WO2014188683A1 - Touch panel electrode substrate, touch panel including touch panel electrode substrate, and display panel - Google Patents

Touch panel electrode substrate, touch panel including touch panel electrode substrate, and display panel Download PDF

Info

Publication number
WO2014188683A1
WO2014188683A1 PCT/JP2014/002563 JP2014002563W WO2014188683A1 WO 2014188683 A1 WO2014188683 A1 WO 2014188683A1 JP 2014002563 W JP2014002563 W JP 2014002563W WO 2014188683 A1 WO2014188683 A1 WO 2014188683A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
touch panel
layer
high refractive
electrode substrate
Prior art date
Application number
PCT/JP2014/002563
Other languages
French (fr)
Japanese (ja)
Inventor
健 波木井
一成 多田
仁一 粕谷
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015518070A priority Critical patent/JPWO2014188683A1/en
Publication of WO2014188683A1 publication Critical patent/WO2014188683A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/418Refractive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to an electrode substrate for a touch panel including a metal pattern, a touch panel including the same, and a display panel.
  • the touch panel includes an electrode substrate on which a transparent conductive layer is disposed.
  • a transparent conductive layer As a material constituting such a transparent conductive layer, metals such as Au, Ag, Pt, Cu, Rh, Pd, Al, and Cr, In 2 O 3 , CdO, CdIn 2 O 4 , Cd 2 SnO 4 , and TiO 2 are used.
  • SnO 2 , ZnO, ITO (Indium Tin Oxide) and other oxide semiconductors are known; from the viewpoint of light transmittance and conductivity, ITO films are frequently used.
  • Patent Document 1 a transparent conductive layer in which Ag is arranged in a mesh shape has been proposed as a transparent conductive layer replacing the ITO film.
  • the transparent conductive layer of Patent Document 1 has an Ag wire width of about 20 ⁇ m. Therefore, the Ag wire is easily visible and cannot be applied to uses that require high transparency. Furthermore, although there is conduction in the wire portion, it does not conduct sufficiently in a region where no wire exists.
  • a transparent conductive layer containing Ag nanowires has also been proposed (Patent Document 2).
  • the thickness of the transparent conductive layer needs to be about 200 nm. Therefore, it is difficult to apply the transparent conductive layer to uses that require flexibility.
  • a transparent conductive layer formed by depositing Ag by a vapor deposition method or the like has also been proposed (Patent Document 3).
  • the transparent conductive layer made of Ag it is difficult to increase the light transmittance of the transparent conductive layer made of Ag.
  • the thickness of the film is increased in order to increase the surface electric resistance value of the transparent conductive layer, Ag inherent reflection occurs and the light transmittance is lowered.
  • the thickness of the film is reduced in order to increase the light transmittance of the transparent conductive layer, plasmon absorption occurs and the light transmittance is lowered.
  • the surface electrical resistance value of the transparent conductive layer is also reduced.
  • An object of the present invention is to provide an electrode substrate for a touch panel having a high light transmittance and a low surface electrical resistance value of a conductive region.
  • the first of the present invention relates to the following touch panel electrode substrate.
  • a transparent substrate a first high refractive index layer containing a dielectric material or an oxide semiconductor material having a refractive index of light having a wavelength of 570 nm higher than that of light having a wavelength of 570 nm of the transparent substrate, and Pt and Pd Of these, a platinum group-containing layer having a thickness of 1 nm or less, a conductive layer made of metal, and a refractive index of light at a wavelength of 570 nm of the transparent substrate.
  • the electrode substrate for a touch panel according to any one of [1] to [4], which is TiO 2 or Nb 2 O 5 .
  • the refractive index of light having a wavelength of 570 nm is lower than the refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor contained in the second high refractive index layer.
  • the electrode substrate for a touch panel according to any one of [1] to [5], further comprising an admittance adjusting layer.
  • the second of the present invention relates to the following touch panel and display panel.
  • a touch panel including the touch panel electrode substrate according to any one of [1] to [7].
  • an electrode substrate for a touch panel having a high light transmittance and a low surface electric resistance value of a conductive region.
  • FIG. 1 is a schematic cross-sectional view showing an example of a layer structure of an electrode substrate for a touch panel according to the present invention.
  • FIG. 2 is a schematic view showing an example of a pattern formed of a conductive region and an insulating region of the electrode substrate for a touch panel according to the present invention.
  • FIG. 3 is a graph showing the admittance locus of the wavelength 570 nm of the electrode substrate for a touch panel produced in Example 1.
  • FIG. 4A is a graph showing an admittance locus of a conductor having a transparent substrate / conductive layer / high refractive index layer at a wavelength of 570 nm.
  • FIG. 4B is a graph showing admittance loci of a wavelength 450 nm, a wavelength 570 nm, and a wavelength 700 nm of a conductor including a transparent substrate / conductive layer / high refractive index layer.
  • FIG. 5 is a schematic sectional view showing an example of the structure of a projected capacitive touch panel including the touch panel electrode substrate of the present invention.
  • 6A and 6B are explanatory diagrams for explaining an example of a wiring pattern of a projected capacitive touch panel.
  • FIG. 7 is a schematic cross-sectional view showing an example of the structure of a surface capacitive touch panel including the electrode substrate for a touch panel of the present invention.
  • FIG. 8 is a schematic cross-sectional view showing an example of the structure of a surface capacitive touch panel including the electrode substrate for a touch panel of the present invention.
  • FIG. 9 is a schematic cross-sectional view showing an example of the structure of a resistive film type touch panel including the touch panel electrode substrate of the present invention.
  • the electrode substrate 100 for a touch panel of the present invention includes a transparent substrate 1 / first high refractive index layer 2 / platinum group-containing layer 3 / conductive layer 4 / second high refractive index layer 5. Included in order.
  • the touch panel electrode substrate 100 may include layers other than those described above.
  • an admittance adjustment layer (not shown) for adjusting the optical admittance on the electrode substrate surface for the touch panel may be included on the second high refractive index layer 5.
  • the layers formed on the transparent substrate 1 are all layers made of an inorganic material.
  • the electrode substrate for a touch panel of the present invention is a laminate from a transparent substrate to a second high refractive index layer.
  • the conductive layer 4 may be patterned into a desired shape, or may be formed on the entire surface of the transparent substrate 1.
  • the region a including the conductive layer 4 is a conductive region (conductive region), and the region b not including the conductive layer 4 is an insulating region (insulating region). is there. That is, in the electrode substrate 100 for a touch panel in FIG. 1, the region a in which the transparent substrate 1, the first high refractive index layer 2, the platinum group-containing layer 3, the conductive layer 4, and the second high refractive index layer 5 are stacked. It is a conductive region.
  • a region b in which the transparent substrate 1, the first high refractive index layer 2, the platinum group-containing layer 3, and the second high refractive index layer 5 are stacked is an insulating region.
  • the pattern composed of the conductive region a and the insulating region b is appropriately selected according to the use of the electrode substrate 100 for touch panel.
  • the pattern composed of the conductive region a and the insulating region b has a plurality of conductive regions a as shown in FIG. And a line-like insulating region b separating the patterns.
  • the conductive region a in the pattern of FIG. 2 is not connected to the region a ′ connected to the circuit of the display device and the circuit, and interacts with the region a ′ to contribute to the detection of the fingertip and the like. There is a region a ′′ to be used.
  • a conventional conductive layer made of a metal such as an Ag film causes reflection of the metal as the film thickness increases, and plasmon absorption occurs as the film thickness decreases. Therefore, it is difficult to increase the light transmittance of the conductive layer.
  • the conductive layer 4 is disposed on the platinum group-containing layer 3.
  • the metal contained in the platinum group-containing layer 3 becomes a growth nucleus at the time of forming the conductive layer; A high film is obtained.
  • metal intrinsic reflection does not occur in the conductive layer 4, and plasmon absorption is further suppressed.
  • the surface electrical resistance of the conductive layer 4 is also reduced.
  • the conductive layer 4 is sandwiched between the first high refractive index layer 2 and the second high refractive index layer 5 having a relatively high refractive index. Therefore, as will be described later, the optical admittance of the region including the conductive layer 4 is adjusted, and the reflection of light in the region is suppressed.
  • the transparent substrate 1 included in the electrode substrate for touch panel 100 may be the same as the substrate included in a general electrode substrate for touch panel.
  • the transparent substrate 1 include a glass substrate, a cellulose ester resin (for example, triacetylcellulose, diacetylcellulose, acetylpropionylcellulose, etc.), a polycarbonate resin (for example, Panlite, Multilon (both manufactured by Teijin Limited)), cycloolefin Resin (for example, ZEONOR (manufactured by ZEON CORPORATION), ARTON (manufactured by JSR), APPEL (manufactured by Mitsui Chemicals)), acrylic resin (for example, polymethylmethacrylate, “Acrylite (manufactured by Mitsubishi Rayon),) Sumipex (Sumitomo Chemical Co., Ltd.) Manufactured))), polyimide, phenol resin, epoxy resin, polyphenylene glycol-co-co-co., etc.
  • the transparent substrate 1 is a glass substrate, or a cellulose ester resin, a polyester resin (particularly polyethylene terephthalate), a triacetyl cellulose, a cycloolefin resin, a phenol resin, an epoxy resin, a polyphenylene ether (PPE) resin, a polyether sulfone.
  • a film made of ABS / AS resin, MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), or styrene block copolymer resin is preferable.
  • the transparent substrate 1 preferably has high transparency to visible light; the average transmittance of light having a wavelength of 450 to 800 nm is preferably 70% or more, more preferably 80% or more, and 85% or more. More preferably it is. When the average light transmittance of the transparent substrate 1 is 70% or more, the light transmittance of the electrode substrate for touch panel 100 is likely to increase. Further, the average absorptance of light having a wavelength of 450 to 800 nm of the transparent substrate 1 is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
  • the average transmittance is measured by making light incident from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent substrate 1.
  • Average transmittance and average reflectance are measured with a spectrophotometer.
  • the refractive index of light having a wavelength of 570 nm of the transparent substrate 1 is preferably 1.40 to 1.95, more preferably 1.45 to 1.75, and still more preferably 1.45 to 1.70. .
  • the refractive index of the transparent substrate is usually determined by the material of the transparent substrate. The refractive index of the transparent substrate is measured with an ellipsometer.
  • the haze value of the transparent substrate 1 is preferably 0.01 to 2.5, more preferably 0.1 to 1.2.
  • the haze value of the electrode substrate 100 for touch panels can be suppressed as the haze value of the transparent substrate 1 is 2.5 or less.
  • the haze value is measured with a haze meter.
  • the thickness of the transparent substrate 1 is preferably 1 ⁇ m to 20 mm, more preferably 10 ⁇ m to 2 mm.
  • the thickness of the transparent substrate 1 is 1 ⁇ m or more, the strength of the transparent substrate 1 is increased, and the first high refractive index layer 2 is difficult to be cracked or torn.
  • the thickness of the transparent substrate 1 is 20 mm or less, the flexibility of the electrode substrate 100 for touch panels is sufficient.
  • the thickness of the touch panel including the electrode substrate for touch panel 100 and the display device can be reduced.
  • the apparatus containing the electrode substrate 100 for touch panels can be reduced in weight.
  • the first high refractive index layer 2 is a layer that mainly adjusts the optical admittance of the electrode substrate 100 for a touch panel.
  • the first high refractive index layer 2 may be a layer formed at least in the conductive region a; it may be a layer formed on the entire surface of the transparent substrate 1.
  • the first high refractive index layer 2 includes a dielectric material or an oxide semiconductor material having a refractive index higher than the refractive index of the transparent substrate 1 described above.
  • the refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 larger than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1, and is preferably 0.4 to 1.0. Larger is more preferable.
  • the refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably larger than 1.5, more preferably 1.7 to 2.5, and still more preferably 1.8 to 2.5. 2.5, particularly preferably 2.2 to 2.5.
  • the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the optical admittance of the electrode substrate for touch panel 100 is sufficiently adjusted by the first high refractive index layer 2.
  • the refractive index of the first high refractive index layer 2 is adjusted by the refractive index of the material included in the first high refractive index layer 2 and the density of the material included in the first high refractive index layer 2.
  • the dielectric material or oxide semiconductor material contained in the first high refractive index layer 2 may be an insulating material or a conductive material.
  • the dielectric material or oxide semiconductor material is preferably a metal oxide or metal sulfide; examples of the metal oxide or metal sulfide include TiO 2 , ITO (indium tin oxide), ZnO, ZnS, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO (indium oxide / zinc oxide) ), AZO (Al-doped ZnO), GZO (Ga-doped ZnO), ATO (Sb-doped SnO), ICO (indium cerium oxide), and the like.
  • the metal oxide or metal sulfide is preferably TiO 2 , ITO, ZnO, Nb 2 O 5 or ZnS, more preferably TiO 2 or Nb 2 O 5 from the viewpoints of refractive index and productivity.
  • the first high refractive index layer 2 may contain only one kind of the metal oxide or metal sulfide, or two or more kinds.
  • the thickness of the first high refractive index layer 2 is preferably 10 to 150 nm, more preferably 20 to 80 nm.
  • the thickness of the first high refractive index layer 2 is 10 nm or more, the optical admittance of the electrode substrate for touch panel 100 is sufficiently adjusted by the first high refractive index layer 2.
  • the thickness of the first high refractive index layer 2 is 150 nm or less, the light transmittance of the region including the first high refractive index layer 2 is unlikely to decrease.
  • the thickness of the first high refractive index layer 2 is measured with an ellipsometer.
  • the first high refractive index layer 2 can be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like. From the viewpoint of increasing the refractive index (density) of the first high refractive index layer, the first high refractive index layer is preferably a layer formed by electron beam evaporation or sputtering. In the electron beam evaporation method, in order to increase the film density, it is desirable to have assistance such as IAD (ion assist).
  • IAD ion assist
  • the first high refractive index layer 2 is a layer formed only in a partial region (for example, the conductive region a) of the transparent substrate 1
  • the first high refractive index layer 2 is patterned by any method. It may be a layer formed. It may be a layer formed in a pattern by a vapor deposition method by placing a mask having a desired pattern on the surface to be deposited; a layer patterned by a known etching method Good.
  • Platinum group-containing layer 3 is a layer disposed adjacent to the conductive layer 4 described later.
  • the platinum group-containing layer 3 may be a layer formed at least in the conductive region a; it may be a layer formed on the entire surface of the transparent substrate 1.
  • the surface smoothness of the conductive layer 4 is increased, and plasmon absorption is suppressed even when the conductive layer 4 is thin.
  • the reason why the surface smoothness of the conductive layer 4 is enhanced when the platinum group-containing layer 3 is included in the electrode substrate 100 for a touch panel is as follows.
  • the material of the conductive layer for example, a film made of Ag
  • the material was deposited on the first high refractive index layer 2 in the initial stage of film formation.
  • Atoms migrate (move) and atoms gather together to form a lump (island structure).
  • a film grows clinging to this lump. Therefore, in the film at the initial stage of film formation, there is a gap between the lumps and it is not conductive.
  • a lump further grows from this state, a part of the lump is connected and barely conducted.
  • plasmon absorption is likely to occur.
  • the lumps are completely connected and plasmon absorption is reduced.
  • the intrinsic reflection of the metal occurs, and the light transmittance of the film decreases.
  • Pt and Pd contained in the platinum group-containing layer 3 are difficult to migrate on the first high refractive index layer 2.
  • the material of the conductive layer 4 is difficult to migrate. That is, the film grows uniformly without forming the aforementioned island-like structure. As a result, a smooth conductive layer 4 can be obtained even when the thickness is small.
  • the platinum group-containing layer 3 includes one or both of Pt and Pd; it is more preferable that at least Pd is included.
  • the ratio of the total amount (% by mass) of Pt and Pd to the total amount (% by mass) of atoms constituting the platinum group-containing layer 3 is preferably 10% by mass or more, more preferably 50% by mass or more, More preferably, it is 80 mass% or more.
  • the metal other than Pt and Pd contained in the platinum group-containing layer 3 can be, for example, gold, a platinum group other than Pt and Pd, cobalt, nickel, molybdenum, titanium, aluminum, chromium, nickel, or an alloy thereof.
  • the platinum group-containing layer 3 may contain only one kind of these metals or two or more kinds.
  • the platinum group-containing layer 3 included in the touch panel electrode may be a layer to which metal atoms such as Pt and Pd are attached. That is, metal atoms do not necessarily have to be attached to the entire surface of the first high refractive index layer 2; normally, metal atoms are attached to a part of the first high refractive index layer 2.
  • the thickness of the platinum group-containing layer 3 is 1 nm or less. When the adhesion amount of the platinum group-containing layer 3 is 1 nm or less, the platinum group-containing layer 3 hardly affects the optical admittance of the touch panel electrode substrate 100. The presence or absence of the platinum group-containing layer 3 is confirmed by the ICP-MS method. The thickness of the platinum group-containing layer 3 is calculated from the product of the film formation rate and the film formation time.
  • the platinum group-containing layer 3 may be a layer formed by sputtering or vapor deposition.
  • the sputtering method include an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, and a bias sputtering method.
  • the sputtering time at the time of forming the platinum group-containing layer is appropriately selected according to the desired average thickness of the platinum group-containing layer 3 and the film forming speed.
  • the sputter deposition rate is preferably from 0.1 to 15 ⁇ / second, more preferably from 0.1 to 7 ⁇ / second.
  • examples of the vapor deposition method include vacuum vapor deposition method, electron beam vapor deposition method, ion plating method, ion beam vapor deposition method and the like.
  • the deposition time is appropriately selected according to the desired thickness of the platinum group-containing layer 3 and the film formation rate.
  • the deposition rate is preferably 0.1 to 15 ⁇ / second, more preferably 0.1 to 7 ⁇ / second.
  • the first high refractive index layer 2 is a layer patterned by any method. There may be. It may be a layer formed in a pattern by arranging a mask having a desired pattern on the film formation surface during the sputtering or vapor deposition; a layer patterned by a known etching method. May be.
  • the conductive layer 4 is a layer made of metal, and is a film that conducts electricity in the electrode substrate for a touch panel. It may be a layer formed on the entire surface of the transparent substrate 1 or a layer formed on only a part of the region. The pattern of the conductive layer 4 is suitably selected according to the use of the electrode substrate for touch panels.
  • the metal contained in the conductive layer 4 is not particularly limited as long as it is a highly conductive metal, and may be, for example, silver, copper, gold, platinum group, titanium, chromium, or the like.
  • the conductive layer 4 may contain only one kind of these metals or two or more kinds. From the viewpoint of low plasmon absorption and low reflectance, the conductive layer 4 is preferably made of silver or an alloy containing 90 at% or more of silver.
  • the metal combined with silver can be zinc, gold, copper, palladium, aluminum, manganese, bismuth, neodymium, molybdenum, and the like.
  • salt resistance (NaCl) resistance increases.
  • silver and copper are combined, the oxidation resistance increases.
  • the plasmon absorptivity of the conductive layer 4 is preferably 15% or less (over the entire range) over a wavelength range of 400 nm to 800 nm, more preferably 10% or less, further preferably 7% or less, and particularly preferably. Is 5% or less.
  • the transmitted light of the conductive region a of the touch panel electrode substrate 100 is easily colored, and the region is easily visible.
  • the plasmon absorption rate of the conductive layer 4 at a wavelength of 400 nm to 800 nm is measured by the following procedure.
  • (I) A platinum palladium film is formed to a thickness of 0.1 nm on a glass substrate using a magnetron sputtering apparatus. The average thickness of platinum palladium is calculated from the film forming speed and the like of the manufacturer's nominal value of the sputtering apparatus. Thereafter, a film made of the same metal as the object to be measured is formed on the substrate on which platinum palladium is adhered by a vapor deposition machine to a thickness of 20 nm.
  • the thickness of the conductive layer 4 is preferably 15 nm or less, more preferably 3 to 13 nm, and even more preferably 7 to 12 nm.
  • the thickness of the conductive layer 4 is 15 nm or less, more preferably 3 to 13 nm, and even more preferably 7 to 12 nm.
  • the thickness of the conductive layer 4 is 15 nm or less, the original reflection of the metal contained in the conductive layer 4 hardly occurs.
  • the thickness of the conductive layer 4 is 15 nm or less, as described later, the optical admittance is easily adjusted by the first high refractive index layer 2 and the second high refractive index layer 5, and the conductive region a is visually recognized. It becomes difficult.
  • the thickness of the conductive layer 4 is measured with an ellipsometer.
  • the conductive layer 4 can be a layer formed by a general vapor deposition method.
  • the vapor deposition method include a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, and the like.
  • the vacuum evaporation method or the sputtering method is preferable. According to the vacuum deposition method or the sputtering method, it is easy to obtain the conductive layer 4 having a uniform and desired thickness.
  • the conductive layer 4 when it is a layer formed only on a partial region of the transparent substrate 1, it may be a film patterned by any method.
  • it may be a film formed in a pattern by a vapor deposition method by placing a mask having a desired pattern on the deposition surface; a film patterned by a known etching method. May be.
  • the second high refractive index layer 5 is a layer that adjusts the optical admittance of the electrode substrate 100 for a touch panel.
  • the second high refractive index layer 5 may be a layer formed at least in the conductive region a; it may be a layer formed on the entire surface of the transparent substrate 1.
  • the second high refractive index layer 5 includes a dielectric material or an oxide semiconductor material having a refractive index higher than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1.
  • the refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 larger than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1, and is preferably 0.4 to 1.0. Larger is more preferable.
  • the refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the second high refractive index layer 5 is preferably larger than 1.5, more preferably 1.6 to 2.5, More preferably, it is 1.8 to 2.5, and particularly preferably 2.2 to 2.5.
  • the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the optical admittance of the electrode substrate for touch panel 100 is sufficiently adjusted by the second high refractive index layer 5.
  • the refractive index of the second high refractive index layer 5 is adjusted by the refractive index of the material included in the second high refractive index layer 5 and the density of the material included in the second high refractive index layer 5.
  • the dielectric material or the oxide semiconductor material included in the second high refractive index layer 5 may be an insulating material or a conductive material.
  • the dielectric material or the oxide semiconductor material can be the same as the material included in the first high refractive index layer 2.
  • the first high refractive index adjusting layer 2 and the second high refractive index 5 may include the same material or different materials.
  • the thickness of the second high refractive index layer 5 is preferably 10 to 150 nm, more preferably 20 to 80 nm.
  • the thickness of the second high refractive index layer 5 is 10 nm or more, the optical admittance of the electrode substrate for touch panel 100 is sufficiently adjusted by the second high refractive index layer 5.
  • the thickness of the second high-refractive index layer 5 is 150 nm or less, the light transmittance of the region including the second high-refractive index layer 5 is unlikely to decrease.
  • the thickness of the second high refractive index layer 5 is measured with an ellipsometer.
  • the second high refractive index layer 5 is a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or a thermal CVD method. It may be a layer formed by the method. Further, when the second high refractive index layer 5 is a layer formed only in a partial region of the transparent substrate 1, it may be a layer patterned by any method. For example, it may be a layer formed by depositing a mask or the like having a desired pattern on the deposition surface and patterned in a vapor phase deposition method, or a layer patterned by a known etching method. May be.
  • Admittance adjustment layer In the electrode substrate for touch panel, the refractive index of light having a wavelength of 570 nm of the dielectric material or the oxide semiconductor material contained in the second high refractive index layer is further formed on the second high refractive index layer.
  • An admittance adjusting layer including a dielectric material or an oxide semiconductor material having a low refractive index of light having a wavelength of 570 nm may be stacked.
  • the admittance adjustment layer is a layer for finely adjusting the optical admittance of the electrode substrate for touch panel.
  • the admittance adjusting layer may be a layer formed at least in the conductive region a; it may be a layer formed on the entire surface of the transparent substrate 1.
  • the refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material included in the admittance adjusting layer is 0.03 to 0. 0 than the refractive index of the dielectric material or oxide semiconductor material included in the second high refractive layer. 5 is preferable, and 0.05 to 0.3 is more preferable.
  • the refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably 1.3 to 1.8, more preferably 1.35 to 1.6, and still more preferably 1. 35-1.5.
  • the refractive index of the material constituting the admittance adjusting layer is 1.35 to 1.5, the optical admittance of the electrode substrate for touch panel is easily finely adjusted.
  • the dielectric material or oxide semiconductor material included in the admittance adjusting layer is not particularly limited, and examples thereof include SiO 2 , Al 2 O 3 , MgF 2 , Y 2 O 3 and the like. From the viewpoint of finely adjusting the refractive index, the dielectric material is preferably SiO 2 or MgF 2 .
  • the thickness of the admittance adjusting layer is preferably 10 to 150 nm, more preferably 20 to 100 nm.
  • the thickness of the admittance adjusting layer is 10 nm or more, it is easy to finely adjust the optical admittance on the surface of the electrode substrate for touch panel.
  • the thickness of the admittance adjusting layer is 150 nm or less, the thickness of the electrode substrate for touch panel is reduced.
  • the thickness of the admittance adjusting layer is measured with an ellipsometer.
  • the admittance adjusting layer when the admittance adjusting layer is a layer formed only in a partial region of the transparent substrate 1, the admittance adjusting layer may be a layer patterned by any method. For example, a layer formed in a pattern by a vapor deposition method by placing a mask having a desired pattern on the deposition surface may be used. Moreover, the layer patterned by the well-known etching method may be sufficient.
  • the reflectance R of the surface on the second high refractive index layer side of the electrode substrate for touch panels is the optical admittance y env of the medium on which light is incident and the equivalent admittance Y of the surface of the electrode substrate for touch panels.
  • the surface of the electrode substrate for touch panel refers to a member made of an organic resin disposed on the electrode substrate for touch panel or a surface in contact with the environment.
  • the medium on which light is incident refers to a member or environment through which light incident on the electrode substrate for touch panel passes immediately before incident; a member or environment made of an organic resin.
  • the relationship between the optical admittance y env of the medium and the equivalent admittance Y E of the electrode substrate surface for the touch panel is expressed by the following equation. Based on the above formula, as
  • the optical admittance Y env of the medium is obtained from the ratio (H / E) of the electric field strength and the magnetic field strength, and is the same as the refractive index n env of the medium.
  • the equivalent admittance Y E is determined from the optical admittance Y of the layers forming the conductive region. For example, when the touch panel electrode substrate is composed of a single layer, the equivalent admittance Y E is equal to the optical admittance Y (refractive index) of the layer constituting the touch panel electrode substrate.
  • the optical admittance Y x (E x H x ) of the laminate from the first layer to the x layer is from the first layer to the (x ⁇ 1) layer. It is represented by the product of the optical admittance Y x-1 (E x-1 H x-1 ) of the laminate and a specific matrix; specifically, it is obtained by the following formula (1) or formula (2) .
  • the x-th layer is a layer made of a dielectric material or an oxide semiconductor material
  • the optical admittance Y x (E x H x ) of the laminate from the transparent substrate to the outermost layer becomes the equivalent admittance Y E on the surface of the touch panel electrode substrate.
  • FIG. 3 shows an admittance locus at a wavelength of 570 nm of the conductive region (transparent substrate / first high refractive index layer / platinum group-containing layer / conductive layer / second high refractive index layer) of the electrode substrate for touch panel of the present invention.
  • the schematic diagram of is represented.
  • the horizontal axis of the graph is the real part when the optical admittance Y is represented by x + iy; that is, x in the formula, and the vertical axis is the imaginary part of the optical admittance; that is, y in the formula.
  • the platinum group containing layer contained in the electrode substrate for a touch panel of the present invention is sufficiently thin. Therefore, the optical admittance of the platinum group-containing layer can be ignored.
  • the reflectance R of the electrode substrate surface for the touch panel is proportional to the difference between the equivalent admittance Y E and the admittance y env of the medium on which light is incident. Accordingly, it is preferable that the distance between the coordinates (x E , y E ) of the equivalent admittance Y E and the admittance coordinates (n env , 0) of the medium on which the light is incident is closer. Specifically, these distances ((x E ⁇ n env ) 2 + (y E ) 2 ) 0.5 are preferably less than 0.5, and more preferably 0.3 or less. If the said distance is less than 0.5, the reflectance R of the electrode substrate surface for touch panels will become small enough, and the electrode substrate for touch panels can be applied to various display panels.
  • the electrode substrate for touch panels of this invention satisfy
  • the conductive layer is sandwiched between the first high refractive index layer and the second high refractive index layer having a relatively high refractive index.
  • one or both of x 1 and x 2 are 1.6 or more. The reason will be described below.
  • FIG. 4A shows an admittance locus at a wavelength of 570 nm of a touch panel electrode substrate having a transparent substrate / conductive layer / high refractive index layer in this order
  • FIG. 4B shows a wavelength of 450 nm, wavelength 570 nm, and wavelength 700 nm of the touch panel electrode substrate. Shows the admittance trajectory. As shown in FIG.
  • an admittance locus is formed in the vertical axis (imaginary part) direction from the starting point of the admittance locus (the admittance coordinates (about 1.5, 0) of the transparent substrate). It moves greatly and the absolute value of the imaginary part of the admittance coordinates becomes very large.
  • the equivalent admittance Y E is the admittance coordinates of the medium on which light is incident (if the medium is air) It becomes difficult to approach (1,0).
  • the admittance locus when a conductive layer is directly laminated on a transparent substrate, the admittance locus is less likely to be line symmetric about the horizontal axis of the graph.
  • the admittance locus at a specific wavelength (570 nm in the present invention) must be line symmetric about the horizontal axis of the graph; as shown in FIG. 4B, equivalent admittance Y E at other wavelengths (for example, 450 nm and 700 nm).
  • the coordinates of are easy to shake greatly. For this reason, a wavelength region having a high reflectance is likely to occur.
  • the admittance Y1 on one surface of the conductive layer greatly moves in the upper right direction of the graph; the value of y 1 Becomes larger.
  • the value of x 1 is large, (for example, 1.6 or more), the value of y 1 tends to increase.
  • the admittance locus tends to be line symmetric about the horizontal axis of the graph as shown in FIG. .
  • the coordinate tends to be constant equivalent admittance Y E, at any wavelength, sufficient reflectance is low.
  • the admittance Y on the surface of each layer increases, the electric field strength E of each layer decreases.
  • the electric field loss (light absorption) of the conductive layer is particularly large. Accordingly, the real part of the optical admittance Y1 and Y2 of the conductive layer (i.e., x 1 and x 2) The greater the electric field loss of the conductive layer is reduced, increasing the light transmission of the electrode substrate for a touch panel.
  • either one of x 1 and x 2 may be 1.6 or more, but both are preferably 1.6 or more. Further, x 1 and x 2 are more preferably 1.8 or more, and further preferably 2.0 or more. The x 1 and x 2 is preferably 7.0 or less, more preferably 5.5 or less.
  • x 1 is the refractive index of the first high refractive index layer and is adjusted in such a thickness of the first high refractive index layer.
  • x 2 is the refractive index of the x 1 value or a conductive layer, is adjusted by such a thickness of the conductive layer. For example, if and refractive index of the first high refractive index layer is higher, when a certain degree thicker, the value of x 1 and x 2 tends to increase.
  • admittance locus is preferably a center line of symmetry of the horizontal axis of the graph.
  • a coordinate y 1 of the imaginary part of the Y1, the coordinate y 2 of the imaginary part of the Y2, y It is preferable to satisfy 1 ⁇ y 2 ⁇ 0.
  • is preferably less than 0.8, more preferably 0.5 or less, and still more preferably 0.3 or less. If
  • the average absorbance of light at a wavelength of 400 nm to 800 nm of the touch panel electrode substrate of the present invention is 15% or less, more preferably 10% or less, and even more preferably 8 % Or less.
  • the maximum value of the light absorptance of the electrode substrate for touch panel at a wavelength of 400 nm to 800 nm is 15% or less, preferably 10% or less, and more preferably 9% or less.
  • both the pattern area (conductive area) of the conductive layer and the non-pattern area of the conductive layer satisfy the maximum values of the average absorption rate and the absorption rate. .
  • the average transmittance of light having a wavelength of 450 nm to 800 nm of the electrode substrate for touch panel is preferably 50% or more, more preferably 70% or more, and further preferably 80% or more.
  • the average reflectance of light having a wavelength of 500 nm to 700 nm of the electrode substrate for touch panel is preferably 20% or less, more preferably 15% or less, and further preferably 10% or less.
  • the electrode substrate for a touch panel can be applied to applications that require high transparency.
  • the above-mentioned conductive layer is patterned, it is preferable that both the pattern area (conductive area) of the conductive layer and the non-pattern area of the conductive layer satisfy the average transmittance and the average reflectance. .
  • the average transmittance and the average reflectance are values measured by allowing measurement light to enter the electrode substrate for touch panel from an angle inclined by 5 ° with respect to the normal of the surface of the electrode substrate for touch panel.
  • the absorptance is calculated from a calculation formula of 100 ⁇ (transmittance + reflectance).
  • the touch panel electrode substrate preferably has an a * value and a b * value within ⁇ 30 in the L * a * b * color system in any region, more preferably within ⁇ 5, Preferably it is within ⁇ 3.0, and particularly preferably within ⁇ 2.0. If the a * value and the b * value in the L * a * b * color system are within ⁇ 30, the touch panel electrode substrate is observed as colorless and transparent. The a * value and b * value in the L * a * b * color system are measured with a spectrophotometer.
  • the surface electrical resistance of the region (conductive region) including the conductive layer of the electrode substrate for touch panel is preferably 30 ⁇ / ⁇ or less, and more preferably 15 ⁇ / ⁇ or less.
  • the electrode substrate for touch panel in which the surface electrical resistance value of the conductive region is 30 ⁇ / ⁇ or less can be applied to a capacitive touch panel.
  • the surface electrical resistance value of the conductive region of the electrode substrate for touch panel is adjusted by the thickness of the conductive layer and the like.
  • the surface electrical resistance value of the electrode substrate for touch panels is measured in accordance with, for example, JIS K7194, ASTM D257, and the like. It is also measured by a commercially available surface electrical resistivity meter.
  • the electrode substrate for a touch panel of the present invention is applied to various touch panels.
  • the touch panel can be various touch sensors, a touch pad, or the like.
  • the touch panel system to which the electrode substrate for a touch panel of the present invention is applied is not particularly limited, and may be, for example, a projected capacitive touch panel, a surface capacitive touch panel, a resistive touch panel, or the like.
  • the projected capacitive touch panel 200 includes two touch panel electrode substrates (100 and 100 ′) described above.
  • the two touch panel electrode substrates (100 and 100 ') are arranged to be stacked.
  • the method for overlaying the two touch panels is not particularly limited, and for example, the two touch panels can be superimposed via the air layer or the adhesive layer 21 so that the surfaces on the second high refractive index layers 5 and 5 ′ face each other.
  • the adhesive layer 21 is not particularly limited as long as it does not impair the light transmittance of the touch panel, and may be a layer made of a known adhesive (for example, an acrylic adhesive or an epoxy adhesive).
  • one touch panel electrode substrate 100 included in the projected capacitive touch panel 200 has a plurality of conductive layers parallel to the Y-axis direction of the touch panel electrode substrate 100. It may be an electrode substrate in which the conductive region a1 (wiring) is arranged.
  • the other touch panel electrode substrate 100 ′ has a plurality of conductive regions a2 (wirings) arranged in parallel to the X-axis direction of the touch panel electrode substrate 100 ′. It can be an electrode substrate. These conductive regions a1 and a2 are each connected to an external detection circuit or the like.
  • the capacitance between the conductive layers 4 and 4 'near the touched area and the finger changes. Then, this change in capacitance is detected by an external detection circuit, and the coordinates (position) touched by the fingertip are specified.
  • the surface capacitive touch panel 210 includes, for example, the touch panel electrode substrate 100 and a cover layer 14 that protects the surface of the touch panel electrode substrate 100 as shown in FIG. .
  • the surface of the touch panel electrode substrate 100 on the second high refractive index layer 5 side and the cover layer 14 are bonded together via an adhesive layer 21 or the like.
  • electrode terminals 15 are provided at the four corners of the touch panel 210, and the electrode terminals 15 are connected to an external detection circuit or the like.
  • the adhesive layer 21 is not particularly limited as long as it does not impair the light transmittance of the touch panel, and may be the same as the adhesive layer 21 of the projected capacitive touch panel.
  • the touch panel electrode substrate 100 included in the surface capacitive touch panel 210 may be an electrode substrate in which the conductive layer 4 is disposed on the entire surface of the transparent substrate 1.
  • the touch panel 210 when the surface of the touch panel 210 is touched with a fingertip or the like, the resistance value between each electrode terminal 15 arranged at the four corners and the ground line changes. This change in resistance value is detected by an external detection circuit, and the coordinates (position) touched by the fingertip are specified.
  • the surface capacitive touch panel 220 may include two touch panel electrode substrates (100 and 100 ').
  • the two touch panel electrode substrates (100 and 100 ') are overlapped with each other via an air layer or an adhesive layer 21 so that the surfaces on the second high refractive index layers 5 and 5' side face each other.
  • the adhesive layer 21 is not particularly limited as long as it does not impair the light transmittance of the touch panel, and may be the same as the adhesive layer 21 of the projected capacitive touch panel.
  • the touch panel electrode substrates 100 and 100 ′ included in the touch panel 220 may be electrode substrates in which the conductive layers 4 and 4 ′ are disposed on the entire surfaces of the transparent substrates 1 and 1 ′. These conductive layers 4 and 4 'are connected to an external detection circuit or the like.
  • the touch panel 220 when the surface of the touch panel 220 is touched with a fingertip, the static electricity between the conductive layer 4 included in one touch panel electrode substrate 100 and the conductive layer 4 ′ included in the other touch panel electrode substrate 100 ′.
  • the capacitance changes. This change in capacitance is detected by an external detection circuit (not shown), and the coordinates (position) touched by the fingertip are specified.
  • the resistive touch panel 230 includes, for example, two touch panel electrode substrates (100 and 100 ') as shown in FIG.
  • the two electrode substrates for touch panels (100 and 100 ') are overlapped with a gap so that, for example, the surfaces on the second high refractive index layers 5 and 5' side face each other.
  • a plurality of spacers 25 are disposed on the surface of one touch panel electrode substrate 100 ′.
  • the spacer 25 may be the same as a spacer of a known resistive film type touch panel.
  • the touch-panel electrode substrates 100 and 100 ′ included in the touch panel 230 may be electrode substrates in which the conductive layers 4 and 4 ′ are formed on the entire surfaces of the transparent substrates 1 and 1 ′. These conductive layers 4 and 4 'are connected to an external detection circuit or the like.
  • the touch panel 230 when the surface of the touch panel 230 is touched with a fingertip, one of the touch panel electrode substrates 100 is pushed into contact with the other touch panel electrode substrate 100 '.
  • the potential change at this time is detected by an external detection circuit (not shown), and the coordinate (position) touched by the fingertip is specified.
  • the touch panel of each method described above is applied to various display panels.
  • the touch panel and various display devices are overlapped.
  • the display device combined with the touch panel is not particularly limited, and may be a known display device such as a liquid crystal display device, a plasma display, an organic EL display, and a field emission display (FED).
  • Example 1 A first high refractive index layer / platinum group-containing layer / conductive layer / second high refractive index layer was laminated in this order on a transparent substrate made of Toyobo PET (Cosmo Shine A4300, thickness 50 ⁇ m) by the following method. An admittance locus at a wavelength of 570 nm of the obtained electrode substrate for touch panel is shown in FIG. The thickness of each layer is J. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
  • First high refractive index layer On the transparent substrate, L-430S-FHS manufactured by Anerva Co., Ltd. was used. Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target side power 150 W, film formation rate 2.0 ⁇ / s. Sputtered. The target-substrate distance was 86 mm. The obtained first high refractive index layer was 40 nm. The refractive index of light with a wavelength of 570 nm of ITO was 1.80, and the refractive index of light with a wavelength of 570 nm of the first high refractive index layer was also 1.80.
  • a Pd film was formed by sputtering for 10 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc. to form growth nuclei having an average thickness of 0.1 nm.
  • MSP-1S magnetron sputtering apparatus manufactured by Vacuum Device Inc.
  • the average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
  • a second high refractive index layer was formed so as to cover the conductive layer in the same manner as the film formation method for the first high refractive index layer described above.
  • the obtained second high refractive index layer was 40 nm.
  • the refractive index of light with a wavelength of 570 nm of ITO was 1.80, and the refractive index of light with a wavelength of 570 nm of the second high refractive index layer was also 1.80.
  • Example 2 A first high refractive index layer / platinum group-containing layer / conductive layer / second high refractive index layer was laminated in this order on a transparent substrate made of Toyobo PET (Cosmo Shine A4300, thickness 50 ⁇ m) by the following method.
  • First high refractive index layer On the transparent substrate, TiO 2 was deposited by electron beam (EB) with ion assistance at 320 mA and a film formation rate of 3 ⁇ ⁇ ⁇ ⁇ / s using a Gener 1300 manufactured by Optorun. The obtained first high refractive index layer was 15 nm.
  • the ion beam was irradiated at a current of 500 mA, a voltage of 500 V, and an acceleration voltage of 400 V.
  • O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced.
  • the refractive index of light with a wavelength of 570 nm of TiO 2 was 2.35, and the refractive index of light with a wavelength of 570 nm of the first high refractive index layer was 2.10.
  • Platinum group-containing layer and conductive layer In the same manner as in Example 1, a platinum group-containing layer and a conductive layer were formed.
  • a second high refractive index layer was formed so as to cover the conductive layer in the same manner as the film formation method for the first high refractive index layer described above.
  • the obtained second high refractive index layer was 20 nm.
  • the refractive index of light with a wavelength of 570 nm of TiO 2 was 2.35, and the refractive index of light with a wavelength of 570 nm of the second high refractive index layer was 2.10.
  • Example 3 A touch panel electrode substrate was prepared in the same manner as in Example 1 except that the thickness of the conductive layer was 8 nm.
  • Example 4 A touch panel electrode substrate was prepared in the same manner as in Example 2 except that the thicknesses of the conductive layer, the first high refractive index layer, and the second high refractive index layer were changed to the thicknesses shown in Table 1.
  • Example 5 A first high refractive index layer / platinum group-containing layer / conductive layer / second high refractive index layer was laminated in this order on a transparent substrate made of Toyobo PET (Cosmo Shine A4300, thickness 50 ⁇ m) by the following method.
  • First high refractive index layer On the transparent substrate, L-430S-FHS manufactured by Anelva is used, Ar 20 sccm, O 2 1 sccm, sputtering pressure 0.5 Pa, room temperature, target side power 150 W, film formation rate 1.2 ⁇ / s, Nb 2 O 5 was DC sputtered. The target-substrate distance was 86 mm. The obtained first high refractive index layer was 12 nm. The refractive index of light with a wavelength of 570 nm of Nb 2 O 5 was 2.31, and the refractive index of light with a wavelength of 570 nm of the first high refractive index layer was also 2.31.
  • Platinum group-containing layer and conductive layer A platinum group-containing layer and a conductive layer were formed in the same manner as in Example 1 except that the thickness of the conductive layer was 8 nm.
  • a second high refractive index layer was formed so as to cover the conductive layer in the same manner as the film formation method for the first high refractive index layer described above.
  • the obtained second high refractive index layer was 18 nm.
  • the refractive index of light with a wavelength of 570 nm of Nb 2 O 5 was 2.31, and the refractive index of light with a wavelength of 570 nm of the second high refractive index layer was also 2.31.
  • Example 6 A touch panel electrode substrate was prepared in the same manner as in Example 5 except that the thicknesses of the conductive layer, the first high refractive index layer, and the second high refractive index layer were changed to the thicknesses shown in Table 1.
  • Example 7 A touch panel electrode substrate was prepared in the same manner as in Example 5 except that the thicknesses of the conductive layer, the first high refractive index layer, and the second high refractive index layer were changed to the thicknesses shown in Table 1.
  • Example 8 The first high refractive index layer / platinum group-containing layer / conductive layer / second high refractive index layer / admittance adjusting layer were sequentially laminated on a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 ⁇ m) by the following method. .
  • First high refractive index layer, platinum group-containing layer, conductive layer and second high refractive index layer Except for the thickness of the conductive layer, the first high-refractive index layer, and the second high-refractive index layer shown in Table 1, in the same manner as in Example 2, the first high-refractive index layer and the platinum group contained A layer, a conductive layer, and a second high refractive index layer were formed.
  • magnesium fluoride (MgF 2 ) was vapor-deposited by electron beam (EB) at 40 mA and a film formation rate of 3 ⁇ / s using a Gener 1300 manufactured by Optorun.
  • the obtained admittance adjusting layer was 75 nm.
  • the refractive index of the light with a wavelength of 570 nm of the magnesium fluoride was 1.38, and the refractive index of the light of the admittance adjusting layer was also 1.38.
  • Example 9 The first high refractive index layer / platinum group-containing layer / conductive layer / second high refractive index layer / admittance adjusting layer were sequentially laminated on a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 ⁇ m) by the following method. .
  • First high refractive index layer, platinum group-containing layer, conductive layer and second high refractive index layer Except for the thickness of the conductive layer, the first high-refractive index layer, and the second high-refractive index layer shown in Table 1, the first high-refractive index layer and the platinum group contained in the same manner as in Example 5. A layer, a conductive layer, and a second high refractive index layer were formed.
  • magnesium fluoride (MgF 2 ) was vapor-deposited by electron beam (EB) at 40 mA and a film formation rate of 3 ⁇ / s using a Gener 1300 manufactured by Optorun.
  • the obtained admittance adjusting layer was 100 nm.
  • the refractive index of the light with a wavelength of 570 nm of the magnesium fluoride was 1.38, and the refractive index of the light of the admittance adjusting layer was also 1.38.
  • Example 10 A touch panel electrode substrate was prepared in the same manner as in Example 9 except that the platinum group-containing layer material was Pt.
  • Example 2 On a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 ⁇ m), the same silver nanowire aqueous dispersion as in Example 2 of the above-mentioned prior patent document 2 was spin-coated on the substrate and baked at 120 ° C. for 20 minutes. .
  • the coater used was 1K-DX manufactured by MIKASA, and the thermostat used was ST-120 manufactured by ESPEC.
  • the obtained Ag film was 50 nm.
  • Comparative Example 3 An Ag film was formed on a transparent substrate in the same manner as in Comparative Example 2 except that the thickness of the film containing silver nanowires was 150 nm.
  • Comparative Example 4 An Ag film was formed on a transparent substrate in the same manner as in Comparative Example 2 except that the thickness of the film containing silver nanowires was 200 nm.
  • optical admittance The optical admittance of the electrode substrate for touch panels obtained in each of the aforementioned examples was specified.
  • the optical admittance of the layers included in the electrode substrate for touch panel was calculated with the thin film design software Essential Macleod Ver.9.4.375. Note that the thickness d, refractive index n, and absorption coefficient k of each layer necessary for the calculation are as follows. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
  • Measured light (light with a wavelength of 400 nm to 800 nm) is incident on the conductive region from an angle inclined by 5 ° with respect to the normal of the surface of the electrode substrate for touch panel produced in each example and comparative example.
  • Product Light transmittance and reflectance were measured with a spectrophotometer U4100. The absorptance was calculated from a formula of 100 ⁇ (transmittance + reflectance).
  • the measurement of plasmon absorption was performed by depositing only a conductive layer on a glass substrate under the same conditions as in the examples and comparative examples. Specifically, the measurement was performed as follows.
  • platinum palladium was formed into a film for 0.2 s (0.1 nm) using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Corporation.
  • MSP-1S magnetron sputtering apparatus
  • the average thickness of platinum-palladium was calculated from the film formation rate at the manufacturer's nominal value of the sputtering apparatus.
  • a silver film having a thickness of 20 nm was formed on the substrate to which platinum palladium was adhered using a BMC-800T vapor deposition machine manufactured by SYNCHRON.
  • the resistance heating at this time was 210 A, and the film formation rate was 5 ⁇ / s.
  • the absorptivity of the conductive layer formed on the glass substrate under the same conditions as in each example was measured.
  • the value obtained by subtracting the reference data from the measurement data was defined as the plasmon absorption rate of the conductive layer.
  • the light transmittance and reflectance were measured with a spectrophotometer U4100 manufactured by Hitachi, Ltd.
  • Sharpness, transparency, and contrast are all high and easy to see 4: Sharpness, transparency, and contrast are high and easy to see 3: Sharpness, transparency, and contrast are inferior It is a level that does not become uncertain 2: Any of sharpness, transparency, and contrast is inferior, and is a slightly worrisome level 1: Any of sharpness, transparency, and contrast is inferior, and is anxious
  • the electrode substrate for a touch panel obtained in the present invention has high light transmittance and further has a low surface electric resistance value in the conductive region. Therefore, it is preferably used for various types of touch panels.

Abstract

The present invention addresses the issue of providing a touch panel electrode substrate having high light transmitting characteristics and a low surface resistance value in a conductive region. In order to solve the issue, this touch panel electrode substrate includes, in the following order, a transparent substrate, a first high refractive index layer, a platinum group-containing layer, which contains Pt and/or Pd, and which has a thickness equal to or less than 1 nm, a conductive layer, and a second high refractive index layer. When the optical admittance of the conductive layer surface on the first high refractive index layer side at a wavelength of 570 nm is expressed by formula of Y1=x1+iy1, and the optical admittance of the conductive layer surface on the second high refractive index layer side at a wavelength of 570 nm is expressed by formula of Y2=x2+iy2, x1 and/or x2 is equal to or more than 1.6.

Description

タッチパネル用電極基板、これを含むタッチパネル、及び表示パネルElectrode substrate for touch panel, touch panel including the same, and display panel
 本発明は、金属パターンを含むタッチパネル用電極基板、これを含むタッチパネル、及び表示パネルに関する。 The present invention relates to an electrode substrate for a touch panel including a metal pattern, a touch panel including the same, and a display panel.
 近年、静電容量方式のタッチパネルが開発されている。当該タッチパネルには、透明導電層が配設された電極基板が含まれる。このような透明導電層を構成する材料として、Au、Ag、Pt、Cu、Rh、Pd、Al、Cr等の金属やIn、CdO、CdIn、CdSnO、TiO、SnO、ZnO、ITO(酸化インジウムスズ)等の酸化物半導体が知られており;光透過性及び導電性の観点から、ITO膜が多用されている。 In recent years, capacitive touch panels have been developed. The touch panel includes an electrode substrate on which a transparent conductive layer is disposed. As a material constituting such a transparent conductive layer, metals such as Au, Ag, Pt, Cu, Rh, Pd, Al, and Cr, In 2 O 3 , CdO, CdIn 2 O 4 , Cd 2 SnO 4 , and TiO 2 are used. , SnO 2 , ZnO, ITO (Indium Tin Oxide) and other oxide semiconductors are known; from the viewpoint of light transmittance and conductivity, ITO films are frequently used.
 しかし、大面積のITO膜は、膜の表面電気抵抗値が高まりやすい。また小面積であっても、ITO膜の表面電気抵抗値を低減するためには、成膜時の温度を高める必要がある。したがって、樹脂フィルム等からなる基板上には、表面電気抵抗値の低いITO膜を成膜できない、という問題もある。 However, a large area ITO film tends to increase the surface electrical resistance of the film. Even in a small area, it is necessary to increase the temperature during film formation in order to reduce the surface electrical resistance value of the ITO film. Therefore, there is a problem that an ITO film having a low surface electric resistance value cannot be formed on a substrate made of a resin film or the like.
 そこで、ITO膜に代わる透明導電層として、Agをメッシュ状に配置した透明導電層が提案されている(特許文献1)。しかし、特許文献1の透明導電層は、Agワイヤの幅が20μm程度である。そのため、Agワイヤが視認されやすく、高い透明性が必要とされる用途には適用できない。さらに、ワイヤ部分では導通があるが、ワイヤが存在しない領域では十分に導通しない。 Therefore, a transparent conductive layer in which Ag is arranged in a mesh shape has been proposed as a transparent conductive layer replacing the ITO film (Patent Document 1). However, the transparent conductive layer of Patent Document 1 has an Ag wire width of about 20 μm. Therefore, the Ag wire is easily visible and cannot be applied to uses that require high transparency. Furthermore, although there is conduction in the wire portion, it does not conduct sufficiently in a region where no wire exists.
 また、Agナノワイヤを含む透明導電層も提案されている(特許文献2)。しかし、当該透明導電層の表面電気抵抗値を低くするためには、透明導電層の厚みを200nm程度にする必要がある。そのため、透明導電層は、フレキシブル性が求められる用途に適用し難い。一方、Agを蒸着法等で成膜した透明導電層も提案されている(特許文献3)。 A transparent conductive layer containing Ag nanowires has also been proposed (Patent Document 2). However, in order to reduce the surface electrical resistance value of the transparent conductive layer, the thickness of the transparent conductive layer needs to be about 200 nm. Therefore, it is difficult to apply the transparent conductive layer to uses that require flexibility. On the other hand, a transparent conductive layer formed by depositing Ag by a vapor deposition method or the like has also been proposed (Patent Document 3).
特開2012-53644号公報JP 2012-53644 A 特表2009-505358号公報Special table 2009-505358 特表2011-508400号公報Special table 2011-508400 gazette
 しかし、Agからなる透明導電層は、光透過性を高めることが難しい。例えば、透明導電層の表面電気抵抗値を高めるために、膜の厚みを厚くすると、Ag本来の反射が生じ、光透過率が低くなる。一方、透明導電層の光透過性を高めるために、膜の厚みを薄くすると、プラズモン吸収が生じて、光透過率が低くなる。さらにこの場合、透明導電層の表面電気抵抗値も低下する。 However, it is difficult to increase the light transmittance of the transparent conductive layer made of Ag. For example, when the thickness of the film is increased in order to increase the surface electric resistance value of the transparent conductive layer, Ag inherent reflection occurs and the light transmittance is lowered. On the other hand, when the thickness of the film is reduced in order to increase the light transmittance of the transparent conductive layer, plasmon absorption occurs and the light transmittance is lowered. Furthermore, in this case, the surface electrical resistance value of the transparent conductive layer is also reduced.
 本発明はこのような状況に鑑みてなされたものである。本発明は、光透過性が高く、かつ導電性領域の表面電気抵抗値が低いタッチパネル用電極基板を提供することを目的とする。 The present invention has been made in view of such a situation. An object of the present invention is to provide an electrode substrate for a touch panel having a high light transmittance and a low surface electrical resistance value of a conductive region.
 即ち、本発明の第一は、以下のタッチパネル用電極基板に関する。
 [1]透明基板と、前記透明基板の波長570nmの光の屈折率より、波長570nmの光の屈折率が高い誘電性材料または酸化物半導体材料を含む第一高屈折率層と、Pt及びPdのうち、いずれか一方あるいは両方を含み、かつ厚みが1nm以下である白金族含有層と、金属からなる導電層と、前記透明基板の波長570nmの光の屈折率より、波長570nmの光の屈折率が高い誘電性材料または酸化物半導体材料を含む第二高屈折率層と、をこの順に含む、タッチパネル用電極基板であって、前記導電層の前記第一高屈折率層側の表面の波長570nmの光学アドミッタンスをY1=x+iy、前記導電層の前記第二高屈折率層側の表面の波長570nmの光学アドミッタンスをY2=x+iyで表した場合に、x及びxのうち、少なくとも一方が1.6以上である、タッチパネル用電極基板。
That is, the first of the present invention relates to the following touch panel electrode substrate.
[1] A transparent substrate, a first high refractive index layer containing a dielectric material or an oxide semiconductor material having a refractive index of light having a wavelength of 570 nm higher than that of light having a wavelength of 570 nm of the transparent substrate, and Pt and Pd Of these, a platinum group-containing layer having a thickness of 1 nm or less, a conductive layer made of metal, and a refractive index of light at a wavelength of 570 nm of the transparent substrate. A high-refractive-index dielectric material or a second high-refractive-index layer containing an oxide semiconductor material in this order, and a wavelength of the surface of the conductive layer on the first high-refractive-index layer side when representing the 570nm optical admittance Y1 = x 1 + iy 1, the optical admittance of wavelength 570nm of the second high refractive index layer side of the surface of the conductive layer in Y2 = x 2 + iy 2, x 1 Among the fine x 2, at least one of which is 1.6 or more, the electrode substrate for a touch panel.
 [2]波長400nm~800nmの光の平均吸収率が10%以下であり、かつ波長400~800nmの光の吸収率の最大値が15%以下である、[1]に記載のタッチパネル用電極基板。
 [3]前記導電層のプラズモン吸収率が、波長400~800nmの全範囲で15%以下である、[1]または[2]に記載のタッチパネル用電極基板。
 [4]前記導電層が、銀または銀を90at%以上含む合金からなる、[1]~[3]のいずれかに記載のタッチパネル用電極基板。
[2] The electrode substrate for a touch panel according to [1], wherein an average absorption rate of light having a wavelength of 400 nm to 800 nm is 10% or less, and a maximum value of absorption rate of light having a wavelength of 400 to 800 nm is 15% or less. .
[3] The electrode substrate for a touch panel according to [1] or [2], wherein the conductive layer has a plasmon absorptance of 15% or less over the entire wavelength range of 400 to 800 nm.
[4] The electrode substrate for a touch panel according to any one of [1] to [3], wherein the conductive layer is made of silver or an alloy containing 90 at% or more of silver.
 [5]前記第一高屈折率層に含まれる前記誘電性材料または酸化物半導体、及び前記第二高屈折率層に含まれる前記誘電性材料または酸化物半導体のうち、いずれか一方あるいは両方がTiO、またはNbである、[1]~[4]のいずれかに記載のタッチパネル用電極基板。 [5] One or both of the dielectric material or oxide semiconductor included in the first high refractive index layer and the dielectric material or oxide semiconductor included in the second high refractive index layer The electrode substrate for a touch panel according to any one of [1] to [4], which is TiO 2 or Nb 2 O 5 .
 [6]前記第二高屈折率層上に、前記第二高屈折率層に含まれる前記誘電性材料または酸化物半導体の波長570nmの光の屈折率より、波長570nmの光の屈折率が低いアドミッタンス調整層をさらに有する、[1]~[5」のいずれかに記載のタッチパネル用電極基板。
 [7]前記タッチパネル用電極基板の前記第二高屈折率層側の表面の波長570nmの光学アドミッタンスをY=x+iyで表し、前記タッチパネル用電極基板の前記第二高屈折率層側の表面に接する部材または環境の、波長570nmの光の屈折率をnenvで表した場合に、((x-nenv+(y0.5≦0.3を満たす、[1]~[6]のいずれかに記載のタッチパネル用電極基板。
[6] On the second high refractive index layer, the refractive index of light having a wavelength of 570 nm is lower than the refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor contained in the second high refractive index layer. The electrode substrate for a touch panel according to any one of [1] to [5], further comprising an admittance adjusting layer.
[7] The optical admittance of wavelength 570nm of the second high refractive index layer side of the surface of the electrode substrate for the touch panel represented in Y E = x E + iy E , the second high refractive index layer side of the electrode substrate for the touch panel When the refractive index of light having a wavelength of 570 nm of a member or environment in contact with the surface of n is expressed by n env , ((x E −n env ) 2 + (y E ) 2 ) satisfies 0.5 ≦ 0.3. , [1] to [6] The electrode substrate for touch panel according to any one of [6].
 本発明の第二は、以下のタッチパネル、及び表示パネルに関する。
 [8]前記[1]~[7]のいずれかに記載のタッチパネル用電極基板を含む、タッチパネル。
 [9]前記タッチパネル用電極基板を2つ含み、前記2つのタッチパネル用電極基板が積み重なるように配置されている、[8]に記載のタッチパネル。
 [10]前記[8]または[9]に記載のタッチパネルと、表示装置とが積層されている、表示パネル。
The second of the present invention relates to the following touch panel and display panel.
[8] A touch panel including the touch panel electrode substrate according to any one of [1] to [7].
[9] The touch panel according to [8], including two touch panel electrode substrates, wherein the two touch panel electrode substrates are arranged to be stacked.
[10] A display panel in which the touch panel according to [8] or [9] and a display device are stacked.
 本発明によれば、光透過性が高く、かつ導電性領域の表面電気抵抗値が低いタッチパネル用電極基板が得られる。 According to the present invention, it is possible to obtain an electrode substrate for a touch panel having a high light transmittance and a low surface electric resistance value of a conductive region.
図1は本発明のタッチパネル用電極基板の層構成の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a layer structure of an electrode substrate for a touch panel according to the present invention. 図2は本発明のタッチパネル用電極基板の導電性領域及び絶縁領域からなるパターンの一例を示す模式図である。FIG. 2 is a schematic view showing an example of a pattern formed of a conductive region and an insulating region of the electrode substrate for a touch panel according to the present invention. 図3は実施例1で作製したタッチパネル用電極基板の波長570nmのアドミッタンス軌跡を示すグラフである。FIG. 3 is a graph showing the admittance locus of the wavelength 570 nm of the electrode substrate for a touch panel produced in Example 1. 図4Aは、透明基板/導電層/高屈折率層を備える導電体の波長570nmのアドミッタンス軌跡を示すグラフである。FIG. 4A is a graph showing an admittance locus of a conductor having a transparent substrate / conductive layer / high refractive index layer at a wavelength of 570 nm. 図4Bは、透明基板/導電層/高屈折率層を備える導電体の波長450nm、波長570nm、及び波長700nmのアドミッタンス軌跡を示すグラフである。FIG. 4B is a graph showing admittance loci of a wavelength 450 nm, a wavelength 570 nm, and a wavelength 700 nm of a conductor including a transparent substrate / conductive layer / high refractive index layer. 図5は、本発明のタッチパネル用電極基板を含む投影型静電容量方式タッチパネルの構造の一例を示す概略断面図である。FIG. 5 is a schematic sectional view showing an example of the structure of a projected capacitive touch panel including the touch panel electrode substrate of the present invention. 図6(A)及び図6(B)は、投影型静電容量方式タッチパネルの配線パターンの一例を説明するための説明図である。6A and 6B are explanatory diagrams for explaining an example of a wiring pattern of a projected capacitive touch panel. 図7は、本発明のタッチパネル用電極基板を含む表面型静電容量方式タッチパネルの構造の一例を示す概略断面図である。FIG. 7 is a schematic cross-sectional view showing an example of the structure of a surface capacitive touch panel including the electrode substrate for a touch panel of the present invention. 図8は、本発明のタッチパネル用電極基板を含む表面型静電容量方式タッチパネルの構造の一例を示す概略断面図である。FIG. 8 is a schematic cross-sectional view showing an example of the structure of a surface capacitive touch panel including the electrode substrate for a touch panel of the present invention. 図9は、本発明のタッチパネル用電極基板を含む抵抗膜方式タッチパネルの構造の一例を示す概略断面図である。FIG. 9 is a schematic cross-sectional view showing an example of the structure of a resistive film type touch panel including the touch panel electrode substrate of the present invention.
 本発明のタッチパネル用電極基板の層構成の一例を図1に示す。図1に示されるように、本発明のタッチパネル用電極基板100には、透明基板1/第一高屈折率層2/白金族含有層3/導電層4/第二高屈折率層5がこの順に含まれる。 An example of the layer structure of the electrode substrate for a touch panel of the present invention is shown in FIG. As shown in FIG. 1, the electrode substrate 100 for a touch panel of the present invention includes a transparent substrate 1 / first high refractive index layer 2 / platinum group-containing layer 3 / conductive layer 4 / second high refractive index layer 5. Included in order.
 また、タッチパネル用電極基板100には、上記以外の層が含まれてもよい。例えば、第二高屈折率層5上に、タッチパネル用電極基板表面の光学アドミッタンスを調整するためのアドミッタンス調整層(図示せず)が含まれてもよい。ただし、本発明のタッチパネル用電極基板100では、透明基板1上に成膜される層を、いずれも無機材料からなる層とする。例えば第二高屈折率層5上に有機樹脂からなる接着層が積層されていたとしても、本発明のタッチパネル用電極基板は、透明基板から第二高屈折率層までの積層体である。 Further, the touch panel electrode substrate 100 may include layers other than those described above. For example, an admittance adjustment layer (not shown) for adjusting the optical admittance on the electrode substrate surface for the touch panel may be included on the second high refractive index layer 5. However, in the electrode substrate 100 for a touch panel of the present invention, the layers formed on the transparent substrate 1 are all layers made of an inorganic material. For example, even if an adhesive layer made of an organic resin is laminated on the second high refractive index layer 5, the electrode substrate for a touch panel of the present invention is a laminate from a transparent substrate to a second high refractive index layer.
 上記導電層4は、所望の形状にパターニングされていてもよく、透明基板1の全面に成膜されていてもよい。導電層4がパターニングされている場合、導電層4が含まれる領域aが導通可能な領域(導電性領域)であり、導電層4が含まれない領域bが絶縁性の領域(絶縁領域)である。つまり、図1のタッチパネル用電極基板100では、透明基板1、第一高屈折率層2、白金族含有層3、導電層4、及び第二高屈折率層5が積層されている領域aが導電性領域である。一方、透明基板1、第一高屈折率層2、白金族含有層3、及び第二高屈折率層5が積層されている領域bが絶縁領域である。 The conductive layer 4 may be patterned into a desired shape, or may be formed on the entire surface of the transparent substrate 1. When the conductive layer 4 is patterned, the region a including the conductive layer 4 is a conductive region (conductive region), and the region b not including the conductive layer 4 is an insulating region (insulating region). is there. That is, in the electrode substrate 100 for a touch panel in FIG. 1, the region a in which the transparent substrate 1, the first high refractive index layer 2, the platinum group-containing layer 3, the conductive layer 4, and the second high refractive index layer 5 are stacked. It is a conductive region. On the other hand, a region b in which the transparent substrate 1, the first high refractive index layer 2, the platinum group-containing layer 3, and the second high refractive index layer 5 are stacked is an insulating region.
 導電性領域a及び絶縁領域bからなるパターンは、タッチパネル用電極基板100の用途に応じて、適宜選択される。本発明のタッチパネル用電極基板100が投影型静電容量方式のタッチパネルに適用される場合、導電性領域a及び絶縁領域bからなるパターンは、図2に示されるような、複数の導電性領域aと、これを区切るライン状の絶縁領域bと、からなるパターン等でありうる。図2のパターンの導電性領域aには、表示装置の回路等と接続される領域a’と、回路とは接続されておらず、領域a’と相互作用して、指先等の感知に寄与する領域a’’とがある。 The pattern composed of the conductive region a and the insulating region b is appropriately selected according to the use of the electrode substrate 100 for touch panel. When the electrode substrate 100 for a touch panel of the present invention is applied to a projected capacitive touch panel, the pattern composed of the conductive region a and the insulating region b has a plurality of conductive regions a as shown in FIG. And a line-like insulating region b separating the patterns. The conductive region a in the pattern of FIG. 2 is not connected to the region a ′ connected to the circuit of the display device and the circuit, and interacts with the region a ′ to contribute to the detection of the fingertip and the like. There is a region a ″ to be used.
 前述のように、従来のAg膜等の金属からなる導電層は、膜の厚みが厚くなると金属本来の反射が生じ、膜の厚みが薄くなるとプラズモン吸収が生じる。そのため、導電層の光透過性を高めることが困難であった。 As described above, a conventional conductive layer made of a metal such as an Ag film causes reflection of the metal as the film thickness increases, and plasmon absorption occurs as the film thickness decreases. Therefore, it is difficult to increase the light transmittance of the conductive layer.
 これに対し、本発明のタッチパネル用電極基板100では、白金族含有層3上に導電層4が配設される。後述するように、白金族含有層3を成膜してから、導電層4を成膜すると、白金族含有層3に含まれる金属が導電層成膜時の成長核となり;薄くとも表面平滑性の高い膜が得られる。その結果、導電層4に金属本来の反射が生じることがなく、さらにプラズモン吸収も抑制される。さらに、導電層4の表面電気抵抗も低くなる。 On the other hand, in the electrode substrate 100 for a touch panel of the present invention, the conductive layer 4 is disposed on the platinum group-containing layer 3. As will be described later, when the conductive layer 4 is formed after the platinum group-containing layer 3 is formed, the metal contained in the platinum group-containing layer 3 becomes a growth nucleus at the time of forming the conductive layer; A high film is obtained. As a result, metal intrinsic reflection does not occur in the conductive layer 4, and plasmon absorption is further suppressed. Furthermore, the surface electrical resistance of the conductive layer 4 is also reduced.
 また、本発明のタッチパネル用電極基板100では、導電層4が、比較的屈折率の高い第一高屈折率層2及び第二高屈折率層5に挟まれている。そのため、後述するように、導電層4を含む領域の光学アドミッタンスが調整され、当該領域の光の反射が抑制される。 In the touch panel electrode substrate 100 of the present invention, the conductive layer 4 is sandwiched between the first high refractive index layer 2 and the second high refractive index layer 5 having a relatively high refractive index. Therefore, as will be described later, the optical admittance of the region including the conductive layer 4 is adjusted, and the reflection of light in the region is suppressed.
 1.タッチパネル用電極基板の層構成について
 1.1)透明基板
 タッチパネル用電極基板100に含まれる透明基板1は、一般的なタッチパネル用電極基板に含まれる基板と同様でありうる。透明基板1の例には、ガラス基板や、セルロースエステル樹脂(例えば、トリアセチルセルロース、ジアセチルセルロース、アセチルプロピオニルセルロース等)、ポリカーボネート樹脂(例えばパンライト、マルチロン(いずれも帝人社製))、シクロオレフィン樹脂(例えばゼオノア(日本ゼオン社製)、アートン(JSR社製)、アペル(三井化学社製))、アクリル樹脂(例えばポリメチルメタクリレート、「アクリライト(三菱レイヨン社製)、スミペックス(住友化学社製)」)、ポリイミド、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリエステル樹脂(例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート)、ポリエーテルスルホン、ABS/AS樹脂、MBS樹脂、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/EVOH(エチレンビニルアルコール樹脂)、スチレン系ブロックコポリマー樹脂等からなる透明樹脂フィルムが含まれる。透明基板が透明樹脂フィルムである場合、当該フィルムには2種以上の樹脂が含まれてもよい。
1. 1. Layer structure of electrode substrate for touch panel 1.1) Transparent substrate The transparent substrate 1 included in the electrode substrate for touch panel 100 may be the same as the substrate included in a general electrode substrate for touch panel. Examples of the transparent substrate 1 include a glass substrate, a cellulose ester resin (for example, triacetylcellulose, diacetylcellulose, acetylpropionylcellulose, etc.), a polycarbonate resin (for example, Panlite, Multilon (both manufactured by Teijin Limited)), cycloolefin Resin (for example, ZEONOR (manufactured by ZEON CORPORATION), ARTON (manufactured by JSR), APPEL (manufactured by Mitsui Chemicals)), acrylic resin (for example, polymethylmethacrylate, “Acrylite (manufactured by Mitsubishi Rayon),) Sumipex (Sumitomo Chemical Co., Ltd.) Manufactured))), polyimide, phenol resin, epoxy resin, polyphenylene ether (PPE) resin, polyester resin (eg, polyethylene terephthalate (PET), polyethylene naphthalate), polyether sulfone, ABS / AS resin, MBS resin Polystyrene, methacrylic resins, polyvinyl alcohol / EVOH (ethylene-vinyl alcohol resin), include a transparent resin film comprising a styrene block copolymer resin. When the transparent substrate is a transparent resin film, the film may contain two or more kinds of resins.
 透明性の観点から、透明基板1はガラス基板、もしくはセルロースエステル樹脂、ポリエステル樹脂(特にポリエチレンテレフタレート)、トリアセチルセルロース、シクロオレフィン樹脂、フェノール樹脂、エポキシ樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリエーテルスルホン、ABS/AS樹脂、MBS樹脂、ポリスチレン、メタクリル樹脂、ポリビニルアルコール/EVOH(エチレンビニルアルコール樹脂)、またはスチレン系ブロックコポリマー樹脂からなるフィルムであることが好ましい。 From the viewpoint of transparency, the transparent substrate 1 is a glass substrate, or a cellulose ester resin, a polyester resin (particularly polyethylene terephthalate), a triacetyl cellulose, a cycloolefin resin, a phenol resin, an epoxy resin, a polyphenylene ether (PPE) resin, a polyether sulfone. A film made of ABS / AS resin, MBS resin, polystyrene, methacrylic resin, polyvinyl alcohol / EVOH (ethylene vinyl alcohol resin), or styrene block copolymer resin is preferable.
 透明基板1は、可視光に対する透明性が高いことが好ましく;波長450~800nmの光の平均透過率が70%以上であることが好ましく、80%以上であることがより好ましく、85%以上であることがさらに好ましい。透明基板1の光の平均透過率が70%以上であると、タッチパネル用電極基板100の光透過性が高まりやすい。また、透明基板1の波長450~800nmの光の平均吸収率は10%以下であることが好ましく、より好ましくは5%以下、さらに好ましくは3%以下である。 The transparent substrate 1 preferably has high transparency to visible light; the average transmittance of light having a wavelength of 450 to 800 nm is preferably 70% or more, more preferably 80% or more, and 85% or more. More preferably it is. When the average light transmittance of the transparent substrate 1 is 70% or more, the light transmittance of the electrode substrate for touch panel 100 is likely to increase. Further, the average absorptance of light having a wavelength of 450 to 800 nm of the transparent substrate 1 is preferably 10% or less, more preferably 5% or less, and further preferably 3% or less.
 上記平均透過率は、透明基板1の表面の法線に対して、5°傾けた角度から光を入射させて測定する。一方、平均吸収率は、平均透過率と同様の角度から光を入射させて、透明基板1の平均反射率を測定し;平均吸収率=100-(平均透過率+平均反射率)として算出する。平均透過率及び平均反射率は分光光度計で測定する。 The average transmittance is measured by making light incident from an angle inclined by 5 ° with respect to the normal line of the surface of the transparent substrate 1. On the other hand, the average absorptance is calculated as average absorptance = 100− (average transmissivity + average reflectivity) by making light incident from the same angle as the average transmissivity and measuring the average reflectivity of the transparent substrate 1; . Average transmittance and average reflectance are measured with a spectrophotometer.
 透明基板1の波長570nmの光の屈折率は1.40~1.95であることが好ましく、より好ましくは1.45~1.75であり、さらに好ましくは1.45~1.70である。透明基板の屈折率は、通常、透明基板の材質によって定まる。透明基板の屈折率は、エリプソメーターで測定される。 The refractive index of light having a wavelength of 570 nm of the transparent substrate 1 is preferably 1.40 to 1.95, more preferably 1.45 to 1.75, and still more preferably 1.45 to 1.70. . The refractive index of the transparent substrate is usually determined by the material of the transparent substrate. The refractive index of the transparent substrate is measured with an ellipsometer.
 透明基板1のヘイズ値は0.01~2.5であることが好ましく、より好ましくは0.1~1.2である。透明基板1のヘイズ値が2.5以下であると、タッチパネル用電極基板100のヘイズ値を抑制できる。ヘイズ値は、ヘイズメーターで測定される。 The haze value of the transparent substrate 1 is preferably 0.01 to 2.5, more preferably 0.1 to 1.2. The haze value of the electrode substrate 100 for touch panels can be suppressed as the haze value of the transparent substrate 1 is 2.5 or less. The haze value is measured with a haze meter.
 透明基板1の厚みは、1μm~20mmであることが好ましく、より好ましくは10μm~2mmである。透明基板1の厚みが1μm以上であると、透明基板1の強度が高まり、第一高屈折率層2の作製時に割れたり、裂けたりし難くなる。一方、透明基板1の厚みが20mm以下であれば、タッチパネル用電極基板100のフレキシブル性が十分となる。さらに当該タッチパネル用電極基板100が含まれるタッチパネルや、表示デバイスの厚みを薄くできる。また、タッチパネル用電極基板100を含む機器を軽量化できる。 The thickness of the transparent substrate 1 is preferably 1 μm to 20 mm, more preferably 10 μm to 2 mm. When the thickness of the transparent substrate 1 is 1 μm or more, the strength of the transparent substrate 1 is increased, and the first high refractive index layer 2 is difficult to be cracked or torn. On the other hand, if the thickness of the transparent substrate 1 is 20 mm or less, the flexibility of the electrode substrate 100 for touch panels is sufficient. Furthermore, the thickness of the touch panel including the electrode substrate for touch panel 100 and the display device can be reduced. Moreover, the apparatus containing the electrode substrate 100 for touch panels can be reduced in weight.
 1.2)第一高屈折率層
 第一高屈折率層2は主に、タッチパネル用電極基板100の光学アドミッタンスを調整する層である。第一高屈折率層2は、少なくとも導電性領域aに成膜された層であればよく;透明基板1の全面に成膜された層であってもよい。
1.2) First High Refractive Index Layer The first high refractive index layer 2 is a layer that mainly adjusts the optical admittance of the electrode substrate 100 for a touch panel. The first high refractive index layer 2 may be a layer formed at least in the conductive region a; it may be a layer formed on the entire surface of the transparent substrate 1.
 第一高屈折率層2には、前述の透明基板1の屈折率より高い屈折率を有する誘電性材料または酸化物半導体材料が含まれる。当該誘電性材料または酸化物半導体材料の波長570nmの光の屈折率は、透明基板1の波長570nmの光の屈折率より0.1~1.1大きいことが好ましく、0.4~1.0大きいことがより好ましい。 The first high refractive index layer 2 includes a dielectric material or an oxide semiconductor material having a refractive index higher than the refractive index of the transparent substrate 1 described above. The refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 larger than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1, and is preferably 0.4 to 1.0. Larger is more preferable.
 また、当該誘電性材料または酸化物半導体材料の波長570nmの光の屈折率は1.5より大きいことが好ましく、1.7~2.5であることがより好ましく、さらに好ましくは1.8~2.5であり、特に好ましくは2.2~2.5である。誘電性材料または酸化物半導体材料の屈折率が1.5より大きいと、第一高屈折率層2によって、タッチパネル用電極基板100の光学アドミッタンスが十分に調整される。なお、第一高屈折率層2の屈折率は、第一高屈折率層2に含まれる材料の屈折率や、第一高屈折率層2に含まれる材料の密度で調整される。 The refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably larger than 1.5, more preferably 1.7 to 2.5, and still more preferably 1.8 to 2.5. 2.5, particularly preferably 2.2 to 2.5. When the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the optical admittance of the electrode substrate for touch panel 100 is sufficiently adjusted by the first high refractive index layer 2. The refractive index of the first high refractive index layer 2 is adjusted by the refractive index of the material included in the first high refractive index layer 2 and the density of the material included in the first high refractive index layer 2.
 第一高屈折率層2に含まれる誘電性材料または酸化物半導体材料は、絶縁性の材料であってもよく、導電性の材料であってもよい。当該誘電性材料または酸化物半導体材料は、金属酸化物または金属硫化物であることが好ましく;金属酸化物または金属硫化物の例には、TiO、ITO(酸化インジウムスズ)、ZnO、ZnS、Nb、ZrO、CeO、Ta、Ti、Ti、Ti、TiO、SnO、LaTi、IZO(酸化インジウム・酸化亜鉛)、AZO(AlドープZnO)、GZO(GaドープZnO)、ATO(SbドープSnO)、ICO(インジウムセリウムオキサイド)等が含まれる。金属酸化物または金属硫化物は、屈折率や生産性の観点からTiO、ITO、ZnO、NbまたはZnSであることが好ましく、さらに好ましくはTiOまたはNbである。第一高屈折率層2には、上記金属酸化物または金属硫化物が1種のみ含まれてもよく、2種以上が含まれてもよい。 The dielectric material or oxide semiconductor material contained in the first high refractive index layer 2 may be an insulating material or a conductive material. The dielectric material or oxide semiconductor material is preferably a metal oxide or metal sulfide; examples of the metal oxide or metal sulfide include TiO 2 , ITO (indium tin oxide), ZnO, ZnS, Nb 2 O 5 , ZrO 2 , CeO 2 , Ta 2 O 5 , Ti 3 O 5 , Ti 4 O 7 , Ti 2 O 3 , TiO, SnO 2 , La 2 Ti 2 O 7 , IZO (indium oxide / zinc oxide) ), AZO (Al-doped ZnO), GZO (Ga-doped ZnO), ATO (Sb-doped SnO), ICO (indium cerium oxide), and the like. The metal oxide or metal sulfide is preferably TiO 2 , ITO, ZnO, Nb 2 O 5 or ZnS, more preferably TiO 2 or Nb 2 O 5 from the viewpoints of refractive index and productivity. The first high refractive index layer 2 may contain only one kind of the metal oxide or metal sulfide, or two or more kinds.
 第一高屈折率層2の厚みは、10~150nmであることが好ましく、より好ましくは20~80nmである。第一高屈折率層2の厚みが10nm以上であると、第一高屈折率層2によって、タッチパネル用電極基板100の光学アドミッタンスが十分に調整される。一方、第一高屈折率層2の厚みが150nm以下であれば、第一高屈折率層2が含まれる領域の光透過性が低下し難い。第一高屈折率層2の厚みは、エリプソメーターで測定される。 The thickness of the first high refractive index layer 2 is preferably 10 to 150 nm, more preferably 20 to 80 nm. When the thickness of the first high refractive index layer 2 is 10 nm or more, the optical admittance of the electrode substrate for touch panel 100 is sufficiently adjusted by the first high refractive index layer 2. On the other hand, if the thickness of the first high refractive index layer 2 is 150 nm or less, the light transmittance of the region including the first high refractive index layer 2 is unlikely to decrease. The thickness of the first high refractive index layer 2 is measured with an ellipsometer.
 第一高屈折率層2は、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で成膜された層でありうる。第一高屈折率層の屈折率(密度)が高まるとの観点から、第一高屈折率層は、電子ビーム蒸着法またはスパッタ法で成膜された層であることが好ましい。電子ビーム蒸着法では膜密度を高めるため、IAD(イオンアシスト)などのアシストがあることが望ましい。 The first high refractive index layer 2 can be a layer formed by a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method or the like. From the viewpoint of increasing the refractive index (density) of the first high refractive index layer, the first high refractive index layer is preferably a layer formed by electron beam evaporation or sputtering. In the electron beam evaporation method, in order to increase the film density, it is desirable to have assistance such as IAD (ion assist).
 また、第一高屈折率層2が透明基板1の一部領域(例えば、導電性領域a)のみに成膜された層である場合、第一高屈折率層2は、いずれの方法でパターニングされた層であってもよい。所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に成膜された層であってもよく;公知のエッチング法によってパターニングされた層であってもよい。 When the first high refractive index layer 2 is a layer formed only in a partial region (for example, the conductive region a) of the transparent substrate 1, the first high refractive index layer 2 is patterned by any method. It may be a layer formed. It may be a layer formed in a pattern by a vapor deposition method by placing a mask having a desired pattern on the surface to be deposited; a layer patterned by a known etching method Good.
 1.3)白金族含有層
 白金族含有層3は、後述の導電層4と隣接して配設される層である。白金族含有層3は、少なくとも導電性領域aに成膜された層であればよく;透明基板1の全面に成膜された層であってもよい。
1.3) Platinum group-containing layer The platinum group-containing layer 3 is a layer disposed adjacent to the conductive layer 4 described later. The platinum group-containing layer 3 may be a layer formed at least in the conductive region a; it may be a layer formed on the entire surface of the transparent substrate 1.
 前述のように、タッチパネル用電極基板100に白金族含有層3が含まれると、導電層4の表面平滑性が高まり、導電層4の厚みが薄くとも、プラズモン吸収が抑制される。タッチパネル用電極基板100に白金族含有層3が含まれると、導電層4の表面平滑性が高まる理由は以下の通りである。 As described above, when the platinum group-containing layer 3 is included in the touch panel electrode substrate 100, the surface smoothness of the conductive layer 4 is increased, and plasmon absorption is suppressed even when the conductive layer 4 is thin. The reason why the surface smoothness of the conductive layer 4 is enhanced when the platinum group-containing layer 3 is included in the electrode substrate 100 for a touch panel is as follows.
 一般的な気相成膜法で導電層(例えばAgからなる膜)の材料を第一高屈折率層上に堆積させると、成膜初期には、第一高屈折率層2上に付着した原子がマイグレート(移動)し、原子が寄り集まって塊(島状構造)を形成する。そして、この塊にまとわりつきながら膜が成長する。そのため、成膜初期の膜では、塊同士の間に隙間があり、導通しない。この状態からさらに塊が成長すると、塊同士の一部が繋がり、かろうじて導通する。しかし、塊同士の間に未だ隙間があるため、プラズモン吸収が生じやすい。そして、さらに成膜が進むと、塊同士が完全に繋がって、プラズモン吸収が少なくなる。しかしその一方で、金属本来の反射が生じ、膜の光透過性が低下する。 When the material of the conductive layer (for example, a film made of Ag) was deposited on the first high refractive index layer by a general vapor deposition method, the material was deposited on the first high refractive index layer 2 in the initial stage of film formation. Atoms migrate (move) and atoms gather together to form a lump (island structure). And a film grows clinging to this lump. Therefore, in the film at the initial stage of film formation, there is a gap between the lumps and it is not conductive. When a lump further grows from this state, a part of the lump is connected and barely conducted. However, since there is still a gap between the lumps, plasmon absorption is likely to occur. As the film formation proceeds further, the lumps are completely connected and plasmon absorption is reduced. However, on the other hand, the intrinsic reflection of the metal occurs, and the light transmittance of the film decreases.
 これに対し、白金族含有層3に含まれるPtやPdは、第一高屈折率層2上をマイグレートし難い。このような白金族含有層3上に導電層4を成膜すると、導電層4の材料がマイグレートし難い。つまり、前述の島状構造を形成せずに、均一に膜が成長する。その結果、厚みが薄くとも平滑な導電層4が得られる。 On the other hand, Pt and Pd contained in the platinum group-containing layer 3 are difficult to migrate on the first high refractive index layer 2. When the conductive layer 4 is formed on such a platinum group-containing layer 3, the material of the conductive layer 4 is difficult to migrate. That is, the film grows uniformly without forming the aforementioned island-like structure. As a result, a smooth conductive layer 4 can be obtained even when the thickness is small.
 ここで、白金族含有層3には、Pt及びPdのうち、いずれか一方、もしくは両方が含まれ;Pdが少なくとも含まれることがより好ましい。白金族含有層3を構成する原子の総量(質量%)に対する、Pt及びPdの総量(質量%)の比率は、10質量%以上であることが好ましく、より好ましくは50質量%以上であり、さらに好ましくは80質量%以上である。 Here, the platinum group-containing layer 3 includes one or both of Pt and Pd; it is more preferable that at least Pd is included. The ratio of the total amount (% by mass) of Pt and Pd to the total amount (% by mass) of atoms constituting the platinum group-containing layer 3 is preferably 10% by mass or more, more preferably 50% by mass or more, More preferably, it is 80 mass% or more.
 白金族含有層3に含まれる、Pt及びPd以外の金属は、例えば金、Pt及びPd以外の白金族、コバルト、ニッケル、モリブデン、チタン、アルミニウム、クロム、ニッケル、もしくはこれらの合金でありうる。白金族含有層3には、これらの金属が1種のみ含まれてもよく、また2種以上含まれてもよい。 The metal other than Pt and Pd contained in the platinum group-containing layer 3 can be, for example, gold, a platinum group other than Pt and Pd, cobalt, nickel, molybdenum, titanium, aluminum, chromium, nickel, or an alloy thereof. The platinum group-containing layer 3 may contain only one kind of these metals or two or more kinds.
 また、タッチパネル用電極に含まれる白金族含有層3は、PtやPd等の金属原子が付着した層であればよい。つまり、必ずしも第一高屈折率層2の全面に金属原子が付着していなくともよく;通常は、第一高屈折率層2の一部に金属原子が付着している。当該白金族含有層3の厚みは、1nm以下である。白金族含有層3の付着量が1nm以下であれば、白金族含有層3がタッチパネル用電極基板100の光学アドミッタンスに影響を及ぼし難い。白金族含有層3の有無はICP-MS法で確認される。また、白金族含有層3の厚みは、成膜速度と成膜時間との積から算出される。 The platinum group-containing layer 3 included in the touch panel electrode may be a layer to which metal atoms such as Pt and Pd are attached. That is, metal atoms do not necessarily have to be attached to the entire surface of the first high refractive index layer 2; normally, metal atoms are attached to a part of the first high refractive index layer 2. The thickness of the platinum group-containing layer 3 is 1 nm or less. When the adhesion amount of the platinum group-containing layer 3 is 1 nm or less, the platinum group-containing layer 3 hardly affects the optical admittance of the touch panel electrode substrate 100. The presence or absence of the platinum group-containing layer 3 is confirmed by the ICP-MS method. The thickness of the platinum group-containing layer 3 is calculated from the product of the film formation rate and the film formation time.
 上記白金族含有層3は、スパッタ法または蒸着法で成膜された層でありうる。スパッタ法の例には、イオンビームスパッタ法や、マグネトロンスパッタ法、反応性スパッタ法、2極スパッタ法、バイアススパッタ法等が含まれる。白金族含有層成膜時のスパッタ時間は、所望の白金族含有層3の平均厚み、及び成膜速度に合わせて適宜選択される。スパッタ成膜速度は、好ましくは0.1~15Å/秒であり、より好ましくは0.1~7Å/秒である。 The platinum group-containing layer 3 may be a layer formed by sputtering or vapor deposition. Examples of the sputtering method include an ion beam sputtering method, a magnetron sputtering method, a reactive sputtering method, a bipolar sputtering method, and a bias sputtering method. The sputtering time at the time of forming the platinum group-containing layer is appropriately selected according to the desired average thickness of the platinum group-containing layer 3 and the film forming speed. The sputter deposition rate is preferably from 0.1 to 15 Å / second, more preferably from 0.1 to 7 秒 / second.
 一方、蒸着法の例には、真空蒸着法、電子線蒸着法、イオンプレーティング法、イオンビーム蒸着法等が含まれる。蒸着時間は、所望の白金族含有層3の厚み、及び成膜速度に合わせて適宜選択される。蒸着速度は、好ましくは0.1~15Å/秒であり、より好ましくは0.1~7Å/秒である。 On the other hand, examples of the vapor deposition method include vacuum vapor deposition method, electron beam vapor deposition method, ion plating method, ion beam vapor deposition method and the like. The deposition time is appropriately selected according to the desired thickness of the platinum group-containing layer 3 and the film formation rate. The deposition rate is preferably 0.1 to 15 Å / second, more preferably 0.1 to 7 Å / second.
 白金族含有層3が透明基板1の一部領域(例えば、導電性領域a)のみに成膜された層である場合、第一高屈折率層2は、いずれの方法でパターニングされた層であってもよい。上記スパッタもしくは蒸着の際に、所望のパターンを有するマスク等を被成膜面に配置して、パターン状に成膜された層であってもよく;公知のエッチング法によってパターニングされた層であってもよい。 When the platinum group-containing layer 3 is a layer formed only in a partial region (for example, the conductive region a) of the transparent substrate 1, the first high refractive index layer 2 is a layer patterned by any method. There may be. It may be a layer formed in a pattern by arranging a mask having a desired pattern on the film formation surface during the sputtering or vapor deposition; a layer patterned by a known etching method. May be.
 1.4)導電層
 導電層4は、金属からなる層であり、タッチパネル用電極基板において電気を導通させる膜である。透明基板1の全面に成膜された層であってもよく、一部の領域のみに成膜された層であってもよい。導電層4のパターンは、タッチパネル用電極基板の用途に応じて適宜選択される。
1.4) Conductive layer The conductive layer 4 is a layer made of metal, and is a film that conducts electricity in the electrode substrate for a touch panel. It may be a layer formed on the entire surface of the transparent substrate 1 or a layer formed on only a part of the region. The pattern of the conductive layer 4 is suitably selected according to the use of the electrode substrate for touch panels.
 導電層4に含まれる金属は、導電性の高い金属であれば特に制限されず、例えば銀、銅、金、白金族、チタン、クロム等でありうる。導電層4には、これらの金属が1種のみ含まれてもよく、2種以上含まれてもよい。プラズモン吸収が小さく、かつ反射率が小さいとの観点から、導電層4は銀または銀が90at%以上含まれる合金からなることが好ましい。銀と組み合わされる金属は、亜鉛、金、銅、パラジウム、アルミニウム、マンガン、ビスマス、ネオジム、モリブデン等でありうる。例えば銀と亜鉛とが組み合わされると、導電層の耐硫化性が高まる。銀と金とが組み合わされると、耐塩(NaCl)性が高まる。さらに銀と銅とが組み合わされると、耐酸化性が高まる。 The metal contained in the conductive layer 4 is not particularly limited as long as it is a highly conductive metal, and may be, for example, silver, copper, gold, platinum group, titanium, chromium, or the like. The conductive layer 4 may contain only one kind of these metals or two or more kinds. From the viewpoint of low plasmon absorption and low reflectance, the conductive layer 4 is preferably made of silver or an alloy containing 90 at% or more of silver. The metal combined with silver can be zinc, gold, copper, palladium, aluminum, manganese, bismuth, neodymium, molybdenum, and the like. For example, when silver and zinc are combined, the sulfidation resistance of the conductive layer is increased. When silver and gold are combined, salt resistance (NaCl) resistance increases. Furthermore, when silver and copper are combined, the oxidation resistance increases.
 導電層4のプラズモン吸収率は、波長400nm~800nmにわたって(全範囲で)15%以下であることが好ましく、10%以下であることがより好ましく、7%以下であることがさらに好ましく、特に好ましくは5%以下である。波長400nm~800nmの一部にプラズモン吸収率が大きい領域があると、タッチパネル用電極基板100の導電性領域aの透過光が着色しやすくなり、当該領域が視認されやすくなる。 The plasmon absorptivity of the conductive layer 4 is preferably 15% or less (over the entire range) over a wavelength range of 400 nm to 800 nm, more preferably 10% or less, further preferably 7% or less, and particularly preferably. Is 5% or less. When there is a region having a large plasmon absorption rate in a part of the wavelength of 400 nm to 800 nm, the transmitted light of the conductive region a of the touch panel electrode substrate 100 is easily colored, and the region is easily visible.
 導電層4の波長400nm~800nmにおけるプラズモン吸収率は、以下の手順で測定される。
 (i)ガラス基板上に、白金パラジウムをマグネトロンスパッタ装置にて0.1nm成膜する。白金パラジウムの平均厚みは、スパッタ装置のメーカー公称値の成膜速度等から算出する。その後、白金パラジウムが付着した基板上に蒸着機にて測定対象と同様の金属からなる膜を20nm成膜する。
The plasmon absorption rate of the conductive layer 4 at a wavelength of 400 nm to 800 nm is measured by the following procedure.
(I) A platinum palladium film is formed to a thickness of 0.1 nm on a glass substrate using a magnetron sputtering apparatus. The average thickness of platinum palladium is calculated from the film forming speed and the like of the manufacturer's nominal value of the sputtering apparatus. Thereafter, a film made of the same metal as the object to be measured is formed on the substrate on which platinum palladium is adhered by a vapor deposition machine to a thickness of 20 nm.
 (ii)そして、得られた金属膜の表面の法線に対して、5°傾けた角度から測定光を入射させ、金属膜の透過率及び反射率を測定する。そして各波長における透過率及び反射率から、吸収率=100-(透過率+反射率)を算出し、これをリファレンスデータとする。透過率及び反射率は、分光光度計で測定する。 (Ii) Then, measurement light is incident from an angle inclined by 5 ° with respect to the normal of the surface of the obtained metal film, and the transmittance and reflectance of the metal film are measured. Then, from the transmittance and reflectance at each wavelength, absorption rate = 100− (transmittance + reflectance) is calculated and used as reference data. The transmittance and reflectance are measured with a spectrophotometer.
 (iii)続いて、測定対象の導電層4について、同様に透過率及び反射率を測定する。そして、得られた吸収率から上記リファレンスデータを差し引き、算出された値を、プラズモン吸収率とする。 (Iii) Subsequently, the transmittance and reflectance of the conductive layer 4 to be measured are measured in the same manner. Then, the reference data is subtracted from the obtained absorption rate, and the calculated value is defined as the plasmon absorption rate.
 導電層4の厚みは15nm以下であることが好ましく、より好ましくは3~13nmであり、さらに好ましくは7~12nmである。導電層4の厚みが15nm以下であると、導電層4に含まれる金属本来の反射が生じ難い。さらに、導電層4の厚みが15nm以下であると、後述するように、第一高屈折率層2及び第二高屈折率層5によって、光学アドミッタンスが調整されやすく、導電性領域aが視認され難くなる。導電層4の厚みは、エリプソメーターで測定される。 The thickness of the conductive layer 4 is preferably 15 nm or less, more preferably 3 to 13 nm, and even more preferably 7 to 12 nm. When the thickness of the conductive layer 4 is 15 nm or less, the original reflection of the metal contained in the conductive layer 4 hardly occurs. Furthermore, when the thickness of the conductive layer 4 is 15 nm or less, as described later, the optical admittance is easily adjusted by the first high refractive index layer 2 and the second high refractive index layer 5, and the conductive region a is visually recognized. It becomes difficult. The thickness of the conductive layer 4 is measured with an ellipsometer.
 導電層4は、一般的な気相成膜法で成膜された層でありうる。気相成膜法の例には、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等が含まれる。これらの中でも、好ましくは真空蒸着法またはスパッタ法である。真空蒸着法またはスパッタ法によれば、均一かつ、所望の厚みの導電層4が得られやすい。 The conductive layer 4 can be a layer formed by a general vapor deposition method. Examples of the vapor deposition method include a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, a thermal CVD method, and the like. Among these, the vacuum evaporation method or the sputtering method is preferable. According to the vacuum deposition method or the sputtering method, it is easy to obtain the conductive layer 4 having a uniform and desired thickness.
 また、導電層4が透明基板1の一部領域のみに成膜された層である場合、いずれの方法でパターニングされた膜であってもよい。例えば、所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に成膜された膜であってもよく;公知のエッチング法によってパターニングされた膜であってもよい。 Further, when the conductive layer 4 is a layer formed only on a partial region of the transparent substrate 1, it may be a film patterned by any method. For example, it may be a film formed in a pattern by a vapor deposition method by placing a mask having a desired pattern on the deposition surface; a film patterned by a known etching method. May be.
 1.5)第二高屈折率層
 第二高屈折率層5は、タッチパネル用電極基板100の光学アドミッタンスを調整する層である。第二高屈折率層5は、少なくとも導電性領域aに成膜された層であればよく;透明基板1の全面に成膜された層であってもよい。
1.5) Second High Refractive Index Layer The second high refractive index layer 5 is a layer that adjusts the optical admittance of the electrode substrate 100 for a touch panel. The second high refractive index layer 5 may be a layer formed at least in the conductive region a; it may be a layer formed on the entire surface of the transparent substrate 1.
 第二高屈折率層5には、透明基板1の波長570nmの光の屈折率より、高い屈折率を有する誘電性材料または酸化物半導体材料が含まれる。当該誘電性材料または酸化物半導体材料の波長570nmの光の屈折率は、透明基板1の波長570nmの光の屈折率より0.1~1.1大きいことが好ましく、0.4~1.0大きいことがより好ましい。 The second high refractive index layer 5 includes a dielectric material or an oxide semiconductor material having a refractive index higher than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1. The refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably 0.1 to 1.1 larger than the refractive index of light having a wavelength of 570 nm of the transparent substrate 1, and is preferably 0.4 to 1.0. Larger is more preferable.
 第二高屈折率層5に含まれる誘電性材料または酸化物半導体材料の波長570nmの光の屈折率は1.5より大きいことが好ましく、1.6~2.5であることがより好ましく、さらに好ましくは1.8~2.5であり、特に好ましくは2.2~2.5である。誘電性材料または酸化物半導体材料の屈折率が1.5より大きいと、第二高屈折率層5によって、タッチパネル用電極基板100の光学アドミッタンスが十分に調整される。なお、第二高屈折率層5の屈折率は、第二高屈折率層5に含まれる材料の屈折率や、第二高屈折率層5に含まれる材料の密度で調整される。 The refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material contained in the second high refractive index layer 5 is preferably larger than 1.5, more preferably 1.6 to 2.5, More preferably, it is 1.8 to 2.5, and particularly preferably 2.2 to 2.5. When the refractive index of the dielectric material or the oxide semiconductor material is larger than 1.5, the optical admittance of the electrode substrate for touch panel 100 is sufficiently adjusted by the second high refractive index layer 5. The refractive index of the second high refractive index layer 5 is adjusted by the refractive index of the material included in the second high refractive index layer 5 and the density of the material included in the second high refractive index layer 5.
 第二高屈折率層5に含まれる誘電性材料または酸化物半導体材料は、絶縁性の材料であってもよく、導電性の材料であってもよい。当該誘電性材料または酸化物半導体材料は、第一高屈折率層2に含まれる材料と同様でありうる。第一高屈折率整層2及び第二高屈折率5には、同一の材料が含まれてもよく、異なる材料が含まれてもよい。 The dielectric material or the oxide semiconductor material included in the second high refractive index layer 5 may be an insulating material or a conductive material. The dielectric material or the oxide semiconductor material can be the same as the material included in the first high refractive index layer 2. The first high refractive index adjusting layer 2 and the second high refractive index 5 may include the same material or different materials.
 第二高屈折率層5の厚みは、10~150nmであることが好ましく、より好ましくは20~80nmである。第二高屈折率層5の厚みが10nm以上であると、第二高屈折率層5によって、タッチパネル用電極基板100の光学アドミッタンスが十分に調整される。一方、第二高屈折率層5の厚みが150nm以下であれば、第二高屈折率層5が含まれる領域の光透過性が低下し難い。第二高屈折率層5の厚みは、エリプソメーターで測定される。 The thickness of the second high refractive index layer 5 is preferably 10 to 150 nm, more preferably 20 to 80 nm. When the thickness of the second high refractive index layer 5 is 10 nm or more, the optical admittance of the electrode substrate for touch panel 100 is sufficiently adjusted by the second high refractive index layer 5. On the other hand, if the thickness of the second high-refractive index layer 5 is 150 nm or less, the light transmittance of the region including the second high-refractive index layer 5 is unlikely to decrease. The thickness of the second high refractive index layer 5 is measured with an ellipsometer.
 第二高屈折率層5は、前述の第一高屈折率層2と同様に、真空蒸着法、スパッタ法、イオンプレーティング法、プラズマCVD法、熱CVD法等、一般的な気相成膜法で成膜された層であり得る。また、第二高屈折率層5が、透明基板1の一部領域のみに成膜された層である場合、いずれの方法でパターニングされた層であってもよい。例えば、所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に成膜された層であってもよく、公知のエッチング法によってパターニングされた層であってもよい。 As with the first high refractive index layer 2 described above, the second high refractive index layer 5 is a general vapor deposition method such as a vacuum deposition method, a sputtering method, an ion plating method, a plasma CVD method, or a thermal CVD method. It may be a layer formed by the method. Further, when the second high refractive index layer 5 is a layer formed only in a partial region of the transparent substrate 1, it may be a layer patterned by any method. For example, it may be a layer formed by depositing a mask or the like having a desired pattern on the deposition surface and patterned in a vapor phase deposition method, or a layer patterned by a known etching method. May be.
 1.6)アドミッタンス調整層
 タッチパネル用電極基板には第二高屈折率層上にさらに、前記第二高屈折率層に含まれる誘電性材料または酸化物半導体材料の波長570nmの光の屈折率より、波長570nmの光の屈折率が低い誘電性材料または酸化物半導体材料を含むアドミッタンス調整層が積層されてもよい。アドミッタンス調整層は、タッチパネル用電極基板の光学アドミッタンスを微調整する層である。アドミッタンス調整層は、少なくとも導電性領域aに成膜された層であればよく;透明基板1の全面に成膜された層であってもよい。
1.6) Admittance adjustment layer In the electrode substrate for touch panel, the refractive index of light having a wavelength of 570 nm of the dielectric material or the oxide semiconductor material contained in the second high refractive index layer is further formed on the second high refractive index layer. An admittance adjusting layer including a dielectric material or an oxide semiconductor material having a low refractive index of light having a wavelength of 570 nm may be stacked. The admittance adjustment layer is a layer for finely adjusting the optical admittance of the electrode substrate for touch panel. The admittance adjusting layer may be a layer formed at least in the conductive region a; it may be a layer formed on the entire surface of the transparent substrate 1.
 アドミッタンス調整層に含まれる誘電性材料または酸化物半導体材料の波長570nmの光の屈折率は、第二高屈折層に含まれる誘電性材料または酸化物半導体材料の屈折率より0.03~0.5低いことが好ましく、0.05~0.3低いことがより好ましい。 The refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material included in the admittance adjusting layer is 0.03 to 0. 0 than the refractive index of the dielectric material or oxide semiconductor material included in the second high refractive layer. 5 is preferable, and 0.05 to 0.3 is more preferable.
 当該誘電性材料または酸化物半導体材料の波長570nmの光の屈折率は、1.3~1.8であることが好ましく、より好ましくは1.35~1.6であり、さらに好ましくは1.35~1.5である。アドミッタンス調整層を構成する材料の屈折率が1.35~1.5であると、タッチパネル用電極基板の光学アドミッタンスが微調整されやすい。 The refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor material is preferably 1.3 to 1.8, more preferably 1.35 to 1.6, and still more preferably 1. 35-1.5. When the refractive index of the material constituting the admittance adjusting layer is 1.35 to 1.5, the optical admittance of the electrode substrate for touch panel is easily finely adjusted.
 アドミッタンス調整層に含まれる誘電性材料または酸化物半導体材料は特に制限されず、その例にはSiO、Al、MgF、Y等が含まれる。屈折率を微調整するとの観点からは、誘電性材料がSiO、MgFであることが好ましい。 The dielectric material or oxide semiconductor material included in the admittance adjusting layer is not particularly limited, and examples thereof include SiO 2 , Al 2 O 3 , MgF 2 , Y 2 O 3 and the like. From the viewpoint of finely adjusting the refractive index, the dielectric material is preferably SiO 2 or MgF 2 .
 アドミッタンス調整層の厚みは、10~150nmであることが好ましく、より好ましくは20~100nmである。アドミッタンス調整層の厚みが10nm以上であると、タッチパネル用電極基板の表面の光学アドミッタンスを微調整しやすい。一方、アドミッタンス調整層の厚みが150nm以下であれば、タッチパネル用電極基板の厚みが薄くなる。アドミッタンス調整層の厚みは、エリプソメーターで測定される。 The thickness of the admittance adjusting layer is preferably 10 to 150 nm, more preferably 20 to 100 nm. When the thickness of the admittance adjusting layer is 10 nm or more, it is easy to finely adjust the optical admittance on the surface of the electrode substrate for touch panel. On the other hand, if the thickness of the admittance adjusting layer is 150 nm or less, the thickness of the electrode substrate for touch panel is reduced. The thickness of the admittance adjusting layer is measured with an ellipsometer.
 また、アドミッタンス調整層が透明基板1の一部領域のみに成膜された層である場合、アドミッタンス調整層はいずれの方法でパターニングされた層であってもよい。例えば、所望のパターンを有するマスク等を被成膜面に配置して、気相成膜法でパターン状に成膜された層であってもよい。また、公知のエッチング法によってパターニングされた層であってもよい。 Further, when the admittance adjusting layer is a layer formed only in a partial region of the transparent substrate 1, the admittance adjusting layer may be a layer patterned by any method. For example, a layer formed in a pattern by a vapor deposition method by placing a mask having a desired pattern on the deposition surface may be used. Moreover, the layer patterned by the well-known etching method may be sufficient.
 2.タッチパネル用電極基板の光学アドミッタンスについて
 タッチパネル用電極基板の第二高屈折率層側の表面の反射率Rは、光が入射する媒質の光学アドミッタンスyenvと、タッチパネル用電極基板の表面の等価アドミッタンスYとから定まる。ここでタッチパネル用電極基板の表面とは、タッチパネル用電極基板上に配設される有機樹脂からなる部材もしくは環境に接する面をいう。また光が入射する媒質とは、タッチパネル用電極基板に入射する光が、入射直前に通過する部材または環境であって;有機樹脂からなる部材、もしくは環境をいう。媒質の光学アドミッタンスyenvと、タッチパネル用電極基板表面の等価アドミッタンスYとの関係は以下の式で表される。
Figure JPOXMLDOC01-appb-M000001
 上記の式に基づけば、|yenv-Y|が0に近い程、タッチパネル用電極基板の表面の反射率Rが低くなり、タッチパネル用電極基板の光透過性が高まる。
2. About the optical admittance of the electrode substrate for touch panels The reflectance R of the surface on the second high refractive index layer side of the electrode substrate for touch panels is the optical admittance y env of the medium on which light is incident and the equivalent admittance Y of the surface of the electrode substrate for touch panels. Determined from E. Here, the surface of the electrode substrate for touch panel refers to a member made of an organic resin disposed on the electrode substrate for touch panel or a surface in contact with the environment. The medium on which light is incident refers to a member or environment through which light incident on the electrode substrate for touch panel passes immediately before incident; a member or environment made of an organic resin. The relationship between the optical admittance y env of the medium and the equivalent admittance Y E of the electrode substrate surface for the touch panel is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000001
Based on the above formula, as | y env −Y E | is closer to 0, the reflectance R of the surface of the electrode substrate for touch panel is lowered, and the light transmittance of the electrode substrate for touch panel is increased.
 前記媒質の光学アドミッタンスYenvは、電場強度と磁場強度との比(H/E)から求められ、媒質の屈折率nenvと同一である。一方、等価アドミッタンスYは、導電性領域を構成する層の光学アドミッタンスYから求められる。例えばタッチパネル用電極基板が一層からなる場合には、等価アドミッタンスYは、タッチパネル用電極基板を構成する層の光学アドミッタンスY(屈折率)と等しくなる。 The optical admittance Y env of the medium is obtained from the ratio (H / E) of the electric field strength and the magnetic field strength, and is the same as the refractive index n env of the medium. On the other hand, the equivalent admittance Y E is determined from the optical admittance Y of the layers forming the conductive region. For example, when the touch panel electrode substrate is composed of a single layer, the equivalent admittance Y E is equal to the optical admittance Y (refractive index) of the layer constituting the touch panel electrode substrate.
 タッチパネル用電極基板に複数の層が含まれる場合、1層目からx層目までの積層体の光学アドミッタンスY(E H)は、1層目から(x-1)層目までの積層体の光学アドミッタンスYx-1(Ex-1 Hx-1)と、特定のマトリクスとの積で表され;具体的には以下の式(1)または式(2)にて求められる。 When the electrode substrate for the touch panel includes a plurality of layers, the optical admittance Y x (E x H x ) of the laminate from the first layer to the x layer is from the first layer to the (x−1) layer. It is represented by the product of the optical admittance Y x-1 (E x-1 H x-1 ) of the laminate and a specific matrix; specifically, it is obtained by the following formula (1) or formula (2) .
・x層目が誘電性材料または酸化物半導体材料からなる層である場合
Figure JPOXMLDOC01-appb-M000002
When the x-th layer is a layer made of a dielectric material or an oxide semiconductor material
Figure JPOXMLDOC01-appb-M000002
・x層目が理想金属層である場合
Figure JPOXMLDOC01-appb-M000003
・ When the xth layer is an ideal metal layer
Figure JPOXMLDOC01-appb-M000003
 そして、x層目が最表層であるときの、透明基板から最表層までの積層物の光学アドミッタンスY(E H)が、タッチパネル用電極基板表面の等価アドミッタンスYとなる。 When the x-th layer is the outermost layer, the optical admittance Y x (E x H x ) of the laminate from the transparent substrate to the outermost layer becomes the equivalent admittance Y E on the surface of the touch panel electrode substrate.
 図3に、本発明のタッチパネル用電極基板の導電性領域(透明基板/第一高屈折率層/白金族含有層/導電層/第二高屈折率層を備える領域)の波長570nmのアドミッタンス軌跡の模式図を表す。グラフの横軸は、光学アドミッタンスYをx+iyで表したときの実部;つまり当該式におけるxであり、縦軸は光学アドミッタンスの虚部;つまり当該式におけるyである。 FIG. 3 shows an admittance locus at a wavelength of 570 nm of the conductive region (transparent substrate / first high refractive index layer / platinum group-containing layer / conductive layer / second high refractive index layer) of the electrode substrate for touch panel of the present invention. The schematic diagram of is represented. The horizontal axis of the graph is the real part when the optical admittance Y is represented by x + iy; that is, x in the formula, and the vertical axis is the imaginary part of the optical admittance; that is, y in the formula.
 図3におけるアドミッタンス軌跡の最終座標(x,y);当該グラフでは、第二高屈折率層側の表面のアドミッタンス座標が、等価アドミッタンスYの座標に相当する。なお、本発明のタッチパネル用電極基板に含まれる白金族含有層は、厚みが十分に薄い。そのため、当該白金族含有層の光学アドミッタンスは無視できる。 The final coordinates (x E , y E ) of the admittance locus in FIG. 3; in the graph, the admittance coordinates on the surface on the second high refractive index layer side correspond to the coordinates of the equivalent admittance Y E. In addition, the platinum group containing layer contained in the electrode substrate for a touch panel of the present invention is sufficiently thin. Therefore, the optical admittance of the platinum group-containing layer can be ignored.
 前述のように、タッチパネル用電極基板表面の反射率Rは、等価アドミッタンスYと、光が入射する媒質のアドミッタンスyenvとの差に比例する。したがって、等価アドミッタンスYの座標(x,y)と、光が入射する媒質のアドミッタンス座標(nenv,0)との距離が近ければ近いほど好ましい。具体的には、これらの距離((x-nenv+(y0.5が0.5未満であることが好ましく、さらに好ましくは0.3以下である。上記距離が0.5未満であれば、タッチパネル用電極基板表面の反射率Rが十分に小さくなり、タッチパネル用電極基板を種々の表示パネルに適用できる。 As described above, the reflectance R of the electrode substrate surface for the touch panel is proportional to the difference between the equivalent admittance Y E and the admittance y env of the medium on which light is incident. Accordingly, it is preferable that the distance between the coordinates (x E , y E ) of the equivalent admittance Y E and the admittance coordinates (n env , 0) of the medium on which the light is incident is closer. Specifically, these distances ((x E −n env ) 2 + (y E ) 2 ) 0.5 are preferably less than 0.5, and more preferably 0.3 or less. If the said distance is less than 0.5, the reflectance R of the electrode substrate surface for touch panels will become small enough, and the electrode substrate for touch panels can be applied to various display panels.
 ここで、本発明のタッチパネル用電極基板は、以下の2点を満たすため、タッチパネル用電極基板の光透過性が高い。
 (i)導電層が、比較的屈折率の高い第一高屈折率層及び第二高屈折率層で挟み込まれている。
 (ii)導電層の第一高屈折率層側の表面の波長570nmにおける光学アドミッタンスをY1(=x+iy)で表し、導電層の第二高屈折率層側の表面の波長570nmにおける光学アドミッタンスをY2(=x+iy)で表した場合に、x及びxのうちいずれか一方、もしくは両方が1.6以上である。その理由を以下に説明する。
Here, since the electrode substrate for touch panels of this invention satisfy | fills the following 2 points | pieces, the light transmittance of the electrode substrate for touch panels is high.
(I) The conductive layer is sandwiched between the first high refractive index layer and the second high refractive index layer having a relatively high refractive index.
(Ii) The optical admittance at a wavelength of 570 nm of the surface of the conductive layer on the first high refractive index layer side is represented by Y1 (= x 1 + iy 1 ), and the optical at the wavelength of 570 nm of the surface of the conductive layer on the second high refractive index layer side. When the admittance is represented by Y2 (= x 2 + iy 2 ), one or both of x 1 and x 2 are 1.6 or more. The reason will be described below.
 金属が含まれる導電層は、一般的に光学アドミッタンスの虚部の値が大きい。そのため、透明基板上に直接導電層を積層すると、アドミッタンス軌跡が、アドミッタンス軌跡の始点(nsub,0)から、縦軸(虚部)方向に大きく移動する。図4Aに、透明基板/導電層/高屈折率層をこの順に備えるタッチパネル用電極基板の波長570nmのアドミッタンス軌跡を示し、図4Bに当該タッチパネル用電極基板の波長450nm、波長570nm、及び波長700nmのアドミッタンス軌跡を示す。図4Aに示されるように、透明基板上に直接導電層を積層すると、アドミッタンス軌跡の始点(透明基板のアドミッタンス座標(約1.5,0))から縦軸(虚部)方向にアドミッタンス軌跡が大きく移動し、アドミッタンス座標の虚部の絶対値が非常に大きくなる。そしてアドミッタンス座標の虚部の絶対値が大きくなると、導電層上に高屈折率層を積層しても、等価アドミッタンスYが、光が入射する媒質のアドミッタンス座標(媒質が空気である場合には(1,0))に近づき難くなる。 A conductive layer containing metal generally has a large value of an imaginary part of optical admittance. Therefore, when a conductive layer is laminated directly on a transparent substrate, the admittance locus greatly moves from the start point (n sub , 0) of the admittance locus in the direction of the vertical axis (imaginary part). FIG. 4A shows an admittance locus at a wavelength of 570 nm of a touch panel electrode substrate having a transparent substrate / conductive layer / high refractive index layer in this order, and FIG. 4B shows a wavelength of 450 nm, wavelength 570 nm, and wavelength 700 nm of the touch panel electrode substrate. Shows the admittance trajectory. As shown in FIG. 4A, when a conductive layer is laminated directly on a transparent substrate, an admittance locus is formed in the vertical axis (imaginary part) direction from the starting point of the admittance locus (the admittance coordinates (about 1.5, 0) of the transparent substrate). It moves greatly and the absolute value of the imaginary part of the admittance coordinates becomes very large. When the absolute value of the imaginary part of the admittance coordinates increases, even if the high refractive index layer is laminated on the conductive layer, the equivalent admittance Y E is the admittance coordinates of the medium on which light is incident (if the medium is air) It becomes difficult to approach (1,0).
 さらに、図4Aに示されるように、透明基板上に導電層を直接積層すると、アドミッタンス軌跡が、グラフの横軸を中心に線対称になり難い。そして、特定波長(本発明では570nm)におけるアドミッタンス軌跡が、グラフの横軸を中心に線対称にならないと;図4Bに示されるように、他の波長(例えば450nmや700nm)における等価アドミッタンスYの座標が、大きく振れやすい。そのため、反射率の高い波長領域が生じやすい。 Furthermore, as shown in FIG. 4A, when a conductive layer is directly laminated on a transparent substrate, the admittance locus is less likely to be line symmetric about the horizontal axis of the graph. The admittance locus at a specific wavelength (570 nm in the present invention) must be line symmetric about the horizontal axis of the graph; as shown in FIG. 4B, equivalent admittance Y E at other wavelengths (for example, 450 nm and 700 nm). The coordinates of are easy to shake greatly. For this reason, a wavelength region having a high reflectance is likely to occur.
 これに対し、透明基板と導電層との間に、第一高屈折率層が配設されると、導電層の一方の表面のアドミッタンスY1がグラフの右上方向に大きく移動し;yの値が大きくなる。またこのとき、xの値が大きい(例えば1.6以上である)と、yの値が大きくなりやすい。 On the other hand, when the first high refractive index layer is disposed between the transparent substrate and the conductive layer, the admittance Y1 on one surface of the conductive layer greatly moves in the upper right direction of the graph; the value of y 1 Becomes larger. At this time, the value of x 1 is large, (for example, 1.6 or more), the value of y 1 tends to increase.
 そして、yの値が大きいため、導電層によって、アドミッタンス軌跡が虚部の負方向に大きく移動しても、Y2の虚部の絶対値(y)が大きくなり難い。その結果、等価アドミッタンスYの座標が、光が入射する媒質のアドミッタンス座標に近づきやすくなる。 Then, since the value of y 1 is large, the conductive layer, even if greatly moved in the negative direction of the admittance locus imaginary part, the absolute value of the imaginary part of Y2 (y 2) is hardly increased. As a result, the coordinates of the equivalent admittance Y E is, light is likely to approach the admittance coordinates of the medium entering.
 またさらに、第一高屈折率層/導電層/第二高屈折率層がこの順に積層されると、アドミッタンス軌跡が図3に示されるように、グラフの横軸を中心に線対称になりやすい。その結果、いずれの波長においても、等価アドミッタンスYの座標が一定になりやすく、いずれの波長においても、十分に反射率が低くなる。 Furthermore, when the first high-refractive index layer / conductive layer / second high-refractive index layer are laminated in this order, the admittance locus tends to be line symmetric about the horizontal axis of the graph as shown in FIG. . As a result, in each of the wavelength, the coordinate tends to be constant equivalent admittance Y E, at any wavelength, sufficient reflectance is low.
 また、タッチパネル用電極基板に含まれる各層同士の界面におけるアドミッタンスYと、各層の電場強度Eとの間には、下記関係式が成り立つ。
Figure JPOXMLDOC01-appb-M000004
Further, the following relational expression is established between the admittance Y at the interface between the layers included in the electrode substrate for touch panel and the electric field strength E of each layer.
Figure JPOXMLDOC01-appb-M000004
 上記関係式に基づけば、各層同士の表面のアドミッタンスYが大きくなれば、各層の電場強度Eが小さくなる。そして一般的に、導電層の電場損失(光の吸収)が特に大きい。したがって、導電層の光学アドミッタンスY1及びY2の実数部(つまり、x及びx)が大きくなれば、導電層の電場損失が小さくなり、タッチパネル用電極基板の光透過性が高まる。 Based on the above relational expression, if the admittance Y on the surface of each layer increases, the electric field strength E of each layer decreases. In general, the electric field loss (light absorption) of the conductive layer is particularly large. Accordingly, the real part of the optical admittance Y1 and Y2 of the conductive layer (i.e., x 1 and x 2) The greater the electric field loss of the conductive layer is reduced, increasing the light transmission of the electrode substrate for a touch panel.
 本発明のタッチパネル用電極基板では、上記x及びxのうち、いずれか一方が1.6以上であればよいが、両方が1.6以上であることが好ましい。また、x及びxは、より好ましくは1.8以上であり、さらに好ましくは2.0以上である。またx及びxは、7.0以下であることが好ましく、より好ましくは5.5以下である。xは、第一高屈折率層の屈折率や、第一高屈折率層の厚み等で調整される。xは、xの値や導電層の屈折率、導電層の厚み等によって調整される。例えば、第一高屈折率層の屈折率が高い場合や、厚みがある程度厚い場合には、x及びxの値が大きくなりやすい。 In the electrode substrate for a touch panel of the present invention, either one of x 1 and x 2 may be 1.6 or more, but both are preferably 1.6 or more. Further, x 1 and x 2 are more preferably 1.8 or more, and further preferably 2.0 or more. The x 1 and x 2 is preferably 7.0 or less, more preferably 5.5 or less. x 1 is the refractive index of the first high refractive index layer and is adjusted in such a thickness of the first high refractive index layer. x 2 is the refractive index of the x 1 value or a conductive layer, is adjusted by such a thickness of the conductive layer. For example, if and refractive index of the first high refractive index layer is higher, when a certain degree thicker, the value of x 1 and x 2 tends to increase.
 前述のように、アドミッタンス軌跡は、グラフの横軸を中心に線対称であることが好ましく、そのためには、上記Y1の虚部の座標yと、Y2の虚部の座標yが、y×y≦0を満たすことが好ましい。さらに、|y+y|が0.8未満であることが好ましく、より好ましくは0.5以下、さらに好ましくは0.3以下である。|y+y|が0.8未満であると、アドミッタンス軌跡が、グラフの横軸を中心に線対称になりやすい。 As described above, admittance locus is preferably a center line of symmetry of the horizontal axis of the graph. For this purpose, a coordinate y 1 of the imaginary part of the Y1, the coordinate y 2 of the imaginary part of the Y2, y It is preferable to satisfy 1 × y 2 ≦ 0. Furthermore, | y 1 + y 2 | is preferably less than 0.8, more preferably 0.5 or less, and still more preferably 0.3 or less. If | y 1 + y 2 | is less than 0.8, the admittance trajectory tends to be line symmetric about the horizontal axis of the graph.
 3.タッチパネル用電極基板の物性について
 前述のように、本発明のタッチパネル用電極基板の波長400nm~800nmにおける光の平均吸収率は15%以下であり、さらに好ましくは10%以下であり、さらに好ましくは8%以下である。また、タッチパネル用電極基板の波長400nm~800nmにおける光の吸収率の最大値は15%以下であり、好ましくは10%以下であり、さらに好ましくは9%以下である。なお、前述の導電層がパターニングされている場合には、導電層のパターン領域(導電性領域)、及び導電層の非パターン領域のいずれもが、上記平均吸収率及び吸収率の最大値を満たす。
3. Regarding Physical Properties of Touch Panel Electrode Substrate As described above, the average absorbance of light at a wavelength of 400 nm to 800 nm of the touch panel electrode substrate of the present invention is 15% or less, more preferably 10% or less, and even more preferably 8 % Or less. Further, the maximum value of the light absorptance of the electrode substrate for touch panel at a wavelength of 400 nm to 800 nm is 15% or less, preferably 10% or less, and more preferably 9% or less. In addition, when the above-mentioned conductive layer is patterned, both the pattern area (conductive area) of the conductive layer and the non-pattern area of the conductive layer satisfy the maximum values of the average absorption rate and the absorption rate. .
 さらに、タッチパネル用電極基板の波長450nm~800nmの光の平均透過率はそれぞれ50%以上であることが好ましく、より好ましくは70%以上であり、さらに好ましくは80%以上である。一方、タッチパネル用電極基板の波長500nm~700nmの光の平均反射率は、それぞれ20%以下であることが好ましく、より好ましくは15%以下であり、さらに好ましくは10%以下である。上記波長の光の平均透過率が50%以上であり、かつ平均反射率20%以下であると、高い透明性が要求される用途にも、タッチパネル用電極基板を適用できる。なお、前述の導電層がパターニングされている場合には、導電層のパターン領域(導電性領域)及び導電層の非パターン領域のいずれもが、上記平均透過率及び平均反射率を満たすことが好ましい。 Further, the average transmittance of light having a wavelength of 450 nm to 800 nm of the electrode substrate for touch panel is preferably 50% or more, more preferably 70% or more, and further preferably 80% or more. On the other hand, the average reflectance of light having a wavelength of 500 nm to 700 nm of the electrode substrate for touch panel is preferably 20% or less, more preferably 15% or less, and further preferably 10% or less. When the average transmittance of light having the above wavelength is 50% or more and the average reflectance is 20% or less, the electrode substrate for a touch panel can be applied to applications that require high transparency. In addition, when the above-mentioned conductive layer is patterned, it is preferable that both the pattern area (conductive area) of the conductive layer and the non-pattern area of the conductive layer satisfy the average transmittance and the average reflectance. .
 上記平均透過率及び平均反射率は、タッチパネル用電極基板の表面の法線に対して5°傾けた角度から測定光をタッチパネル用電極基板に入射させて測定される値である。吸収率は、100-(透過率+反射率)の計算式より算出される。 The average transmittance and the average reflectance are values measured by allowing measurement light to enter the electrode substrate for touch panel from an angle inclined by 5 ° with respect to the normal of the surface of the electrode substrate for touch panel. The absorptance is calculated from a calculation formula of 100− (transmittance + reflectance).
 また、タッチパネル用電極基板は、いずれの領域においてもL*a*b*表色系におけるa*値及びb*値は±30以内であることが好ましく、より好ましくは±5以内であり、さらに好ましくは±3.0以内であり、特に好ましくは±2.0以内である。L*a*b*表色系におけるa*値及びb*値は±30以内であれば、タッチパネル用電極基板が無色透明に観察される。L*a*b*表色系におけるa*値及びb*値は、分光光度計で測定される。 The touch panel electrode substrate preferably has an a * value and a b * value within ± 30 in the L * a * b * color system in any region, more preferably within ± 5, Preferably it is within ± 3.0, and particularly preferably within ± 2.0. If the a * value and the b * value in the L * a * b * color system are within ± 30, the touch panel electrode substrate is observed as colorless and transparent. The a * value and b * value in the L * a * b * color system are measured with a spectrophotometer.
 タッチパネル用電極基板の導電層が含まれる領域(導電性領域)の表面電気抵抗は、30Ω/□以下であることが好ましく、さらに好ましくは15Ω/□以下である。導電性領域の表面電気抵抗値が30Ω/□以下であるタッチパネル用電極基板は、静電容量方式のタッチパネルにも適用できる。タッチパネル用電極基板の導電性領域の表面電気抵抗値は、導電層の厚み等によって調整される。タッチパネル用電極基板の表面電気抵抗値は、例えばJIS K7194、ASTM D257等に準拠して測定される。また、市販の表面電気抵抗率計によっても測定される。 The surface electrical resistance of the region (conductive region) including the conductive layer of the electrode substrate for touch panel is preferably 30Ω / □ or less, and more preferably 15Ω / □ or less. The electrode substrate for touch panel in which the surface electrical resistance value of the conductive region is 30Ω / □ or less can be applied to a capacitive touch panel. The surface electrical resistance value of the conductive region of the electrode substrate for touch panel is adjusted by the thickness of the conductive layer and the like. The surface electrical resistance value of the electrode substrate for touch panels is measured in accordance with, for example, JIS K7194, ASTM D257, and the like. It is also measured by a commercially available surface electrical resistivity meter.
 4.タッチパネル及び表示パネル
 本発明のタッチパネル用電極基板は、各種タッチパネルに適用される。タッチパネルは、各種タッチセンサや、タッチパッド等でありうる。本発明のタッチパネル用電極基板が適用されるタッチパネルの方式は特に制限されず、例えば投影型静電容量方式タッチパネル、表面型静電容量方式タッチパネル、抵抗膜方式タッチパネル等でありうる。
4). Touch panel and display panel The electrode substrate for a touch panel of the present invention is applied to various touch panels. The touch panel can be various touch sensors, a touch pad, or the like. The touch panel system to which the electrode substrate for a touch panel of the present invention is applied is not particularly limited, and may be, for example, a projected capacitive touch panel, a surface capacitive touch panel, a resistive touch panel, or the like.
 投影型静電容量方式のタッチパネル200には、図5に示されるように、前述のタッチパネル用電極基板(100及び100’)が2つ含まれる。2つのタッチパネル用電極基板(100及び100’)は、積み重なるように配置される。2つのタッチパネルを重ね合わせる方法は特に制限されず、例えば第二高屈折率層5及び5’側の表面が対向するように空気層、あるいは接着層21を介して重ね合わせることができる。 As shown in FIG. 5, the projected capacitive touch panel 200 includes two touch panel electrode substrates (100 and 100 ′) described above. The two touch panel electrode substrates (100 and 100 ') are arranged to be stacked. The method for overlaying the two touch panels is not particularly limited, and for example, the two touch panels can be superimposed via the air layer or the adhesive layer 21 so that the surfaces on the second high refractive index layers 5 and 5 ′ face each other.
 上記接着層21は、タッチパネルの光透過性を阻害しないものであれば特に制限されず、公知の接着剤(例えばアクリル系接着剤やエポキシ系接着剤等)からなる層でありうる。 The adhesive layer 21 is not particularly limited as long as it does not impair the light transmittance of the touch panel, and may be a layer made of a known adhesive (for example, an acrylic adhesive or an epoxy adhesive).
 また、投影型静電容量方式のタッチパネル200に含まれる一方のタッチパネル用電極基板100は、図6(A)に示されるように、タッチパネル用電極基板100のY軸方向に平行に、複数の導電性領域a1(配線)が配列された電極基板でありうる。一方、他方のタッチパネル用電極基板100’は、図6(B)に示されるように、タッチパネル用電極基板100’のX軸方向に平行に、複数の導電性領域a2(配線)が配列された電極基板でありうる。これらの導電性領域a1及びa2は、それぞれ外部の検知回路等と接続される。 In addition, as shown in FIG. 6A, one touch panel electrode substrate 100 included in the projected capacitive touch panel 200 has a plurality of conductive layers parallel to the Y-axis direction of the touch panel electrode substrate 100. It may be an electrode substrate in which the conductive region a1 (wiring) is arranged. On the other hand, as shown in FIG. 6B, the other touch panel electrode substrate 100 ′ has a plurality of conductive regions a2 (wirings) arranged in parallel to the X-axis direction of the touch panel electrode substrate 100 ′. It can be an electrode substrate. These conductive regions a1 and a2 are each connected to an external detection circuit or the like.
 投影型静電容量方式のタッチパネル200では、タッチパネル200の表面を指先等でタッチすると、タッチした領域付近の導電層4及び4’と、指との間の静電容量が変化する。そして、この静電容量の変化を、外部の検知回路で検知して、指先がタッチした座標(位置)を特定する。 In the projected capacitive touch panel 200, when the surface of the touch panel 200 is touched with a fingertip or the like, the capacitance between the conductive layers 4 and 4 'near the touched area and the finger changes. Then, this change in capacitance is detected by an external detection circuit, and the coordinates (position) touched by the fingertip are specified.
 一方、表面型静電容量方式のタッチパネル210には、例えば図7に示されるように、前述のタッチパネル用電極基板100と、当該タッチパネル用電極基板100の表面を保護するカバー層14とが含まれる。タッチパネル用電極基板100の第二高屈折率層5側表面と、カバー層14は接着層21等を介して貼り合わされる。また、当該タッチパネル210の四隅には、それぞれ電極端子15が配設され、当該電極端子15は、外部の検知回路等とそれぞれ接続される。 On the other hand, the surface capacitive touch panel 210 includes, for example, the touch panel electrode substrate 100 and a cover layer 14 that protects the surface of the touch panel electrode substrate 100 as shown in FIG. . The surface of the touch panel electrode substrate 100 on the second high refractive index layer 5 side and the cover layer 14 are bonded together via an adhesive layer 21 or the like. In addition, electrode terminals 15 are provided at the four corners of the touch panel 210, and the electrode terminals 15 are connected to an external detection circuit or the like.
 上記接着層21は、タッチパネルの光透過性を阻害しないものであれば特に制限されず、投影型静電容量方式のタッチパネルの接着層21と同様でありうる。また、表面型静電容量方式のタッチパネル210に含まれるタッチパネル用電極基板100は、前述の導電層4が透明基板1の全面に配設された電極基板等でありうる。 The adhesive layer 21 is not particularly limited as long as it does not impair the light transmittance of the touch panel, and may be the same as the adhesive layer 21 of the projected capacitive touch panel. The touch panel electrode substrate 100 included in the surface capacitive touch panel 210 may be an electrode substrate in which the conductive layer 4 is disposed on the entire surface of the transparent substrate 1.
 当該タッチパネル210では、タッチパネル210表面を指先等でタッチすると、四隅に配設された各電極端子15と接地ラインとの間の抵抗値が変化する。この抵抗値の変化を、外部の検知回路で検出し、指先がタッチした座標(位置)を特定する。 In the touch panel 210, when the surface of the touch panel 210 is touched with a fingertip or the like, the resistance value between each electrode terminal 15 arranged at the four corners and the ground line changes. This change in resistance value is detected by an external detection circuit, and the coordinates (position) touched by the fingertip are specified.
 また、例えば図8に示されるように、表面型静電容量方式のタッチパネル220には、前述のタッチパネル用電極基板(100及び100’)が2つ含まれてもよい。2つのタッチパネル用電極基板(100及び100’)は、例えば第二高屈折率層5及び5’側の表面が対向するように空気層、あるいは接着層21を介して重ね合わされる。 For example, as shown in FIG. 8, the surface capacitive touch panel 220 may include two touch panel electrode substrates (100 and 100 '). The two touch panel electrode substrates (100 and 100 ') are overlapped with each other via an air layer or an adhesive layer 21 so that the surfaces on the second high refractive index layers 5 and 5' side face each other.
 上記接着層21は、タッチパネルの光透過性を阻害しないものであれば特に制限されず、投影型静電容量方式のタッチパネルの接着層21と同様でありうる。また、当該タッチパネル220に含まれるタッチパネル用電極基板100及び100’は、それぞれ前述の導電層4及び4’が透明基板1及び1’の全面に配設された電極基板等でありうる。これらの導電層4及び4’は、それぞれ外部の検知回路等と接続される。 The adhesive layer 21 is not particularly limited as long as it does not impair the light transmittance of the touch panel, and may be the same as the adhesive layer 21 of the projected capacitive touch panel. The touch panel electrode substrates 100 and 100 ′ included in the touch panel 220 may be electrode substrates in which the conductive layers 4 and 4 ′ are disposed on the entire surfaces of the transparent substrates 1 and 1 ′. These conductive layers 4 and 4 'are connected to an external detection circuit or the like.
 当該タッチパネル220では、タッチパネル220の表面を指先でタッチすると、一方のタッチパネル用電極基板100に含まれる導電層4と、他方のタッチパネル用電極基板100’に含まれる導電層4’との間の静電容量が変化する。この静電容量の変化を、外部の検知回路(図示せず)で検知し、指先がタッチした座標(位置)を特定する。 In the touch panel 220, when the surface of the touch panel 220 is touched with a fingertip, the static electricity between the conductive layer 4 included in one touch panel electrode substrate 100 and the conductive layer 4 ′ included in the other touch panel electrode substrate 100 ′. The capacitance changes. This change in capacitance is detected by an external detection circuit (not shown), and the coordinates (position) touched by the fingertip are specified.
 抵抗膜方式タッチパネル230には、例えば図9に示されるように、前述のタッチパネル用電極基板(100及び100’)が2つ含まれる。2つのタッチパネル用電極基板(100及び100’)は、例えば第二高屈折率層5及び5’側の表面が対向するように、間隙をあけて重ね合わされる。また、一方のタッチパネル用電極基板100’の表面には、複数のスペーサ25が配設される。 The resistive touch panel 230 includes, for example, two touch panel electrode substrates (100 and 100 ') as shown in FIG. The two electrode substrates for touch panels (100 and 100 ') are overlapped with a gap so that, for example, the surfaces on the second high refractive index layers 5 and 5' side face each other. In addition, a plurality of spacers 25 are disposed on the surface of one touch panel electrode substrate 100 ′.
 上記スペーサ25は、公知の抵抗膜方式タッチパネルのスペーサと同様でありうる。また、当該タッチパネル230に含まれるタッチパネル用電極基板100及び100’は、それぞれ前述の導電層4及び4’が透明基板1及び1’の全面に成膜された電極基板等でありうる。これらの導電層4及び4’は、それぞれ外部の検知回路等と接続される。 The spacer 25 may be the same as a spacer of a known resistive film type touch panel. The touch- panel electrode substrates 100 and 100 ′ included in the touch panel 230 may be electrode substrates in which the conductive layers 4 and 4 ′ are formed on the entire surfaces of the transparent substrates 1 and 1 ′. These conductive layers 4 and 4 'are connected to an external detection circuit or the like.
 当該タッチパネル230では、タッチパネル230の表面を指先でタッチすると、一方のタッチパネル用電極基板100が押し込まれ、他方のタッチパネル用電極基板100’と接触する。このときの電位変化を外部の検知回路(図示せず)で検知して、指先がタッチした座標(位置)を特定する。 In the touch panel 230, when the surface of the touch panel 230 is touched with a fingertip, one of the touch panel electrode substrates 100 is pushed into contact with the other touch panel electrode substrate 100 '. The potential change at this time is detected by an external detection circuit (not shown), and the coordinate (position) touched by the fingertip is specified.
 前述の各方式のタッチパネルは、各種表示パネルに適用される。表示パネルでは、通常、上記タッチパネルと、各種表示装置と重ねて配設される。上記タッチパネルと組み合わせられる表示装置は特に制限されず、液晶表示装置、プラズマディスプレイ、有機ELディスプレイ、電界放出ディスプレイ(FED:Field Emission Display)等、公知の表示装置でありうる。 The touch panel of each method described above is applied to various display panels. In the display panel, usually, the touch panel and various display devices are overlapped. The display device combined with the touch panel is not particularly limited, and may be a known display device such as a liquid crystal display device, a plasma display, an organic EL display, and a field emission display (FED).
 以下、本発明を実施例により更に詳細に説明する。しかしながら、本発明の範囲はこれによって何ら制限を受けない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited by this.
[実施例1]
 東洋紡製PET(コスモシャインA4300 厚み50μm)からなる透明基板上に、下記の方法で第一高屈折率層/白金族含有層/導電層/第二高屈折率層を順に積層した。得られたタッチパネル用電極基板の波長570nmにおけるアドミッタンス軌跡を図3に示す。なお、各層の厚みは、J.A.WoollamCo.Inc.製のVB-250型VASEエリプソメーターで測定した。
[Example 1]
A first high refractive index layer / platinum group-containing layer / conductive layer / second high refractive index layer was laminated in this order on a transparent substrate made of Toyobo PET (Cosmo Shine A4300, thickness 50 μm) by the following method. An admittance locus at a wavelength of 570 nm of the obtained electrode substrate for touch panel is shown in FIG. The thickness of each layer is J. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
(第一高屈折率層)
 前記透明基板上に、アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力150W、成膜レート2.0Å/sでITOをDCスパッタした。ターゲット-基板間距離は86mmであった。得られた第一高屈折率層は、40nmであった。ITOの波長570nmの光の屈折率は、1.80であり、第一高屈折率層の波長570nmの光の屈折率も1.80とした。
(First high refractive index layer)
On the transparent substrate, L-430S-FHS manufactured by Anerva Co., Ltd. was used. Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target side power 150 W, film formation rate 2.0 Å / s. Sputtered. The target-substrate distance was 86 mm. The obtained first high refractive index layer was 40 nm. The refractive index of light with a wavelength of 570 nm of ITO was 1.80, and the refractive index of light with a wavelength of 570 nm of the first high refractive index layer was also 1.80.
(白金族含有層)
 前記第一高屈折率層上に、真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)で、Pdを10秒間スパッタ成膜し、平均厚み0.1nmの成長核を形成した。成長核の平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。
(Platinum group-containing layer)
On the first high refractive index layer, a Pd film was formed by sputtering for 10 seconds using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Inc. to form growth nuclei having an average thickness of 0.1 nm. The average thickness of the growth nuclei was calculated from the film formation rate at the nominal value of the manufacturer of the sputtering apparatus.
(導電層)
 前記白金族含有層上に、アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力100W、成膜レート2.5Å/sでAgをRFスパッタした。ターゲット-基板間距離は86mmであった。得られたAgからなる導電層は6nmであった。
 スパッタは、図2に示される絶縁パターンの形状の遮蔽部を有するマスクを介して行った。ライン状の遮蔽部(絶縁領域)の線幅は30μmであり、略四辺形の開口部(導電性領域)の一辺の長さは300μmであった。
(Conductive layer)
On the platinum group-containing layer, Ag-RF was sputtered using L-430S-FHS manufactured by Anelva Co., Ar 20 sccm, sputtering pressure 0.3 Pa, room temperature, target-side power 100 W, and deposition rate 2.5 Å / s. . The target-substrate distance was 86 mm. The obtained conductive layer made of Ag was 6 nm.
Sputtering was performed through a mask having a shielding portion in the shape of an insulating pattern shown in FIG. The line width of the line-shaped shielding part (insulating region) was 30 μm, and the length of one side of the substantially quadrangular opening (conductive region) was 300 μm.
(第二高屈折率層)
 導電層を覆うように、前述の第一高屈折率層の成膜方法と同様に、第二高屈折率層を成膜した。得られた第二高屈折率層は、40nmであった。ITOの波長570nmの光の屈折率は、1.80であり、第二高屈折率層の波長570nmの光の屈折率も1.80とした。
(Second high refractive index layer)
A second high refractive index layer was formed so as to cover the conductive layer in the same manner as the film formation method for the first high refractive index layer described above. The obtained second high refractive index layer was 40 nm. The refractive index of light with a wavelength of 570 nm of ITO was 1.80, and the refractive index of light with a wavelength of 570 nm of the second high refractive index layer was also 1.80.
[実施例2]
 東洋紡製PET(コスモシャインA4300 厚み50μm)からなる透明基板上に、下記の方法で第一高屈折率層/白金族含有層/導電層/第二高屈折率層を順に積層した。
[Example 2]
A first high refractive index layer / platinum group-containing layer / conductive layer / second high refractive index layer was laminated in this order on a transparent substrate made of Toyobo PET (Cosmo Shine A4300, thickness 50 μm) by the following method.
(第一高屈折率層)
 前記透明基板上に、Optorun社のGener 1300により、320mA、成膜レート3Å/sでTiOを、イオンアシストしながら電子ビーム(EB)蒸着した。得られた第一高屈折率層は、15nmであった。イオンビームは電流500mA、電圧500V、加速電圧400Vで照射した。イオンビーム装置内には、Oガス:50sccm、及びArガス:8sccmを導入した。TiOの波長570nmの光の屈折率は2.35であり、第一高屈折率層の波長570nmの光の屈折率は2.10とした。
(First high refractive index layer)
On the transparent substrate, TiO 2 was deposited by electron beam (EB) with ion assistance at 320 mA and a film formation rate of 3 し な が ら / s using a Gener 1300 manufactured by Optorun. The obtained first high refractive index layer was 15 nm. The ion beam was irradiated at a current of 500 mA, a voltage of 500 V, and an acceleration voltage of 400 V. In the ion beam apparatus, O 2 gas: 50 sccm and Ar gas: 8 sccm were introduced. The refractive index of light with a wavelength of 570 nm of TiO 2 was 2.35, and the refractive index of light with a wavelength of 570 nm of the first high refractive index layer was 2.10.
(白金族含有層及び導電層)
 実施例1と同様の方法で、白金族含有層及び導電層を成膜した。
(Platinum group-containing layer and conductive layer)
In the same manner as in Example 1, a platinum group-containing layer and a conductive layer were formed.
(第二高屈折率層)
 導電層を覆うように、前述の第一高屈折率層の成膜方法と同様に、第二高屈折率層を成膜した。得られた第二高屈折率層は、20nmであった。TiOの波長570nmの光の屈折率は2.35であり、第二高屈折率層の波長570nmの光の屈折率は2.10とした。
(Second high refractive index layer)
A second high refractive index layer was formed so as to cover the conductive layer in the same manner as the film formation method for the first high refractive index layer described above. The obtained second high refractive index layer was 20 nm. The refractive index of light with a wavelength of 570 nm of TiO 2 was 2.35, and the refractive index of light with a wavelength of 570 nm of the second high refractive index layer was 2.10.
[実施例3]
 導電層の厚みを8nmとした以外は、実施例1と同様にタッチパネル用電極基板を作製した。
[Example 3]
A touch panel electrode substrate was prepared in the same manner as in Example 1 except that the thickness of the conductive layer was 8 nm.
[実施例4]
 導電層、第一高屈折率層、及び第二高屈折率層の厚みを、表1に示す厚みとした以外は、実施例2と同様にタッチパネル用電極基板を作製した。
[Example 4]
A touch panel electrode substrate was prepared in the same manner as in Example 2 except that the thicknesses of the conductive layer, the first high refractive index layer, and the second high refractive index layer were changed to the thicknesses shown in Table 1.
[実施例5]
 東洋紡製PET(コスモシャインA4300 厚み50μm)からなる透明基板上に、下記の方法で第一高屈折率層/白金族含有層/導電層/第二高屈折率層を順に積層した。
[Example 5]
A first high refractive index layer / platinum group-containing layer / conductive layer / second high refractive index layer was laminated in this order on a transparent substrate made of Toyobo PET (Cosmo Shine A4300, thickness 50 μm) by the following method.
(第一高屈折率層)
 前記透明基板上に、アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 1sccm、スパッタ圧0.5Pa、室温下、ターゲット側電力150W、成膜レート1.2Å/sでNbをDCスパッタした。ターゲット-基板間距離は86mmであった。得られた第一高屈折率層は、12nmであった。Nbの波長570nmの光の屈折率は、2.31であり、第一高屈折率層の波長570nmの光の屈折率も2.31とした。
(First high refractive index layer)
On the transparent substrate, L-430S-FHS manufactured by Anelva is used, Ar 20 sccm, O 2 1 sccm, sputtering pressure 0.5 Pa, room temperature, target side power 150 W, film formation rate 1.2 成膜 / s, Nb 2 O 5 was DC sputtered. The target-substrate distance was 86 mm. The obtained first high refractive index layer was 12 nm. The refractive index of light with a wavelength of 570 nm of Nb 2 O 5 was 2.31, and the refractive index of light with a wavelength of 570 nm of the first high refractive index layer was also 2.31.
(白金族含有層及び導電層)
 導電層の厚みを8nmとした以外は、実施例1と同様の方法で、白金族含有層及び導電層を成膜した。
(Platinum group-containing layer and conductive layer)
A platinum group-containing layer and a conductive layer were formed in the same manner as in Example 1 except that the thickness of the conductive layer was 8 nm.
(第二高屈折率層)
 導電層を覆うように、前述の第一高屈折率層の成膜方法と同様に、第二高屈折率層を成膜した。得られた第二高屈折率層は、18nmであった。Nbの波長570nmの光の屈折率は、2.31であり、第二高屈折率層の波長570nmの光の屈折率も2.31とした。
(Second high refractive index layer)
A second high refractive index layer was formed so as to cover the conductive layer in the same manner as the film formation method for the first high refractive index layer described above. The obtained second high refractive index layer was 18 nm. The refractive index of light with a wavelength of 570 nm of Nb 2 O 5 was 2.31, and the refractive index of light with a wavelength of 570 nm of the second high refractive index layer was also 2.31.
[実施例6]
 導電層、第一高屈折率層、及び第二高屈折率層の厚みを、表1に示す厚みとした以外は、実施例5と同様にタッチパネル用電極基板を作製した。
[Example 6]
A touch panel electrode substrate was prepared in the same manner as in Example 5 except that the thicknesses of the conductive layer, the first high refractive index layer, and the second high refractive index layer were changed to the thicknesses shown in Table 1.
[実施例7]
 導電層、第一高屈折率層、及び第二高屈折率層の厚みを、表1に示す厚みとした以外は、実施例5と同様にタッチパネル用電極基板を作製した。
[Example 7]
A touch panel electrode substrate was prepared in the same manner as in Example 5 except that the thicknesses of the conductive layer, the first high refractive index layer, and the second high refractive index layer were changed to the thicknesses shown in Table 1.
[実施例8]
 東洋紡製PET(コスモシャインA4300 厚み50μm)からなる透明基板上に、下記の方法で第一高屈折率層/白金族含有層/導電層/第二高屈折率層/アドミッタンス調整層を順に積層した。
[Example 8]
The first high refractive index layer / platinum group-containing layer / conductive layer / second high refractive index layer / admittance adjusting layer were sequentially laminated on a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 μm) by the following method. .
(第一高屈折率層、白金族含有層、導電層及び第二高屈折率層)
 導電層、第一高屈折率層、及び第二高屈折率層の厚みを、表1に示す厚みとした以外は、実施例2と同様の方法で、第一高屈折率層、白金族含有層、導電層、及び第二高屈折率層を成膜した。
(First high refractive index layer, platinum group-containing layer, conductive layer and second high refractive index layer)
Except for the thickness of the conductive layer, the first high-refractive index layer, and the second high-refractive index layer shown in Table 1, in the same manner as in Example 2, the first high-refractive index layer and the platinum group contained A layer, a conductive layer, and a second high refractive index layer were formed.
(アドミッタンス調整層)
 第二高屈折率層上に、Optorun社のGener 1300によって、40mA、成膜レート3Å/sでフッ化マグネシウム(MgF)を電子ビーム(EB)蒸着した。得られたアドミッタンス調整層は75nmであった。なお、フッ化マグシウムの波長570nmの光の屈折率は1.38であり、アドミッタンス調整層の光の屈折率も1.38とした。
(Admittance adjustment layer)
On the second high-refractive index layer, magnesium fluoride (MgF 2 ) was vapor-deposited by electron beam (EB) at 40 mA and a film formation rate of 3 Å / s using a Gener 1300 manufactured by Optorun. The obtained admittance adjusting layer was 75 nm. In addition, the refractive index of the light with a wavelength of 570 nm of the magnesium fluoride was 1.38, and the refractive index of the light of the admittance adjusting layer was also 1.38.
[実施例9]
 東洋紡製PET(コスモシャインA4300 厚み50μm)からなる透明基板上に、下記の方法で第一高屈折率層/白金族含有層/導電層/第二高屈折率層/アドミッタンス調整層を順に積層した。
[Example 9]
The first high refractive index layer / platinum group-containing layer / conductive layer / second high refractive index layer / admittance adjusting layer were sequentially laminated on a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 μm) by the following method. .
(第一高屈折率層、白金族含有層、導電層及び第二高屈折率層)
 導電層、第一高屈折率層、及び第二高屈折率層の厚みを、表1に示す厚みとした以外は、実施例5と同様の方法で、第一高屈折率層、白金族含有層、導電層、及び第二高屈折率層を成膜した。
(First high refractive index layer, platinum group-containing layer, conductive layer and second high refractive index layer)
Except for the thickness of the conductive layer, the first high-refractive index layer, and the second high-refractive index layer shown in Table 1, the first high-refractive index layer and the platinum group contained in the same manner as in Example 5. A layer, a conductive layer, and a second high refractive index layer were formed.
(アドミッタンス調整層)
 第二高屈折率層上に、Optorun社のGener 1300によって、40mA、成膜レート3Å/sでフッ化マグネシウム(MgF)を電子ビーム(EB)蒸着した。得られたアドミッタンス調整層は100nmであった。なお、フッ化マグシウムの波長570nmの光の屈折率は1.38であり、アドミッタンス調整層の光の屈折率も1.38とした。
(Admittance adjustment layer)
On the second high-refractive index layer, magnesium fluoride (MgF 2 ) was vapor-deposited by electron beam (EB) at 40 mA and a film formation rate of 3 Å / s using a Gener 1300 manufactured by Optorun. The obtained admittance adjusting layer was 100 nm. In addition, the refractive index of the light with a wavelength of 570 nm of the magnesium fluoride was 1.38, and the refractive index of the light of the admittance adjusting layer was also 1.38.
[実施例10]
 白金族含有層の材料をPtとした以外は、実施例9と同様にタッチパネル用電極基板を作製した。
[Example 10]
A touch panel electrode substrate was prepared in the same manner as in Example 9 except that the platinum group-containing layer material was Pt.
[比較例1]
 東洋紡製PET(コスモシャインA4300 厚み50μm)からなる透明基板上に、アネルバ社のL-430S-FHSを用い、Ar 20sccm、O 5sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力150W、成膜レート2.0Å/sでITOをDCスパッタした。ターゲット-基板間距離は86mmであった。得られたITO膜は、100nmであった。
[Comparative Example 1]
On a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 μm), Anelva L-430S-FHS was used, Ar 20 sccm, O 2 5 sccm, sputtering pressure 0.3 Pa, room temperature, target side power 150 W, chemical composition ITO was DC sputtered at a film rate of 2.0 Å / s. The target-substrate distance was 86 mm. The obtained ITO film was 100 nm.
[比較例2]
 東洋紡製PET(コスモシャインA4300 厚み50μm)からなる透明基板上に、当該基板上に前述の先行特許文献2の例2と同様の銀ナノワイヤ水分散体をスピンコートし、120℃で20分焼成した。コーターはMIKASA製1H-DX、恒温機はESPEC製のST-120を使用した。得られたAg膜は、50nmであった。
[Comparative Example 2]
On a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 μm), the same silver nanowire aqueous dispersion as in Example 2 of the above-mentioned prior patent document 2 was spin-coated on the substrate and baked at 120 ° C. for 20 minutes. . The coater used was 1K-DX manufactured by MIKASA, and the thermostat used was ST-120 manufactured by ESPEC. The obtained Ag film was 50 nm.
[比較例3]
 銀ナノワイヤを含有した膜の厚みを150nmとした以外は、比較例2と同様に透明基板上にAg膜を成膜した。
[Comparative Example 3]
An Ag film was formed on a transparent substrate in the same manner as in Comparative Example 2 except that the thickness of the film containing silver nanowires was 150 nm.
[比較例4]
 銀ナノワイヤを含有した膜の厚みを200nmとした以外は、比較例2と同様に透明基板上にAg膜を成膜した。
[Comparative Example 4]
An Ag film was formed on a transparent substrate in the same manner as in Comparative Example 2 except that the thickness of the film containing silver nanowires was 200 nm.
[比較例5]
 東洋紡製PET(コスモシャインA4300 厚み50μm)からなる透明基板上に、アネルバ社のL-430S-FHSを用い、Ar 20sccm、スパッタ圧0.3Pa、室温下、ターゲット側電力100W、成膜レート2.5Å/sでAgをRFスパッタした。ターゲット-基板間距離は86mmであった。得られたAgからなる導電層は8nmであった。
[Comparative Example 5]
On a transparent substrate made of Toyobo PET (Cosmo Shine A4300 thickness 50 μm), Anelva L-430S-FHS was used, Ar 20 sccm, sputtering pressure 0.3 Pa, room temperature, target side power 100 W, deposition rate 2. Ag was RF sputtered at 5 Å / s. The target-substrate distance was 86 mm. The obtained conductive layer made of Ag was 8 nm.
[評価]
 各実施例及び比較例のタッチパネル用電極基板について、光学アドミッタンスの特定、波長400nm~800nmの光の平均吸収率及び最大吸収率、各タッチパネル用電極基板に含まれる導電層の波長400~800nmの光のプラズモン吸収率、導電性領域の表面電気抵抗、文字の視認性を以下のように評価した。結果を表2~表3に示す。
[Evaluation]
About the electrode substrate for touch panels of each Example and Comparative Example, specification of optical admittance, average absorption rate and maximum absorption rate of light having a wavelength of 400 nm to 800 nm, light having a wavelength of 400 to 800 nm of the conductive layer included in each electrode substrate for touch panel The plasmon absorption rate, surface electrical resistance of the conductive region, and letter visibility were evaluated as follows. The results are shown in Tables 2 to 3.
(光学アドミッタンスの特定)
 前述の各実施例で得られたタッチパネル用電極基板の光学アドミッタンスを特定した。導電層の第一高屈折率層側の表面の波長570nmの光学アドミッタンスをY1=x+iy、導電層の第二高屈折率層側の表面の波長570nmの光学アドミッタンスをY2=x+iyとしたときの(x,y)、及び(x,y)の値を表1に示す。また、前記導電層を含む領域(導電性領域)表面の波長570nmの光の等価アドミッタンスをY=x+iyで表したときの(x,y)、及び第二高屈折率層側の表面に接する部材の屈折率(nenv)、並びに((x-nenv+(y0.5の値を、それぞれ表1に示す。
(Identification of optical admittance)
The optical admittance of the electrode substrate for touch panels obtained in each of the aforementioned examples was specified. The optical admittance of the surface of the conductive layer on the first high refractive index layer side with a wavelength of 570 nm is Y1 = x 1 + iy 1 , and the optical admittance of the surface of the conductive layer on the second high refractive index layer side with wavelength 570 nm is Y2 = x 2 + iy. 2 and the time (x 1, y 1), and the value of (x 2, y 2) are shown in Table 1. Also, (x E, y E) when the light of the equivalent admittance of wavelength 570nm region (conductive region) surface including the conductive layer expressed in Y E = x E + iy E , and the second high refractive index layer Table 1 shows the refractive index (n env ) of the member in contact with the surface on the side, and the value of ((x E −n env ) 2 + (y E ) 2 ) 0.5 , respectively.
 タッチパネル用電極基板に含まれる層の光学アドミッタンスは、薄膜設計ソフトEssential Macleod Ver.9.4.375で算出した。なお、算出に必要な各層の厚みd、屈折率n、及び吸収係数kは、J.A.WoollamCo.Inc.製のVB-250型VASEエリプソメーターで測定した。 The optical admittance of the layers included in the electrode substrate for touch panel was calculated with the thin film design software Essential Macleod Ver.9.4.375. Note that the thickness d, refractive index n, and absorption coefficient k of each layer necessary for the calculation are as follows. A. Woollam Co. Inc. The measurement was made with a VB-250 VASE ellipsometer manufactured by the manufacturer.
(導電性領域の光の吸収率の測定方法)
 各実施例及び比較例で作製したタッチパネル用電極基板の表面の法線に対して、5°傾けた角度から、導電性領域に測定光(波長400nm~800nmの光)を入射させ、日立株式会社製:分光光度計 U4100にて、光の透過率及び反射率を測定した。そして、吸収率は、100-(透過率+反射率)の計算式より算出した。
(Measurement method of light absorption rate of conductive region)
Measured light (light with a wavelength of 400 nm to 800 nm) is incident on the conductive region from an angle inclined by 5 ° with respect to the normal of the surface of the electrode substrate for touch panel produced in each example and comparative example. Product: Light transmittance and reflectance were measured with a spectrophotometer U4100. The absorptance was calculated from a formula of 100− (transmittance + reflectance).
(プラズモン吸収率の測定方法)
 プラズモン吸収の測定は、ガラス基板上に、各実施例及び比較例と同様の条件で導電層のみを成膜して行った。具体的には、以下のように測定した。
(Measurement method of plasmon absorption rate)
The measurement of plasmon absorption was performed by depositing only a conductive layer on a glass substrate under the same conditions as in the examples and comparative examples. Specifically, the measurement was performed as follows.
 透明ガラス基板上に、白金パラジウムを真空デバイス社製のマグネトロンスパッタ装置(MSP-1S)を用いて、0.2s(0.1nm)成膜した。白金パラジウムの平均厚みは、スパッタ装置のメーカー公称値の成膜速度から算出した。その後、白金パラジウムが付着した基板上にシンクロン製のBMC-800T蒸着機を用いて銀を20nm成膜した。このときの抵抗加熱は210A、成膜レートは5Å/sとした。得られた金属膜の反射率及び透過率を測定し、吸収率=100-(透過率+反射率)として算出した。この金属膜にはプラズモン吸収が無いと仮定し、当該データをリファレンスデータとした。 On a transparent glass substrate, platinum palladium was formed into a film for 0.2 s (0.1 nm) using a magnetron sputtering apparatus (MSP-1S) manufactured by Vacuum Device Corporation. The average thickness of platinum-palladium was calculated from the film formation rate at the manufacturer's nominal value of the sputtering apparatus. Thereafter, a silver film having a thickness of 20 nm was formed on the substrate to which platinum palladium was adhered using a BMC-800T vapor deposition machine manufactured by SYNCHRON. The resistance heating at this time was 210 A, and the film formation rate was 5 Å / s. The reflectance and transmittance of the obtained metal film were measured and calculated as absorptivity = 100− (transmittance + reflectance). This metal film was assumed to have no plasmon absorption, and the data was used as reference data.
 一方、各実施例と同様の条件でガラス基板上に成膜した上記導電層の吸収率を測定した。そして、測定データからリファレンスデータを差し引いた値を、当該導電層のプラズモン吸収率とした。光の透過率及び反射率は、日立株式会社製:分光光度計 U4100にて測定した。 On the other hand, the absorptivity of the conductive layer formed on the glass substrate under the same conditions as in each example was measured. The value obtained by subtracting the reference data from the measurement data was defined as the plasmon absorption rate of the conductive layer. The light transmittance and reflectance were measured with a spectrophotometer U4100 manufactured by Hitachi, Ltd.
(導電性領域の表面電気抵抗の測定方法)
 タッチパネル用電極基板の導電性領域に三菱化学アナリテック製のロレスタEP MCP-T360を接触させて、導電性領域の表面電気抵抗を測定した。
(Measurement method of surface electrical resistance of conductive region)
Loresta EP MCP-T360 manufactured by Mitsubishi Chemical Analytech was brought into contact with the conductive region of the electrode substrate for the touch panel, and the surface electrical resistance of the conductive region was measured.
(文字の視認性の評価)
 画像及びテキスト文字が印刷されたプリント紙上に、実施例及び比較例で作製したタッチパネル用電極基板を、第二高屈折率層がプリント紙側となるように、配置した。そして、画像及びテキスト文字の視認性(鮮鋭感、透明感、コントラスト)を、20人の被験者が下記の基準で5段階に評価した。得られた評価の平均値を、表2及び3に示す。なお、表2及び表3において、数値が高いほど、視認性が優れることを示す。
 5:鮮鋭感、透明感、及びコントラストがいずれも高く、非常に見やすい
 4:鮮鋭感、透明感、及びコントラストが高く、見やすい
 3:鮮鋭感、透明感、及びコントラストのいずれかが劣るが、気にならないレベルである
 2:鮮鋭感、透明感、及びコントラストのいずれかが劣り、やや気になるレベルである
 1:鮮鋭感、透明感、及びコントラストのいずれかが劣り、気になるレベルである
(Evaluation of character visibility)
On the printed paper on which images and text characters were printed, the electrode substrate for a touch panel produced in Examples and Comparative Examples was disposed so that the second high refractive index layer was on the printed paper side. And 20 subjects evaluated the visibility (sharpness, transparency, contrast) of an image and a text character in five steps based on the following reference | standard. The average value of the obtained evaluation is shown in Tables 2 and 3. In Tables 2 and 3, the higher the numerical value, the better the visibility.
5: Sharpness, transparency, and contrast are all high and easy to see 4: Sharpness, transparency, and contrast are high and easy to see 3: Sharpness, transparency, and contrast are inferior It is a level that does not become uncertain 2: Any of sharpness, transparency, and contrast is inferior, and is a slightly worrisome level 1: Any of sharpness, transparency, and contrast is inferior, and is anxious
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 比較例1~5の導電体では、低い表面電気抵抗と、高い文字の視認性とを両立させることができなかった。また特に、比較例5のように、導電層の厚みを薄くすると、プラズモン吸収が生じやすく、導電体の最大吸収率が高まった。 In the conductors of Comparative Examples 1 to 5, it was impossible to achieve both low surface electric resistance and high character visibility. In particular, as in Comparative Example 5, when the thickness of the conductive layer was reduced, plasmon absorption was likely to occur, and the maximum absorption rate of the conductor was increased.
 これに対し、表2及び3に示されるように、本発明のタッチパネル用電極基板(実施例1~10)では、導電層の厚みが10nm以下であっても、表面電気抵抗が十分に低く、さらに文字の視認性が優れた。 On the other hand, as shown in Tables 2 and 3, in the electrode substrate for touch panel of the present invention (Examples 1 to 10), even when the thickness of the conductive layer is 10 nm or less, the surface electrical resistance is sufficiently low, Furthermore, the visibility of characters was excellent.
 本発明で得られるタッチパネル用電極基板は、光透過性が高く、さらに導電性領域の表面電気抵抗値が低い。したがって、各種方式のタッチパネルに好ましく用いられる。 The electrode substrate for a touch panel obtained in the present invention has high light transmittance and further has a low surface electric resistance value in the conductive region. Therefore, it is preferably used for various types of touch panels.
 1、1’ 透明基板
 2 第一高屈折率層
 3 白金族含有層
 4、4’ 導電層
 5、5’ 第二高屈折率層
 15 電極端子
 21 接着層
 25 スペーサ
 100、100’ タッチパネル用電極基板
 200、210、220、230 タッチパネル
 
DESCRIPTION OF SYMBOLS 1, 1 'transparent substrate 2 1st high refractive index layer 3 Platinum group containing layer 4, 4' Conductive layer 5, 5 '2nd high refractive index layer 15 Electrode terminal 21 Adhesive layer 25 Spacer 100, 100' Electrode board for touch panels 200, 210, 220, 230 Touch panel

Claims (10)

  1.  透明基板と、
     前記透明基板の波長570nmの光の屈折率より、波長570nmの光の屈折率が高い誘電性材料または酸化物半導体材料を含む第一高屈折率層と、
     Pt及びPdのうち、いずれか一方あるいは両方を含み、かつ厚みが1nm以下である白金族含有層と、
     金属からなる導電層と、
     前記透明基板の波長570nmの光の屈折率より、波長570nmの光の屈折率が高い誘電性材料または酸化物半導体材料を含む第二高屈折率層と、をこの順に含む、タッチパネル用電極基板であって、
     前記導電層の前記第一高屈折率層側の表面の波長570nmの光学アドミッタンスをY1=x+iy、前記導電層の前記第二高屈折率層側の表面の波長570nmの光学アドミッタンスをY2=x+iyで表した場合に、x及びxのうち、少なくとも一方が1.6以上である、タッチパネル用電極基板。
    A transparent substrate;
    A first high refractive index layer including a dielectric material or an oxide semiconductor material having a refractive index of light having a wavelength of 570 nm higher than that of light having a wavelength of 570 nm of the transparent substrate;
    A platinum group-containing layer containing one or both of Pt and Pd and having a thickness of 1 nm or less;
    A conductive layer made of metal;
    A second high refractive index layer including a dielectric material or an oxide semiconductor material in which the refractive index of light having a wavelength of 570 nm is higher than the refractive index of light having a wavelength of 570 nm of the transparent substrate. There,
    The conductive layer of the optical admittance Y1 = x 1 + iy 1 wavelength 570nm of the first high refractive index layer side of the surface of the optical admittance of wavelength 570nm of the second high refractive index layer side of the surface of the conductive layer Y2 = The electrode substrate for touch panels in which at least one of x 1 and x 2 is 1.6 or more when represented by x 2 + iy 2 .
  2.  波長400nm~800nmの光の平均吸収率が10%以下であり、かつ波長400~800nmの光の吸収率の最大値が15%以下である、請求項1に記載のタッチパネル用電極基板。 2. The electrode substrate for a touch panel according to claim 1, wherein an average absorption rate of light having a wavelength of 400 nm to 800 nm is 10% or less and a maximum value of absorption rate of light having a wavelength of 400 to 800 nm is 15% or less.
  3.  前記導電層のプラズモン吸収率が、波長400~800nmの全範囲で15%以下である、請求項1に記載のタッチパネル用電極基板。 The electrode substrate for a touch panel according to claim 1, wherein the plasmon absorption rate of the conductive layer is 15% or less over the entire wavelength range of 400 to 800 nm.
  4.  前記導電層が、銀または銀を90at%以上含む合金からなる、請求項1に記載のタッチパネル用電極基板。 The electrode substrate for a touch panel according to claim 1, wherein the conductive layer is made of silver or an alloy containing 90 at% or more of silver.
  5.  前記第一高屈折率層に含まれる前記誘電性材料または酸化物半導体、及び前記第二高屈折率層に含まれる前記誘電性材料または酸化物半導体のうち、いずれか一方あるいは両方がTiO、またはNbである、請求項1に記載のタッチパネル用電極基板。 One or both of the dielectric material or oxide semiconductor contained in the first high refractive index layer and the dielectric material or oxide semiconductor contained in the second high refractive index layer are TiO 2 , or Nb 2 O 5, a touch panel electrode substrate according to claim 1.
  6.  前記第二高屈折率層上に、前記第二高屈折率層に含まれる前記誘電性材料または酸化物半導体の波長570nmの光の屈折率より、波長570nmの光の屈折率が低いアドミッタンス調整層をさらに有する、請求項1に記載のタッチパネル用電極基板。 On the second high refractive index layer, an admittance adjustment layer in which the refractive index of light having a wavelength of 570 nm is lower than the refractive index of light having a wavelength of 570 nm of the dielectric material or oxide semiconductor contained in the second high refractive index layer. The electrode substrate for a touch panel according to claim 1, further comprising:
  7.  前記タッチパネル用電極基板の前記第二高屈折率層側の表面の波長570nmの光学アドミッタンスをY=x+iyで表し、
     前記タッチパネル用電極基板の前記第二高屈折率層側の表面に接する部材または環境の、波長570nmの光の屈折率をnenvで表した場合に、
     ((x-nenv+(y0.5≦0.3を満たす、請求項1に記載のタッチパネル用電極基板。
    Represents an optical admittance of wavelength 570nm of the second high refractive index layer side of the surface of the electrode substrate for the touch panel in Y E = x E + iy E ,
    When the refractive index of light having a wavelength of 570 nm of a member or environment in contact with the surface on the second high refractive index layer side of the electrode substrate for touch panel is represented by n env ,
    The electrode substrate for a touch panel according to claim 1, wherein ((x E −n env ) 2 + (y E ) 2 ) 0.5 ≦ 0.3 is satisfied.
  8.  請求項1に記載のタッチパネル用電極基板を含む、タッチパネル。 A touch panel including the electrode substrate for a touch panel according to claim 1.
  9.  前記タッチパネル用電極基板を2つ含み、
     前記2つのタッチパネル用電極基板が積み重なるように配置されている、請求項8に記載のタッチパネル。
    Including two electrode substrates for the touch panel,
    The touch panel according to claim 8, wherein the two touch panel electrode substrates are arranged to be stacked.
  10.  請求項8に記載のタッチパネルと、表示装置とが積層されている、表示パネル。
     
    A display panel in which the touch panel according to claim 8 and a display device are laminated.
PCT/JP2014/002563 2013-05-20 2014-05-15 Touch panel electrode substrate, touch panel including touch panel electrode substrate, and display panel WO2014188683A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015518070A JPWO2014188683A1 (en) 2013-05-20 2014-05-15 Electrode substrate for touch panel, touch panel including the same, and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013106176 2013-05-20
JP2013-106176 2013-05-20

Publications (1)

Publication Number Publication Date
WO2014188683A1 true WO2014188683A1 (en) 2014-11-27

Family

ID=51933252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002563 WO2014188683A1 (en) 2013-05-20 2014-05-15 Touch panel electrode substrate, touch panel including touch panel electrode substrate, and display panel

Country Status (2)

Country Link
JP (1) JPWO2014188683A1 (en)
WO (1) WO2014188683A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111399701A (en) * 2020-05-09 2020-07-10 上海天马微电子有限公司 Touch module, touch display panel and touch display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10241464A (en) * 1996-12-26 1998-09-11 Asahi Glass Co Ltd Substrate with transparent conductive film and manufacture thereof
JP2004342375A (en) * 2003-05-13 2004-12-02 Mitsui Chemicals Inc Luminous body
JP2006184849A (en) * 2004-11-30 2006-07-13 Toppan Printing Co Ltd Antireflection stack, optically functional filter, optical display device and optical article
JP2011141961A (en) * 2010-01-05 2011-07-21 Sony Corp Transparent conductive film, its manufacturing method, electronic element and electronic equipment equipped with this

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10241464A (en) * 1996-12-26 1998-09-11 Asahi Glass Co Ltd Substrate with transparent conductive film and manufacture thereof
JP2004342375A (en) * 2003-05-13 2004-12-02 Mitsui Chemicals Inc Luminous body
JP2006184849A (en) * 2004-11-30 2006-07-13 Toppan Printing Co Ltd Antireflection stack, optically functional filter, optical display device and optical article
JP2011141961A (en) * 2010-01-05 2011-07-21 Sony Corp Transparent conductive film, its manufacturing method, electronic element and electronic equipment equipped with this

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111399701A (en) * 2020-05-09 2020-07-10 上海天马微电子有限公司 Touch module, touch display panel and touch display device
CN111399701B (en) * 2020-05-09 2024-04-02 上海天马微电子有限公司 Touch module, touch display panel and touch display device

Also Published As

Publication number Publication date
JPWO2014188683A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP5549216B2 (en) Transparent conductive laminate, method for producing the same, and touch panel
JP5585143B2 (en) Transparent conductive laminate, method for producing the same, and touch panel
JP6314463B2 (en) Transparent conductor
JP5617276B2 (en) Transparent conductive laminate and method for producing the same
JP4349794B2 (en) Method for producing conductive transparent substrate with multilayer antireflection film
JP6292225B2 (en) Transparent conductor
KR101879220B1 (en) Transparent electrode pattern structure and touch screen panel having the same
KR20140137631A (en) Transparent electrode pattern structure and touch screen panel having the same
JP6319302B2 (en) Transparent conductor and method for producing the same
KR102077548B1 (en) Transparent electrode pattern structure and touch screen panel having the same
CN105468184B (en) Transparent electrode laminate and touch screen panel including the same
WO2015068738A1 (en) Transparent conductive body
CN111446027A (en) Film laminated structure
KR101114028B1 (en) Touch panel
JP2015219690A (en) Transparent conductive device and touch panel
WO2014188683A1 (en) Touch panel electrode substrate, touch panel including touch panel electrode substrate, and display panel
JP6446209B2 (en) Transparent electrode pattern laminate and touch screen panel provided with the same
WO2015087895A1 (en) Transparent conductive body
WO2014196460A1 (en) Transparent conductor and method for producing same
WO2015053371A1 (en) Transparent conductor
WO2014181538A1 (en) Transparent conductor and method for producing same
WO2015025525A1 (en) Transparent conductive body
CN212256951U (en) Thin film laminated structure
WO2015011928A1 (en) Method for producing transparent conductive body
WO2015151677A1 (en) Transparent conductive member and method for producing transparent conductive member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14800381

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015518070

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14800381

Country of ref document: EP

Kind code of ref document: A1