JPH0442201A - Antireflecting film of plastic optical parts and formation thereof - Google Patents

Antireflecting film of plastic optical parts and formation thereof

Info

Publication number
JPH0442201A
JPH0442201A JP2150949A JP15094990A JPH0442201A JP H0442201 A JPH0442201 A JP H0442201A JP 2150949 A JP2150949 A JP 2150949A JP 15094990 A JP15094990 A JP 15094990A JP H0442201 A JPH0442201 A JP H0442201A
Authority
JP
Japan
Prior art keywords
layer
film
hafnium oxide
plastic optical
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2150949A
Other languages
Japanese (ja)
Inventor
Toshiaki Ogura
敏明 小倉
Nahoko Shimamura
島村 奈保子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2150949A priority Critical patent/JPH0442201A/en
Publication of JPH0442201A publication Critical patent/JPH0442201A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the adhesive property to plastic optical parts and to improve the durability of the antireflecting film by forming this film into a three-layered structure of a 1st layer and 2nd layer consisting of hafnium oxide and a 3rd layer consisting of silicon dioxide and forming the film by introducing gaseous oxygen at the time of forming the 1st layer. CONSTITUTION:The vapor deposited films of the three-layered structure of the 1st layer and 2nd layers 2, 3 consisting of the hafnium oxide and the 3rd layer 4 consisting of the silicon dioxide are formed on the surface of a plastic lens 1 to constitute the antireflecting film. The gaseous oxygen is introduced and the hafnium oxide of the 1st layer 2 is formed in the oxidizing gaseous atmosphere at the time of forming this film, by which the refractive index of the hafnium oxide of the 1st layer 2 is so controlled as to be smaller than the refractive index of the hafnium oxide of the 2nd layer 3. The antireflecting film having the excellent adhesive property to the plastic optical parts, durability and optical characteristics is obtd. in this way.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はプロジェクションテレビ、ビデオカメラ、スチ
ルカメラ等の光学系に使用されるプラスチック製光学部
品の反射防止膜とその形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an antireflection coating for plastic optical components used in optical systems such as projection televisions, video cameras, and still cameras, and a method for forming the antireflection coating.

従来の技術 従来、レンズなどの光学部品には無機ガラスが多く使用
されてきたが、近年、軽量で加工が容易であり、かつ量
産に適している等で優れているプラスチックがレンズ等
の光学部品の素材として用いられるようになってきた。
Conventional technology Traditionally, inorganic glass has been widely used for optical parts such as lenses, but in recent years, plastics have been used for optical parts such as lenses because they are lightweight, easy to process, and suitable for mass production. It has come to be used as a material for

しかしながら、プラスチック製光学部品も、無機ガラス
と同様に表面での光の反射が大きいという欠点がある。
However, like inorganic glass, optical components made of plastic also have the disadvantage of large reflection of light on their surfaces.

この欠点を解消するために、プラスチック製光学部品の
表面に無機ガラスと同様の反射防止膜を形成する。反射
防止膜は通常、真空蒸着法によって形成される。
In order to eliminate this drawback, an antireflection film similar to that of inorganic glass is formed on the surface of plastic optical components. Antireflection coatings are typically formed by vacuum deposition.

以下、図面を参照しながら従来のプラスチック製光学部
品の反射防止膜とその形成方法について説明する。単層
反射防止膜としてはフッ化マグネシウム(MgFz)か
らなるものが−船釣であり、その構造を第2図に示し、
プラスチック製光学部品として屈折率1.49のアクリ
ル樹脂(ポリメチルメタクリレート)製プラスチックレ
ンズの表面に形成したときの分光反射特性を第3図の7
に示す。
Hereinafter, a conventional antireflection film for plastic optical components and a method for forming the same will be described with reference to the drawings. The single-layer anti-reflection coating is made of magnesium fluoride (MgFz), and its structure is shown in Figure 2.
7 in Figure 3 shows the spectral reflection characteristics when formed on the surface of a plastic lens made of acrylic resin (polymethyl methacrylate) with a refractive index of 1.49 as a plastic optical component.
Shown below.

比較のための第3図の8は反射防止膜を形成していない
場合のプラスチックレンズの分光反射特性を示す図であ
る。第2図において、1はプラスチックレンズ、5はフ
ッ化マグネシウムよりなる反射防止膜である。前記反射
防止膜5は、通常真空蒸着法によって形成される。この
反射防止膜は1種類の蒸着物資を使用したものであるが
、他に1種類の蒸着物質を用いたものでは1酸化ケイ素
(Sin)のみを用いた反射防止膜も知られている( 
USP4497539号公報)。2種類の蒸着物質を用
いたものでは、二酸化ケイ素(SiOz)とフッ化マグ
ネシウムを用いて3層構造にしたもの(特開昭6012
9701号公報)や酸化セリウム(CeO2)と酸化ケ
イ素(Sin)の2層構造の反射防止膜(特開昭631
72201号公報)などがある。さらに、3種類以上の
 蒸着物質を用いたものとしては、二酸化ケイ素(Si
Oz)と酸化アルミニウム(A1203)と酸化セリウ
ムの3層構造の反射防止膜(特開昭63−81402号
公報)などがある。
For comparison, 8 in FIG. 3 is a diagram showing the spectral reflection characteristics of a plastic lens without an antireflection film formed thereon. In FIG. 2, 1 is a plastic lens, and 5 is an antireflection film made of magnesium fluoride. The antireflection film 5 is usually formed by a vacuum deposition method. This anti-reflection film uses one type of vapor deposition material, but there is also an anti-reflection film using only silicon monoxide (Sin) that uses one type of vapor deposition material (
USP No. 4497539). Among those using two types of vapor deposition materials, a three-layer structure using silicon dioxide (SiOz) and magnesium fluoride (Japanese Patent Laid-Open No. 6012
No. 9701) and an antireflection film with a two-layer structure of cerium oxide (CeO2) and silicon oxide (Sin) (Japanese Patent Laid-Open No. 631)
72201). Furthermore, silicon dioxide (Si
There is an anti-reflection film having a three-layer structure of aluminum oxide (A1203), aluminum oxide (A1203), and cerium oxide (Japanese Unexamined Patent Publication No. 81402/1983).

発明が解決しようとする課題 従来のフッ化マグネシウムからなる反射防止膜を形成す
る例では、プラスチックの流動温度、熱変形温度が低い
ため、無機ガラスに反射防止膜を形成する時のような基
板加熱(通常300″C〜400″C)を行って強固な
反射防止膜が形成できない。従って、50〜60°C以
下の低温でプラスチック製光学部品の表面に反射防止膜
の形成を行う。しかし、このように低温で形成された反
射防止膜はフッ化マグネシウムの結晶製が低く、非常に
軟らかい膜であるために傷つきやすく、耐久性も低いも
のである。そのため最近では反射防止膜とプラスチック
製光学部品表面との密着性や耐久性を向上させるために
、プラスチック製光学部品を60〜80°Cに加熱して
真空蒸着する方法や、RFイオンブレーティング方法を
用いて反射防止膜を形成する方法が行われている。とこ
ろがこのような方法は蒸着条件の制御が微妙であり、形
成時に反射防止膜にクラックができやすい。反射防止膜
にクランクができないよう形成条件を一定にし、かつプ
ラスチック表面の状態を一定に保つことは困難であり、
量産にも適するものではない。さらに、光学部品の素材
としてよく使われるポリメチルメタクリレ−) (PM
MA) 、ジアリルグリコールカーボネート(CR39
)のようなプラスチックでは屈折率がそれぞれ訳1.4
9.1.50と低くフッ化マグネシウム(屈折重訳1.
38)の単層膜では第3図の7に示すように、残留反射
率が約1.5%あり反射防止膜として十分な特性ではな
い。また従来提案されている。−酸化ケイ素のみを用い
た3層反射防止膜(USP4497539号公報)に関
しては、蒸着物質のSiOは蒸着条件によって屈折率が
大きく変化することが知られており、その範囲は約1.
50〜1.90である。
Problems to be Solved by the Invention In the conventional example of forming an anti-reflective film made of magnesium fluoride, the flow temperature and thermal deformation temperature of plastic are low, so the substrate heating required when forming an anti-reflective film on inorganic glass is difficult. (usually at 300″C to 400″C), a strong antireflection film cannot be formed. Therefore, an antireflection film is formed on the surface of a plastic optical component at a low temperature of 50 to 60°C or lower. However, the antireflection film formed at such a low temperature has low magnesium fluoride crystal content and is a very soft film that is easily damaged and has low durability. Therefore, recently, in order to improve the adhesion and durability between the anti-reflection film and the surface of plastic optical components, methods have been developed in which plastic optical components are heated to 60 to 80°C and vacuum deposited, and RF ion blating methods are used. A method of forming an antireflection film using However, in this method, the deposition conditions are delicately controlled, and the antireflection film is likely to crack during formation. It is difficult to maintain constant formation conditions and maintain a constant condition of the plastic surface so that the anti-reflective film does not develop cranks.
It is not suitable for mass production. Furthermore, polymethyl methacrylate (PM), which is often used as a material for optical components,
MA), diallyl glycol carbonate (CR39
) has a refractive index of 1.4.
As low as 9.1.50, magnesium fluoride (refraction heavy translation 1.
The single layer film of No. 38) had a residual reflectance of about 1.5%, as shown in 7 in FIG. 3, and did not have sufficient properties as an antireflection film. It has also been proposed in the past. - Regarding the three-layer antireflection film using only silicon oxide (USP No. 4,497,539), it is known that the refractive index of SiO, which is the vapor deposition material, changes greatly depending on the vapor deposition conditions, and the range is about 1.
50 to 1.90.

しかしながら、SiOの屈折率は経時的に変化しやすく
、従って反射防止膜としての光学特性も不安定であると
いう問題がある。
However, there is a problem in that the refractive index of SiO tends to change over time, and therefore the optical properties as an antireflection film are also unstable.

フッ化マグネシウムと二酸化ケイ素の3層反射防止膜(
特開昭60−129701号公報)は、フッ化マグネシ
ウムの層を二酸化ケイ素の層が挟んでいるためにクラッ
クも生じな(耐久性も比較的良い。
Three-layer anti-reflection coating of magnesium fluoride and silicon dioxide (
JP-A-60-129701) has a magnesium fluoride layer sandwiched between silicon dioxide layers, so no cracks occur (durability is also relatively good).

しかし、残留反射率が単層膜と同程度であり十分な特性
ではない。
However, the residual reflectance is about the same as that of a single layer film, so it does not have sufficient characteristics.

酸化セリウムと酸化ケイ素の2層反射防止膜(特開昭6
3−172201号公報)は薄膜物質のSiOの屈折率
が経的時に変化しやすいので光学特性の安定性に問題が
ある。また、3種類以上の蒸着物質を使用した反射防止
膜(特開昭63−81402号公報)は材料管理の必要
上それたけ製造コストの上昇を招く。以上のように従来
のプラスチック製光学部品の反射防止膜には、プラスチ
ック表面との密着性が悪い、耐久性にも劣る、反射防止
膜としての光学特性が十分でない、光学特性の安定性に
欠ける、あるいは量産に適していないという課題を有し
ていた。
Double-layer anti-reflection coating of cerium oxide and silicon oxide (Unexamined Japanese Patent Publication No. 6
3-172201) has a problem in the stability of optical properties because the refractive index of SiO, which is a thin film material, tends to change over time. Furthermore, an antireflection film (Japanese Patent Application Laid-open No. 81402/1983) using three or more types of vapor deposition substances increases manufacturing costs due to the necessity of material management. As mentioned above, conventional anti-reflection coatings for plastic optical components have problems such as poor adhesion to the plastic surface, poor durability, insufficient optical properties as an anti-reflection coating, and lack of stability in optical properties. , or that it was not suitable for mass production.

本発明は上記課題に鑑み、プラスチック製光学部品に対
しての密着性、耐久性、光学特性および量産性に優れた
反射防止膜を提供するものである。
In view of the above problems, the present invention provides an antireflection film that has excellent adhesion to plastic optical components, durability, optical properties, and mass productivity.

課題を解決するための手段 本発明は前記課題を解決するために、プラスチック製光
学部品の表面に、表面側から順に第1層、第2層、第3
層の3層構造の蒸着膜を形成して反射防止膜を構成する
構造であって、第1層、第2層は酸化ハフニウム、第3
層は二酸化ケイ素からなる反射防止膜と前記3層構造の
反射防止膜を形成する際、第1層の酸化ハフニウムの層
を酸素ガス雰囲気中で形成することを特徴とする反射防
止膜の形成方法を提供するものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a first layer, a second layer, and a third layer on the surface of a plastic optical component in order from the surface side.
This is a structure in which an antireflection film is formed by forming a vapor deposited film with a three-layer structure, in which the first layer and the second layer are made of hafnium oxide, and the third layer is made of hafnium oxide.
A method for forming an anti-reflective film, characterized in that when forming the anti-reflective film with the three-layer structure, the first layer of hafnium oxide is formed in an oxygen gas atmosphere. It provides:

作用 本発明はプラスチック製光学部品の表面に形成する反射
防止膜であって、表面側から順に第1層、第2層、第3
層の3層構造を有し、第1、第2層は酸化ハフニウムか
らなり、第3層は二酸化ケイ素からなる3層反射防止膜
であり、第1層の酸化ハフニウムを形成する際に酸素(
0゜)ガスを導入し酸化ガス雰囲気中で形成することに
より第1層の酸化ハフニウムの屈折率を第2層の酸化ハ
フニウムの屈折率より小さくなるように制御し、かつプ
ラスチック製光学部品との密着製を向上させる。
Function The present invention relates to an antireflection film formed on the surface of a plastic optical component, comprising a first layer, a second layer, and a third layer in order from the surface side.
The first and second layers are made of hafnium oxide, and the third layer is made of silicon dioxide.When forming the first layer of hafnium oxide, oxygen (
0°) The refractive index of the hafnium oxide in the first layer is controlled to be smaller than the refractive index of the hafnium oxide in the second layer by introducing gas and forming in an oxidizing gas atmosphere, and the Improves adhesion.

この結果、密着性、耐久性、光学特性および量産性に優
れた反射防止膜を得ることができる。
As a result, an antireflection film with excellent adhesion, durability, optical properties, and mass productivity can be obtained.

実施例 以下、本発明の一実施例のプラスチック製光学部品の反
射膜とその形成方法について図面を参照しながら説明す
る。第1図は本発明はプラスチック製光学部品の反射防
止膜の構成図(断面図)であり、第3図の6はその分光
反射特性を示す。本実施例ではプラスチック製光学部品
は、アクリル樹脂(ポリメチルメタクリレート)製プラ
スチックレンズである。第1図において、1はプラスチ
ックレンズ、2.3は酸化ハフニウムからなる第1層と
第2層、4は二酸化ケイ素からなる第3層であり、本発
明における具体的内容は第1表に示す通りである。
EXAMPLE Hereinafter, a reflective film for a plastic optical component according to an example of the present invention and a method for forming the same will be described with reference to the drawings. FIG. 1 is a block diagram (cross-sectional view) of an antireflection film for a plastic optical component according to the present invention, and 6 in FIG. 3 shows its spectral reflection characteristics. In this embodiment, the plastic optical component is a plastic lens made of acrylic resin (polymethyl methacrylate). In FIG. 1, 1 is a plastic lens, 2.3 is a first layer and a second layer made of hafnium oxide, and 4 is a third layer made of silicon dioxide.The specific contents of the present invention are shown in Table 1. That's right.

(以下余白) 第1表 (λ。−500n111) 各層の形成条件は以下の通りである。第1層は真空層無
いを1.0X10−’Torrまで排気した後、酸素ガ
スを5.0X10−’Toorないし1.0X10 ’
Toorまで導入し酸化ハフニウムを電子ビーム蒸着法
によって光学的膜厚λ。/4(λ。−500nm )の
厚さに蒸着速度、約12〜15人/secで形成した。
(Margin below) Table 1 (λ.-500n111) The conditions for forming each layer are as follows. The first layer has no vacuum layer, and after evacuating to 1.0X10-'Torr, oxygen gas is pumped to 5.0X10-'Toor to 1.0X10'.
Hafnium oxide is introduced up to the surface and the optical film thickness is λ by electron beam evaporation. /4 (λ.-500 nm) at a deposition rate of about 12 to 15 people/sec.

このときの酸化ハフニウムの屈折率は1.70であった
The refractive index of hafnium oxide at this time was 1.70.

次に酸素ガスの導入を停止し真空度1.5X10−5T
Next, the introduction of oxygen gas was stopped and the vacuum level was 1.5X10-5T.
.

rr以下で酸化ハフニウムを電子ビーム蒸着法によって
光学的膜厚λ。/4の厚さに蒸着速度、約3〜7人/s
ec形成した。このときの酸化ハフニウムの屈折率は2
.00であった。次に二酸化ケイ素を同様に電子ビーム
蒸着法によって光学的膜厚λ。
Hafnium oxide is deposited by electron beam evaporation to an optical thickness of λ below rr. /4 thickness and deposition rate, about 3 to 7 people/s
ec was formed. At this time, the refractive index of hafnium oxide is 2
.. It was 00. Next, silicon dioxide was deposited to an optical thickness λ using the same electron beam evaporation method.

/4の厚さに蒸着速度、約7〜15人/secで形成し
た。このときの二酸化ケイ素の屈折率は1.46であっ
た。
The film was formed at a deposition rate of approximately 7 to 15 persons/sec to a thickness of 1/4 mm. The refractive index of silicon dioxide at this time was 1.46.

本発明の実施例の反射防止膜の密着性、耐久性を確認す
るために次の項目の試験を行った。(1)剥離試験:温
度40°C1相対湿度85%の高温・高湿雰囲気中に1
000時間放置した後、粘着テープをプラスチック製光
学部品表面に密着し、引き剥がす。
In order to confirm the adhesion and durability of the antireflection film of the example of the present invention, the following tests were conducted. (1) Peeling test: 1 in a high temperature and high humidity atmosphere with a temperature of 40°C and a relative humidity of 85%.
After being left for 1,000 hours, the adhesive tape was adhered to the surface of the plastic optical component and then peeled off.

(2)耐湿試験:40°C1相対湿度95%の高温・高
温雰囲気中に1ooo時間放置する。(3)熱衝撃試験
:温度30°C,70’Cの低温・高温雰囲気中に交互
に30分間ずつ放置を約100時間くり返す。
(2) Humidity test: Leave in a high-temperature atmosphere at 40° C. and 95% relative humidity for 100 hours. (3) Thermal shock test: The test piece was left in low and high temperature atmospheres at temperatures of 30°C and 70'C for about 100 hours, alternately for 30 minutes each.

試験結果は第2表に示す通りである。The test results are shown in Table 2.

第2表 第2表から分かるように本発明の反射防止膜は、密着性
、耐久性に優れている。さらに従来は反射防止膜形成時
にクランクの発生が見られるものもあったが、本発明の
実施例においては常時安定していた。分光反射特性に関
しても第3図の6から分かるように中心波長(λ。= 
500nm)で、反射率は0.1%以下であり、およそ
425〜610nmの帯域において反射率1.0%以下
の特性が得られた。
As can be seen from Table 2, the antireflection film of the present invention has excellent adhesion and durability. Furthermore, in some cases in the past, the occurrence of cranking was observed during the formation of the antireflection film, but in the examples of the present invention, it was always stable. Regarding the spectral reflection characteristics, as can be seen from 6 in Figure 3, the center wavelength (λ.=
500 nm), the reflectance was 0.1% or less, and a reflectance of 1.0% or less was obtained in the band of approximately 425 to 610 nm.

なお、前記実施例では、各膜厚を第1表に示すものにし
たが、膜厚は特に上記の値に限定されるものではなく、
設計波長に応じて変化させればよく、構造が第1図に示
すものであればよい。
In addition, in the above example, each film thickness was set as shown in Table 1, but the film thickness is not particularly limited to the above values,
It may be changed according to the design wavelength, and the structure may be as shown in FIG. 1.

発明の効果 以上の説明から明らかなように、本発明のプラスチック
製光学部品の反射防止膜は、酸化ハフニウムからなる第
1層と第2層、二酸化ケイ素からなる第3層という3N
構造であり、また第1層目の酸化ハフニウムの層を形成
する際に酸素ガスを導入して酸素雰囲気中で形成するこ
とによりプラスチック製光学部品との密着性を高め、反
射防止膜の耐久性の向上と共に、分光反射特性にも優れ
、クラックの発生も妨げ、従来例のもつ欠点を解消する
効果を有する。また、本発明のプラスチック製光学部品
の反射防止膜は量産にも適しているため、その実用上の
価値は大なるものがある。
Effects of the Invention As is clear from the above explanation, the antireflection coating of the plastic optical component of the present invention has a 3N layer consisting of the first and second layers made of hafnium oxide and the third layer made of silicon dioxide.
In addition, when forming the first hafnium oxide layer, oxygen gas is introduced in an oxygen atmosphere to improve adhesion to plastic optical components and improve the durability of the anti-reflection coating. In addition to improving the spectral reflection characteristics, it also prevents the occurrence of cracks and has the effect of eliminating the drawbacks of the conventional examples. Furthermore, the antireflection film for plastic optical components of the present invention is suitable for mass production, and therefore has great practical value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のプラスチック製光学部品の反射防止膜
の構成断面図、第2図は従来のプラスチック製光学部品
の反射防止膜の構成図、第3図は分光反射特性を示すグ
ラフである。 1・・・・・・プラスチックレンズ、2.3・・・・・
・酸化ハフニウムからなる層、4・・・・・・二酸化ケ
イ素からなる層、5・・・・・・フッ化マグネシウムか
らなる層、6・・・・・・本発明の実施例におけるプラ
スチックレンズの反射防止膜の特性、7・・・・・・従
来のプラスチックレンズの反射防止膜の特性(フッ化マ
グネシウムからなる単層膜)、8・・・・・・反射防止
膜を形成していないプラスチックレンズの特性。
FIG. 1 is a cross-sectional view of the structure of the antireflection film of the plastic optical component of the present invention, FIG. 2 is a structure diagram of the antireflection film of the conventional plastic optical component, and FIG. 3 is a graph showing the spectral reflection characteristics. . 1...Plastic lens, 2.3...
- Layer made of hafnium oxide, 4... Layer made of silicon dioxide, 5... Layer made of magnesium fluoride, 6... Layer of plastic lens in the embodiment of the present invention. Characteristics of anti-reflection film, 7...Characteristics of anti-reflection film of conventional plastic lenses (single layer film made of magnesium fluoride), 8...Plastic without anti-reflection film formed Lens characteristics.

Claims (1)

【特許請求の範囲】 (1)プラスチック製光学部品の表面に形成する反射防
止膜であって、前記表面側から順に第1層、第2層、第
3層の3層構造を有し、前記第1層と第2層は酸化ハフ
ニウム(HfO_2)からなり、第3層は二酸化ケイ素
(SiO_2)からなることを特徴とするプラスチック
製光学部品の反射防止膜。(2)第1層の酸化ハフニウ
ムの屈折率が第2層の酸化ハフニウムの屈折率よりも小
さいことを特徴とする請求項(1)記載のプラスチック
製光学部品の反射防止膜。 (3)第1層の酸化ハフニウム(HfO_2)の層を形
成する際に酸素ガスを導入することを特徴とするプラス
チック製光学部品の反射防止膜の形成方法。
Scope of Claims: (1) An antireflection film formed on the surface of a plastic optical component, which has a three-layer structure of a first layer, a second layer, and a third layer in order from the surface side, An antireflection coating for a plastic optical component, characterized in that the first layer and the second layer are made of hafnium oxide (HfO_2), and the third layer is made of silicon dioxide (SiO_2). (2) The antireflection coating for a plastic optical component according to claim (1), wherein the first layer of hafnium oxide has a smaller refractive index than the second layer of hafnium oxide. (3) A method for forming an antireflection film for a plastic optical component, which comprises introducing oxygen gas when forming the first layer of hafnium oxide (HfO_2).
JP2150949A 1990-06-08 1990-06-08 Antireflecting film of plastic optical parts and formation thereof Pending JPH0442201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2150949A JPH0442201A (en) 1990-06-08 1990-06-08 Antireflecting film of plastic optical parts and formation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2150949A JPH0442201A (en) 1990-06-08 1990-06-08 Antireflecting film of plastic optical parts and formation thereof

Publications (1)

Publication Number Publication Date
JPH0442201A true JPH0442201A (en) 1992-02-12

Family

ID=15507943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2150949A Pending JPH0442201A (en) 1990-06-08 1990-06-08 Antireflecting film of plastic optical parts and formation thereof

Country Status (1)

Country Link
JP (1) JPH0442201A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11767843B2 (en) 2021-09-17 2023-09-26 Lg Electronics Inc. Scroll compressor having an oil supply passage including first end open at the orbiting space and second end open at an Oldham ring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11767843B2 (en) 2021-09-17 2023-09-26 Lg Electronics Inc. Scroll compressor having an oil supply passage including first end open at the orbiting space and second end open at an Oldham ring

Similar Documents

Publication Publication Date Title
US5725959A (en) Antireflection film for plastic optical element
JPH03109503A (en) Antireflection film of optical parts made of plastic and formation thereof
JPS5860701A (en) Reflection preventing film
JPS6135521B2 (en)
JPH07104102A (en) Water repellant reflection preventive film for glass-made optical parts and production thereof
JPH0442201A (en) Antireflecting film of plastic optical parts and formation thereof
JPS60130704A (en) Antireflection film for plastic substrate
JP3497236B2 (en) Anti-reflection coating for high precision optical components
JP2777937B2 (en) Resin optical element and method of manufacturing the same
JPH03132601A (en) Antireflection film of optical parts made of plastic and production thereof
JPH10123303A (en) Antireflection optical parts
JP3395018B2 (en) Optical components
JP2003131010A (en) Optical parts, optical unit and graphic display device using it
JPH0553001A (en) Multilayered antireflection film of optical parts made of synthetic resin
JPH0446301A (en) Antireflection film of optical parts made of plastic and formation thereof
JPH06208002A (en) Antireflection film of plastic optical parts and its formation
JPH0894802A (en) Optical element
JPH04156501A (en) Reflection preventing film for optical part made of synthetic resin
JPH05313001A (en) Reflection preventing film for plastic made optical part
JPH07270601A (en) Optical thin film
JPH0474681B2 (en)
JPH02163702A (en) Antireflection film of optical parts made of plastic
JPS63220101A (en) Antireflection film for plastic optical parts
JPS6326603A (en) Reflection mirror consisting of synthetic resin member
JPH0836101A (en) Antireflection film of optical parts made of synthetic resin