate was included in the insulating region. The width of the line-shaped insulating region was 16 μm.
 〈接続配線形成工程〉
 東海商事社製スクリーン印刷装置にて導電性ペーストとしてAgペースト(大研化学製造販売株式会社製CA-T30)を用い、積層体の両方の端部について、それぞれの表面端部(絶縁層)と透明基板上に接続配線としてスクリーン印刷し、両端部に導電性ペーストを有する積層体を作製した。これを150℃で30分間焼結した。線幅は50μm、高さは5μmだった。
<Connection wiring formation process>
Using Ag paste (CA-T30 manufactured by Daiken Chemical Manufacturing and Sales Co., Ltd.) as the conductive paste in the screen printing device manufactured by Tokai Shoji Co., Ltd., both surface ends (insulating layers) and Screen printing was performed as connection wiring on a transparent substrate, and a laminate having conductive paste at both ends was produced. This was sintered at 150 ° C. for 30 minutes. The line width was 50 μm and the height was 5 μm.
 さらに以下の導通工程を経ることにより、透明導電体1を作製した。具体的な作製方法を説明する。 Further, the transparent conductor 1 was produced through the following conduction process. A specific manufacturing method will be described.
 〈導通工程〉
 それぞれの接続配線について、片方の導電性ペーストのみ塗布されている接続配線部分と、他端の導電性ペーストのみ塗布されている接続配線部分に、積層体(導電層)を介して電圧3V、周波数100Hzの交流電圧を3秒間印加した。交流電圧の印加は、HIOKI LCR HiTester(日置電機社製、型番3522-50)を用いて行った。このようにして透明導電体1を作製した。
<Conduction process>
For each connection wiring, a voltage of 3V and a frequency are applied to the connection wiring portion where only one conductive paste is applied and to the connection wiring portion where only the other conductive paste is applied via a laminate (conductive layer). An AC voltage of 100 Hz was applied for 3 seconds. The application of the AC voltage was performed using HIOKI LCR HiTester (manufactured by Hioki Electric Co., Ltd., model number 3522-50). Thus, the transparent conductor 1 was produced.
 ≪透明導電体2~39の作製≫
 〈成膜工程〉
 〈積層体2~39の作製〉
 透明導電体1の作製において、基板、導電層及び絶縁層を、それぞれ、表1及び表2に示した材料と厚さに代え、さらに基板、第1高屈折率層、第1硫化防止層、導電層、第2硫化防止層及び絶縁層からなる積層体を、この順で形成して、積層体2~39を作製した。なお、表中「-」は、層が形成されなかったことを表す。
<< Production of transparent conductors 2 to 39 >>
<Film formation process>
<Preparation of laminates 2 to 39>
In the production of the transparent conductor 1, the substrate, the conductive layer, and the insulating layer are replaced with the materials and thicknesses shown in Tables 1 and 2, respectively, and the substrate, the first high refractive index layer, the first antisulfurization layer, Laminates 2 to 39 were formed by forming a laminate including a conductive layer, a second antisulfurization layer, and an insulating layer in this order. In the table, “-” indicates that no layer was formed.
 表1及び表2に記載した各層の形成条件は以下のとおりである。 The formation conditions of each layer described in Table 1 and Table 2 are as follows.
 〔基板〕
 フィルム:上記株式会社きもと製クリアハードコート付きPETフィルム
 ガラス:ヤマナカヒューテック株式会社製 BK7(厚さ2mm)
 〔第1高屈折率層の形成〕
 (ZnS層の形成)
 真空スパッタ装置として、大阪真空社製のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート3.8Å/秒でターゲット(ZnSの焼成体)を高周波(RF)スパッタ(周波数13.56MHz)した。ターゲット-基板間距離は90mmであった。層厚は40nmであった。
〔substrate〕
Film: PET film with clear hard coat manufactured by Kimoto Co., Ltd. Glass: BK7 (thickness 2 mm) manufactured by Yamanaka Hutech Co., Ltd.
[Formation of first high refractive index layer]
(Formation of ZnS layer)
As a vacuum sputtering apparatus, a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., Ltd. was used. Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target side power 150 W, film formation rate 3.8 秒 / sec. The fired body was radio frequency (RF) sputtered (frequency 13.56 MHz). The target-substrate distance was 90 mm. The layer thickness was 40 nm.
 (ZnS-SiO層の形成)
 真空スパッタ装置として、大阪真空社製のマグネトロンスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート3.8Å/秒でターゲット(ZnS-SiOの焼成体)を高周波(RF)スパッタ(周波数13.56MHz)した。ターゲット-基板間距離は90mmであった。層厚は40nmであった。
(Formation of ZnS-SiO 2 layer)
As a vacuum sputtering apparatus, a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., Ltd. is used. Ar (20 Zn), Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.1 Pa, room temperature, target side power 150 W, deposition rate 3.8 Å / sec. the SiO 2 sintered body) was radio frequency (RF) sputtering (frequency 13.56 MHz). The target-substrate distance was 90 mm. The layer thickness was 40 nm.
 なお、第1高屈折率層におけるZnSとSiOの体積比率は、X線光電子分光法(X-ray Photoelectron Spectroscopy:XPS)を用いて測定した結果、ZnSとSiOの体積比率が80:20であることを確認した。 The volume ratio of ZnS to SiO 2 in the first high refractive index layer was measured using X-ray photoelectron spectroscopy (XPS). As a result, the volume ratio of ZnS to SiO 2 was 80:20. It was confirmed that.
 (TiO層の形成)
 アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.07nm/秒で、層厚が40nmとなるようTiOを高周波(RF)スパッタ(周波数13.56MHz)した。ターゲット-基板間距離は86mmであった。
(Formation of TiO 2 layer)
Using an Anelva L-430S-FHS sputtering apparatus, Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.07 nm / second, and TiO 2 was high-frequency (with a layer thickness of 40 nm). RF) sputtering (frequency 13.56 MHz). The target-substrate distance was 86 mm.
 (ZnS-GZO層の形成)
 ZnS-GZOとは、GZO(Gaを10質量%含有したZnO)に、さらに、ZnSを4at%含有させたものを表す。
(Formation of ZnS-GZO layer)
ZnS-GZO represents GZO (ZnO containing 10 mass% Ga) and further containing 4 at% ZnS.
 アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.07nm/秒で、層厚が40nmとなるよう、また組成比が上記となるようにGZO(ガリウム・亜鉛酸化物)とZnSを高周波(RF)スパッタ(周波数13.56MHz)した。ターゲット-基板間距離は86mmであった。 Using an Anelva L-430S-FHS sputtering apparatus, Ar 20 sccm, O 2 0 sccm, sputtering pressure 0.25 Pa, room temperature, formation rate 0.07 nm / second, layer thickness 40 nm, and composition ratio GZO (gallium / zinc oxide) and ZnS were radio-frequency (RF) sputtered (frequency 13.56 MHz) so as to achieve the above. The target-substrate distance was 86 mm.
 〔第1硫化防止層の形成〕
 (GZO層の形成)
 アネルバ社のL-430S-FHSスパッタ装置を用い、Ar 20sccm、O 0sccm、スパッタ圧0.25Pa、室温下、形成速度0.07nm/秒で、層厚が3nmとなるようGZO(ガリウム・亜鉛酸化物)を高周波(RF)スパッタ(周波数13.56MHz)した。ターゲット-基板間距離は86mmであった。
[Formation of first antisulfurization layer]
(Formation of GZO layer)
Using an Anelva L-430S-FHS sputtering system, Ar is 20 sccm, O 2 0 sccm, sputtering pressure is 0.25 Pa, room temperature, formation rate is 0.07 nm / second, and GZO (gallium / zinc) is 3 nm thick. Oxide) was radio frequency (RF) sputtered (frequency 13.56 MHz). The target-substrate distance was 86 mm.
 (ZnO層の形成)
 真空スパッタ装置として大阪真空社製のマグネトロンスパッタ装置を用い、Ar 20sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート1.1Å/秒でZnOを高周波(RF)スパッタ(周波数13.56MHz)した。ターゲット-基板間距離は90mmであった。ZnO層の層厚は3nmであった。
(Formation of ZnO layer)
As a vacuum sputtering apparatus, a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., Ltd. is used. ArO 20 sccm, sputtering pressure 0.1 Pa, room temperature, target side power 150 W, film formation rate 1.1 Å / sec. 13.56 MHz). The target-substrate distance was 90 mm. The thickness of the ZnO layer was 3 nm.
 (ZTO層の形成)
 真空スパッタ装置として、大阪真空社製のマグネトロンスパッタ装置を用い、Ar 20sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力150W、成膜レート1.1Å/秒でZTOを高周波(RF)スパッタ(周波数13.56MHz)した。ターゲット-基板間距離は90mmであった。ZTO層の層厚は3nmであった。
(Formation of ZTO layer)
As a vacuum sputtering apparatus, a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., Ltd. was used, and ZTO was radio frequency (RF) sputtered with Ar 20 sccm, sputtering pressure 0.1 Pa, room temperature, target side power 150 W, film formation rate 1.1 レ ー ト / sec ( (Frequency 13.56 MHz). The target-substrate distance was 90 mm. The layer thickness of the ZTO layer was 3 nm.
 〔導電層の形成〕
 (導電層(Ag)の形成)
 上記積層体1に用いた導電層(Ag)の形成方法と同様にして形成した。
[Formation of conductive layer]
(Formation of conductive layer (Ag))
It formed similarly to the formation method of the conductive layer (Ag) used for the said laminated body 1. FIG.
 (導電層(Cu)の形成)
 上記積層体1に用いた導電層(Ag)の形成方法において、AgをCuに代えて、上記積層体1と同様にして厚さが7nmとなるようにして形成した。
(Formation of conductive layer (Cu))
In the formation method of the conductive layer (Ag) used for the laminate 1, Ag was replaced with Cu, and was formed to have a thickness of 7 nm in the same manner as the laminate 1.
 (導電層(APC)の形成)
 上記積層体1に用いた導電層(Ag)の形成方法において、Agを、AgとPdとCuとの合金(Ag:Pd:Cu=98.6:1.2:0.2(質量比):表2ではAPCと略記した。)に代えて、上記積層体1と同様にして厚さが7nmとなるようにして形成した。
(Formation of conductive layer (APC))
In the method for forming a conductive layer (Ag) used for the laminate 1, Ag is an alloy of Ag, Pd, and Cu (Ag: Pd: Cu = 98.6: 1.2: 0.2 (mass ratio)). In Table 2, it was abbreviated as APC), and was formed so as to have a thickness of 7 nm in the same manner as the laminate 1 described above.
 〔第2硫化防止層の形成〕
 GZO層の形成、ZnO層の形成及びZTO層の形成方法は、第1硫化防止層の形成に記載した方法と同様にしてそれぞれ行った。
[Formation of second anti-sulfurization layer]
The formation of the GZO layer, the formation of the ZnO layer, and the formation method of the ZTO layer were performed in the same manner as described in the formation of the first antisulfurization layer.
 〔絶縁層の形成〕
 ZnS-SiO層の形成は積層体1の作製方法と同様に行った。
(Formation of insulating layer)
The formation of the ZnS—SiO 2 layer was performed in the same manner as the method for manufacturing the stacked body 1.
 ZnS層の形成、TiO層及びZnS-GZO層の形成は、第1高屈折率層の形成に記載した方法と同様にしてそれぞれ行った。 The formation of the ZnS layer, the TiO 2 layer, and the ZnS-GZO layer were performed in the same manner as described in the formation of the first high refractive index layer.
 〈パターニング工程〉
 透明導電体1の作製におけるパターニング工程と同様にして積層体2~39のパターニングを行った。
<Patterning process>
The laminated bodies 2 to 39 were patterned in the same manner as the patterning step in the production of the transparent conductor 1.
 〈接続配線形成工程〉
 透明導電体1の作製における接続配線形成工程、及び焼結工程と同様にして導電性ペーストを用いた。透明導電体1の作製において用いた導電性ペーストを*1として表1及び表2に記載した。その他の導電性ペーストとして下記の三種を用いた。それぞれ、*2、*3、*4として記載した。なお、焼結時間と温度は以下のように変えた。
1:大研化学製造販売(株)製 CA-T30、焼結温度150℃、焼結時間30分
2:InkTec社製 TEC-PR030(ペーストA)、焼結温度140℃、焼結時間5分
3:InkTec社製 TEC-PA010(ペーストB)、焼結温度140℃、焼結時間5分
4:三ツ星ベルト(株)製 MDot-SLP、焼結温度120℃、焼結時間30分
 さらに、下記に示す金属からなる接続配線も形成した。表2では*5、*6、*7と略記した。
5:蒸着Cu配線
6:スパッタCu配線
7:蒸着Cr配線
 (蒸着Cu配線の形成)
 接続配線する部分以外に厚さ0.1mmのSUS板にパターン穴を開けたものでマスクし、蒸着機BMC-800T((株)シンクロン社製)を用いてCu蒸着を行った。蒸着にはタングステンボートを用いた抵抗加熱を用いて、200Aの電流値でレート10Å/秒で50nm堆積を行った。
<Connection wiring formation process>
The conductive paste was used in the same manner as the connection wiring forming step and the sintering step in the production of the transparent conductor 1. The conductive paste used in the production of the transparent conductor 1 is shown in Tables 1 and 2 as * 1. The following three types were used as other conductive pastes. They are described as * 2, * 3, and * 4, respectively. The sintering time and temperature were changed as follows.
1: CA-T30 manufactured by Daiken Chemical Manufacturing and Sales Co., Ltd., sintering temperature 150 ° C., sintering time 30 minutes 2: TEC-PR030 (paste A) manufactured by InkTec, sintering temperature 140 ° C., sintering time 5 minutes 3: TEC-PA010 (paste B) manufactured by InkTec, sintering temperature 140 ° C., sintering time 5 minutes 4: MDot-SLP manufactured by Mitsuboshi Belting Co., Ltd., sintering temperature 120 ° C., sintering time 30 minutes The connection wiring made of the metal shown in FIG. In Table 2, it was abbreviated as * 5, * 6, * 7.
5: Evaporated Cu wiring 6: Sputtered Cu wiring 7: Evaporated Cr wiring (Formation of evaporated Cu wiring)
Masking was performed with a SUS plate having a thickness of 0.1 mm other than the portion to be connected and wiring formed with a pattern hole, and Cu was deposited using a vapor deposition machine BMC-800T (manufactured by Syncron Co., Ltd.). Vapor deposition was performed by resistance heating using a tungsten boat, and 50 nm deposition was performed at a current value of 200 A at a rate of 10 Å / sec.
 (スパッタCu配線の形成)
 接続配線する部分以外に厚さ0.1mmのSUS板にパターン穴を開けたものでマスクし、真空スパッタ装置として、大阪真空社製のマグネトロンスパッタ装置を用い、Ar 20sccm、スパッタ圧0.1Pa、室温下、ターゲット側電力50W、成膜レート1.1Å/秒でCuを直流(DC)スパッタした。ターゲット-基板間距離は90mmであった。Cu層の層厚は50nmであった。
(Formation of sputtered Cu wiring)
Masked with a 0.1 mm thick SUS plate with a pattern hole in addition to the part to be connected and wired, and using a magnetron sputtering apparatus manufactured by Osaka Vacuum Co., Ltd. as a vacuum sputtering apparatus, Ar 20 sccm, sputtering pressure 0.1 Pa, Direct current (DC) sputtering of Cu was performed at room temperature with a target-side power of 50 W and a film formation rate of 1.1 Å / sec. The target-substrate distance was 90 mm. The layer thickness of the Cu layer was 50 nm.
 (蒸着Cr配線の形成)
 接続配線する部分以外に厚さ0.1mmのSUS板にパターン穴を開けたものでマスクし、蒸着機BMC-800T((株)シンクロン社製)を用いてCr蒸着を行った。蒸着にはCuハースを用いた電子ビーム加熱方式を用いて、10Å/秒で50nm堆積を行った。
(Formation of evaporated Cr wiring)
In addition to the connection wiring portion, a SUS plate having a thickness of 0.1 mm was masked with a pattern hole, and Cr was deposited using a vapor deposition machine BMC-800T (manufactured by Syncron Co., Ltd.). Vapor deposition was performed using an electron beam heating method using Cu hearth at 50 nm / sec.
 〈導通工程〉
 透明導電体1の作製の導通工程において、電圧、周波数、印加時間を表1及び表2のように変えて透明導電体1の作製の導通工程と同様にして交流電圧を印加して透明導電体2~39を作製した。なお、周波数の欄の‘M’はメガを表し、1MはMHzの周波数であることを表す。また時間の欄の‘s’、‘m’は、それぞれ、秒、分を表す。
<Conduction process>
In the conduction process of manufacturing the transparent conductor 1, the voltage, frequency, and application time are changed as shown in Table 1 and Table 2, and the AC voltage is applied in the same manner as in the conduction process of manufacturing the transparent conductor 1, so that the transparent conductor 2 to 39 were produced. In the frequency column, “M” represents mega, and 1M represents a frequency of MHz. Also, “s” and “m” in the time column represent seconds and minutes, respectively.
 《評価》
 作製した透明導電体1~39のそれぞれについて、以下の光透過性、導通性及び耐湿性の評価を行った。
<Evaluation>
Each of the produced transparent conductors 1 to 39 was evaluated for the following light transmittance, conductivity and moisture resistance.
 〈光透過性〉
 パターン状に形成された透明導電体を用いて導通領域における平均透過率を以下の方法に従って測定した。
<Optical transparency>
Using the transparent conductor formed in a pattern, the average transmittance in the conduction region was measured according to the following method.
 パターン状に形成された透明導電体の第2高屈折率層側の表面に、マッチングオイル(ニコン社製 屈折率=1.515)を塗布した。そして、透明導電体とコーニング社製無アルカリガラス基板(EAGLE XG(厚さ7mm×縦30mm×横30mm))とを貼り合わせた。そして、無アルカリガラス基板側から、透明導電体の450~800nmの波長範囲における平均透過率(%)を測定した。このとき、無アルカリガラス基板の表面の法線に対して、5°傾けた角度から、導通領域に測定光を入射させ、(株)日立ハイテクノロジーズ:分光光度計 U4100にて、光の透過率及び反射率を測定した。 Matching oil (refractive index = 1.515 manufactured by Nikon Corporation) was applied to the surface of the transparent conductor formed in a pattern on the second high refractive index layer side. Then, a transparent conductor and a non-alkali glass substrate (EAGLE XG (thickness 7 mm × length 30 mm × width 30 mm)) manufactured by Corning were bonded together. Then, the average transmittance (%) in the wavelength range of 450 to 800 nm of the transparent conductor was measured from the alkali-free glass substrate side. At this time, the measurement light is incident on the conduction region from an angle inclined by 5 ° with respect to the normal of the surface of the alkali-free glass substrate, and the light transmittance is measured by Hitachi High-Technologies Corporation: Spectrophotometer U4100. And the reflectance was measured.
 なお、無アルカリガラス基板と大気との界面での反射(4%)、及び透明導電体の透明基板と大気との界面での反射(4%)を差し引いた値を考慮し、透過率の測定値に8%足した値を透明導電体の各平均透過率とした。以上の測定値をもとに、以下のランク付けを行った。 Note that the transmittance is measured in consideration of the value obtained by subtracting the reflection (4%) at the interface between the alkali-free glass substrate and the atmosphere and the reflection at the interface between the transparent substrate and the atmosphere (4%). A value obtained by adding 8% to the value was defined as each average transmittance of the transparent conductor. Based on the above measured values, the following ranking was performed.
 ◎:平均透過率が88%以上である
 ○:平均透過率が85%以上88%未満である
 △:平均透過率が83%以上85%未満である
 ×:平均透過率が83%未満である
 〈導通性〉
 導通性の評価は、作製した電極パターンの導通性の歩留りを測定することで行った。すなわち上記透明導電体1~39のそれぞれを10ずつ作製して、それぞれ、導電層の両端の接続配線の導通性を測定した。その際、導通がとれたもの(理論抵抗値の10倍以下になったもの)の歩留りを交流電圧印加前後で評価した。
◎: Average transmittance is 88% or more ○: Average transmittance is 85% or more and less than 88% △: Average transmittance is 83% or more and less than 85% ×: Average transmittance is less than 83% <Conductivity>
The evaluation of conductivity was performed by measuring the yield of conductivity of the produced electrode pattern. That is, ten of each of the transparent conductors 1 to 39 were prepared, and the continuity of the connection wiring at both ends of the conductive layer was measured. At that time, the yield of conductive materials (those having a theoretical resistance value of 10 times or less) was evaluated before and after application of AC voltage.
 測定はカスタム社製CDM-2000Dを用いて2端子法にて測定した。具体的には、複数の接続端子のうち、図3で示す接続端子11aと11bとにカスタム社製CDM-2000Dをあてることにより導通があることを確認した。これを全ての接続配線について行った。 Measurement was performed by a two-terminal method using a CDM-2000D manufactured by Custom. Specifically, it was confirmed that the connection terminals 11a and 11b shown in FIG. 3 among the plurality of connection terminals are connected by applying CDM-2000D manufactured by Custom Co., Ltd. This was performed for all connection wirings.
 導通性は、以下の評価基準で評価した。 導 通 Conductivity was evaluated according to the following evaluation criteria.
 ◎:図3の10個の電極パターンの14か所の接続端子11で全て導通がとれたものが100%である
 ○:図3の10個の電極パターンの14か所の接続端子11で全て導通がとれたものが90%以上100%未満である
 △:図3の10個の電極パターンの14か所の接続端子11で全て導通がとれたものが70%以上90%未満である
 ×:図3の10個の電極パターンの14か所の接続端子11で全て導通がとれたものが70%未満である
 〈耐湿性〉
 耐湿性の評価は、水分により腐食された透明金属層の腐食数を観察することで行った。具体的には、温度65℃、相対湿度95%の環境下で透明導電体1~39を100時間さらしたのち、上記作製した各透明導電体を目視することにより、下記の基準に従って評価した。
A: 100% of the 14 connection terminals 11 of the 10 electrode patterns in FIG. 3 are all conductive. ○: All 14 connection terminals 11 of the 10 electrode patterns in FIG. What is conductive is 90% or more and less than 100%. Δ: All of the 14 connection terminals 11 of the 10 electrode patterns in FIG. 3 are electrically connected and are 70% or more and less than 90%. Less than 70% of all the 14 connection terminals 11 of the 10 electrode patterns in FIG. 3 are electrically conductive <Moisture resistance>
Evaluation of moisture resistance was performed by observing the number of corrosion of the transparent metal layer corroded by moisture. Specifically, the transparent conductors 1 to 39 were exposed for 100 hours in an environment of a temperature of 65 ° C. and a relative humidity of 95%, and then each of the produced transparent conductors was visually observed and evaluated according to the following criteria.
 ◎:クラックや変色等が認められない
 ○:クラックや変色等がほとんど認められない
 △:クラックや変色等が少し認められる
 ×:クラックや変色等が多数認められる
 以上の結果を透明導電体の構成とともに、表1及び表2に示した。
◎: No cracks, discoloration, etc. are recognized. ○: Almost no cracks, discoloration, etc. are observed. △: A few cracks, discoloration, etc. are observed. X: Many cracks, discoloration, etc. are observed. The results are shown in Tables 1 and 2.
 なお絶縁層の抵抗値は、別途測定し、導電層の理論値の10倍を超える値であることを確認した。 The resistance value of the insulating layer was measured separately and confirmed to be a value exceeding 10 times the theoretical value of the conductive layer.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2から、本発明の製造方法で製造した透明導電体は、光透過性と導通性に優れていることが分かり、タッチパネル用の電極として有用であることが分かった。 From Table 1 and Table 2, it was found that the transparent conductor produced by the production method of the present invention was excellent in light transmittance and conductivity, and was useful as an electrode for a touch panel.
 〔実施例2〕
 実施例1の透明導電体13の作製において、導電性ペーストの種類、焼結温度及び焼結時間を以下のように変えて透明導電体13と同様にして透明導電体をそれぞれ作作製した。
[Example 2]
In the production of the transparent conductor 13 of Example 1, the transparent conductors were respectively produced in the same manner as the transparent conductor 13 by changing the kind of the conductive paste, the sintering temperature, and the sintering time as follows.
 実施例1と同様にして、作製した透明導電体のそれぞれの光透過性、導通性及び耐湿性を評価した。その結果、透明導電体13と同様な良好な結果を得た。 In the same manner as in Example 1, each of the produced transparent conductors was evaluated for light transmittance, conductivity, and moisture resistance. As a result, good results similar to those of the transparent conductor 13 were obtained.
 (導電性ペーストの種類、焼結温度及び焼結時間)
東洋インキ(株)製:
 RA FS039、焼結温度80℃、焼結時間20分
 RA FS045、焼結温度135℃、焼結時間30分
 RA FS088、焼結温度130℃、焼結時間30分
藤倉化成(株)製:
 ナノドータイトXA-3541、焼結温度140℃、焼結時間20分
 ナノドータイトXA-9053、焼結温度150℃、焼結時間30分
(株)アサヒ化学研究所製:
 LS-450-5、焼結温度130℃、焼結時間30分
 LS-450-7H、焼結温度130℃、焼結時間30分
 LS-462H-2、焼結温度130℃、焼結時間30分
 LS-453-2、焼結温度130℃、焼結時間30分
 LS-470L-2、焼結温度130℃、焼結時間30分
 LS-460H-1、焼結温度130℃、焼結時間30分
ペルノックス(株)製:
 K-3100、焼結温度130℃、焼結時間15分
 ペルトロンK-3107S、焼結温度130℃、焼結時間15分
 K-3111、焼結温度135℃、焼結時間20分
太陽インキ製造(株)製:
 ECM-100 AF6100 L10、焼結温度130℃、焼結時間30分
 EPH-300TR67004、焼結温度140℃、焼結時間30分
旭硝子(株)製:
 スクリーン印刷用銅ペースト「EPRIMA CU」、焼結温度150℃、焼結時間5分
ナミックス(株)製:
 XE108-6、焼結温度150℃、焼結時間30分
 XE108-6K、焼結温度150℃、焼結時間30分
(Type of conductive paste, sintering temperature and sintering time)
Toyo Ink Co., Ltd.
RA FS039, sintering temperature 80 ° C., sintering time 20 minutes RA FS045, sintering temperature 135 ° C., sintering time 30 minutes RA FS088, sintering temperature 130 ° C., sintering time 30 minutes manufactured by Fujikura Kasei Co., Ltd .:
Nanodotite XA-3541, sintering temperature 140 ° C., sintering time 20 minutes Nanodotite XA-9053, sintering temperature 150 ° C., sintering time 30 minutes, manufactured by Asahi Chemical Laboratory:
LS-450-5, sintering temperature 130 ° C, sintering time 30 minutes LS-450-7H, sintering temperature 130 ° C, sintering time 30 minutes LS-462H-2, sintering temperature 130 ° C, sintering time 30 Min LS-453-2, sintering temperature 130 ° C, sintering time 30 minutes LS-470L-2, sintering temperature 130 ° C, sintering time 30 minutes LS-460H-1, sintering temperature 130 ° C, sintering time 30 minutes made by Pernox Co., Ltd .:
K-3100, sintering temperature 130 ° C, sintering time 15 minutes Pertron K-3107S, sintering temperature 130 ° C, sintering time 15 minutes K-3111, sintering temperature 135 ° C, sintering time 20 minutes Made by:
ECM-100 AF6100 L10, sintering temperature 130 ° C., sintering time 30 minutes EPH-300TR67004, sintering temperature 140 ° C., sintering time 30 minutes manufactured by Asahi Glass Co., Ltd .:
Copper paste for screen printing “EPRIMA CU”, sintering temperature 150 ° C., sintering time 5 minutes, manufactured by NAMICS CORPORATION:
XE108-6, sintering temperature 150 ° C, sintering time 30 minutes XE108-6K, sintering temperature 150 ° C, sintering time 30 minutes
 本発明の透明導電体の製造方法により製造した透明導電体は、光透過性に優れ、接続配線と導電層の導通性が良好であり、液晶ディスプレイやプラズマディスプレイ、無機及び有機EL(エレクトロルミネッセンス)ディスプレイ等の表示装置、タッチパネル、太陽電池等の各種装置に好ましく適用することができる。 The transparent conductor produced by the method for producing a transparent conductor of the present invention is excellent in light transmittance, and has good conductivity between the connection wiring and the conductive layer, and is a liquid crystal display, plasma display, inorganic and organic EL (electroluminescence). The present invention can be preferably applied to various devices such as a display device such as a display, a touch panel, and a solar cell.
 1 基板
 2 第1高屈折率層
 3 導電層
 4 第2高屈折率層
 5a 第1硫化防止層
 5b 第2硫化防止層
 6 接続配線
 7 電極
 8 フレキシブル基板
 10 積層体
 11、11a、11b 接続端子
 12 引き出し配線
 13 タッチセンサー部
 14 配線パターン
 15 接着剤
 16 ディスプレイパネル
 100 透明導電体
 200 タッチパネル
 a 導通領域
 b 絶縁領域
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 1st high refractive index layer 3 Conductive layer 4 2nd high refractive index layer 5a 1st sulfidation prevention layer 5b 2nd sulfidation prevention layer 6 Connection wiring 7 Electrode 8 Flexible board 10 Laminated body 11, 11a, 11b Connection terminal 12 Drawer wiring 13 Touch sensor unit 14 Wiring pattern 15 Adhesive 16 Display panel 100 Transparent conductor 200 Touch panel a Conducting area b Insulating area

Claims (4)

  1.  少なくとも、導電層と絶縁層と前記導電層に導通する接続配線とを有する透明導電体の製造方法であって、前記絶縁層の表面端部に接続配線を形成した後に交流電圧を前記導電層と前記接続配線間に印加する導通工程を経て、前記導電層と前記接続配線とを導通させることを特徴とする透明導電体の製造方法。 A method of manufacturing a transparent conductor having at least a conductive layer, an insulating layer, and a connection wiring that conducts to the conductive layer, wherein an AC voltage is applied to the conductive layer after forming the connection wiring on a surface end of the insulating layer. A method of manufacturing a transparent conductor, wherein the conductive layer and the connection wiring are made conductive through a conduction step applied between the connection wirings.
  2.  前記接続配線が、少なくとも銀ペーストからなることを特徴とする請求項1に記載の透明導電体の製造方法。 The method for manufacturing a transparent conductor according to claim 1, wherein the connection wiring is made of at least a silver paste.
  3.  前記導電層が、銀を含有する導電層であることを特徴とする請求項1又は請求項2に記載の透明導電体の製造方法。 The method for producing a transparent conductor according to claim 1 or 2, wherein the conductive layer is a conductive layer containing silver.
  4.  前記導電層が、硫化亜鉛を含有する二つの絶縁層で挟持されていることを特徴とする請求項1から請求項3までのいずれか一項に記載の透明導電体の製造方法。 The method for producing a transparent conductor according to any one of claims 1 to 3, wherein the conductive layer is sandwiched between two insulating layers containing zinc sulfide.
PCT/JP2015/064154 2014-06-12 2015-05-18 Transparent conductor manufacturing method WO2015190227A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-121109 2014-06-12
JP2014121109A JP2017134884A (en) 2014-06-12 2014-06-12 Manufacturing method of transparent conductor

Publications (1)

Publication Number Publication Date
WO2015190227A1 true WO2015190227A1 (en) 2015-12-17

Family

ID=54833332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064154 WO2015190227A1 (en) 2014-06-12 2015-05-18 Transparent conductor manufacturing method

Country Status (2)

Country Link
JP (1) JP2017134884A (en)
WO (1) WO2015190227A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10714230B2 (en) 2017-12-06 2020-07-14 C3Nano Inc. Thin and uniform silver nanowires, method of synthesis and transparent conductive films formed from the nanowires

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102677012A (en) * 2012-05-18 2012-09-19 中国科学院上海光学精密机械研究所 Preparation method of multi-layer transparent conductive film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102677012A (en) * 2012-05-18 2012-09-19 中国科学院上海光学精密机械研究所 Preparation method of multi-layer transparent conductive film

Also Published As

Publication number Publication date
JP2017134884A (en) 2017-08-03

Similar Documents

Publication Publication Date Title
JP6314463B2 (en) Transparent conductor
JP6292225B2 (en) Transparent conductor
JP2016081318A (en) Transparent conductor and touch panel
JP6319302B2 (en) Transparent conductor and method for producing the same
JP6206262B2 (en) Transparent conductor, method for producing the same, and conductive paste
JP6344095B2 (en) Transparent conductor and touch panel
JP2015156270A (en) Method of forming transparent electrode pattern
JP6536575B2 (en) Transparent conductor and touch panel
WO2015068738A1 (en) Transparent conductive body
WO2015190227A1 (en) Transparent conductor manufacturing method
JP2016115638A (en) Transparent conductive film and method for producing the same
JP2016152182A (en) Transparent conductive film, method for producing transparent conductive film, and electronic apparatus
JP2015219690A (en) Transparent conductive device and touch panel
WO2016052158A1 (en) Transparent conductor and touch panel including same
WO2015125677A1 (en) Transparent conductor
WO2015087895A1 (en) Transparent conductive body
WO2015107968A1 (en) Method for manufacturing transparent conductor and transparent conductor
JP2016091071A (en) Transparent conductive film and method for producing the same
JP2016146052A (en) Transparent conductor, and touch panel including the same
WO2015151677A1 (en) Transparent conductive member and method for producing transparent conductive member
JP2016177940A (en) Method for producing transparent conductive body
WO2015122392A1 (en) Transparent conductor and method for producing same
JP6256253B2 (en) Transparent conductor and touch panel
JP6586738B2 (en) Transparent conductive member and method for manufacturing transparent conductive member
WO2015025525A1 (en) Transparent conductive body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15807290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15807290

Country of ref document: EP

Kind code of ref document: A1