JPH07120602A - Infrared antireflection film forming method - Google Patents

Infrared antireflection film forming method

Info

Publication number
JPH07120602A
JPH07120602A JP5266751A JP26675193A JPH07120602A JP H07120602 A JPH07120602 A JP H07120602A JP 5266751 A JP5266751 A JP 5266751A JP 26675193 A JP26675193 A JP 26675193A JP H07120602 A JPH07120602 A JP H07120602A
Authority
JP
Japan
Prior art keywords
layer
silicon substrate
antireflection film
forming
zinc sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5266751A
Other languages
Japanese (ja)
Inventor
Kenji Maruyama
賢治 丸山
Toshiaki Ogura
敏明 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5266751A priority Critical patent/JPH07120602A/en
Publication of JPH07120602A publication Critical patent/JPH07120602A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To provide a method for forming an infrared antireflection film excellent in optical characteristic, durability and adhesion to a silicon substrate by applying a specific dilute nitric acid solution or dilute hydrochloric acid solution to the surface of the silicon substrate to form a reformed layer of silicon, and then forming a zinc sulfide layer while irradiating the silicon substrate with electron beams. CONSTITUTION:An oxidized layer on the outermost surface of a silicon substrate 11 is removed by applying a dilute nitric acid solution or a dilute hydrochloric acid solution of 0.1-20wt.% to the surface of the silicon substrate 11. Partial silicon-oxygen bonding is ruptured to the depth of several tens of Angstrom angstroms in the surface oxidized layer after removal to form a reformed layer 12. At the time of forming a zinc sulfide layer 13 on this reformed layer 12, the zinc sulfide layer 13 is formed while irradiating the silicon substrate 11 with electron beams so as to be able to obtain a fine zinc sulfide film, thereby obtaining the infrared antireflection film excellent in durability and adhesion to the silicon substrate 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光学部品の反射防止膜に
関するものであり、特に赤外用光学材料として使用され
るシリコン基板の赤外反射防止膜の形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antireflection film for optical parts, and more particularly to a method for forming an infrared antireflection film on a silicon substrate used as an infrared optical material.

【0002】[0002]

【従来の技術】従来、赤外用光学材料としてはシリコン
(Si)がよく知られている。しかしながら、シリコン
は屈折率が通常の光学用ガラスに比べて高い(約3.
5)ために反射が高く(片面あたり約30%)、光学部
品として使用するには反射防止膜が不可欠である。
2. Description of the Related Art Silicon (Si) has been well known as an infrared optical material. However, the refractive index of silicon is higher than that of ordinary optical glass (about 3.
Therefore, the reflection is high (about 30% on one side), and an antireflection film is indispensable for use as an optical component.

【0003】以下、図面を参照しながら従来のシリコン
基板に対する赤外反射防止膜とその形成方法について説
明する。単層の反射防止膜としては硫化亜鉛(ZnS)
からなるものが一般的であり、その断面構造を(図5)
に示す。図5において51はシリコン基板、52は硫化
亜鉛層である。反射防止膜の光学的膜厚はλ0 /4(λ
0 は反射防止波長域の中心波長)であり、通常真空蒸着
法によって形成される。前記の硫化亜鉛層52からなる
単層反射防止膜は、基板51との密着性および耐湿性が
低いので、それらを向上させるために蒸着時にシリコン
基板51を加熱したり、蒸着前にシリコン基板51にイ
オンボンバ−ドの処理を行ったりする。また、反射防止
膜を多層化することもあり、たとえば2層反射防止膜に
ついては基板側から数えて第1層がチタン酸化物層、第
2層が硫化亜鉛のものが提案されている。(たとえば特
開昭56−106202号公報)
A conventional infrared antireflection film for a silicon substrate and a method for forming the same will be described below with reference to the drawings. Zinc sulfide (ZnS) as a single-layer antireflection film
Is generally composed of a cross-section structure (Fig. 5)
Shown in. In FIG. 5, 51 is a silicon substrate and 52 is a zinc sulfide layer. The optical thickness of the antireflection film is λ 0/4 (λ
0 is the central wavelength of the antireflection wavelength region) and is usually formed by a vacuum vapor deposition method. Since the single-layer antireflection film composed of the zinc sulfide layer 52 has low adhesion and moisture resistance to the substrate 51, the silicon substrate 51 is heated during vapor deposition or the silicon substrate 51 is vapor deposited before vapor deposition in order to improve them. Ion bombardment is performed. In addition, the antireflection film may be multi-layered. For example, regarding the two-layer antireflection film, it is proposed that the first layer is a titanium oxide layer and the second layer is a zinc sulfide, counted from the substrate side. (For example, JP-A-56-106202)

【0004】[0004]

【発明が解決しようとする課題】前述したように、赤外
用反射防止膜の材料として硫化亜鉛(ZnS)がよく用
いられるが,この硫化亜鉛(ZnS)は約1000℃以
上に加熱すると昇華によって蒸発し、比較的容易に薄膜
を形成することができる.しかしながら室温の基板面に
蒸着したZnS膜は付着力が弱く、湿度に弱い。これを
解決するために基板温度を150℃程度に加熱して蒸着
する方法がとられるが、この方法では可視域用の比較的
膜厚の薄い(約0.2μmぐらいまで)ものにはある程
度有効ではあるが、赤外域の反射防止膜として膜厚が1
μm前後あるようなものでは、密着性、耐湿性の効果は
小さく、膜にクラックが発生することもあり、改善の効
果は小さい。また、イオンボンバ−ドの処理をおこなっ
たものについても、その改善の効果は小さいものであ
る。さらに、チタン酸化層、硫化亜鉛の層からなる2層
反射防止膜はZnSの耐湿性は向上されるが、これも近
赤外域までの比較的薄い膜厚に相当するものまでであ
り、この反射防止膜においてチタン酸化層とシリコン基
板との密着性も優れたものではない。
As described above, zinc sulfide (ZnS) is often used as the material for the antireflection coating for infrared rays. This zinc sulfide (ZnS) evaporates by sublimation when heated above 1000 ° C. However, a thin film can be formed relatively easily. However, the ZnS film deposited on the substrate surface at room temperature has a weak adhesive force and is weak against humidity. In order to solve this, a method of heating the substrate temperature to about 150 ° C. and performing vapor deposition is adopted, but this method is effective to some extent for a relatively thin film for visible region (up to about 0.2 μm). However, the film thickness is 1 as an antireflection film in the infrared region.
If the thickness is around μm, the effect of adhesion and moisture resistance is small, and cracks may occur in the film, so the effect of improvement is small. Also, the effect of improving the ion bombardment is small. Furthermore, the two-layer antireflection film consisting of a titanium oxide layer and a zinc sulfide layer improves the moisture resistance of ZnS, but this is also equivalent to a relatively thin film thickness in the near infrared region. The adhesion between the titanium oxide layer and the silicon substrate in the prevention film is also not excellent.

【0005】以上のように従来の赤外反射防止膜には、
シリコン基板との密着性が悪い、耐湿性に劣る、光学特
性の安定性に欠けるという課題を有していた。本発明は
前記従来の問題に留意し、シリコン基板に対しての密着
性、耐久性、光学特性に優れた赤外反射防止膜の形成方
法を提供することを目的とする。
As described above, the conventional infrared antireflection film has
There were problems such as poor adhesion with a silicon substrate, poor moisture resistance, and lack of stability in optical characteristics. The present invention has been made in consideration of the above conventional problems, and an object of the present invention is to provide a method for forming an infrared antireflection film having excellent adhesion to a silicon substrate, durability, and optical characteristics.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するため
に、本発明は、シリコン基板表面に0.1〜20wt%
の希硝酸液あるいは希塩酸液を塗布しこれにより得られ
るシリコンの改質層を形成し、しかる後、電子ビ−ムを
シリコン基板に照射しながら硫化亜鉛の層を形成するこ
とによって赤外反射防止膜を形成する方法とする。
In order to solve the above-mentioned problems, the present invention provides a surface of a silicon substrate in an amount of 0.1 to 20 wt%.
Infrared reflection is prevented by applying a dilute nitric acid solution or dilute hydrochloric acid solution to form a modified layer of silicon obtained by this, and then forming a layer of zinc sulfide while irradiating the silicon substrate with an electron beam. A method for forming a film is used.

【0007】また、シリコン基板表面に0.1〜20w
t%の希硝酸液あるいは希塩酸液を塗布し、これにより
得られるシリコンの改質層を形成した後、その上に誘電
体層を形成し、しかる後に、電子ビ−ムをシリコン基板
に照射しながら硫化亜鉛の層を形成することによって赤
外反射防止膜を形成する方法とする。
Further, 0.1 to 20 w is formed on the surface of the silicon substrate.
A dilute nitric acid solution or dilute hydrochloric acid solution of t% is applied, a modified layer of silicon obtained by this is formed, and then a dielectric layer is formed thereon, and then an electron beam is applied to the silicon substrate. However, a method of forming an infrared antireflection film by forming a layer of zinc sulfide is used.

【0008】また、シリコン基板表面に0.1〜20w
t%の希硝酸液あるいは希塩酸液を塗布しこれにより得
られるシリコンの改質層を形成した後、その上にイオン
ビ−ムを照射しながら誘電体層を形成し、しかる後に、
電子ビ−ムをシリコン基板に照射しながら硫化亜鉛の層
を形成するすることによって赤外反射防止膜を形成する
方法とする。
Further, 0.1 to 20 w is formed on the surface of the silicon substrate.
A t% dilute nitric acid solution or dilute hydrochloric acid solution is applied to form a modified layer of silicon obtained by this, and then a dielectric layer is formed thereon while irradiating an ion beam, and thereafter,
A method of forming an infrared antireflection film by forming a layer of zinc sulfide while irradiating a silicon substrate with an electron beam.

【0009】[0009]

【作用】上記方法によって得られる赤外反射防止膜は次
の作用を有する。形成される赤外反射防止膜の構成は2
層または3層構造のものであるが、基板側から数えて第
1層をシリコン基板表面に0.1〜20wt%の希硝酸
液あるいは希塩酸液を塗布し得られるシリコンの改質層
としているので、反射防止膜の材料をその上に密着性よ
く形成することができる。それはシリコン基板表面を
0.1〜20wt%の希硝酸液あるいは希塩酸液を塗布
することによって、(1)まずシリコン基板の最表面の
酸化層をエッチングすることによって除去される。
(2)除去後の表面酸化層を数十Å(オングストロ−
ム)の深さで一部のシリコン−酸素の結合を破断し、活
性化した層(改質層)が形成される。
The infrared antireflection film obtained by the above method has the following functions. The structure of the formed infrared antireflection film is 2
Although it has a three-layer structure or a three-layer structure, the first layer counting from the substrate side is a modified layer of silicon obtained by applying 0.1 to 20 wt% diluted nitric acid solution or diluted hydrochloric acid solution to the surface of the silicon substrate. The material of the antireflection film can be formed thereon with good adhesion. It is removed by applying 0.1-20 wt% dilute nitric acid solution or dilute hydrochloric acid solution on the surface of the silicon substrate, and (1) first etching the oxide layer on the outermost surface of the silicon substrate.
(2) Dozens of Å (angstrom-
Part of the silicon-oxygen bonds are broken at the depth of (b) to form an activated layer (modified layer).

【0010】そして改質層の上に硫化亜鉛あるいは誘電
体層を形成すると極めて密着性のよい膜が形成されるこ
とが見出された。また改質層の上に硫化亜鉛層を形成す
る際、電子ビームをシリコン基板に照射しながら硫化亜
鉛の層を形成することによって緻密な硫化亜鉛膜が得ら
れ、基板との密着性および耐久性に優れた赤外用反射防
止膜を得ることができる。
It has been found that when a zinc sulfide or a dielectric layer is formed on the modified layer, a film having excellent adhesion is formed. Also, when forming a zinc sulfide layer on the modified layer, a dense zinc sulfide film can be obtained by forming a zinc sulfide layer while irradiating the silicon substrate with an electron beam, and adhesion and durability to the substrate can be obtained. It is possible to obtain an excellent infrared antireflection film.

【0011】また改質層の上に誘電体層を形成し、しか
る後に電子ビームをシリコン基板に照射しながら硫化亜
鉛層を形成することによって緻密な硫化亜鉛膜が得ら
れ、基板との密着性および耐久性に優れた赤外用反射防
止膜を得ることができる。
Further, by forming a dielectric layer on the modified layer and then forming a zinc sulfide layer while irradiating the silicon substrate with an electron beam, a dense zinc sulfide film can be obtained, and the adhesion to the substrate is improved. Also, an infrared antireflection film having excellent durability can be obtained.

【0012】また、改質層の上に誘電体層を形成する
際、イオンビームを照射しながら誘電体を蒸着すること
によって、緻密で内部応力が緩和された誘電体層が形成
でき、さらに前記誘電体層の上に硫化亜鉛層を形成する
際、電子ビームをシリコン基板に照射しながら硫化亜鉛
層を形成することによって緻密な硫化亜鉛膜が得られ、
基板との密着性および耐久性に優れた赤外用反射防止膜
を得ることができる。
Further, when the dielectric layer is formed on the modified layer, the dielectric layer is vapor-deposited while being irradiated with an ion beam to form a dense dielectric layer in which internal stress is relaxed. When forming the zinc sulfide layer on the dielectric layer, a dense zinc sulfide film can be obtained by forming the zinc sulfide layer while irradiating the silicon substrate with the electron beam.
It is possible to obtain an infrared antireflection film having excellent adhesion to a substrate and durability.

【0013】[0013]

【実施例】以下本発明の実施例について、図面を参照し
ながら説明する。 (実施例1)図1に本発明の第1の実施例による赤外反
射防止膜の構成(断面図)を示す。図1において11は
シリコン(Si)の基板、12はシリコン基板11を改
質することにより形成されたシリコン改質層、13は硫
化亜鉛層である。
Embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1 shows the structure (cross-sectional view) of an infrared antireflection film according to a first embodiment of the present invention. In FIG. 1, 11 is a silicon (Si) substrate, 12 is a silicon reforming layer formed by reforming the silicon substrate 11, and 13 is a zinc sulfide layer.

【0014】各層の形成条件は以下の通りである。シリ
コン基板11表面に0.1〜20wt%の希硝酸液ある
いは希塩酸液を塗布することにより約50Åの厚さにシ
リコン改質層12を形成した。次に硫化亜鉛層13を光
学的膜厚λ/4(λ=7000nm)の厚さに、蒸着速
度約6〜8Å/secで、そしてシリコン基板11に電
子ビームを電流密度4〜6μA/cm2で照射しながら
形成した。実施例1の分光反射特性(1面当り)を図4
において曲線aで示す。比較のため反射防止膜なしの特
性を(d)に示した。図からわかるように中心波長(λ
=7000nm)で反射率は5%以下であり、赤外反射
防止膜として優れた特性が得られた。この方法により得
られた反射防止膜の密着性・耐久性を確認するために次
の項目の試験を行った。 (a)剥離試験(温度40℃,相対湿度85%の高温・
高湿雰囲気中に168時間放置した後、粘着テープを光
学部品表面に密着し、引きはがす。) (b)高温試験(温度80℃の雰囲気中に250時間放
置する。) (c)低温試験(温度−20℃の雰囲気中に250時間
放置する。) (d)耐湿試験(温度60℃,相対湿度90%の高温・
高湿雰囲気中に168時間放置する。) (e)熱衝撃試験(温度−30℃,80℃の低温・高温
雰囲気中に交互に30分間ずつ放置を約24時間繰り返
す。) (f)硫化水素ガス試験(硫化水素濃度3ppm,40
℃の雰囲気中に24時間放置する。) (g)亜硫酸ガス試験(亜硫酸ガス濃度10ppm,4
0℃の雰囲気中に24時間放置する。) 上記の信頼性試験を行った結果は(表1)に示す通りで
ある。
The conditions for forming each layer are as follows. The silicon modified layer 12 was formed to a thickness of about 50 Å by applying a 0.1 to 20 wt% dilute nitric acid solution or dilute hydrochloric acid solution on the surface of the silicon substrate 11. Next, the zinc sulfide layer 13 is formed to have an optical thickness of λ / 4 (λ = 7000 nm) at a deposition rate of about 6 to 8Å / sec, and an electron beam is applied to the silicon substrate 11 at a current density of 4 to 6 μA / cm 2. It was formed while irradiating. FIG. 4 shows the spectral reflection characteristics (per surface) of Example 1.
Is indicated by the curve a. For comparison, the characteristics without the antireflection film are shown in (d). As can be seen from the figure, the central wavelength (λ
= 7000 nm), the reflectance was 5% or less, and excellent characteristics as an infrared antireflection film were obtained. The following items were tested in order to confirm the adhesion and durability of the antireflection film obtained by this method. (A) Peeling test (high temperature of 40 ° C, relative humidity of 85%
After standing in a high humidity atmosphere for 168 hours, the adhesive tape is adhered to the surface of the optical component and peeled off. (B) High temperature test (leave in atmosphere of temperature 80 ° C. for 250 hours) (c) Low temperature test (leave in atmosphere of temperature −20 ° C. for 250 hours) (d) Humidity resistance test (temperature 60 ° C., High temperature of 90% relative humidity
Leave in a high humidity atmosphere for 168 hours. (E) Thermal shock test (remaining in a low-temperature / high-temperature atmosphere at temperatures of -30 ° C and 80 ° C for 30 minutes alternately for about 24 hours) (f) Hydrogen sulfide gas test (hydrogen sulfide concentration 3 ppm, 40
Leave for 24 hours in the atmosphere of ° C. ) (G) Sulfurous acid gas test (sulfurous acid gas concentration 10 ppm, 4
Leave in an atmosphere of 0 ° C. for 24 hours. ) The results of the above reliability test are shown in (Table 1).

【0015】[0015]

【表1】 [Table 1]

【0016】(表1)からわかるように本実施例による
赤外反射防止膜は、基板との密着性および耐久性に優れ
ている。 (実施例2)図2に本発明の第2の実施例による赤外反
射防止膜の構成(断面図)を示す。図2において21は
シリコン基板、22はシリコン改質層、23は二酸化チ
タン層である。
As can be seen from (Table 1), the infrared antireflection film according to this example is excellent in adhesion to the substrate and durability. (Embodiment 2) FIG. 2 shows a structure (cross-sectional view) of an infrared antireflection film according to a second embodiment of the present invention. In FIG. 2, 21 is a silicon substrate, 22 is a silicon modified layer, and 23 is a titanium dioxide layer.

【0017】各層の形成条件は以下の通りである。シリ
コン改質層22の形成は実施例1と同様であり、シリコ
ン基板21表面に約50Åの厚さにシリコン改質層22
を形成した。次に二酸化チタン層23を光学的膜厚λ/
4(λ=5000nm)の厚さに蒸着速度約4〜5Å/
secで形成した。二酸化チタン層23形成時にはシリ
コン基板21にアルゴンイオンビームを加速電圧0.5
kV、イオン電流密度10〜20μA/cm2で照射し
ながら形成した。実施例2の分光反射特性(1面当り)
を図4において曲線bで示す。中心波長(λ=5000
nm)で反射率は5%以下であり、赤外反射防止膜とし
て優れた特性が得られた。本実施例における密着性およ
び耐久性を確認するために次の項目の試験をおこなっ
た。 (a)剥離試験(温度40℃,相対湿度85%の高温・
高湿雰囲気中に500時間放置した後、粘着テープを光
学部品表面に密着し、引きはがす。) (b)高温試験(温度80℃の雰囲気中に500時間放
置する。) (c)低温試験(温度−20℃の雰囲気中に500時間
放置する。) (d)耐湿試験(温度60℃,相対湿度90%の高温・
高湿雰囲気中に500時間放置する。) (e)熱衝撃試験(温度−30℃,80℃の低温・高温
雰囲気中に交互に30分間ずつ放置を約96時間繰り返
す。) (f)硫化水素ガス試験(硫化水素濃度3ppm,40
℃の雰囲気中に96時間放置する。) (g)亜硫酸ガス試験(亜硫酸ガス濃度10ppm,4
0℃の雰囲気中に96時間放置する。) 上記の信頼性試験を行った結果は(表2)に示す通りで
ある。
The conditions for forming each layer are as follows. The formation of the silicon modified layer 22 is similar to that of the first embodiment, and the silicon modified layer 22 is formed on the surface of the silicon substrate 21 to a thickness of about 50 Å.
Was formed. Next, the titanium dioxide layer 23 is formed with an optical film thickness λ /
4 (λ = 5000nm) thickness vapor deposition rate about 4-5Å /
It was formed in sec. When the titanium dioxide layer 23 is formed, an argon ion beam is applied to the silicon substrate 21 at an accelerating voltage of 0.5.
It was formed by irradiation with kV and an ion current density of 10 to 20 .mu.A / cm @ 2. Spectral reflection characteristics of Example 2 (per surface)
Is shown by the curve b in FIG. Center wavelength (λ = 5000
nm), the reflectance was 5% or less, and excellent characteristics as an infrared antireflection film were obtained. The following items were tested in order to confirm the adhesion and durability in this example. (A) Peeling test (high temperature of 40 ° C, relative humidity of 85%
After leaving in a high humidity atmosphere for 500 hours, the adhesive tape is adhered to the surface of the optical component and peeled off. (B) High temperature test (leaving in an atmosphere of temperature 80 ° C. for 500 hours) (c) Low temperature test (leaving in an atmosphere of temperature −20 ° C. for 500 hours) (d) Moisture resistance test (temperature 60 ° C., High temperature of 90% relative humidity
Leave for 500 hours in a high humidity atmosphere. (E) Thermal shock test (remaining in low temperature / high temperature atmosphere of temperature −30 ° C., 80 ° C. for 30 minutes alternately for about 96 hours) (f) Hydrogen sulfide gas test (hydrogen sulfide concentration 3 ppm, 40
Leave for 96 hours in the atmosphere of ° C. ) (G) Sulfurous acid gas test (sulfurous acid gas concentration 10 ppm, 4
Leave in an atmosphere of 0 ° C. for 96 hours. ) The results of the above reliability test are shown in (Table 2).

【0018】[0018]

【表2】 [Table 2]

【0019】(表2)からわかるように本実施例による
赤外反射防止膜は、基板との密着性および耐久性に優れ
ている。 (実施例3)図3に本発明の第3の実施例による赤外反
射防止膜の構成(断面図)を示す。図3において31は
シリコン基板、32はシリコン改質層、33は二酸化チ
タン層、34は硫化亜鉛層である。
As can be seen from (Table 2), the infrared antireflection film according to this example is excellent in adhesion to the substrate and durability. (Embodiment 3) FIG. 3 shows the structure (cross-sectional view) of an infrared antireflection film according to a third embodiment of the present invention. In FIG. 3, 31 is a silicon substrate, 32 is a silicon modified layer, 33 is a titanium dioxide layer, and 34 is a zinc sulfide layer.

【0020】各層の形成条件は以下の通りである。シリ
コン改質層の形成は実施例1と同様であり、シリコン基
板31表面に約50Åの厚さにシリコン改質層32を形
成した。次に二酸化チタン層33を光学的膜厚約200
Åの厚さに蒸着速度約4〜5Å/secで形成した。次
に硫化亜鉛層34を光学的膜厚が二酸化チタン層33と
合わせてλ/4(λ=6000nm)の厚さになるよう
に蒸着速度約6〜8Å/secで形成した。なお二酸化
チタン層33の形成時には実施例2の場合と同じ条件で
シリコン基板31にアルゴンイオンビームを照射しなが
ら形成し、硫化亜鉛層(薄膜)の形成時には実施例1の
場合と同じ条件で電子ビームをシリコン基板に照射しな
がら形成した。実施例3の分光反射特性(1面当り)を
図4において曲線cで示す。中心波長(λ=6000n
m)で反射率は5%以下であり、赤外反射防止膜として
優れた特性が得られた。本実施例の密着性及び耐久性を
確認するために次の試験をおこなった。 (a)剥離試験(温度40℃,相対湿度85%の高温・
高湿雰囲気中に250時間放置した後、粘着テープを光
学部品表面に密着し、引きはがす。) (b)高温試験(温度80℃の雰囲気中に250時間放
置する。) (c)低温試験(温度−20℃の雰囲気中に250時間
放置する。) (d)耐湿試験(温度60℃,相対湿度90%の高温・
高湿雰囲気中に168時間放置する。) (e)熱衝撃試験(温度−30℃,80℃の低温・高温
雰囲気中に交互に30分間ずつ放置を約24時間繰り返
す。) (f)硫化水素ガス試験(硫化水素濃度3ppm,40
℃の雰囲気中に24時間放置する。) (g)亜硫酸ガス試験(亜硫酸ガス濃度10ppm,4
0℃の雰囲気中に24時間放置する。) 上記の信頼性試験を行った結果は(表3)に示す通りで
ある。
The conditions for forming each layer are as follows. The formation of the silicon modified layer was the same as in Example 1, and the silicon modified layer 32 was formed on the surface of the silicon substrate 31 to a thickness of about 50Å. Next, the titanium dioxide layer 33 is formed with an optical film thickness of about 200.
It was formed to a thickness of Å at a vapor deposition rate of about 4 to 5 Å / sec. Next, a zinc sulfide layer 34 was formed at a vapor deposition rate of about 6 to 8 Å / sec so that the optical film thickness including the titanium dioxide layer 33 was λ / 4 (λ = 6000 nm). The titanium dioxide layer 33 is formed while irradiating the silicon substrate 31 with an argon ion beam under the same conditions as in the second embodiment, and the zinc sulfide layer (thin film) is formed under the same conditions as in the first embodiment. It was formed while irradiating the silicon substrate with the beam. Spectral reflection characteristics (per surface) of Example 3 are shown by a curve c in FIG. Center wavelength (λ = 6000n
In m), the reflectance was 5% or less, and excellent characteristics as an infrared antireflection film were obtained. The following tests were conducted to confirm the adhesion and durability of this example. (A) Peeling test (high temperature of 40 ° C, relative humidity of 85%
After leaving in a high humidity atmosphere for 250 hours, the adhesive tape is adhered to the surface of the optical component and peeled off. (B) High temperature test (leave in atmosphere of temperature 80 ° C. for 250 hours) (c) Low temperature test (leave in atmosphere of temperature −20 ° C. for 250 hours) (d) Humidity resistance test (temperature 60 ° C., High temperature of 90% relative humidity
Leave in a high humidity atmosphere for 168 hours. (E) Thermal shock test (remaining in a low temperature / high temperature atmosphere at temperatures of -30 ° C. and 80 ° C. for 30 minutes alternately for about 24 hours) (f) Hydrogen sulfide gas test (hydrogen sulfide concentration 3 ppm, 40
Leave for 24 hours in the atmosphere of ° C. ) (G) Sulfurous acid gas test (sulfurous acid gas concentration 10 ppm, 4
Leave in an atmosphere of 0 ° C. for 24 hours. ) The results of the above reliability test are shown in (Table 3).

【0021】[0021]

【表3】 [Table 3]

【0022】(表3)からわかるように本実施例による
赤外反射防止膜は、基板との密着性および耐久性に優れ
ている。シリコン改質層と硫化亜鉛層の間に二酸化チタ
ン層を設けることによって実施例1より基板との密着性
が向上した。また、この波長領域では硫化亜鉛と二酸化
チタンの屈折率はほぼ同じであり、約百Å程度の膜厚で
あれば、波長約1100nm(11μm)までは二酸化
チタンの吸収は無視できる。なお前記実施例では誘電体
として二酸化チタンを使用したが、二酸化ジルコニウ
ム、酸化鉛、酸化タンタル、酸化イットリウム、チタン
酸ジルコン、酸化セリウム、テルル化鉛等も使用でき
る。また、シリコン改質層と硫化亜鉛層との間に誘電体
層を設けることにより、基板との密着性を向上させるこ
とができる。
As can be seen from (Table 3), the infrared antireflection film according to this example has excellent adhesion to the substrate and durability. By providing the titanium dioxide layer between the silicon modified layer and the zinc sulfide layer, the adhesion to the substrate was improved as compared with Example 1. Further, in this wavelength region, zinc sulfide and titanium dioxide have almost the same refractive index, and if the film thickness is about 100Å, the absorption of titanium dioxide can be ignored up to a wavelength of about 1100 nm (11 μm). Although titanium dioxide was used as the dielectric in the above-mentioned examples, zirconium dioxide, lead oxide, tantalum oxide, yttrium oxide, zirconium titanate, cerium oxide, lead telluride, etc. can also be used. Further, by providing a dielectric layer between the silicon modified layer and the zinc sulfide layer, the adhesion with the substrate can be improved.

【0023】[0023]

【発明の効果】以上の実施例の説明より明らかなよう
に、本発明はシリコン基板表面にシリコン改質層と硫化
亜鉛層からなる層を形成して赤外反射防止膜を形成する
ので、基板との密着性および耐久性に優れた赤外反射防
止膜を実現することができる。また、使用波長域で透明
であれば誘電体を硫化亜鉛に代わって使用することがで
きる。シリコン改質層はシリコン基板表面に0.1〜2
0wt%の希硝酸液あるいは希塩酸液を塗布することに
よって形成でき、硫化亜鉛層の形成時には電子ビームを
基板に照射しながら形成するので、また、誘電体層の形
成時にはイオンビームを照射しながら形成するので緻密
な膜が得られる。
As is apparent from the above description of the embodiments, according to the present invention, a layer consisting of a silicon modified layer and a zinc sulfide layer is formed on the surface of a silicon substrate to form an infrared antireflection film. It is possible to realize an infrared antireflection film having excellent adhesion to and durability. Further, if it is transparent in the used wavelength range, the dielectric can be used in place of zinc sulfide. The silicon modified layer is 0.1-2 on the surface of the silicon substrate.
It can be formed by applying 0 wt% dilute nitric acid solution or dilute hydrochloric acid solution. Since it is formed while irradiating the substrate with an electron beam when forming the zinc sulfide layer, it is formed while irradiating with an ion beam when forming the dielectric layer. As a result, a dense film can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の反射防止膜の構成を示す断
面図
FIG. 1 is a cross-sectional view showing the structure of an antireflection film of Example 1 of the present invention.

【図2】本発明の実施例2の反射防止膜の構成を示す断
面図
FIG. 2 is a cross-sectional view showing the structure of an antireflection film of Example 2 of the present invention.

【図3】本発明の実施例3の反射防止膜の構成を示す断
面図
FIG. 3 is a sectional view showing the structure of an antireflection film of Example 3 of the present invention.

【図4】本発明の実施例の光学特性図FIG. 4 is an optical characteristic diagram of an example of the present invention.

【図5】従来の赤外反射防止膜の構成図FIG. 5 is a configuration diagram of a conventional infrared antireflection film.

【符号の説明】[Explanation of symbols]

11 シリコン基板 12 シリコン改質層 13 硫化亜鉛層 11 Silicon Substrate 12 Silicon Modified Layer 13 Zinc Sulfide Layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 シリコン基板表面に酸性溶液により改質
層を形成し、しかる後、電子ビ−ムをシリコン基板に照
射しながら硫化亜鉛の層を形成する赤外反射防止膜の形
成方法。
1. A method for forming an infrared antireflection film, which comprises forming a modified layer on the surface of a silicon substrate with an acidic solution, and then forming a zinc sulfide layer while irradiating the silicon substrate with an electron beam.
【請求項2】 シリコン基板表面に酸性溶液により改質
層を形成した後、その上に誘電体層を形成し、しかる後
に、電子ビ−ムをシリコン基板に照射しながら硫化亜鉛
の層を形成する赤外反射防止膜の形成方法。
2. A modified layer is formed on the surface of a silicon substrate by an acidic solution, and then a dielectric layer is formed thereon, and then a layer of zinc sulfide is formed while irradiating the silicon substrate with an electron beam. A method for forming an infrared antireflection film.
【請求項3】 シリコン基板表面に酸性溶液により改質
層を形成した後、その上にイオンビ−ムを照射しながら
誘電体層を形成し、しかる後に、電子ビ−ムをシリコン
基板に照射しながら硫化亜鉛の層を形成する赤外反射防
止膜の形成方法。
3. A modified layer is formed on the surface of a silicon substrate with an acidic solution, and then a dielectric layer is formed thereon by irradiating an ion beam, and thereafter, the silicon substrate is irradiated with an electron beam. While forming a layer of zinc sulfide, a method for forming an infrared antireflection film.
【請求項4】 酸性溶液は0.1〜20wt%の希硝酸
液または0.1〜20wt%の希塩酸液である請求項
1、請求項2、請求項3のいずれかに記載の赤外反射防
止膜の形成方法。
4. The infrared reflection according to claim 1, wherein the acidic solution is a 0.1-20 wt% dilute nitric acid solution or a 0.1-20 wt% dilute hydrochloric acid solution. Method of forming a protective film.
【請求項5】 誘電体が二酸化ジルコニウム、酸化鉛、
酸化タンタル、酸化イットリウム、チタン酸ジルコン、
酸化セリウム、テルル化鉛のいずれかである請求項2ま
たは請求項3記載の赤外反射防止膜の形成方法。
5. The dielectric material is zirconium dioxide, lead oxide,
Tantalum oxide, yttrium oxide, zircon titanate,
The method for forming an infrared antireflection film according to claim 2 or 3, which is either cerium oxide or lead telluride.
JP5266751A 1993-10-26 1993-10-26 Infrared antireflection film forming method Pending JPH07120602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5266751A JPH07120602A (en) 1993-10-26 1993-10-26 Infrared antireflection film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5266751A JPH07120602A (en) 1993-10-26 1993-10-26 Infrared antireflection film forming method

Publications (1)

Publication Number Publication Date
JPH07120602A true JPH07120602A (en) 1995-05-12

Family

ID=17435208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5266751A Pending JPH07120602A (en) 1993-10-26 1993-10-26 Infrared antireflection film forming method

Country Status (1)

Country Link
JP (1) JPH07120602A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017223914A (en) * 2016-06-17 2017-12-21 株式会社ニデック Silicon substrate with infrared functional film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017223914A (en) * 2016-06-17 2017-12-21 株式会社ニデック Silicon substrate with infrared functional film

Similar Documents

Publication Publication Date Title
JPH0621391A (en) Ferroelectric capacitor and its formation method
JPH07111484B2 (en) Antireflection film for plastic optical parts and method for forming the same
JPH07120602A (en) Infrared antireflection film forming method
JPS6151761B2 (en)
JP3136845B2 (en) Infrared antireflection film and method of forming the same
TW200847240A (en) Double plasma utbox
JP3600849B2 (en) Multilayer spectroscopy device for boron X-ray fluorescence analysis
JPS58125824A (en) Forming method for metallic silicide film
JP3342042B2 (en) Reflective color separation diffraction grating
JPH073483B2 (en) Silver mirror
JPS6033320B2 (en) Semiconductor laser and its manufacturing method
JPH05114749A (en) Electronic element member and manufacture thereof
JP4083900B2 (en) Thin film resistor and manufacturing method thereof
JPH07270601A (en) Optical thin film
JPH08122503A (en) Formation of thin film
JPH1073704A (en) Reflection mirror for high energy ray
JPS5933859A (en) Thin film resistance circuit
JPS58111386A (en) Manufacture of semiconductor laser device
JPH05313001A (en) Reflection preventing film for plastic made optical part
JP2003057406A (en) Antireflection film for faraday rotator
JPH04352102A (en) Antireflection film for plastic optical member and formation thereof
JPS6333888A (en) Semiconductor laser device
JPH06208002A (en) Antireflection film of plastic optical parts and its formation
Martin et al. I n situ characterization of nucleation, growth, and composition of ion‐assisted films by ellipsometry, reflectance–transmittance measurements, and ion‐scattering spectroscopy
JPH04156501A (en) Reflection preventing film for optical part made of synthetic resin