JPS63172201A - Two-layer antireflection coating - Google Patents

Two-layer antireflection coating

Info

Publication number
JPS63172201A
JPS63172201A JP62004558A JP455887A JPS63172201A JP S63172201 A JPS63172201 A JP S63172201A JP 62004558 A JP62004558 A JP 62004558A JP 455887 A JP455887 A JP 455887A JP S63172201 A JPS63172201 A JP S63172201A
Authority
JP
Japan
Prior art keywords
film
cerium oxide
refractive index
test
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62004558A
Other languages
Japanese (ja)
Inventor
Keiji Kuriyama
栗山 桂司
Koichi Sasagawa
孝市 笹川
Norio Shibata
規夫 柴田
Takeshi Nosaka
野坂 竹志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP62004558A priority Critical patent/JPS63172201A/en
Publication of JPS63172201A publication Critical patent/JPS63172201A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To obtain a antireflection coating having adhesion, heat resistance and moisture resistance by laminating cerium oxide having a refractive index higher than that of a base plate and Siox having a refractive index lower than that of the base successively on the base. CONSTITUTION:Cerium oxide with 1/4lambda0 is formed on the base plate. Thin film accumulation technique such as vacuum deposition, ion plating and sputtering is used as the forming method. Then, an 1/4lambda0 film consisting of Siox (provided that 0<x<2) is formed on the cerium oxide. In this case, Sio is used as a vapor-deposition source, the Siox film is formed by leading the small quantity of oxigen gas into a vacuum chamber and vapor depositing in a low vacuum and bd=1.40-1.90 refractive index is shown in accordance with the value of (x). Consequently, the inexpensive and thin antireflection coating excellent in adhesion, heat resistance and moisture resistance can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガラスおよびプラスチック製光学部品の2層
反射防止膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a two-layer antireflection coating for glass and plastic optical components.

〔従来の技術〕[Conventional technology]

ガラスおよびプラスチック製光学部品例えばレンズは、
一般に表面に反射防止膜を設け、これにより透過率を向
上させることが必要である。
Glass and plastic optical components such as lenses are
Generally, it is necessary to provide an antireflection film on the surface to improve transmittance.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この場合、反射防止膜には密着性、耐熱性(80°C)
、耐湿性(75℃・90%)が要求される。
In this case, the anti-reflection film has adhesion and heat resistance (80°C).
, humidity resistance (75°C/90%) is required.

従来の反射防止膜は、耐熱性(80’c)、耐湿性(7
5°C・90%)を向上させるため、少なくとも3層以
上の構成にしなければならなかった。例えば特開昭60
−225101号公報、特開昭60−202401号公
報を参照されたい。3N構造の反射防止膜は、2層構造
のそれに比べそれだけ製造コストの上昇を招く。
Conventional anti-reflection coatings have heat resistance (80'c) and moisture resistance (70'c).
In order to improve the temperature (5°C/90%), it was necessary to have a structure of at least three layers. For example, JP-A-60
Please refer to JP-A-225101 and JP-A-60-202401. An antireflection film with a 3N structure causes a corresponding increase in manufacturing cost compared to a two-layer structure.

また、ガラス基板に比べて比較的密着の悪いガプラスチ
ック基板に反射防止膜を設ける場合、基板側の第1層に
Stow (酸化ケイ素:但し1<X〈2)を設けるこ
とによって密着性を向上させることが提案されている(
例えば特開昭昭51−50748参照)。
In addition, when providing an anti-reflection film on a plastic substrate, which has relatively poor adhesion compared to a glass substrate, adhesion can be improved by providing Stow (silicon oxide: where 1<X<2) on the first layer on the substrate side. It is proposed to let (
For example, see Japanese Patent Application Laid-Open No. 51-50748).

ところが5iOXは基板より低屈折率物質のため基板側
から第1層にSiOヶを施し反射防止膜を形成するため
には、そのうえに少なくとも更に2層必要となってしま
う。従って、プラスチック基板に2層構成で密着のよい
反射防止膜を得ることはできなかった。
However, since 5iOX is a material with a lower refractive index than the substrate, at least two additional layers are required in order to form an antireflection film by applying SiO to the first layer from the substrate side. Therefore, it has not been possible to obtain an antireflection film with a two-layer structure and good adhesion to a plastic substrate.

本発明の目的は、これらの欠点を解決し、密着性、耐熱
性(80’c) 、耐湿性(75°C・90%)を有す
る2層構成の反射防止膜を提供することを目的とする。
The purpose of the present invention is to solve these drawbacks and provide a two-layer antireflection film having good adhesion, heat resistance (80'C), and moisture resistance (75°C, 90%). do.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、ガラスおよびプラスチック基板側から順に、
基板よりも高屈折率物質の第1層として酸化セリウム(
CeO□)、基板よりも低屈折率物質の第2層としてS
iOx (1< x< 2)を積層したことを特徴とす
る2層構成の反射防止膜を提供する。
In the present invention, in order from the glass and plastic substrate side,
Cerium oxide (
CeO□), S as a second layer of a material with a lower refractive index than the substrate
An antireflection film having a two-layer structure characterized by laminating iOx (1<x<2) is provided.

(作用) 本発明の2層反射防止膜を形成するには、ます、基板上
に酸化セリウムのZλ。膜(λ0−基準波長)を形成す
る。形成法としては一般には真空蒸着・イオンブレーテ
ィング、スバ・ツタリングなどの薄膜堆積技術が使用さ
れる。
(Function) To form the two-layer antireflection film of the present invention, first, Zλ of cerium oxide is deposited on the substrate. Form a film (λ0 - reference wavelength). As a forming method, thin film deposition techniques such as vacuum evaporation, ion blating, and sputtering are generally used.

次いで、SiOx (ただし1<x< 2)からなる×
λ0膜を形成する。この物質自身は既知であり、一般に
は茎着源としてSiOを用い、真空チャンバー内に少量
の酸素ガスを導入して低真空中で蒸着することにより形
成される。この場合、細かい製造条件によりx=l〜2
 (但し、両端を含まず)又はx=1.3〜1.9又は
x=1.4〜1.9の透明な膜が得られる。この膜はX
の値に応じてnd−’1.40〜1.90の屈折率を示
す。
Next, × consisting of SiOx (where 1<x<2)
Form a λ0 film. This material itself is known, and is generally formed by vapor deposition in a low vacuum by introducing a small amount of oxygen gas into a vacuum chamber using SiO as a stem deposition source. In this case, x = l ~ 2 depending on detailed manufacturing conditions
(However, both ends are not included) or a transparent film with x=1.3 to 1.9 or x=1.4 to 1.9 is obtained. This film is
It shows a refractive index of nd-'1.40 to 1.90 depending on the value of nd-'.

蒸着に代えて高周波マグネI・ロン・スパッタリングを
用いてもよい。
High frequency Magne I Ron sputtering may be used instead of vapor deposition.

以下、実施例により本発明を具体的に説明するが、本発
明はこれに限定されるものではない。
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto.

(実施例1) 屈折率1.49のアクリル樹脂(ポリメチルメタクリレ
ート)製の基板を用い、基板表面に、酸化セリウム(C
eOz)を蒸着源として、真空度1×1O−5Torr
の条件で蒸着を行ない、膜厚×20(λ。−780nm
) の酸化セリウJ、1莫(CeO2;  n 、I=
2.10)を形成した。
(Example 1) A substrate made of acrylic resin (polymethyl methacrylate) with a refractive index of 1.49 was used, and cerium oxide (C
eOz) as the evaporation source, vacuum level 1×1O-5 Torr
Vapor deposition was performed under the following conditions, and the film thickness was 20 (λ. -780 nm).
) of cerium oxide J, 1 mo (CeO2; n, I=
2.10) was formed.

次にチャンバ内に酸素を3〜6 X 10− ’Tor
r導入し、酸化セリウム膜の上に、酸化ケイ素(Sin
)を楚着源として衆着し、膜厚Zλ。のSiOx膜(n
a=1.45 )を積層させ、2層反射防止膜を形成し
た。
Next, add oxygen to the chamber at 3-6 x 10-'Tor.
silicon oxide (Sin) is introduced on top of the cerium oxide film.
) as the deposition source, and the film thickness is Zλ. SiOx film (n
a=1.45) were laminated to form a two-layer antireflection film.

同様に基板の裏面にも同じ2層反射防止膜を形成した。Similarly, the same two-layer antireflection film was formed on the back side of the substrate.

この反射防止膜について、分光反射率Rを測定し、10
0−2R=Tの式により分光透過率Tを求めた。この結
果を第2図の曲線1に示す。
The spectral reflectance R of this anti-reflection film was measured and 10
Spectral transmittance T was determined using the formula 0-2R=T. The results are shown in curve 1 of FIG.

また、反射防止膜を設けない基板について、同様に分光
透過率Tを求めたので、これを第2図に曲線2に示す。
Further, the spectral transmittance T was determined in the same manner for a substrate without an antireflection film, and this is shown as curve 2 in FIG.

(実施例2) 屈折率1.50のガラスレンズを基板として用い、実施
例1と同様に、膜厚2λ0(λ。−780nm)の酸化
セリウム膜(na =2.10)  と、膜厚Aλ。の
SiOx膜(nd=1.45 )を順に蒸着し、基板の
表裏両面に2層反射防止膜を形成した。
(Example 2) A glass lens with a refractive index of 1.50 was used as a substrate, and in the same way as in Example 1, a cerium oxide film (na = 2.10) with a film thickness of 2λ0 (λ. -780 nm) and a film thickness Aλ . SiOx films (nd=1.45) were sequentially deposited to form a two-layer antireflection film on both the front and back surfaces of the substrate.

(実施例3) 屈折率1.58のポリカーボネート・レンズを基板とし
て、実施例1と同様に、膜厚騒λ。(λ。−780nm
)の酸化セリウム(na =2.10)  と、膜厚A
λ0のSiOx膜(nd=1.45 )を順に蒸着し、
基板の表面に2N反射防止膜を形成した。
(Example 3) Using a polycarbonate lens with a refractive index of 1.58 as a substrate, the film thickness was changed to λ in the same manner as in Example 1. (λ.-780nm
) of cerium oxide (na = 2.10) and film thickness A
A SiOx film (nd=1.45) of λ0 was sequentially deposited,
A 2N antireflection film was formed on the surface of the substrate.

(物性試験) 前記実施例で得られた2層反射防止膜について次の試験
に供した。
(Physical Property Test) The two-layer antireflection film obtained in the above example was subjected to the following test.

(試験1)密着性: 実施例1〜3で製作した反射防止膜にセロハンテープを
張り付けた後、テープの一端を手に持って素早< #、
+1がず。
(Test 1) Adhesion: After pasting cellophane tape on the anti-reflection film produced in Examples 1 to 3, hold one end of the tape in your hand and quickly
+1 gazu.

その結果、いずれの反射防止膜も剥離することはなかっ
た。
As a result, none of the antireflection films peeled off.

(試験2)耐熱性: 実施例1〜3で製作した反射防止膜を有するレンズを、
80°Cの恒温槽内に200時間放置した後、試験1の
密着性と光学特性を測定した。
(Test 2) Heat resistance: The lenses with antireflection films produced in Examples 1 to 3 were
After being left in a constant temperature bath at 80°C for 200 hours, the adhesion and optical properties of Test 1 were measured.

その結果、いずれの反射防止膜も剥離することはなかっ
た。また、光学特性も試験前と変化なかった。
As a result, none of the antireflection films peeled off. Furthermore, the optical properties did not change from before the test.

更に、反射防止膜の表面を顕微鏡で観察したがクラック
は発見できなかった。
Furthermore, the surface of the antireflection film was observed under a microscope, but no cracks were found.

(試験3)耐湿性: 実施例1〜3で製作した反射防止膜を有するしンズを、
75℃・90%の恒温恒湿槽内に500時間放置した後
、試験1の密着性と光学特性を測定した。
(Test 3) Moisture resistance: The resin with the antireflection film produced in Examples 1 to 3 was
After being left in a constant temperature and humidity chamber at 75° C. and 90% for 500 hours, the adhesion and optical properties of Test 1 were measured.

その結果、密着性、光学特性とも、試験前と変化がなか
った。また、反射防止膜の表面を顕微鏡で観察したがク
ラックは発見できなかった。
As a result, both adhesion and optical properties were unchanged from before the test. Furthermore, the surface of the antireflection film was observed under a microscope, but no cracks were found.

(試験4)耐溶剤性: 実施例1〜3で製作した反射防止膜の表面を、エチルエ
ーテルとメチルアルコールの混合波(混合比8:2)を
浸み込ませた綿棒で音が出るまで擦ったが、傷付かなか
った。その後、密着性、光学特性を測定したが、試験前
と変化なかった。
(Test 4) Solvent resistance: The surface of the anti-reflection film produced in Examples 1 to 3 was coated with a cotton swab impregnated with a mixture of ethyl ether and methyl alcohol (mixing ratio 8:2) until a sound was heard. I rubbed it, but it didn't hurt. Thereafter, the adhesion and optical properties were measured, and there was no change from before the test.

(試験5)耐久性: 実施例1〜3で製作した反射防止膜を有するレンズを、
40℃・90%の恒温恒湿槽内に5000時間放置後、
試験1の密着性と試験4の耐溶剤性を測定したが、試験
前と変化はなかった。
(Test 5) Durability: The lenses with antireflection films produced in Examples 1 to 3 were
After being left in a constant temperature and humidity chamber at 40℃ and 90% for 5000 hours,
Adhesion in Test 1 and solvent resistance in Test 4 were measured, and there was no change from before the test.

(試験6)耐熱耐湿試験後の耐溶剤性;実施例1〜3で
製作した反射防止膜を有するレンズを、試験2の耐熱試
験とその後試験3の耐湿試験にそれぞれ供した後、試験
4の耐溶剤性を測定したが、試験前と変化がなかった。
(Test 6) Solvent resistance after heat resistance and humidity resistance test: The lenses with antireflection films produced in Examples 1 to 3 were subjected to the heat resistance test in Test 2 and then the humidity resistance test in Test 3, and then The solvent resistance was measured and there was no change from before the test.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明による2層反射防止膜は、2層とい
う最も簡単な構造でそのため製造コストが安価で、かつ
薄くて済み、それでいて密着性、耐熱性(80°C)、
耐湿性(75°C・90%)、耐溶剤性、耐久性及び耐
熱耐湿試験後の耐溶剤性の各特性に優れている。
As described above, the two-layer anti-reflection film according to the present invention has the simplest structure of two layers, and therefore has low manufacturing cost and is thin, yet has good adhesion, heat resistance (80°C),
It has excellent moisture resistance (75°C/90%), solvent resistance, durability, and solvent resistance after heat and humidity tests.

従って、本発明の反射防止膜は、経時変化がなく、反射
防止効果を長時間保持することができるので本発明は当
該技術の発展に多大な貢献をすることが期待される。
Therefore, since the antireflection film of the present invention does not change over time and can maintain its antireflection effect for a long time, the present invention is expected to make a significant contribution to the development of this technology.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例1にかかる2層反射防止膜を
有する基板の垂直断面を説明する概念図である。 第2図は、分光透過率Tを示すグラフであり、曲vA1
は、前記実施例1で形成した2層反射防止膜を表裏両面
に有するアクリル樹脂基板の分光透過率Tを示し、曲線
2は、反射防止膜を存しない同じアクリル樹脂基板の分
光透過率Tを示す。
FIG. 1 is a conceptual diagram illustrating a vertical cross section of a substrate having a two-layer antireflection film according to Example 1 of the present invention. FIG. 2 is a graph showing the spectral transmittance T, and the curve vA1
curve 2 shows the spectral transmittance T of the acrylic resin substrate having the two-layer antireflection film formed in Example 1 on both the front and back surfaces, and curve 2 shows the spectral transmittance T of the same acrylic resin substrate without the antireflection film. show.

Claims (1)

【特許請求の範囲】[Claims] 基板側から、高屈折率物質の第1層として酸化セリウム
を、低屈折率物質の第2層としてSiO_x(ただし1
<x<2)を順に積層したことを特徴とする2層構成の
反射防止膜。
From the substrate side, cerium oxide is used as the first layer of high refractive index material, and SiO_x (however, 1
An antireflection film having a two-layer structure, characterized in that <x<2) are laminated in order.
JP62004558A 1987-01-12 1987-01-12 Two-layer antireflection coating Pending JPS63172201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62004558A JPS63172201A (en) 1987-01-12 1987-01-12 Two-layer antireflection coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62004558A JPS63172201A (en) 1987-01-12 1987-01-12 Two-layer antireflection coating

Publications (1)

Publication Number Publication Date
JPS63172201A true JPS63172201A (en) 1988-07-15

Family

ID=11587375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62004558A Pending JPS63172201A (en) 1987-01-12 1987-01-12 Two-layer antireflection coating

Country Status (1)

Country Link
JP (1) JPS63172201A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172269A (en) * 1989-06-26 1992-12-15 Matsushita Electric Industrial Co., Ltd. Anti-reflection film for plastic optical component
JP2007025201A (en) * 2005-07-15 2007-02-01 Toppan Printing Co Ltd Reflection preventive material and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172269A (en) * 1989-06-26 1992-12-15 Matsushita Electric Industrial Co., Ltd. Anti-reflection film for plastic optical component
JP2007025201A (en) * 2005-07-15 2007-02-01 Toppan Printing Co Ltd Reflection preventive material and its manufacturing method

Similar Documents

Publication Publication Date Title
JPH03109503A (en) Antireflection film of optical parts made of plastic and formation thereof
JPS5860701A (en) Reflection preventing film
JP3221764B2 (en) Anti-reflection coating for optical parts made of synthetic resin
JPS63172201A (en) Two-layer antireflection coating
JPH07104102A (en) Water repellant reflection preventive film for glass-made optical parts and production thereof
JPH10123303A (en) Antireflection optical parts
JPS60130704A (en) Antireflection film for plastic substrate
JP3497236B2 (en) Anti-reflection coating for high precision optical components
JP3481997B2 (en) Moisture resistant anti-reflective coating
JP3111243B2 (en) Optical component having laminated antireflection film
JPH0553001A (en) Multilayered antireflection film of optical parts made of synthetic resin
JPH03132601A (en) Antireflection film of optical parts made of plastic and production thereof
JPH05313001A (en) Reflection preventing film for plastic made optical part
JPH08146202A (en) Optical parts having antireflection film
JPS6381402A (en) Reflection reducing coating of plastic optical parts
JPH06208002A (en) Antireflection film of plastic optical parts and its formation
JPH04156501A (en) Reflection preventing film for optical part made of synthetic resin
JPS60130702A (en) Antireflection film for plastic substrate
JPH07234302A (en) Moisture resistant antireflection film
JP2546203B2 (en) Optical element using TiOx thin film
JPH06138303A (en) Antireflection film of plastic optical parts
JP3426286B2 (en) Moisture resistant anti-reflective coating
JPH04116501A (en) Optical parts having conductive antireflection coat
JPH04330401A (en) Optical parts having antireflection film
JPH04217203A (en) Multiple-layer anti-reflection film for optical parts made of synthetic resin and manufacture thereof