JPS6033320B2 - Semiconductor laser and its manufacturing method - Google Patents

Semiconductor laser and its manufacturing method

Info

Publication number
JPS6033320B2
JPS6033320B2 JP3432478A JP3432478A JPS6033320B2 JP S6033320 B2 JPS6033320 B2 JP S6033320B2 JP 3432478 A JP3432478 A JP 3432478A JP 3432478 A JP3432478 A JP 3432478A JP S6033320 B2 JPS6033320 B2 JP S6033320B2
Authority
JP
Japan
Prior art keywords
film
semiconductor laser
reflective surface
gaas
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3432478A
Other languages
Japanese (ja)
Other versions
JPS54126488A (en
Inventor
図南雄 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP3432478A priority Critical patent/JPS6033320B2/en
Publication of JPS54126488A publication Critical patent/JPS54126488A/en
Publication of JPS6033320B2 publication Critical patent/JPS6033320B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 本発明は半導体レーザ、特に反射面劣化を防止するため
の反射面保護膜のついた半導体レーザ及びそ製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor laser, and particularly to a semiconductor laser having a reflective surface protection film for preventing deterioration of the reflective surface, and a method for manufacturing the same.

GaAs−AIGaAsダブルヘテロ構造半導体レーザ
は室温においては、数mW〜1の欧mWの出力では数万
時間以上連続動作するが光通信の光源等の実用的使用に
耐えるためには通電中に出力が減少するいわゆる劣化現
象を抑制し、10万時間以上の連続動作を実現する必要
がある。
At room temperature, a GaAs-AIGaAs double heterostructure semiconductor laser can operate continuously for tens of thousands of hours or more at an output of a few mW to 1 mW, but in order to withstand practical use as a light source for optical communications, the output must decrease while the power is on. It is necessary to suppress the so-called deterioration phenomenon and realize continuous operation for 100,000 hours or more.

半導体レーザの劣化を招く、主原因は通電による活性層
内部の転位の発生、及び外部の反射面の劣化である。転
位の発生は半導体レーザの初期の急速な劣化を生じせし
めるが、低転位密度基板の使用、GaAs活性層への少
量のNやPの添加による結晶成長技術によって抑制でき
る。一方、1方時間以上の長時間にわたってレーザの光
出力が漸次減少する現象は、反射面の劣化に起因するこ
とが確かめられている。半導体レーザを酸素を含む雰囲
気中で動作させるとGaAsと酸素とが反応して、Ga
船反射面が酸化され、GaAsの酸化膜が反射面上に形
成されることが見出されている。かかる酸化膜が反射面
の劣化、ひいてはレーザの劣化を生じせしめる原因とな
る。この表面酸化反応は活性層に励起されたキャリア、
及び光によって促進される。従って、かかる反射面の劣
化を防止するためには、外気中の酸素をしや断すること
が必要であり、Sj○,Si02,AI203膜などの
誘電体保護膜で反射面を被覆することが行なわれている
。しかしながらSioはGa船との密着性が悪く、吸湿
性であるため、保護膜としては不十分でである。Si0
2はGaAsとの密着性は良く、機械的にも堅牢である
ため、保護機能はあるが、Naイオンを通しやすい性質
があるので、反射面に雰囲気中のNaイオンが付着し、
かかるNaィオンンに引き寄せられた酸素イオンにより
反射面の酸化が生じる。またGaはSi02に溶解する
ため長時間の動作中に反射面のGaがSi02中に拡散
して界面が変質し、レーザの劣化が進行する。Si02
の膨張係数はGa船よりも一桁小さいため、Si02膜
と反射面との間には応力が生じる。半導体レーザの動作
中に反射面にこのような応力がかかることは、半導体レ
ーザを劣化せしめる原因となる。AI203膜は安定、
強固であり膨張係数も半導体レーザ結晶とほぼ同一であ
り、Gaと反応することもないため、半導体レーザの反
射面の保護膜としての機能はすぐれていいるが、既に知
られた山203の付着方法を適用した場合、反射面とA
I203膜との界面にGaAsの酸化膜が生じるという
欠点がある。現在知られている方法としてはCVD、ス
パッタ、電子ーム蒸着があるが、いずれの方法において
も試料温度を300oo以上にする必要があるため、残
留酸素あるいはN203より分離された酸素とGa船と
が反応して、GaAs反射面表面にはAI203膜が形
成される前にGaAsの酸化膜が形成される。従ってこ
これらの方法においては、レーザを劣化させる原因とな
るCaAs酸化膜を界面に含むことになる。また、通常
使用されるオートミック電極は300qo以上では変質
するため、保護膜形成後に電極をつけることになり、半
導体レーザ製造過程が複雑になる。上述した欠点のない
保護膜としてては、高抵抗Si、高抵抗Si上にさらに
Si02をつけたもの、及びNを直接反射面につけて、
該AIを酸化して山203とするものが提案されている
が、高抵抗Siのみをつける場合は、Si膜が半導体レ
ーザの光を吸収するために、反射面保護膜としてのSi
膜は200人以下程度に薄くする必要がある。
The main causes of deterioration of semiconductor lasers are the generation of dislocations inside the active layer due to energization and deterioration of the external reflective surface. Although the generation of dislocations causes rapid initial deterioration of semiconductor lasers, it can be suppressed by using a low dislocation density substrate and by crystal growth techniques by adding a small amount of N or P to the GaAs active layer. On the other hand, it has been confirmed that the phenomenon in which the optical output of a laser gradually decreases over a long period of time, such as one hour or more, is caused by deterioration of the reflecting surface. When a semiconductor laser is operated in an atmosphere containing oxygen, GaAs and oxygen react, and GaAs is
It has been found that the reflective surface of a ship is oxidized and an oxide film of GaAs is formed on the reflective surface. Such an oxide film causes deterioration of the reflective surface and, ultimately, deterioration of the laser. This surface oxidation reaction causes excited carriers in the active layer,
and facilitated by light. Therefore, in order to prevent such deterioration of the reflective surface, it is necessary to eliminate oxygen in the outside air, and it is necessary to cover the reflective surface with a dielectric protective film such as Sj○, Si02, AI203 film, etc. It is being done. However, since Sio has poor adhesion to the Ga carrier and is hygroscopic, it is insufficient as a protective film. Si0
2 has good adhesion with GaAs and is mechanically robust, so it has a protective function, but it also has the property of allowing Na ions to pass through easily, so Na ions in the atmosphere will adhere to the reflective surface.
Oxygen ions attracted to these Na ions cause oxidation of the reflective surface. Further, since Ga dissolves in Si02, during long-term operation, Ga on the reflective surface diffuses into Si02, the interface changes in quality, and the laser deteriorates. Si02
Since the expansion coefficient of is one order of magnitude smaller than that of the Ga carrier, stress is generated between the Si02 film and the reflective surface. The application of such stress to the reflective surface during operation of the semiconductor laser causes deterioration of the semiconductor laser. AI203 membrane is stable,
It is strong and has almost the same expansion coefficient as a semiconductor laser crystal, and does not react with Ga, so it has an excellent function as a protective film for the reflective surface of a semiconductor laser. When applying , the reflective surface and A
There is a drawback that a GaAs oxide film is formed at the interface with the I203 film. Currently known methods include CVD, sputtering, and electron beam evaporation, but all methods require a sample temperature of 300 oo or higher, so residual oxygen or oxygen separated from N203 and Ga carrier reacts, and a GaAs oxide film is formed on the surface of the GaAs reflective surface before the AI203 film is formed. Therefore, in these methods, the interface contains a CaAs oxide film that causes deterioration of the laser. Furthermore, since the normally used atomic electrode deteriorates in quality at a temperature of 300 qo or more, the electrode must be attached after the protective film is formed, which complicates the semiconductor laser manufacturing process. Protective films that do not have the above-mentioned drawbacks include high-resistance Si, high-resistance Si with additional Si02 added, and N directly applied to the reflective surface.
It has been proposed to oxidize the AI to form peaks 203, but if only high-resistance Si is attached, the Si film as a reflective surface protective film absorbs the light of the semiconductor laser.
The membrane needs to be thin enough to accommodate no more than 200 people.

このように薄いSi膜はピンホールを多く含む上、外部
よりの機械的衝撃に対する防御機能が低いという欠点を
有する。高抵抗Si膜に、さらにSj02膜をつけたも
のはSi単独のものよりも半導体レーザの反射面の保護
膜としてはすぐれているが、前述したようにSj○とG
aAsとの熱膨張係数の違いにより反射面にかかる応力
が半導体レーザの劣化原因となる。また反射面にNをつ
けて、該AIを酸化する方法は、酸化時間が長いとGa
Asも酸化さされる。Ga船を酸化することなく、AI
のみをすべて酸化することはきわめて困難である。本発
明は上述した如き欠点のない保護膜を反射面につけるこ
とによって、長時間動作しても劣化しない半導体レーザ
、及びその製造方法を提供するものである。
Such a thin Si film contains many pinholes and has the disadvantage that it has a low ability to protect against external mechanical impact. A high-resistance Si film with an Sj02 film added is superior to a single Si film as a protective film for the reflective surface of a semiconductor laser, but as mentioned above, Sj○ and G
The stress applied to the reflective surface due to the difference in thermal expansion coefficient from aAs causes deterioration of the semiconductor laser. In addition, in the method of adding N to the reflective surface and oxidizing the AI, if the oxidation time is long, the Ga
As is also oxidized. AI without oxidizing Ga vessels
It is extremely difficult to oxidize all of them. The present invention provides a semiconductor laser that does not deteriorate even when operated for a long time by applying a protective film free from the above-mentioned defects to a reflective surface, and a method for manufacturing the same.

すなわちSiがGaAsに対して密着性が良いことを利
用して、まずGaAs反射面にSiを付着せしめ、譲る
i膜上にさらに山203膜を付着せしめることによって
、反射面の酸化を防ぐのに十分な保護膜を形成した、劣
化のない信頼性の高い半導体レーザを得る。
In other words, by taking advantage of the fact that Si has good adhesion to GaAs, Si is first attached to the GaAs reflective surface, and then a mountain 203 film is further deposited on the yielding i film to prevent oxidation of the reflective surface. To obtain a highly reliable semiconductor laser that does not deteriorate and has a sufficient protective film formed thereon.

この際Si膜に導通があると、レーザの電流−光出力特
性が損われるため、Siは高抵抗にする必要がある。前
記Si膜上のAI203膜を形成する方法としてCVD
、スパッタ、電子ビーム蒸着を用いることは、試料温度
を300℃程度にする必要があるため、半導体レーザの
製造過程が複雑になる。この欠点を解決する具体的方法
として、前記高抵抗Si膜上にAIを蒸着し、該山を酸
化する方法を提案する。この方法においては試料温度を
10000以下にすることができる。また、AIを過度
に酸化してもSi02が形成されるのみであるので、G
a偽反射面が酸化されることはない。以下本発明を実施
例に基づいて詳細に説明する。第1図は通常行なわれて
いる製造方法で得られたストライプ型Ga松‐AIGa
As半導体レーザ結晶をへき関した板状結晶1を示す。
At this time, if there is conduction in the Si film, the current-light output characteristics of the laser will be impaired, so the Si needs to have a high resistance. CVD is a method for forming the AI203 film on the Si film.
, sputtering, and electron beam evaporation require a sample temperature of about 300° C., which complicates the semiconductor laser manufacturing process. As a specific method for solving this drawback, we propose a method in which AI is deposited on the high-resistance Si film and the peaks are oxidized. In this method, the sample temperature can be lowered to 10,000 or less. Moreover, even if AI is oxidized excessively, only Si02 is formed, so G
a) The false reflective surface will not be oxidized. The present invention will be described in detail below based on examples. Figure 1 shows the striped Ga pine-AIGa obtained by the usual manufacturing method.
A plate crystal 1 separated from an As semiconductor laser crystal is shown.

p型側はCr−Au、n型側はAu−蛇‐Niを蒸着す
ることによに電極が形成されている。まずこの板状結晶
1のへき関面2、すなわち半導体レーザの反射面に電子
ビーム蒸着、もしくはイオンプレーティングや気相成長
によってSi膜3を付着せしめる(第2図)。Si膜3
の比抵抗は、Si膜への電流漏洩による半導体レーザの
電流−光出力特性の悪化を防止するため、1ぴ○一肌以
上とし、Siの膜厚は、Si膜によるレーザ光の吸収が
半導体レーザの特性を大幅に損うこがない程度にする。
この際、電極にSiが付着しないように、電極を金属の
薄い板で覆っておく、次にSi膜3上にSi膜を形成し
た場合と同様に電極を覆って、山4を蒸着又はスパッタ
リングによってつける(第3図)。反射面2がSi膜3
、及びN膜4で覆われた板状結晶1を10‐3tor程
度の酸素雰囲気中で高周波放電を行うことにより生じた
酸素プラズマ中に挿入し、AIをプラズマ酸化する。
Electrodes are formed by depositing Cr-Au on the p-type side and Au-Ni on the n-type side. First, a Si film 3 is deposited on the cleavage surface 2 of this plate-shaped crystal 1, that is, the reflective surface of the semiconductor laser, by electron beam evaporation, ion plating, or vapor phase growth (FIG. 2). Si film 3
The specific resistance of the semiconductor laser is set to be at least 1 mm in order to prevent deterioration of the current-light output characteristics of the semiconductor laser due to current leakage to the Si film, and the thickness of the Si film is set so that the absorption of laser light by the Si film is To the extent that the characteristics of the laser are not significantly impaired.
At this time, cover the electrode with a thin metal plate to prevent Si from adhering to the electrode. Next, cover the electrode in the same way as when forming the Si film on the Si film 3, and apply evaporation or sputtering to form the peak 4. (Figure 3). Reflective surface 2 is Si film 3
, and the plate-shaped crystal 1 covered with the N film 4 is inserted into oxygen plasma generated by high-frequency discharge in an oxygen atmosphere of about 10-3 Torr, and the AI is plasma oxidized.

この際若干Siが酸化される程度に山を完全に酸化する
。AIの厚さは任意で良いが、特に、形成された山20
3の膜厚が半導体レーザの発振波長の1/2になるよう
にAI膜の厚さを定めれば、Si−AI203保護膜の
ついたレーザの電流−光出力特性をSi膜のみがついた
ときと同じにすることができる。以上のようにしてGa
偽反射面上にSi−N203保護膜が形成された半導体
レーザの板状結晶を切断して、単体の半導体レーザ素子
5(第4図)を作製する。
At this time, the peaks are completely oxidized to the extent that some Si is oxidized. The thickness of AI may be arbitrary, but in particular, the thickness of the formed mountain 20
If the thickness of the AI film is set so that the film thickness in step 3 is 1/2 of the oscillation wavelength of the semiconductor laser, the current-light output characteristics of the laser with the Si-AI203 protective film will be the same as those with only the Si film. It can be the same as when. As above, Ga
A single semiconductor laser device 5 (FIG. 4) is manufactured by cutting a plate-shaped semiconductor laser crystal in which a Si--N203 protective film is formed on a false reflective surface.

かくして作製された半導体レーザ素子5においては、G
aAs反射面とSi−山203保護膜との界面にGaA
s酸化膜が存在せず、しかも外部雰囲気よりの酸素の侵
入はAI203膜によって防ぐことが可能であるため、
動作中に反射面が劣化することがない。従って、かかる
半導体レーザ素子5は長時間劣化するることなく安定に
動作する。実際、ストライプ幅15仏mの半導体レーザ
を初期光出力5hWで1万時間通電した後の出力は、N
203膜のみの場合、初期光出力の80%の光出力が得
られているが、Si−AI203保護膜においてはこれ
よりさらに1割程度改善された。また山203は機械的
な強度が大きく、化学薬品にもおかされにくいため結合
しべズ系との機械的接触による損傷も防ぐことができる
。又本発明の方法によれば、AI203膜形成時に試料
温度を保つことができるため電極が変質することがない
In the semiconductor laser device 5 thus manufactured, G
GaA at the interface between the aAs reflective surface and the Si-mountain 203 protective film.
Since there is no s oxide film and the AI203 film can prevent oxygen from entering from the external atmosphere,
The reflective surface does not deteriorate during operation. Therefore, the semiconductor laser device 5 operates stably for a long time without deteriorating. In fact, after a semiconductor laser with a stripe width of 15 m is energized for 10,000 hours at an initial optical output of 5 hW, the output is N
In the case of only the 203 film, an optical output of 80% of the initial optical output was obtained, but with the Si-AI 203 protective film, this was further improved by about 10%. Furthermore, the peaks 203 have high mechanical strength and are not easily damaged by chemicals, so that damage caused by mechanical contact with the bonding system can be prevented. Furthermore, according to the method of the present invention, the sample temperature can be maintained during the formation of the AI203 film, so that the electrode does not change in quality.

更にGaAs反射面とN膜の間に高抵抗Si膜が存在す
るためN膜を過度に酸化してもSi膜が酸化されるのみ
でGaAs反射面に酸化が及ぶことがなく、半導体レー
ザの劣化原因となるGaAs酸化膜の形成が防止できる
。上記実施例において、AIを酸化する方法について酸
素プラズマを利用する方法について述べたが、この他、
陽極酸化による方法も可能である。
Furthermore, since there is a high-resistance Si film between the GaAs reflective surface and the N film, excessive oxidation of the N film only oxidizes the Si film, and the GaAs reflective surface is not oxidized, causing deterioration of the semiconductor laser. Formation of a GaAs oxide film, which is the cause, can be prevented. In the above example, a method using oxygen plasma was described as a method for oxidizing AI, but in addition to this,
A method by anodic oxidation is also possible.

反射面の形成方法もへき開によらずに、化学エッチング
、イオンエッチングの方法によっても可能である。
The reflective surface can also be formed by chemical etching or ion etching instead of cleavage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図はGa偽−NGaAs半導体レーザのへ
き開面にSi,AI203膜をつけた半導体レ−ザの製
造工程を示す概略図、ここでは1は半導体レーザの板状
結晶、2はへき開面すなわち半導体レーザの反射面、3
はSj膜、4はAI膜、4′は山203膜、5はSi−
AI203膜を反射面につけた半導体レーザ、6はスト
ライプ領域である。 第1図 第2図 第3図 第4図
Figures 1 to 4 are schematic diagrams showing the manufacturing process of a semiconductor laser in which a Si, AI203 film is attached to the cleavage plane of a Ga pseudo-NGaAs semiconductor laser. Here, 1 is a plate-shaped crystal of the semiconductor laser, and 2 is a Cleavage plane, that is, the reflective surface of the semiconductor laser, 3
is Sj film, 4 is AI film, 4' is mountain 203 film, 5 is Si-
A semiconductor laser has a reflective surface coated with an AI203 film, and 6 is a stripe region. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1 GaAs−AlGaAs半導体レーザにおいて、該
半導体レーザの反射面を高低抗Si膜で被覆し、さらに
該Si膜をAl_2O_3膜で被覆したことを特徴とす
る半導体レーザ。 2 半導体レーザの反射面に高抵抗Si膜を形成し、更
にこのSi膜上にAl膜を形成する工程と、このAl膜
を酸化せせしめてAl_2O_3膜とする工程とを含む
ことを特徴とする半導体レーザの製造方法。
[Scope of Claims] 1. A GaAs-AlGaAs semiconductor laser, characterized in that a reflective surface of the semiconductor laser is coated with a high-low anti-Si film, and the Si film is further coated with an Al_2O_3 film. 2. It is characterized by comprising the steps of forming a high-resistance Si film on the reflective surface of the semiconductor laser, further forming an Al film on this Si film, and oxidizing this Al film to form an Al_2O_3 film. A method of manufacturing a semiconductor laser.
JP3432478A 1978-03-24 1978-03-24 Semiconductor laser and its manufacturing method Expired JPS6033320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3432478A JPS6033320B2 (en) 1978-03-24 1978-03-24 Semiconductor laser and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3432478A JPS6033320B2 (en) 1978-03-24 1978-03-24 Semiconductor laser and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS54126488A JPS54126488A (en) 1979-10-01
JPS6033320B2 true JPS6033320B2 (en) 1985-08-02

Family

ID=12410964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3432478A Expired JPS6033320B2 (en) 1978-03-24 1978-03-24 Semiconductor laser and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS6033320B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127520U (en) * 1986-02-01 1987-08-13

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4656638A (en) * 1983-02-14 1987-04-07 Xerox Corporation Passivation for surfaces and interfaces of semiconductor laser facets or the like
JP2846086B2 (en) * 1990-09-06 1999-01-13 キヤノン株式会社 Method for forming protective film of semiconductor device
JP2736173B2 (en) * 1990-12-18 1998-04-02 シャープ株式会社 Method for manufacturing semiconductor laser device
US5249195A (en) * 1992-06-30 1993-09-28 At&T Bell Laboratories Erbium doped optical devices
EP0898345A3 (en) * 1997-08-13 2004-01-02 Mitsubishi Chemical Corporation Compound semiconductor light emitting device and method of fabricating the same
JP3196831B2 (en) * 1998-04-20 2001-08-06 日本電気株式会社 Method for manufacturing semiconductor laser device
JP4236840B2 (en) * 2001-12-25 2009-03-11 富士フイルム株式会社 Semiconductor laser element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127520U (en) * 1986-02-01 1987-08-13

Also Published As

Publication number Publication date
JPS54126488A (en) 1979-10-01

Similar Documents

Publication Publication Date Title
US5799028A (en) Passivation and protection of a semiconductor surface
US7820542B2 (en) Nitride semiconductor light-emitting device and method for fabrication thereof
JP5162926B2 (en) Manufacturing method of semiconductor laser device
US3959045A (en) Process for making III-V devices
US5851849A (en) Process for passivating semiconductor laser structures with severe steps in surface topography
JPH09162496A (en) Semiconductor laser and its manufacture
EP0007805B1 (en) A method of coating side walls of semiconductor devices
JPS6033320B2 (en) Semiconductor laser and its manufacturing method
JPH0856057A (en) Method for preparing end mirror of high power semiconductor laser for passivation and related laser device
US5440575A (en) Article comprising a semiconductor laser with stble facet coating
US6933244B2 (en) Method of fabrication for III-V semiconductor surface passivation
US6744796B1 (en) Passivated optical device and method of forming the same
EP1058359B1 (en) Compound semiconductor surface stabilizing method
US6795480B1 (en) Semiconductor laser device
JPH10107381A (en) Manufacture of metal oxide film
JP3290646B2 (en) Semiconductor laser device, method of manufacturing the same, and optical disk device
JPS5946113B2 (en) Semiconductor laser device and its manufacturing method
US5773318A (en) In-situ technique for cleaving crystals
JPS6366415B2 (en)
JPS63128690A (en) Semiconductor laser element
JPS5837714B2 (en) Method for forming a protective film on a light emitting element
JPS6214713Y2 (en)
JPS58111386A (en) Manufacture of semiconductor laser device
JP2002305348A (en) Semiconductor laser element
JPS6237828B2 (en)