JP2006072031A - Antireflection film for infrared region, and infrared lens using the same - Google Patents

Antireflection film for infrared region, and infrared lens using the same Download PDF

Info

Publication number
JP2006072031A
JP2006072031A JP2004256116A JP2004256116A JP2006072031A JP 2006072031 A JP2006072031 A JP 2006072031A JP 2004256116 A JP2004256116 A JP 2004256116A JP 2004256116 A JP2004256116 A JP 2004256116A JP 2006072031 A JP2006072031 A JP 2006072031A
Authority
JP
Japan
Prior art keywords
layer
antireflection film
infrared
substrate
infrared region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004256116A
Other languages
Japanese (ja)
Inventor
Takanori Sone
孝典 曽根
Tomoki Tanmachi
智樹 反町
Masakazu Takabayashi
正和 高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004256116A priority Critical patent/JP2006072031A/en
Publication of JP2006072031A publication Critical patent/JP2006072031A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an antireflection film for an IR region which is excellent in environmental resistance, particularly in water resistance. <P>SOLUTION: The antireflection film for the IR region is provided on an IR optical substrate transmitting IR rays of 8 to 12 μm bands and is obtained by forming a ZnS layer 2, a Ge layer 3, a CeF<SB>3</SB>layer 4, and a CeO<SB>2</SB>layer 5 in this order on a substrate 1. Ge, ZnSe or chalcogenide glass having a refractive index of 2.4 to 4 in the IR region of 8 to 12 μm bands is used for the substrate. The CeF<SB>3</SB>is a low refractive index material having relatively high durability, and further, the CeO<SB>2</SB>having high adhesion to the CeF<SB>3</SB>and the extremely high durability is arranged as a protective layer on the CeF<SB>3</SB>layer, and therefore, antireflection film for the IR region having the excellent environment resistance, particularly water resistance as a whole is obtained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、8〜12μm帯の赤外線領域の光学部材に用いられる赤外域用反射防止膜、およびこれを設けた赤外線レンズに関するものである。   The present invention relates to an antireflection film for infrared region used for an optical member in an infrared region of 8 to 12 μm band, and an infrared lens provided with the same.

レンズや窓に用いられる反射防止膜は、優れた反射防止特性を得るためその最外層に低屈折率材料を配置する必要があり、赤外線カメラなどで使われる8〜12μmの赤外域では、上記低屈折率材料として、CaF、BaF、PbFまたはLaFなどの金属フッ化物を用いるが、耐水性や耐磨耗性、耐溶剤性等が十分ではない。
そのため、上記金属フッ化物の上方にZnS層を配することで高い耐久性を付与しているものがある(例えば、特許文献1参照)。
また、上記低屈折率層として耐水性や耐湿性などの耐環境性に優れたYFを用いたり、YF層の上に耐磨耗性強化層としてYを配置することで耐久性の高い膜を付与しているものがある(例えば、特許文献2参照)。
In order to obtain excellent antireflection characteristics, an antireflection film used for lenses and windows needs to be provided with a low refractive index material in the outermost layer. In the infrared region of 8 to 12 μm used in an infrared camera, the above-mentioned low A metal fluoride such as CaF 2 , BaF 2 , PbF 2, or LaF 3 is used as the refractive index material, but water resistance, wear resistance, solvent resistance, and the like are not sufficient.
For this reason, there is one that imparts high durability by disposing a ZnS layer above the metal fluoride (see, for example, Patent Document 1).
In addition, YF 3 excellent in environmental resistance such as water resistance and moisture resistance is used as the low refractive index layer, or Y 2 O 3 is disposed as a wear-resistant reinforcing layer on the YF 3 layer. Some films are provided with high-performance films (for example, see Patent Document 2).

特開昭59−17502号公報(第1頁)JP 59-17502 A (first page) 特開平6−313802号公報(第1頁)JP-A-6-313802 (first page)

しかしながら、上記特許文献1に示す赤外反射防止膜では、フッ化物層とその保護膜として最外層に配置したZnS層とは必ずしも密着性が高いとはかぎらず、十分な耐久性が得られるとは限らない。
また、YFは、確かにBaFやLaFに比べて耐水性や耐湿性に優れるが十分とはいえない。特にGeとの密着性はそれほど強くはなく、YFの下地層にGeが配置される場合は比較的短時間の耐水試験や耐湿試験で剥離を生じる。
また、上記特許文献2に示すように、保護層としてのYは、YFとの組み合せにおいては優れた密着性を示し高い耐磨耗性が得られる。しかしながら耐水性の改善効果は小さく、YFやその他のフッ化物層が十分な耐水性・耐湿性を有しないため、Y層とフッ化物層とを組み合わせたとしても十分な耐水性または耐湿性が得られないという課題がある。
However, in the infrared antireflection film shown in Patent Document 1, the fluoride layer and the ZnS layer disposed as the outermost layer as the protective film do not always have high adhesion, and sufficient durability is obtained. Is not limited.
YF 3 is certainly superior in water resistance and moisture resistance compared to BaF 2 and LaF 3 , but it is not sufficient. In particular, the adhesion with Ge is not so strong, and when Ge is disposed in the underlayer of YF 3 , peeling occurs in a relatively short water resistance test or moisture resistance test.
Further, as shown in Patent Document 2, Y 2 O 3 as a protective layer, high wear resistance showed excellent adhesion in combination with YF 3 is obtained. However, the effect of improving water resistance is small, and YF 3 and other fluoride layers do not have sufficient water resistance and moisture resistance. Therefore, even if Y 2 O 3 layer and fluoride layer are combined, sufficient water resistance or There is a problem that moisture resistance cannot be obtained.

本発明は、かかる課題を解決するためになされたものであり、耐環境性、特に耐水性に優れた赤外域用反射防止膜およびこれを用いた赤外線レンズを得ることを目的とするものである。   The present invention has been made to solve such problems, and an object of the present invention is to obtain an antireflection film for infrared region excellent in environmental resistance, particularly water resistance, and an infrared lens using the same. .

本発明に係る第1の赤外域用反射防止膜は、8〜12μm帯の赤外線を透過する赤外光学用基板に形成された赤外域用反射防止膜であって、上記基板に設けられたZnS層、またはZnSとGeの交互層と、上記ZnS層上、またはZnSとGeの交互層上に設けられたCeF層と、このCeF層上に設けられたCeO層とを備えたことを特徴とするものである。 The first antireflection film for infrared region according to the present invention is an antireflection film for infrared region formed on an infrared optical substrate that transmits infrared of 8 to 12 μm band, and ZnS provided on the substrate. A layer, or an alternating layer of ZnS and Ge, a CeF 3 layer provided on the ZnS layer or an alternating layer of ZnS and Ge, and a CeO 2 layer provided on the CeF 3 layer It is characterized by.

本発明の第1の赤外域用反射防止膜は、8〜12μm帯の赤外線を透過する赤外光学用基板に形成された赤外域用反射防止膜であって、上記基板に設けられたZnS層、またはZnSとGeの交互層と、上記ZnS層上、またはZnSとGeの交互層上に設けられたCeF層と、このCeF層上に設けられたCeO層とを備えたことを特徴とするもので、耐環境性、特に耐水性に優れた赤外域用反射防止膜を得るという効果がある。 The first antireflection film for infrared region of the present invention is an infrared region antireflection film formed on an infrared optical substrate that transmits infrared rays of 8 to 12 μm band, and is a ZnS layer provided on the substrate. Or an alternating layer of ZnS and Ge, a CeF 3 layer provided on the ZnS layer or an alternating layer of ZnS and Ge, and a CeO 2 layer provided on the CeF 3 layer. It has the effect of obtaining an antireflection film for infrared region that is excellent in environmental resistance, particularly water resistance.

実施の形態1.
本発明の実施の形態1の赤外域用反射防止膜は、レンズまたは窓となる基板上に、ZnS層、またはZnS層とGe層の交互層を配置し、さらに上記ZnS層上、またはZnS層とGe層の交互層上に、CeF層を設け、このCeF層上にCeO層を設けたもので、具体例を下記実施例に示す。
本実施の形態の赤外域用反射防止膜は、CeFが比較的耐久性の高い低屈折率材料であり、さらにその上にCeFとの密着性が高くかつ耐久性の極めて高いCeOを保護層として配置したため、全体として耐環境性、特に耐水性に優れた赤外域用反射防止膜が得られる。
また、上記の赤外域用反射防止膜においては、CeOの膜厚(物理膜厚)を50nmを越え、500nm未満とすることが好ましい。500nm以上ではCeOの内部引張り応力が高くなり膜にクラックが発生する危険性が増し、50nm以下ではCeOの保護層としての十分な効果が得られ難くなる。
Embodiment 1 FIG.
In the antireflection film for infrared region according to the first embodiment of the present invention, a ZnS layer or an alternating layer of a ZnS layer and a Ge layer is disposed on a substrate to be a lens or a window, and further on the ZnS layer or the ZnS layer. A CeF 3 layer is provided on alternating layers of Ge and Ge, and a CeO 2 layer is provided on the CeF 3 layer. Specific examples are shown in the following examples.
In the antireflection film for infrared region according to the present embodiment, CeF 3 is a low refractive index material with relatively high durability, and CeO 2 having high adhesion with CeF 3 and extremely high durability is further formed thereon. Since the protective layer is disposed, an antireflection film for infrared region excellent in environmental resistance, in particular, water resistance as a whole can be obtained.
In the above-described antireflection film for infrared region, the thickness (physical film thickness) of CeO 2 is preferably more than 50 nm and less than 500 nm. If it is 500 nm or more, the internal tensile stress of CeO 2 becomes high and the risk of cracking in the film increases, and if it is 50 nm or less, it is difficult to obtain a sufficient effect as a protective layer of CeO 2 .

また、本実施の形態の赤外域用反射防止膜において、レンズや窓となる基板材料として、8〜12μmの赤外域で吸収がなく、屈折率が4であるGe、屈折率が2.4であるZnSe、または屈折率が2.4〜4のカルコゲナイドガラス{商品名:GASIR1,UMICORE(株)製}、{商品名:GASIR2,UMICORE(株)製}などを用いると、反射防止効果が高く、かつ耐環境性に優れた窓またはレンズが得られる。   In addition, in the antireflection film for infrared region of the present embodiment, as a substrate material for a lens or a window, there is no absorption in the infrared region of 8 to 12 μm, the refractive index is 4, and the refractive index is 2.4. When using certain ZnSe or chalcogenide glass having a refractive index of 2.4 to 4 {product name: GASIR1, manufactured by UMICORE Co., Ltd.}, {product name: GASIR2, manufactured by UMICORE Co., Ltd.} In addition, a window or a lens excellent in environmental resistance can be obtained.

本実施の形態の赤外域用の反射防止膜の製造方法は、レンズまたは窓となる基板上にZnS、またはZnSとGeとを交互に蒸着し、この上にCeFを蒸着し、さらにCeFの上にCeOを蒸着する方法で、上記ZnSを蒸着する際には基板温度を150℃以下とし、CeFとCeOを蒸着する際には基板温度を250℃〜400℃とすることが好ましい。
ZnSを蒸着する際に基板温度を150℃以下とすることにより、白濁のない良好な膜となり、CeFとCeOを蒸着する際に基板温度を250℃〜400℃とすることにより、緻密な膜が得られ耐久性の高い反射防止膜となる。
なお、本実施の形態の赤外域用反射防止膜においては、光学薄膜と基板との間、または層間に、例えば密着性を改良することを目的として光学的に無関係な薄い層を設けてもよい。
In the manufacturing method of the antireflection film for infrared region of the present embodiment, ZnS or ZnS and Ge are alternately deposited on a substrate to be a lens or a window, CeF 3 is deposited thereon, and CeF 3 is further deposited. In the method of depositing CeO 2 on the substrate, the substrate temperature is set to 150 ° C. or lower when depositing the ZnS, and the substrate temperature is set to 250 ° C. to 400 ° C. when depositing CeF 3 and CeO 2. preferable.
By making the substrate temperature 150 ° C. or lower when depositing ZnS, it becomes a good film without white turbidity, and when depositing CeF 3 and CeO 2 , the substrate temperature is 250 ° C. to 400 ° C. A film is obtained and becomes a highly durable antireflection film.
In addition, in the antireflection film for infrared region of the present embodiment, an optically unrelated thin layer may be provided between the optical thin film and the substrate or between the layers, for example, for the purpose of improving adhesion. .

実施の形態2.
本発明の実施の形態2の赤外線レンズは、8〜12μm帯の赤外線を透過するレンズに、上記実施の形態1の赤外域用反射防止膜を設けることにより得ることができ、上記単レンズを適宜組み合わせることにより赤外線光学用の組レンズを製造する。上記のようにして得られた赤外域用の単レンズまたは組レンズは、上記実施の形態1の反射防止膜を形成しているため、耐環境性に優れ、かつ透過率に優れた単レンズまたは組レンズとなる。
Embodiment 2. FIG.
The infrared lens according to the second embodiment of the present invention can be obtained by providing the infrared ray antireflection film according to the first embodiment on a lens that transmits infrared rays in the 8 to 12 μm band. A combined lens for infrared optics is manufactured by combining them. The single lens or group lens for the infrared region obtained as described above has the antireflection film of the first embodiment, so that it is excellent in environmental resistance and has excellent transmittance. It becomes a group lens.

実施例1〜3.
図1は本発明の実施例1〜3の赤外域用反射防止膜の構成図であり、8〜12μm帯の赤外線を透過する赤外光学用基板である、両面を研磨した、Ge、カルコゲナイドガラス{商品名:GASIR2,UMICORE(株)製}、またはZnSe基板1に、真空蒸着法により、表1に記載した光学膜厚(=屈折率×物理膜厚)で、ZnS層2、Ge層3、CeF層4、CeO層5を、図1に示すようにこの順に形成することにより製造することができる。
Examples 1-3.
FIG. 1 is a configuration diagram of an antireflection film for infrared region according to Examples 1 to 3 of the present invention, which is a substrate for infrared optics that transmits infrared light in the 8 to 12 μm band, and is a Ge and chalcogenide glass whose both surfaces are polished. {Product name: GASIR2, manufactured by UMICORE Co., Ltd.} or ZnSe substrate 1 by optical deposition (= refractive index × physical film thickness) with ZnS layer 2 and Ge layer 3 according to the vacuum deposition method. The CeF 3 layer 4 and the CeO 2 layer 5 can be manufactured in this order as shown in FIG.

Figure 2006072031
Figure 2006072031

ここで、表1に記載した光学膜厚は、基板の屈折率が2.4〜4においては、基板1から第1層目のZnS2と第2層目のGe3により入射光の中心波長(10μm)の1/4波長膜と等価である2層等価膜を形成し、さらにその上方の第3層目にCeF4の1/4波長膜を形成することで良好な反射防止膜が構成できるので、それに基づいて構成した多層膜をコンピュータによる膜厚最適化を実施して最終的に決定したものである。
なお、CeOは保護層としてあらかじめ物理膜厚100nmを最外層に配置するように膜厚最適化の計算を行っているが、100nmの厚さは耐環境性の観点から十分な効果が期待される厚さであり、かつ光学的には十分に薄く、反射防止効果への影響はほとんどない。
図2は、本実施例の赤外域用反射防止膜の分光反射率曲線の図であり、線a1〜a3はそれぞれ実施例1〜実施例3の分光反射率曲線で、赤外域の所定波長領域で実用上充分低い反射率を示すことがわかる。
また、実施例1〜3の反射防止膜を形成したGe基板を水温23℃の純水中に放置し、剥離までの日数を表2に示す。
Here, the optical film thickness shown in Table 1 is the center wavelength (10 μm) of incident light from the substrate 1 by the ZnS2 of the first layer and the Ge3 of the second layer from the substrate 1 when the refractive index of the substrate is 2.4-4. ), A two-layer equivalent film equivalent to a quarter-wave film is formed, and a CeF 3 4 quarter-wave film is formed on the third layer thereabove to form a good antireflection film. Therefore, the multilayer film configured based on the multilayer film is finally determined by performing the film thickness optimization by the computer.
CeO 2 has been calculated in advance as a protective layer so that a physical film thickness of 100 nm is arranged in the outermost layer in advance, but a thickness of 100 nm is expected to have a sufficient effect from the viewpoint of environmental resistance. And is sufficiently thin optically and has almost no influence on the antireflection effect.
FIG. 2 is a diagram of the spectral reflectance curve of the antireflection film for infrared region of the present example, and lines a1 to a3 are spectral reflectance curves of Example 1 to Example 3, respectively, and a predetermined wavelength region in the infrared region. It can be seen that the reflectance is sufficiently low in practical use.
Further, the Ge substrate on which the antireflection film of Examples 1 to 3 was formed was left in pure water at a water temperature of 23 ° C., and Table 2 shows the number of days until peeling.

Figure 2006072031
Figure 2006072031

図3は、本実施例の赤外域用反射防止膜の製造に用いた真空蒸着装置の構成図である。
つまり、蒸着用の基板6は基板取り付けドーム7に取り付けられ、蒸着中は均一性を向上させるために回転される。必要な量の蒸着材料8をるつぼに入れ、回転ステージ9に配置し、回転ステージを回すことによって蒸着材料8を電子ビームの当たる位置に移動する。電子銃10から放出された電子ビームによってるつぼ内の蒸着材料8が加熱されると、蒸発した蒸着材料が蒸着用基板6およびモニタ基板11の表面に蒸着されて膜となる。この蒸着膜の厚さは、真空容器12の上方に取り付けられた光学膜厚計13により、モニタ基板11の膜厚を蒸着中にモニタし、所望の厚さになったときにシャッタ14が閉じる。以下同様に、順次異なる層の蒸着膜を所定の厚さだけ形成することによって、本発明の実施例の赤外域用反射防止膜が得られる。
なお、本発明の実施の形態では電子ビームによる真空蒸着法により光学薄膜の形成を行ったが、蒸着原料の加熱には電子ビーム法だけでなく、金属製のるつぼに電流を流して加熱する抵抗加熱法も用いることができる。また、膜厚計としても、反射光の変化や透過光の変化を読み取る光学式だけでなく、水晶振動式の膜厚計を用いてもよい。
以上の装置により、本実施例では、ZnS層の蒸着時には加熱ヒータ15により基板温度を100℃とし、Ge層、CeF層、CeO層の蒸着時には基板温度を325℃として反射防止膜を形成した。
FIG. 3 is a configuration diagram of a vacuum vapor deposition apparatus used for manufacturing the antireflection film for infrared region of this example.
That is, the substrate 6 for vapor deposition is attached to the substrate attachment dome 7 and rotated during vapor deposition to improve uniformity. A necessary amount of the vapor deposition material 8 is put in a crucible, placed on the rotary stage 9, and the vapor deposition material 8 is moved to a position where the electron beam strikes by rotating the rotary stage. When the vapor deposition material 8 in the crucible is heated by the electron beam emitted from the electron gun 10, the evaporated vapor deposition material is vapor deposited on the surfaces of the vapor deposition substrate 6 and the monitor substrate 11 to form a film. The thickness of the deposited film is monitored by the optical film thickness meter 13 mounted above the vacuum vessel 12 during the deposition, and the shutter 14 is closed when the desired thickness is reached. . In the same manner, the antireflection film for infrared region according to the embodiment of the present invention can be obtained by sequentially forming the deposited films of different layers by a predetermined thickness.
In the embodiment of the present invention, the optical thin film is formed by the electron beam vacuum vapor deposition method. However, not only the electron beam method is used for heating the vapor deposition material, but also a resistor that is heated by flowing a current through a metal crucible. A heating method can also be used. In addition, as a film thickness meter, not only an optical method for reading a change in reflected light and a change in transmitted light, but also a crystal vibration type film thickness meter may be used.
With the above apparatus, in this embodiment, an antireflection film is formed by setting the substrate temperature to 100 ° C. by the heater 15 when depositing the ZnS layer and setting the substrate temperature to 325 ° C. when depositing the Ge layer, CeF 3 layer, and CeO 2 layer. did.

実施例4、5.
図4は、本発明の実施例4、5の赤外域用反射防止膜の構成図であり、両面を研磨した基板1である、カルコゲナイドガラス{商品名:GASIR2,UMICORE(株)}基板またはZnSe基板に、実施例1と同様の真空蒸着法により、表3に記載した光学膜厚で、ZnS層2、CeF層4、CeO層5を、図4に示すようにこの順に形成することにより製造することができる。
Example 4,5.
FIG. 4 is a configuration diagram of an antireflection film for infrared region according to Examples 4 and 5 of the present invention, which is a substrate 1 whose both surfaces are polished, a chalcogenide glass {trade name: GASIR2, UMICORE Co., Ltd.} substrate or ZnSe. A ZnS layer 2, a CeF 3 layer 4, and a CeO 2 layer 5 are formed on the substrate in this order as shown in FIG. 4 by the same vacuum deposition method as in Example 1 with the optical film thicknesses shown in Table 3. Can be manufactured.

Figure 2006072031
Figure 2006072031

ここで、表3に記載した光学膜厚は、基板の屈折率がカルコゲナイドガラスの2.6およびZnSeの2.4においては、基板から第1層目のZnSにより入射光の中心波長(10μm)の1/4波長膜を形成し、さらにその上方の第2層目にCeFの1/4波長膜を形成することで良好な反射防止膜が構成できるので、それに基づいて構成した多層膜をコンピュータによる膜厚最適化を実施して最終的に決定したものである。
第5層目のCeOは実施例1〜3と同様に物理膜厚100nmを最外層に配置するようにした。
図5は、本実施例の赤外域用反射防止膜の分光反射率曲線の図であり、線a4、a5はそれぞれ実施例4、実施例5の分光反射率曲線で、赤外域の所定波長領域で実用上充分低い反射率を示すことがわかる。
また、本実施例4、5の反射防止膜を形成したGe基板を水温23℃の純水中に放置し、剥離までの日数を表2に示す。
Here, when the refractive index of the substrate is 2.6 of chalcogenide glass and 2.4 of ZnSe, the optical film thickness shown in Table 3 is the central wavelength (10 μm) of incident light due to ZnS of the first layer from the substrate. A good anti-reflection film can be formed by forming a 1/4 wavelength film of CeF 3 on the second layer above it, so that a multilayer film formed based on that can be formed. The film thickness was optimized by a computer and finally decided.
As for CeO 2 of the fifth layer, a physical film thickness of 100 nm was arranged in the outermost layer as in Examples 1-3.
FIG. 5 is a diagram of a spectral reflectance curve of the antireflection film for infrared region according to the present example. Lines a4 and a5 are spectral reflectance curves of Example 4 and Example 5, respectively, and a predetermined wavelength region in the infrared region. It can be seen that the reflectance is sufficiently low in practical use.
Further, the Ge substrate on which the antireflection films of Examples 4 and 5 were formed was left in pure water at a water temperature of 23 ° C., and the number of days until peeling is shown in Table 2.

実施例6、7.
図6は、本発明の実施例6、7の赤外域用反射防止膜の構成図であり、両面を研磨した基板1である、カルコゲナイドガラス{商品名:GASIR2,UMICORE(株)製}基板またはZnSe基板に、実施例1と同様の真空蒸着法により、表4に記載した光学膜厚で、Ge層3、ZnS層2、Ge層3、CeF層4、CeO層5を図6に示すようにこの順に形成することにより製造することができる。
Example 6,7.
FIG. 6 is a configuration diagram of an antireflection film for infrared region according to Examples 6 and 7 of the present invention, which is a substrate 1 whose both surfaces are polished, a chalcogenide glass {trade name: GASIR2, made by UMICORE Co., Ltd.} substrate or The Ge layer 3, the ZnS layer 2, the Ge layer 3, the CeF 3 layer 4, and the CeO 2 layer 5 are formed on the ZnSe substrate by the same vacuum deposition method as in Example 1 with the optical film thickness described in Table 4. As shown, it can be manufactured by forming in this order.

Figure 2006072031
Figure 2006072031

ここで、表4に記載した光学膜厚は、基板の屈折率がカルコゲナイドガラスの2.6およびZnSeの2.4においては、基板から第1層目のGe、第2層目のZnS、さらに第3層目のGeにより入射光の中心波長(10μm)の1/4波長膜と等価である3層等価膜を形成し、さらにその上方の第4層目にCeFの1/4波長膜を形成することで良好な反射防止膜が構成できるので、それに基づいて構成した多層膜をコンピュータによる膜厚最適化を実施して最終的に決定したものである。
なお、第5層目のCeOは実施例1〜3と同様に物理膜厚100nmを最外層に配置するようにした。
図7は、本実施例の赤外域用反射防止膜の分光反射率曲線の図であり、線a6、a7はそれぞれ実施例6、実施例7の分光反射率曲線で、赤外域の所定波長領域で実用上充分低い反射率を示すことがわかる。
また、実施例6、7による反射防止膜を形成したGe基板を水温23℃の純水中に放置し、剥離までの日数を表2に合わせて示す。
Here, when the refractive index of the substrate is 2.6 of the chalcogenide glass and 2.4 of ZnSe, the optical film thickness described in Table 4 is the first layer of Ge, the second layer of ZnS, A third-layer equivalent film equivalent to a quarter-wave film of the center wavelength (10 μm) of incident light is formed by the third-layer Ge, and a CeF 3 quarter-wave film is formed on the fourth layer thereabove. Since a good antireflection film can be formed by forming the film, the multilayer film formed based on the film is finally determined by performing a film thickness optimization by a computer.
The fifth layer of CeO 2 was arranged with a physical film thickness of 100 nm as the outermost layer as in Examples 1-3.
FIG. 7 is a diagram of a spectral reflectance curve of the antireflection film for infrared region according to the present example. Lines a6 and a7 are spectral reflectance curves of Example 6 and Example 7, respectively, and a predetermined wavelength region in the infrared region. It can be seen that the reflectance is sufficiently low in practical use.
Further, the Ge substrate on which the antireflection film according to Examples 6 and 7 is formed is left in pure water having a water temperature of 23 ° C., and the number of days until peeling is shown in Table 2.

実施例8、9.
実施例1において、最外層であるCeO層を、それぞれ物理膜厚で50nm、500nmとした他は、製造法および光学膜厚とも実施例1と同様の方法で赤外域用反射防止膜を形成した。また、これらの反射防止膜を形成したGe基板を水温24℃の純水中に放置し、剥離までの日数を表2に示す。
Examples 8 and 9.
In Example 1, except that the outermost CeO 2 layer was changed to a physical film thickness of 50 nm and 500 nm, an antireflection film for infrared region was formed in the same manner as in Example 1 for both the manufacturing method and the optical film thickness. did. Further, the Ge substrate on which these antireflection films are formed is left in pure water at a water temperature of 24 ° C., and the number of days until peeling is shown in Table 2.

実施例10.
図8は、本発明の実施例10の赤外線レンズを用いた組レンズの構成図であり、凸レンズに加工したGe製レンズとカルコゲナイドガラス({商品名:GASIR2,UMICORE(株)製}レンズを用意し、Ge製レンズについては実施例1と同様の方法で、またカルコゲナイドガラスレンズについては実施例6と同様の方法で、各々赤外域用反射防止膜を形成して2枚の本実施例の赤外線レンズ16、17を得、これら2枚の赤外線レンズを、鏡筒18を用いて組み合わせて、2枚組レンズを作製した。
本実施例の組レンズを相対湿度95%、温度40℃に10日間曝したが、反射防止膜に剥離や曇りなどの発生はなく、レンズ性能の劣化は生じなかった。
Example 10
FIG. 8 is a configuration diagram of a combined lens using the infrared lens of Example 10 of the present invention. A lens made of Ge processed into a convex lens and a chalcogenide glass ({trade name: GASIR2, made by UMICORE Co., Ltd.} lens are prepared. In the same manner as in Example 1 for the Ge lens and in the same way as in Example 6 for the chalcogenide glass lens, each of the two infrared reflection films of this example was formed by forming an antireflection film for infrared region. Lenses 16 and 17 were obtained, and these two infrared lenses were combined using a lens barrel 18 to produce a two-lens set lens.
The assembled lens of this example was exposed to a relative humidity of 95% and a temperature of 40 ° C. for 10 days. However, the antireflection film was not peeled off or clouded, and the lens performance was not deteriorated.

比較例1.
実施例1において、最外層であるCeO層を省いた他は製造法および光学膜厚とも実施例1と同様の方法で赤外域用反射防止膜を形成した。また、この反射防止膜を形成したGe基板を純水中に放置し、剥離までの日数を表2に示す。
Comparative Example 1
In Example 1, an antireflection film for infrared region was formed in the same manner as in Example 1 except that the outermost layer of CeO 2 was omitted. Further, the Ge substrate on which this antireflection film is formed is left in pure water, and the number of days until peeling is shown in Table 2.

比較例2.
実施例1において、基板からの第3層目をYF、第4層目をYとし、光学膜厚をそれぞれ2.291μm、0.16μmとした他は、実施例1と同様の方法で赤外域用反射防止膜を形成し、この反射防止膜を形成したGe基板を純水中に放置し、剥離までの日数を表2に示す。
Comparative Example 2
In Example 1, the third layer from the substrate is YF 3 , the fourth layer is Y 2 O 3 , and the optical film thickness is 2.291 μm and 0.16 μm, respectively. The antireflection film for infrared region is formed by the method, the Ge substrate on which this antireflection film is formed is left in pure water, and the number of days until peeling is shown in Table 2.

比較例3.
実施例4において、基板からの第2層目をYF、第3層目をYとし、光学膜厚をそれぞれ2.058μm、0.16μmとした他は、実施例4と同様の方法で赤外域用反射防止膜を形成した。また、この反射防止膜を形成したGe基板を純水中に放置し、剥離までの日数を表2に示す。
Comparative Example 3
Example 4 is the same as Example 4 except that the second layer from the substrate is YF 3 , the third layer is Y 2 O 3 , and the optical film thicknesses are 2.058 μm and 0.16 μm, respectively. The antireflection film for infrared region was formed by the method. Further, the Ge substrate on which this antireflection film is formed is left in pure water, and the number of days until peeling is shown in Table 2.

以上のように、本発明の実施例の赤外域用反射防止膜は、基板上に設けられたZnS層上、またはZnSとGeの交互層上に、屈折率の低いCeF層を配置したため、赤外域の所定波長領域で実用上充分低い反射率を示すことがわかる。
また、表2に示すように、上記CeF層がZnSおよびGeとの高い密着性と良好な耐湿性を有し、耐環境性に優れたCeO層を最外層に配置し、CeO層とCeF層との密着性が高いため、特に、耐水性等の耐環境性に優れることがわかる。
As described above, since the antireflection film for infrared region according to the embodiment of the present invention has the CeF 3 layer having a low refractive index disposed on the ZnS layer provided on the substrate or on the alternating layer of ZnS and Ge, It can be seen that the reflectance is sufficiently low in practical use in a predetermined wavelength region in the infrared region.
In addition, as shown in Table 2, the CeF 3 layer has a high adhesion with ZnS and Ge and good moisture resistance, and a CeO 2 layer having excellent environmental resistance is disposed in the outermost layer, and the CeO 2 layer It can be seen that the film is particularly excellent in water resistance and other environmental resistance because of the high adhesion between the Al and CeF 3 layers.

本発明の実施例1〜3の赤外域用反射防止膜の構成図である。It is a block diagram of the antireflection film for infrared region of Examples 1-3 of the present invention. 本発明の実施例1〜3の赤外域用反射防止膜の分光反射率曲線の図である。It is a figure of the spectral reflectance curve of the antireflection film for infrared region of Examples 1-3 of the present invention. 本発明の実施例の赤外域用反射防止膜の製造に用いた真空蒸着装置の構成図である。It is a block diagram of the vacuum evaporation system used for manufacture of the antireflection film for infrared region of the Example of this invention. 本発明の実施例4、5の赤外域用反射防止膜の構成図である。It is a block diagram of the antireflection film for infrared regions of Examples 4 and 5 of the present invention. 本発明の実施例4、5の赤外域用反射防止膜の分光反射率曲線の図である。It is a figure of the spectral reflectance curve of the antireflection film for infrared region of Examples 4 and 5 of the present invention. 本発明の実施例6、7の赤外域用反射防止膜の構成図である。It is a block diagram of the antireflection film for infrared regions of Examples 6 and 7 of the present invention. 本実施例6、7の赤外域用反射防止膜の分光反射率曲線の図である。It is a figure of the spectral reflectance curve of the antireflection film for infrared regions of Examples 6 and 7. 本発明の実施例の赤外線レンズを用いた組レンズの構成図である。It is a block diagram of the group lens using the infrared lens of the Example of this invention.

符号の説明Explanation of symbols

1 基板、2 ZnS層、3 Ge層、4 CeF層、5 CeO層、16 赤外線レンズ、17 赤外線レンズ。



1 substrate, 2 ZnS layer, 3 Ge layer, 4 CeF 3 layer, 5 CeO 2 layer, 16 infrared lens, 17 infrared lens.



Claims (3)

8〜12μm帯の赤外線を透過する赤外光学用基板に形成された赤外域用反射防止膜であって、上記基板に設けられたZnS層、またはZnSとGeの交互層と、上記ZnS層上、またはZnSとGeの交互層上に設けられたCeF層と、このCeF層上に設けられたCeO層とを備えたことを特徴とする赤外域用反射防止膜。 An antireflection film for infrared region formed on an infrared optical substrate that transmits infrared light of 8 to 12 μm band, the ZnS layer provided on the substrate, or alternating layers of ZnS and Ge, and the ZnS layer Or an antireflection film for infrared region, comprising: a CeF 3 layer provided on alternating layers of ZnS and Ge; and a CeO 2 layer provided on the CeF 3 layer. 基板が、Ge、ZnSe、または8〜12μmの赤外域において屈折率2.4〜4のカルコゲナイドガラスであることを特徴とする請求項1に記載の赤外域用反射防止膜。 2. The antireflection film for infrared region according to claim 1, wherein the substrate is Ge, ZnSe, or chalcogenide glass having a refractive index of 2.4 to 4 in an infrared region of 8 to 12 μm. 8〜12μm帯の赤外線を透過するレンズ、およびこのレンズに形成された請求項1または請求項2に記載の赤外域用反射防止膜を備えた赤外線レンズ。


An infrared lens comprising a lens that transmits infrared rays in the 8 to 12 μm band, and the antireflection film for infrared region according to claim 1 or 2 formed on the lens.


JP2004256116A 2004-09-02 2004-09-02 Antireflection film for infrared region, and infrared lens using the same Pending JP2006072031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004256116A JP2006072031A (en) 2004-09-02 2004-09-02 Antireflection film for infrared region, and infrared lens using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004256116A JP2006072031A (en) 2004-09-02 2004-09-02 Antireflection film for infrared region, and infrared lens using the same

Publications (1)

Publication Number Publication Date
JP2006072031A true JP2006072031A (en) 2006-03-16

Family

ID=36152729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004256116A Pending JP2006072031A (en) 2004-09-02 2004-09-02 Antireflection film for infrared region, and infrared lens using the same

Country Status (1)

Country Link
JP (1) JP2006072031A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100838662B1 (en) 2006-10-25 2008-06-16 현동훈 Optical system for thermal sensing device of ultra compact using aspherical
JP2011150286A (en) * 2009-12-23 2011-08-04 Sumitomo Electric Hardmetal Corp Optical component
WO2012073791A1 (en) * 2010-11-30 2012-06-07 富士フイルム株式会社 Optical functional film for infrared light
US8535807B2 (en) 2010-04-02 2013-09-17 Fujifilm Corporation Anti-reflection film and infrared optical element
DE102013210438A1 (en) 2012-06-05 2013-12-05 Hamamatsu Photonics K.K. Quantum Cascade Lasers
DE102013210437A1 (en) 2012-06-05 2013-12-05 Hamamatsu Photonics K.K. Quantum Cascade Lasers
WO2016052079A1 (en) * 2014-09-30 2016-04-07 富士フイルム株式会社 Antireflection film, lens, and imaging device
JP2017151409A (en) * 2016-02-22 2017-08-31 株式会社タムロン Infrared transmission film, optical film, antireflection film, optical component, optical system and imaging device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100838662B1 (en) 2006-10-25 2008-06-16 현동훈 Optical system for thermal sensing device of ultra compact using aspherical
JP2011150286A (en) * 2009-12-23 2011-08-04 Sumitomo Electric Hardmetal Corp Optical component
US8535807B2 (en) 2010-04-02 2013-09-17 Fujifilm Corporation Anti-reflection film and infrared optical element
US9188706B2 (en) 2010-10-12 2015-11-17 Sumitomo Electric Hardmetal Corp. Optical element
WO2012073791A1 (en) * 2010-11-30 2012-06-07 富士フイルム株式会社 Optical functional film for infrared light
DE102013210438A1 (en) 2012-06-05 2013-12-05 Hamamatsu Photonics K.K. Quantum Cascade Lasers
DE102013210437A1 (en) 2012-06-05 2013-12-05 Hamamatsu Photonics K.K. Quantum Cascade Lasers
US9240674B2 (en) 2012-06-05 2016-01-19 Hamamatsu Photonics K. K. Quantum cascade laser
US9246309B2 (en) 2012-06-05 2016-01-26 Hamamatsu Photonics K.K. Quantum cascade laser
DE102013210438B4 (en) 2012-06-05 2022-09-22 Hamamatsu Photonics K.K. quantum cascade laser
WO2016052079A1 (en) * 2014-09-30 2016-04-07 富士フイルム株式会社 Antireflection film, lens, and imaging device
JPWO2016052079A1 (en) * 2014-09-30 2017-07-06 富士フイルム株式会社 Antireflection film, chalcogenide glass lens, and imaging device
US9841535B2 (en) 2014-09-30 2017-12-12 Fujifilm Corporation Antireflection film, lens, and imaging device
JP2017151409A (en) * 2016-02-22 2017-08-31 株式会社タムロン Infrared transmission film, optical film, antireflection film, optical component, optical system and imaging device
JP2017151408A (en) * 2016-02-22 2017-08-31 株式会社タムロン Infrared transmission film, optical film, antireflection film, optical component, optical system and imaging device

Similar Documents

Publication Publication Date Title
ES2714508T3 (en) Ophthalmic lens comprising a polymeric material base with a coating with an anti-reflective, antireflective and IR filter multilayer interferential structure
US8535807B2 (en) Anti-reflection film and infrared optical element
US7679820B2 (en) IR absorbing reflector
US20190383972A1 (en) Layer system and optical element comprising a layer system
US11143800B2 (en) Extending the reflection bandwith of silver coating stacks for highly reflective mirrors
WO2012073791A1 (en) Optical functional film for infrared light
CN206741013U (en) A kind of middle LONG WAVE INFRARED anti-reflection film using germanium as substrate
CN106443841B (en) A kind of ultralow residual reflectance ZnS substrates long wave antireflection film
JP2017134404A (en) Optical element and method for manufacturing optical element
JP2006072031A (en) Antireflection film for infrared region, and infrared lens using the same
JP2002286909A (en) Antireflection coating for uv ray
KR20180094151A (en) Spectacle lens
US11643361B2 (en) Method of increasing strength of glass substrate for optical filter and tempered-glass optical filter made thereby
JP2017510835A (en) UV and DUV extended cold mirror
JP2004334012A (en) Antireflection film and optical filter
JP3894107B2 (en) Infrared antireflection film
JP2017032852A (en) Anti-reflection film and optical component
JP3361621B2 (en) Anti-reflection coating for infrared region
JP3610777B2 (en) Infrared antireflection film and transmission window
JP4793011B2 (en) Antireflection film forming method
JP2011141339A (en) Antireflection film and optical member having the same
JP3894108B2 (en) Infrared antireflection film
JP2003149434A (en) Optical film for ir region and optical element
JP6982951B2 (en) Silicon substrate with functional film for infrared rays
JP7404673B2 (en) Antireflection film, its manufacturing method, and optical components