JPH08122503A - Formation of thin film - Google Patents

Formation of thin film

Info

Publication number
JPH08122503A
JPH08122503A JP6262335A JP26233594A JPH08122503A JP H08122503 A JPH08122503 A JP H08122503A JP 6262335 A JP6262335 A JP 6262335A JP 26233594 A JP26233594 A JP 26233594A JP H08122503 A JPH08122503 A JP H08122503A
Authority
JP
Japan
Prior art keywords
thin film
substrate
oxide
forming
oxide dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6262335A
Other languages
Japanese (ja)
Inventor
Kenji Maruyama
賢治 丸山
Toshiaki Ogura
敏明 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6262335A priority Critical patent/JPH08122503A/en
Publication of JPH08122503A publication Critical patent/JPH08122503A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE: To provide a method for forming an optical thin film consisting of an oxide dielectric whose adhesive power and wear resistance are improved and further in which the occurrence of cracks is prevented and which has good durability. CONSTITUTION: When forming a thin film consisting of an oxide dielectric on the surface of a substrate 31 by vacuum deposition, after an oxide dielectric layer is formed while the substrate 31 is heated to 100-350 deg.C and the surface is irradiated with electron rays by an electron ray irradiating device 35 or after an oxide dielectric layer is formed and successively the surface of the oxide dielectric layer is irradiated with electron rays while the substrate 31 is heated to 100-350 deg.C the layer is subjected to heating oxidation in air or in an oxygen atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は薄膜に関するものであ
り、特に光学薄膜材料として使用される酸化物誘電体の
形成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film, and more particularly to a method for forming an oxide dielectric used as an optical thin film material.

【0002】[0002]

【従来の技術】従来、カメラ、ビデオプロジェクター等
の光学系に搭載される光学素子には、それぞれ反射防止
性能、高反射性能、波長分離性能などが要求されてい
る。
2. Description of the Related Art Conventionally, optical elements mounted in optical systems such as cameras and video projectors are required to have antireflection performance, high reflection performance, wavelength separation performance, and the like.

【0003】これらの要求を満足するため、光学基板の
表面に真空蒸着により光学薄膜を形成する光学素子が知
られているが、この光学薄膜を構成する材料には酸化物
誘電体がよく使用されている。
In order to satisfy these requirements, an optical element is known in which an optical thin film is formed on the surface of an optical substrate by vacuum vapor deposition. An oxide dielectric is often used as a material for forming the optical thin film. ing.

【0004】例えばガラスレンズ表面に(表1)に示す
ような膜構成を有するカラーフィルターを形成したもの
などがあるが、これにも酸化物誘電体が使用されてお
り、このような光学薄膜には基板材料との密着力や耐摩
耗性等の耐久性が要求される。
For example, there is one in which a color filter having a film constitution as shown in (Table 1) is formed on the surface of a glass lens. An oxide dielectric is also used for this, and such an optical thin film is used. Is required to have adhesiveness with a substrate material and durability such as abrasion resistance.

【0005】[0005]

【表1】 [Table 1]

【0006】そこで前記カラーフィルタをガラスレンズ
表面に形成する際には、基板温度を100〜350℃程
度に加熱して膜を真空蒸着する方法が用いられる。こう
すると室温で真空蒸着するよりも密着力が強く、硬い膜
が形成され耐久性に優れた膜が得られることは広く知ら
れている。
Therefore, when forming the color filter on the surface of the glass lens, a method of heating the substrate temperature to about 100 to 350 ° C. and vacuum-depositing the film is used. It is widely known that this gives stronger adhesion than vacuum deposition at room temperature, a hard film is formed, and a film having excellent durability can be obtained.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前記の
形成方法をもってしても光学薄膜の光学基板に対する密
着力や耐摩耗性等の耐久性が充分に満足のいくものであ
ることは数少ない。さらに真空蒸着の薄膜形成中に酸化
物が低級化し、任意の波長域で吸収を発生させるなど、
光学特性が劣化するといった問題を抱えている。
However, even with the above-described forming method, it is rare that the adhesion of the optical thin film to the optical substrate and the durability such as abrasion resistance are sufficiently satisfactory. Furthermore, during the formation of a thin film by vacuum evaporation, the oxide becomes lower, causing absorption in any wavelength range.
There is a problem that the optical characteristics deteriorate.

【0008】そこで本発明では密着力、耐摩耗性をさら
に改善し、吸収が少なく、さらにクラックを発生しにく
い良好な耐久性を有した酸化物誘電体からなる光学薄
膜、及びそれを用いた光学素子を提供しようとするもの
である。
Therefore, in the present invention, an optical thin film made of an oxide dielectric having improved adhesion, wear resistance, less absorption, and good crack resistance, and an optical film using the same. It is intended to provide an element.

【0009】[0009]

【課題を解決するための手段】前記課題を解決するため
に、本発明の薄膜の形成方法では、真空蒸着により任意
の厚さに蒸着、形成する際、基板の表面にに電子線を照
射しつつ薄膜を形成する、または、薄膜形成後薄膜の表
面に電子線を照射し薄膜形成を完了する。
In order to solve the above problems, in the method for forming a thin film of the present invention, the surface of the substrate is irradiated with an electron beam when the film is vapor-deposited to a desired thickness by vacuum evaporation. While forming a thin film, or after forming a thin film, the surface of the thin film is irradiated with an electron beam to complete the thin film formation.

【0010】しかる後、前記薄膜を空気中または酸素雰
囲気中で加熱酸化処理を施す方法である。このとき照射
する電子線密度は100〜1500μA程度が好まし
い。
After that, the thin film is heated and oxidized in air or oxygen atmosphere. The electron beam density applied at this time is preferably about 100 to 1500 μA.

【0011】また、薄膜形成時に基板の温度を100〜
350℃に加熱しつつ行えばさらに効果が高い。
Further, the temperature of the substrate is 100 to 100 when forming the thin film.
The effect is further enhanced if the heating is performed at 350 ° C.

【0012】[0012]

【作用】上記構成によれば本発明の薄膜の形成方法は次
の作用を有する。
According to the above structure, the thin film forming method of the present invention has the following functions.

【0013】本発明の薄膜の構成は酸化物誘電体からな
り、またはこの層を含むものからなるが、酸化物誘電体
層を真空蒸着により形成中、または形成後に電子線を照
射することにより、基板との密着力を改善し向上させ、
緻密な構造の耐摩耗性に優れた耐久性の良い膜を形成す
る。さらに電子線照射により膜内の内部応力を緩和しク
ラックの発生を抑止する。
The structure of the thin film of the present invention is composed of an oxide dielectric or includes this layer. By irradiating with an electron beam during or after formation of the oxide dielectric layer by vacuum deposition, Improves and improves the adhesion with the substrate,
A durable film with a fine structure and excellent wear resistance is formed. Further, electron beam irradiation relaxes the internal stress in the film and suppresses the generation of cracks.

【0014】しかし蒸着中に電子線を照射することは上
記以外に、酸化物誘電体の低級酸化物化を促進させてし
まい、吸収を引き起こし膜の光学特性を劣化させてしま
う。そこで真空蒸着で膜を形成した後、前記薄膜を空気
中または酸素雰囲気中で加熱酸化処理を施し、酸化物誘
電体薄膜を再び酸化せしめ、吸収を取り除き光学特性の
劣化を防いでいる。
However, in addition to the above, irradiation with an electron beam during vapor deposition accelerates conversion of the oxide dielectric material into a lower oxide, causing absorption and deteriorating the optical characteristics of the film. Therefore, after forming a film by vacuum vapor deposition, the thin film is subjected to a heat oxidation treatment in air or an oxygen atmosphere to oxidize the oxide dielectric thin film again to remove absorption and prevent deterioration of optical characteristics.

【0015】[0015]

【実施例】以下本発明の実施例について、図面を参照し
ながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0016】(第1の実施例)図1に本発明の第1の実
施例の光学薄膜(フィルタ)の構成(断面図)を示す。
図1において11がガラス基板、12は酸化タンタル
層、13が酸化シリコン層である。
(First Embodiment) FIG. 1 shows the structure (cross-sectional view) of an optical thin film (filter) according to the first embodiment of the present invention.
In FIG. 1, 11 is a glass substrate, 12 is a tantalum oxide layer, and 13 is a silicon oxide layer.

【0017】図2で酸化物誘電体の光学薄膜の形成時の
様子を示す。各層の形成条件は次の通りである。まずガ
ラス基板21を真空蒸着槽22内の基板ホルダ23にセ
ットし、基板温度が室温、真空圧2*10-5torr以
下に引いた後、蒸発源24より酸化タンタルをそれぞれ
表1に示す光学的膜厚に酸素ガスを3〜10cc導入し
つつ、ガラス基板21の表面に電子線照射装置25より
電子ビームを電流密度400〜600μA/cm2で照
射しながら蒸着速度約6〜8Å/secで形成した。
FIG. 2 shows how the oxide dielectric optical thin film is formed. The conditions for forming each layer are as follows. First, the glass substrate 21 is set in the substrate holder 23 in the vacuum deposition tank 22, the substrate temperature is reduced to room temperature, and the vacuum pressure is set to 2 * 10 −5 torr or less. While introducing 3 to 10 cc of oxygen gas to the target film thickness, while irradiating the surface of the glass substrate 21 with an electron beam from the electron beam irradiation device 25 at a current density of 400 to 600 μA / cm 2 , a deposition rate of about 6 to 8 Å / sec. Formed.

【0018】また蒸発源26より酸化シリコンを、それ
ぞれ(表1)に示す光学的膜厚に、真空圧2×10-5
orr以下に保ちつつ、ガラス基板21の表面に電子線
照射装置25より電子ビームを電流密度400〜600
μA/cm2で照射しながら蒸着速度約6〜8Å/se
cで形成した。
Silicon oxide was evaporated from the evaporation source 26 to have an optical film thickness shown in Table 1 and a vacuum pressure of 2 × 10 −5 t.
The electron beam irradiation device 25 applies an electron beam to the surface of the glass substrate 21 at a current density of 400 to 600 while keeping the temperature at or less
Deposition rate of about 6-8Å / se while irradiating with μA / cm 2
Formed in c.

【0019】その後真空槽22より取り出し、電気炉内
にて室温より400℃まで30分で昇温、400℃で6
0分保持し、室温まで放冷した。
After that, it was taken out of the vacuum chamber 22 and heated from room temperature to 400 ° C. in 30 minutes in an electric furnace, and at 400 ° C. for 6 minutes.
It was kept for 0 minutes and allowed to cool to room temperature.

【0020】この方法により得られた反射防止膜の密着
性・耐久性を確認するために次の項目の試験を行った。 (a)剥離試験(温度40℃、相対湿度85%の高温・
高湿雰囲気中に168時間放置した後、粘着テープを光
学部品表面に密着し、引きはがす。) (b)高温試験(温度80℃の雰囲気中に250時間放
置する。) (c)低温試験(温度−20℃の雰囲気中に250時間
放置する。) (d)耐湿試験(温度60℃、相対湿度90%の高温・
高湿雰囲気中に168時間放置する。) (e)熱衝撃試験(温度−30℃、80℃の低温・高温
雰囲気中に交互に30分間ずつ放置を約24時間繰り返
す。)上記の信頼性試験を行った結果は(表2)に示す
通りである。
The following items were tested in order to confirm the adhesion and durability of the antireflection film obtained by this method. (A) Peeling test (high temperature of 40 ° C. and relative humidity of 85%
After standing in a high humidity atmosphere for 168 hours, the adhesive tape is adhered to the surface of the optical component and peeled off. ) (B) High temperature test (leave in atmosphere of temperature 80 ° C for 250 hours) (c) Low temperature test (leave in atmosphere of temperature -20 ° C for 250 hours) (d) Moisture resistance test (temperature 60 ° C, High temperature of 90% relative humidity
Leave in a high humidity atmosphere for 168 hours. (E) Thermal shock test (remaining in a low temperature / high temperature atmosphere at temperatures of −30 ° C. and 80 ° C. for 30 minutes alternately for about 24 hours) The results of the above reliability test are shown in (Table 2). As shown.

【0021】[0021]

【表2】 [Table 2]

【0022】(表2)からわかるように本発明の薄膜
は、基板との密着性、及び耐久性に優れている。
As can be seen from (Table 2), the thin film of the present invention has excellent adhesion to the substrate and durability.

【0023】また、本実施例の光学薄膜の高透過率波長
域400〜460nm帯の平均透過率は焼成工程前では
82%程度であったが、焼成工程後には90%以上とな
った。
Further, the average transmittance in the high transmittance wavelength range of 400 to 460 nm of the optical thin film of this example was about 82% before the firing step, but became 90% or more after the firing step.

【0024】(第2の実施例)第2の実施例の構成は第
1の実施例と同じく図1で示される。図3で酸化物誘電
体の光学薄膜の形成時の様子を示す。
(Second Embodiment) The structure of the second embodiment is shown in FIG. 1 as in the first embodiment. FIG. 3 shows a state when the optical thin film of the oxide dielectric is formed.

【0025】各層の形成条件は次の通りである。まずガ
ラス基板31を真空蒸着槽32内の基板ホルダ33にセ
ットし、真空圧2×10-5torr以下、ヒータ37に
より基板温度300℃に安定した後、蒸発源34より酸
化タンタルをそれぞれ(表1)に示す光学的膜厚に酸素
ガスを3〜10cc流入しつつ、ガラス基板31の表面
に電子線照射装置35電子ビームを電流密度400〜6
00μA/cm2で照射しながら蒸着速度約6〜8Å/
secで形成した。
The conditions for forming each layer are as follows. First, the glass substrate 31 is set on the substrate holder 33 in the vacuum vapor deposition tank 32, the vacuum pressure is set to 2 × 10 −5 torr or less, and the substrate temperature is stabilized at 300 ° C. by the heater 37. While flowing oxygen gas in an amount of 3 to 10 cc to the optical film thickness shown in 1), an electron beam irradiation device 35 electron beam is applied to the surface of the glass substrate 31 at a current density of 400 to 6
Deposition rate of about 6-8Å / while irradiating with 00 μA / cm 2
It was formed in sec.

【0026】また蒸発源36より酸化シリコンをそれぞ
れ表1に示す光学的膜厚に、基板温度300℃、真空圧
2×10-5torr以下に保ちつつ、ガラス基板31の
表面に電子線照射装置35より電子ビームを電流密度4
00〜600μA/cm2で照射しながら蒸着速度約6
〜8Å/secで形成した。
An electron beam irradiator is provided on the surface of the glass substrate 31 while maintaining the optical film thickness of silicon oxide from the evaporation source 36 at the substrate temperature of 300 ° C. and the vacuum pressure of 2 × 10 −5 torr or less, respectively. 35 electron beam current density 4
Deposition rate of about 6 while irradiating with 0 to 600 μA / cm 2
It was formed at ~ 8Å / sec.

【0027】その後真空槽32より取り出し、電気炉内
にて室温より400℃まで30分で昇温、400℃で6
0分保持し、室温まで放冷した。
After that, it was taken out of the vacuum chamber 32, and the temperature was raised from room temperature to 400 ° C. in 30 minutes in an electric furnace, and the temperature was raised to 6 ° C. at 400 ° C.
It was kept for 0 minutes and allowed to cool to room temperature.

【0028】本実施例の密着性及び耐久性を確認するた
めに次の項目の試験をおこなった。 (a)剥離試験(温度40℃、相対湿度85%の高温・
高湿雰囲気中に500時間放置した後、粘着テープを光
学部品表面に密着し、引きはがす。) (b)高温試験(温度80℃の雰囲気中に500時間放
置する。) (c)低温試験(温度−20℃の雰囲気中に500時間
放置する。) (d)耐湿試験(温度60℃、相対湿度90%の高温・
高湿雰囲気中に500時間放置する。) (e)熱衝撃試験(温度−30℃、80℃の低温・高温
雰囲気中に交互に30分間ずつ放置を約96時間繰り返
す。)上記の信頼性試験を行った結果は(表3)に示す
通りである。
The following items were tested in order to confirm the adhesion and durability of this example. (A) Peeling test (high temperature of 40 ° C. and relative humidity of 85%
After leaving in a high humidity atmosphere for 500 hours, the adhesive tape is adhered to the surface of the optical component and peeled off. (B) High temperature test (leaving in an atmosphere of temperature 80 ° C for 500 hours) (c) Low temperature test (leaving in an atmosphere of temperature -20 ° C for 500 hours) (d) Moisture resistance test (temperature 60 ° C, High temperature of 90% relative humidity
Leave for 500 hours in a high humidity atmosphere. (E) Thermal shock test (remaining in a low temperature / high temperature atmosphere at temperatures of -30 ° C. and 80 ° C. for 30 minutes each alternately is repeated for about 96 hours.) The results of the reliability test are shown in (Table 3). As shown.

【0029】[0029]

【表3】 [Table 3]

【0030】(表3)からわかるように本発明の薄膜
は、基板との密着性、及び耐久性に優れている。
As can be seen from (Table 3), the thin film of the present invention has excellent adhesion to the substrate and durability.

【0031】また、本実施例の光学薄膜の高透過率波長
域400〜460nm帯の平均透過率は焼成工程前では
85%程度であったが、焼成工程後には90%以上とな
った。
The average transmittance of the optical thin film of this example in the high transmittance wavelength range of 400 to 460 nm was about 85% before the firing step, but became 90% or more after the firing step.

【0032】(表3)からわかるように第1の実施例の
形成方法に加えて基板温度を300℃に加熱して薄膜形
成を行うことにより第1の実施例より基板との密着性が
向上した。
As can be seen from (Table 3), in addition to the forming method of the first embodiment, by heating the substrate temperature to 300 ° C. to form a thin film, the adhesion with the substrate is improved as compared with the first embodiment. did.

【0033】[0033]

【発明の効果】以上のように本発明によれば、ガラス基
板表面に酸化物誘電体からなる薄膜を真空蒸着により形
成するにあたり、前記ガラス基板表面に電子線照射を行
いつつ酸化物誘電体層を形成した後、空気中または酸素
雰囲気中で加熱酸化を施すので基板との密着性及び耐久
性に優れ、光学特性劣化を防いだ光学薄膜を実現するこ
とができる。
As described above, according to the present invention, when a thin film made of an oxide dielectric is formed on the surface of a glass substrate by vacuum vapor deposition, the surface of the glass substrate is irradiated with an electron beam while the oxide dielectric layer is being irradiated. After forming the film, it is heated and oxidized in air or an oxygen atmosphere, so that it is possible to realize an optical thin film having excellent adhesion to a substrate and durability and preventing deterioration of optical characteristics.

【0034】また、前記実施例では基板としてガラス基
板を用いたが、セラミック基板等の耐熱性を有した基板
も使用できる。
Although a glass substrate is used as the substrate in the above embodiment, a substrate having heat resistance such as a ceramic substrate can also be used.

【0035】さらに前記実施例では酸化物誘電体として
酸化タンタル、二酸化シリコンを使用したが、酸化チタ
ン、二酸化ジルコニウム、酸化鉛、酸化タンタル、酸化
イットリウム、チタン酸ジルコン、酸化セリウム、酸化
シリコン、酸化鈴、アルミナ等の酸化物誘電体も使用で
きる。
Further, although tantalum oxide and silicon dioxide were used as the oxide dielectric in the above-mentioned embodiments, titanium oxide, zirconium dioxide, lead oxide, tantalum oxide, yttrium oxide, zirconium titanate, cerium oxide, silicon oxide and tin oxide are used. Oxide dielectrics such as alumina can also be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1及び第2の実施例における光学薄
膜の構成を示す断面図
FIG. 1 is a cross-sectional view showing a configuration of an optical thin film in first and second embodiments of the present invention.

【図2】本発明の第1の実施例における酸化物誘電体の
光学薄膜の形成時の状態図
FIG. 2 is a state diagram at the time of forming an optical thin film of an oxide dielectric in the first embodiment of the present invention.

【図3】本発明の第2の実施例における酸化物誘電体の
光学薄膜の形成時の状態図
FIG. 3 is a state diagram at the time of forming an optical thin film of an oxide dielectric in the second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 ガラス基板 12 酸化タンタル層 13 酸化シリコン層 21 ガラス基板 22 真空蒸着槽 23 基板ホルダ 24 蒸発源A 25 電子線照射装置 26 蒸発源B 31 ガラス基板 32 真空蒸着槽 33 基板ホルダ 34 蒸発源A 35 電子線照射装置 36 蒸発源B 37 ヒータ 11 Glass Substrate 12 Tantalum Oxide Layer 13 Silicon Oxide Layer 21 Glass Substrate 22 Vacuum Deposition Tank 23 Substrate Holder 24 Evaporation Source A 25 Electron Beam Irradiation Device 26 Evaporation Source B 31 Glass Substrate 32 Vacuum Deposition Tank 33 Substrate Holder 34 Evaporation Source A 35 Electrons Ray irradiation device 36 Evaporation source B 37 Heater

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】基板表面に酸化物誘電体からなる薄膜を真
空蒸着により形成するにあたり、前記基板表面に電子線
照射を行いつつ酸化物誘電体薄膜層を形成した後、空気
中または酸素雰囲気中で前記薄膜に加熱酸化処理を施す
光学薄膜の形成方法。
1. When forming a thin film of an oxide dielectric on the surface of a substrate by vacuum vapor deposition, the oxide dielectric thin film layer is formed on the surface of the substrate while irradiating an electron beam, and then in air or an oxygen atmosphere. A method for forming an optical thin film, wherein the thin film is subjected to a thermal oxidation treatment.
【請求項2】基板表面に酸化物誘電体からなる薄膜を真
空蒸着により形成するにあたり、前記基板表面に酸化物
誘電体薄膜層を形成した後、この層の表面に電子線照射
を行い、その後空気中または酸素雰囲気中で前記薄膜に
に加熱酸化処理を施す光学薄膜の形成方法。
2. When forming a thin film of an oxide dielectric on the surface of a substrate by vacuum deposition, an oxide dielectric thin film layer is formed on the surface of the substrate, and then the surface of this layer is irradiated with an electron beam. A method for forming an optical thin film, which comprises subjecting the thin film to a heat oxidation treatment in air or an oxygen atmosphere.
【請求項3】基板上に真空蒸着で薄膜形成をする際、ガ
ラス基板を100〜350℃に加熱して、薄膜形成を行
う請求項1または2記載の薄膜の形成方法。
3. The method for forming a thin film according to claim 1, wherein when forming a thin film on the substrate by vacuum vapor deposition, the glass substrate is heated to 100 to 350 ° C. to form the thin film.
【請求項4】基板がガラス基板、またはセラミック基板
である請求項1ないし請求項3の何れかに記載の薄膜の
形成方法。
4. The method for forming a thin film according to claim 1, wherein the substrate is a glass substrate or a ceramic substrate.
【請求項5】酸化物誘電体が酸化タンタル、二酸化ジル
コニウム、酸化鉛、酸化イットリウム、チタン酸ジルコ
ン、酸化セリウム、酸化シリコン、酸化錫、アルミナ、
からなる酸化物である請求項1ないし4の何れかに記載
の薄膜の形成方法。
5. The oxide dielectric material is tantalum oxide, zirconium dioxide, lead oxide, yttrium oxide, zirconium titanate, cerium oxide, silicon oxide, tin oxide, alumina,
5. The method of forming a thin film according to claim 1, wherein the thin film is an oxide of.
JP6262335A 1994-10-26 1994-10-26 Formation of thin film Pending JPH08122503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6262335A JPH08122503A (en) 1994-10-26 1994-10-26 Formation of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6262335A JPH08122503A (en) 1994-10-26 1994-10-26 Formation of thin film

Publications (1)

Publication Number Publication Date
JPH08122503A true JPH08122503A (en) 1996-05-17

Family

ID=17374336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6262335A Pending JPH08122503A (en) 1994-10-26 1994-10-26 Formation of thin film

Country Status (1)

Country Link
JP (1) JPH08122503A (en)

Similar Documents

Publication Publication Date Title
EP0634376B1 (en) Process for treating a thin oxide layer
JPH08122503A (en) Formation of thin film
JPH044721B2 (en)
JP4056702B2 (en) Method for producing compound semiconductor thin film
US2427592A (en) Thorium compound protective coatings for reflecting surfaces
JPS6039090B2 (en) Method of forming transparent conductive film
JP3078853B2 (en) Oxide film formation method
JP3136845B2 (en) Infrared antireflection film and method of forming the same
FR3058256A1 (en) ALUMINA CERAMIC-BASED ELECTRICAL INSULATION, METHOD FOR PRODUCING THE INSULATOR, AND VACUUM TUBE COMPRISING THE INSULATION
JP2005232565A (en) Method of producing thin film
JP2007137690A (en) Method for inhibiting buildup of carbon foil, carbon foil, and apparatus for inhibiting buildup of carbon foil
JPH10115711A (en) Production of optical thin film
JP2953731B2 (en) Metal oxide coated plastic
US6797645B2 (en) Method of fabricating gate dielectric for use in semiconductor device having nitridation by ion implantation
JP5118276B2 (en) Sputtering target for forming gate insulating film for semiconductor device, manufacturing method thereof, and gate insulating film for semiconductor device
JPH05313001A (en) Reflection preventing film for plastic made optical part
JPH0720304A (en) Formation of thin film
JP4299376B2 (en) Method for forming conductive film and method for forming metal oxide film
JPS6155205B2 (en)
JPH10261367A (en) Phosphor film forming method
JPH06230202A (en) Formation of thin film
RU2036486C1 (en) Method of making metal mirror for ir range
CN114180857A (en) Silver film preparation method and substrate with silver film
JPH10204638A (en) Dielectric film
JPH11135816A (en) Manufacture of cds/cdte solar cell