JPH03132601A - Antireflection film of optical parts made of plastic and production thereof - Google Patents

Antireflection film of optical parts made of plastic and production thereof

Info

Publication number
JPH03132601A
JPH03132601A JP1270653A JP27065389A JPH03132601A JP H03132601 A JPH03132601 A JP H03132601A JP 1270653 A JP1270653 A JP 1270653A JP 27065389 A JP27065389 A JP 27065389A JP H03132601 A JPH03132601 A JP H03132601A
Authority
JP
Japan
Prior art keywords
layer
antireflection film
plastic optical
film
silicon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1270653A
Other languages
Japanese (ja)
Inventor
Toshiaki Ogura
敏明 小倉
Nahoko Shimamura
島村 奈保子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1270653A priority Critical patent/JPH03132601A/en
Publication of JPH03132601A publication Critical patent/JPH03132601A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the adhesion to optical parts made of plastics and to improve the durability and spectral reflection characteristics of the antireflection film by forming the film of a 3-layered structure of the 1st layer and 2nd layer consisting of silicon monoxide and the 3rd layer consisting of silicon dioxide. CONSTITUTION:The antireflection film is constituted on the surface of the optical parts made of the plastics by forming the vapor deposited films having the 3-layered structure of the 1st layer, the 2nd layer and the 3rd layer, succes sively from the front surface. The 1st layer and the 2nd layers 2, 3 are constitut ed of the silicon monoxide (SiO) and the 3rd layer 4 is constituted of the silicon dioxide (SiO2). The refractive index of the silicon monoxide of the 1st layer 2 is set smaller than the refractive index of the silicon monoxide of the 2nd layer 3. Thus, the antireflection film having the excellent adhesion to the plastic optical parts, durability, optical characteristics, and mass productivity is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、プロジェクションテレビ、ビデオカメラ、ス
チルカメラ等の光学系に使用されるプラスチック製光学
部品の反射防止膜とその形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an antireflection coating for plastic optical components used in optical systems such as projection televisions, video cameras, and still cameras, and a method for forming the antireflection coating.

従来の技術 従来、レンズなどの光学部品には無機ガラスが多く使用
されてきたが、近年、軽量で加工が容易であり、かつ量
産に適しているなどで優れているプラスチックが光学部
品の素材として用いられるようになってきた。しかしな
がら、プラスチックレンズなどのプラスチック製光学部
品は、無機ガラスと同様に表面での光の反射が大きいと
いう欠点がある。この欠点を解消するために、プラスチ
ック製光学部品の表面に無機ガラスと同様の反射防止膜
を形成し、表面の反射を防ぐことは一般技術として知ら
れている(例えば「精宙プラスチンク光学レンズの設計
、成形技術とその問題点」トリケノプス資料集Nα87
P6−1〜P6−4)。
Conventional technology Traditionally, inorganic glass has been widely used for optical parts such as lenses, but in recent years, plastics have been used as materials for optical parts because they are lightweight, easy to process, and suitable for mass production. It has come to be used. However, plastic optical components such as plastic lenses have the disadvantage that, similar to inorganic glass, light is highly reflected on the surface. In order to overcome this drawback, it is known as a general technique to form an anti-reflection film similar to that of inorganic glass on the surface of plastic optical components to prevent surface reflections (for example, "Seichu Plastic Optical Lens"). "Design, molding technology and its problems" Tricenops Materials Collection Nα87
P6-1 to P6-4).

以下図面を参照しながら従来のプラスチック製光学部品
の反射防止膜とその形成方法について説明する。単層反
射防止膜としてはフッ化マグネシウム(MgF2)から
なるものが−殻内であり、その構造を第2図に示し、プ
ラスチック製光学部品として屈折率1.49のアクリル
樹脂(ポリメチルメタクリレート)製光学部品の表面に
形成したときの分光反射特性を第3図(b)に示す。比
較のための第3図(C)は反射防止膜を形成していない
場合のプラスチック製光学部品(ポリメチルメタクリレ
ート製)の分光反射特性を示す図である。第2図におい
て、1はプラスチック製光学部品、5はフン化マグネシ
ウムよりなる反射防止膜である。
Hereinafter, a conventional antireflection film for plastic optical components and a method for forming the same will be described with reference to the drawings. The single-layer anti-reflection film is made of magnesium fluoride (MgF2), whose structure is shown in Figure 2, and the plastic optical component is made of acrylic resin (polymethyl methacrylate) with a refractive index of 1.49. The spectral reflection characteristics when formed on the surface of an optical component are shown in FIG. 3(b). For comparison, FIG. 3(C) is a diagram showing the spectral reflection characteristics of a plastic optical component (made of polymethyl methacrylate) when no antireflection film is formed. In FIG. 2, 1 is a plastic optical component, and 5 is an antireflection film made of magnesium fluoride.

前記反射防止膜5は、通常真空蒸着法によって形成され
るが、最近では反射防止膜とプラスチック製光学部品表
面との密着性や耐久性を向上させるために、プラスチッ
ク光学部品を60°C〜80°Cに加熱して真空蒸着す
る方法や、RFイオンブレーティング方法を用いて反射
防止膜を形成する方法が行われている。この反射防止膜
は1種類の蒸着物質を使用したものであるが、2種類の
蒸着物質を使用したものとしては、二酸化ケイ素とフン
化マグネシウムを用いて3層構造にしたもの(特開昭6
0−129701号公報)や酸化セリウム(CeO2)
と酸化ケイ素(S i OX )の2FHA造の反射防
止膜(特開昭63−172201号公報)などがある。
The anti-reflection film 5 is usually formed by a vacuum deposition method, but recently, in order to improve the adhesion and durability between the anti-reflection film and the surface of the plastic optical component, plastic optical components are heated at 60°C to 80°C. A method of forming an antireflection film using a method of heating to °C and vacuum deposition, and a method of forming an antireflection film using an RF ion blating method has been used. This anti-reflection film uses one type of vapor deposition material, but a film using two types of vapor deposition materials has a three-layer structure using silicon dioxide and magnesium fluoride (JP-A-6
0-129701) and cerium oxide (CeO2)
There is also an antireflection film made of 2FHA (Japanese Unexamined Patent Publication No. 172201/1983) made of silicon oxide (S i OX ) and silicon oxide (S i OX ).

さらに3種類以上の蒸着物質を使用したものとしては、
二酸化ケイ素と酸化アルミニウム(AI□08)と酸化
セリウムの3層構造の反射防止膜(特開昭63−814
02号公報)などがある。
Furthermore, as for those using three or more types of vapor deposition substances,
Anti-reflection coating with a three-layer structure of silicon dioxide, aluminum oxide (AI□08), and cerium oxide (Japanese Patent Application Laid-Open No. 63-814
Publication No. 02).

発明が解決しようとする課題 上記の反射防止膜形成法の従来例である真空奈着方法で
フン化マグネシウムからなる反射防止膜を形成する例で
は、プラスチックの流動温度、熱変形温度が低く、又、
プラス千ツク内部かの放出ガスの問題もあるため、無機
ガラス基板に蒸着膜を形成する時に行う基板加熱(通常
300°C〜400’C)が不可能で強固な蒸着膜を得
ることができず、50°C〜60°C以下の低温でプラ
スチック製光学部品の表面に反射防止膜の形成を行うが
、この低温で形成された反射防止膜はプラスチック表面
との密着性が悪く、耐久性も低いものである。
Problems to be Solved by the Invention In the example of forming an anti-reflective film made of magnesium fluoride by the vacuum deposition method, which is a conventional example of the anti-reflective film forming method described above, the flow temperature and heat distortion temperature of the plastic are low, and ,
Due to the problem of gases released from inside the plastic film, it is impossible to heat the substrate (usually 300°C to 400'C) when forming a deposited film on an inorganic glass substrate, making it impossible to obtain a strong deposited film. First, an anti-reflection film is formed on the surface of plastic optical components at a low temperature of 50°C to 60°C or less, but the anti-reflection film formed at this low temperature has poor adhesion to the plastic surface and has poor durability. is also low.

また、前記のようにプラスチック製光学部品を60°C
〜80°Cに加熱したりRFビイオンブレーティング法
を用いて形成した反射防止膜はクランクが生しやすく、
また、形成時の条件を一定にし、且つプラスチック表面
の状態を一定に保つことは困難であり量産にも適すもの
ではない。さらに、第3図(b)に示すように、フン化
マグネシウムの中層膜での反射防止膜は、中心波長(λ
。)において残存反射率が約1.5%ありプラスチック
製光学部品の反射防止膜としては十分な特性をもってい
ない。
In addition, as mentioned above, the plastic optical components were heated to 60°C.
Anti-reflective coatings formed by heating to ~80°C or using the RF bio-ion blating method are prone to cracking.
Furthermore, it is difficult to maintain constant conditions during formation and to maintain a constant state of the plastic surface, and is not suitable for mass production. Furthermore, as shown in FIG. 3(b), the anti-reflection coating in the middle layer of magnesium fluoride has a center wavelength (λ
. ), the residual reflectance is about 1.5%, which does not have sufficient properties as an antireflection film for plastic optical parts.

またフッ化マグネシウムと二酸化ケイ素の3層反射防止
膜(特開昭60−129701号公報)はクランクは生
じなく耐久性も比較的良いが残存反射率が単層膜と同程
度あり十分な特性ではない。
Furthermore, the three-layer anti-reflection coating made of magnesium fluoride and silicon dioxide (Japanese Patent Application Laid-Open No. 129701/1989) does not cause cranking and has relatively good durability, but the residual reflectance is about the same as a single layer coating, so it does not have sufficient characteristics. do not have.

また酸化セリウムと酸化ケイ素の2層反射防止膜は薄着
物質の酸化セリウムが化学的耐久性に劣るので信頼性に
問題がある。
Furthermore, the two-layer antireflection film of cerium oxide and silicon oxide has a reliability problem because the thinly applied cerium oxide has poor chemical durability.

また3種類以上の蒸着物質を使用したものは材料管理の
必要上それたけ製造コストの上昇を招く。
In addition, the use of three or more types of vapor deposition substances results in an increase in manufacturing costs due to the necessity of material management.

以上のように従来のプラスチック製光学部品の反射防止
膜には、プラスチック表面との密着性が悪い、耐久性に
劣る、反射防止膜としての光学特性が十分でない、化学
的耐久性に劣る、あるいは量産に適していないという課
題を有していた。
As mentioned above, conventional anti-reflection coatings for plastic optical components have poor adhesion to the plastic surface, poor durability, insufficient optical properties as an anti-reflection coating, poor chemical durability, or The problem was that it was not suitable for mass production.

本発明は上記課題に鑑み、プラスチック光学部品に対し
ての密着性、耐久性、光学特性及び量産性に優れた反射
防止膜を提供するものである。
In view of the above problems, the present invention provides an antireflection film that has excellent adhesion to plastic optical components, durability, optical properties, and mass productivity.

課題を解決するための手段 本発明は前記課題を解決するために、プラスチック製光
学部品の表面に、前記表面側から順に第1層、第2層、
第3層の3層構造の茎着膜を形成して反射防止膜を構成
する構造であって、第1層第2層は一酸化ケイ素、第3
層は二酸化ケイ素からなることを特徴とする反射防止膜
と前記3 +・= 構造の反射防止膜を形成する際、第
1層の一酸化ケイ素の層を酸素ガス雰囲気中で形成する
ことを特徴とする反射防止膜の形成方法を提供するもの
である。
Means for Solving the Problems In order to solve the above problems, the present invention provides, on the surface of a plastic optical component, a first layer, a second layer,
The anti-reflection film is constructed by forming a three-layer adhesive film with a third layer, and the first and second layers are made of silicon monoxide, silicon monoxide, and a third layer.
The anti-reflective film is characterized in that the layer is made of silicon dioxide, and when forming the anti-reflective film having the 3+/= structure, the first layer of silicon monoxide is formed in an oxygen gas atmosphere. The present invention provides a method for forming an antireflection film.

作用 本発明は、プラスチック製光学部品の表面に、前記表面
側から順に第1層、第2層、第3層の3層構造を有し、
第1層と第2層は一酸化ケイ素からなり、第3層は二酸
化ケイ素からなる3層反射防止膜であり、第1層の一酸
化ケイ素を形成する際に酸素(02)ガスを導入し酸素
ガス雰囲気中で形成することにより第1層の一酸化ケイ
素の屈折率を第2居の一酸化ケイ素の屈折率よりも小さ
(なるように制御し、かつプラスチック製光学部品との
密着性を向上するものであり、その結果、密着性、耐久
性、光学特性及び批産性に優れた反射防止膜を得ること
ができる。
Function The present invention has a three-layer structure on the surface of a plastic optical component, consisting of a first layer, a second layer, and a third layer in order from the surface side,
The first and second layers are made of silicon monoxide, and the third layer is made of silicon dioxide. Oxygen (02) gas is introduced when forming the first layer of silicon monoxide. By forming the silicon monoxide layer in an oxygen gas atmosphere, the refractive index of the first layer silicon monoxide can be controlled to be smaller than that of the second silicon monoxide layer, and the adhesion with plastic optical components can be improved. As a result, an antireflection film with excellent adhesion, durability, optical properties, and productivity can be obtained.

実施例 以下本発明の一実施例のプラスチック製光学部品の反射
防止膜とその形成方法について図面を参照しながら説明
する。
EXAMPLE Hereinafter, an antireflection film for a plastic optical component according to an example of the present invention and a method for forming the same will be described with reference to the drawings.

第1図は本発明のプラスチック製光学部品の反射防止膜
の構成を示す図であり、第3図(a)はその分光反射特
性を示す。本実施例ではプラスチック製光学部品は、ア
クリル樹脂(ポリメチルメタクリレート)製光学部品で
ある。第1図において、■はプラスチック製光学部品、
2.3は一酸化ケイ素からなる第1層と第2層、4は二
酸化ケイ素からなる第3層であり、本発明における具体
的内容は第1表に示す通りである。
FIG. 1 is a diagram showing the structure of the antireflection film of the plastic optical component of the present invention, and FIG. 3(a) shows its spectral reflection characteristics. In this embodiment, the plastic optical component is an acrylic resin (polymethyl methacrylate) optical component. In Figure 1, ■ is a plastic optical component;
2.3 is a first layer and a second layer made of silicon monoxide, 4 is a third layer made of silicon dioxide, and the specific contents of the present invention are as shown in Table 1.

第1表 (λ。=500nm) 各層の形成方法は以下の通りである。第1層は真空槽内
を真空度1.0X10ろTorrまで排気した後、酸素
を1. OX 10’ Torrまで導入し一酸化ケイ
素を光学的HUJ−λ。/4(λ、)=500nm)の
厚さに蒸着速度、約4人/secで形成した。この時の
一酸化ケイ素の屈折率は1.68である。次に酸素の導
入を停止し真空度1.5 X 10′1iTorrで一
酸化ケイ素を光学的膜厚λ。/4の厚さに蒸着速度、約
10人/secで形成した。このときの−酸化ケイ素の
屈折率は1.90である。次に二酸化ケイ素を続けて光
学的膜厚λ。/4の厚さに蒸着速度、約10人/see
で形成した。
Table 1 (λ.=500 nm) The method of forming each layer is as follows. For the first layer, after evacuating the vacuum chamber to a vacuum level of 1.0 x 10 Torr, oxygen was removed to 1.0 x 10 Torr. Optical HUJ-λ of silicon monoxide was introduced up to OX 10' Torr. /4 (λ, ) = 500 nm) at a deposition rate of about 4 persons/sec. The refractive index of silicon monoxide at this time is 1.68. Next, the introduction of oxygen was stopped, and silicon monoxide was deposited to an optical thickness of λ under a vacuum of 1.5 x 10'1 iTorr. The film was formed at a deposition rate of about 10 persons/sec to a thickness of 1/4. The refractive index of -silicon oxide at this time is 1.90. Next, silicon dioxide is added and optical film thickness λ is determined. /4 thickness and deposition rate, about 10 people/see
It was formed with.

上記本発明の実施例の反射防止膜の密着性、耐久性を薙
認するために行った試験は、(1)粘着テープ剥離試験
(温度40°C1相対温度85%の高温。
The tests conducted to confirm the adhesion and durability of the antireflection film of the above-mentioned examples of the present invention were as follows: (1) Adhesive tape peeling test (temperature: 40°C; relative temperature: 85%; high temperature;

高温雰囲気中に1000時間放置したあと、粘着テープ
をプラスチック製光学部品に密着し、引き剥がす)、(
2)耐湿試験(IjL度40”C1相対湿度95%の高
温、高温雰囲気中に1000時間放置)(3)熱衝撃試
験(温度−30°C970°Cの低温、高温雰囲気中に
交互に30分間ずつ放置を約100時間) 、(4)耐
アルコール試験(エチルアルコールの溶液に10分間浸
せき)である。密着性、耐久性試験結果は第2表に示す
通りである。
After leaving it in a high temperature atmosphere for 1000 hours, stick the adhesive tape to the plastic optical component and peel it off), (
2) Humidity test (IJL degree 40" C1 relative humidity 95% high temperature, left in a high temperature atmosphere for 1000 hours) (3) Thermal shock test (temperature -30°C 970°C low temperature and high temperature atmosphere for 30 minutes alternately (4) Alcohol resistance test (immersion in ethyl alcohol solution for 10 minutes).The results of the adhesion and durability tests are shown in Table 2.

第2表 第2表から分かるように本発明の反射防止膜は、密着性
、耐久性に優れている。さらに従来は反射防止膜形成時
にクラックの発生がみられるものもあったが、本発明の
実施例においては反射防止膜は常時安定していた。分光
反射特性に関しても第3図(a)から分かるように中心
波長(λo=500nm)で、反射率は0.5%以下で
あり反射防止として優れており、かつ広帯域において優
れた特性が得られた。
As can be seen from Table 2, the antireflection film of the present invention has excellent adhesion and durability. Furthermore, although in the past some cracks were observed during the formation of the antireflection film, in the examples of the present invention, the antireflection film was always stable. Regarding the spectral reflection characteristics, as can be seen from Figure 3 (a), the reflectance at the center wavelength (λo = 500 nm) is 0.5% or less, which is excellent as an anti-reflection property, and excellent characteristics can be obtained over a wide band. Ta.

なお、前記実施例では、各膜厚を第1表に示すものにし
たが、膜厚は特に上記の値に限定されるものではなく、
設計波長に応して変化させればよく、構造が第1図に示
すものであれば問題ない。
In addition, in the above example, each film thickness was set as shown in Table 1, but the film thickness is not particularly limited to the above values,
It is only necessary to change it according to the design wavelength, and there is no problem as long as the structure is as shown in FIG.

発明の効果 以上の説明から明らかなように、本発明のプラスチック
製光学部品の反射防止膜は、−酸化ケイ素からなる第1
層と第2層、二酸化ケイ素からなる第3層という3層構
造であり、また第1層目の一酸化ケイ素の層を形成する
ときに酸素を導入して酸素雰囲気中で形成することによ
りプラスチック製光学部品との密着性を高め、反射防止
膜の耐久性の向上と共に、分光反射特性にも優れ、クラ
ックの発生も防げ、従来例の持つ欠点を解消する効果を
存する。また、本発明のプラスチック製光学部品の反射
防止膜は量産にも適しているため、その実用上の価値は
大なるものがある。
Effects of the Invention As is clear from the above explanation, the antireflection coating of the plastic optical component of the present invention has a primary coating made of silicon oxide.
It has a three-layer structure: a first layer, a second layer, and a third layer made of silicon dioxide.Also, when forming the first layer of silicon monoxide, oxygen is introduced and the plastic is formed in an oxygen atmosphere. It improves adhesion to optical parts, improves the durability of the antireflection film, has excellent spectral reflection characteristics, prevents cracks, and has the effect of eliminating the drawbacks of conventional examples. Furthermore, the antireflection film for plastic optical components of the present invention is suitable for mass production, and therefore has great practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のプラスチック製光学部品の反射防止膜
の構成を示す構成図、第2図は従来のプラスチック製光
学部品の反射防止膜の構成を示す構成図、第3図は分光
反射特性を示すグラフである。 酸化ケイ素からなる層、4・・・・・・二酸化ケイ素か
らなる層、5・・・・・・フッ化マグネシウムからなる
層、a・・・・・・本発明の実施例におけるプラスチッ
ク製光学部品の反射防止膜の特性、b・・・・・・従来
のプラスチック製光学部品の反射防止膜の特性(フン化
マグネシウムからなる単層膜)、C・・・・・・反射防
止膜を形成していないプラスチック製光学部品の特性。
Fig. 1 is a block diagram showing the structure of the anti-reflection film of the plastic optical component of the present invention, Fig. 2 is a block diagram showing the structure of the anti-reflection film of the conventional plastic optical part, and Fig. 3 is the spectral reflection characteristics. This is a graph showing. Layer made of silicon oxide, 4... Layer made of silicon dioxide, 5... Layer made of magnesium fluoride, a... Plastic optical component in the embodiment of the present invention Characteristics of anti-reflection film of conventional plastic optical parts (single layer film made of magnesium fluoride), C: Characteristics of anti-reflection film of conventional plastic optical components, C... Characteristics of anti-reflection film of conventional plastic optical components No characteristics of plastic optical components.

Claims (3)

【特許請求の範囲】[Claims] (1)プラスチック製光学部品の表面に、前記表面側か
ら順に第1層、第2層、第3層の3層構造を有し、前記
第1層、第2層は一酸化ケイ素(SiO)からなり、第
3層は二酸化ケイ素(SiO_2)からなることを特徴
とするプラスチック製光学部品の反射防止膜。
(1) The surface of the plastic optical component has a three-layer structure of a first layer, a second layer, and a third layer in order from the surface side, and the first layer and the second layer are made of silicon monoxide (SiO). An antireflection film for plastic optical parts, characterized in that the third layer is made of silicon dioxide (SiO_2).
(2)第1層の一酸化ケイ素の屈折率が第2層の一酸化
ケイ素の屈折率よりも小さいことを特徴とする請求項(
1)記載のプラスチック製光学部品の反射防止膜。
(2) Claim characterized in that the refractive index of silicon monoxide in the first layer is smaller than the refractive index of silicon monoxide in the second layer
1) Antireflection coating for plastic optical components described above.
(3)3層構造の反射防止膜において第1層の一酸化ケ
イ素の層は酸素ガス雰囲気中で形成することを特徴とす
るプラスチック製光学部品の反射防止膜の形成方法。
(3) A method for forming an antireflection film for a plastic optical component, wherein the first silicon monoxide layer in the three-layer antireflection film is formed in an oxygen gas atmosphere.
JP1270653A 1989-10-18 1989-10-18 Antireflection film of optical parts made of plastic and production thereof Pending JPH03132601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1270653A JPH03132601A (en) 1989-10-18 1989-10-18 Antireflection film of optical parts made of plastic and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1270653A JPH03132601A (en) 1989-10-18 1989-10-18 Antireflection film of optical parts made of plastic and production thereof

Publications (1)

Publication Number Publication Date
JPH03132601A true JPH03132601A (en) 1991-06-06

Family

ID=17489086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1270653A Pending JPH03132601A (en) 1989-10-18 1989-10-18 Antireflection film of optical parts made of plastic and production thereof

Country Status (1)

Country Link
JP (1) JPH03132601A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0529268A2 (en) * 1991-08-28 1993-03-03 Leybold Aktiengesellschaft Anti-reflex hard coating for plastic lenses
CN100345000C (en) * 2002-09-09 2007-10-24 新明和工业株式会社 Optical anti-reflection film and its film coating method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544152A (en) * 1977-06-13 1979-01-12 Seiko Epson Corp Production of reflection preventive film of transparent optical element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544152A (en) * 1977-06-13 1979-01-12 Seiko Epson Corp Production of reflection preventive film of transparent optical element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0529268A2 (en) * 1991-08-28 1993-03-03 Leybold Aktiengesellschaft Anti-reflex hard coating for plastic lenses
CN100345000C (en) * 2002-09-09 2007-10-24 新明和工业株式会社 Optical anti-reflection film and its film coating method

Similar Documents

Publication Publication Date Title
US4979802A (en) Synthetic resin half-mirror
JPH03109503A (en) Antireflection film of optical parts made of plastic and formation thereof
JPS5860701A (en) Reflection preventing film
JP3624082B2 (en) Antireflection film and method for manufacturing the same
JPS6135521B2 (en)
JPH07104102A (en) Water repellant reflection preventive film for glass-made optical parts and production thereof
JPH03132601A (en) Antireflection film of optical parts made of plastic and production thereof
JPH10123303A (en) Antireflection optical parts
JPH0446301A (en) Antireflection film of optical parts made of plastic and formation thereof
JPH04156501A (en) Reflection preventing film for optical part made of synthetic resin
JPH0442201A (en) Antireflecting film of plastic optical parts and formation thereof
JPH06208002A (en) Antireflection film of plastic optical parts and its formation
JP2777937B2 (en) Resin optical element and method of manufacturing the same
JPH0474681B2 (en)
JPH05313001A (en) Reflection preventing film for plastic made optical part
JPH08146202A (en) Optical parts having antireflection film
JPS63220101A (en) Antireflection film for plastic optical parts
JPH02163702A (en) Antireflection film of optical parts made of plastic
JPS63172201A (en) Two-layer antireflection coating
JPH0926501A (en) Synthetic resin optical parts having antireflection film
JPS6381402A (en) Reflection reducing coating of plastic optical parts
JPH0483201A (en) Antireflection film to optical parts made of synthetic resin
JPS6042442B2 (en) anti-reflection film
JPS60130703A (en) Antireflection film for plastic substrate
JPH04240802A (en) Rear surface reflection mirror of optical parts made of synthetic resin and production thereof