WO2017195603A1 - Optical component and laser processing device - Google Patents

Optical component and laser processing device Download PDF

Info

Publication number
WO2017195603A1
WO2017195603A1 PCT/JP2017/016545 JP2017016545W WO2017195603A1 WO 2017195603 A1 WO2017195603 A1 WO 2017195603A1 JP 2017016545 W JP2017016545 W JP 2017016545W WO 2017195603 A1 WO2017195603 A1 WO 2017195603A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
optical component
thickness
substrate
transmittance
Prior art date
Application number
PCT/JP2017/016545
Other languages
French (fr)
Japanese (ja)
Inventor
圭佑 福永
秀和 中井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to KR1020187031223A priority Critical patent/KR102105306B1/en
Priority to CN201780028538.5A priority patent/CN109154678B/en
Priority to JP2018516935A priority patent/JP6625207B2/en
Priority to TW106115767A priority patent/TWI655453B/en
Publication of WO2017195603A1 publication Critical patent/WO2017195603A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings

Definitions

  • the present invention relates to an optical component and a laser processing machine equipped with the optical component.
  • the CO 2 laser oscillated at a wavelength of 9 ⁇ m to 11 ⁇ m is capable of high-power oscillation and has a high absorption rate in resin, so it can be used for drilling holes in printed wiring boards built in electronic devices such as smartphones. Used.
  • a protective window (protective window) is disposed between the condensing lens and the workpiece to prevent damage and deterioration of the condensing lens.
  • the main performance required for the protective window is that it is highly transmissive to CO 2 laser, which is infrared light, and that it has wear resistance that can withstand wiping off adhered dust and spatter.
  • Patent Document 1 a first Y 2 O 3 layer, a YF 3 layer, a second Y 2 O 3 layer, and a diamond-like carbon layer are laminated in this order from the substrate surface on the surface side of a ZnS substrate.
  • An infrared transmission structure in which a diamond-like carbon layer having a thickness of 500 to 2000 nm is laminated has been proposed.
  • Patent Document 1 it is said that an infrared transmission structure having excellent impact resistance and durability as compared with the conventional infrared transmission structure and having excellent peeling resistance and transmittance is realized.
  • the infrared transmitting structure proposed in Patent Document 1 has good wear resistance because a diamond-like carbon layer is formed on the outermost layer, it is sufficiently optical when used as an optical component of a laser processing machine. There was a problem that performance could not be obtained.
  • the optical component absorbs infrared light, a temperature distribution is generated on the ZnS substrate, and the laser transmission accuracy called the thermal lens effect. Decrease.
  • the optical lens absorbs infrared light and a thermal lens effect occurs, making it impossible to achieve the desired hole position and hole shape. There was a problem that non-standard defective products occurred.
  • the laser processing machine for drilling has achieved the required processing accuracy by limiting the speed of laser processing. End up.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an optical component having a high transmittance with respect to CO 2 laser light and excellent in wear resistance.
  • the present invention is an optical component characterized in that a fluoride film, a Ge film, and a diamond-like carbon film (DLC film) are laminated in this order on at least one surface of a Ge substrate from the Ge substrate side.
  • DLC film diamond-like carbon film
  • the present invention it is possible to provide an optical component having excellent high transmittance has and abrasion resistance against CO 2 laser light. Moreover, the laser processing machine equipped with the optical component of the present invention can perform high-precision processing even during high-speed processing.
  • FIG. 2 is a schematic cross-sectional view showing a configuration of an optical component according to Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view showing another configuration of the optical component according to Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view showing a configuration of an optical component according to Embodiment 2.
  • FIG. 6 is a schematic diagram illustrating a configuration of a laser beam machine according to a third embodiment. It is a figure which shows the wavelength dependence of the transmittance
  • FIG. It is a figure which shows the wavelength dependence of the transmittance
  • Embodiment 1 FIG.
  • the optical component according to Embodiment 1 of the present invention is characterized in that a fluoride film, a Ge film, and a diamond-like carbon film (DLC film) are laminated in this order on at least one surface of a Ge substrate from the Ge substrate side. It is what.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of an optical component according to Embodiment 1.
  • the optical component includes a fluoride film 11 stacked on a Ge substrate 10, a Ge film 12 stacked on the fluoride film 11, and a DLC film stacked on the Ge film 12. 13 is provided on both sides of the Ge substrate 10.
  • FIG. 2 is a schematic cross-sectional view showing another configuration of the optical component according to Embodiment 1.
  • the optical component includes a fluoride film 11 stacked on the Ge substrate 10, a Ge film 12 stacked on the fluoride film 11, and a DLC film stacked on the Ge film 12. 13 is provided on one surface of the Ge substrate 10, and an antireflection film 15 different from the multilayer film 14 is provided on the other surface of the Ge substrate 10.
  • the optical component of Patent Document 1 ZnS is used as a substrate.
  • ZnS having a low thermal conductivity is used as a substrate, temperature distribution occurs in the substrate when laser processing is continuously performed. When such a temperature distribution occurs, the processing accuracy decreases due to the thermal lens effect, so that ZnS is not suitable as a substrate for optical components for laser processing machines. Therefore, in the optical component of the present invention, Ge having high thermal conductivity is used for the substrate.
  • the Ge substrate 10 may be doped with an element other than Ge as long as optical performance and mechanical properties are not affected.
  • the shape of the Ge substrate 10 is not limited.
  • the protective window for a laser beam machine is preferably a disc having a diameter of 80 mm to 140 mm and a thickness of 2 mm to 10 mm.
  • the fluoride film 11 laminated on the Ge substrate 10 only needs to contain at least one of fluorides such as YF 3 , YbF 3 , MgF 2 , BaF 2 , CaF 2, and the like in the infrared region. From the viewpoint of excellent permeability, it is preferably made of at least one selected from the group consisting of YF 3 , YbF 3 and MgF 2 .
  • the film thickness of the fluoride film 11 is preferably 500 nm to 950 nm from the viewpoint of realizing high transmittance with respect to infrared light while ensuring film adhesion.
  • the adhesion of the DLC film 13 can be ensured by providing the Ge film 12.
  • the Ge film 12 By disposing the Ge film 12 between the DLC film 13 having a compressive stress and the fluoride film 11 having a tensile stress, the stress balance in the entire multilayer film 14 is maintained, and a fluorine film which is an interface having a weak adhesive force. This prevents a load from being applied between the fluoride film 11 and the Ge film 12 and between the fluoride film 11 and the Ge substrate 10.
  • the film thickness of the Ge film 12 is preferably 50 nm to 150 nm, more preferably 100 nm to 130 nm, from the viewpoint of realizing high transmittance for infrared light while ensuring film adhesion. preferable.
  • the DLC film 13 laminated on the Ge film 12 is made of diamond-like carbon having high stability as a substance and low reactivity with other materials.
  • diamond-like carbon has high hardness and adhesion of spatter to diamond-like carbon is weak, it is possible to easily remove spatter by cleaning the optical member without worrying about scratches.
  • Optical parts can be easily recycled and reused.
  • the film thickness of the DLC film 13 is preferably 50 nm to 300 nm.
  • each of the above films may be doped with other elements, or a thin film other than the above films may be formed.
  • the antireflection film 15 is not limited, but for example, a YF 3 film having a thickness of 600 nm to 800 nm, a Ge film having a thickness of 110 nm to 180 nm, and a thickness of 50 nm to 800 nm from the Ge substrate 10 side. MgF 2 films having the above are stacked in this order.
  • a wavelength of 9.3 ⁇ m or a wavelength is obtained as compared with the case where the multilayer film 14 is provided on both surfaces of the Ge substrate 10.
  • the transmittance at 10.6 ⁇ m can be improved.
  • any method can be used as long as it can form a film on the Ge substrate 10.
  • a physical vapor deposition method such as a vacuum vapor deposition method or a sputtering method
  • CVD method chemical vapor deposition method
  • the fluoride film 11, the Ge film 12, and the antireflection film 15 are preferably formed by a vacuum deposition method from the viewpoint of excellent production efficiency when a film is formed using a plurality of materials.
  • the DLC film 13 is preferably formed by a plasma CVD method from the viewpoint that the composition and thickness of the film can be accurately adjusted.
  • the first embodiment it is possible to provide an optical component that has a high transmittance with respect to a CO 2 laser beam having a wavelength of 9 ⁇ m to 11 ⁇ m and is excellent in wear resistance.
  • Embodiment 2 In the optical component according to the second embodiment, a fluoride film, a Ge film, and a DLC film are laminated in this order on at least one surface of the Ge substrate from the Ge substrate side, and the fluoride film and the Ge film are exposed. It is characterized by being covered with a DLC film.
  • FIG. 3 is a schematic cross-sectional view showing the configuration of the optical component according to the second embodiment.
  • the fluoride film 11 laminated on the Ge substrate 10 the Ge film 12 laminated on the fluoride film 11, the fluoride film 11 and the Ge film 12 are exposed.
  • the multilayer film 20 including the fluoride film 11 and the DLC film 13 covering the Ge film 12 is provided on one surface of the Ge substrate 10, and the antireflection film 15 described in the first embodiment is the Ge substrate. 10 is provided on the other surface.
  • the multilayer film 20 is provided on one surface of the Ge substrate 10, but the multilayer film 20 may be provided on both surfaces of the Ge substrate 10.
  • the Ge substrate 10 Since the Ge substrate 10, the fluoride film 11, the Ge film 12, and the antireflection film 15 are the same as those described in the first embodiment, their descriptions are omitted.
  • the film thickness of the DLC film 13 formed on the upper surface of the Ge film 12 is preferably 50 nm to 300 nm as in the first embodiment.
  • the film thickness of the DLC film 13 formed so that the fluoride film 11 and the Ge film 12 are not exposed on the side surfaces of the fluoride film 11 and the Ge film 12 is a film in which the fluoride film 11 and the Ge film 12 are not exposed. It only needs to be thick.
  • Such a DLC film 13 can be formed by adjusting the size of the opening of the mask when the film is formed by sputtering using the mask.
  • the second embodiment it is possible to provide an optical component that has a high transmittance with respect to the CO 2 laser light, has excellent wear resistance, and does not corrode by a gas generated during processing.
  • FIG. A laser beam machine according to Embodiment 3 includes the optical component according to Embodiment 1 or 2 described above.
  • FIG. 4 is a schematic diagram showing the configuration of the laser processing machine according to the third embodiment.
  • the laser processing machine includes a laser oscillator 30, a condensing lens 32 that condenses the laser light 31 emitted from the laser oscillator 30, and a workpiece such as the condensing lens 32 and a printed wiring board.
  • a protective window 34 disposed in the middle of the optical path of the laser beam 31 with the object 33, and the optical component according to the first or second embodiment described above is used as the protective window 34.
  • the protective window 34 is installed so that the multilayer film 14 described in the first embodiment or the multilayer film 20 described in the second embodiment faces the processing space side (the workpiece 33 side).
  • the configuration of the laser processing machine shown in FIG. 4 is an example, and the configuration is not limited to this configuration as long as it includes a laser oscillator and an optical system.
  • the laser beam 31 emitted from the laser oscillator 30 is condensed by the condenser lens 32, passes through the protective window 34, and is then irradiated to the workpiece 33 to form a hole. Is possible.
  • the protective window 34 Since the optical component according to Embodiment 1 or 2 described above has a high transmittance with respect to the CO 2 laser beam, by using this as the protective window 34, the thermal lens effect caused by the absorption of the laser is prevented and processed. It is possible to realize a laser processing machine that can perform high-speed processing without causing a decrease in accuracy.
  • the protective window 34 since the protective window 34 is installed so that the multilayer films 14 and 20 having the DLC film 13 formed on the outermost surface face the processing space, the protective window 34 can be used for a long time without worrying about the generation of scratches. Dust and spatter adhering to the surface can be easily removed.
  • the protective window 34 can be separated from the workpiece 33 only by about 100 mm, the protective window 34 is exposed to a large amount of spatter and dust during processing. Since the optical component described in the second embodiment is also excellent in corrosion resistance, the life of the optical component of the laser beam machine can be improved by using it as the protective window 34.
  • the third embodiment it is possible to provide a laser processing machine capable of improving the maintainability and performing high speed processing without causing a decrease in processing accuracy.
  • Example 1 As an optical component, a multilayer film (from the Ge substrate side, MgF 2 film (thickness 500 nm) / Ge film (thickness 80 nm) / DLC film (thickness) is formed on one surface of the Ge substrate (surface to be a laser beam emission surface). 500 nm)), and an antireflection film (a YF 3 film (film thickness 650 nm) / Ge film (film thickness 130 nm) / MgF 2 film (from the Ge substrate side) on the other surface (the surface to which the laser beam is incident)) A protective window for a laser beam machine having a thickness of 200 nm)) was produced.
  • the Ge substrate As the Ge substrate, a disk having a diameter of 90 mm and a thickness of 5 mm was used.
  • the MgF 2 film and Ge film constituting the multilayer film and the antireflection film were formed by vacuum deposition, and the DLC film constituting the multilayer film was formed by sputtering.
  • the transmittance of the produced optical component was evaluated using a Fourier transform infrared spectrophotometer.
  • the configuration of the optical component produced in Example 1 is as follows: DLC film (film thickness 500 nm) / Ge film (film thickness 80 nm) / MgF 2 film (film thickness 500 nm) / Ge substrate (thickness 5 mm) / YF 3 film (film) The thickness was 650 nm) / Ge film (thickness 130 nm) / MgF 2 film (thickness 200 nm).
  • FIG. 5 is a diagram showing the wavelength dependence of the transmittance in the optical component of Example 1.
  • the optical component of Example 1 was able to achieve a transmittance of 97.2% at a laser wavelength of 9.3 ⁇ m. This is sufficient optical performance as a protective window for a laser beam machine that desirably has a transmittance of 97% or more.
  • an MgF 2 film, a Ge film, and a DLC film are formed in this order from the Ge substrate side on one surface of the Ge substrate (the surface that is the laser light emission surface), and the MgF 2 film and the Ge film are exposed.
  • the anti-reflection film (the YF 3 film (film thickness 650 nm from the Ge substrate side) / Ge film (film thickness 130 nm) / A protective window for a laser beam machine on which an MgF 2 film (thickness: 200 nm) was formed was produced.
  • a disk having a diameter of 90 mm and a thickness of 5 mm was used as the Ge substrate.
  • the MgF 2 film and the Ge film constituting the multilayer film were formed by a vacuum deposition method, and the DLC film constituting the multilayer film was formed by a sputtering method using a mask having a predetermined opening. Moreover, the transmittance of the produced optical component was evaluated using a Fourier transform infrared spectrophotometer.
  • the configuration of the optical component produced in Example 2 is as follows: DLC film (film thickness 500 mm) / Ge film (film thickness 80 nm) / MgF 2 film (film thickness 500 nm) / Ge substrate (thickness 5 mm) / YF 3 film (film) The thickness was 650 nm) / Ge film (thickness 130 nm) / MgF 2 film (thickness 200 nm).
  • Example 2 In the optical component of Example 2, a transmittance of 97.2% was realized at a laser wavelength of 9.3 ⁇ m. This is sufficient optical performance as a protective window for a laser beam machine that desirably has a transmittance of 97% or more.
  • the multilayer film did not peel after the wear test (1), and was excellent in wear resistance. Further, as a result of the corrosion test (1), the multilayer film peeled off in the optical component of Example 1, whereas the multilayer film did not peel off in the optical component of Example 2, and the third multilayer film was not peeled off.
  • the lifetime of the optical component in a corrosive environment could be improved by covering the first layer of MgF 2 film and the second layer of GeF film without exposing the first layer of DLC film.
  • Comparative Example 1 optical analysis of an optical component corresponding to Patent Document 1 was performed.
  • the configuration of the optical component of Comparative Example 1 is as follows: DLC film (film thickness 300 nm) / Ge film (film thickness 30 nm) / Y 2 O 3 film (film thickness 30 nm) / YF 3 film (film thickness 600 nm) / Y 2 O 3 Film (film thickness 30 nm) / ZnS substrate (thickness 5 mm) / Y 2 O 3 film (film thickness 80 nm) / YF 3 film (1300 nm) / MgF 2 film (film thickness 400 nm).
  • FIG. 6 is a diagram illustrating the wavelength dependence of the transmittance when optical analysis is performed on the optical component of Comparative Example 1 using the optical thin film design software Essential Macleod.
  • the optical component of Comparative Example 1 had a transmittance of 95% or less at a laser wavelength of 9.3 ⁇ m.
  • this optical component is applied as a protective window for a laser beam machine, a thermal lens effect is generated, which causes a problem that the machining accuracy deteriorates during high-speed machining.
  • Example 3 Laser processing machine protection with multilayer films (YF 3 film (film thickness: 660 nm) / Ge film (film thickness: 120 nm) / DLC film (film thickness: 80 nm)) formed on both sides of the Ge substrate as optical components A window was made.
  • a disk having a diameter of 110 mm and a thickness of 5 mm was used as the Ge substrate.
  • the MgF 2 film and Ge film constituting the multilayer film and the antireflection film were formed by vacuum deposition, and the DLC film constituting the multilayer film was formed by plasma CVD.
  • the transmittance of the produced optical component was evaluated using a Fourier transform infrared spectrophotometer.
  • the configuration of the optical component produced in Example 3 is as follows: DLC film (film thickness 80 nm) / Ge film (film thickness 120 nm) / YF 3 film (film thickness 660 nm) / Ge substrate (thickness 5 mm) / YF 3 film (film) The thickness was 660 nm) / Ge film (film thickness 120 nm) / DLC film (film thickness 80 nm).
  • FIG. 7 is a diagram showing the wavelength dependence of the transmittance in the optical component of Example 3. As can be seen from FIG. 7, in the optical component of Example 3, a transmittance of 99.0% was realized at a laser wavelength of 9.3 ⁇ m. This is sufficient optical performance as a protective window for a laser beam machine that desirably has a transmittance of 97% or more.
  • Example 4 The configuration of the optical component is as follows: DLC film (film thickness 130 nm) / Ge film (film thickness 110 nm) / YbF 3 film (film thickness 670 nm) / Ge substrate (thickness 5 mm) / YbF 3 film (film thickness 670 nm) / Ge film An optical component of Example 4 was fabricated in the same manner as Example 3 except that the film thickness was changed to (film thickness 110 nm) / DLC film (film thickness 130 nm).
  • FIG. 8 is a diagram showing the wavelength dependence of the transmittance in the optical component of Example 4.
  • FIG. 8 in the optical component of Example 4, a transmittance of 98.4% was realized at a laser wavelength of 9.3 ⁇ m. This is sufficient optical performance as a protective window for a laser beam machine that desirably has a transmittance of 97% or more.
  • Example 5 The configuration of the optical component is DLC film (film thickness 50 nm) / Ge film (film thickness 130 nm) / MgF 2 film (film thickness 640 nm) / Ge substrate (thickness 5 mm) / MgF 2 film (film thickness 640 nm) / Ge film (film)
  • An optical component of Example 5 was fabricated in the same manner as Example 3 except that the thickness was changed to 130 nm) / DLC film (film thickness 50 nm).
  • FIG. 9 is a diagram showing the wavelength dependence of the transmittance in the optical component of Example 5. As can be seen from FIG. 9, in the optical component of Example 5, a transmittance of 99.3% was realized at a laser wavelength of 9.3 ⁇ m. This is sufficient optical performance as a protective window for a laser beam machine that desirably has a transmittance of 97% or more.
  • a multilayer film (from the Ge substrate side: YF 3 film (film thickness: 700 nm) / Ge film (film thickness: 110 nm) / DLC film (film thickness) is formed on one surface of the Ge substrate (the surface to be a laser beam emission surface). 300 nm)) and an antireflection film (YF 3 film (thickness: 750 nm) from the Ge substrate side / Ge film (thickness: 150 nm) / MgF 2 film (from the Ge substrate side) A protective window for a laser beam machine having a thickness of 200 nm)) was produced.
  • a disc having a diameter of 110 mm and a thickness of 5 mm was used as the Ge substrate.
  • the YF 3 film and Ge film constituting the multilayer film and the antireflection film were formed by vacuum deposition, and the DLC film constituting the multilayer film was formed by plasma CVD. Moreover, the transmittance of the produced optical component was evaluated using a Fourier transform infrared spectrophotometer.
  • the configuration of the optical component produced in Example 6 is as follows: DLC film (film thickness 300 nm) / Ge film (film thickness 110 nm) / YF 3 film (film thickness 700 nm) / Ge substrate (thickness 5 mm) / YF 3 film (film) The thickness was 750 nm) / Ge film (thickness 150 nm) / MgF 2 film (thickness 200 nm).
  • FIG. 10 is a diagram showing the wavelength dependence of the transmittance in the optical component of Example 6. As can be seen from FIG. 10, in the optical component of Example 6, a transmittance of 98.4% was realized at the laser wavelength of 10.6 ⁇ m. This is sufficient optical performance as a protective window for a laser beam machine that desirably has a transmittance of 97% or more.
  • Example 7 The configuration of the optical component is as follows: DLC film (film thickness 50 nm) / Ge film (film thickness 110 nm) / YbF 3 film (film thickness 950 nm) / Ge substrate (thickness 5 mm) / YF 3 film (film thickness 750 nm) / Ge film An optical component of Example 7 was produced in the same manner as Example 6 except that the thickness was changed to (film thickness 150 nm) / MgF 2 film (film thickness 200 nm).
  • FIG. 11 is a diagram showing the wavelength dependence of the transmittance in the optical component of Example 7. As can be seen from FIG. 11, in the optical component of Example 7, a transmittance of 98.2% was realized at the laser wavelength of 10.6 ⁇ m. This is sufficient optical performance as a protective window for a laser beam machine that desirably has a transmittance of 97% or more.
  • Example 8 The configuration of the optical component is as follows: DLC film (thickness 170 nm) / Ge film (thickness 150 nm) / MgF 2 film (thickness 600 nm) / Ge substrate (thickness 5 mm) / YF 3 film (thickness 750 nm) / Ge film An optical component of Example 8 was produced in the same manner as Example 6 except that the film thickness was changed to (film thickness 150 nm) / MgF 2 film (film thickness 200 nm).
  • FIG. 12 is a diagram showing the wavelength dependence of the transmittance in the optical component of Example 8. As can be seen from FIG. 12, in the optical component of Example 8, a transmittance of 98.3% was realized at the laser wavelength of 10.6 ⁇ m. This is sufficient optical performance as a protective window for a laser beam machine that desirably has a transmittance of 97% or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)
  • Laser Beam Processing (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

An optical component characterized in that a fluoride film, a Ge film, and a diamond-like carbon film (DLC film) are laminated on at least one surface of a Ge substrate in the sequence listed from the Ge substrate side. The film thickness of the fluoride film is preferably 500-950 nm, the film thickness of the Ge film is preferably 50-150 nm, and the film thickness of the DLC film is preferably 50-300 nm. The fluoride film preferably comprises at least one substance selected from the group consisting of YF3, YbF3, and MgF2.

Description

光学部品及びレーザ加工機Optical components and laser processing machines
 本発明は、光学部品及びそれを搭載したレーザ加工機に関するものである。 The present invention relates to an optical component and a laser processing machine equipped with the optical component.
 波長9μm~11μmで発振されるCO2レーザは、高出力発振が可能であることや樹脂における吸収率が高いことから、スマートフォンに代表される電子デバイスに内蔵されたプリント配線板への穴あけ加工に用いられる。 The CO 2 laser oscillated at a wavelength of 9 μm to 11 μm is capable of high-power oscillation and has a high absorption rate in resin, so it can be used for drilling holes in printed wiring boards built in electronic devices such as smartphones. Used.
 穴あけ加工用のレーザ加工機では、集光レンズが加工エリアの上方に設置されているため、加工時に発生する樹脂の蒸気、樹脂スパッタや銅スパッタ等により集光レンズに汚れが付着するという問題がある。従来、これを防止するため、保護ウィンドウ(保護窓)と呼ばれる光学部品が集光レンズと被加工物との間に配置され、集光レンズの損傷・劣化を防止している。保護ウィンドウに要求される主な性能は、赤外光であるCO2レーザに対して高透過性であること及び付着した粉塵やスパッタ等の拭き取りに耐える耐摩耗性を有することである。 In the laser processing machine for drilling, since the condensing lens is installed above the processing area, there is a problem that dirt is attached to the condensing lens due to resin vapor generated during processing, resin sputtering, copper sputtering, etc. is there. Conventionally, in order to prevent this, an optical component called a protective window (protective window) is disposed between the condensing lens and the workpiece to prevent damage and deterioration of the condensing lens. The main performance required for the protective window is that it is highly transmissive to CO 2 laser, which is infrared light, and that it has wear resistance that can withstand wiping off adhered dust and spatter.
 特許文献1には、ZnS製基板の表面側に、基板面から順に、第1のY23層、YF3層、第2のY23層及びダイヤモンド状炭素層が積層されている赤外線透過構造体、並びにZnS製基板の表面側に、基板面から順に、厚さ10~200nmのZnS、Al23、Y23のいずれか1層、厚さ100~750nmのGe層、厚さ500~2000nmのダイヤモンド状炭素層が積層されている赤外線透過構造体が提案されている。 In Patent Document 1, a first Y 2 O 3 layer, a YF 3 layer, a second Y 2 O 3 layer, and a diamond-like carbon layer are laminated in this order from the substrate surface on the surface side of a ZnS substrate. Infrared transmitting structure, and ZnS, Al 2 O 3 , Y 2 O 3 having a thickness of 10 to 200 nm and Ge layer having a thickness of 100 to 750 nm on the surface side of the ZnS substrate in order from the substrate surface. An infrared transmission structure in which a diamond-like carbon layer having a thickness of 500 to 2000 nm is laminated has been proposed.
 特許文献1では、それまでの赤外線透過構造体に比べ、優れた耐衝撃性と耐久性を有し、しかも耐剥離性と透過率が優れた赤外線透過構造体を実現したとされる。 According to Patent Document 1, it is said that an infrared transmission structure having excellent impact resistance and durability as compared with the conventional infrared transmission structure and having excellent peeling resistance and transmittance is realized.
特開2008-268277号公報JP 2008-268277 A
 しかしながら、特許文献1で提案される赤外線透過構造体は、最表層にダイヤモンド状炭素層が形成されているので耐摩耗性が良好なものの、レーザ加工機の光学部品として用いた場合に十分な光学性能が得られないという問題があった。このような光学部品を搭載したレーザ加工機にてレーザ加工を実施する場合、光学部品が赤外光を吸収することでZnS製基板に温度分布が発生し、熱レンズ効果と呼ばれるレーザの伝送精度の低下が生じる。特に、光学部品を保護ウィンドウとして搭載した穴あけ加工用のレーザ加工機では、光学部品が赤外光を吸収することで熱レンズ効果が発生し、所望の穴位置及び穴形状の加工が実現できなくなり、規格外の不良品が生じるという問題があった。穴あけ加工用のレーザ加工機では、このような問題を防止するために、レーザ加工の速度を制限して必要な加工精度を実現しているが、加工速度の制限により、生産性が低下してしまう。 However, although the infrared transmitting structure proposed in Patent Document 1 has good wear resistance because a diamond-like carbon layer is formed on the outermost layer, it is sufficiently optical when used as an optical component of a laser processing machine. There was a problem that performance could not be obtained. When laser processing is carried out with a laser processing machine equipped with such an optical component, the optical component absorbs infrared light, a temperature distribution is generated on the ZnS substrate, and the laser transmission accuracy called the thermal lens effect. Decrease. In particular, in a laser drilling machine equipped with an optical component as a protective window, the optical lens absorbs infrared light and a thermal lens effect occurs, making it impossible to achieve the desired hole position and hole shape. There was a problem that non-standard defective products occurred. In order to prevent such problems, the laser processing machine for drilling has achieved the required processing accuracy by limiting the speed of laser processing. End up.
 本発明は、上記の問題点を解決するためになされたものであり、CO2レーザ光に対して高い透過率を有し且つ耐摩耗性に優れる光学部品を提供することを目的としている。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an optical component having a high transmittance with respect to CO 2 laser light and excellent in wear resistance.
 本発明は、Ge基板の少なくとも片面に、該Ge基板側から、フッ化物膜、Ge膜及びダイヤモンドライクカーボン膜(DLC膜)がこの順に積層されたことを特徴とする光学部品である。 The present invention is an optical component characterized in that a fluoride film, a Ge film, and a diamond-like carbon film (DLC film) are laminated in this order on at least one surface of a Ge substrate from the Ge substrate side.
 本発明によれば、CO2レーザ光に対して高い透過率を有し且つ耐摩耗性に優れる光学部品を提供することができる。また、本発明の光学部品を搭載したレーザ加工機は、高速加工時においても高精度な加工が可能である。 According to the present invention, it is possible to provide an optical component having excellent high transmittance has and abrasion resistance against CO 2 laser light. Moreover, the laser processing machine equipped with the optical component of the present invention can perform high-precision processing even during high-speed processing.
実施の形態1に係る光学部品の構成を示す模式断面図である。2 is a schematic cross-sectional view showing a configuration of an optical component according to Embodiment 1. FIG. 実施の形態1に係る光学部品の別の構成を示す模式断面図である。6 is a schematic cross-sectional view showing another configuration of the optical component according to Embodiment 1. FIG. 実施の形態2に係る光学部品の構成を示す模式断面図である。6 is a schematic cross-sectional view showing a configuration of an optical component according to Embodiment 2. FIG. 実施の形態3に係るレーザ加工機の構成を示す模式図である。FIG. 6 is a schematic diagram illustrating a configuration of a laser beam machine according to a third embodiment. 実施例1の光学部品における透過率の波長依存性を示す図である。It is a figure which shows the wavelength dependence of the transmittance | permeability in the optical component of Example 1. FIG. 比較例1の光学部品における透過率の波長依存性を示す図である。It is a figure which shows the wavelength dependence of the transmittance | permeability in the optical component of the comparative example 1. 実施例3の光学部品における透過率の波長依存性を示す図である。It is a figure which shows the wavelength dependence of the transmittance | permeability in the optical component of Example 3. 実施例4の光学部品における透過率の波長依存性を示す図である。It is a figure which shows the wavelength dependence of the transmittance | permeability in the optical component of Example 4. 実施例5の光学部品における透過率の波長依存性を示す図である。It is a figure which shows the wavelength dependence of the transmittance | permeability in the optical component of Example 5. 実施例6の光学部品における透過率の波長依存性を示す図である。It is a figure which shows the wavelength dependence of the transmittance | permeability in the optical component of Example 6. 実施例7の光学部品における透過率の波長依存性を示す図である。It is a figure which shows the wavelength dependence of the transmittance | permeability in the optical component of Example 7. 実施例8の光学部品における透過率の波長依存性を示す図である。It is a figure which shows the wavelength dependence of the transmittance | permeability in the optical component of Example 8.
 実施の形態1.
 本発明の実施の形態1に係る光学部品は、Ge基板の少なくとも片面に、該Ge基板側から、フッ化物膜、Ge膜及びダイヤモンドライクカーボン膜(DLC膜)がこの順に積層されたことを特徴とするものである。
Embodiment 1 FIG.
The optical component according to Embodiment 1 of the present invention is characterized in that a fluoride film, a Ge film, and a diamond-like carbon film (DLC film) are laminated in this order on at least one surface of a Ge substrate from the Ge substrate side. It is what.
 図1は、実施の形態1に係る光学部品の構成を示す模式断面図である。図1に示されるように、光学部品は、Ge基板10上に積層されたフッ化物膜11と、フッ化物膜11上に積層されたGe膜12と、Ge膜12上に積層されたDLC膜13とからなる多層膜14がGe基板10の両面に設けられている。図2は、実施の形態1に係る光学部品の別の構成を示す模式断面図である。図2に示されるように、光学部品は、Ge基板10上に積層されたフッ化物膜11と、フッ化物膜11上に積層されたGe膜12と、Ge膜12上に積層されたDLC膜13とからなる多層膜14がGe基板10の一方の面に設けられ、多層膜14とは異なる反射防止膜15がGe基板10の他方の面に設けられている。 FIG. 1 is a schematic cross-sectional view showing a configuration of an optical component according to Embodiment 1. As shown in FIG. 1, the optical component includes a fluoride film 11 stacked on a Ge substrate 10, a Ge film 12 stacked on the fluoride film 11, and a DLC film stacked on the Ge film 12. 13 is provided on both sides of the Ge substrate 10. FIG. 2 is a schematic cross-sectional view showing another configuration of the optical component according to Embodiment 1. As shown in FIG. 2, the optical component includes a fluoride film 11 stacked on the Ge substrate 10, a Ge film 12 stacked on the fluoride film 11, and a DLC film stacked on the Ge film 12. 13 is provided on one surface of the Ge substrate 10, and an antireflection film 15 different from the multilayer film 14 is provided on the other surface of the Ge substrate 10.
 特許文献1の光学部品では、ZnSを基板としているが、熱伝導率の低いZnSを基板として用いると、レーザ加工を連続的に行う際に、基板に温度分布が生じてしまう。このような温度分布が生じると熱レンズ効果により、加工精度が低下するため、ZnSはレーザ加工機用光学部品の基板としてふさわしくない。
 そこで、本発明の光学部品では、熱伝導率が高いGeを基板に用いている。Ge基板10には、光学性能や機械特性に影響が出なければ、Ge以外の元素がドープされていてもよい。また、Ge基板10の形状は限定されるものではないが、例えばレーザ加工機用保護ウィンドウとしては、80mm~140mmの直径及び2mm~10mmの厚さを有する円板であることが好ましい。
In the optical component of Patent Document 1, ZnS is used as a substrate. However, when ZnS having a low thermal conductivity is used as a substrate, temperature distribution occurs in the substrate when laser processing is continuously performed. When such a temperature distribution occurs, the processing accuracy decreases due to the thermal lens effect, so that ZnS is not suitable as a substrate for optical components for laser processing machines.
Therefore, in the optical component of the present invention, Ge having high thermal conductivity is used for the substrate. The Ge substrate 10 may be doped with an element other than Ge as long as optical performance and mechanical properties are not affected. The shape of the Ge substrate 10 is not limited. For example, the protective window for a laser beam machine is preferably a disc having a diameter of 80 mm to 140 mm and a thickness of 2 mm to 10 mm.
 Ge基板10上に積層されたフッ化物膜11は、例えばYF3、YbF3、MgF2、BaF2、CaF2などのフッ化物のうち少なくとも一種を含むものであればよく、赤外領域での透過性に優れるという点から、YF3、YbF3及びMgF2からなる群から選択される少なくとも一種からなることが好ましい。 The fluoride film 11 laminated on the Ge substrate 10 only needs to contain at least one of fluorides such as YF 3 , YbF 3 , MgF 2 , BaF 2 , CaF 2, and the like in the infrared region. From the viewpoint of excellent permeability, it is preferably made of at least one selected from the group consisting of YF 3 , YbF 3 and MgF 2 .
 フッ化物膜11は、膜厚が大きくなると引張応力が大きくなるため、膜厚が大き過ぎると、フッ化物膜11の成膜中にクラックが生じるなど膜の損傷が起こり、膜の密着性を確保することが困難になることがある。一方、フッ化物膜11の膜厚が小さくなり過ぎると、反射防止効果が得られ難くなり、赤外光の透過率が低下することがある。膜の密着性を確保しつつ、赤外光に対して高い透過率を実現するという点から、フッ化物膜11の膜厚は、500nm~950nmの膜厚であることが好ましい。 When the film thickness of the fluoride film 11 increases, the tensile stress increases. Therefore, if the film thickness is too large, the fluoride film 11 may be damaged during the film formation of the fluoride film 11 to ensure the adhesion of the film. May be difficult to do. On the other hand, if the film thickness of the fluoride film 11 becomes too small, it becomes difficult to obtain an antireflection effect, and the transmittance of infrared light may decrease. The film thickness of the fluoride film 11 is preferably 500 nm to 950 nm from the viewpoint of realizing high transmittance with respect to infrared light while ensuring film adhesion.
 フッ化物膜11上に積層されたGe膜12は、DLC膜13との付着性が良いため、Ge膜12を設けることでDLC膜13の密着性を確保することができる。圧縮応力を有するDLC膜13と、引張応力を有するフッ化物膜11との間にGe膜12を配置することで、多層膜14全体における応力の均衡が保たれ、付着力が弱い界面であるフッ化物膜11とGe膜12との間及びフッ化物膜11とGe基板10との間に負荷を与えることを防止する。 Since the Ge film 12 laminated on the fluoride film 11 has good adhesion to the DLC film 13, the adhesion of the DLC film 13 can be ensured by providing the Ge film 12. By disposing the Ge film 12 between the DLC film 13 having a compressive stress and the fluoride film 11 having a tensile stress, the stress balance in the entire multilayer film 14 is maintained, and a fluorine film which is an interface having a weak adhesive force. This prevents a load from being applied between the fluoride film 11 and the Ge film 12 and between the fluoride film 11 and the Ge substrate 10.
 Ge膜12の膜厚が大き過ぎると、多層膜14全体における応力の均衡を保つことが難しくなり、フッ化物膜11とGe膜12との間及びフッ化物膜11とGe基板10との間で剥離が生じ易くなる。一方、Ge膜12の膜厚が小さくなり過ぎると、反射防止効果が得られ難くなり、赤外光の透過率が低下することがある。膜の密着性を確保しつつ、赤外光に対して高い透過率を実現するという点から、Ge膜12の膜厚は、50nm~150nmであることが好ましく、100nm~130nmであることがより好ましい。 If the film thickness of the Ge film 12 is too large, it becomes difficult to maintain the balance of stress in the entire multilayer film 14, and between the fluoride film 11 and the Ge film 12 and between the fluoride film 11 and the Ge substrate 10. Peeling easily occurs. On the other hand, when the film thickness of the Ge film 12 becomes too small, it is difficult to obtain an antireflection effect, and the transmittance of infrared light may be reduced. The film thickness of the Ge film 12 is preferably 50 nm to 150 nm, more preferably 100 nm to 130 nm, from the viewpoint of realizing high transmittance for infrared light while ensuring film adhesion. preferable.
 Ge膜12上に積層されたDLC膜13は、物質としての安定性が高く且つ他材料との反応性が低いダイヤモンドライクカーボンからなる。このようなDLC膜13を光学部材の最表面に設けることで、プリント基板等の穴あけ加工時に発生する粉塵やスパッタにより、膜が損傷・腐食するのを防止することができる。更に、ダイヤモンドライクカーボンは高い硬度を有しており且つダイヤモンドライクカーボンに対するスパッタの付着力が弱いことから、キズの発生を気にせずに光学部材をクリーニングしてスパッタを容易に除去することができ、光学部品を簡単に再生・再利用することができる。 The DLC film 13 laminated on the Ge film 12 is made of diamond-like carbon having high stability as a substance and low reactivity with other materials. By providing such a DLC film 13 on the outermost surface of the optical member, it is possible to prevent the film from being damaged or corroded by dust or spatter generated during drilling of a printed circuit board or the like. Furthermore, since diamond-like carbon has high hardness and adhesion of spatter to diamond-like carbon is weak, it is possible to easily remove spatter by cleaning the optical member without worrying about scratches. Optical parts can be easily recycled and reused.
 DLC膜13の膜厚が大き過ぎると、DLC膜13による赤外光の吸収が大きくなり、赤外光の透過率が低下する上に、圧縮応力が大きくなり、膜の密着力も低下することがある。一方、DLC膜13の膜厚が小さくなり過ぎると、摩耗時にDLC膜13の下地の影響を受けてDLC膜13本来の耐摩耗性を発揮することができなくなることがある。これらの点を考慮すると、DLC膜13の膜厚は、50nm~300nmであることが好ましい。 If the film thickness of the DLC film 13 is too large, the absorption of infrared light by the DLC film 13 increases, the transmittance of infrared light decreases, the compressive stress increases, and the adhesion of the film also decreases. is there. On the other hand, if the thickness of the DLC film 13 becomes too small, the wear resistance inherent in the DLC film 13 may not be exhibited due to the influence of the base of the DLC film 13 during wear. Considering these points, the film thickness of the DLC film 13 is preferably 50 nm to 300 nm.
 多層膜14の光学性能や機械特性に影響が出なければ、上記した各膜には他元素がドープされていてもよく、また、上記した膜以外の薄膜が形成されていてもよい。 As long as the optical performance and mechanical properties of the multilayer film 14 are not affected, each of the above films may be doped with other elements, or a thin film other than the above films may be formed.
 反射防止膜15は、限定されるものではないが、例えば、Ge基板10側から600nm~800nmの膜厚を有するYF3膜、110nm~180nmの膜厚を有するGe膜及び50nm~800nmの膜厚を有するMgF2膜がこの順に積層されたものである。このような反射防止膜15を、レーザ光の入射面となるGe基板10の一方の面に設けることで、多層膜14をGe基板10の両面に設けた場合よりも、波長9.3μm又は波長10.6μmにおける透過率を向上させることができる。 The antireflection film 15 is not limited, but for example, a YF 3 film having a thickness of 600 nm to 800 nm, a Ge film having a thickness of 110 nm to 180 nm, and a thickness of 50 nm to 800 nm from the Ge substrate 10 side. MgF 2 films having the above are stacked in this order. By providing such an antireflection film 15 on one surface of the Ge substrate 10 that serves as an incident surface of the laser light, a wavelength of 9.3 μm or a wavelength is obtained as compared with the case where the multilayer film 14 is provided on both surfaces of the Ge substrate 10. The transmittance at 10.6 μm can be improved.
 本発明の光学部品における多層膜14及び反射防止膜15の形成方法としては、Ge基板10上に膜を形成できる手法であれば、その種別を問わない。一般的に知られた成膜手法としては、真空蒸着法、スパッタリング法等の物理的蒸着法(PVD法)、プラズマCVD法等の化学的蒸着法(CVD法)が挙げられる。本発明では、複数の材料を用いて成膜を行う場合の生産効率に優れるという点から、フッ化物膜11、Ge膜12及び反射防止膜15を真空蒸着法で形成することが好ましい。また、本発明では、膜の組成や厚みを精度よく調節できるという点から、DLC膜13をプラズマCVD法で形成することが好ましい。 As a method for forming the multilayer film 14 and the antireflection film 15 in the optical component of the present invention, any method can be used as long as it can form a film on the Ge substrate 10. As a generally known film forming method, a physical vapor deposition method (PVD method) such as a vacuum vapor deposition method or a sputtering method, and a chemical vapor deposition method (CVD method) such as a plasma CVD method can be given. In the present invention, the fluoride film 11, the Ge film 12, and the antireflection film 15 are preferably formed by a vacuum deposition method from the viewpoint of excellent production efficiency when a film is formed using a plurality of materials. In the present invention, the DLC film 13 is preferably formed by a plasma CVD method from the viewpoint that the composition and thickness of the film can be accurately adjusted.
 実施の形態1によれば、波長9μm~11μmのCO2レーザ光に対して高い透過率を有し且つ耐摩耗性に優れる光学部品を提供することができる。 According to the first embodiment, it is possible to provide an optical component that has a high transmittance with respect to a CO 2 laser beam having a wavelength of 9 μm to 11 μm and is excellent in wear resistance.
 実施の形態2.
 実施の形態2に係る光学部品は、Ge基板の少なくとも片面に、該Ge基板側から、フッ化物膜、Ge膜及びDLC膜がこの順に積層されており、フッ化物膜及びGe膜が露出することなくDLC膜で覆われていることを特徴とするものである。
Embodiment 2. FIG.
In the optical component according to the second embodiment, a fluoride film, a Ge film, and a DLC film are laminated in this order on at least one surface of the Ge substrate from the Ge substrate side, and the fluoride film and the Ge film are exposed. It is characterized by being covered with a DLC film.
 図3は、実施の形態2に係る光学部品の構成を示す模式断面図である。図3に示されるように、光学部品は、Ge基板10上に積層されたフッ化物膜11と、フッ化物膜11上に積層されたGe膜12と、フッ化物膜11及びGe膜12が露出しないようにフッ化物膜11及びGe膜12を覆うDLC膜13とからなる多層膜20がGe基板10の一方の面に設けられており、実施の形態1で説明した反射防止膜15がGe基板10の他方の面に設けられている。図3では、Ge基板10の一方の面に多層膜20が設けられているが、Ge基板10の両面に多層膜20を設けてもよい。 FIG. 3 is a schematic cross-sectional view showing the configuration of the optical component according to the second embodiment. As shown in FIG. 3, in the optical component, the fluoride film 11 laminated on the Ge substrate 10, the Ge film 12 laminated on the fluoride film 11, the fluoride film 11 and the Ge film 12 are exposed. In order to prevent this, the multilayer film 20 including the fluoride film 11 and the DLC film 13 covering the Ge film 12 is provided on one surface of the Ge substrate 10, and the antireflection film 15 described in the first embodiment is the Ge substrate. 10 is provided on the other surface. In FIG. 3, the multilayer film 20 is provided on one surface of the Ge substrate 10, but the multilayer film 20 may be provided on both surfaces of the Ge substrate 10.
 Ge基板10、フッ化物膜11、Ge膜12及び反射防止膜15に関しては、実施の形態1で説明したのと同様であるので、それらの説明は省略する。 Since the Ge substrate 10, the fluoride film 11, the Ge film 12, and the antireflection film 15 are the same as those described in the first embodiment, their descriptions are omitted.
 Ge膜12の上面に形成されたDLC膜13の膜厚は、実施の形態1と同様に、50nm~300nmであることが好ましい。フッ化物膜11の側面及びGe膜12の側面に、フッ化物膜11及びGe膜12が露出しないように形成されたDLC膜13の膜厚は、フッ化物膜11及びGe膜12が露出しない膜厚であればよい。このようなDLC膜13は、マスクを用いてスパッタリング法で成膜する際にマスクの開口部の大きさを調整することにより形成することができる。光学部品におけるフッ化物膜11及びGe膜12をDLC膜13で覆うことにより、加工時に発生するガスに対して優れた耐腐食性を発揮することができる。 The film thickness of the DLC film 13 formed on the upper surface of the Ge film 12 is preferably 50 nm to 300 nm as in the first embodiment. The film thickness of the DLC film 13 formed so that the fluoride film 11 and the Ge film 12 are not exposed on the side surfaces of the fluoride film 11 and the Ge film 12 is a film in which the fluoride film 11 and the Ge film 12 are not exposed. It only needs to be thick. Such a DLC film 13 can be formed by adjusting the size of the opening of the mask when the film is formed by sputtering using the mask. By covering the fluoride film 11 and the Ge film 12 in the optical component with the DLC film 13, it is possible to exhibit excellent corrosion resistance against the gas generated during processing.
 実施の形態2によれば、CO2レーザ光に対して高い透過率を有し、且つ耐摩耗性に優れると共に加工時に発生するガスによって腐食しない光学部品を提供することができる。 According to the second embodiment, it is possible to provide an optical component that has a high transmittance with respect to the CO 2 laser light, has excellent wear resistance, and does not corrode by a gas generated during processing.
 実施の形態3.
 実施の形態3に係るレーザ加工機は、上記した実施の形態1又は2による光学部品を備えることを特徴とするものである。
Embodiment 3 FIG.
A laser beam machine according to Embodiment 3 includes the optical component according to Embodiment 1 or 2 described above.
 図4は、実施の形態3に係るレーザ加工機の構成を示す模式図である。図4に示されるように、レーザ加工機は、レーザ発振器30と、レーザ発振器30から出射されたレーザ光31を集光する集光レンズ32と、集光レンズ32とプリント配線板等の被加工物33との間のレーザ光31の光路途中に配置された保護ウィンドウ34とを備えおり、保護ウィンドウ34として、上記した実施の形態1又は2による光学部品が用いられている。ここで、保護ウィンドウ34は、実施の形態1で説明した多層膜14又は実施の形態2で説明した多層膜20が加工空間側(被加工物33側)に向くように設置されている。なお、図4に示すレーザ加工機の構成は一例であり、レーザ発振器と光学系とから構成されるものであれば、この構成に限定されない。 FIG. 4 is a schematic diagram showing the configuration of the laser processing machine according to the third embodiment. As shown in FIG. 4, the laser processing machine includes a laser oscillator 30, a condensing lens 32 that condenses the laser light 31 emitted from the laser oscillator 30, and a workpiece such as the condensing lens 32 and a printed wiring board. And a protective window 34 disposed in the middle of the optical path of the laser beam 31 with the object 33, and the optical component according to the first or second embodiment described above is used as the protective window 34. Here, the protective window 34 is installed so that the multilayer film 14 described in the first embodiment or the multilayer film 20 described in the second embodiment faces the processing space side (the workpiece 33 side). Note that the configuration of the laser processing machine shown in FIG. 4 is an example, and the configuration is not limited to this configuration as long as it includes a laser oscillator and an optical system.
 このように構成されたレーザ加工機において、レーザ発振器30から出射されたレーザ光31は集光レンズ32により集光され、保護ウィンドウ34を透過した後、被加工物33に照射されて、穴あけ加工が可能となる。 In the laser processing machine configured as described above, the laser beam 31 emitted from the laser oscillator 30 is condensed by the condenser lens 32, passes through the protective window 34, and is then irradiated to the workpiece 33 to form a hole. Is possible.
 上記した実施の形態1又は2による光学部品はCO2レーザ光に対して高い透過率を有するので、これを保護ウィンドウ34として用いることによって、レーザの吸収が引き起こす熱レンズ効果を防止して、加工精度の低下を起こさずに高速加工できるレーザ加工機を実現することができる。また、保護ウィンドウ34は、最表面にDLC膜13が形成された多層膜14,20が加工空間側に向くように設置されているので、キズの発生を気にせずに長期使用により保護ウィンドウ34の表面に付着した粉塵やスパッタを容易に除去することができる。一般的に、保護ウィンドウ34は被加工物33から約100mm程度しか離すことができないため、保護ウィンドウ34は加工時に大量のスパッタや粉塵に曝されることになる。実施の形態2で説明した光学部品は耐腐食性にも優れるので、これを保護ウィンドウ34として用いることによって、レーザ加工機の光学部品の寿命を向上させることが可能である。 Since the optical component according to Embodiment 1 or 2 described above has a high transmittance with respect to the CO 2 laser beam, by using this as the protective window 34, the thermal lens effect caused by the absorption of the laser is prevented and processed. It is possible to realize a laser processing machine that can perform high-speed processing without causing a decrease in accuracy. In addition, since the protective window 34 is installed so that the multilayer films 14 and 20 having the DLC film 13 formed on the outermost surface face the processing space, the protective window 34 can be used for a long time without worrying about the generation of scratches. Dust and spatter adhering to the surface can be easily removed. Generally, since the protective window 34 can be separated from the workpiece 33 only by about 100 mm, the protective window 34 is exposed to a large amount of spatter and dust during processing. Since the optical component described in the second embodiment is also excellent in corrosion resistance, the life of the optical component of the laser beam machine can be improved by using it as the protective window 34.
 実施の形態3によれば、メンテナンス性が向上すると共に、加工精度の低下を起こさずに高速加工できるレーザ加工機を提供することができる。 According to the third embodiment, it is possible to provide a laser processing machine capable of improving the maintainability and performing high speed processing without causing a decrease in processing accuracy.
 以下、実施例及び比較例により本発明をより具体的に説明するが、本発明はこれらによって限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
[実施例1]
 光学部品として、Ge基板の一方の面(レーザ光の出射面となる面)に多層膜(Ge基板側からMgF2膜(膜厚500nm)/Ge膜(膜厚80nm)/DLC膜(膜厚500nm))を形成し、他方の面(レーザ光の入射面となる面)に反射防止膜(Ge基板側からYF3膜(膜厚650nm)/Ge膜(膜厚130nm)/MgF2膜(膜厚200nm))を形成したレーザ加工機用保護ウィンドウを作製した。Ge基板としては、直径90mm及び厚さ5mmの円板を使用した。多層膜を構成するMgF2膜及びGe膜並びに反射防止膜は、真空蒸着法により形成し、多層膜を構成するDLC膜は、スパッタリング法により形成した。また、作製した光学部品の透過率は、フーリエ変換型赤外分光光度計を使用して評価した。
 実施例1で作製した光学部品の構成は、DLC膜(膜厚500nm)/Ge膜(膜厚80nm)/MgF2膜(膜厚500nm)/Ge基板(厚さ5mm)/YF3膜(膜厚650nm)/Ge膜(膜厚130nm)/MgF2膜(膜厚200nm)であった。
[Example 1]
As an optical component, a multilayer film (from the Ge substrate side, MgF 2 film (thickness 500 nm) / Ge film (thickness 80 nm) / DLC film (thickness) is formed on one surface of the Ge substrate (surface to be a laser beam emission surface). 500 nm)), and an antireflection film (a YF 3 film (film thickness 650 nm) / Ge film (film thickness 130 nm) / MgF 2 film (from the Ge substrate side) on the other surface (the surface to which the laser beam is incident)) A protective window for a laser beam machine having a thickness of 200 nm)) was produced. As the Ge substrate, a disk having a diameter of 90 mm and a thickness of 5 mm was used. The MgF 2 film and Ge film constituting the multilayer film and the antireflection film were formed by vacuum deposition, and the DLC film constituting the multilayer film was formed by sputtering. Moreover, the transmittance of the produced optical component was evaluated using a Fourier transform infrared spectrophotometer.
The configuration of the optical component produced in Example 1 is as follows: DLC film (film thickness 500 nm) / Ge film (film thickness 80 nm) / MgF 2 film (film thickness 500 nm) / Ge substrate (thickness 5 mm) / YF 3 film (film) The thickness was 650 nm) / Ge film (thickness 130 nm) / MgF 2 film (thickness 200 nm).
 図5は、実施例1の光学部品における透過率の波長依存性を示す図である。図5から分かるように、実施例1の光学部品では、レーザ波長である9.3μmにおいて、97.2%の透過率を実現できた。これは、97%以上の透過率を有することが望ましいレーザ加工機用保護ウィンドウとして、十分な光学性能である。 FIG. 5 is a diagram showing the wavelength dependence of the transmittance in the optical component of Example 1. FIG. As can be seen from FIG. 5, the optical component of Example 1 was able to achieve a transmittance of 97.2% at a laser wavelength of 9.3 μm. This is sufficient optical performance as a protective window for a laser beam machine that desirably has a transmittance of 97% or more.
[実施例2]
 光学部品として、Ge基板の一方の面(レーザ光の出射面となる面)に、Ge基板側から、MgF2膜、Ge膜及びDLC膜をこの順に形成し且つMgF2膜及びGe膜が露出することなくDLC膜で覆われていて、他方の面(レーザ光の入射面となる面)に反射防止膜(Ge基板側からYF3膜(膜厚650nm)/Ge膜(膜厚130nm)/MgF2膜(膜厚200nm))を形成したレーザ加工機用保護ウィンドウを作製した。Ge基板としては、直径90mm及び厚さ5mmの円板を使用した。多層膜を構成するMgF2膜及びGe膜は、真空蒸着法により形成し、多層膜を構成するDLC膜は、所定の開口部を有するマスクを用いてスパッタリング法により形成した。また、作製した光学部品の透過率は、フーリエ変換型赤外分光光度計を使用して評価した。
 実施例2で作製した光学部品の構成は、DLC膜(膜厚500mm)/Ge膜(膜厚80nm)/MgF2膜(膜厚500nm)/Ge基板(厚さ5mm)/YF3膜(膜厚650nm)/Ge膜(膜厚130nm)/MgF2膜(膜厚200nm)であった。
[Example 2]
As an optical component, an MgF 2 film, a Ge film, and a DLC film are formed in this order from the Ge substrate side on one surface of the Ge substrate (the surface that is the laser light emission surface), and the MgF 2 film and the Ge film are exposed. The anti-reflection film (the YF 3 film (film thickness 650 nm from the Ge substrate side) / Ge film (film thickness 130 nm) / A protective window for a laser beam machine on which an MgF 2 film (thickness: 200 nm) was formed was produced. As the Ge substrate, a disk having a diameter of 90 mm and a thickness of 5 mm was used. The MgF 2 film and the Ge film constituting the multilayer film were formed by a vacuum deposition method, and the DLC film constituting the multilayer film was formed by a sputtering method using a mask having a predetermined opening. Moreover, the transmittance of the produced optical component was evaluated using a Fourier transform infrared spectrophotometer.
The configuration of the optical component produced in Example 2 is as follows: DLC film (film thickness 500 mm) / Ge film (film thickness 80 nm) / MgF 2 film (film thickness 500 nm) / Ge substrate (thickness 5 mm) / YF 3 film (film) The thickness was 650 nm) / Ge film (thickness 130 nm) / MgF 2 film (thickness 200 nm).
 実施例2の光学部品では、レーザ波長である9.3μmにおいて、97.2%の透過率を実現できた。これは、97%以上の透過率を有することが望ましいレーザ加工機用保護ウィンドウとして、十分な光学性能である。 In the optical component of Example 2, a transmittance of 97.2% was realized at a laser wavelength of 9.3 μm. This is sufficient optical performance as a protective window for a laser beam machine that desirably has a transmittance of 97% or more.
 次に、実施例1及び2の光学部品について、「摩耗試験(1)(MIL-C-675準拠SEVERE ABRASION)」及び「腐食試験(50%に希釈した塩酸水溶液に1時間浸漬)」を実施した。結果を表1に示す。摩耗試験(1)後に、多層膜の剥離が生じなかった場合を○、多層膜の剥離が生じた場合を×とした。また、腐食試験後に、多層膜の剥離が生じなかった場合を○、多層膜の剥離が生じた場合を×とした。 Next, “wear test (1) (SEVERE ABRASION compliant with MIL-C-675)” and “corrosion test (immersion in hydrochloric acid solution diluted to 50% for 1 hour)” were performed on the optical components of Examples 1 and 2. did. The results are shown in Table 1. After the abrasion test (1), the case where no peeling of the multilayer film occurred was marked with ◯, and the case where the multilayer film was peeled was marked with x. Moreover, the case where peeling of the multilayer film did not occur after the corrosion test was marked with ◯, and the case where peeling of the multilayer film occurred was marked with x.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、実施例1及び2の光学部品では、摩耗試験(1)後に多層膜の剥離が生じることはなく、耐摩耗性に優れていた。また、腐食試験(1)の結果、実施例1の光学部品では、多層膜の剥離が生じたのに対して、実施例2の光学部品では、多層膜は剥離せず、多層膜の第3層目のDLC膜が第1層目のMgF2膜及び第2層目のGe膜を露出なく覆うことで、腐食環境下での光学部品の寿命を向上させることができた。 As shown in Table 1, in the optical components of Examples 1 and 2, the multilayer film did not peel after the wear test (1), and was excellent in wear resistance. Further, as a result of the corrosion test (1), the multilayer film peeled off in the optical component of Example 1, whereas the multilayer film did not peel off in the optical component of Example 2, and the third multilayer film was not peeled off. The lifetime of the optical component in a corrosive environment could be improved by covering the first layer of MgF 2 film and the second layer of GeF film without exposing the first layer of DLC film.
[比較例1]
 比較例1では、特許文献1に対応する光学部品の光学解析を実施した。
 比較例1の光学部品の構成は、DLC膜(膜厚300nm)/Ge膜(膜厚30nm)/Y23膜(膜厚30nm)/YF3膜(膜厚600nm)/Y23膜(膜厚30nm)/ZnS基板(厚さ5mm)/Y23膜(膜厚80nm)/YF3膜(1300nm)/MgF2膜(膜厚400nm)とした。
 図6は、比較例1の光学部品について、光学薄膜設計ソフトEssential Macleodを使用して光学解析を実施した際の、透過率の波長依存性を示す図である。図6から分かるように、比較例1の光学部品では、レーザ波長である9.3μmにおいて、95%以下の透過率であった。この光学部品をレーザ加工機用保護ウィンドウとして適用した場合、熱レンズ効果が生じるため、高速加工時に加工精度が悪化するという問題が生じる。
[Comparative Example 1]
In Comparative Example 1, optical analysis of an optical component corresponding to Patent Document 1 was performed.
The configuration of the optical component of Comparative Example 1 is as follows: DLC film (film thickness 300 nm) / Ge film (film thickness 30 nm) / Y 2 O 3 film (film thickness 30 nm) / YF 3 film (film thickness 600 nm) / Y 2 O 3 Film (film thickness 30 nm) / ZnS substrate (thickness 5 mm) / Y 2 O 3 film (film thickness 80 nm) / YF 3 film (1300 nm) / MgF 2 film (film thickness 400 nm).
FIG. 6 is a diagram illustrating the wavelength dependence of the transmittance when optical analysis is performed on the optical component of Comparative Example 1 using the optical thin film design software Essential Macleod. As can be seen from FIG. 6, the optical component of Comparative Example 1 had a transmittance of 95% or less at a laser wavelength of 9.3 μm. When this optical component is applied as a protective window for a laser beam machine, a thermal lens effect is generated, which causes a problem that the machining accuracy deteriorates during high-speed machining.
[実施例3]
 光学部品として、Ge基板の両面に、多層膜(Ge基板側からYF3膜(膜厚660nm)/Ge膜(膜厚120nm)/DLC膜(膜厚80nm))を形成したレーザ加工機用保護ウィンドウを作製した。Ge基板としては、直径110mm及び厚み5mmの円板を使用した。多層膜を構成するMgF2膜及びGe膜並びに反射防止膜は、真空蒸着法により形成し、多層膜を構成するDLC膜は、プラズマCVD法により形成した。また、作製した光学部品の透過率は、フーリエ変換型赤外分光光度計を使用して評価した。
 実施例3で作製した光学部品の構成は、DLC膜(膜厚80nm)/Ge膜(膜厚120nm)/YF3膜(膜厚660nm)/Ge基板(厚さ5mm)/YF3膜(膜厚660nm)/Ge膜(膜厚120nm)/DLC膜(膜厚80nm)であった。
[Example 3]
Laser processing machine protection with multilayer films (YF 3 film (film thickness: 660 nm) / Ge film (film thickness: 120 nm) / DLC film (film thickness: 80 nm)) formed on both sides of the Ge substrate as optical components A window was made. As the Ge substrate, a disk having a diameter of 110 mm and a thickness of 5 mm was used. The MgF 2 film and Ge film constituting the multilayer film and the antireflection film were formed by vacuum deposition, and the DLC film constituting the multilayer film was formed by plasma CVD. Moreover, the transmittance of the produced optical component was evaluated using a Fourier transform infrared spectrophotometer.
The configuration of the optical component produced in Example 3 is as follows: DLC film (film thickness 80 nm) / Ge film (film thickness 120 nm) / YF 3 film (film thickness 660 nm) / Ge substrate (thickness 5 mm) / YF 3 film (film) The thickness was 660 nm) / Ge film (film thickness 120 nm) / DLC film (film thickness 80 nm).
 図7は、実施例3の光学部品における透過率の波長依存性を示す図である。図7から分かるように、実施例3の光学部品では、レーザ波長である9.3μmにおいて、99.0%の透過率を実現できた。これは、97%以上の透過率を有することが望ましいレーザ加工機用保護ウィンドウとして、十分な光学性能である。 FIG. 7 is a diagram showing the wavelength dependence of the transmittance in the optical component of Example 3. As can be seen from FIG. 7, in the optical component of Example 3, a transmittance of 99.0% was realized at a laser wavelength of 9.3 μm. This is sufficient optical performance as a protective window for a laser beam machine that desirably has a transmittance of 97% or more.
[実施例4]
 光学部品の構成を、DLC膜(膜厚130nm)/Ge膜(膜厚110nm)/YbF3膜(膜厚670nm)/Ge基板(厚さ5mm)/YbF3膜(膜厚670nm)/Ge膜(膜厚110nm)/DLC膜(膜厚130nm)に変更したこと以外は、実施例3と同様にして実施例4の光学部品を作製した。
[Example 4]
The configuration of the optical component is as follows: DLC film (film thickness 130 nm) / Ge film (film thickness 110 nm) / YbF 3 film (film thickness 670 nm) / Ge substrate (thickness 5 mm) / YbF 3 film (film thickness 670 nm) / Ge film An optical component of Example 4 was fabricated in the same manner as Example 3 except that the film thickness was changed to (film thickness 110 nm) / DLC film (film thickness 130 nm).
 図8は、実施例4の光学部品における透過率の波長依存性を示す図である。図8から分かるように、実施例4の光学部品では、レーザ波長である9.3μmにおいて、98.4%の透過率を実現できた。これは、97%以上の透過率を有することが望ましいレーザ加工機用保護ウィンドウとして、十分な光学性能である。 FIG. 8 is a diagram showing the wavelength dependence of the transmittance in the optical component of Example 4. FIG. As can be seen from FIG. 8, in the optical component of Example 4, a transmittance of 98.4% was realized at a laser wavelength of 9.3 μm. This is sufficient optical performance as a protective window for a laser beam machine that desirably has a transmittance of 97% or more.
[実施例5]
 光学部品の構成を、DLC膜(膜厚50nm)/Ge膜(膜厚130nm)/MgF2膜(膜厚640nm)/Ge基板(厚さ5mm)/MgF2膜(膜厚640nm)/Ge膜(膜厚130nm)/DLC膜(膜厚50nm)に変更したこと以外は、実施例3と同様にして実施例5の光学部品を作製した。
[Example 5]
The configuration of the optical component is DLC film (film thickness 50 nm) / Ge film (film thickness 130 nm) / MgF 2 film (film thickness 640 nm) / Ge substrate (thickness 5 mm) / MgF 2 film (film thickness 640 nm) / Ge film (film) An optical component of Example 5 was fabricated in the same manner as Example 3 except that the thickness was changed to 130 nm) / DLC film (film thickness 50 nm).
 図9は、実施例5の光学部品における透過率の波長依存性を示す図である。図9から分かるように、実施例5の光学部品では、レーザ波長である9.3μmにおいて、99.3%の透過率を実現できた。これは、97%以上の透過率を有することが望ましいレーザ加工機用保護ウィンドウとして、十分な光学性能である。 FIG. 9 is a diagram showing the wavelength dependence of the transmittance in the optical component of Example 5. As can be seen from FIG. 9, in the optical component of Example 5, a transmittance of 99.3% was realized at a laser wavelength of 9.3 μm. This is sufficient optical performance as a protective window for a laser beam machine that desirably has a transmittance of 97% or more.
[実施例6]
 光学部品として、Ge基板の一方の面(レーザ光の出射面となる面)に多層膜(Ge基板側からYF3膜(膜厚700nm)/Ge膜(膜厚110nm)/DLC膜(膜厚300nm))を形成し、他方の面(レーザ光の入射面となる面)に反射防止膜(Ge基板側からYF3膜(膜厚750nm)/Ge膜(膜厚150nm)/MgF2膜(膜厚200nm))を形成したレーザ加工機用保護ウィンドウを作製した。Ge基板としては、直径110mm及び厚さ5mmの円板を使用した。多層膜を構成するYF3膜及びGe膜並びに反射防止膜は、真空蒸着法により形成し、多層膜を構成するDLC膜は、プラズマCVD法により形成した。また、作製した光学部品の透過率は、フーリエ変換型赤外分光光度計を使用して評価した。
 実施例6で作製した光学部品の構成は、DLC膜(膜厚300nm)/Ge膜(膜厚110nm)/YF3膜(膜厚700nm)/Ge基板(厚さ5mm)/YF3膜(膜厚750nm)/Ge膜(膜厚150nm)/MgF2膜(膜厚200nm)であった。
[Example 6]
As an optical component, a multilayer film (from the Ge substrate side: YF 3 film (film thickness: 700 nm) / Ge film (film thickness: 110 nm) / DLC film (film thickness) is formed on one surface of the Ge substrate (the surface to be a laser beam emission surface). 300 nm)) and an antireflection film (YF 3 film (thickness: 750 nm) from the Ge substrate side / Ge film (thickness: 150 nm) / MgF 2 film (from the Ge substrate side) A protective window for a laser beam machine having a thickness of 200 nm)) was produced. As the Ge substrate, a disc having a diameter of 110 mm and a thickness of 5 mm was used. The YF 3 film and Ge film constituting the multilayer film and the antireflection film were formed by vacuum deposition, and the DLC film constituting the multilayer film was formed by plasma CVD. Moreover, the transmittance of the produced optical component was evaluated using a Fourier transform infrared spectrophotometer.
The configuration of the optical component produced in Example 6 is as follows: DLC film (film thickness 300 nm) / Ge film (film thickness 110 nm) / YF 3 film (film thickness 700 nm) / Ge substrate (thickness 5 mm) / YF 3 film (film) The thickness was 750 nm) / Ge film (thickness 150 nm) / MgF 2 film (thickness 200 nm).
 図10は、実施例6の光学部品における透過率の波長依存性を示す図である。図10から分かるように、実施例6の光学部品では、レーザ波長である10.6μmにおいて、98.4%の透過率を実現できた。これは、97%以上の透過率を有することが望ましいレーザ加工機用保護ウィンドウとして、十分な光学性能である。 FIG. 10 is a diagram showing the wavelength dependence of the transmittance in the optical component of Example 6. As can be seen from FIG. 10, in the optical component of Example 6, a transmittance of 98.4% was realized at the laser wavelength of 10.6 μm. This is sufficient optical performance as a protective window for a laser beam machine that desirably has a transmittance of 97% or more.
[実施例7]
 光学部品の構成を、DLC膜(膜厚50nm)/Ge膜(膜厚110nm)/YbF3膜(膜厚950nm)/Ge基板(厚さ5mm)/YF3膜(膜厚750nm)/Ge膜(膜厚150nm)/MgF2膜(膜厚200nm)に変更したこと以外は、実施例6と同様にして実施例7の光学部品を作製した。
[Example 7]
The configuration of the optical component is as follows: DLC film (film thickness 50 nm) / Ge film (film thickness 110 nm) / YbF 3 film (film thickness 950 nm) / Ge substrate (thickness 5 mm) / YF 3 film (film thickness 750 nm) / Ge film An optical component of Example 7 was produced in the same manner as Example 6 except that the thickness was changed to (film thickness 150 nm) / MgF 2 film (film thickness 200 nm).
 図11は、実施例7の光学部品における透過率の波長依存性を示す図である。図11から分かるように、実施例7の光学部品では、レーザ波長である10.6μmにおいて、98.2%の透過率を実現できた。これは、97%以上の透過率を有することが望ましいレーザ加工機用保護ウィンドウとして、十分な光学性能である。 FIG. 11 is a diagram showing the wavelength dependence of the transmittance in the optical component of Example 7. As can be seen from FIG. 11, in the optical component of Example 7, a transmittance of 98.2% was realized at the laser wavelength of 10.6 μm. This is sufficient optical performance as a protective window for a laser beam machine that desirably has a transmittance of 97% or more.
[実施例8]
 光学部品の構成を、DLC膜(膜厚170nm)/Ge膜(膜厚150nm)/MgF2膜(膜厚600nm)/Ge基板(厚さ5mm)/YF3膜(膜厚750nm)/Ge膜(膜厚150nm)/MgF2膜(膜厚200nm)に変更したこと以外は、実施例6と同様にして実施例8の光学部品を作製した。
[Example 8]
The configuration of the optical component is as follows: DLC film (thickness 170 nm) / Ge film (thickness 150 nm) / MgF 2 film (thickness 600 nm) / Ge substrate (thickness 5 mm) / YF 3 film (thickness 750 nm) / Ge film An optical component of Example 8 was produced in the same manner as Example 6 except that the film thickness was changed to (film thickness 150 nm) / MgF 2 film (film thickness 200 nm).
 図12は、実施例8の光学部品における透過率の波長依存性を示す図である。図12から分かるように、実施例8の光学部品では、レーザ波長である10.6μmにおいて、98.3%の透過率を実現できた。これは、97%以上の透過率を有することが望ましいレーザ加工機用保護ウィンドウとして、十分な光学性能である。 FIG. 12 is a diagram showing the wavelength dependence of the transmittance in the optical component of Example 8. As can be seen from FIG. 12, in the optical component of Example 8, a transmittance of 98.3% was realized at the laser wavelength of 10.6 μm. This is sufficient optical performance as a protective window for a laser beam machine that desirably has a transmittance of 97% or more.
 次に、実施例1及び実施例3~8の光学部品について、「摩耗試験(1)(MIL-C-675準拠SEVERE ABRASION)」及び「摩耗試験(2)(3kgの荷重で砂消しゴムを50往復)」を実施した。結果を表2に示す。それぞれの摩耗試験後に、多層膜の剥離が生じなかった場合を○、多層膜の剥離が生じた場合を×とした。 Next, for the optical components of Example 1 and Examples 3 to 8, “Wear test (1) (MIL-C-675 compliant SEVER ABRASION)” and “Wear test (2) (50 kg of sand eraser with a load of 3 kg) Round trip) ”. The results are shown in Table 2. After each abrasion test, the case where no peeling of the multilayer film occurred was marked with ◯, and the case where the multilayer film was peeled was marked with x.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、実施例1及び実施例3~7の光学部品では、摩耗試験(1)後に多層膜の剥離が生じることはなかった。また、実施例1の光学部品では、摩耗試験(2)後に多層膜の剥離が生じたのに対して、実施例3~7の光学部品では、摩耗試験(2)後に多層膜は剥離せず、多層膜を構成するフッ化物膜、Ge膜及びDLC膜の膜厚を調節することで、耐摩耗性をより向上させることができた。 As shown in Table 2, in the optical parts of Example 1 and Examples 3 to 7, peeling of the multilayer film did not occur after the wear test (1). In the optical component of Example 1, the multilayer film peeled after the wear test (2), whereas in the optical components of Examples 3 to 7, the multilayer film did not peel after the wear test (2). The wear resistance could be further improved by adjusting the film thicknesses of the fluoride film, Ge film and DLC film constituting the multilayer film.
 なお、本国際出願は、2016年5月13日に出願した日本国特許出願第2016-096876号に基づく優先権を主張するものであり、この日本国特許出願の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2016-096876 filed on May 13, 2016, and the entire contents of this Japanese patent application are incorporated herein by reference. To do.
 10 Ge基板、11 フッ化物膜、12 Ge膜、13 DLC膜、14 多層膜、15 反射防止膜、20 多層膜、30 レーザ発振器、31 レーザ光、32 集光レンズ、33 被加工物、34 保護ウィンドウ。 10 Ge substrate, 11 fluoride film, 12 Ge film, 13 DLC film, 14 multilayer film, 15 antireflection film, 20 multilayer film, 30 laser oscillator, 31 laser light, 32 condenser lens, 33 workpiece, 34 protection window.

Claims (5)

  1.  Ge基板の少なくとも片面に、該Ge基板側から、フッ化物膜、Ge膜及びダイヤモンドライクカーボン膜(DLC膜)がこの順に積層されたことを特徴とする光学部品。 An optical component comprising a fluoride film, a Ge film, and a diamond-like carbon film (DLC film) laminated in this order on at least one surface of a Ge substrate from the Ge substrate side.
  2.  前記フッ化物膜が、YF3、YbF3及びMgF2からなる群から選択される少なくとも一種からなることを特徴とする請求項1に記載の光学部品。 The optical component according to claim 1, wherein the fluoride film is made of at least one selected from the group consisting of YF 3 , YbF 3, and MgF 2 .
  3.  前記フッ化物膜及び前記Ge膜が露出することなく前記ダイヤモンドライクカーボン膜で覆われていることを特徴とする請求項1又は2に記載の光学部品。 3. The optical component according to claim 1, wherein the fluoride film and the Ge film are covered with the diamond-like carbon film without being exposed.
  4.  前記フッ化物膜の膜厚が500nm~950nmであり、前記Ge膜の膜厚が50nm~150nmであり、前記DLC膜の膜厚が50nm~300nmであることを特徴とする請求項1~3のいずれか一項に記載の光学部品。 The film thickness of the fluoride film is 500 nm to 950 nm, the film thickness of the Ge film is 50 nm to 150 nm, and the film thickness of the DLC film is 50 nm to 300 nm. The optical component as described in any one.
  5.  請求項1~4のいずれか一項に記載の光学部品を備えることを特徴とするレーザ加工機。 A laser processing machine comprising the optical component according to any one of claims 1 to 4.
PCT/JP2017/016545 2016-05-13 2017-04-26 Optical component and laser processing device WO2017195603A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187031223A KR102105306B1 (en) 2016-05-13 2017-04-26 Optical components and laser processing machines
CN201780028538.5A CN109154678B (en) 2016-05-13 2017-04-26 Optical component and laser processing machine
JP2018516935A JP6625207B2 (en) 2016-05-13 2017-04-26 Optical parts and laser processing machines
TW106115767A TWI655453B (en) 2016-05-13 2017-05-12 Optical member and laser processor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016096876 2016-05-13
JP2016-096876 2016-05-13

Publications (1)

Publication Number Publication Date
WO2017195603A1 true WO2017195603A1 (en) 2017-11-16

Family

ID=60266604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/016545 WO2017195603A1 (en) 2016-05-13 2017-04-26 Optical component and laser processing device

Country Status (5)

Country Link
JP (1) JP6625207B2 (en)
KR (1) KR102105306B1 (en)
CN (1) CN109154678B (en)
TW (1) TWI655453B (en)
WO (1) WO2017195603A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146500A1 (en) * 2018-01-25 2019-08-01 三菱電機株式会社 Optical component and laser processing machine
JPWO2020153046A1 (en) * 2019-01-22 2021-11-04 三菱電機株式会社 Protective windows for laser machines and laser machines
CN115201941A (en) * 2021-04-13 2022-10-18 中国科学院上海技术物理研究所 High-efficiency infrared wide-spectrum antireflection film suitable for space environment
WO2023162616A1 (en) * 2022-02-24 2023-08-31 三菱電機株式会社 Optical component and laser machining apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141701A (en) * 1988-11-24 1990-05-31 Idemitsu Petrochem Co Ltd Production of optical member for infrared light
JPH04217202A (en) * 1990-12-19 1992-08-07 Sumitomo Electric Ind Ltd Infrared optical parts
JP2006243567A (en) * 2005-03-07 2006-09-14 Topcon Corp Infrared antireflection film
JP2009086533A (en) * 2007-10-02 2009-04-23 Sumitomo Electric Hardmetal Corp Infrared multilayered film, infrared antireflection film, and infrared laser reflecting mirror
JP2013015562A (en) * 2011-06-30 2013-01-24 Nitto Kogaku Kk Optical element and antireflection film transmitting carbon dioxide gas laser beam

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5349467A (en) * 1992-10-27 1994-09-20 Texas Instruments Incorporated Thorium-free coating for germanium IR window
JP3355786B2 (en) * 1994-06-10 2002-12-09 住友電気工業株式会社 Manufacturing method of optical components for infrared
JP2000147205A (en) * 1998-11-06 2000-05-26 Minolta Co Ltd Infrared antireflection film
JP2006153976A (en) * 2004-11-25 2006-06-15 Nippon Shinku Kogaku Kk Infra-red light transmission filter
JP2008268277A (en) 2007-04-16 2008-11-06 Sei Hybrid Kk Infrared ray transmitting structure and infrared ray sensor
CN101464528B (en) * 2008-01-23 2011-01-12 四川大学 DLC infrared anti-refiection protective film and method for producing the same
JP5207471B2 (en) 2009-02-04 2013-06-12 住友電工ハードメタル株式会社 Optical components
JP2011008070A (en) * 2009-06-26 2011-01-13 Ricoh Co Ltd Micromirror device
CN105296926B (en) * 2015-12-04 2018-06-15 中国航空工业集团公司洛阳电光设备研究所 A kind of anti-reflection composite membrane optical window of hard and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141701A (en) * 1988-11-24 1990-05-31 Idemitsu Petrochem Co Ltd Production of optical member for infrared light
JPH04217202A (en) * 1990-12-19 1992-08-07 Sumitomo Electric Ind Ltd Infrared optical parts
JP2006243567A (en) * 2005-03-07 2006-09-14 Topcon Corp Infrared antireflection film
JP2009086533A (en) * 2007-10-02 2009-04-23 Sumitomo Electric Hardmetal Corp Infrared multilayered film, infrared antireflection film, and infrared laser reflecting mirror
JP2013015562A (en) * 2011-06-30 2013-01-24 Nitto Kogaku Kk Optical element and antireflection film transmitting carbon dioxide gas laser beam

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146500A1 (en) * 2018-01-25 2019-08-01 三菱電機株式会社 Optical component and laser processing machine
JPWO2019146500A1 (en) * 2018-01-25 2020-07-27 三菱電機株式会社 Optical parts and laser processing machine
CN111630415A (en) * 2018-01-25 2020-09-04 三菱电机株式会社 Optical component and laser processing machine
TWI739060B (en) * 2018-01-25 2021-09-11 日商三菱電機股份有限公司 Optical parts and laser processing machine
JPWO2020153046A1 (en) * 2019-01-22 2021-11-04 三菱電機株式会社 Protective windows for laser machines and laser machines
CN115201941A (en) * 2021-04-13 2022-10-18 中国科学院上海技术物理研究所 High-efficiency infrared wide-spectrum antireflection film suitable for space environment
CN115201941B (en) * 2021-04-13 2023-09-12 中国科学院上海技术物理研究所 Efficient infrared wide-spectrum antireflection film suitable for space environment
WO2023162616A1 (en) * 2022-02-24 2023-08-31 三菱電機株式会社 Optical component and laser machining apparatus

Also Published As

Publication number Publication date
KR102105306B1 (en) 2020-04-28
TWI655453B (en) 2019-04-01
CN109154678A (en) 2019-01-04
TW201809731A (en) 2018-03-16
JP6625207B2 (en) 2019-12-25
JPWO2017195603A1 (en) 2018-08-23
KR20180123157A (en) 2018-11-14
CN109154678B (en) 2021-03-26

Similar Documents

Publication Publication Date Title
WO2017195603A1 (en) Optical component and laser processing device
TWI732427B (en) Optical member and laser processing machine
JP5207471B2 (en) Optical components
JP2006324268A (en) Mask blanks for euv exposure, its manufacturing method and mask for euv exposure
JP2019207426A (en) Uv protective coating for lens assemblies
WO2016203863A1 (en) Optical component and laser machining apparatus
US10459134B2 (en) UV-blocking coating with capping layer in optical assembly having UV light source
JP2008260978A (en) Method for forming reflection film
JP2013065739A (en) Reflection mask, reflection mask blank, and manufacturing method of reflection mask
US20170052293A1 (en) Coating with adhesion layer for uv optics
TWI739060B (en) Optical parts and laser processing machine
US20060033984A1 (en) Optical mount with UV adhesive and protective layer
JP5533395B2 (en) Method for manufacturing a reflective mask blank for EUV lithography
JP2011181810A (en) Method of manufacturing reflection type mask blanks for euv lithography
WO2023162616A1 (en) Optical component and laser machining apparatus
JP5087797B2 (en) Manufacturing method of ND filter
JP2004317834A (en) Laser transmitting member and its manufacturing method
JP2022142660A (en) Semiconductor substrate and manufacturing method thereof
JP2008152014A (en) Optical low-pass filter and stainproof coating method thereof
JPH0876357A (en) Mask for laser transfer processing
JP2002169264A (en) Method of making photomask and photomask
JP2006208695A (en) Optical element and method for manufacturing optical element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018516935

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187031223

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795964

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17795964

Country of ref document: EP

Kind code of ref document: A1