JPH05313001A - Reflection preventing film for plastic made optical part - Google Patents

Reflection preventing film for plastic made optical part

Info

Publication number
JPH05313001A
JPH05313001A JP4121604A JP12160492A JPH05313001A JP H05313001 A JPH05313001 A JP H05313001A JP 4121604 A JP4121604 A JP 4121604A JP 12160492 A JP12160492 A JP 12160492A JP H05313001 A JPH05313001 A JP H05313001A
Authority
JP
Japan
Prior art keywords
film
layer
indium
oxide film
tin oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4121604A
Other languages
Japanese (ja)
Inventor
Toshiaki Ogura
敏明 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4121604A priority Critical patent/JPH05313001A/en
Publication of JPH05313001A publication Critical patent/JPH05313001A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To improve adhesion, durability and spectral characteristics by forming a reflection preventing film of a first layer made of an indium-tin oxide film, and a second and a third layers made of metallic oxides. CONSTITUTION:A first layer 2 formed of an indium-tin oxide film, and a second and a third layers 3, 4 formed of metallic oxides are provided in order from the surface of a plastic made optical part 1 to the air side. Oxygen is led in after exhausting a vacuum deposition tank, for instance, and the indium-tin oxide film with indium oxide and tin oxide added thereto is deposited as the first layer 2. Oxygen is then led in, and cerium oxide is deposited as the second layer 3. The lead-in of oxygen is then stopped, and a silicon dioxide film is deposited as the third layer 4. With this constitution, adhesion to the plastic made optical part 1 is improved by the transparent and conductive indium-tin oxide film of the first layer 2, which results in obtaining a reflection preventing film excellent in adhesion, durability and optical characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プロジェクション型テ
レビ受像機、ビデオカメラ、スチルカメラなどの光学系
に使用されるプラスチック製光学部品の反射防止膜に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antireflection film for plastic optical components used in optical systems such as projection type television receivers, video cameras and still cameras.

【0002】[0002]

【従来の技術】従来、レンズなどの光学部品には無機ガ
ラスが多く使用されてきたが、近年、軽量で加工が容易
でありかつ量産性にすぐれているプラスチックが光学部
品の素材として用いられるようになってきた。しかしな
がら、プラスチックレンズなどのプラスチック製光学部
品も無機ガラス製光学部品と同様に表面での光の反射が
大きいという欠点がある。この欠点を解消するために、
プラスチック製光学部品の表面に無機ガラス製光学部品
と同様の反射防止膜を形成し、表面での光反射を防ぐこ
とは一般技術として知られている(たとえば「精密プラ
スチック光学レンズの設計、成形技術とその問題点」ト
リケップス資料集No.87、P6−1〜P6−4)。
2. Description of the Related Art Conventionally, a large amount of inorganic glass has been used for optical parts such as lenses, but in recent years, plastics that are lightweight, easy to process and excellent in mass production have been used as materials for optical parts. Has become. However, a plastic optical component such as a plastic lens also has a drawback in that light reflection on the surface is large like the inorganic glass optical component. In order to eliminate this drawback,
It is known as a general technology to form an antireflection film on the surface of a plastic optical component like the inorganic glass optical component to prevent light reflection on the surface (for example, "design and molding technology of precision plastic optical lens"). And its problems "Trikeps Data Book No. 87, P6-1 to P6-4).

【0003】以下図面を参照しながら従来のプラスチッ
ク製光学部品の反射防止膜についてその形成方法ととも
に説明する。単層の反射防止膜としてはフッ化マグネシ
ウム(MgF2)膜からなるものが一般的であり、その
断面を図3に示し、屈折率1.49のアクリル樹脂(ポ
リメチルメタクリレート)製光学部品(以下光学部品と
略す)11の表面にフッ化マグネシウム膜12を形成し
たときの分光反射特性を図4の(d)で示す。図4の
(e)で示す特性は比較のための反射防止膜を形成して
いない光学部品(ポリメチルメタクリレート製)の分光
反射特性である。フッ化マグネシウム膜12等の反射防
止膜は通常真空蒸着法によって形成されるが、最近では
反射防止膜と光学部品との密着性や耐久性を向上させる
ために光学部品を60℃〜80℃に加熱して真空蒸着す
る方法や、RFイオンプレーティング法を用いて形成す
る方法が行われている。図3に示す反射防止膜は1種類
の蒸着物質を使用したものであるが、2種類を使用した
ものとしては二酸化珪素膜とフッ化マグネシウム膜を用
いたもの(特開昭60−129701号公報参照)や酸
化セリウム膜と酸化珪素(SiOx)膜を用いたもの
(特開昭63−172201号公報参照)などがある。
A conventional antireflection film of a plastic optical component will be described below with reference to the drawings together with a method of forming the same. The single-layer antireflection film is generally composed of a magnesium fluoride (MgF 2 ) film, and its cross section is shown in FIG. 3, and an optical component made of acrylic resin (polymethylmethacrylate) having a refractive index of 1.49 ( The spectral reflection characteristic when the magnesium fluoride film 12 is formed on the surface of the optical component 11 is shown in FIG. 4D. The characteristic shown in (e) of FIG. 4 is a spectral reflection characteristic of an optical component (made of polymethylmethacrylate) having no antireflection film for comparison. The antireflection film such as the magnesium fluoride film 12 is usually formed by a vacuum deposition method, but recently, in order to improve the adhesion and durability between the antireflection film and the optical component, the optical component is heated to 60 ° C to 80 ° C. A method of heating and vacuum vapor deposition, and a method of forming using an RF ion plating method are used. The antireflection film shown in FIG. 3 uses one type of vapor deposition material, but two types use a silicon dioxide film and a magnesium fluoride film (JP-A-60-129701). (See Japanese Patent Laid-Open No. 63-172201) and the like using a cerium oxide film and a silicon oxide (SiO x ) film.

【0004】なお図4に示すように、フッ化マグネシウ
ム膜12を形成したものの反射分光特性(d)は中心波
長520nmで1.5%と(e)に比べてずいぶん改善
されている。
As shown in FIG. 4, the reflection spectral characteristic (d) of the magnesium fluoride film 12 formed is 1.5% at the central wavelength of 520 nm, which is much better than that of (e).

【0005】[0005]

【発明が解決しようとする課題】しかしながら上記の従
来の構成では、以下に示す課題を有していた。
However, the above conventional structure has the following problems.

【0006】(1)プラスチックの流動温度、熱変形温
度が低くまたプラスチック内部からの放出ガスの問題も
あるために無機ガラス基板に反射防止膜を形成するとき
に行う基板加熱(300℃〜400℃)が不可能で強固
な蒸着膜を得ることができず、40℃〜50℃以下の低
温でプラスチック製光学部品の表面に反射防止膜の形成
を行うが、この低温で形成された反射防止膜はプラスチ
ック表面との密着性が悪く、耐久性も低い。
(1) Substrate heating (300 ° C. to 400 ° C.) performed when an antireflection film is formed on an inorganic glass substrate due to the fact that the plastic has a low flow temperature and heat distortion temperature and there is a problem of gas released from the inside of the plastic. ) Is not possible and a strong vapor-deposited film cannot be obtained, and an antireflection film is formed on the surface of a plastic optical component at a low temperature of 40 ° C. to 50 ° C. or less. The antireflection film formed at this low temperature. Has poor adhesion to the plastic surface and low durability.

【0007】(2)プラスチック製光学部品を60℃〜
80℃に加熱したり、RFイオンプレーティング法など
を用いて形成した反射防止膜はクラックが生じやすく、
また形成時の条件を一定にしかつプラスチック表面の状
態を一定に保つことが困難であり量産に適するものでは
ない。
(2) A plastic optical component is kept at 60 ° C.
The antireflection film formed by heating to 80 ° C. or using the RF ion plating method is likely to have cracks,
Further, it is difficult to keep the conditions during formation constant and the state of the plastic surface constant, which is not suitable for mass production.

【0008】(3)図4の(d)で示すように、フッ化
マグネシウム単層膜での反射防止膜は中心波長(λ0
において残存反射率が約1.5%もあり、反射防止膜と
しては十分な特性を持っていない。またフッ化マグネシ
ウム膜と二酸化珪素膜を用いた反射防止膜ではクラック
は発生せず耐久性も比較的良いが、残存反射率が単層膜
と同程度あり十分な特性ではない。また酸化セリウム膜
と一酸化珪素膜を用いた反射防止膜は一酸化珪素膜の屈
折率が経時的に変化しやすいので光学特性の安定性に問
題がある。
(3) As shown in FIG. 4D, the antireflection film of the magnesium fluoride single layer film has a center wavelength (λ 0 )
The residual reflectance is about 1.5%, which means that it does not have sufficient characteristics as an antireflection film. Further, the antireflection film using the magnesium fluoride film and the silicon dioxide film does not generate cracks and has relatively good durability, but the residual reflectance is about the same as that of the single-layer film, which is not sufficient characteristics. Further, an antireflection film using a cerium oxide film and a silicon monoxide film has a problem in stability of optical characteristics because the refractive index of the silicon monoxide film easily changes with time.

【0009】以上のように従来の反射防止膜には、プラ
スチック表面との密着性が悪い、耐久性に劣る、反射防
止膜としての光学特性が十分でない、光学特性の安定性
に欠けるという課題を有していた。
As described above, the conventional antireflection film has problems such as poor adhesion to the plastic surface, poor durability, insufficient optical properties as an antireflection film, and lack of stability in optical properties. I had.

【0010】本発明は上記従来の課題を解決するもの
で、プラスチック製光学部品に対しての密着性、耐久性
および光学特性に優れたプラスチック製光学部品の反射
防止膜を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide an antireflection film for plastic optical parts which is excellent in adhesion to plastic optical parts, durability and optical characteristics. To do.

【0011】[0011]

【課題を解決するための手段】この目的を達成するため
に本発明のプラスチック製光学部品の反射防止膜は、プ
ラスチック製光学部品の表面から空気側へ順に、第1層
が酸化インジウム・錫膜、第2層および第3層が金属酸
化物膜からなる構成を有している。
In order to achieve this object, an antireflection film for a plastic optical component of the present invention comprises an indium tin oxide film as a first layer in order from the surface of the plastic optical component to the air side. The second layer and the third layer are composed of a metal oxide film.

【0012】[0012]

【作用】この構成によって、第1層の透明かつ導電性を
持つ酸化インジウム・錫膜がプラスチック製光学部品と
の密着性を向上させ、その結果、密着性、耐久性、光学
特性に優れた反射防止膜を得ることができる。
With this structure, the transparent and conductive indium oxide / tin film of the first layer improves the adhesion to the plastic optical component, and as a result, the reflection excellent in the adhesion, durability and optical characteristics. A protective film can be obtained.

【0013】[0013]

【実施例】以下本発明の一実施例について、図面を参照
しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0014】図1は本発明の一実施例におけるプラスチ
ック製光学部品の反射防止膜の断面図であり、図2の
(a)ないし(c)にその分光反射特性を示す。図2に
は同時に従来の反射防止膜(d)および反射防止膜なし
(e)の特性を示した。本実施例では光学部品はアクリ
ル樹脂(ポリメチルメタクリレート)製である。図1に
おいて、1はアクリル樹脂製の光学部品、2は酸化イン
ジウム・錫膜、3は酸化セリウム膜(五酸化タンタル膜
または酸化ハフニウム膜でもよい)、4は二酸化珪素膜
である。
FIG. 1 is a sectional view of an antireflection film of a plastic optical component according to an embodiment of the present invention, and FIGS. 2A to 2C show its spectral reflection characteristics. FIG. 2 also shows the characteristics of the conventional antireflection film (d) and the conventional antireflection film (e). In this embodiment, the optical component is made of acrylic resin (polymethylmethacrylate). In FIG. 1, 1 is an acrylic resin optical component, 2 is an indium tin oxide film, 3 is a cerium oxide film (may be a tantalum pentoxide film or a hafnium oxide film), and 4 is a silicon dioxide film.

【0015】(第1の実施例)第1の実施例の反射防止
膜の構成は(表1)に示す通りである。
(First Embodiment) The structure of the antireflection film of the first embodiment is as shown in (Table 1).

【0016】[0016]

【表1】 [Table 1]

【0017】各膜の形成条件は以下の通りである。第1
層の酸化インジウム・錫膜は、真空蒸着槽内を1.0×
10-5Torrまで排気した後酸素を3×10-5Tor
rまで導入し、酸化インジウムに酸化錫を2wt.%添
加した酸化インジウム・錫膜を光学的膜厚λ0/4(λ0
=520nm)の厚さに蒸着速度約2〜3Å/secで
形成した。このときの酸化インジウム・錫膜の屈折率は
1.90である。次に酸素を5×10-5Torrまで導
入し、酸化セリウム膜を光学的膜厚λ0/4(λ0=52
0nm)の厚さに蒸着速度約5〜8Å/secで形成し
た。このときの酸化セリウム膜の屈折率は2.20であ
る。次に酸素の導入を停止し、真空度1×10-5Tor
rで二酸化珪素膜を光学的膜厚λ0/4(λ0=520n
m)の厚さに蒸着速度約10Å/secで形成した。こ
のときの二酸化珪素膜の屈折率は1.46である。
The conditions for forming each film are as follows. First
The layer of indium oxide / tin film is 1.0 × in the vacuum deposition tank.
10 oxygen 3 × 10 -5 Tor was evacuated to -5 Torr
up to 2 wt. % Optical film thickness of the indium tin oxide film doped λ 0/4 0
= 520 nm) at a vapor deposition rate of about 2 to 3Å / sec. At this time, the indium oxide / tin film has a refractive index of 1.90. Then oxygen was introduced until 5 × 10 -5 Torr, the optical thickness of the cerium oxide film λ 0/4 (λ 0 = 52
The thickness was 0 nm) and the deposition rate was about 5 to 8 Å / sec. The refractive index of the cerium oxide film at this time is 2.20. Then, the introduction of oxygen was stopped, and the vacuum degree was 1 × 10 −5 Tor.
optical film thickness of the silicon dioxide film at r λ 0/4 (λ 0 = 520n
m) was formed at a vapor deposition rate of about 10Å / sec. The refractive index of the silicon dioxide film at this time is 1.46.

【0018】第1の実施例の分光反射特性を図2の
(a)で示す。中心波長(λ0=520nm)で反射率
は0.2%以下であり、反射防止膜として優れておりか
つ広帯域において優れた特性が得られた。
The spectral reflection characteristic of the first embodiment is shown in FIG. The reflectance was 0.2% or less at the center wavelength (λ 0 = 520 nm), which was excellent as an antireflection film and excellent characteristics were obtained in a wide band.

【0019】(第2の実施例)第2の実施例の反射防止
膜の構成は(表2)に示す通りである。
(Second Embodiment) The structure of the antireflection film of the second embodiment is as shown in (Table 2).

【0020】[0020]

【表2】 [Table 2]

【0021】各膜の形成条件は以下の通りである。第1
層の酸化インジウム・錫膜は、真空蒸着槽内を1.0×
10-5Torrまで排気した後酸素を3×10-5Tor
rまで導入し、酸化インジウムに酸化錫を3wt.%添
加した酸化インジウム・錫膜を光学的膜厚λ0/4(λ0
=520nm)の厚さに蒸着速度約2〜3Å/secで
形成した。このときの酸化インジウム・錫膜の屈折率は
1.85である。次に酸素を5×10-5Torrまで導
入し、五酸化タンタル膜を光学的膜厚λ0/4(λ0=5
20nm)の厚さに蒸着速度約7〜8Å/secで形成
した。このときの五酸化タンタル膜の屈折率は2.10
である。次に酸素の導入を停止し、真空度1×10-5
orrで二酸化珪素膜を光学的膜厚λ0/4(λ0=52
0nm)の厚さに蒸着速度約10Å/secで形成し
た。このときの二酸化珪素膜の屈折率は1.46であ
る。
The conditions for forming each film are as follows. First
The layer of indium oxide / tin film is 1.0 × in the vacuum deposition tank.
10 oxygen 3 × 10 -5 Tor was evacuated to -5 Torr
up to 3 wt. % Optical film thickness of the indium tin oxide film doped λ 0/4 0
= 520 nm) at a vapor deposition rate of about 2 to 3Å / sec. At this time, the indium oxide / tin film has a refractive index of 1.85. Then oxygen was introduced until 5 × 10 -5 Torr, tantalum pentoxide film having an optical film thickness of λ 0/4 (λ 0 = 5
The thickness was 20 nm) and the deposition rate was about 7 to 8Å / sec. At this time, the refractive index of the tantalum pentoxide film is 2.10.
Is. Then, the introduction of oxygen was stopped, and the degree of vacuum was 1 × 10 -5 T
optical film thickness of the silicon dioxide film orr λ 0/4 (λ 0 = 52
It was formed to a thickness of 0 nm) at a vapor deposition rate of about 10Å / sec. The refractive index of the silicon dioxide film at this time is 1.46.

【0022】第2の実施例の分光反射特性を図2の
(b)で示す。中心波長(λ0=520nm)で反射率
は0.4%以下であり、反射防止膜として優れておりか
つ広帯域において優れた特性が得られた。
The spectral reflection characteristic of the second embodiment is shown in FIG. 2 (b). The reflectance was 0.4% or less at the central wavelength (λ 0 = 520 nm), which was excellent as an antireflection film and excellent characteristics were obtained in a wide band.

【0023】(第3の実施例)第3の実施例の反射防止
膜の構成は(表3)に示す通りである。
(Third Embodiment) The structure of the antireflection film of the third embodiment is as shown in (Table 3).

【0024】[0024]

【表3】 [Table 3]

【0025】各膜の形成条件は以下の通りである。第1
層の酸化インジウム・錫膜は、真空蒸着槽内を1.0×
10-5Torrまで排気した後酸素を3×10-5Tor
rまで導入し、酸化インジウムに酸化錫を2wt.%添
加した酸化インジウム・錫膜を光学的膜厚λ0/4(λ0
=520nm)の厚さに蒸着速度約2〜3Å/secで
形成した。このときの酸化インジウム・錫膜の屈折率は
1.90である。次に酸素を5×10-5Torrまで導
入し、酸化ハフニウム膜を光学的膜厚λ0/4(λ0=5
20nm)の厚さに蒸着速度約5〜7Å/secで形成
した。このときの酸化ハフニウム膜の屈折率は2.15
である。次に酸素の導入を停止し、真空度1×10-5
orrで二酸化珪素膜を光学的膜厚λ0/4(λ0=52
0nm)の厚さに蒸着速度約10Å/secで形成し
た。このときの二酸化珪素膜の屈折率は1.46であ
る。
The conditions for forming each film are as follows. First
The layer of indium oxide / tin film is 1.0 × in the vacuum deposition tank.
10 oxygen 3 × 10 -5 Tor was evacuated to -5 Torr
up to 2 wt. % Optical film thickness of the indium tin oxide film doped λ 0/4 0
= 520 nm) at a vapor deposition rate of about 2 to 3Å / sec. At this time, the indium oxide / tin film has a refractive index of 1.90. Then oxygen was introduced until 5 × 10 -5 Torr, the optical film thickness of the hafnium oxide film λ 0/4 (λ 0 = 5
20 nm) with a vapor deposition rate of about 5 to 7Å / sec. At this time, the hafnium oxide film has a refractive index of 2.15.
Is. Then, the introduction of oxygen was stopped, and the degree of vacuum was 1 × 10 -5 T
optical film thickness of the silicon dioxide film orr λ 0/4 (λ 0 = 52
It was formed to a thickness of 0 nm) at a vapor deposition rate of about 10Å / sec. The refractive index of the silicon dioxide film at this time is 1.46.

【0026】第3の実施例の分光反射特性を図2の
(c)で示す。第3の実施例の分光反射特性は第2の実
施例とほとんど同じであった。中心波長(λ0=520
nm)で反射率は0.4%以下であり、反射防止膜とし
て優れておりかつ広帯域において優れた特性が得られ
た。
The spectral reflection characteristics of the third embodiment are shown in FIG. 2 (c). The spectral reflection characteristics of the third embodiment were almost the same as those of the second embodiment. Center wavelength (λ 0 = 520
nm), the reflectance was 0.4% or less, which was excellent as an antireflection film and excellent characteristics were obtained in a wide band.

【0027】上記の第1ないし第3の実施例の反射防止
膜の密着性、耐久性を確認するために行った試験は、
(1)剥離試験(温度40℃、相対湿度85%の高温・
高湿雰囲気中に1000時間放置した後、粘着テープを
プラスチック製光学部品表面に密着し、引きはが
す。)、(2)耐湿試験(温度40℃、相対湿度95%
の高温・高湿雰囲気中に1000時間放置)、(3)熱
衝撃試験(温度−30℃、70℃の低温・高温雰囲気中
に交互に30分間ずつ放置を約100時間)である。密
着性・耐久性試験結果は(表4)に示す通りである。
The tests conducted to confirm the adhesion and durability of the antireflection films of the above-mentioned first to third embodiments are as follows.
(1) Peeling test (temperature 40 ° C, relative humidity 85%
After left in a high humidity atmosphere for 1000 hours, the adhesive tape is adhered to the surface of the plastic optical component and peeled off. ), (2) Humidity resistance test (temperature 40 ° C, relative humidity 95%
In a high-temperature and high-humidity atmosphere for 1000 hours), and (3) thermal shock test (temperatures of -30 ° C and 70 ° C in a low-temperature / high-temperature atmosphere for 30 minutes alternately for about 100 hours). The results of the adhesion / durability test are as shown in (Table 4).

【0028】[0028]

【表4】 [Table 4]

【0029】(表4)に示すように本実施例の反射防止
膜はいずれも密着性、耐久性に優れている。さらに従来
は反射防止膜形成時にクラックの発生が見られるものも
あったが、本実施例においては常時安定していた。なお
上記の実施例では、各膜厚を(表1)ないし(表3)に
示すものにしたが、膜厚は特に上記の値に限定されるも
のではなく、設計波長に応じて変化させれば良い。
As shown in (Table 4), each of the antireflection films of this example has excellent adhesion and durability. Further, conventionally, cracks were observed in some cases when the antireflection film was formed, but in this example, it was always stable. In the above embodiments, the respective film thicknesses are shown in (Table 1) to (Table 3), but the film thickness is not particularly limited to the above value and can be changed according to the design wavelength. Good.

【0030】[0030]

【発明の効果】以上のように本発明は、酸化インジウム
・錫膜からなる第1層、金属酸化物からなる第2層、第
3層で構成される3層構造であり、プラスチック製光学
部品との密着性に優れ、反射防止膜の耐久性の向上と共
に分光特性にも優れ、クラックも発生しない優れたプラ
スチック製光学部品の反射防止膜を実現できるものであ
る。
INDUSTRIAL APPLICABILITY As described above, the present invention has a three-layer structure including a first layer made of an indium tin oxide film, a second layer made of a metal oxide, and a third layer. It is possible to realize an excellent antireflection film for optical parts made of plastic, which has excellent adhesiveness with and improved durability of the antireflection film as well as excellent spectral characteristics and does not generate cracks.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるプラスチック製光学
部品の反射防止膜の断面図
FIG. 1 is a sectional view of an antireflection film of a plastic optical component according to an embodiment of the present invention.

【図2】同反射防止膜の分光反射特性図FIG. 2 is a spectral reflection characteristic diagram of the antireflection film.

【図3】従来のプラスチック製光学部品の反射防止膜の
断面図
FIG. 3 is a sectional view of an antireflection film of a conventional plastic optical component.

【図4】同反射防止膜の分光反射特性図FIG. 4 is a spectral reflection characteristic diagram of the antireflection film.

【符号の説明】[Explanation of symbols]

1 プラスチック製光学部品 2 酸化インジウム・錫膜(第1層) 3 酸化セリウム膜(金属酸化物膜;第2層) 4 二酸化珪素膜(金属酸化物膜;第3層) 1 Plastic Optical Components 2 Indium Oxide / Tin Film (First Layer) 3 Cerium Oxide Film (Metal Oxide Film; Second Layer) 4 Silicon Dioxide Film (Metal Oxide Film; Third Layer)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】プラスチック製光学部品の表面から空気側
へ順に、第1層が酸化インジウム・錫膜、第2層および
第3層が金属酸化物膜であるプラスチック製光学部品の
反射防止膜。
1. An antireflection film for a plastic optical component, in which the first layer is an indium tin oxide film and the second and third layers are metal oxide films in order from the surface of the plastic optical component to the air side.
【請求項2】第2層が酸化セリウム膜、酸化タンタル膜
または酸化ハフニウム膜であり、第3層が二酸化珪素膜
である請求項1記載のプラスチック製光学部品の反射防
止膜。
2. The antireflection film for a plastic optical component according to claim 1, wherein the second layer is a cerium oxide film, a tantalum oxide film or a hafnium oxide film, and the third layer is a silicon dioxide film.
JP4121604A 1992-05-14 1992-05-14 Reflection preventing film for plastic made optical part Pending JPH05313001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4121604A JPH05313001A (en) 1992-05-14 1992-05-14 Reflection preventing film for plastic made optical part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4121604A JPH05313001A (en) 1992-05-14 1992-05-14 Reflection preventing film for plastic made optical part

Publications (1)

Publication Number Publication Date
JPH05313001A true JPH05313001A (en) 1993-11-26

Family

ID=14815371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4121604A Pending JPH05313001A (en) 1992-05-14 1992-05-14 Reflection preventing film for plastic made optical part

Country Status (1)

Country Link
JP (1) JPH05313001A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7534500B2 (en) * 2001-10-05 2009-05-19 Bridgestone Corporation Transparent electroconductive film, method for manufacture thereof, and touch panel
JP2013195649A (en) * 2012-03-19 2013-09-30 Hoya Corp Plastic lens

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7534500B2 (en) * 2001-10-05 2009-05-19 Bridgestone Corporation Transparent electroconductive film, method for manufacture thereof, and touch panel
JP2013195649A (en) * 2012-03-19 2013-09-30 Hoya Corp Plastic lens

Similar Documents

Publication Publication Date Title
JPH07111484B2 (en) Antireflection film for plastic optical parts and method for forming the same
KR920002551B1 (en) Antireflection film of optical parts made of synthetic resin
JPS5860701A (en) Reflection preventing film
JPH05313001A (en) Reflection preventing film for plastic made optical part
JPH07104102A (en) Water repellant reflection preventive film for glass-made optical parts and production thereof
JPH08327809A (en) Plastic reflecting mirror
JPH10123303A (en) Antireflection optical parts
JPS60130704A (en) Antireflection film for plastic substrate
JPH06208002A (en) Antireflection film of plastic optical parts and its formation
JP2979327B2 (en) Anti-reflective coating deposited on low melting point substrate
JPH07270601A (en) Optical thin film
JPH03132601A (en) Antireflection film of optical parts made of plastic and production thereof
JP3353944B2 (en) Antireflection film for optical component and optical component formed with this antireflection film
JP2000275402A (en) Optical element with antireflection film
JP3111243B2 (en) Optical component having laminated antireflection film
JPS63172201A (en) Two-layer antireflection coating
JPH0248601A (en) Production of antireflection film for optical parts made of synthetic resin
JPH04240802A (en) Rear surface reflection mirror of optical parts made of synthetic resin and production thereof
JPH06138303A (en) Antireflection film of plastic optical parts
JPS6381402A (en) Reflection reducing coating of plastic optical parts
JPH0474681B2 (en)
JPS62134601A (en) Reflection reducing film for optical parts and its preparation
JPH04156501A (en) Reflection preventing film for optical part made of synthetic resin
JP3067134B2 (en) Multilayer film for optical parts
JPS63220101A (en) Antireflection film for plastic optical parts