JP6982951B2 - Silicon substrate with functional film for infrared rays - Google Patents

Silicon substrate with functional film for infrared rays Download PDF

Info

Publication number
JP6982951B2
JP6982951B2 JP2016121116A JP2016121116A JP6982951B2 JP 6982951 B2 JP6982951 B2 JP 6982951B2 JP 2016121116 A JP2016121116 A JP 2016121116A JP 2016121116 A JP2016121116 A JP 2016121116A JP 6982951 B2 JP6982951 B2 JP 6982951B2
Authority
JP
Japan
Prior art keywords
silicon substrate
layer
functional film
film layer
infrared rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016121116A
Other languages
Japanese (ja)
Other versions
JP2017223914A (en
Inventor
茂樹 岡
良 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP2016121116A priority Critical patent/JP6982951B2/en
Publication of JP2017223914A publication Critical patent/JP2017223914A/en
Application granted granted Critical
Publication of JP6982951B2 publication Critical patent/JP6982951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Description

本開示は、シリコン基板上に複数の薄膜を積層してなる赤外線用機能性膜付シリコン基板に関するものである。 The present disclosure relates to a silicon substrate with a functional film for infrared rays, which is formed by laminating a plurality of thin films on a silicon substrate.

従来、基板上に屈折率の異なる薄膜を積層させることによって、反射防止機能や増反射機能を有した機能性膜付基板が知られている。このような、機能性膜付基板は、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的気相成長法を用いて基板に薄膜を積層させることによって形成されたものが知られている(特許文献1参照)。 Conventionally, a substrate with a functional film having an antireflection function and an antireflection function by laminating thin films having different refractive indexes on the substrate has been known. Such a substrate with a functional film is known to be formed by laminating a thin film on the substrate by using a physical vapor deposition method such as a vacuum vapor deposition method, a sputtering method, or an ion plating method. (See Patent Document 1).

例えば、このような機能性膜付基板において、赤外線用(赤外光用)の機能性膜付基板を製造する際に、シリコン基板が用いられることがある。シリコン基板は、赤外線用機能性膜付基板を製造する際に用いられる他の基板(例えば、ゲルマニウム基板、カルコゲナイド基板等)に比べてコスト的に安価である。 For example, in such a substrate with a functional film, a silicon substrate may be used when manufacturing a substrate with a functional film for infrared rays (for infrared light). The silicon substrate is cheaper in cost than other substrates (for example, germanium substrate, chalcogenide substrate, etc.) used in manufacturing a substrate with a functional film for infrared rays.

例えば、赤外線用機能性膜付基板の製造において、シリコン基板を用いる場合に、シリコン基板の表面に薄膜を積層させようとすると、シリコン基板と薄膜との密着性が弱いために、シリコン基板から薄膜が剥離しやすい。このため、シリコン基板の表面にイオンビームを照射し、シリコン基板の表面に改質層を形成し、シリコン基板と薄膜との密着性を向上させる方法が提案されている(特許文献2参照)。 For example, in the manufacture of a substrate with a functional film for infrared rays, when a silicon substrate is used and a thin film is to be laminated on the surface of the silicon substrate, the adhesion between the silicon substrate and the thin film is weak, so that the thin film is formed from the silicon substrate. Is easy to peel off. Therefore, a method has been proposed in which the surface of a silicon substrate is irradiated with an ion beam to form a modified layer on the surface of the silicon substrate to improve the adhesion between the silicon substrate and the thin film (see Patent Document 2).

特開2007−271860号公報Japanese Unexamined Patent Publication No. 2007-271860 特開平7−20302号公報Japanese Unexamined Patent Publication No. 7-20302

しかしながら、赤外線用機能性膜付シリコン基板の製造において、シリコン基板と薄膜との密着性を改善するために、シリコン基板の表面にイオンビームを照射する方法は、イオンビームを照射する高価な設備を別途必要とし、シリコン基板に容易に薄膜を積層させることは困難であった。 However, in the manufacture of a silicon substrate with a functional film for infrared rays, in order to improve the adhesion between the silicon substrate and the thin film, the method of irradiating the surface of the silicon substrate with an ion beam requires expensive equipment for irradiating the ion beam. It was required separately, and it was difficult to easily laminate a thin film on a silicon substrate.

本開示は、上記問題点を鑑み、赤外線に対する光学機能を有しつつ、耐久性のよい赤外線用機能性膜付シリコン基板を提供することを技術課題とする。 In view of the above problems, it is a technical subject of the present disclosure to provide a silicon substrate with a functional film for infrared rays, which has an optical function for infrared rays and has good durability.

上記課題を解決するために、本開示は以下のような構成を備えることを特徴とする。 In order to solve the above problems, the present disclosure is characterized by having the following configurations.

(1) 本開示の第1態様に係る赤外線用機能性膜付シリコン基板は、シリコン基板上に複数の薄膜を積層してなる赤外線用機能性膜付シリコン基板であって、前記シリコン基板の少なくとも一方の面において、蒸着によって前記シリコン基板の上に形成されるSi層である密着層と、前記密着層の上に機能性膜層と、が前記シリコン基板側から第1層目に前記密着層と前記密着層の次の層に前記機能性膜層との順で形成されていることを特徴とする。 (1) The silicon substrate with a functional film for infrared rays according to the first aspect of the present disclosure is a silicon substrate with a functional film for infrared rays formed by laminating a plurality of thin films on the silicon substrate, and is at least the silicon substrate. On one surface, the adhesion layer, which is a Si layer formed on the silicon substrate by thin film deposition, and the functional film layer on the adhesion layer are the first layer from the silicon substrate side. It is characterized in that it is formed in the order of the functional film layer and the layer next to the adhesion layer.

本実施形態における赤外線用機能性膜付シリコン基板の積層構成を示す概略図である。It is a schematic diagram which shows the laminated structure of the silicon substrate with the functional film for infrared rays in this embodiment.

以下、本件発明の実施形態における赤外線用機能性膜付シリコン基板について、図面を参照しながら説明する。図1は、本実施形態における赤外線用機能性膜付シリコン基板の積層構成を示す概略図である。 Hereinafter, the silicon substrate with a functional film for infrared rays according to the embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view showing a laminated structure of a silicon substrate with a functional film for infrared rays in the present embodiment.

例えば、本実施形態において、赤外線用機能性膜付シリコン基板は、シリコン基板上に複数の薄膜を積層してなる赤外線用機能性膜付シリコン基板である。例えば、赤外線用機能性膜付シリコン基板1は、シリコン基板(Si基板)2と、密着層3と、機能性膜層4と、で形成される。例えば、本実施形態において、シリコン基板2の少なくとも一方の面において、シリコン基板2の上に密着層3が形成されている。また、例えば、密着層3の上に機能性膜層4が形成されている。すなわち、例えば、シリコン基板2の一方の面には、シリコン基板2側から順に、密着層3、機能性膜層4、が順に積層されている。 For example, in the present embodiment, the silicon substrate with a functional film for infrared rays is a silicon substrate with a functional film for infrared rays, which is formed by laminating a plurality of thin films on the silicon substrate. For example, the silicon substrate 1 with a functional film for infrared rays is formed of a silicon substrate (Si substrate) 2, an adhesion layer 3, and a functional film layer 4. For example, in the present embodiment, the adhesion layer 3 is formed on the silicon substrate 2 on at least one surface of the silicon substrate 2. Further, for example, the functional film layer 4 is formed on the adhesion layer 3. That is, for example, the adhesion layer 3 and the functional film layer 4 are laminated in order from the silicon substrate 2 side on one surface of the silicon substrate 2.

なお、本実施形態における赤外線用機能性膜付シリコン基板1は、シリコン基板2の一方の面に密着層3と機能性膜層4とが形成される構成を例に挙げて説明しているがこれに限定されない。例えば、赤外線用機能性膜付シリコン基板1としては、シリコン基板2の両面に密着層3と機能性膜層4とが形成される構成であってもよい。なお、本実施形態においては、赤外線用機能性膜付シリコン基板1における機能性膜層4として反射防止膜層が用いられる場合を例に挙げて説明する。すなわち、以下の説明においては、赤外線用機能性膜付シリコン基板の内、赤外線用反射防止膜付シリコン基板を例に挙げて説明する。 The silicon substrate 1 with a functional film for infrared rays in the present embodiment will be described by taking as an example a configuration in which the adhesion layer 3 and the functional film layer 4 are formed on one surface of the silicon substrate 2. Not limited to this. For example, the silicon substrate 1 with a functional film for infrared rays may have a configuration in which the adhesion layer 3 and the functional film layer 4 are formed on both sides of the silicon substrate 2. In this embodiment, the case where the antireflection film layer is used as the functional film layer 4 in the silicon substrate 1 with the functional film for infrared rays will be described as an example. That is, in the following description, among the silicon substrates with a functional film for infrared rays, a silicon substrate with an antireflection film for infrared rays will be described as an example.

例えば、本実施形態において、赤外線用機能性膜付シリコン基板1は、2μm以上の赤外波長領域において透過率が高くなるように構成されている。もちろん、赤外波長領域は、上記構成に限定されない。透過率を高くする赤外波長領域は、任意の赤外波長領域を設定することができる。例えば、透過率を高くする赤外波長領域は、2μm〜15μm付近の赤外波長領域等であってもよい。なお、透過率を高くする赤外波長領域に応じて、機能性膜層4の材料、光学的膜厚が適宜設定される。以下の説明においては、10μm付近の赤外波長領域の透過率を高くする赤外線用機能性膜付シリコン基板を例に挙げて説明する。 For example, in the present embodiment, the silicon substrate 1 with a functional film for infrared rays is configured to have a high transmittance in an infrared wavelength region of 2 μm or more. Of course, the infrared wavelength region is not limited to the above configuration. Any infrared wavelength region can be set as the infrared wavelength region for increasing the transmittance. For example, the infrared wavelength region for increasing the transmittance may be an infrared wavelength region in the vicinity of 2 μm to 15 μm. The material and optical film thickness of the functional film layer 4 are appropriately set according to the infrared wavelength region for increasing the transmittance. In the following description, a silicon substrate with a functional film for infrared rays, which increases the transmittance in the infrared wavelength region near 10 μm, will be described as an example.

例えば、本実施形態において、シリコン基板2は、屈折率として3.4を有するシリコン基板である。なお、本実施形態においては、屈折率として3.4のシリコン基板2を用いる構成を例に挙げて説明するがこれに限定されない。例えば、異なる屈折率のシリコン基板2が用いられる構成としてもよい。例えば、本実施形態において、シリコン基板2は、0.5mmの厚みを有する。もちろん、異なる厚みのシリコン基板2が用いられる構成としてもよい。なお、例えば、本実施形態におけるシリコン基板2は、板状に限定されず、フィルム基板を含むものとしている。また、例えば、本実施形態におけるシリコン基板2としては、レンズ等の光学部材も含むものとしている。 For example, in the present embodiment, the silicon substrate 2 is a silicon substrate having a refractive index of 3.4. In this embodiment, a configuration using a silicon substrate 2 having a refractive index of 3.4 will be described as an example, but the present invention is not limited to this. For example, a silicon substrate 2 having a different refractive index may be used. For example, in this embodiment, the silicon substrate 2 has a thickness of 0.5 mm. Of course, a configuration in which silicon substrates 2 having different thicknesses are used may be used. In addition, for example, the silicon substrate 2 in this embodiment is not limited to a plate shape, and includes a film substrate. Further, for example, the silicon substrate 2 in the present embodiment includes an optical member such as a lens.

例えば、密着層3は、シリコン基板2と機能性膜層4との間の密着性を向上させるために形成される層である。例えば、密着層3は、Si(ケイ素)からなる。例えば、本実施形態において、密着層3は屈折率3.4のSiである。なお、本実施形態においては、密着層3として、屈折率3.4のSiを用いる構成を例に挙げて説明するがこれに限定されない。例えば、密着層3として、異なる屈折率のSiが用いられる構成としてもよい。なお、密着層3としては、Siに限定されない。例えば、密着層3としては、SiO、ZrO、TiO、Ta、Nb、Al、HfO、Y、CeO等の金属酸化物も使用されうる。また、例えば、密着層3としては、YF、LaF、MgF、CeF、YbF等のフッ化物も使用されうる。また、例えば、密着層3としては、上記記載の物質の少なくとも2つ以上を混合した混合物も使用されうる。 For example, the adhesion layer 3 is a layer formed to improve the adhesion between the silicon substrate 2 and the functional film layer 4. For example, the adhesion layer 3 is made of Si (silicon). For example, in the present embodiment, the adhesion layer 3 is Si having a refractive index of 3.4. In this embodiment, a configuration using Si having a refractive index of 3.4 as the adhesion layer 3 will be described as an example, but the present invention is not limited to this. For example, the adhesion layer 3 may be configured in which Si having a different refractive index is used. The adhesion layer 3 is not limited to Si. For example, as the adhesion layer 3 , metal oxides such as SiO, ZrO 2 , TiO 2 , Ta 2 O 5 , Nb 2 O 5 , Al 2 O 3 , HfO 2 , Y 2 O 3 , and CeO 2 can also be used. .. Further, for example, as the adhesion layer 3 , fluorides such as YF 3 , LaF 3 , MgF 2 , CeF 3 , and YbF 3 can also be used. Further, for example, as the adhesion layer 3, a mixture in which at least two or more of the above-mentioned substances are mixed can also be used.

なお、例えば、密着層3の材料としては、透過率を高くする赤外波長領域で透明である、又は、透過率を高くする赤外波長領域の光の吸収が少ない等の材料が選択されることが好ましいと考えられる。もちろん、透過率を高くする赤外波長領域の光の吸収が多いものであっても、膜厚を小さくすることによって、適用されうる。なお、赤外線用機能性膜付シリコン基板1が、7μm〜15μm付近の赤外波長領域において透過率が高くなるように構成される場合には、より透明性の高いSiが選択されることが好ましい。 For example, as the material of the adhesion layer 3, a material that is transparent in the infrared wavelength region that increases the transmittance or that absorbs less light in the infrared wavelength region that increases the transmittance is selected. Is considered preferable. Of course, even if the light absorption in the infrared wavelength region that increases the transmittance is large, it can be applied by reducing the film thickness. When the silicon substrate 1 with a functional film for infrared rays is configured to have a high transmittance in the infrared wavelength region near 7 μm to 15 μm, it is preferable to select Si having higher transparency. ..

例えば、密着層3の物理膜厚は、シリコン基板2との密着性が高いとともに機能性膜層4との密着性が高い効果を有する膜厚であればよい。例えば、密着層3の物理膜厚は、1nm以上400nm以下が好ましく、より好ましくは、10nm以上100nm以下である。例えば、物理膜厚が1nm未満であると、密着性が悪くなり、機能性膜層4がシリコン基板2から剥離しやすくなる。また、例えば、物理膜厚が400nmを超えると、赤外波長領域における透過率を低下させるため、反射防止機能が低下する傾向となる。すなわち、Siには赤外波長領域の光を吸収する性質がある。このため、Siの光学的膜厚は、小さい(薄い)方が赤外波長領域の光が吸収されづらくなるためより好ましい。本実施形態において、密着層3の物理膜厚は、30nmである。なお、例えば、物理膜厚とは、物差しで膜厚を測定することによって算出される一般的にいう膜厚のことである。なお、光学膜厚は、物理膜厚に物質の屈折率を掛けあわせることによって算出される。 For example, the physical film thickness of the adhesion layer 3 may be a film thickness having an effect of having high adhesion to the silicon substrate 2 and high adhesion to the functional film layer 4. For example, the physical film thickness of the adhesion layer 3 is preferably 1 nm or more and 400 nm or less, and more preferably 10 nm or more and 100 nm or less. For example, if the physical film thickness is less than 1 nm, the adhesion is deteriorated and the functional film layer 4 is easily peeled from the silicon substrate 2. Further, for example, when the physical film thickness exceeds 400 nm, the transmittance in the infrared wavelength region is lowered, so that the antireflection function tends to be lowered. That is, Si has a property of absorbing light in the infrared wavelength region. Therefore, it is more preferable that the optical film thickness of Si is small (thin) because it is difficult for light in the infrared wavelength region to be absorbed. In the present embodiment, the physical film thickness of the adhesion layer 3 is 30 nm. For example, the physical film thickness is a generally-called film thickness calculated by measuring the film thickness with a ruler. The optical film thickness is calculated by multiplying the physical film thickness by the refractive index of the substance.

例えば、機能性膜層4は、屈折率に差のある材料を積層した構造とし、物理膜厚、屈折率等を調整することにより反射防止機能が得られるものである。このため、機能性膜層4を複数の薄膜層を積層して構成することも可能である。なお、機能性膜層4の膜厚は、透過率を高くする赤外波長領域に応じて、適宜設定される。例えば、機能性膜層4の光学膜厚(物理膜厚と屈折率との掛けあわせ)はλ/4(λは透過率を高くする赤外波長領域の中心波長)で設定される。 For example, the functional film layer 4 has a structure in which materials having different refractive indexes are laminated, and an antireflection function can be obtained by adjusting the physical film thickness, the refractive index, and the like. Therefore, the functional film layer 4 can be configured by laminating a plurality of thin film layers. The film thickness of the functional film layer 4 is appropriately set according to the infrared wavelength region for increasing the transmittance. For example, the optical film thickness (multiplication of the physical film thickness and the refractive index) of the functional film layer 4 is set by λ / 4 (λ is the center wavelength of the infrared wavelength region that increases the transmittance).

例えば、本実施形態において、機能性膜層4は、反射防止膜層である。例えば、本実施形態において、機能性膜層4は、屈折率の異なる薄膜が積層された多層膜からなる。より詳細には、例えば、本実施形態において、機能性膜層4は、第1薄膜層5と、第2薄膜層6と、で形成される。 For example, in the present embodiment, the functional film layer 4 is an antireflection film layer. For example, in the present embodiment, the functional film layer 4 is composed of a multilayer film in which thin films having different refractive indexes are laminated. More specifically, for example, in the present embodiment, the functional film layer 4 is formed of a first thin film layer 5 and a second thin film layer 6.

例えば、第1薄膜層5は、シリコン基板2の屈折率より低い屈折率の材料(低屈折材料)からなる薄膜層である。なお、本実施形態においては、第1薄膜層5がシリコン基板2の屈折率より低い屈折率の材料からなる場合を例に挙げて説明しているが、これに限定されない。例えば、第1薄膜層5は、第2薄膜層6の屈折率よりも低い屈折率の材料からなる薄膜層であってもよい。例えば、低屈折材料としては、硫化亜鉛(ZnS)、フッ化イットリウム層(YF層)、二酸化シリカ層(SiO層)等が挙げられる。本実施形態においては、第1薄膜層5としてZnS層(屈折率2.3)が用いられる。もちろん、ZnSの屈折率は2.3に限定されず、他の屈折率であってもよい。例えば、本実施形態においては、第1薄膜層5の物理膜厚は、100nm以上2000nm以下が好ましく、より好ましくは、300nm以上1500nm以下である。物理膜厚がこれ以上厚くても、薄くても反射防止機能を有することが困難となる。本実施形態においては、第1薄膜層5の物理膜厚は、1100nmである。 For example, the first thin film layer 5 is a thin film layer made of a material (low refractive index material) having a refractive index lower than that of the silicon substrate 2. In the present embodiment, the case where the first thin film layer 5 is made of a material having a refractive index lower than that of the silicon substrate 2 is described as an example, but the present invention is not limited to this. For example, the first thin film layer 5 may be a thin film layer made of a material having a refractive index lower than that of the second thin film layer 6. For example, examples of the low refraction material include zinc sulfide (ZnS), yttrium fluoride layer (YF 3 layer), silica dioxide layer (SiO 2 layer) and the like. In this embodiment, a ZnS layer (refractive index 2.3) is used as the first thin film layer 5. Of course, the refractive index of ZnS is not limited to 2.3, and may be another refractive index. For example, in the present embodiment, the physical film thickness of the first thin film layer 5 is preferably 100 nm or more and 2000 nm or less, and more preferably 300 nm or more and 1500 nm or less. Even if the physical film thickness is thicker or thinner, it is difficult to have an antireflection function. In the present embodiment, the physical film thickness of the first thin film layer 5 is 1100 nm.

例えば、第2薄膜層6は、シリコン基板2の屈折率より高い屈折率の材料(高屈折材料)からなる薄膜層である。なお、本実施形態においては、第2薄膜層6がシリコン基板2の屈折率より高い屈折率の材料からなる場合を例に挙げて説明しているが、これに限定されない。例えば、第2薄膜層6は、第1薄膜層5の屈折率よりも高い屈折率の材料からなる薄膜層であってもよい。例えば、高屈折材料としては、ゲルマニウム(Ge)、二酸化チタン(TiO)等が挙げられる。本実施形態においては、第2薄膜層6としてGe層(屈折率4.0)が用いられる。もちろん、Geの屈折率は4.0に限定されず、他の屈折率であってもよい。例えば、本実施形態においては、第2薄膜層6の物理膜厚は、50nm以上1500nm以下が好ましく、より好ましくは、100nm以上1000nm以下である。物理膜厚がこれ以上厚くても、薄くても反射防止機能を有することが困難となる。本実施形態においては、第2薄膜層6の物理膜厚は、650nmである。 For example, the second thin film layer 6 is a thin film layer made of a material (high refractive index material) having a refractive index higher than that of the silicon substrate 2. In the present embodiment, the case where the second thin film layer 6 is made of a material having a refractive index higher than that of the silicon substrate 2 is described as an example, but the present invention is not limited to this. For example, the second thin film layer 6 may be a thin film layer made of a material having a refractive index higher than that of the first thin film layer 5. For example, examples of the high refractive material include germanium (Ge) and titanium dioxide (TIO 2 ). In this embodiment, a Ge layer (refractive index 4.0) is used as the second thin film layer 6. Of course, the refractive index of Ge is not limited to 4.0, and may be another refractive index. For example, in the present embodiment, the physical film thickness of the second thin film layer 6 is preferably 50 nm or more and 1500 nm or less, and more preferably 100 nm or more and 1000 nm or less. Even if the physical film thickness is thicker or thinner, it is difficult to have an antireflection function. In the present embodiment, the physical film thickness of the second thin film layer 6 is 650 nm.

例えば、本実施形態の機能性膜層4において、シリコン基板2から最も外側の最終層が低屈折材料からなる第1薄膜層5となっている。すなわち、シリコン基板2側から順に第2薄膜層6、第1薄膜層5の順に積層されている。なお、シリコン基板2から最も外側の最終層を異なる薄膜としてもよい。例えば、シリコン基板2から最も外側の最終層は、高屈折材料からなる第2薄膜層6であってもよい。この場合には、機能性膜層4の反射防止機能に影響が及ばない程度の膜厚で形成されることが好ましい。 For example, in the functional film layer 4 of the present embodiment, the outermost final layer from the silicon substrate 2 is the first thin film layer 5 made of a low refraction material. That is, the second thin film layer 6 and the first thin film layer 5 are laminated in this order from the silicon substrate 2 side. The outermost final layer from the silicon substrate 2 may be a different thin film. For example, the outermost final layer from the silicon substrate 2 may be a second thin film layer 6 made of a high refractive material. In this case, it is preferable that the functional film layer 4 is formed with a film thickness that does not affect the antireflection function.

なお、本実施形態において、機能性膜層4は、複数の薄膜が積層された多層膜からなる構成を例に挙げて説明したがこれに限定されない。例えば、機能性膜層4は、少なくとも1つ以上の薄膜からなる構成であればよい。この場合、例えば、機能性膜層4は、シリコン基板2より低屈折材料からなる第1薄膜層5(例えば、ZnS層等)のみで構成されるようにしてもよい。 In the present embodiment, the functional film layer 4 has been described by taking as an example a configuration composed of a multilayer film in which a plurality of thin films are laminated, but the present invention is not limited thereto. For example, the functional film layer 4 may be configured to be composed of at least one or more thin films. In this case, for example, the functional film layer 4 may be composed of only the first thin film layer 5 (for example, ZnS layer or the like) made of a material having a lower refraction than the silicon substrate 2.

なお、本実施形態において、機能性膜層4は、第1薄膜層5と、第2薄膜層6と、の2層で形成される場合を例に挙げて説明しているが、これに限定されない。例えば、機能性膜層4は、第1薄膜層5の材料と第2薄膜層5の材料との複数の薄膜が交互に繰り返し積層されている構成(例えば、シリコン基板2側から4層(Ge層、ZnS層、Ge層、ZnS層の順に積層)で構成、7層(ZnS層、Ge層、ZnS層、Ge層、ZnS層、Ge層、ZnS層の順に積層)で構成、8層で構成等)としてもよい。 In the present embodiment, the case where the functional film layer 4 is formed of two layers, the first thin film layer 5 and the second thin film layer 6, is described as an example, but the present invention is limited to this. Not done. For example, the functional film layer 4 has a configuration in which a plurality of thin films of the material of the first thin film layer 5 and the material of the second thin film layer 5 are alternately and repeatedly laminated (for example, four layers (Ge) from the silicon substrate 2 side. Layer, ZnS layer, Ge layer, ZnS layer stacked in this order), 7 layers (ZnS layer, Ge layer, ZnS layer, Ge layer, ZnS layer, Ge layer, ZnS layer stacked in this order), 8 layers Configuration, etc.) may be used.

なお、本実施形態において、機能性膜層4は、2つの異なる材料を用いて形成される場合を例に挙げて説明しているが、これに限定されない。例えば、機能性膜層4は、第1薄膜層5の材料及び第2薄膜層5の材料に加え、さらに、異なる材料による薄膜層を形成するようにしてもよい。 In the present embodiment, the case where the functional film layer 4 is formed by using two different materials is described as an example, but the present invention is not limited to this. For example, the functional film layer 4 may form a thin film layer made of a different material in addition to the material of the first thin film layer 5 and the material of the second thin film layer 5.

なお、本実施形態においては、機能性膜層4は、反射防止機能を有する反射防止膜層を例に挙げて説明したがこれに限定されない。例えば、機能性膜層4は、他の機能を有するものであってもよい。例えば、機能性膜層4は、増反射、エッジフィルター、ビームスプリット、バンドパス、等の機能を有するものであってもよい。 In the present embodiment, the functional film layer 4 has been described by taking as an example an antireflection film layer having an antireflection function, but the present invention is not limited thereto. For example, the functional membrane layer 4 may have other functions. For example, the functional film layer 4 may have functions such as augmentation reflection, edge filter, beam split, band pass, and the like.

上記で示した各薄膜層(密着層3、機能性膜層4)をシリコン基板2上に形成する方法としては、物理的気層成長方法(PVD)では、真空蒸着方法、スパッタ方法、イオンプレーティング方法等が挙げられる。また、化学的気層成長方法(CVD)では、化学的気層成長方法等が挙げられる。これらの成膜方法は、本実施形態としてすべて使用可能であるが、成膜に際して高温を伴うような方法では熱によるシリコン基板2の変形等が考えられるため、シリコン基板2での多層膜の成膜は高熱を必要としない真空蒸着方法やスパッタ方法が好適に用いられる。 As a method for forming each of the thin film layers (adhesion layer 3, functional film layer 4) shown above on the silicon substrate 2, the physical vapor deposition method (PVD) includes a vacuum vapor deposition method, a sputtering method, and an ion play method. The ting method and the like can be mentioned. Moreover, as a chemical vapor deposition method (CVD), a chemical vapor deposition method and the like can be mentioned. All of these film forming methods can be used as the present embodiment, but since deformation of the silicon substrate 2 due to heat is conceivable in a method involving high temperature during film formation, the formation of a multilayer film on the silicon substrate 2 is possible. As the film, a vacuum vapor deposition method or a sputtering method that does not require high heat is preferably used.

以上のように、例えば、本実施形態においては、シリコン基板と機能性膜層との間にSiからなる密着層を設けることによって、シリコン基板に機能性膜層を形成した場合であっても、シリコン基板から機能性膜層が剥離することを抑制し、耐久性のよい赤外線用機能性膜付シリコン基板を得ることができる。すなわち、赤外線用機能性膜付基板において、コスト的に安価なシリコン基板を用いる場合であっても、赤外線に対する光学機能を有しつつ、耐久性のよい赤外線用機能性膜付シリコン基板を容易に得ることができる。 As described above, for example, in the present embodiment, even when the functional film layer is formed on the silicon substrate by providing the adhesion layer made of Si between the silicon substrate and the functional film layer. It is possible to suppress the peeling of the functional film layer from the silicon substrate and obtain a silicon substrate with a functional film for infrared rays having good durability. That is, even when a silicon substrate with a functional film for infrared rays is used, which is inexpensive in terms of cost, it is easy to obtain a silicon substrate with a functional film for infrared rays which has an optical function for infrared rays and has good durability. Obtainable.

また、例えば、本実施形態においては、機能性膜層として反射防止膜層を設け、シリコン基板と反射防止膜層との間にSiからなる密着層を設けることによって、シリコン基板に反射防止膜層を形成した場合であっても、シリコン基板から反射防止膜層が剥離することを抑制し、耐久性のよい赤外線用機能性膜付シリコン基板を得ることができる。 Further, for example, in the present embodiment, the antireflection film layer is provided as the functional film layer, and the adhesion layer made of Si is provided between the silicon substrate and the antireflection film layer, whereby the antireflection film layer is provided on the silicon substrate. Even in the case of forming the above, it is possible to suppress the peeling of the antireflection film layer from the silicon substrate and obtain a silicon substrate with a functional film for infrared rays having good durability.

以下、本実施例及び比較例を示して本開示を具体的に説明するが、本開示は、下記実施例に制限されるものではない。以下、実施例1〜2では、シリコン基板の一方の面において、シリコン基板の上にSiからなる密着層と、密着層の上に機能性膜層(本実施例の場合には反射防止膜層)と、をシリコン基板側から順に形成し、得られた赤外線用機能性膜付シリコン基板の密着性、及び機能性を評価した。実施例3〜4では、シリコン基板の両面において、シリコン基板の上にSiからなる密着層と、密着層の上に機能性膜層と、をシリコン基板側から順に形成し、得られた赤外線用機能性膜付シリコン基板の密着性、及び機能性を評価した。 Hereinafter, the present disclosure will be specifically described with reference to the present examples and comparative examples, but the present disclosure is not limited to the following examples. Hereinafter, in Examples 1 and 2, on one surface of the silicon substrate, an adhesion layer made of Si on the silicon substrate and a functional film layer on the adhesion layer (in the case of this example, an antireflection film layer). ) And were formed in order from the silicon substrate side, and the adhesion and functionality of the obtained silicon substrate with a functional film for infrared rays were evaluated. In Examples 3 to 4, on both sides of the silicon substrate, an adhesion layer made of Si on the silicon substrate and a functional film layer on the adhesion layer are formed in order from the silicon substrate side, and the obtained infrared rays are used. The adhesion and functionality of the silicon substrate with a functional film were evaluated.

比較例1〜2では、シリコン基板の一方の面において、シリコン基板の上に機能性膜層を形成し、得られた赤外線用機能性膜付シリコン基板の密着性、及び機能性を評価した。 In Comparative Examples 1 and 2, a functional film layer was formed on one surface of the silicon substrate, and the adhesion and functionality of the obtained silicon substrate with a functional film for infrared rays were evaluated.

<実施例1>
実施例1では、蒸着源にSi顆粒、Ge顆粒、ZnS顆粒を用意し、真空蒸着により、密着層としてSiを、高屈折率の第1反射膜層(薄膜層)としてGeを、低屈折率の第2反射膜層(薄膜層)としてZnSを、シリコン基板上にシリコン基板側から順番に積層し、反射防止膜付シリコン基板を得た。すなわち、高屈折率の第1反射膜層としてGeと低屈折率の第2反射膜層としてZnSとによって、反射防止膜層を形成した。ここで、シリコン基板としては、厚さ0.5mmのシリコン板を用いた。Siからなる密着層の膜厚は、物理膜厚で30nmとした。Geからなる第1反射膜層の膜厚は、物理膜厚で650nmとした。ZnSからなる第2反射膜層の膜厚は、物理膜厚で1100nmとした。得られた反射防止膜付シリコン基板の透過率を赤外分光光度計(PerkinElme Inc.Frontier)にて測定した。評価基準は、反射防止膜層を付ける前のシリコン基板の透過率(51%)より透過率が高かった場合には評価○、反射防止膜を付けていないシリコン基板の透過率(51%)以下であった場合には評価×とした。また、反射防止膜付シリコン基板に対して密着試験を行い、反射防止膜層とシリコン基板の密着性の評価を行った。密着試験は反射防止膜付シリコン基板に粘着テープ(ニチバン(株)テープNo.405) を強く貼り付け、それを素早く剥がし反射防止膜の剥がれの有無を確認した。この作業を3回繰り返し、反射防止膜層が剥離しなかった場合には評価○、反射防止膜層が一部でも剥離した場合には評価×とした。下記の実施例2、比較例1〜2についても同様の評価をした。評価結果を表1に示した。
<Example 1>
In Example 1, Si granules, Ge granules, and ZnS granules are prepared as a vapor deposition source, and Si is used as an adhesion layer, Ge is used as a first reflective film layer (thin film layer) having a high refractive index, and low refractive index is obtained by vacuum vapor deposition. ZnS was laminated on the silicon substrate in order from the silicon substrate side as the second reflective film layer (thin film layer), to obtain a silicon substrate with an antireflection film. That is, an antireflection film layer was formed by Ge as the first reflective film layer having a high refractive index and ZnS as the second reflective film layer having a low refractive index. Here, as the silicon substrate, a silicon plate having a thickness of 0.5 mm was used. The film thickness of the adhesion layer made of Si was 30 nm in terms of physical film thickness. The film thickness of the first reflective film layer made of Ge was 650 nm in terms of physical film thickness. The film thickness of the second reflective film layer made of ZnS was set to 1100 nm in terms of physical film thickness. The transmittance of the obtained silicon substrate with antireflection film was measured with an infrared spectrophotometer (Perkin Elme Inc. Frontier). The evaluation criteria are evaluation ○ when the transmittance is higher than the transmittance (51%) of the silicon substrate before the antireflection film layer is attached, and the transmittance (51%) or less of the silicon substrate without the antireflection film. If it was, the evaluation was ×. In addition, an adhesion test was conducted on a silicon substrate with an antireflection film to evaluate the adhesion between the antireflection film layer and the silicon substrate. In the adhesion test, an adhesive tape (Nichiban Co., Ltd. Tape No. 405) was strongly attached to a silicon substrate with an antireflection film, and the adhesive tape (Nichiban Co., Ltd. Tape No. 405) was quickly peeled off to confirm whether or not the antireflection film was peeled off. This operation was repeated 3 times, and when the antireflection film layer was not peeled off, the evaluation was ◯, and when even a part of the antireflection film layer was peeled off, the evaluation was ×. Similar evaluations were made for Example 2 and Comparative Examples 1 and 2 below. The evaluation results are shown in Table 1.

<実施例2>
反射防止膜層をGeからなる第1反射膜層とZnSからなる第2反射膜層とによって形成した代わりに、反射防止膜層を低屈折率の第1反射膜層としてZnSのみで形成した以外は、実施例1と同様に反射防止膜付シリコン基板を作製した。ZnSからなる第1反射膜層の膜厚は、物理膜厚で1100nmとした。
<Example 2>
Instead of forming the antireflection film layer with the first reflective film layer made of Ge and the second reflective film layer made of ZnS, the antireflection film layer was formed only with ZnS as the first reflective film layer having a low refractive index. Made a silicon substrate with an antireflection film in the same manner as in Example 1. The film thickness of the first reflective film layer made of ZnS was set to 1100 nm in terms of physical film thickness.

<比較例1>
シリコン基板と反射防止膜層との間に密着層を形成しない以外は、実施例1と同様に反射防止膜付シリコン基板を作製した。
<Comparative Example 1>
A silicon substrate with an antireflection film was produced in the same manner as in Example 1 except that an adhesion layer was not formed between the silicon substrate and the antireflection film layer.

<比較例2>
シリコン基板と反射防止膜層との間に密着層を形成しない以外は、実施例2と同様に反射防止膜付シリコン基板を作製した。
<Comparative Example 2>
A silicon substrate with an antireflection film was produced in the same manner as in Example 2 except that an adhesion layer was not formed between the silicon substrate and the antireflection film layer.

Figure 0006982951
(結果)
以上、表1で示されるように、シリコン基板と反射防止膜層との間にSiからなる密着層を設けた赤外線用機能性膜付シリコン基板の密着性が、シリコン基板と反射防止膜層との間にSiからなる密着層を設けない場合の密着性と比較して向上する。また、Siからなる密着層を用いた場合に、密着層の上に積層される薄膜層が高屈折材料又は低屈折材料のいずれの材料であっても、密着性を向上させることができる。
Figure 0006982951
(result)
As described above, as shown in Table 1, the adhesion of the silicon substrate with the functional film for infrared rays provided with the adhesion layer made of Si between the silicon substrate and the antireflection film layer is the adhesion between the silicon substrate and the antireflection film layer. This is improved as compared with the case where the adhesion layer made of Si is not provided between the two. Further, when the adhesive layer made of Si is used, the adhesiveness can be improved regardless of whether the thin film layer laminated on the adhesive layer is a high-refractive material or a low-refractive material.

このように、シリコン基板と反射防止膜層との間にSiからなる密着層を設けることによって、シリコン基板に反射防止膜層を形成した場合であっても、シリコン基板から反射防止膜層が剥離することを抑制し、耐久性のよい赤外線用機能性膜付シリコン基板を得ることができる。
In this way, by providing the adhesion layer made of Si between the silicon substrate and the antireflection film layer, the antireflection film layer is peeled off from the silicon substrate even when the antireflection film layer is formed on the silicon substrate. It is possible to obtain a silicon substrate with a functional film for infrared rays having good durability.

Claims (3)

シリコン基板上に複数の薄膜を積層してなる赤外線用機能性膜付シリコン基板であって、
前記シリコン基板の少なくとも一方の面において、蒸着によって前記シリコン基板の上に形成されるSi層である密着層と、前記密着層の上に機能性膜層と、が前記シリコン基板側から第1層目に前記密着層と前記密着層の次の層に前記機能性膜層との順で形成されていることを特徴とする赤外線用機能性膜付シリコン基板。
A silicon substrate with a functional film for infrared rays, which is formed by laminating multiple thin films on a silicon substrate.
On at least one surface of the silicon substrate, an adhesion layer which is a Si layer formed on the silicon substrate by vapor deposition and a functional film layer on the adhesion layer are the first layer from the silicon substrate side. A silicon substrate with a functional film for infrared rays, wherein the contact layer and the functional film layer are formed in the next layer of the contact layer in this order.
請求項1の赤外線用機能性膜付シリコン基板において、
前記機能性膜層は、反射防止膜層であることを特徴とする赤外線用機能性膜付シリコン基板。
In the silicon substrate with a functional film for infrared rays according to claim 1.
The functional film layer is a silicon substrate with a functional film for infrared rays, which is an antireflection film layer.
請求項1又は2の赤外線用機能性膜付シリコン基板において、
前記機能性膜層は、前記シリコン基板から最も外側の最終層が前記シリコン基板の屈折率より低い屈折率を有する材料からなる第1薄膜層であることを特徴とする赤外線用機能性膜付シリコン基板。
In the silicon substrate with a functional film for infrared rays according to claim 1 or 2.
The functional film layer is silicon with a functional film for infrared rays, wherein the final layer outermost from the silicon substrate is a first thin film layer made of a material having a refractive index lower than that of the silicon substrate. substrate.
JP2016121116A 2016-06-17 2016-06-17 Silicon substrate with functional film for infrared rays Active JP6982951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016121116A JP6982951B2 (en) 2016-06-17 2016-06-17 Silicon substrate with functional film for infrared rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016121116A JP6982951B2 (en) 2016-06-17 2016-06-17 Silicon substrate with functional film for infrared rays

Publications (2)

Publication Number Publication Date
JP2017223914A JP2017223914A (en) 2017-12-21
JP6982951B2 true JP6982951B2 (en) 2021-12-17

Family

ID=60686375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016121116A Active JP6982951B2 (en) 2016-06-17 2016-06-17 Silicon substrate with functional film for infrared rays

Country Status (1)

Country Link
JP (1) JP6982951B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112813391B (en) * 2020-12-25 2022-08-12 西南技术物理研究所 Preparation method of ultra-wide waveband infrared long-wave pass cut-off light filtering film

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3249992B2 (en) * 1990-12-25 2002-01-28 ミノルタ株式会社 Anti-reflection coating for silicon or germanium substrates
JP3136845B2 (en) * 1993-07-01 2001-02-19 松下電器産業株式会社 Infrared antireflection film and method of forming the same
JPH07120602A (en) * 1993-10-26 1995-05-12 Matsushita Electric Ind Co Ltd Infrared antireflection film forming method
JPH1010303A (en) * 1996-06-24 1998-01-16 Topcon Corp Infrared antireflection film
JP3610777B2 (en) * 1998-05-22 2005-01-19 三菱電機株式会社 Infrared antireflection film and transmission window
JP2000241605A (en) * 1998-12-25 2000-09-08 Sony Corp Antireflection film, display device and film forming device
JP2002214402A (en) * 2001-01-19 2002-07-31 Toppan Printing Co Ltd Antireflection laminate

Also Published As

Publication number Publication date
JP2017223914A (en) 2017-12-21

Similar Documents

Publication Publication Date Title
JP7404367B2 (en) optical filter
WO2012073791A1 (en) Optical functional film for infrared light
JP5893271B2 (en) Antireflection film, optical system, and optical apparatus
US20050219724A1 (en) Optical element having a dielectric multilayer film
JP4793259B2 (en) Reflector
JP2009086533A (en) Infrared multilayered film, infrared antireflection film, and infrared laser reflecting mirror
JPWO2017022658A1 (en) Optical filter and near infrared cut filter
JP2009204577A (en) Light-transmitting member and timepiece provided with same
JPWO2018123705A1 (en) UV transmission filter
JP5888124B2 (en) Multilayer filter and method for manufacturing multilayer filter
JP2006301487A (en) Near-infrared ray cut filter
JP2010032867A (en) Infrared ray cutoff filter
KR20180094151A (en) Spectacle lens
WO2018110017A1 (en) Optical product
JP4895902B2 (en) Method for forming reflective film
JP2005165249A (en) Antireflection film, optical lens equipped therewith and optical lens unit
JP5976363B2 (en) Optical member
JP6982951B2 (en) Silicon substrate with functional film for infrared rays
JP2006259124A (en) Cold mirror
JP5292318B2 (en) Antireflection film and optical member having the same
TWI545354B (en) Ultravilet rays filter and lens module
JP3894107B2 (en) Infrared antireflection film
JP3894108B2 (en) Infrared antireflection film
JP2006317678A (en) Optical filter and optical equipment
JP3610777B2 (en) Infrared antireflection film and transmission window

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201203

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201203

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201211

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201215

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210219

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210224

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210518

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210706

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210819

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20210820

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210921

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211102

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211122

R150 Certificate of patent or registration of utility model

Ref document number: 6982951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150