JP4895902B2 - Method for forming reflective film - Google Patents

Method for forming reflective film Download PDF

Info

Publication number
JP4895902B2
JP4895902B2 JP2007102621A JP2007102621A JP4895902B2 JP 4895902 B2 JP4895902 B2 JP 4895902B2 JP 2007102621 A JP2007102621 A JP 2007102621A JP 2007102621 A JP2007102621 A JP 2007102621A JP 4895902 B2 JP4895902 B2 JP 4895902B2
Authority
JP
Japan
Prior art keywords
film
layer
substrate
reflective
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007102621A
Other languages
Japanese (ja)
Other versions
JP2008260978A (en
Inventor
茂樹 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP2007102621A priority Critical patent/JP4895902B2/en
Publication of JP2008260978A publication Critical patent/JP2008260978A/en
Application granted granted Critical
Publication of JP4895902B2 publication Critical patent/JP4895902B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は樹脂等からなる基材表面に反射膜を形成するための反射膜の形成方法に関する。   The present invention relates to a method for forming a reflective film for forming a reflective film on the surface of a substrate made of a resin or the like.

従来、フラットパネルディスプレイやプロジェクタ等の光学系に使用される反射ミラーとして、基板上に所定の反射膜を形成した反射付基板が知られている。このような反射膜付基板は、一般に樹脂フィルムや樹脂基板等(以下、単に基板と記す)の表面にAg(銀)やAl(アルミ)の金属膜を蒸着させて得ることができる。基板表面に金属膜を形成する場合、基板と金属膜との間に、さらにCr(クロム)等の金属膜を形成させておくことにより基板と金属膜との密着力を向上させる技術が知られている(特許文献1参照)。
特開2002−200700号公報
2. Description of the Related Art Conventionally, a reflective substrate in which a predetermined reflective film is formed on a substrate is known as a reflective mirror used in an optical system such as a flat panel display or a projector. Such a substrate with a reflective film can be generally obtained by depositing a metal film of Ag (silver) or Al (aluminum) on the surface of a resin film, a resin substrate or the like (hereinafter simply referred to as a substrate). In the case of forming a metal film on the substrate surface, a technique for improving the adhesion between the substrate and the metal film by forming a metal film such as Cr (chromium) between the substrate and the metal film is known. (See Patent Document 1).
JP 2002-200700 A

このような金属膜付基板は、高い密着性を持つとともに耐久性も必要となる。しかしながら、上述したような基板上にクロム等の金属膜とAlやAgからなる金属膜とを順に形成した膜構成では、ある程度の密着力の向上は望めるものの、高い耐久性能を得つつ充分な密着力を確保することができるものではない。
上記従来技術の問題点に鑑み、高い耐久性能が得られつつ、基板と形成膜との密着力を充分に確保することのできる反射膜の形成方法を提供することを技術課題とする。
Such a substrate with a metal film has high adhesion and durability. However, in the film configuration in which a metal film such as chromium and a metal film made of Al or Ag are sequentially formed on the substrate as described above, a certain degree of improvement in adhesion can be expected, but sufficient adhesion while obtaining high durability performance. It is not something that can secure power.
In view of the above-described problems of the prior art, it is an object of the present invention to provide a method of forming a reflective film that can sufficiently secure the adhesion between the substrate and the formed film while obtaining high durability performance.

上記課題を解決するために、本発明は以下のような構成を備えることを特徴とする。
(1) 基板上に酸化アルミニウムからなる第1のバリア層をイオンアシスト蒸着により形成する第1ステップと、該第1ステップにより形成された前記バリア層の上に銅からなる密着層及び銀からなる反射層を順に形成する第2ステップと、該第2ステップにより形成された前記反射層の上に屈折力の異なる酸化物膜を積層してなる増反射層をイオンアシスト蒸着により形成する第3ステップと、を有することを特徴とする。
In order to solve the above problems, the present invention is characterized by having the following configuration.
(1) A first step of forming a first barrier layer made of aluminum oxide on a substrate by ion-assisted deposition, and an adhesive layer made of copper and silver on the barrier layer formed by the first step A second step of sequentially forming a reflective layer, and a third step of forming, by ion-assisted deposition, an increased reflective layer formed by laminating oxide films having different refractive powers on the reflective layer formed by the second step. It is characterized by having.

本発明によれば、高い耐久性能が得られつつ、樹脂基板と形成膜との密着力を充分に確保することができる。   According to the present invention, it is possible to sufficiently secure the adhesion between the resin substrate and the formed film while obtaining high durability performance.

以下に図面を参照しながら説明する。図1は本発明の一実施形態である金属膜付基板の一種である反射ミラー100に形成される膜の積層構成を示す模式図である。
1は反射ミラー100の基板であり、アクリル、ゼオネックス、ポリカーボネイト、ポリエチレンテレフタレート等の一般的な樹脂材料やガラスが用いられる。また、基板1は板材の他、フィルム基板であってもよい。基板1の反射面側には多層膜が形成されている。本実施形態における多層膜は、基板側から順に下地層(バリア層)2、密着層3、反射層4、増反射層5、保護層6、撥水層7からなる。
This will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing a laminated structure of films formed on a reflection mirror 100 which is a kind of a substrate with a metal film according to an embodiment of the present invention.
Reference numeral 1 denotes a substrate of the reflecting mirror 100, and a general resin material such as acrylic, ZEONEX, polycarbonate, polyethylene terephthalate, or glass is used. The substrate 1 may be a film substrate in addition to a plate material. A multilayer film is formed on the reflective surface side of the substrate 1. The multilayer film in the present embodiment is composed of a base layer (barrier layer) 2, an adhesion layer 3, a reflective layer 4, an increased reflective layer 5, a protective layer 6, and a water repellent layer 7 in order from the substrate side.

下地層2は、基板1から反射層4側に向う水分の移動を防ぎ(バリアする)、耐湿性を向上させるために設けられる層であり、酸化アルミニウム(Al23)の薄膜からなる層にて形成されている。このような下地層(バリア層)2は、10nm以上200nm以下の物理膜厚を有していることが好ましい。下地層2の膜厚が10nm未満の場合にはバリア層としての機能を果たすのが困難であり、200nmを越えてもバリア性能は殆ど向上せず生産性の面で不利である。 The underlayer 2 is a layer provided to prevent (barrier) the movement of moisture from the substrate 1 toward the reflective layer 4 and improve moisture resistance, and is a layer made of a thin film of aluminum oxide (Al 2 O 3 ). It is formed by. Such an underlayer (barrier layer) 2 preferably has a physical film thickness of 10 nm to 200 nm. When the film thickness of the underlayer 2 is less than 10 nm, it is difficult to fulfill the function as a barrier layer, and even if it exceeds 200 nm, the barrier performance is hardly improved, which is disadvantageous in terms of productivity.

密着層3は基板1(下地層2)と反射層4との接着力を向上させるために金属膜からなる。このような密着層3に使用される金属材料としては、銅(Cu)、クロム(Cr)、ニッケル(Ni)やクロム・ニッケル合金等のクロム系合金を用いることができる。密着層は1層膜であってもよいし、例えば、クロムからなる薄膜と銅からなる薄膜とを順に積層した2層膜とすることもできる。密着層3の物理膜厚は、好ましくは0.1nm〜200nm、さらに好ましくは10nm〜100nmである。物理膜厚が200nmを超えても密着力は殆ど向上せず、生産性の面で不利である。また、物理膜厚が0.1nm未満では密着力に関する効果が得られない。なお、反射膜において、充分な密着性能が得られる場合には必ずしも密着層3を設ける必要はない。   The adhesion layer 3 is made of a metal film in order to improve the adhesion between the substrate 1 (underlayer 2) and the reflection layer 4. As the metal material used for the adhesion layer 3, a chromium-based alloy such as copper (Cu), chromium (Cr), nickel (Ni), or a chromium-nickel alloy can be used. The adhesion layer may be a single-layer film, or may be a two-layer film in which a thin film made of chromium and a thin film made of copper are sequentially laminated. The physical film thickness of the adhesion layer 3 is preferably 0.1 nm to 200 nm, more preferably 10 nm to 100 nm. Even if the physical film thickness exceeds 200 nm, the adhesion is hardly improved, which is disadvantageous in terms of productivity. Moreover, if the physical film thickness is less than 0.1 nm, the effect on the adhesion force cannot be obtained. In the reflective film, it is not always necessary to provide the adhesion layer 3 when sufficient adhesion performance is obtained.

反射層4は、入射する光を反射させるために設けられる金属膜からなる層である。このような反射層4に使用される金属材料としては、銀(Ag)やアルミニウム(Al)を用いることができる。このような反射層の物理膜厚は、好ましくは10nm〜300nm、さらに好ましくは50nm〜200nmである。反射ミラー100を得る場合、物理膜厚が300nmを超えても反射率は向上せず、クラックや生産性の面で不利である。また、物理膜厚が10nm未満では所望する反射率を得ることが困難である。   The reflective layer 4 is a layer made of a metal film provided to reflect incident light. Silver (Ag) or aluminum (Al) can be used as the metal material used for such a reflective layer 4. The physical film thickness of such a reflective layer is preferably 10 nm to 300 nm, more preferably 50 nm to 200 nm. When obtaining the reflection mirror 100, even if the physical film thickness exceeds 300 nm, the reflectance is not improved, which is disadvantageous in terms of cracks and productivity. Further, if the physical film thickness is less than 10 nm, it is difficult to obtain a desired reflectance.

増反射層5は、反射層4を保護するとともに反射特性を向上させるために設けられる層である。図示する増反射膜5aは酸化アルミニウムからなり、増反射層の一部を形成するとともに、反射層4への水分の移動を防ぐ役目(下地層2と同機能)を持つ。このような増反射膜5aは、バリヤ層として必要な膜厚を有するとともに増反射せるために必要な光学膜厚を持つ。また、増反射膜5bは増反射膜5aの屈折率よりも高い屈折率を持つ高屈折率の酸化物膜である。具体的には酸化チタン(TiO2)や酸化ジルコニウム(ZrO2)等の高屈折率の金属酸化物が持ちいられる。増反射膜5bの膜厚(光学膜厚)は、前述した増反射膜5aと組み合せた際に反射率が増加するような膜厚が用いられる。増反射膜5a,5bとも一般的には目的の波長(λ)に対して(1/4)λとなる光学膜厚で形成される。増反射層5はこのような低屈折率の薄膜層と高屈折率の薄膜層とが順に積層されることによってなり、反射特性を向上させる。 The increased reflection layer 5 is a layer provided for protecting the reflection layer 4 and improving reflection characteristics. The increased reflection film 5a shown in the figure is made of aluminum oxide, and forms a part of the increased reflection layer and has a function of preventing moisture from moving to the reflection layer 4 (the same function as the underlayer 2). Such an increased reflection film 5a has a film thickness necessary for a barrier layer and an optical film thickness necessary for increasing reflection. The increased reflection film 5b is a high refractive index oxide film having a refractive index higher than that of the increased reflection film 5a. Specifically, a metal oxide having a high refractive index such as titanium oxide (TiO 2 ) or zirconium oxide (ZrO 2 ) can be used. The film thickness (optical film thickness) of the reflective reflection film 5b is such that the reflectance increases when combined with the reflective reflection film 5a described above. Both the reflective reflection films 5a and 5b are generally formed with an optical film thickness of (1/4) λ with respect to the target wavelength (λ). The increased reflection layer 5 is formed by laminating the low refractive index thin film layer and the high refractive index thin film layer in this order, thereby improving the reflection characteristics.

保護層6は耐磨耗性を向上させるために設けられる層であり、本実施形態では二酸化ケイ素(SiO2)の薄膜にて形成されている。このような保護層6の物理膜厚は、好ましくは10nm〜100nm、さらに好ましくは20nm〜50nmである。
撥水層7は、耐湿性や耐塩水性を向上させるために設けられる層であり、含フッ素ケイ素化合物が用いられる。このような撥水層7の物理膜厚は1nm〜10nm程度であればよい。なお、耐塩水性能が必要でない場合には、必ずしも撥水層7を設ける必要はない。
The protective layer 6 is a layer provided to improve wear resistance, and is formed of a silicon dioxide (SiO 2 ) thin film in this embodiment. The physical film thickness of such a protective layer 6 is preferably 10 nm to 100 nm, more preferably 20 nm to 50 nm.
The water repellent layer 7 is a layer provided to improve moisture resistance and salt water resistance, and a fluorine-containing silicon compound is used. The physical film thickness of the water repellent layer 7 may be about 1 nm to 10 nm. Note that the water-repellent layer 7 is not necessarily provided when saltwater resistance is not required.

次に、このような反射膜付き基板を得るための成膜方法を説明する。多層膜を形成するには、通常、真空蒸着法等の一般的な成膜方法を用いることができるが、本実施形態で示すような反射膜性能に加えて耐磨耗性や耐湿性等の耐久性を向上させるための膜構成であると、真空蒸着法による成膜では十分な密着性能が得られない。本発明者らは鋭意研究の結果、反射膜の形成の際にイオンアシスト蒸着(IAD:Ion Assisted Deposition)を用いて成膜を行うことによって、充分な密着性能が得られることを見出した。なお、密着層及び反射層に用いる金属膜は真空蒸着を用いてもよい。この際、真空蒸着機内にイオン銃とニュートラライザを設けておき、同一処理機内で、真空蒸着とイオンアシスト蒸着とができるように構成しておくことで、基板上に効率よく反射膜を形成することが可能となる。イオンアシスト蒸着を行う場合、真空(真空度1.0×10-2〜1.0×10-4Pa程度)とされた蒸着機内において、イオン銃の中にAr,O2を導入し、プラズマを発生させ、プラズマから電圧を印加したグリッドで+イオンをイオン銃内から真空槽内へ引き出し、加速させ基板に照射する。また、イオン照射と同時に通常の真空蒸着と同様に電子ビームや抵抗加熱を用いて蒸着材料を加熱・蒸発させ、基板面に蒸着材料を蒸着させる。膜厚形成状況は水晶式膜厚計にて検知することができる。所定量の膜厚に達したら、蒸着物質を次の蒸着物質に切り替えて2層目の成膜を行う。また、イオンアシスト蒸着を行わない層(密着層、反射層)の成膜は通常の真空蒸着によって行う。この場合も膜厚は水晶式膜厚計にて検知する。 Next, a film forming method for obtaining such a substrate with a reflective film will be described. In order to form the multilayer film, a general film forming method such as a vacuum deposition method can be generally used, but in addition to the reflective film performance as shown in the present embodiment, the wear resistance, moisture resistance, etc. When the film structure is for improving durability, sufficient adhesion performance cannot be obtained by film formation by vacuum deposition. As a result of intensive studies, the present inventors have found that sufficient adhesion performance can be obtained by forming a film using ion assisted deposition (IAD) when forming a reflective film. The metal film used for the adhesion layer and the reflective layer may be vacuum deposition. At this time, an ion gun and a neutralizer are provided in the vacuum vapor deposition machine, and the reflective film is efficiently formed on the substrate by configuring the vacuum treatment machine and the vacuum assisted vapor deposition in the same processing machine. It becomes possible. When ion-assisted deposition is performed, Ar and O 2 are introduced into the ion gun in a vacuum (degree of vacuum: about 1.0 × 10 −2 to 1.0 × 10 −4 Pa), and plasma is introduced. Then, + ions are extracted from the ion gun into the vacuum chamber by a grid to which a voltage is applied from the plasma, accelerated, and irradiated onto the substrate. At the same time as ion irradiation, the vapor deposition material is heated and evaporated by using an electron beam or resistance heating in the same manner as in ordinary vacuum vapor deposition, and the vapor deposition material is vapor deposited on the substrate surface. The film thickness formation status can be detected by a crystal film thickness meter. When a predetermined amount of film thickness is reached, the vapor deposition material is switched to the next vapor deposition material to form a second layer. In addition, the layers not subjected to ion-assisted deposition (adhesion layer, reflective layer) are formed by ordinary vacuum deposition. In this case as well, the film thickness is detected by a crystal film thickness meter.

以下に、より具体的な実施例1〜5、および比較例1〜7を挙げ、本発明を説明する。ただし、本発明は以下の実施例に限定されるものではない。
<実施例1>
基板1として、シクロオレフィン系樹脂であるゼオノア(登録商標)(日本ゼオン(株))を使用し、前述したイオンアシスト蒸着機能付きの真空蒸着機を用いて、基板上に下地層(1層目)として、Al23膜を物理膜厚68nmにてイオンアシスト蒸着により形成した。次に密着層(2層目)としてCu膜を物理膜厚40nm、反射層(3層目)としてAg膜を物理膜厚150nmにて真空蒸着により順に形成した。さらに増反射層(4層目)としてAl23膜を光学膜厚110nm((1/4)λ ただしλ=440nm)、TiO2膜を光学膜厚110nm((1/4)λ ただしλ=440nm)にてこの順にイオンアシスト蒸着により積層、形成した。次に保護層(5層目)としてSiO2膜を物理膜厚21nm(光学膜厚30nm)としてイオンアシスト蒸着により形成し、さらに最外層としてOF−110(オプトロン社製)を用いて物理膜厚10nmにて真空蒸着により、撥水層を形成し、反射膜付き基板(反射ミラー)を得た。
Hereinafter, the present invention will be described with reference to more specific Examples 1 to 5 and Comparative Examples 1 to 7. However, the present invention is not limited to the following examples.
<Example 1>
As substrate 1, ZEONOR (registered trademark) (Nippon ZEON Co., Ltd.), which is a cycloolefin resin, is used, and the base layer (first layer) is formed on the substrate using the above-described vacuum vapor deposition machine with ion-assisted vapor deposition function. ), An Al 2 O 3 film was formed by ion-assisted deposition with a physical film thickness of 68 nm. Next, as an adhesion layer (second layer), a Cu film was formed by vacuum deposition at a physical film thickness of 40 nm, and as a reflective layer (third layer), an Ag film was formed in order by vacuum deposition at a physical film thickness of 150 nm. Further, as an additional reflection layer (fourth layer), an Al 2 O 3 film has an optical film thickness of 110 nm ((1/4) λ where λ = 440 nm), and a TiO 2 film has an optical film thickness of 110 nm ((1/4) λ where λ = 440 nm) in this order by ion-assisted deposition. Next, a SiO 2 film is formed as a protective layer (fifth layer) by ion-assisted vapor deposition with a physical film thickness of 21 nm (optical film thickness 30 nm), and further the physical film thickness is formed using OF-110 (manufactured by Optron) as the outermost layer. A water-repellent layer was formed by vacuum deposition at 10 nm to obtain a substrate with a reflection film (reflection mirror).

得られた反射膜付き基板を分光光度計にて測定し、その反射特性(45度反射率)を検査した。また、耐久性評価として、密着性試験、磨耗性試験、耐湿性試験を行った。密着性試験は、クロスカットテープ試験によって行った。クロスカットテープ試験は基板面(成膜面)に1mm間隔で切れ目を入れて1mm2マス目を100個形成し、粘着テープをレンズ面に押し当てたあと、勢いよく剥がしマス目が基板面に何個残っているかを調べることにより、密着性の評価を行うものである(JIS K5400準拠)。マス目が全て残っていれば○、マス目が一つでも剥がれていれば×とした。また、磨耗性試験は、MIL-M-13508に準拠して行った。磨耗性試験後、外観検査及び反射率を再度測定し、外観が良好で反射率の低下が1%以内であれば○、それ以外は×とした。また、耐湿性試験は、室温60℃、湿度95%との雰囲気中に成膜後の基板を240時間置き、その後、外観検査及び反射率を再度測定し、外観が良好で反射率の低下が1%以内であれば○、それ以外は×とした。その結果を表1に示す。また、反射率特性を図2に示す。 The obtained board | substrate with a reflecting film was measured with the spectrophotometer, and the reflective characteristic (45 degree reflectance) was test | inspected. Moreover, as durability evaluation, the adhesiveness test, the abrasion test, and the moisture resistance test were done. The adhesion test was performed by a cross-cut tape test. In the cross-cut tape test, 100 pieces of 1 mm 2 squares are formed on the substrate surface (film formation surface) with 1 mm intervals. The adhesion is evaluated by examining how many remain (conforms to JIS K5400). If all the cells were left, it was marked as ◯, and if even one cell was removed, it was marked as x. The abrasion test was conducted according to MIL-M-13508. After the abrasion test, the appearance inspection and the reflectance were measured again. If the appearance was good and the decrease in reflectance was within 1%, it was rated as ◯, and otherwise. In the humidity resistance test, the substrate after film formation was placed in an atmosphere of room temperature 60 ° C. and humidity 95% for 240 hours, and then the appearance inspection and the reflectance were measured again, and the appearance was good and the reflectance decreased. If it was within 1%, it was rated as ◯, otherwise it was marked as x. The results are shown in Table 1. The reflectance characteristics are shown in FIG.

<実施例2>
実施例2では、撥水層を形成しないこと以外は、すべて実施例1と同じ条件とした。得られた反射膜付き基板を分光光度計にて測定し、その反射特性を検査した。また、実施例1と同様に耐久性評価を行った。その結果を表1に示す。
<Example 2>
In Example 2, all the conditions were the same as in Example 1 except that the water repellent layer was not formed. The obtained substrate with a reflective film was measured with a spectrophotometer, and its reflection characteristics were examined. Further, durability evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

<実施例3>
実施例3では、撥水層を形成せず、密着層にクロム・ニッケル合金(クロメル)を用いたこと以外は、全て実施例1と同じ条件とした。得られた反射膜付き基板を分光光度計にて測定し、その反射特性を検査した。また、実施例1と同様に耐久性評価を行った。その結果を表1に示す。
<Example 3>
In Example 3, the same conditions as in Example 1 were used except that the water-repellent layer was not formed and a chromium-nickel alloy (chromel) was used for the adhesion layer. The obtained substrate with a reflective film was measured with a spectrophotometer, and its reflection characteristics were examined. Further, durability evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

<実施例4>
実施例4では、撥水層を形成せず、密着層にニッケル(Ni)を用いたこと以外は、全て実施例1と同じ条件とした。得られた反射膜付き基板を分光光度計にて測定し、その反射特性を検査した。また、実施例1と同様に耐久性評価を行った。その結果を表1に示す。
<Example 4>
In Example 4, the same conditions as in Example 1 were used except that the water-repellent layer was not formed and nickel (Ni) was used for the adhesion layer. The obtained substrate with a reflective film was measured with a spectrophotometer, and its reflection characteristics were examined. Further, durability evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

<実施例5>
実施例5では、撥水層及び密着層を形成しないこと以外は、全て実施例1と同じ条件とした。得られた反射膜付き基板を分光光度計にて測定し、その反射特性を検査した。また、実施例1と同様に耐久性評価を行った。その結果を表1に示す。
<Example 5>
In Example 5, all the conditions were the same as in Example 1 except that the water repellent layer and the adhesion layer were not formed. The obtained substrate with a reflective film was measured with a spectrophotometer, and its reflection characteristics were examined. Further, durability evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

<比較例1>
比較例1では、実施例2と同じ膜構成としたが、イオンアシスト蒸着は行わず、すべての層に対して真空蒸着を用いて成膜を行った。得られた反射膜付き基板を分光光度計にて測定し、その反射特性を検査した。また、実施例1と同様に耐久性評価を行った。その結果を表1に示す。
<Comparative Example 1>
In Comparative Example 1, the same film configuration as in Example 2 was used, but ion-assisted deposition was not performed, and deposition was performed on all layers using vacuum deposition. The obtained substrate with a reflective film was measured with a spectrophotometer, and its reflection characteristics were examined. Further, durability evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

<比較例2>
比較例2では、実施例3と同じ膜構成としたが、イオンアシスト蒸着は行わず、すべての層に対して真空蒸着を用いて成膜を行った。得られた反射膜付き基板を分光光度計にて測定し、その反射特性を検査した。また、実施例1と同様に耐久性評価を行った。その結果を表1に示す。
<Comparative example 2>
In Comparative Example 2, the same film configuration as in Example 3 was used, but ion-assisted deposition was not performed, and deposition was performed on all layers using vacuum deposition. The obtained substrate with a reflective film was measured with a spectrophotometer, and its reflection characteristics were examined. Further, durability evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

<比較例3>
比較例3では、実施例4と同じ膜構成としたが、イオンアシスト蒸着は行わず、すべての層に対して真空蒸着を用いて成膜を行った。得られた反射膜付き基板を分光光度計にて測定し、その反射特性を検査した。また、実施例1と同様に耐久性評価を行った。その結果を表1に示す。
<Comparative Example 3>
In Comparative Example 3, the same film configuration as in Example 4 was used, but ion-assisted deposition was not performed, and deposition was performed on all layers using vacuum deposition. The obtained substrate with a reflective film was measured with a spectrophotometer, and its reflection characteristics were examined. Further, durability evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

<比較例4>
比較例4では、実施例5と同じ膜構成としたが、イオンアシスト蒸着は行わず、すべての層に対して真空蒸着を用いて成膜を行った。得られた反射膜付き基板を分光光度計にて測定し、その反射特性を検査した。また、実施例1と同様に耐久性評価を行った。その結果を表1に示す。
<Comparative example 4>
In Comparative Example 4, the same film configuration as in Example 5 was used, but ion-assisted deposition was not performed, and deposition was performed on all layers using vacuum deposition. The obtained substrate with a reflective film was measured with a spectrophotometer, and its reflection characteristics were examined. Further, durability evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

<比較例5>
比較例5では、下地層(Al23膜)を形成しない以外は実施例2と同じ膜構成としたが、イオンアシスト蒸着は行わず、すべての層に対して真空蒸着を用いて成膜を行った。得られた反射膜付き基板を分光光度計にて測定し、その反射特性を検査した。また、実施例1と同様に耐久性評価を行った。その結果を表1に示す。
<Comparative Example 5>
In Comparative Example 5, the film configuration was the same as that of Example 2 except that the base layer (Al 2 O 3 film) was not formed, but ion-assisted deposition was not performed, and all layers were formed using vacuum deposition. Went. The obtained substrate with a reflective film was measured with a spectrophotometer, and its reflection characteristics were examined. Further, durability evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

<比較例6>
比較例6では、保護層(SiO2膜)を形成しない以外は実施例2と同じ膜構成としたが、イオンアシスト蒸着は行わず、すべての層に対して真空蒸着を用いて成膜を行った。得られた反射膜付き基板を分光光度計にて測定し、その反射特性を検査した。また、実施例1と同様に耐久性評価を行った。その結果を表1に示す。
<Comparative Example 6>
In Comparative Example 6, the film configuration was the same as in Example 2 except that the protective layer (SiO 2 film) was not formed, but ion-assisted deposition was not performed, and all layers were deposited using vacuum deposition. It was. The obtained substrate with a reflective film was measured with a spectrophotometer, and its reflection characteristics were examined. Further, durability evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.

Figure 0004895902
Figure 0004895902

<結果>
実施例1〜5では、何れも反射率95%以上を確保するとともに、高い耐久性能、高密着力を得ることができている。これに対し比較例1〜4では、同じ膜構成であり、反射率95%以上を確保するものの、充分な密着力を得ることができず、好ましくない。また、比較例5及び比較例6では密着性、耐久性(耐磨耗性・耐湿性)ともに良くない結果となった。
<Result>
In Examples 1-5, while ensuring a reflectance of 95% or more, high durability performance and high adhesion can be obtained. On the other hand, Comparative Examples 1 to 4 have the same film configuration and ensure a reflectance of 95% or more, but it is not preferable because sufficient adhesion cannot be obtained. In Comparative Example 5 and Comparative Example 6, both adhesion and durability (abrasion resistance and moisture resistance) were not good.

本実施形態の膜構成を示した概略図である。It is the schematic which showed the film | membrane structure of this embodiment. 実施例1の反射ミラーの反射率特性を示した図である。FIG. 3 is a diagram showing the reflectance characteristics of the reflecting mirror of Example 1.

符号の説明Explanation of symbols

1 基板
2 下地層
3 密着層
4 反射層
5 増反射層
6 保護層
7 撥水層
100 反射ミラー
DESCRIPTION OF SYMBOLS 1 Substrate 2 Base layer 3 Adhesion layer 4 Reflective layer 5 Increasing reflective layer 6 Protective layer 7 Water repellent layer 100 Reflective mirror

Claims (1)

基板上に酸化アルミニウムからなる第1のバリア層をイオンアシスト蒸着により形成する第1ステップと、該第1ステップにより形成された前記バリア層の上に銅からなる密着層及び銀からなる反射層を順に形成する第2ステップと、該第2ステップにより形成された前記反射層の上に屈折力の異なる酸化物膜を積層してなる増反射層をイオンアシスト蒸着により形成する第3ステップと、を有することを特徴とする反射膜の形成方法。 A first step of forming a first barrier layer made of aluminum oxide on a substrate by ion-assisted deposition, and an adhesion layer made of copper and a reflective layer made of silver on the barrier layer formed by the first step A second step of sequentially forming, and a third step of forming, by ion-assisted deposition, an increased reflection layer formed by laminating oxide films having different refractive powers on the reflection layer formed by the second step. A method for forming a reflective film, comprising:
JP2007102621A 2007-04-10 2007-04-10 Method for forming reflective film Expired - Fee Related JP4895902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007102621A JP4895902B2 (en) 2007-04-10 2007-04-10 Method for forming reflective film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007102621A JP4895902B2 (en) 2007-04-10 2007-04-10 Method for forming reflective film

Publications (2)

Publication Number Publication Date
JP2008260978A JP2008260978A (en) 2008-10-30
JP4895902B2 true JP4895902B2 (en) 2012-03-14

Family

ID=39983674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007102621A Expired - Fee Related JP4895902B2 (en) 2007-04-10 2007-04-10 Method for forming reflective film

Country Status (1)

Country Link
JP (1) JP4895902B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015014701A (en) * 2013-07-05 2015-01-22 日東光学株式会社 Reflective film, reflective mirror, and projection optical system
JP6340608B2 (en) * 2014-06-17 2018-06-13 岡本硝子株式会社 High durability silver mirror
CN104401062B (en) * 2014-12-03 2017-01-04 张家港康得新光电材料有限公司 A kind of fenestrated membrane and preparation method thereof
JP6864170B2 (en) * 2016-02-23 2021-04-28 東海光学株式会社 ND filter and ND filter for camera
JP6753202B2 (en) 2016-08-08 2020-09-09 ウシオ電機株式会社 Fluorescent light source device
JP6888546B2 (en) 2017-12-28 2021-06-16 ウシオ電機株式会社 Fluorescent plate
CN113126184B (en) * 2021-03-30 2022-11-15 中山联合光电科技股份有限公司 Reflecting mirror and coating method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08234004A (en) * 1995-02-27 1996-09-13 Canon Inc Metal mirror and production thereof
JP4351678B2 (en) * 2003-09-22 2009-10-28 株式会社村上開明堂 Silver mirror and manufacturing method thereof
JP2005345509A (en) * 2004-05-31 2005-12-15 Tochigi Nikon Corp Surface coated mirror and its manufacturing method

Also Published As

Publication number Publication date
JP2008260978A (en) 2008-10-30

Similar Documents

Publication Publication Date Title
JP6343291B2 (en) Improved durable silver coating stack for high reflection mirrors
TWI589448B (en) Temperature and corrosion stable surface reflector
JP4895902B2 (en) Method for forming reflective film
JP7280198B2 (en) Extension of Reflection Bandwidth of Silver Coated Laminate for High Reflector
WO2007013269A1 (en) Laminated body for reflection film
JP2002055213A (en) High reflectance mirror
JP4793259B2 (en) Reflector
JP4307921B2 (en) Reflector
CN213537738U (en) Colored glass
JP6319302B2 (en) Transparent conductor and method for producing the same
JP6884993B2 (en) Photoreflector manufacturing method and vapor deposition equipment
JP5413281B2 (en) Aluminum surface reflector
JP2007310335A (en) Front surface mirror
JP2006317603A (en) Front surface mirror
JP2011221207A (en) Aluminum surface reflection mirror
JP6799850B2 (en) Optical sheet
KR102403855B1 (en) Optical coating with nano-laminate for improved durability
JP2019035100A (en) Method for manufacturing reflective film
WO2006112107A1 (en) High reflection mirror and process for producing the same
JP6982951B2 (en) Silicon substrate with functional film for infrared rays
JP2007119885A (en) Substrate with metallic film and manufacturing method therefor
JP2005345509A (en) Surface coated mirror and its manufacturing method
JP2012150295A (en) Ag REFLECTOR
JP2003057405A (en) Antireflection film for faraday rotator
JP2000338314A (en) Reflection mirror and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111220

R150 Certificate of patent or registration of utility model

Ref document number: 4895902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees