JP2009086533A - Infrared multilayered film, infrared antireflection film, and infrared laser reflecting mirror - Google Patents

Infrared multilayered film, infrared antireflection film, and infrared laser reflecting mirror Download PDF

Info

Publication number
JP2009086533A
JP2009086533A JP2007258938A JP2007258938A JP2009086533A JP 2009086533 A JP2009086533 A JP 2009086533A JP 2007258938 A JP2007258938 A JP 2007258938A JP 2007258938 A JP2007258938 A JP 2007258938A JP 2009086533 A JP2009086533 A JP 2009086533A
Authority
JP
Japan
Prior art keywords
film
infrared
layer
refractive layer
low refractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007258938A
Other languages
Japanese (ja)
Inventor
Nozomi Tsukihara
望 月原
Yukihisa Kusunoki
幸久 楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Hardmetal Corp
Original Assignee
Sumitomo Electric Hardmetal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Hardmetal Corp filed Critical Sumitomo Electric Hardmetal Corp
Priority to JP2007258938A priority Critical patent/JP2009086533A/en
Publication of JP2009086533A publication Critical patent/JP2009086533A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an infrared multilayered film which is excellent in durability or environmental resistance and provided with satisfactory optical characteristics. <P>SOLUTION: Infrared multilayered film 3 and 13 are formed on an infrared optical substrate 2. The infrared multilayered film 3, 13 are formed of laminated products in which low refractive layers 4, 14 having a low refractive index, intermediate refractive layers 5, 15 higher in refractive index than the low refractive layers 4, 14, high refractive layers 6, 16 higher in refractive index than the intermediate refractive layers 5, 15, intermediate refractive layers 7, 17, low refractive layers 8, 18 and a protective layer 9 formed of a non-oxide material are laminated in this order from the substrate side. The low refractive layers 4, 14, 8 and 18 are formed of a fluoride film, the intermediate refractive layers 5, 15, 7 and 17 are formed of a ZnS film or ZnSe film, and the high refractive layer 6 and 16 is formed of a Ge film. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は赤外用多層膜、赤外反射防止膜及び赤外レーザ用反射ミラーに関する。   The present invention relates to an infrared multilayer film, an infrared antireflection film, and an infrared laser reflection mirror.

近年、赤外光を利用した光学機器の開発が盛んに行われ、特に8〜14μm領域の赤外光の利用が注目されている。これに伴い、この領域の赤外光に有効な赤外線用光学部品が種々提案されている。かかる赤外線用光学部品は、透過部材又は反射部材からなる基板の表面にコーティング膜が形成されたものであるが、このコーティング膜は、多層構造(多層膜)であることから、層間の剥離や、この剥離に起因する耐久性ないしは耐環境性の低下という問題を有している。   In recent years, optical devices using infrared light have been actively developed, and in particular, the use of infrared light in the 8 to 14 μm region has attracted attention. Along with this, various infrared optical components effective for infrared light in this region have been proposed. Such an infrared optical component has a coating film formed on the surface of a substrate made of a transmissive member or a reflective member. This coating film has a multilayer structure (multilayer film). There is a problem that durability or environmental resistance is lowered due to the peeling.

そこで、多層膜の耐久性ないしは耐環境性を向上させるために、当該多層膜の構成や膜材料について、従来、種々の工夫がなされている(例えば、特許文献1〜2参照)。   Therefore, in order to improve the durability or environmental resistance of the multilayer film, various devices have been conventionally made for the configuration and film material of the multilayer film (for example, see Patent Documents 1 and 2).

特許文献1には、ZnSeからなる基板上に形成される赤外反射防止膜が開示されており、この赤外反射防止膜は、基板側から順に中間屈折率のZnS膜、低屈折率のYF3膜、中間屈折率のZnS膜及び低屈折率のYF3膜が積層されている。また、Al23、Y23、Ti23、TiO及びTiO2からなる群より選ばれる密着力強化層を設けること、最外層にY23からなる耐磨耗性強化層を設けることが記載されている。そして、特許文献1記載の構成によれば、膜全体の内部応力の不均衡を緩和し、膜剥離などを生じることのない、耐久性に優れた赤外反射防止膜が得られる、とされている。 Patent Document 1 discloses an infrared antireflection film formed on a substrate made of ZnSe. The infrared antireflection film is composed of a ZnS film having an intermediate refractive index and a YF having a low refractive index in order from the substrate side. Three films, an intermediate refractive index ZnS film, and a low refractive index YF 3 film are laminated. In addition, an adhesion strengthening layer selected from the group consisting of Al 2 O 3 , Y 2 O 3 , Ti 2 O 3 , TiO and TiO 2 is provided, and an abrasion resistance reinforcing layer made of Y 2 O 3 is provided on the outermost layer. It is described to provide. And according to the configuration described in Patent Document 1, it is said that an infrared antireflection film excellent in durability can be obtained without mitigating imbalance of internal stress of the entire film and causing no film peeling. Yes.

また、特許文献2には、8〜12μm帯の赤外線を透過する赤外光学用基板上に設けられる赤外域用反射防止膜が開示されており、この赤外域用反射防止膜は、基板側から順にZnS層、Ge層、CeF3層及びCeO2層が積層されている。そして、特許文献2記載の構成によれば、耐環境性、特に耐水性に優れた赤外域用反射防止膜が得られる、とされている。 Patent Document 2 discloses an antireflection film for infrared region provided on an infrared optical substrate that transmits infrared rays in the 8 to 12 μm band. This antireflection film for infrared region is disclosed from the substrate side. A ZnS layer, a Ge layer, a CeF 3 layer, and a CeO 2 layer are sequentially stacked. And according to the structure of patent document 2, it is supposed that the antireflection film for infrared regions excellent in environmental resistance, especially water resistance will be obtained.

特開2003−149606号公報JP 2003-149606 A 特開2006−72031号公報JP 2006-72031 A

特許文献1〜2記載の反射防止膜によれば、一定の耐久性向上の効果が得られるものの、層間の密着力を強化するための層や耐磨耗性を強化するための最外層として、金属酸化物を用いているので、良好な光学特性を得るのが困難である。すなわち、Al23、CeO2などの金属酸化物は赤外域での吸収が大きいことから、この部分で赤外光が吸収されてしまい、照射した赤外光の透過率が低下してしまう。 According to the antireflection film described in Patent Documents 1 and 2, although a certain durability improvement effect can be obtained, as an outermost layer for enhancing the adhesion between the layers and wear resistance, Since a metal oxide is used, it is difficult to obtain good optical characteristics. That is, since metal oxides such as Al 2 O 3 and CeO 2 have large absorption in the infrared region, infrared light is absorbed in this portion, and the transmittance of irradiated infrared light is reduced. .

本発明は、このような事情に鑑みてなされたものであり、耐久性ないしは耐環境性に優れるとともに良好な光学特性を備えた赤外用多層膜、赤外反射防止膜及び赤外レーザ用反射ミラーを提供することを目的としている。   The present invention has been made in view of such circumstances, and is an infrared multilayer film, an infrared antireflection film, and an infrared laser reflection mirror that have excellent durability and environmental resistance and have good optical characteristics. The purpose is to provide.

本発明の赤外用多層膜は、赤外光学用基板に形成される赤外用多層膜であって、
この赤外用多層膜は、前記基板側から、屈折率の低い低屈折層、この低屈折層よりも屈折率の高い中間屈折層、この中間屈折層よりも屈折率の高い高屈折層、中間屈折層、低屈折層、及び非酸化物材料からなる保護層がこの順に積層された積層体からなっており、
前記低屈折層はフッ化物膜からなり、
前記中間屈折層はZnS膜又はZnSe膜からなり、且つ
前記高屈折層はGe膜からなることを特徴としている(請求項1)。
The infrared multilayer film of the present invention is an infrared multilayer film formed on an infrared optical substrate,
This infrared multilayer film includes, from the substrate side, a low refractive layer having a low refractive index, an intermediate refractive layer having a higher refractive index than the low refractive layer, a high refractive layer having a higher refractive index than the intermediate refractive layer, and an intermediate refractive layer. A layer, a low-refractive layer, and a protective layer made of a non-oxide material are laminated in this order,
The low refractive layer is made of a fluoride film,
The intermediate refractive layer is made of a ZnS film or a ZnSe film, and the high refractive layer is made of a Ge film (Claim 1).

本発明の赤外用多層膜では、Ge膜をZnS膜又はZnSe膜で挟持する構造を有しているので、膜の耐剥離性、ひいては耐湿・耐水性を向上させることができ、また最外層に保護層を設けているので膜の耐磨耗性を向上させることができる。この場合に、本発明の赤外用多層膜では、密着性を強化したり、耐磨耗性を強化したりするための膜材料として、赤外域での吸収の大きい酸化物材料を用いていないので、所望の光学特性を実現させることができる。   The infrared multilayer film of the present invention has a structure in which the Ge film is sandwiched between the ZnS film and the ZnSe film, so that the peel resistance of the film, and hence the moisture and water resistance can be improved. Since the protective layer is provided, the wear resistance of the film can be improved. In this case, the infrared multilayer film of the present invention does not use an oxide material having a large absorption in the infrared region as a film material for enhancing adhesion or enhancing wear resistance. Desired optical characteristics can be realized.

前記赤外用多層膜において、基板から遠い方の低屈折層を構成するフッ化物膜の膜厚が、1200nm以下で所望の光学特性が得られるように設定されているが好ましい。この場合、所望の光学特性を確保しつつ、引っ張り応力が大きいフッ化物膜の膜厚を制限することで、引っ張り応力を緩和して、膜の剥離を抑制することができる。   In the infrared multilayer film, it is preferable that the thickness of the fluoride film constituting the low refractive layer far from the substrate is set so that desired optical characteristics can be obtained when the film thickness is 1200 nm or less. In this case, by limiting the film thickness of the fluoride film having a large tensile stress while ensuring the desired optical characteristics, the tensile stress can be relaxed and the peeling of the film can be suppressed.

前記赤外用多層膜において、前記フッ化物膜が、YF3又はYbF3からなるのが好ましい。YF3又はYbF3は、透過率が大きいので膜全体としての透過率を高めることができる。 In the infrared multilayer film, the fluoride film is preferably made of YF 3 or YbF 3 . Since YF 3 or YbF 3 has a high transmittance, the transmittance of the entire film can be increased.

また、本発明の赤外反射防止膜は、Ge、ZnSe、ZnS及びGaAsのいずれかからなる基板上に請求項1記載の赤外用多層膜が形成されてなることを特徴としている(請求項4)。   The infrared antireflection film of the present invention is characterized in that the infrared multilayer film according to claim 1 is formed on a substrate made of any one of Ge, ZnSe, ZnS, and GaAs. ).

本発明の赤外反射防止膜では、Ge膜をZnS膜又はZnSe膜で挟持する構造を有しているので、膜の耐剥離性、ひいては耐湿・耐水性を向上させることができ、また最外層に保護層を設けているので膜の耐磨耗性を向上させることができる。この場合に、本発明の赤外反射防止膜では、密着性を強化したり、耐磨耗性を強化したりするための膜材料として、赤外域での吸収の大きい酸化物材料を用いていないので、所望の光学特性を実現させることができる。   The infrared antireflection film of the present invention has a structure in which the Ge film is sandwiched between the ZnS film and the ZnSe film, so that it is possible to improve the peeling resistance of the film, and thus the moisture and water resistance, and the outermost layer. Since the protective layer is provided on the film, the wear resistance of the film can be improved. In this case, the infrared antireflection film of the present invention does not use an oxide material having a large absorption in the infrared region as a film material for enhancing adhesion or enhancing wear resistance. Therefore, desired optical characteristics can be realized.

前記赤外反射防止膜において、基板から遠い方の低屈折層を構成するフッ化物膜の膜厚が、1200nm以下で所望の光学特性が得られるように設定されているが好ましい。この場合、所望の光学特性を確保しつつ、引っ張り応力が大きいフッ化物膜の膜厚を制限することで、引っ張り応力を緩和して、膜の剥離を抑制することができる。   In the infrared antireflection film, it is preferable that the film thickness of the fluoride film constituting the low refractive layer far from the substrate is set so that desired optical characteristics can be obtained when the film thickness is 1200 nm or less. In this case, by limiting the film thickness of the fluoride film having a large tensile stress while ensuring the desired optical characteristics, the tensile stress can be relaxed and the peeling of the film can be suppressed.

前記赤外反射防止膜において、前記フッ化物膜が、YF3又はYbF3からなるのが好ましい。YF3又はYbF3は、透過率が大きいので膜全体としての透過率を高めることができる。 In the infrared antireflection film, the fluoride film is preferably made of YF 3 or YbF 3 . Since YF 3 or YbF 3 has a high transmittance, the transmittance of the entire film can be increased.

さらに、本発明の赤外レーザ用反射ミラーは、表面にAuがコーティングされたSi又はCuからなる基板上に請求項1記載の赤外用多層膜が形成されてなることを特徴としている(請求項7)。   Further, the infrared laser reflecting mirror of the present invention is characterized in that the infrared multilayer film according to claim 1 is formed on a substrate made of Si or Cu with Au coated on the surface (claim). 7).

本発明の赤外レーザ用反射ミラーでは、Ge膜をZnS膜又はZnSe膜で挟持する構造を有しているので、膜の耐剥離性、ひいては耐湿・耐水性を向上させることができ、また最外層に保護層を設けているので膜の耐磨耗性を向上させることができる。この場合に、本発明の赤外反射防止膜では、密着性を強化したり、耐磨耗性を強化したりするための膜材料として、赤外域での吸収の大きい酸化物材料を用いていないので、所望の光学特性を実現させることができる。   The reflecting mirror for an infrared laser according to the present invention has a structure in which the Ge film is sandwiched between the ZnS film and the ZnSe film, so that the peeling resistance of the film, and hence the moisture resistance and water resistance can be improved. Since the protective layer is provided on the outer layer, the wear resistance of the film can be improved. In this case, the infrared antireflection film of the present invention does not use an oxide material having a large absorption in the infrared region as a film material for enhancing adhesion or enhancing wear resistance. Therefore, desired optical characteristics can be realized.

前記赤外レーザ用反射ミラーにおいて、基板から遠い方の低屈折層を構成するフッ化物膜の膜厚が、1200nm以下で所望の光学特性が得られるように設定されているが好ましい。この場合、所望の光学特性を確保しつつ、引っ張り応力が大きいフッ化物膜の膜厚を制限することで、引っ張り応力を緩和して、膜の剥離を抑制することができる。   In the reflection mirror for infrared laser, it is preferable that the thickness of the fluoride film constituting the low refractive layer far from the substrate is set so that desired optical characteristics can be obtained when the film thickness is 1200 nm or less. In this case, by limiting the film thickness of the fluoride film having a large tensile stress while ensuring the desired optical characteristics, the tensile stress can be relaxed and the peeling of the film can be suppressed.

前記赤外レーザ用反射ミラーにおいて、前記フッ化物膜が、YF3又はYbF3からなるのが好ましい。YF3又はYbF3は、透過率が大きいので膜全体としての透過率を高めることができる。 In the infrared laser reflecting mirror, the fluoride film is preferably made of YF 3 or YbF 3 . Since YF 3 or YbF 3 has a high transmittance, the transmittance of the entire film can be increased.

本発明の赤外用多層膜、赤外反射防止膜及び赤外レーザ用反射ミラーによれば、耐久性ないしは耐環境性を向上させることができるとともに、光学特性を良好なものにすることができる。   According to the multilayer film for infrared, the antireflection film for infrared and the reflection mirror for infrared laser of the present invention, it is possible to improve durability or environmental resistance and to improve optical characteristics.

以下、添付図面を参照しつつ、本発明の赤外用多層膜、赤外反射防止膜及び赤外レーザ用反射ミラーの実施の形態を詳細に説明する。   Embodiments of an infrared multilayer film, an infrared antireflection film, and an infrared laser reflection mirror of the present invention will be described below in detail with reference to the accompanying drawings.

図1は、本発明の一実施の形態に係る赤外反射防止膜1の断面説明図であり、この赤外反射防止膜1は、赤外光学用基板2に赤外用多層膜3が形成された構成を備えている。赤外光学用基板2としては、厚さ2〜10mm程度のGe、ZnSe、ZnS、又はGaAsからなる基板を用いることができるが、耐久性の点より、Geからなる基板を用いるのが好ましい。   FIG. 1 is an explanatory cross-sectional view of an infrared antireflection film 1 according to an embodiment of the present invention. This infrared antireflection film 1 is formed by forming an infrared multilayer film 3 on an infrared optical substrate 2. It has a configuration. As the infrared optical substrate 2, a substrate made of Ge, ZnSe, ZnS, or GaAs having a thickness of about 2 to 10 mm can be used. From the viewpoint of durability, a substrate made of Ge is preferable.

また、前記赤外用多層膜3は、前記赤外光学用基板2側から、屈折率の低い低屈折層4、この低屈折層4よりも屈折率の高い中間屈折層5、この中間屈折層5よりも屈折率の高い高屈折層6、中間屈折層7、低屈折層8、及び保護層9がこの順に積層された積層体からなっている。   The infrared multilayer film 3 includes, from the infrared optical substrate 2 side, a low refractive layer 4 having a low refractive index, an intermediate refractive layer 5 having a higher refractive index than the low refractive layer 4, and the intermediate refractive layer 5. Further, the high refractive layer 6, the intermediate refractive layer 7, the low refractive layer 8, and the protective layer 9 having a higher refractive index are laminated in this order.

前記低屈折層4及び低屈折層8は、YF3膜、YbF3膜等のフッ化物膜からなり、前記中間屈折層5及び中間屈折層7はZnS膜又はZnSe膜からなり、また前記高屈折層6はGe膜からなっている。保護層9は、主に耐磨耗性を向上させるために赤外用多層膜3の最外層に設けられ、前記中間屈折層5及び中間屈折層7と同じZnS膜又はZnSe膜からなっている。赤外用多層膜3を構成する各膜の形成方法としては、真空蒸着法、イオンプレーティング法等の、従来公知の真空薄膜堆積技術を用いることができる。 The low refractive layer 4 and the low refractive layer 8 are made of a fluoride film such as a YF 3 film or a YbF 3 film, and the intermediate refractive layer 5 and the intermediate refractive layer 7 are made of a ZnS film or a ZnSe film. The layer 6 is made of a Ge film. The protective layer 9 is provided in the outermost layer of the infrared multilayer film 3 mainly to improve wear resistance, and is made of the same ZnS film or ZnSe film as the intermediate refractive layer 5 and the intermediate refractive layer 7. As a method of forming each film constituting the infrared multilayer film 3, a conventionally known vacuum thin film deposition technique such as a vacuum vapor deposition method or an ion plating method can be used.

また、各膜の厚さは、所望の透過率を満たすように、例えば市販されている膜設計ソフトを用いて決定することができるが、赤外光学用基板2から遠い方の低屈折層8を構成するフッ化物膜については、所望の透過率(光学特性)を満たす範囲において1200nm以下とするのが好ましい。YF3膜、YbF3膜等のフッ化物膜は、取り扱いの容易な低屈折率材料であることから、所望の光学特性を得るのに好適な材料であるが、一方において、フッ化物膜は引っ張り応力が大きいので、その膜厚を1200nm以下とすることで引っ張り応力を緩和し、膜の剥離を抑制することができる。 Further, the thickness of each film can be determined using, for example, commercially available film design software so as to satisfy a desired transmittance. However, the low refractive index layer 8 far from the infrared optical substrate 2 is used. Is preferably 1200 nm or less in a range satisfying a desired transmittance (optical characteristics). Fluoride films such as YF 3 film and YbF 3 film are suitable materials for obtaining desired optical characteristics because they are low refractive index materials that are easy to handle. Since the stress is large, the tensile stress can be relieved and the peeling of the film can be suppressed by setting the film thickness to 1200 nm or less.

図2は、本発明の一実施の形態に係る赤外レーザ用反射ミラー11の断面説明図であり、この赤外レーザ用反射ミラー11は、表面にAuのコーティング膜20及びZnSeからなる付着力強化層21がこの順に形成された赤外光学用基板12に赤外用多層膜13が形成された構成を備えている。赤外光学用基板12としては、厚さ2〜25mm程度のSi又はCuからなる基板を用いることができる。   FIG. 2 is an explanatory cross-sectional view of the infrared laser reflecting mirror 11 according to an embodiment of the present invention. The infrared laser reflecting mirror 11 has an adhesive force comprising an Au coating film 20 and ZnSe on the surface. The infrared multi-layer film 13 is formed on the infrared optical substrate 12 in which the reinforcing layer 21 is formed in this order. As the infrared optical substrate 12, a substrate made of Si or Cu having a thickness of about 2 to 25 mm can be used.

また、前記赤外用多層膜13は、前記赤外光学用基板12側から、屈折率の低い低屈折層14、この低屈折層14よりも屈折率の高い中間屈折層15、この中間屈折層15よりも屈折率の高い高屈折層16、中間屈折層17、低屈折層18、及び保護層19がこの順に積層された積層体からなっている。   The infrared multilayer film 13 includes, from the infrared optical substrate 12 side, a low refractive layer 14 having a low refractive index, an intermediate refractive layer 15 having a higher refractive index than the low refractive layer 14, and the intermediate refractive layer 15. Further, the high refractive layer 16, the intermediate refractive layer 17, the low refractive layer 18, and the protective layer 19 having a higher refractive index than the protective layer 19 are laminated in this order.

前記低屈折層14及び低屈折層18は、YF3膜、YbF3膜、CaF3膜又はBaF2膜等のフッ化物膜からなり、前記中間屈折層15及び中間屈折層17はZnS膜又はZnSe膜からなり、また前記高屈折層16はGe膜からなっている。保護層19は、主に耐磨耗性を向上させるために赤外用多層膜3の最外層に設けられ、前記中間屈折層15及び中間屈折層17と同じZnS膜又はZnSe膜からなっている。赤外用多層膜13を構成する各膜の形成方法としては、真空蒸着法、イオンプレーティング法等の、従来公知の真空薄膜堆積技術を用いることができる。また、各膜の厚さは、所望の透過率を満たすように、例えば市販されている膜設計ソフトを用いて決定することができる。なお、付着力強化層21としては、ZnSeに代えてZnSからなる層を用いることができる。 The low refractive layer 14 and the low refractive layer 18 are made of a fluoride film such as a YF 3 film, a YbF 3 film, a CaF 3 film or a BaF 2 film, and the intermediate refractive layer 15 and the intermediate refractive layer 17 are a ZnS film or a ZnSe film. The high refractive layer 16 is made of a Ge film. The protective layer 19 is provided on the outermost layer of the infrared multilayer film 3 mainly to improve wear resistance, and is made of the same ZnS film or ZnSe film as the intermediate refractive layer 15 and the intermediate refractive layer 17. As a method for forming each film constituting the infrared multilayer film 13, a conventionally known vacuum thin film deposition technique such as a vacuum vapor deposition method or an ion plating method can be used. Moreover, the thickness of each film | membrane can be determined using the commercially available film | membrane design software so that desired transmittance | permeability may be satisfy | filled. As the adhesion strengthening layer 21, a layer made of ZnS can be used instead of ZnSe.

つぎに実施例に基づいて、本発明の赤外反射防止膜及び赤外レーザ用反射ミラーを説明するが、本発明はもとよりかかる実施例にのみ限定されるものではない。   Next, the infrared antireflection film and infrared laser reflecting mirror of the present invention will be described based on examples, but the present invention is not limited to such examples.

実施例1
赤外広域において高透過率を必要とする赤外広域反射防止膜を作製した。
厚さ5mmのGe製基板の上に以下の第1〜第6層からなる6層構造の赤外用多層膜を形成した。各層は、真空蒸着法により形成した。中心波長はλ=10μmであり、所望の透過率を満たすように、市販の膜設計ソフト(ソフトウェア スペクトラ社(Software Spectra,Inc.)のTFCalC)を用いて各層の厚さを決めた。ただし、第5層については、中心波長にかかわらず、所望の透過率を満たす範囲において1200nm以下の最低限の膜厚に設定した。
Example 1
An infrared wide-area antireflection film requiring high transmittance in the infrared wide-area was fabricated.
A six-layer infrared multilayer film composed of the following first to sixth layers was formed on a Ge substrate having a thickness of 5 mm. Each layer was formed by a vacuum evaporation method. The center wavelength was λ = 10 μm, and the thickness of each layer was determined using commercially available film design software (Software Spectra, Inc. TFCa1C) so as to satisfy the desired transmittance. However, the fifth layer was set to a minimum film thickness of 1200 nm or less in a range satisfying a desired transmittance regardless of the center wavelength.

材料 厚さ
第1層(低屈折層) YbF3 0.075λ
第2層(中屈折層) ZnSe 0.05λ
第3層(高屈折層) Ge 0.25λ
第4層(中屈折層) ZnSe 0.66λ
第5層(低屈折層) YbF3 0.66λ
第6層(保護層) ZnSe 0.85λ
Material thickness First layer (low refractive layer) YbF 3 0.075λ
Second layer (medium refractive layer) ZnSe 0.05λ
Third layer (high refractive layer) Ge 0.25λ
Fourth layer (medium refractive layer) ZnSe 0.66λ
Fifth layer (low refractive layer) YbF 3 0.66λ
Sixth layer (protective layer) ZnSe 0.85λ

比較例1
実施例1における第2層及び第4層を省略し、且つGe膜の上に設けるYbF3の膜厚には制限をかけず所望の透過率を満たすように、市販の膜設計ソフト(ソフトウェア スペクトラ社(Software Spectra,Inc.)のTFCalC)を用いて他の各層の厚さを決めた以外は、実施例1と同様にして赤外広域反射防止膜を作製した。中心波長はλ=10μmであった。膜厚設計において、第3層のYbF3の膜厚は1425nmとなった。
Comparative Example 1
The second layer and the fourth layer in Example 1 are omitted, and the film thickness of YbF 3 provided on the Ge film is not limited, and commercially available film design software (software spectrum software is used so as to satisfy a desired transmittance. An infrared wide-area antireflection film was produced in the same manner as in Example 1 except that the thickness of each of the other layers was determined using TFCaLC (Software Spectra, Inc.). The central wavelength was λ = 10 μm. In the thickness design, the thickness of the third layer YbF 3 was 1425 nm.

材料 厚さ
第1層(低屈折層) YbF3 0.17λ
第2層(高屈折層) Ge 0.40λ
第3層(低屈折層) YbF3 0.79λ
第4層(保護層) ZnSe 0.11λ
Material thickness First layer (low refractive layer) YbF 3 0.17λ
Second layer (high refractive layer) Ge 0.40λ
Third layer (low refractive layer) YbF 3 0.79λ
Fourth layer (protective layer) ZnSe 0.11λ

比較例2
第2層のGe膜上に設ける第3層のYbF3に1200nmという制限を付した以外は、比較例1と同様にして膜設計ソフトを用いて所望の透過率を満たすように膜設計を行った。中心波長はλ=10μmであった。膜厚設計において、第3層のYbF3の膜厚は1200nmとなった。
Comparative Example 2
The film design is performed to satisfy the desired transmittance using the film design software in the same manner as in Comparative Example 1 except that the third layer YbF 3 provided on the second layer Ge film is limited to 1200 nm. It was. The central wavelength was λ = 10 μm. In designing the film thickness, the film thickness of the third layer YbF 3 was 1200 nm.

材料 厚さ
第1層(低屈折層) YbF3 0.17λ
第2層(高屈折層) Ge 0.42λ
第3層(低屈折層) YbF3 0.66λ
第4層(保護層) ZnSe 0.17λ
Material thickness First layer (low refractive layer) YbF 3 0.17λ
Second layer (high refractive layer) Ge 0.42λ
Third layer (low refractive layer) YbF 3 0.66λ
Fourth layer (protective layer) ZnSe 0.17λ

実施例1及び比較例1で得られた試料(反射防止膜)の付着力及び耐環境性について、以下の方法と同等の方法で試験を行った。結果を表1に示す。
付着力試験(MIL−C−13508C 4.4.6):得られた反射防止膜にセロハンテープを貼り付け、これを剥がしたときに膜が剥がれるかどうかを目視にて観察する。
硬度試験:ダイヤモンド圧子に荷重をかけて膜面に押し付け、圧入痕の大きさ、クラック、剥離の有無を目視にて観察する。
耐湿試験(MIL−C−675C 4.5.8):50±2℃、湿度95%の環境下に24時間反射防止膜を放置した後、膜の剥離がないかどうかを目視にて観察するとともに、透過率の変化を確認する。
耐水試験(MIL−C−675C 4.5.7):室温の純水に反射防止膜を24時間浸漬した後、膜の剥離がないかどうかを目視にて観察するとともに、透過率の変化を確認する。
The adhesion strength and environmental resistance of the samples (antireflection films) obtained in Example 1 and Comparative Example 1 were tested by a method equivalent to the following method. The results are shown in Table 1.
Adhesive force test (MIL-C-13508C 4.4.6): A cellophane tape is attached to the obtained antireflection film, and it is visually observed whether or not the film is peeled off.
Hardness test: A diamond indenter is loaded and pressed against the film surface, and the size of the press-fitting marks, cracks, and the presence or absence of peeling are visually observed.
Moisture resistance test (MIL-C-675C 4.5. 8): After leaving the antireflection film for 24 hours in an environment of 50 ± 2 ° C. and humidity of 95%, the film is visually observed for peeling. At the same time, the change in transmittance is confirmed.
Water resistance test (MIL-C-675C 4.5.7): After immersing the antireflection film in pure water at room temperature for 24 hours, the film is visually observed for peeling and the change in transmittance is observed. Check.

Figure 2009086533
Figure 2009086533

表1より分かるように、実施例1における第2層及び第4層を省略した比較例1〜2の反射防止膜では、膜の剥離が生じており、実施例1の反射防止膜に比べて、耐剥離性、耐久性に劣っている。   As can be seen from Table 1, in the antireflection films of Comparative Examples 1 and 2 in which the second layer and the fourth layer in Example 1 were omitted, film peeling occurred, compared with the antireflection film of Example 1. Inferior in peeling resistance and durability.

比較例3
密着力を強化するために実施例1における第1層のYbF3に代えてTiO2を採用し、耐磨耗性を強化するために実施例1における第6層のZnSeに代えてY23を採用し、所望の透過率を満たすように、市販の膜設計ソフト(ソフトウェア スペクトラ社(Software Spectra,Inc.)のTFCalC)を用いて各層の厚さを決めた以外は、実施例1と同様にして赤外広域反射防止膜を作製した。中心波長はλ=7.5μmであった。
Comparative Example 3
In order to enhance the adhesion, TiO 2 is adopted instead of YbF 3 of the first layer in Example 1, and Y 2 O is substituted for ZnSe of the sixth layer in Example 1 in order to enhance the wear resistance. 3 was adopted, so as to satisfy the desired transmittance, commercial membrane design software (software Spectra Inc. (software Spectra, Inc.) TFCalC of) except that decided the thickness of each layer using the example 1 Similarly, an infrared wide-area antireflection film was produced. The central wavelength was λ = 7.5 μm.

材料 厚さ
第1層 TiO2 100nm
第2層(中屈折層) ZnSe 0.055λ
第3層(高屈折層) Ge 0.109λ
第4層(中屈折層) ZnSe 0.270λ
第5層(低屈折層) YbF3 0.250λ
第6層(保護層) Y23 160nm
Material thickness <br/> first layer TiO 2 100 nm
Second layer (medium refractive layer) ZnSe 0.055λ
Third layer (high refractive layer) Ge 0.109λ
Fourth layer (medium refractive layer) ZnSe 0.270λ
Fifth layer (low refractive layer) YbF 3 0.250λ
Sixth layer (protective layer) Y 2 O 3 160 nm

実施例1及び比較例3で得られた試料(反射防止膜)について、赤外分光光度計により透過率を調べた。結果を図3に示す。図3において、実線は実施例1、破線は比較例3の透過率を示している。図3より分かるように、密着力強化又は耐磨耗性強化のために金属酸化物膜を用いた比較例3の反射防止膜は、実施例1の反射防止膜に比べて、全波長域において透過率が数%劣っている。   The transmittance of the sample (antireflection film) obtained in Example 1 and Comparative Example 3 was examined using an infrared spectrophotometer. The results are shown in FIG. In FIG. 3, the solid line indicates the transmittance of Example 1, and the broken line indicates the transmittance of Comparative Example 3. As can be seen from FIG. 3, the antireflection film of Comparative Example 3 using a metal oxide film for enhancing the adhesion or wear resistance is compared with the antireflection film of Example 1 in the entire wavelength region. The transmittance is inferior by several percent.

実施例2
スパッタリング法によりAuを300nmの厚さで積層したSi基板(厚さ6mm)上に付着力強化層として厚さ50nmのZnSe膜を真空蒸着法により形成し、ついでこのZnSe膜の上に、以下の第1〜第6層からなる6層構造の赤外用多層膜を形成した。各層は、真空蒸着法により形成した。中心波長はλ=10.6μmであり、所望の透過率を満たすように、市販の膜設計ソフト(ソフトウェア スペクトラ社(Software Spectra,Inc.)のTFCalC)を用いて各層の厚さを決めた。
Example 2
A 50 nm thick ZnSe film was formed by vacuum deposition on a Si substrate (thickness 6 mm) on which Au was laminated to a thickness of 300 nm by sputtering, and then on the ZnSe film, the following: A six-layer infrared multilayer film composed of the first to sixth layers was formed. Each layer was formed by a vacuum evaporation method. The center wavelength was λ = 10.6 μm, and the thickness of each layer was determined using commercially available film design software (TFCalC from Software Spectra, Inc.) so as to satisfy the desired transmittance.

材料 厚さ
第1層(低屈折層) YbF3 0.4λ
第2層(中屈折層) ZnSe 0.6λ
第3層(高屈折層) Ge 0.6λ
第4層(中屈折層) ZnSe 0.12λ
第5層(低屈折層) YbF3 0.04λ
第6層(保護層) ZnSe 0.08λ
得られた赤外レーザ用反射ミラーの炭酸ガスレーザ(10μm光)の反射率は99.77%であった。
Material thickness First layer (low refractive layer) YbF 3 0.4λ
Second layer (medium refractive layer) ZnSe 0.6λ
Third layer (high refractive layer) Ge 0.6λ
Fourth layer (medium refractive layer) ZnSe 0.12λ
Fifth layer (low refractive layer) YbF 3 0.04λ
Sixth layer (protective layer) ZnSe 0.08λ
The reflectance of the carbon dioxide gas laser (10 μm light) of the obtained reflection mirror for infrared laser was 99.77%.

実施例3
スパッタリング法によりAuを300nmの厚さで積層したSi基板(厚さ6mm)上に付着力強化層として厚さ50nmのZnSe膜を真空蒸着法により形成し、ついでこのZnSe膜の上に、以下の第1〜第8層からなる8層構造の赤外用多層膜を形成した。各層は、真空蒸着法により形成した。中心波長はλ=10.6μmであり、所望の透過率を満たすように、市販の膜設計ソフト(ソフトウェア スペクトラ社(Software Spectra,Inc.)のTFCalC)を用いて各層の厚さを決めた。
Example 3
A 50 nm thick ZnSe film was formed as an adhesion enhancing layer on a Si substrate (thickness 6 mm) on which Au was laminated with a thickness of 300 nm by sputtering, and then, on this ZnSe film, the following: An infrared multilayer film having an eight-layer structure composed of first to eighth layers was formed. Each layer was formed by a vacuum evaporation method. The center wavelength was λ = 10.6 μm, and the thickness of each layer was determined using commercially available film design software (TFCalC from Software Spectra, Inc.) so as to satisfy the desired transmittance.

材料 厚さ
第1層(低屈折層) YbF3 0.6λ
第2層(中屈折層) ZnSe 0.2λ
第3層(高屈折層) Ge 0.57λ
第4層(中屈折層) ZnSe 0.2λ
第5層(低屈折層) YbF3 0.06λ
第6層(高屈折層) ZnSe 0.05λ
第7層(低屈折層) YbF3 0.06λ
第8層(保護層) ZnSe 0.05λ
Material thickness First layer (low refractive layer) YbF 3 0.6λ
Second layer (medium refractive layer) ZnSe 0.2λ
Third layer (high refractive layer) Ge 0.57λ
Fourth layer (medium refractive layer) ZnSe 0.2λ
Fifth layer (low refractive layer) YbF 3 0.06λ
Sixth layer (high refractive layer) ZnSe 0.05λ
Seventh layer (low refractive layer) YbF 3 0.06λ
Eighth layer (protective layer) ZnSe 0.05λ

得られた赤外レーザ用反射ミラーは、実施例2の第6層上にさらにYbF3とZnSeの交互層を形成した構成であり(ただし、各層の厚さは異なっている)、炭酸ガスレーザ(10μm光)の反射率は99.7%であった。さらに、レーザ加工機を調整する際には可視光が用いられるが、実施例3の膜構造では可視光(633nm)の反射率として90.14%の値を得ることができた。   The obtained reflection mirror for an infrared laser has a configuration in which alternating layers of YbF3 and ZnSe are further formed on the sixth layer of Example 2 (however, the thickness of each layer is different), and a carbon dioxide gas laser (10 μm Light) was 99.7%. Furthermore, visible light is used when adjusting the laser processing machine, but with the film structure of Example 3, a value of 90.14% was obtained as the reflectance of visible light (633 nm).

図4は、実施例2及び実施例3についての10μm付近の赤外光反射率を示しており、図5は、同じく可視633nm付近の反射率を示している。図4〜5において、太線は実施例2、細線は実施例3を示している。   FIG. 4 shows the infrared light reflectance around 10 μm for Example 2 and Example 3, and FIG. 5 shows the reflectance around 633 nm that is also visible. 4 to 5, the thick line indicates the second embodiment, and the thin line indicates the third embodiment.

なお、今回開示された実施の形態はすべての点において単なる例示であって制限的なものではないと考えられるべきである。本発明の範囲は、前記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内のすべての変更が含まれることが意図される。   It should be understood that the embodiment disclosed this time is merely illustrative and not restrictive in all respects. The scope of the present invention is defined by the terms of the claims, rather than the meanings described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明の赤外反射防止膜の一実施の形態の断面説明図である。It is a section explanatory view of one embodiment of the infrared antireflection film of the present invention. 本発明の赤外レーザ用反射ミラーの一実施の形態の断面説明図である。It is a section explanatory view of one embodiment of a reflective mirror for infrared lasers of the present invention. 実施例1と比較例3の透過率を示す図である。It is a figure which shows the transmittance | permeability of Example 1 and Comparative Example 3. 実施例2及び実施例3についての10μm付近の赤外光反射率を示す図である。It is a figure which shows the infrared light reflectance of 10 micrometers vicinity about Example 2 and Example 3. FIG. 実施例2及び実施例3についての可視633nm付近の反射率を示す図である。It is a figure which shows the reflectance of visible 633 nm vicinity about Example 2 and Example 3. FIG.

符号の説明Explanation of symbols

1 赤外反射防止膜
2 赤外光学用基板
3 赤外用多層膜
4 低屈折層
5 中間屈折層
6 高屈折層
7 中間屈折層
8 低屈折層
9 保護層
11 赤外レーザ用反射ミラー
12 赤外光学用基板
13 赤外用多層膜
14 低屈折層
15 中間屈折層
16 高屈折層
17 中間屈折層
18 低屈折層
19 保護層
20 Auコーティング膜
21 密着力強化層
DESCRIPTION OF SYMBOLS 1 Infrared antireflection film 2 Infrared optical substrate 3 Infrared multilayer film 4 Low refractive layer 5 Intermediate refractive layer 6 High refractive layer 7 Intermediate refractive layer 8 Low refractive layer 9 Protective layer 11 Infrared laser reflecting mirror 12 Infrared Optical substrate 13 Infrared multilayer film 14 Low refraction layer 15 Intermediate refraction layer 16 High refraction layer 17 Intermediate refraction layer 18 Low refraction layer 19 Protective layer 20 Au coating film 21 Adhesion strengthening layer

Claims (9)

赤外光学用基板に形成される赤外用多層膜であって、
この赤外用多層膜は、前記基板側から、屈折率の低い低屈折層、この低屈折層よりも屈折率の高い中間屈折層、この中間屈折層よりも屈折率の高い高屈折層、中間屈折層、低屈折層、及び非酸化物材料からなる保護層がこの順に積層された積層体からなっており、
前記低屈折層はフッ化物膜からなり、
前記中間屈折層はZnS膜又はZnSe膜からなり、且つ
前記高屈折層はGe膜からなることを特徴とする赤外用多層膜。
An infrared multilayer film formed on an infrared optical substrate,
This infrared multilayer film includes, from the substrate side, a low refractive layer having a low refractive index, an intermediate refractive layer having a higher refractive index than the low refractive layer, a high refractive layer having a higher refractive index than the intermediate refractive layer, and an intermediate refractive layer. A layer, a low-refractive layer, and a protective layer made of a non-oxide material are laminated in this order,
The low refractive layer is made of a fluoride film,
The multilayer film for infrared use, wherein the intermediate refractive layer is made of a ZnS film or a ZnSe film, and the high refractive layer is made of a Ge film.
基板から遠い方の低屈折層を構成するフッ化物膜の膜厚が、1200nm以下で所望の光学特性が得られるように設定された請求項1に記載の赤外用多層膜。   The infrared multilayer film according to claim 1, wherein the film thickness of the fluoride film constituting the low refractive layer farther from the substrate is set to obtain desired optical characteristics when the film thickness is 1200 nm or less. 前記フッ化物膜が、YF3又はYbF3からなる請求項1又は2に記載の赤外用多層膜。 The infrared multilayer film according to claim 1, wherein the fluoride film is made of YF 3 or YbF 3 . Ge、ZnSe、ZnS及びGaAsのいずれかからなる基板上に請求項1記載の赤外用多層膜が形成されてなることを特徴とする赤外反射防止膜。   An infrared antireflection film, wherein the infrared multilayer film according to claim 1 is formed on a substrate made of any one of Ge, ZnSe, ZnS, and GaAs. 基板から遠い方の低屈折層を構成するフッ化物膜の膜厚が、1200nm以下で所望の光学特性が得られるように設定された請求項4に記載の赤外反射防止膜。   The infrared antireflection film according to claim 4, wherein the film thickness of the fluoride film constituting the low refractive layer farther from the substrate is set to obtain desired optical characteristics when the film thickness is 1200 nm or less. 前記フッ化物膜が、YF3又はYbF3からなる請求項4又は5に記載の赤外反射防止膜。 The infrared reflection preventing film according to claim 4 or 5, wherein the fluoride film is made of YF 3 or YbF 3 . 表面にAuがコーティングされたSi又はCuからなる基板上に請求項1記載の赤外用多層膜が形成されてなることを特徴とする赤外レーザ用反射ミラー。   An infrared laser reflecting mirror, wherein the infrared multilayer film according to claim 1 is formed on a substrate made of Si or Cu with Au coated on the surface. 基板から遠い方の低屈折層を構成するフッ化物膜の膜厚が、1200nm以下で所望の光学特性が得られるように設定された請求項7に記載の赤外レーザ用反射ミラー。   The infrared laser reflecting mirror according to claim 7, wherein the thickness of the fluoride film constituting the low refractive layer far from the substrate is set to 1200 nm or less so as to obtain desired optical characteristics. 前記フッ化物膜が、YF3又はYbF3からなる請求項7又は8に記載の赤外レーザ用反射ミラー。 The infrared laser reflecting mirror according to claim 7 or 8, wherein the fluoride film is made of YF 3 or YbF 3 .
JP2007258938A 2007-10-02 2007-10-02 Infrared multilayered film, infrared antireflection film, and infrared laser reflecting mirror Pending JP2009086533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007258938A JP2009086533A (en) 2007-10-02 2007-10-02 Infrared multilayered film, infrared antireflection film, and infrared laser reflecting mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007258938A JP2009086533A (en) 2007-10-02 2007-10-02 Infrared multilayered film, infrared antireflection film, and infrared laser reflecting mirror

Publications (1)

Publication Number Publication Date
JP2009086533A true JP2009086533A (en) 2009-04-23

Family

ID=40659984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007258938A Pending JP2009086533A (en) 2007-10-02 2007-10-02 Infrared multilayered film, infrared antireflection film, and infrared laser reflecting mirror

Country Status (1)

Country Link
JP (1) JP2009086533A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101863152A (en) * 2010-05-07 2010-10-20 中国人民解放军63983部队 Infrared radiation inhibiting material with nano periodic structure and method for preparing same
JP2011150286A (en) * 2009-12-23 2011-08-04 Sumitomo Electric Hardmetal Corp Optical component
JP2013015562A (en) * 2011-06-30 2013-01-24 Nitto Kogaku Kk Optical element and antireflection film transmitting carbon dioxide gas laser beam
JP2013041124A (en) * 2011-08-17 2013-02-28 Mitsubishi Electric Corp Infrared optical film, scan mirror and laser beam machine
CN103180764A (en) * 2010-10-27 2013-06-26 柯尼卡美能达株式会社 Near-infrared reflective film, method for producing same, and near-infrared reflector provided with near-infrared reflective film
DE102013210437A1 (en) 2012-06-05 2013-12-05 Hamamatsu Photonics K.K. Quantum Cascade Lasers
DE102013210438A1 (en) 2012-06-05 2013-12-05 Hamamatsu Photonics K.K. Quantum Cascade Lasers
WO2014188857A1 (en) * 2013-05-21 2014-11-27 三菱電機株式会社 Infrared optical film, polarizing mirror, laser processing machine provided with polarizing mirror, polarization selective mirror, laser oscillator provided with polarization selective mirror, and method for producing infrared optical film
CN107102383A (en) * 2016-02-22 2017-08-29 株式会社腾龙 Infrared transmitting film, optical film, antireflection film, optical component, optical system and camera device
WO2017195603A1 (en) * 2016-05-13 2017-11-16 三菱電機株式会社 Optical component and laser processing device
KR20190075117A (en) 2016-12-14 2019-06-28 미쓰비시덴키 가부시키가이샤 Laser oscillator and laser processing equipment
CN110542940A (en) * 2019-09-30 2019-12-06 东莞市光志光电有限公司 High-brightness optical reflector plate
CN112111720A (en) * 2020-09-22 2020-12-22 南京信息工程大学 Laser, infrared and microwave compatible stealth material and preparation method and application thereof
CN112813391A (en) * 2020-12-25 2021-05-18 西南技术物理研究所 Preparation method of ultra-wide waveband infrared long-wave pass cut-off light filtering film
CN112859208A (en) * 2021-02-20 2021-05-28 无锡奥夫特光学技术有限公司 Infrared window anti-reflection protective film
CN114019591A (en) * 2021-09-23 2022-02-08 有研国晶辉新材料有限公司 Optical element comprising anti-reflection protective film and preparation method thereof
CN114114475A (en) * 2021-12-07 2022-03-01 湖北久之洋红外系统股份有限公司 High-adhesion high-surface-quality antireflection film for zinc selenide substrate and preparation method and application thereof
CN114966912A (en) * 2022-06-28 2022-08-30 无锡泓瑞航天科技有限公司 Antireflection film group for germanium substrate and application thereof
CN114966911A (en) * 2022-06-28 2022-08-30 无锡泓瑞航天科技有限公司 Antireflective film group for silicon substrate and application thereof
CN115016052A (en) * 2022-06-29 2022-09-06 华中科技大学 Laser omnidirectional reflection film and application thereof in wearable laser protection field
CN115201941A (en) * 2021-04-13 2022-10-18 中国科学院上海技术物理研究所 High-efficiency infrared wide-spectrum antireflection film suitable for space environment
WO2023008123A1 (en) * 2021-07-30 2023-02-02 日本電気硝子株式会社 Film-equipped base material and manufacturing method for same
CN117369029A (en) * 2023-10-18 2024-01-09 济南能谱航空科技有限公司 Infrared low-radiation material for 1.06 mu m laser window

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917502A (en) * 1982-07-21 1984-01-28 Tokyo Optical Co Ltd Infrared anti-reflection film of germanium substrate
JPH07331412A (en) * 1994-06-10 1995-12-19 Sumitomo Electric Ind Ltd Optical parts for infrared ray and their production
JP2007212948A (en) * 2006-02-13 2007-08-23 Mitsubishi Electric Corp Antireflection film deposition method and substrate with antireflection film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917502A (en) * 1982-07-21 1984-01-28 Tokyo Optical Co Ltd Infrared anti-reflection film of germanium substrate
JPH07331412A (en) * 1994-06-10 1995-12-19 Sumitomo Electric Ind Ltd Optical parts for infrared ray and their production
JP2007212948A (en) * 2006-02-13 2007-08-23 Mitsubishi Electric Corp Antireflection film deposition method and substrate with antireflection film

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011150286A (en) * 2009-12-23 2011-08-04 Sumitomo Electric Hardmetal Corp Optical component
CN101863152B (en) * 2010-05-07 2012-04-25 中国人民解放军63983部队 Infrared radiation inhibiting material with nano periodic structure and method for preparing same
CN101863152A (en) * 2010-05-07 2010-10-20 中国人民解放军63983部队 Infrared radiation inhibiting material with nano periodic structure and method for preparing same
KR101470718B1 (en) * 2010-10-12 2014-12-08 스미또모 덴꼬오 하드메탈 가부시끼가이샤 Optical component
US9188706B2 (en) 2010-10-12 2015-11-17 Sumitomo Electric Hardmetal Corp. Optical element
CN103180764A (en) * 2010-10-27 2013-06-26 柯尼卡美能达株式会社 Near-infrared reflective film, method for producing same, and near-infrared reflector provided with near-infrared reflective film
JP2013015562A (en) * 2011-06-30 2013-01-24 Nitto Kogaku Kk Optical element and antireflection film transmitting carbon dioxide gas laser beam
JP2013041124A (en) * 2011-08-17 2013-02-28 Mitsubishi Electric Corp Infrared optical film, scan mirror and laser beam machine
US9246309B2 (en) 2012-06-05 2016-01-26 Hamamatsu Photonics K.K. Quantum cascade laser
DE102013210438A1 (en) 2012-06-05 2013-12-05 Hamamatsu Photonics K.K. Quantum Cascade Lasers
US9240674B2 (en) 2012-06-05 2016-01-19 Hamamatsu Photonics K. K. Quantum cascade laser
DE102013210438B4 (en) 2012-06-05 2022-09-22 Hamamatsu Photonics K.K. quantum cascade laser
DE102013210437A1 (en) 2012-06-05 2013-12-05 Hamamatsu Photonics K.K. Quantum Cascade Lasers
WO2014188857A1 (en) * 2013-05-21 2014-11-27 三菱電機株式会社 Infrared optical film, polarizing mirror, laser processing machine provided with polarizing mirror, polarization selective mirror, laser oscillator provided with polarization selective mirror, and method for producing infrared optical film
CN107102383B (en) * 2016-02-22 2020-04-10 株式会社腾龙 Infrared-transmitting film, optical film, antireflection film, optical member, optical system, and imaging device
CN107102383A (en) * 2016-02-22 2017-08-29 株式会社腾龙 Infrared transmitting film, optical film, antireflection film, optical component, optical system and camera device
KR102105306B1 (en) 2016-05-13 2020-04-28 미쓰비시덴키 가부시키가이샤 Optical components and laser processing machines
TWI655453B (en) * 2016-05-13 2019-04-01 日商三菱電機股份有限公司 Optical member and laser processor
KR20180123157A (en) * 2016-05-13 2018-11-14 미쓰비시덴키 가부시키가이샤 Optical components and laser processing machines
JPWO2017195603A1 (en) * 2016-05-13 2018-08-23 三菱電機株式会社 Optical components and laser processing machines
WO2017195603A1 (en) * 2016-05-13 2017-11-16 三菱電機株式会社 Optical component and laser processing device
CN109154678B (en) * 2016-05-13 2021-03-26 三菱电机株式会社 Optical component and laser processing machine
CN109154678A (en) * 2016-05-13 2019-01-04 三菱电机株式会社 Optical component and laser machine
KR20190075117A (en) 2016-12-14 2019-06-28 미쓰비시덴키 가부시키가이샤 Laser oscillator and laser processing equipment
KR102226980B1 (en) 2016-12-14 2021-03-11 미쓰비시덴키 가부시키가이샤 Laser oscillator and laser processing device
CN110542940B (en) * 2019-09-30 2024-05-17 东莞市光志光电有限公司 High-brightness optical reflector
CN110542940A (en) * 2019-09-30 2019-12-06 东莞市光志光电有限公司 High-brightness optical reflector plate
CN112111720A (en) * 2020-09-22 2020-12-22 南京信息工程大学 Laser, infrared and microwave compatible stealth material and preparation method and application thereof
CN112111720B (en) * 2020-09-22 2022-11-29 南京信息工程大学 Laser, infrared and microwave compatible stealth material and preparation method and application thereof
CN112813391B (en) * 2020-12-25 2022-08-12 西南技术物理研究所 Preparation method of ultra-wide waveband infrared long-wave pass cut-off light filtering film
CN112813391A (en) * 2020-12-25 2021-05-18 西南技术物理研究所 Preparation method of ultra-wide waveband infrared long-wave pass cut-off light filtering film
CN112859208A (en) * 2021-02-20 2021-05-28 无锡奥夫特光学技术有限公司 Infrared window anti-reflection protective film
CN115201941A (en) * 2021-04-13 2022-10-18 中国科学院上海技术物理研究所 High-efficiency infrared wide-spectrum antireflection film suitable for space environment
CN115201941B (en) * 2021-04-13 2023-09-12 中国科学院上海技术物理研究所 Efficient infrared wide-spectrum antireflection film suitable for space environment
WO2023008123A1 (en) * 2021-07-30 2023-02-02 日本電気硝子株式会社 Film-equipped base material and manufacturing method for same
CN114019591B (en) * 2021-09-23 2023-08-01 有研国晶辉新材料有限公司 Optical element comprising anti-reflection protective film and preparation method thereof
CN114019591A (en) * 2021-09-23 2022-02-08 有研国晶辉新材料有限公司 Optical element comprising anti-reflection protective film and preparation method thereof
CN114114475A (en) * 2021-12-07 2022-03-01 湖北久之洋红外系统股份有限公司 High-adhesion high-surface-quality antireflection film for zinc selenide substrate and preparation method and application thereof
CN114966911A (en) * 2022-06-28 2022-08-30 无锡泓瑞航天科技有限公司 Antireflective film group for silicon substrate and application thereof
CN114966912A (en) * 2022-06-28 2022-08-30 无锡泓瑞航天科技有限公司 Antireflection film group for germanium substrate and application thereof
CN114966911B (en) * 2022-06-28 2024-04-02 无锡泓瑞航天科技有限公司 Anti-reflection film group for silicon substrate and application thereof
CN114966912B (en) * 2022-06-28 2024-05-14 无锡泓瑞航天科技有限公司 Anti-reflection film group for germanium substrate and application thereof
CN115016052A (en) * 2022-06-29 2022-09-06 华中科技大学 Laser omnidirectional reflection film and application thereof in wearable laser protection field
CN117369029A (en) * 2023-10-18 2024-01-09 济南能谱航空科技有限公司 Infrared low-radiation material for 1.06 mu m laser window

Similar Documents

Publication Publication Date Title
JP2009086533A (en) Infrared multilayered film, infrared antireflection film, and infrared laser reflecting mirror
WO2012073791A1 (en) Optical functional film for infrared light
JP6343291B2 (en) Improved durable silver coating stack for high reflection mirrors
US6534903B1 (en) Broad spectrum reflective coating for an electric lamp
JP7280198B2 (en) Extension of Reflection Bandwidth of Silver Coated Laminate for High Reflector
JP2021036349A (en) Highly efficient multiwavelength beam expander using dielectric enhancement mirror
US7652823B2 (en) Non-polarizing beam splitter
JP2005292462A (en) Optical element having dielectric multilayer film
JP2008164678A (en) Reflection mirror
CN106443841B (en) A kind of ultralow residual reflectance ZnS substrates long wave antireflection film
JP2009204577A (en) Light-transmitting member and timepiece provided with same
JP5207471B2 (en) Optical components
JP4895902B2 (en) Method for forming reflective film
JP3639822B2 (en) Infrared antireflection film
JPH06313802A (en) Infrared area multilayer film
JP5413281B2 (en) Aluminum surface reflector
JP2005274527A (en) Cover glass for clock
CN108089244A (en) A kind of broadband wide-angle antireflective infrared optics multilayer film
JP2005165249A (en) Antireflection film, optical lens equipped therewith and optical lens unit
KR102147373B1 (en) Infrared anti-reflection coating layer nd manufacturing method thereof
JP2000034557A (en) Reflection enhancing film for near infrared rays and production of the same
JP2008139525A (en) Multilayer film optical element
JP2011221207A (en) Aluminum surface reflection mirror
JP6982951B2 (en) Silicon substrate with functional film for infrared rays
JP4063062B2 (en) Reflector

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20100924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703