JP3610777B2 - Infrared antireflection film and transmission window - Google Patents

Infrared antireflection film and transmission window Download PDF

Info

Publication number
JP3610777B2
JP3610777B2 JP14138798A JP14138798A JP3610777B2 JP 3610777 B2 JP3610777 B2 JP 3610777B2 JP 14138798 A JP14138798 A JP 14138798A JP 14138798 A JP14138798 A JP 14138798A JP 3610777 B2 JP3610777 B2 JP 3610777B2
Authority
JP
Japan
Prior art keywords
layer
substrate
antireflection film
film
infrared region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14138798A
Other languages
Japanese (ja)
Other versions
JPH11337703A (en
Inventor
孝典 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14138798A priority Critical patent/JP3610777B2/en
Publication of JPH11337703A publication Critical patent/JPH11337703A/en
Application granted granted Critical
Publication of JP3610777B2 publication Critical patent/JP3610777B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、赤外線による光学機器のレンズ材料、透過窓などに用いられる8〜12μm帯の赤外域用反射防止膜及びこれを用いた透過窓に関するものである。
【0002】
【従来の技術】
近年、赤外線による光学機器の利用が盛んになっており、低コストの光学部品が要望されている。赤外線の主な利用波長帯は、3〜5μm帯と8〜12μm帯であり、赤外線センサもこの波長帯に感度を有するものが一般的である。これらの帯域の窓材料やレンズ材料にはSiやGe、ZnSeなどが使われるが、これらの材料の屈折率は一般に高く、窓やレンズに適応する場合、透過率の向上のため反射防止膜が施される。
【0003】
【発明が解決しようとする課題】
しかしながら、3〜5μm帯の窓材料やレンズ材料としては安価なSiが用いられていたが、8〜12μm帯では、Siに比べて極めて高価であるGeやZnS、ZnSeなどの光学部材を使用しており、コストが高くなるという問題点がった。
【0004】
また、8〜12μm帯での良好な反射防止膜としては、Ge基板ではZnSによる単層の反射防止膜が良く知られているが、これをSi基板にそのまま適用すると、密着性が小さく、剥離するなど耐久性に問題があった。
【0005】
また、このような単層の反射防止膜の場合は、基板の屈折率をnとしたとき、n 1/2の屈折率を、透過させたい波長のおよそ1/4の光学膜厚(=屈折率×物理的膜厚)で基板上にコーティングすることにより良好なものとなるが、Siの屈折率3.4に対し、ZnSは2.2であるため、屈折率のミスマッチが大きく良好な反射防止特性が得られないという問題点があった。
【0006】
一方、光学膜材料としてよく使われるAl、Sb、HfO、In、Nd、Sc、SiO、Ta、TiO、Y、ZrOなどの金属酸化物は、Siとの密着性は良好であるが、8〜12μm帯での吸収が大きく、反射防止膜としては不適であった。
【0007】
本発明は以上のような問題点を解決するためになされたもので、低コストで耐久性に優れ反射防止特性が良好な8〜12μm帯の赤外域用反射防止膜を得ることを目的とする。また、この赤外域用反射防止膜を用いた赤外域用透過窓を得ることを目的とする。
【0008】
【課題を解決するための手段】
この発明に係る赤外域用反射防止膜は、Siからなる基板上に形成され8〜12μm帯の波長を透過するものであって、基板からの第1層目は光学膜厚が0.86〜4.80μmのGe層、第2層目は光学膜厚が2.31〜2.57μmのZnS層である。
【0009】
また、Siからなる基板上に形成され8〜12μm帯の波長を透過するものであって、基板からの第1層目は光学膜厚が1.44〜4.74μmのGe層、第2層目は光学膜厚が2.38〜2.56μmのZnSe層である。
【0010】
また、Siからなる基板上に形成され8〜12μm帯の波長を透過するものであって、基板からの第1層目がGe、第2層目がZnSe、第3層目がZnSである。
【0011】
また、Siからなる基板上に形成され8〜12μm帯の波長を透過するものであって、基板からの第1層目がGe、第2層目がSi、第3層目が金属フッ化物である。
【0012】
また、Siからなる基板上に形成され8〜12μm帯の波長を透過するものであって、基板からの第1層目がGe、第2層目がSi、第3層目がGe、第4層目が金属フッ化物である。
【0013】
また、金属フッ化物は、CeF、 YF、CaF及びクライオライトのいずれか一つである。
【0014】
また、この発明に係る赤外域用透過窓は、請求項1から6のいずれか一項に記載の赤外域用反射防止膜を用いたものである。
【0015】
また、基板の厚みは0.1mmから2mmである。
【0016】
【発明の実施の形態】
以下、本発明の赤外域用反射防止膜及び透過窓について添付図面を参照して詳細に説明する。
【0017】
図1ないし図5は、本発明の赤外域用反射防止膜を示す断面図である。図において、1はSi平板、2はGe層、3はZnS層、4はZnSe層、5はSi層、6は金属フッ化物層である。
【0018】
一般に赤外線反射防止膜を設計する際には、基板材料と膜材料の密着性ならびに膜材料間の密着性、及び選定した材料が反射防止膜を構成する上で適当な屈折率と膜厚を有していることが重要となる。なお、本発明において対象としている赤外域は波長8〜12μm帯であり、本発明の反射防止膜はこの波長域の反射率を抑制することを意味する。本発明による材料の組み合わせと膜厚は、発明者らが本発明の目的に合致するように、コンピュータによる光学多層膜の演算と試作とを繰り返し、あらゆる組み合わせの中から鋭意研究してきた結果として選ばれたものである。
【0019】
本発明の赤外域用反射防止膜は、図1に示されるように、Si製の平板1を基板として、順番にGe層2、ZnS層3を配したことに特徴がある。GeはSiとの密着性がよく、またGeとZnSとの密着性もよいため、耐久性は良好なものとなる。膜厚はGeとZnSの屈折率を考慮し、Geは8〜12μmの中心波長である10μmの1/2の光学膜厚(=物理的膜厚×屈折率)かまたは1/4の光学膜厚、ZnSは10μmの1/4の光学膜厚を基準とすると良好な反射防止膜が得られる。これは、反射防止膜の典型的な設計例であるHQ型反射防止膜ならびにQQ型反射防止膜に従ったためであるが、最終的な膜厚は、コンピュータによる数値計算により最適化を実施することにより決定された。
【0020】
また、本発明の別の赤外域用反射防止膜は、図2に示されるように、Si製の平板1を基板として、順番にGe層2、ZnSe層4を配したことに特徴がある。この材料の配し方は、基本的には図1に示したZnS層3の代わりにZnSe層4を用いたものである。ZnSeはZnSと特徴がよく似ており、Geとの密着性もよく、同様の効果が期待されるが、ZnSより若干屈折率が高いため、反射防止膜の透過曲線に違いが生じ、使用目的によってはZnSより好ましい特性となる。
【0021】
また、本発明の別の赤外域用反射防止膜は、図3に示されるように、Si製の平板1を基板として、順番にGe層2、ZnSe層4、ZnS層3を配したことに特徴がある。この材料の配し方は、図2に示したZnSe層4を、ZnSe、ZnSの2層で置き代えたものであるが、ZnSeはZnSと比較して硬度が小さく傷のつきやすい材料であるので、ZnSeと密着性のよいZnSをZnSeの保護膜として配したものである。膜厚は、HQ型反射防止膜ならびにQQ型反射防止膜に従うことにより良好な反射防止特性が得られるが、この場合、ZnSとZnSeの2層により10μmの1/4の等価膜かまたは1/2の等価膜としなくてはならない。最終的な膜厚は、コンピュータによる数値計算により最適化を実施することにより決定された。
【0022】
また、本発明の別の赤外域用反射防止膜は、図4に示されるように、Si製の平板1を基板として、順番にGe層2、Si層5、金属フッ化物層6を配したことに特徴がある。この材料の配し方は、膜材料間の密着性が良好なだけでなく、膜厚をすべて中心波長の1/4としたQQQ型反射防止膜構造とし、さらに膜厚の最適化を実施することにより極めて良好な反射防止特性が得られる。
【0023】
上記金属フッ化物としては、例えば、MgF、CeF、YF、CaF、クライオライト(NaAlF)、AlF、LiF、BaF、ThFなどの金属フッ化物をあげることができ、そのうち波長8〜12μmの赤外光に対し透明であることや材料の屈折率や毒性、また反射防止膜の最外層としての耐久性を考慮すれば、CeF、YF、CaF及びクライオライトから選ばれた1種であることが好ましい。
【0024】
また、本発明の別の赤外域用反射防止膜は、図5に示されるように、Si製の平板1を基板として、順番にGe層2、Si層5、Ge層2、金属フッ化物層6を配したことに特徴がある。基板から3層目のGe層2を除いては図4と同じ構成となっている。3層目のGe層2は、Si層5と金属フッ化物層6の密着性を改善するために配したもので、Siと金属フッ化物を直接密着させた場合より、SiとGe、Geと金属フッ化物を直接密着させたときの方が、密着性が大幅に改善される。この3層目のGe層2はSiと金属フッ化物の密着性を改善するために配されたものであるから、層の厚さは薄くてもよく、この場合の設計変更は些少なものとなる。また上限はGe層2を含めて設計変更を行い、反射防止特性を劣化させない程度にとどめておけばよい。最外層の金属フッ化物層6は、すでにのべたとおり、YF、CeF、CaFまたはクライオライトから選ばれた1種であることが好ましい。
【0025】
以上のような赤外域用反射防止膜を用いて赤外域用透過窓を作製する場合、基板となるSi平板1は、厚さをあまり薄くすると、ハンドリングや衝撃を与えた際に破損したりするため、0.1mmまでにとどめるのが好ましい。また、Siは波長9μm近傍と10μm以上で赤外線の吸収を有するため、あまり厚くすることは好ましくない。また、両面を研磨したSi平板では、厚さ2mmで波長8〜12μmの平均吸収率が13%となったが、これ以上の赤外線透過率の減少は好ましくなく、従って、Si平板の厚さの上限は2mm程度が好ましい。
【0026】
赤外域用反射防止膜の形成法については、特に限定されないが、たとえば真空蒸着法、イオンプレーティング法、スパッタリング法、CVD法などがあげられる。なかでも光学多層膜の形成を目的とした真空蒸着法が膜厚のコントロールと膜厚の均一性の点から好ましい。以下、該方法及び該方法を実施する場合の真空蒸着装置について説明する。
【0027】
図6は、本発明の赤外域用反射防止膜の製造に用いられる蒸着装置を示す構成図である。図において、10は高真空を得るための真空容器、11は基板取り付けドーム、12は蒸着すべき基板、13は蒸着物質を入れるるつぼ、14はるつぼ回転ステージ、15は電子ビームを放出する電子銃、16は蒸着膜の膜厚を測る反射式光学膜厚計、17はモニタ用基板、18はシャッタである。
【0028】
次に製造方法について説明する。まず、蒸着すべき基板12を基板取り付けドーム11に取り付ける。なお、基板取り付けドーム11は、蒸着中において膜の均一性を向上させるために回転される。次に、るつぼ13に必要な量の蒸着物質を入れてるつぼ回転ステージ14に配置する。るつぼ13は、るつぼ回転ステージ14によって、電子銃15から放出される電子ビームの当たる位置に移動される。電子銃15から放出された電子ビームによってるつぼ13内が加熱されると、蒸発した蒸着物質は基板12及びモニタ基板17の表面に蒸着され、膜となる。この蒸着膜の厚さは、真空容器10の上方に取り付けられた反射式光学膜厚計16により、モニタ用基板17の膜厚を蒸着中に計測することによって同時に測定され、所望の厚さになったときにシャッタ18が閉じる。以下、同様にして順次異なる層の蒸着膜を所定の厚さだけ形成することによって、本発明の赤外域用反射防止膜が得られる。
【0029】
なお、以下に述べる各実施例における電子ビーム蒸着法は、上記方法により行ったが、蒸着物質の加熱には電子ビーム法だけでなく、金属製のるつぼに電流を流して加熱する抵抗加熱法も用いることができる。また、光学式膜厚計としても、反射式だけでなく、真空容器の下部に光源を設けた透過式膜厚計等も用いることができる。
【0030】
以上のように、本発明の8〜12μm帯の赤外域用反射防止膜によれば、基板に安価なSiを用ると共に、Ge、ZnS、ZnSeは反射防止膜として積層するので、安価に製造できる効果が得られる。また、Si基板の直上を積層れる層はSiと密着性の良いGeであるので、優れた耐久性が得られる効果がある。さらに、Si基板と各反射防止膜層との屈折率が設計上の整合性がとれているので、良好な反射防止特性が得られるという効果が得られる。
【0031】
次に、以下の実施例に基づいて、本発明の赤外域用反射防止膜及び赤外域用透過窓について、さらに詳細に説明する。
【0032】
【実施例】
実施例1〜5.
直径30mmφ、厚さ0.5mmの両面を研磨したSi製の平板を、蒸着装置内の基板取り付けドームに取り付け、真空度1×10−4torr以下で、電子ビーム蒸着法によって基板から順に表1記載の材料と光学膜厚で積層して赤外域用反射防止膜を形成した(実施例1から3が図1に記載、実施例4、5が図2に記載のものにそれぞれ対応)。なお、光学膜厚を決めるための屈折率値は赤外線の波長10μm近傍での値を使うこととした。具体的にはGe膜、ZnS膜、ZnSe膜の屈折率はそれぞれ4.0、2.2、2.4、Si平板の屈折率は3.4となる。なお、基板の反対の面についても同じ手順により蒸着を行った。
【0033】
【表1】

Figure 0003610777
【0034】
得られた赤外域用反射防止膜の透過率を、フーリエ変換赤外分光光度計(日本電子(株)製JIR−7000)により測定した。その分光透過率曲線を図7及び図8に示す。
【0035】
実施例6〜10.
直径30mmφ、厚さ0.5mmの両面を研磨したSi製の平板を、実施例1〜5と同様の方法によって、基板の両面に表2記載の材料と光学膜厚を有する膜を積層して赤外域用反射防止膜を形成した(実施例6、7が図3に記載、実施例8から10が図4に記載のものにそれぞれ対応)。なお、材料の屈折率値は、Ge膜、ZnS膜、ZnSe膜、Si平板については実施例1〜5と同じであり、さらにSi膜、CeF膜、YF膜、CaF膜についてはそれぞれ3.4、1.6、1.6、1.4となる。
【0036】
【表2】
Figure 0003610777
【0037】
得られた赤外域用反射防止膜の透過率を、実施例1〜5と同様の方法により測定した。その分光透過率曲線を図9及び図10に示す。
【0038】
実施例11〜13.
直径30mmφ、厚さ0.5mmの両面を研磨したSi製の平板を、実施例1〜5と同様の方法によって、基板の両面に表3記載の材料と光学膜厚を有する膜を積層して赤外域用反射防止膜を形成した(図5に記載のものに対応)。実施例6〜10と同じ材料については同じ屈折率値であり、さらにクライオライトについては1.4となる。
【0039】
【表3】
Figure 0003610777
【0040】
得られた赤外域用反射防止膜の透過率を、実施例1〜5と同様の方法により測定した。その分光透過率曲線を図11に示す。
【0041】
実施例14.
直径30mmφ、厚さ0.1mm、0.5mm、1.0mm、2.0mmの両面を研磨したSi製の平板をそれぞれ実施例1〜5と同様の方法によって、基板の両面に実施例1と同じ材料を積層して赤外域用透過窓を形成した。得られた赤外域用透過窓の透過率を、実施例1〜5と同様の方法により測定した。その分光透過率曲線を図12に示す。
【0042】
以上の結果から、実施例1〜13における赤外域用反射防止膜は、8〜12μm帯の赤外域において、9μm付近で吸収があるものの、全体的に良好な反射防止特性を有していることが分かる。
【0043】
また、実施例14における赤外域用透過窓は、実施例1における赤外域用反射防止膜を用いているため、8〜12μm帯の赤外域において、9μm付近で吸収があるものの、全体的に良好な反射防止特性を有していることが分かる。また、Si基板の厚さは、0.1〜2.0mmが適当であることが分かる。
【0044】
【発明の効果】
以上のように、請求項1記載の発明によれば、Siからなる基板上に形成され8〜12μm帯の波長を透過するものであって、基板からの第1層目は光学膜厚が0.86〜4.80μmのGe層、第2層目は光学膜厚が2.31〜2.57μmのZnS層であるので、低コストで耐久性に優れ反射防止特性が良好な8〜12μm帯の赤外域用反射防止膜を得る効果がある。
【0045】
また、請求項2記載の発明によれば、Siからなる基板上に形成され8〜12μm帯の波長を透過するものであって、基板からの第1層目は光学膜厚が1.44〜4.74μmのGe層、第2層目は光学膜厚が2.38〜2.56μmのZnSe層であるので、低コストで耐久性に優れ反射防止特性が良好な8〜12μm帯の赤外域用反射防止膜を得る効果がある。
【0046】
また、請求項3記載の発明によれば、Siからなる基板上に形成され8〜12μm帯の波長を透過するものであって、基板からの第1層目がGe、第2層目がZnSe、第3層目がZnSであるので、低コストで耐久性に優れ反射防止特性が良好な8〜12μm帯の赤外域用反射防止膜を得る効果がある。
【0047】
また、請求項4記載の発明によれば、Siからなる基板上に形成され8〜12μm帯の波長を透過するものであって、基板からの第1層目がGe、第2層目がSi、第3層目が金属フッ化物であるので、低コストで耐久性に優れ反射防止特性が良好な8〜12μm帯の赤外域用反射防止膜を得る効果がある。
【0048】
また、請求項5記載の発明によれば、Siからなる基板上に形成され8〜12μm帯の波長を透過するものであって、基板からの第1層目がGe、第2層目がSi、第3層目がGe、第4層目が金属フッ化物であるので、低コストで耐久性に優れ反射防止特性が良好な8〜12μm帯の赤外域用反射防止膜を得る効果がある。
【0049】
また、請求項6記載の発明によれば、金属フッ化物は、CeF、 YF、CaF及びクライオライトのいずれか一つであるので、低コストで耐久性に優れ反射防止特性が良好な8〜12μm帯の赤外域用反射防止膜を得る効果がある。
【0050】
また、請求項7記載の発明によれば、請求項1から6のいずれか一項に記載の赤外域用反射防止膜を用いたので、低コストで耐久性に優れ反射防止特性が良好な8〜12μm帯の透過窓を得る効果がある。
【0051】
また、請求項8記載の発明によれば、基板の厚みは0.1mmから2mmであるので、低コストで耐久性に優れ反射防止特性が良好な8〜12μm帯の透過窓を得る効果がある。
【図面の簡単な説明】
【図1】この発明の実施の形態による赤外域用反射防止膜を示す断面図である。
【図2】この発明の実施の形態による別の赤外域用反射防止膜を示す断面図である。
【図3】この発明の実施の形態による別の赤外域用反射防止膜を示す断面図である。
【図4】この発明の実施の形態による別の赤外域用反射防止膜を示す断面図である。
【図5】この発明の実施の形態による別の赤外域用反射防止膜を示す断面図である。
【図6】この発明の実施の形態による赤外域用反射防止膜の製造に用いられる蒸着装置を示す構成図である。
【図7】この発明の実施例1から3による赤外域用反射防止膜の赤外線分光透過率を示す図である。
【図8】この発明の実施例4、5による赤外域用反射防止膜の赤外線分光透過率を示す図である。
【図9】この発明の実施例6、7による赤外域用反射防止膜の赤外線分光透過率を示す図である。
【図10】この発明の実施例8から10による赤外域用反射防止膜の赤外線分光透過率を示す図である。
【図11】この発明の実施例11から13による赤外域用反射防止膜の赤外線分光透過率を示す図である。
【図12】この発明の実施例14によるSi基板の赤外線分光透過率を示す図である。
【符号の説明】
1 Si平板、2 Ge層、3 ZnS層、4 ZnSe層、5 Si層、6 金属フッ化物層、10 真空容器、11 基板取り付けドーム、12 基板、13 るつぼ、14 回転ステージ、15 電子銃、16 反射式光学膜厚計、17 モニタ用基板、18 シャッタ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an antireflection film for infrared region of 8 to 12 μm band used for a lens material of an optical device using infrared rays, a transmission window, and the like, and a transmission window using the same.
[0002]
[Prior art]
In recent years, optical devices using infrared rays have been actively used, and low-cost optical components have been demanded. The main use wavelength bands of infrared rays are the 3 to 5 μm band and the 8 to 12 μm band, and the infrared sensor generally has sensitivity in this wavelength band. Si, Ge, ZnSe, etc. are used for window materials and lens materials in these bands, but these materials generally have a high refractive index, and when applied to windows and lenses, an antireflection film is provided to improve transmittance. Applied.
[0003]
[Problems to be solved by the invention]
However, although cheap Si was used as the window material and lens material in the 3-5 μm band, optical members such as Ge, ZnS, and ZnSe that are extremely expensive compared to Si are used in the 8-12 μm band. There was a problem that the cost was high.
[0004]
In addition, as a good antireflection film in the 8 to 12 μm band, a single-layer antireflection film made of ZnS is well known for Ge substrates. There was a problem with durability.
[0005]
In the case of the anti-reflection film of such a single layer, when the refractive index of the substrate was n S, the refractive index of the n S 1/2, about 1/4 optical thickness of the wavelength desired to be transmitted ( = Refractive index x Physical film thickness), it becomes better by coating on the substrate, but since ZnS is 2.2 versus Si refractive index 3.4, the refractive index mismatch is large and good There is a problem in that a good antireflection characteristic cannot be obtained.
[0006]
On the other hand, Al 2 O 3 , Sb 2 O 3 , HfO 2 , In 2 O 3 , Nd 2 O 3 , Sc 2 O 3 , SiO, Ta 2 O 3 , TiO 2 , Y 2 O, which are often used as optical film materials. 3 , metal oxides such as ZrO 2 have good adhesion with Si, but have a large absorption in the band of 8 to 12 μm and are not suitable as an antireflection film.
[0007]
The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain an antireflection film for infrared region in the 8 to 12 μm band having low cost, excellent durability, and good antireflection characteristics. . It is another object of the present invention to obtain an infrared transmission window using the infrared antireflection film.
[0008]
[Means for Solving the Problems]
The antireflection film for infrared region according to the present invention is formed on a substrate made of Si and transmits a wavelength of 8 to 12 μm, and the first layer from the substrate has an optical film thickness of 0.86 to 0.86. The Ge layer of 4.80 μm and the second layer are ZnS layers having an optical film thickness of 2.31 to 2.57 μm .
[0009]
Further, it is formed on a substrate made of Si and transmits a wavelength of 8 to 12 μm, and the first layer from the substrate is a Ge layer and a second layer having an optical film thickness of 1.44 to 4.74 μm. The eyes are ZnSe layers with an optical film thickness of 2.38 to 2.56 μm .
[0010]
Further, it is formed on a substrate made of Si and transmits a wavelength of 8 to 12 μm, and the first layer from the substrate is Ge, the second layer is ZnSe, and the third layer is ZnS.
[0011]
Further, it is formed on a substrate made of Si and transmits a wavelength of 8 to 12 μm, and the first layer from the substrate is Ge, the second layer is Si, and the third layer is a metal fluoride. is there.
[0012]
Further, it is formed on a substrate made of Si and transmits a wavelength of 8 to 12 μm, and the first layer from the substrate is Ge, the second layer is Si, the third layer is Ge, the fourth The layer is a metal fluoride.
[0013]
The metal fluoride is any one of CeF 3 , YF 3 , CaF 2 and cryolite.
[0014]
Moreover, the infrared region transmission window according to the present invention uses the infrared region antireflection film according to any one of claims 1 to 6.
[0015]
The thickness of the substrate is 0.1 mm to 2 mm.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the antireflection film for infrared region and the transmission window of the present invention will be described in detail with reference to the accompanying drawings.
[0017]
1 to 5 are cross-sectional views showing an infrared antireflection film of the present invention. In the figure, 1 is a Si flat plate, 2 is a Ge layer, 3 is a ZnS layer, 4 is a ZnSe layer, 5 is a Si layer, and 6 is a metal fluoride layer.
[0018]
In general, when designing an infrared antireflection film, the adhesion between the substrate material and the film material, the adhesion between the film materials, and the selected material has an appropriate refractive index and film thickness for constituting the antireflection film. Is important. In addition, the infrared region made into object in this invention is a wavelength 8-12 micrometers band, and the antireflection film of this invention means suppressing the reflectance of this wavelength range. The combination of materials according to the present invention and the film thickness were selected as the result of earnest research from all combinations by the inventors repeating the calculation and trial production of the optical multilayer film by a computer so as to meet the purpose of the present invention. It has been.
[0019]
As shown in FIG. 1, the antireflection film for infrared region of the present invention is characterized in that a Ge layer 2 and a ZnS layer 3 are arranged in order using a Si flat plate 1 as a substrate. Since Ge has good adhesion with Si and Ge and ZnS, the durability is good. The film thickness takes into consideration the refractive indexes of Ge and ZnS, and Ge is an optical film thickness (= physical film thickness × refractive index) of ½ of 10 μm, which is a central wavelength of 8 to 12 μm, or ¼ optical film. When the thickness and the optical thickness of ZnS are ¼ of 10 μm, a good antireflection film can be obtained. This is because the HQ type antireflection film and the QQ type antireflection film, which are typical design examples of the antireflection film, were followed, but the final film thickness should be optimized by numerical calculation by a computer. Determined by.
[0020]
Another infrared antireflection film of the present invention is characterized in that, as shown in FIG. 2, a Ge layer 2 and a ZnSe layer 4 are arranged in this order using a Si flat plate 1 as a substrate. This material is basically arranged using a ZnSe layer 4 instead of the ZnS layer 3 shown in FIG. ZnSe is similar in characteristics to ZnS, has good adhesion to Ge, and is expected to have the same effect, but has a slightly higher refractive index than ZnS, resulting in a difference in the transmission curve of the antireflection film, and the intended use Depending on the case, it may be more preferable than ZnS.
[0021]
Further, as shown in FIG. 3, another antireflection film for infrared region according to the present invention has a Ge layer 2, a ZnSe layer 4, and a ZnS layer 3 arranged in this order using a Si flat plate 1 as a substrate. There are features. This material is arranged by replacing the ZnSe layer 4 shown in FIG. 2 with two layers of ZnSe and ZnS. ZnSe has a smaller hardness and is easily scratched than ZnS. Therefore, ZnS having good adhesion to ZnSe is arranged as a protective film of ZnSe. As for the film thickness, good antireflection characteristics can be obtained by following the HQ type antireflection film and the QQ type antireflection film. In this case, the two layers of ZnS and ZnSe are equivalent to a 1/4 equivalent film of 10 μm or 1 / 2 equivalent membranes. The final film thickness was determined by performing optimization by computer numerical calculation.
[0022]
In addition, as shown in FIG. 4, another antireflection film for infrared region of the present invention has a Ge layer 2, a Si layer 5, and a metal fluoride layer 6 in order, using a Si flat plate 1 as a substrate. There is a special feature. This material is arranged not only with good adhesion between film materials, but also with a QQQ type antireflection film structure in which the film thickness is ¼ of the center wavelength, and the film thickness is further optimized. As a result, very good antireflection characteristics can be obtained.
[0023]
Examples of the metal fluoride include metal fluorides such as MgF 2 , CeF 3 , YF 3 , CaF 2 , cryolite (Na 3 AlF 6 ), AlF 3 , LiF 2 , BaF 2 , ThF 4. Of these, CeF 3 , YF 3 , CaF 2 and the like can be obtained by considering transparency to infrared light having a wavelength of 8 to 12 μm, the refractive index and toxicity of the material, and durability as the outermost layer of the antireflection film. It is preferable that it is 1 type chosen from cryolite.
[0024]
In addition, as shown in FIG. 5, the antireflection film for infrared region of the present invention has a Ge layer 2, a Si layer 5, a Ge layer 2, and a metal fluoride layer in this order using a Si flat plate 1 as a substrate. A characteristic is that 6 is arranged. Except for the third Ge layer 2 from the substrate, the structure is the same as in FIG. The third Ge layer 2 is arranged to improve the adhesion between the Si layer 5 and the metal fluoride layer 6, and Si, Ge, Ge and The adhesion is greatly improved when the metal fluoride is directly adhered. Since the third Ge layer 2 is arranged to improve the adhesion between Si and the metal fluoride, the thickness of the layer may be small, and the design change in this case is slight. Become. Further, the upper limit of the design including the Ge layer 2 may be changed so that the antireflection characteristics are not deteriorated. As described above, the outermost metal fluoride layer 6 is preferably one selected from YF 3 , CeF 3 , CaF 2 or cryolite.
[0025]
When an infrared region transmission window is manufactured using the above-described infrared region antireflection film, if the thickness of the Si flat plate 1 serving as a substrate is too thin, the substrate may be damaged when handling or impact is applied. For this reason, it is preferable to limit it to 0.1 mm. Further, since Si has infrared absorption near the wavelength of 9 μm and 10 μm or more, it is not preferable to make it too thick. Moreover, in the Si flat plate whose both surfaces were polished, the average absorptance at a wavelength of 8 to 12 μm at a thickness of 2 mm was 13%. However, further reduction in the infrared transmittance is not preferable, and therefore the thickness of the Si flat plate is not preferable. The upper limit is preferably about 2 mm.
[0026]
The method for forming the antireflection film for infrared region is not particularly limited, and examples thereof include a vacuum deposition method, an ion plating method, a sputtering method, and a CVD method. Of these, vacuum deposition for the purpose of forming an optical multilayer film is preferable from the viewpoints of film thickness control and film thickness uniformity. Hereinafter, the method and a vacuum deposition apparatus when the method is performed will be described.
[0027]
FIG. 6 is a block diagram showing a vapor deposition apparatus used for manufacturing the antireflection film for infrared region of the present invention. In the figure, 10 is a vacuum vessel for obtaining a high vacuum, 11 is a substrate mounting dome, 12 is a substrate to be vapor-deposited, 13 is a crucible for depositing a vapor deposition material, 14 is a crucible rotating stage, and 15 is an electron gun for emitting an electron beam. , 16 is a reflective optical film thickness meter for measuring the thickness of the deposited film, 17 is a monitor substrate, and 18 is a shutter.
[0028]
Next, a manufacturing method will be described. First, the substrate 12 to be deposited is attached to the substrate attachment dome 11. Note that the substrate mounting dome 11 is rotated during deposition to improve film uniformity. Next, the crucible 13 is placed on a crucible rotating stage 14 in which a necessary amount of vapor deposition material is placed. The crucible 13 is moved by the crucible rotating stage 14 to a position where the electron beam emitted from the electron gun 15 hits. When the inside of the crucible 13 is heated by the electron beam emitted from the electron gun 15, the evaporated deposition material is deposited on the surfaces of the substrate 12 and the monitor substrate 17 to form a film. The thickness of the vapor deposition film is simultaneously measured by measuring the film thickness of the monitor substrate 17 during vapor deposition by a reflective optical film thickness meter 16 attached above the vacuum vessel 10 to obtain a desired thickness. When this happens, the shutter 18 closes. In the same manner, the antireflection film for infrared region of the present invention is obtained by sequentially forming vapor deposition films of different layers to a predetermined thickness in the same manner.
[0029]
In addition, although the electron beam vapor deposition method in each Example described below was performed by the above method, not only the electron beam method but also a resistance heating method in which a current is supplied to a metal crucible for heating the vapor deposition material. Can be used. Further, as the optical film thickness meter, not only the reflection type but also a transmission film thickness meter provided with a light source at the lower part of the vacuum vessel can be used.
[0030]
As described above, according to the antireflection film for infrared region in the 8 to 12 μm band of the present invention, inexpensive Si is used for the substrate, and Ge, ZnS, and ZnSe are laminated as the antireflection film, so that it is manufactured at low cost. The effect that can be obtained. In addition, since the layer that can be stacked immediately above the Si substrate is Ge having good adhesion to Si, there is an effect that excellent durability can be obtained. Furthermore, since the refractive index between the Si substrate and each antireflection film layer is consistent in design, an effect of obtaining good antireflection characteristics can be obtained.
[0031]
Next, based on the following examples, the infrared region antireflection film and the infrared region transmission window of the present invention will be described in more detail.
[0032]
【Example】
Examples 1-5.
A Si flat plate having a diameter of 30 mmφ and a thickness of 0.5 mm polished is attached to a substrate mounting dome in a vapor deposition apparatus, and the degree of vacuum is 1 × 10 −4 torr or less. An infrared region antireflection film was formed by laminating the materials and optical film thicknesses described (Examples 1 to 3 correspond to those shown in FIG. 1, and Examples 4 and 5 correspond to those shown in FIG. 2, respectively). The refractive index value for determining the optical film thickness is a value in the vicinity of an infrared wavelength of 10 μm. Specifically, the refractive indexes of the Ge film, the ZnS film, and the ZnSe film are 4.0, 2.2, and 2.4, respectively, and the refractive index of the Si flat plate is 3.4. In addition, it vapor-deposited by the same procedure also on the surface opposite to a board | substrate.
[0033]
[Table 1]
Figure 0003610777
[0034]
The transmittance of the obtained antireflection film for infrared region was measured with a Fourier transform infrared spectrophotometer (JIR-7000, manufactured by JEOL Ltd.). The spectral transmittance curves are shown in FIGS.
[0035]
Examples 6 to 10.
A Si flat plate having a diameter of 30 mmφ and a thickness of 0.5 mm polished on both sides of the substrate was laminated with a film having the materials and optical film thicknesses shown in Table 2 on both sides of the substrate in the same manner as in Examples 1-5. Infrared antireflection films were formed (Examples 6 and 7 correspond to those shown in FIG. 3 and Examples 8 to 10 correspond to those shown in FIG. 4, respectively). The refractive index values of the materials are the same as those of Examples 1 to 5 for the Ge film, ZnS film, ZnSe film, and Si flat plate, and for the Si film, CeF 3 film, YF 3 film, and CaF 2 film, respectively. 3.4, 1.6, 1.6, and 1.4.
[0036]
[Table 2]
Figure 0003610777
[0037]
The transmittance of the obtained antireflection film for infrared region was measured by the same method as in Examples 1-5. The spectral transmittance curves are shown in FIGS.
[0038]
Examples 11-13.
A Si flat plate having a diameter of 30 mmφ and a thickness of 0.5 mm polished on both sides of the substrate was laminated with a film having the material and optical film thickness shown in Table 3 on both sides of the substrate in the same manner as in Examples 1-5. An antireflection film for infrared region was formed (corresponding to that shown in FIG. 5). The same refractive index value is obtained for the same material as in Examples 6 to 10, and further 1.4 for the cryolite.
[0039]
[Table 3]
Figure 0003610777
[0040]
The transmittance of the obtained antireflection film for infrared region was measured by the same method as in Examples 1-5. The spectral transmittance curve is shown in FIG.
[0041]
Example 14 FIG.
A Si flat plate having a diameter of 30 mmφ and a thickness of 0.1 mm, 0.5 mm, 1.0 mm, and 2.0 mm polished on both sides of the substrate was measured in the same manner as in Examples 1 to 5, respectively. The same material was laminated to form an infrared transmission window. The transmittance of the obtained infrared transmission window was measured by the same method as in Examples 1-5. The spectral transmittance curve is shown in FIG.
[0042]
From the above results, the antireflection film for infrared region in Examples 1 to 13 has good antireflection characteristics as a whole, although it absorbs near 9 μm in the infrared region of 8 to 12 μm band. I understand.
[0043]
Moreover, since the infrared region transmission window in Example 14 uses the infrared region antireflection film in Example 1, there is absorption in the vicinity of 9 μm in the 8 to 12 μm infrared region, but overall good. It can be seen that it has excellent antireflection characteristics. It can also be seen that an appropriate thickness of the Si substrate is 0.1 to 2.0 mm.
[0044]
【The invention's effect】
As described above, according to the first aspect of the present invention, it is formed on a substrate made of Si and transmits a wavelength of 8 to 12 μm, and the first layer from the substrate has an optical film thickness of 0. .86 to 4.80 μm Ge layer , the second layer is a ZnS layer with an optical film thickness of 2.31 to 2.57 μm , so it is 8 to 12 μm band with low cost, excellent durability and good antireflection characteristics There is an effect of obtaining an antireflection film for infrared region.
[0045]
According to the invention described in claim 2, it is formed on a substrate made of Si and transmits a wavelength of 8 to 12 μm, and the first layer from the substrate has an optical film thickness of 1.44 to 4.74 μm Ge layer , the second layer is ZnSe layer with optical film thickness of 2.38 to 2.56 μm , so it is low cost and has excellent durability and antireflection characteristics 8 to 12 μm infrared region There is an effect of obtaining an antireflection film for use.
[0046]
According to the invention described in claim 3, it is formed on a substrate made of Si and transmits a wavelength of 8 to 12 μm, and the first layer from the substrate is Ge, and the second layer is ZnSe. Since the third layer is ZnS, there is an effect of obtaining an antireflection film for infrared region in the 8 to 12 μm band having low cost, excellent durability, and good antireflection characteristics.
[0047]
According to the invention described in claim 4, it is formed on a substrate made of Si and transmits a wavelength of 8 to 12 μm, wherein the first layer from the substrate is Ge, and the second layer is Si. Since the third layer is a metal fluoride, there is an effect of obtaining an antireflection film for infrared region in the 8 to 12 μm band having low cost, excellent durability and good antireflection characteristics.
[0048]
According to the invention described in claim 5, it is formed on a substrate made of Si and transmits a wavelength of 8 to 12 μm, and the first layer from the substrate is Ge, and the second layer is Si. Since the third layer is Ge and the fourth layer is a metal fluoride, there is an effect of obtaining an antireflection film for infrared region in the 8 to 12 μm band having low cost, excellent durability, and good antireflection characteristics.
[0049]
According to the invention described in claim 6, since the metal fluoride is any one of CeF 3 , YF 3 , CaF 2 and cryolite, it is low in cost and has excellent durability and antireflection characteristics. There is an effect of obtaining an antireflection film for infrared region of 8 to 12 μm band.
[0050]
According to the seventh aspect of the present invention, since the antireflection film for infrared region according to any one of the first to sixth aspects is used, the antireflection film has excellent durability and low cost at low cost. There is an effect of obtaining a transmission window of ˜12 μm band.
[0051]
Further, according to the invention described in claim 8, since the thickness of the substrate is 0.1 mm to 2 mm, there is an effect of obtaining a transmission window of 8 to 12 μm band with low cost, excellent durability and good antireflection characteristics. .
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an antireflection film for infrared region according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing another infrared antireflection film according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view showing another infrared antireflection film according to an embodiment of the present invention.
FIG. 4 is a cross-sectional view showing another infrared antireflection film according to an embodiment of the present invention.
FIG. 5 is a cross-sectional view showing another infrared antireflection film according to an embodiment of the present invention.
FIG. 6 is a configuration diagram showing a vapor deposition apparatus used for manufacturing an antireflection film for infrared region according to an embodiment of the present invention.
FIG. 7 is a graph showing the infrared spectral transmittance of the antireflection film for infrared region according to Examples 1 to 3 of the present invention.
FIG. 8 is a diagram showing the infrared spectral transmittance of the antireflection film for infrared region according to Examples 4 and 5 of the present invention.
FIG. 9 is a graph showing the infrared spectral transmittance of the antireflection film for infrared region according to Examples 6 and 7 of the present invention.
FIG. 10 is a diagram showing the infrared spectral transmittance of the antireflection film for infrared region according to Examples 8 to 10 of the present invention.
FIG. 11 is a diagram showing the infrared spectral transmittance of the antireflection film for infrared region according to Examples 11 to 13 of the present invention.
12 is a graph showing infrared spectral transmittance of a Si substrate according to Example 14 of the present invention. FIG.
[Explanation of symbols]
1 Si flat plate, 2 Ge layer, 3 ZnS layer, 4 ZnSe layer, 5 Si layer, 6 metal fluoride layer, 10 vacuum vessel, 11 substrate mounting dome, 12 substrate, 13 crucible, 14 rotary stage, 15 electron gun, 16 Reflective optical film thickness meter, 17 monitor substrate, 18 shutter.

Claims (8)

Siからなる基板上に形成され8〜12μm帯の波長を透過するものであって、上記基板からの第1層目は光学膜厚が0.86〜4.80μmのGe層、第2層目は光学膜厚が2.31〜2.57μmのZnS層であることを特徴とする赤外域用反射防止膜。It is formed on a substrate made of Si and transmits a wavelength of 8 to 12 μm, and the first layer from the substrate is a Ge layer having an optical film thickness of 0.86 to 4.80 μm , and the second layer Is a ZnS layer having an optical film thickness of 2.31 to 2.57 μm . Siからなる基板上に形成され8〜12μm帯の波長を透過するものであって、上記基板からの第1層目は光学膜厚が1.44〜4.74μmのGe層、第2層目は光学膜厚が2.38〜2.56μmのZnSe層であることを特徴とする赤外域用反射防止膜。Formed on a substrate made of Si it is one that transmits wavelengths of 8~12μm band, Ge layer of optical thickness first layer from the substrate is 1.44~4.74Myuemu, second layer Is a ZnSe layer having an optical film thickness of 2.38 to 2.56 μm . Siからなる基板上に形成され8〜12μm帯の波長を透過するものであって、上記基板からの第1層目がGe、第2層目がZnSe、第3層目がZnSであることを特徴とする赤外域用反射防止膜。It is formed on a substrate made of Si and transmits a wavelength of 8 to 12 μm, and the first layer from the substrate is Ge, the second layer is ZnSe, and the third layer is ZnS. Anti-reflection film for infrared region. Siからなる基板上に形成され8〜12μm帯の波長を透過するものであって、上記基板からの第1層目がGe、第2層目がSi、第3層目が金属フッ化物であることを特徴とする赤外域用反射防止膜。It is formed on a substrate made of Si and transmits wavelengths in the 8 to 12 μm band. The first layer from the substrate is Ge, the second layer is Si, and the third layer is a metal fluoride. An antireflection film for infrared region characterized by the above. Siからなる基板上に形成され8〜12μm帯の波長を透過するものであって、上記基板からの第1層目がGe、第2層目がSi、第3層目がGe、第4層目が金属フッ化物であることを特徴とする赤外域用反射防止膜。It is formed on a substrate made of Si and transmits a wavelength of 8 to 12 μm, and the first layer from the substrate is Ge, the second layer is Si, the third layer is Ge, and the fourth layer An antireflection film for infrared region, wherein the eye is a metal fluoride. 金属フッ化物は、CeF3、 YF3、CaF2及びクライオライトのいずれか一つであることを特徴とする請求項4または5記載の赤外域用反射防止膜。6. The antireflection film for infrared region according to claim 4, wherein the metal fluoride is any one of CeF3, YF3, CaF2 and cryolite. 請求項1から6のいずれか一項に記載の赤外域用反射防止膜を用いたことを特徴とする透過窓。A transmissive window using the antireflection film for infrared region according to any one of claims 1 to 6. 基板の厚みは0.1mmから2mmであることを特徴とする請求項7記載の透過窓。8. The transmission window according to claim 7, wherein the thickness of the substrate is 0.1 mm to 2 mm.
JP14138798A 1998-05-22 1998-05-22 Infrared antireflection film and transmission window Expired - Fee Related JP3610777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14138798A JP3610777B2 (en) 1998-05-22 1998-05-22 Infrared antireflection film and transmission window

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14138798A JP3610777B2 (en) 1998-05-22 1998-05-22 Infrared antireflection film and transmission window

Publications (2)

Publication Number Publication Date
JPH11337703A JPH11337703A (en) 1999-12-10
JP3610777B2 true JP3610777B2 (en) 2005-01-19

Family

ID=15290821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14138798A Expired - Fee Related JP3610777B2 (en) 1998-05-22 1998-05-22 Infrared antireflection film and transmission window

Country Status (1)

Country Link
JP (1) JP3610777B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6982951B2 (en) * 2016-06-17 2021-12-17 株式会社ニデック Silicon substrate with functional film for infrared rays
CN114002763A (en) * 2021-11-05 2022-02-01 哈尔滨工程大学 Middle-far infrared and laser compatible stealth film and design scheme thereof
CN115079314B (en) * 2022-07-25 2024-01-16 无锡泓瑞航天科技有限公司 Mid-infrared spectrum optical window suitable for low-temperature and high-temperature environments

Also Published As

Publication number Publication date
JPH11337703A (en) 1999-12-10

Similar Documents

Publication Publication Date Title
WO2012073791A1 (en) Optical functional film for infrared light
US20110229659A1 (en) Ion beam assisted deposition of ophthalmic lens coatings
EP3654072B1 (en) Optical lens having a filtering interferential coating and a multilayer system for improving abrasion-resistance
CN110462451A (en) Thickness with low-index layer and high refractive index layer is than wear-resisting and heatproof interference coatings the optical goods that are optimized
JP2007520738A (en) Optical body coated with visible light-absorbing multilayer anti-reflection coating and method for producing the same
EP3640688B1 (en) Optical article having an interferential coating with an improved abrasion-resistance
US20220011600A1 (en) Optical Lens Having an Interferential Coating and a Multilayer System for Improving Abrasion-Resistance
WO2020104388A2 (en) Optical lens having an enhanced interferential coating and a multilayer system for improving abrasion-resistance
JP2006317603A (en) Front surface mirror
JP2005165249A (en) Antireflection film, optical lens equipped therewith and optical lens unit
JP3610777B2 (en) Infrared antireflection film and transmission window
EP3884314B1 (en) Optical lens having a mirror coating and a multilayer system for improving abrasion-resistance
JP3894107B2 (en) Infrared antireflection film
US10605959B2 (en) Antireflective stack for low luminance conditions
JP3399159B2 (en) Optical film and optical element for infrared region
WO2020079241A1 (en) Optical article having an interferential coating with a high abrasion-resistance
JP2006072031A (en) Antireflection film for infrared region, and infrared lens using the same
JP3894108B2 (en) Infrared antireflection film
JPH052101A (en) Optical component
JP2566634B2 (en) Multi-layer antireflection film
JP2003149434A (en) Optical film for ir region and optical element
JP3361621B2 (en) Anti-reflection coating for infrared region
JPH02291502A (en) Multilayered antireflection film
JP2020522744A (en) Optical coating with nanolaminate for improved durability
JP3179191B2 (en) Optical member having antireflection film, method for forming vapor deposition film, and vapor deposition composition

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees