JP2006243567A - Infrared antireflection film - Google Patents

Infrared antireflection film Download PDF

Info

Publication number
JP2006243567A
JP2006243567A JP2005061756A JP2005061756A JP2006243567A JP 2006243567 A JP2006243567 A JP 2006243567A JP 2005061756 A JP2005061756 A JP 2005061756A JP 2005061756 A JP2005061756 A JP 2005061756A JP 2006243567 A JP2006243567 A JP 2006243567A
Authority
JP
Japan
Prior art keywords
refractive index
mgf
layer
antireflection film
infrared antireflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005061756A
Other languages
Japanese (ja)
Other versions
JP4763318B2 (en
Inventor
Toshinobu Inagaki
俊宣 稲垣
Makoto Seta
誠 瀬田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2005061756A priority Critical patent/JP4763318B2/en
Publication of JP2006243567A publication Critical patent/JP2006243567A/en
Application granted granted Critical
Publication of JP4763318B2 publication Critical patent/JP4763318B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an infrared antireflection film which does not change optical characteristics even when the thickness of MgF<SB>2</SB>or MgF<SB>2</SB>mixed layer is thinned and does not cause micro cracks and the like even in a high temperature environment. <P>SOLUTION: The infrared antireflection film is manufactured as follow. A medium refractive index substance and a high refractive index substance are repeatedly laminated on a Ge substrate where MgF<SB>2</SB>is laminated on the outermost layer. On the above substrate, repeated lamination films of the medium refractive index substance and the high refractive index substance are repeatedly laminated. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、赤外線領域の光学部材として用いられる赤外反射防止膜に関する。   The present invention relates to an infrared antireflection film used as an optical member in the infrared region.

従来から、Si、ZnS、ZnSeなどの基板に、基板から数えて第1層目に中間屈折率のSiO、第2層目に高屈折率のGe、第3層目に中間屈折率のSiO、第4層目に低屈折率のMgF2またはMgF2混合層を積層した赤外反射防止膜が知られている(例えば、特許文献1参照)。
特許第3526922号公報
Conventionally, on a substrate such as Si, ZnS, ZnSe, etc., the intermediate refractive index SiO in the first layer, the high refractive index Ge in the second layer, the intermediate refractive index SiO in the third layer, counted from the substrate, An infrared antireflection film in which a low refractive index MgF 2 or MgF 2 mixed layer is laminated as the fourth layer is known (see, for example, Patent Document 1).
Japanese Patent No. 3526922

しかしながら、このようなMgF2またはMgF2混合層を積層した赤外反射防止膜は、例えば500℃程度の高熱処理を行なうと、肉眼では見えないが顕微鏡で観察できる膜割れ、膜剥がれが発生してしまう。 However, an infrared antireflection film in which such an MgF 2 or MgF 2 mixed layer is laminated, when subjected to a high heat treatment at about 500 ° C., causes film cracking and film peeling that cannot be seen with the naked eye but can be observed with a microscope. End up.

そこで、膜剥がれなどの原因として膜の密着力が弱いことが考えられるため、基板表面の改善を行ない、密着力を強化するために、成膜前にイオン銃によりイオン化した気体を基板に照射するイオンクリーニングを行なうことが考えられる。   Therefore, it is considered that the adhesion of the film is weak as a cause of film peeling, etc., so that the substrate surface is improved and the substrate is irradiated with ionized gas by an ion gun before film formation in order to improve the adhesion. It is conceivable to perform ion cleaning.

ところが、イオンクリーニングにより耐熱性を向上させようとしても、マイクロクラック(超微小なひび割れ)が発生してしまう。   However, even if the heat resistance is improved by ion cleaning, microcracks (ultra-fine cracks) are generated.

一般に、基板上に成膜した薄膜には、圧縮応力と引っ張り応力が生じる。これらの応力(ストレス)は成膜中に生じる薄膜の成長様式に依存した密度変化に伴って発生したり、基板と薄膜の熱膨張係数の違いにより発生したりする。   Generally, compressive stress and tensile stress are generated in a thin film formed on a substrate. These stresses (stresses) are generated with a density change depending on the growth mode of the thin film generated during film formation, or are generated due to a difference in thermal expansion coefficient between the substrate and the thin film.

上記MgF2またはMgF2混合層を積層した赤外反射防止膜では、MgF2の引っ張り応力が大きい。 In the infrared antireflection film in which the MgF 2 or MgF 2 mixed layer is laminated, the tensile stress of MgF 2 is large.

そのため、引っ張り応力が大きいMgF2の厚みが厚いことが原因しているものと考えられる。 Therefore, it is considered that the reason is that the thickness of MgF 2 having a large tensile stress is large.

そこで、本発明では、MgF2またはMgF2混合層の厚みを薄くしても、光学特性を変化させず、高温環境下においてもマイクロクラック等が発生しない赤外反射防止膜を提供することを目的とする。 Accordingly, an object of the present invention is to provide an infrared antireflection film that does not change the optical characteristics even when the thickness of the MgF 2 or MgF 2 mixed layer is reduced and does not generate microcracks or the like even in a high temperature environment. And

上記課題を解決するため、請求項1に係る本発明は、Ge基板に中間屈折率物質と高屈折率物質を繰り返し積層し最外層にMgF2を積層した赤外反射防止膜において、中間屈折率物質と高屈折率物質の繰り返し積層膜を再度繰り返し積層しMgF2の厚みを薄くしたことを特徴とする。 In order to solve the above problems, the present invention according to claim 1 is an infrared antireflection film in which an intermediate refractive index substance and a high refractive index substance are repeatedly laminated on a Ge substrate, and MgF 2 is laminated on the outermost layer. It is characterized in that a repeated laminated film of a material and a high refractive index material is repeatedly laminated again to reduce the thickness of MgF 2 .

請求項2に係る本発明は、請求項1に記載の赤外反射防止膜において、中間屈折率物質をGe、高屈折率物質をSiOとしたことを特徴とする。   The present invention according to claim 2 is the infrared antireflection film according to claim 1, wherein the intermediate refractive index material is Ge and the high refractive index material is SiO.

請求項3に係る本発明は、Si、ZnSe、ZnSのいずれか1つを基板とし、中間屈折率物質と高屈折率物質を繰り返し積層し最外層にMgF2を積層した赤外反射防止膜において、中間屈折率物質と高屈折率物質の繰り返し積層膜を再度繰り返し積層しMgF2の厚みを薄くしたことを特徴とする。 According to a third aspect of the present invention, there is provided an infrared antireflection film in which any one of Si, ZnSe, and ZnS is used as a substrate, an intermediate refractive index substance and a high refractive index substance are repeatedly laminated, and MgF 2 is laminated on the outermost layer. characterized by repeating the repeated stacked film of the intermediate-refractive index material and a high refractive index material again stacked and the thickness of MgF 2.

請求項4に係る本発明は、請求項3に記載の赤外反射防止膜において、中間屈折率物質をGe、高屈折率物質をSiOとしたことを特徴とする。   According to a fourth aspect of the present invention, in the infrared antireflection film according to the third aspect, the intermediate refractive index substance is Ge and the high refractive index substance is SiO.

本発明によれば、中間屈折率物質と高屈折率物質の繰り返し積層膜であるGe−SiOを再度繰り返し積層し、MgF2の厚みを薄くして、MgF2の引っ張り応力(ストレス)を緩和し、光学特性を変化させず、高温環境下においても耐久性・耐熱性を向上させることができる。 According to the present invention, Ge—SiO, which is a repeated laminated film of an intermediate refractive index material and a high refractive index material, is repeatedly laminated again, the thickness of MgF 2 is reduced, and the tensile stress (stress) of MgF 2 is reduced. The durability and heat resistance can be improved even in a high temperature environment without changing the optical characteristics.

以下、図面を参照しつつ本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

〔実施例1〕
基板 Ge
第1層 Ge 光学膜厚 0.20λ0
第2層 SiO 光学膜厚 0.10λ0
第3層 Ge 光学膜厚 0.50λ0
第4層 SiO 光学膜厚 0.30λ0
第5層 Ge 光学膜厚 0.20λ0
第6層 SiO 光学膜厚 0.70λ0
第7層 MgF2 光学膜厚 0.70λ0
ただし、中心波長λ0=3.5μmである。
ここでMgF2の膜厚dを求めると、4n・d=0.70λ0
d=0.70×3.5/4n=0.45μm
(ただし、MgF2の屈折率nは1.37とする。)
なお、基板の材料としてはGeの他にSi、ZnSe、ZnSを用いることができる。
[Example 1]
Substrate Ge
First layer Ge optical film thickness 0.20λ 0
Second layer SiO Optical film thickness 0.10λ 0
Third layer Ge optical film thickness 0.50λ 0
Fourth layer SiO Optical film thickness 0.30λ 0
5th layer Ge optical film thickness 0.20λ 0
Sixth layer SiO optical film thickness 0.70λ 0
7th layer MgF 2 optical film thickness 0.70λ 0
However, the center wavelength λ 0 = 3.5 μm.
Here, when the film thickness d of MgF 2 is determined, 4n · d = 0.70λ 0
d = 0.70 × 3.5 / 4n = 0.45 μm
(However, the refractive index n of MgF 2 is 1.37.)
As a substrate material, Si, ZnSe, or ZnS can be used in addition to Ge.

また、基板と第1層との間に密着強化層を設けてもよい。この密着強化層としては、Al23、Y23、Ti23、TiO、TiO2のいずれであってもよい。なお、密着強化層は、300nm以下の厚みである。
〔比較例1〕
実施例1と比較するために下記の比較例(従来例)1を示す。
基板 Ge
第1層 ZnS 光学膜厚 0.40λ0
第2層 Ge 光学膜厚 1.15λ0
第3層 ZeS 光学膜厚 3.06λ0
第4層 MgF2 光学膜厚 3.10λ0
ただし、中心波長λ0=1.0μmである。
ここで、MgF2の膜厚dを求めると、4nd=3.10λ0
d=3.10×1.0/4n=0.57μm
(ただし、MgF2の屈折率nは1.37とする。)
この比較例1のMgF2の膜厚と実施例1のMgF2の膜厚との比を計算すると、0.45/0.57=0.79
となる。
Further, an adhesion reinforcing layer may be provided between the substrate and the first layer. The adhesion reinforcing layer may be any of Al 2 O 3 , Y 2 O 3 , Ti 2 O 3 , TiO, and TiO 2 . The adhesion reinforcing layer has a thickness of 300 nm or less.
[Comparative Example 1]
For comparison with Example 1, the following Comparative Example (Conventional Example) 1 is shown.
Substrate Ge
First layer ZnS optical film thickness 0.40λ 0
Second layer Ge optical film thickness 1.15λ 0
Third layer ZeS optical film thickness 3.06λ 0
Fourth layer MgF 2 optical film thickness 3.10λ 0
However, the center wavelength λ 0 = 1.0 μm.
Here, when the film thickness d of MgF 2 is obtained, 4nd = 3.10λ 0
d = 3.10 × 1.0 / 4n = 0.57 μm
(However, the refractive index n of MgF 2 is 1.37.)
When calculating the ratio of the thickness of the MgF 2 of Comparative Example 1 and MgF 2 having a film thickness of Example 1, 0.45 / 0.57 = 0.79
It becomes.

よって、実施例1のもののMgF2の膜厚は比較例1のもののMgF2の膜厚に対して約2割膜厚を減少させることができる。 Therefore, MgF 2 having a film thickness of those of Example 1 can be reduced from about 2 WarimakuAtsu for a film thickness of MgF 2 of that of Comparative Example 1.

また、実施例1と比較例1の各々の透過率(反射率)を表わすと、[図1]のようになり、95%以上の透過率(5%以下の反射率)を示し、光学特性が変化していないことがわかる。   Further, the transmittance (reflectance) of Example 1 and Comparative Example 1 is expressed as shown in FIG. 1, showing a transmittance of 95% or more (reflectance of 5% or less), and optical characteristics. It can be seen that has not changed.

詳述すると、図1に示す通り、光学特性は、2.6〜6.0μmの波長域で透過率が95%以上であり、十分な光学特性を満足することがわかる。   More specifically, as shown in FIG. 1, it can be seen that the optical characteristics have a transmittance of 95% or more in the wavelength range of 2.6 to 6.0 μm and satisfy the sufficient optical characteristics.

次に、耐久性を測定する耐熱試験1、耐熱試験2、熱衝撃試験、耐水性試験を行なった。   Next, a heat resistance test 1, a heat resistance test 2, a thermal shock test, and a water resistance test for measuring durability were performed.

すなわち、耐熱試験1では、−80度〜550度の温度サイクルを2回繰り返した。耐熱試験2では、液体窒素温度まで急冷した。また、140度で100時間加熱処理した。熱衝撃試験では、蒸着した基板に熱衝撃を加えた。耐水性試験では、16〜32度の蒸留水(純水)に24時間浸した。このような耐久試験を行なっても、劣化することがなかった。
〔実施例2〕
基板 Ge
第1層 Ge 光学膜厚 0.29λ0
第2層 SiO 光学膜厚 0.14λ0
第3層 Ge 光学膜厚 0.71λ0
第4層 SiO 光学膜厚 0.43λ0
第5層 Ge 光学膜厚 0.29λ0
第6層 SiO 光学膜厚 1.00λ0
第7層 MgF2 光学膜厚 1.00λ0
ただし、中心波長λ0=2.45μmである。
That is, in the heat resistance test 1, a temperature cycle of −80 degrees to 550 degrees was repeated twice. In the heat resistance test 2, it was rapidly cooled to the liquid nitrogen temperature. Moreover, it heat-processed at 140 degree | times for 100 hours. In the thermal shock test, a thermal shock was applied to the deposited substrate. In the water resistance test, the sample was immersed in distilled water (pure water) at 16 to 32 degrees for 24 hours. Even when such an endurance test was performed, there was no deterioration.
[Example 2]
Substrate Ge
First layer Ge optical film thickness 0.29λ 0
Second layer SiO Optical film thickness 0.14λ 0
Third layer Ge optical film thickness 0.71λ 0
Fourth layer SiO optical film thickness 0.43λ 0
5th layer Ge optical film thickness 0.29λ 0
Sixth layer SiO optical film thickness 1.00λ 0
7th layer MgF 2 optical film thickness 1.00λ 0
However, the center wavelength λ 0 = 2.45 μm.

ここで、MgF2の膜厚を求めると、屈折率n=1.37を考慮し、
d=λ0/4n=445.13nm
なお、光学膜厚として、下記の幅を採用することもできる。
第1層 0.01λ0≦4nd≦10.0λ0
第2層 0.71λ0≦4nd≦1.64λ0
第3層 0.50λ0≦4nd≦1.18λ0
第4層 0.84λ0≦4nd≦1.27λ0
第5層 0.86λ0≦4nd≦0.13λ0
第6層 0.75λ0≦4nd≦1.15λ0
第7層 0.70λ0≦4nd≦1.40λ0
〔比較例2〕
実施例2と比較するために下記の比較例(従来例)2を示す。
基板 Ge
第1層 ZnS 光学膜厚 0.13λ0
第2層 Ge 光学膜厚 0.37λ0
第3層 ZeS 光学膜厚 1.00λ0
第4層 MgF2 光学膜厚 1.00λ0
ただし、中心波長λ0=3.10μmである。
ここで、MgF2の膜厚を求めると、
d=λ0/4n=563.23nm
この実施例2の場合でも、従来に比べて約2割膜厚を減少させることができる。光学特性をグラフにすると図2に示すとおりである。
Here, when the film thickness of MgF 2 is obtained, the refractive index n = 1.37 is considered,
d = λ 0 /4n=445.13 nm
In addition, the following width | variety is also employable as an optical film thickness.
1st layer 0.01λ 0 ≦ 4nd ≦ 10.0λ 0
Second layer 0.71λ 0 ≦ 4nd ≦ 1.64λ 0
3rd layer 0.50λ 0 ≦ 4nd ≦ 1.18λ 0
4th layer 0.84λ 0 ≦ 4nd ≦ 1.27λ 0
5th layer 0.86λ 0 ≦ 4nd ≦ 0.13λ 0
6th layer 0.75λ 0 ≦ 4nd ≦ 1.15λ 0
7th layer 0.70λ 0 ≦ 4nd ≦ 1.40λ 0
[Comparative Example 2]
In order to compare with Example 2, the following comparative example (conventional example) 2 is shown.
Substrate Ge
First layer ZnS optical film thickness 0.13λ 0
Second layer Ge optical film thickness 0.37λ 0
Third layer ZeS optical film thickness 1.00λ 0
Fourth layer MgF 2 optical film thickness 1.00λ 0
However, the center wavelength λ 0 = 3.10 μm.
Here, when the film thickness of MgF 2 is obtained,
d = λ 0 /4n=563.23 nm
Even in the case of Example 2, the film thickness can be reduced by about 20% compared to the conventional case. The optical characteristics are shown in a graph in FIG.

この実施例2の場合も、実施例1と同様に光学特性は、2.6〜6.0μmの波長域で透過率が95%以上であり、十分な光学特性を満足することがわかる。   In the case of Example 2, as in Example 1, the optical characteristics have a transmittance of 95% or more in the wavelength range of 2.6 to 6.0 μm, and it can be seen that sufficient optical characteristics are satisfied.

また、同様に、耐久性を測定する耐熱試験1、耐熱試験2、熱衝撃試験、耐水性試験を行なった。   Similarly, a heat resistance test 1, a heat resistance test 2, a thermal shock test, and a water resistance test for measuring durability were performed.

すなわち、耐熱試験1では、−80度〜550度の温度サイクルを2回繰り返した。耐熱試験2では、液体窒素温度まで急冷した。また、140度で100時間加熱処理した。熱衝撃試験では、蒸着した基板に熱衝撃を加えた。耐水性試験では、16〜32度の蒸留水(純水)に24時間浸した。このような耐久試験を行なっても、劣化することがなかった。   That is, in the heat resistance test 1, a temperature cycle of −80 degrees to 550 degrees was repeated twice. In the heat resistance test 2, it was rapidly cooled to the liquid nitrogen temperature. Moreover, it heat-processed at 140 degree | times for 100 hours. In the thermal shock test, a thermal shock was applied to the deposited substrate. In the water resistance test, the sample was immersed in distilled water (pure water) at 16 to 32 degrees for 24 hours. Even when such an endurance test was performed, there was no deterioration.

なお、本発明では、基板の片面に赤外反射防止膜を蒸着したが、これに限定されず、両面に蒸着しても良い。両面に蒸着することにより、MgF2の引っ張り応力(ストレス)が両面で相殺され、膜の劣化を防止し、耐久性・耐熱性を更に向上させることができる。 In the present invention, the infrared antireflection film is vapor-deposited on one side of the substrate. However, the present invention is not limited to this, and it may be vapor-deposited on both sides. By vapor-depositing on both sides, the tensile stress (stress) of MgF 2 is canceled on both sides, the film can be prevented from being deteriorated, and the durability and heat resistance can be further improved.

本発明の実施例1に係わる赤外反射防止膜の光学特性を示す図である。It is a figure which shows the optical characteristic of the infrared rays antireflection film concerning Example 1 of this invention. 本発明の実施例2に係わる赤外反射防止膜の光学特性を示す図である。It is a figure which shows the optical characteristic of the infrared rays antireflection film concerning Example 2 of this invention.

Claims (4)

Ge基板に中間屈折率物質と高屈折率物質を繰り返し積層し最外層にMgF2を積層した赤外反射防止膜において、
中間屈折率物質と高屈折率物質の繰り返し積層膜を再度繰り返し積層しMgF2の厚みを薄くしたことを特徴とする赤外反射防止膜。
In an infrared antireflection film in which an intermediate refractive index substance and a high refractive index substance are repeatedly laminated on a Ge substrate and MgF 2 is laminated on the outermost layer
An infrared antireflection film, wherein an intermediate refractive index material and a high refractive index material are repeatedly stacked again to reduce the thickness of MgF 2 .
請求項1に記載の赤外反射防止膜において、
中間屈折率物質をGe、高屈折率物質をSiOとしたことを特徴とする赤外反射防止膜。
The infrared antireflection film according to claim 1,
An infrared antireflection film characterized in that the intermediate refractive index material is Ge and the high refractive index material is SiO.
Si、ZnSe、ZnSのいずれか1つを基板とし、
中間屈折率物質と高屈折率物質を繰り返し積層し最外層にMgF2を積層した赤外反射防止膜において、
中間屈折率物質と高屈折率物質の繰り返し積層膜を再度繰り返し積層しMgF2の厚みを薄くしたことを特徴とする赤外反射防止膜。
One of Si, ZnSe, and ZnS is used as a substrate,
In the infrared antireflection film in which an intermediate refractive index substance and a high refractive index substance are repeatedly laminated and MgF 2 is laminated on the outermost layer,
An infrared antireflection film, wherein an intermediate refractive index material and a high refractive index material are repeatedly stacked again to reduce the thickness of MgF 2 .
請求項3に記載の赤外反射防止膜において、
中間屈折率物質をGe、高屈折率物質をSiOとしたことを特徴とする赤外反射防止膜。
In the infrared antireflection film according to claim 3,
An infrared antireflection film characterized in that the intermediate refractive index material is Ge and the high refractive index material is SiO.
JP2005061756A 2005-03-07 2005-03-07 Infrared antireflection film Active JP4763318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005061756A JP4763318B2 (en) 2005-03-07 2005-03-07 Infrared antireflection film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005061756A JP4763318B2 (en) 2005-03-07 2005-03-07 Infrared antireflection film

Publications (2)

Publication Number Publication Date
JP2006243567A true JP2006243567A (en) 2006-09-14
JP4763318B2 JP4763318B2 (en) 2011-08-31

Family

ID=37050011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005061756A Active JP4763318B2 (en) 2005-03-07 2005-03-07 Infrared antireflection film

Country Status (1)

Country Link
JP (1) JP4763318B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195603A1 (en) * 2016-05-13 2017-11-16 三菱電機株式会社 Optical component and laser processing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210072864A (en) * 2019-12-09 2021-06-18 현대자동차주식회사 Anti-reflective lens for infrared ray

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08114701A (en) * 1994-10-14 1996-05-07 Topcon Corp Infrared antireflection film
JPH11281801A (en) * 1998-03-27 1999-10-15 Minolta Co Ltd Infrared reflection preventive film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08114701A (en) * 1994-10-14 1996-05-07 Topcon Corp Infrared antireflection film
JPH11281801A (en) * 1998-03-27 1999-10-15 Minolta Co Ltd Infrared reflection preventive film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017195603A1 (en) * 2016-05-13 2017-11-16 三菱電機株式会社 Optical component and laser processing device
JPWO2017195603A1 (en) * 2016-05-13 2018-08-23 三菱電機株式会社 Optical components and laser processing machines

Also Published As

Publication number Publication date
JP4763318B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP5580340B2 (en) Method for manufacturing an omnidirectional multilayer photonic structure
JP6682188B2 (en) Hard antireflective film and its manufacture and use
JP2009086533A (en) Infrared multilayered film, infrared antireflection film, and infrared laser reflecting mirror
CN111913246B (en) Polarizing plate, optical device, and method for manufacturing polarizing plate
KR20160143813A (en) Enhanced performance metallic based optical mirror substrates
JP2018040888A (en) Inorganic polarizer and manufacturing method thereof
JP4763318B2 (en) Infrared antireflection film
JP2003149406A (en) Ir antireflection film
JP2023182732A (en) Optical coating having nano-laminate for improved durability
JP2023181285A (en) Polarizer, optical apparatus, and method for manufacturing polarizer
JP5239630B2 (en) Absorption-type multilayer ND filter
JP2008032804A (en) Optical element
JP2006308810A (en) Absorption type multilayer film nd filter and method of manufacturing same
JP2009276447A (en) Polarizer and liquid crystal projector
CN110221368B (en) Single-element multilayer infrared high-reflection film and preparation method thereof
JP7216471B2 (en) Plastic lens for in-vehicle lens and manufacturing method thereof
JPS60130704A (en) Antireflection film for plastic substrate
JP2004198778A (en) Two-wavelength reflection preventing film and forming method of the film
JP2009145596A (en) Absorption type multi-layer film nd filter
JP4260142B2 (en) Photonic crystal element
JPH05129277A (en) Multilayer reflection preventive film
JP2005345492A (en) Optical element, mirror, and antireflection film
JPH08114701A (en) Infrared antireflection film
US20220236455A1 (en) Corrosion-resistant coatings for ir-transmitting substrates
JP2004085975A (en) Oxide multilayer optical element and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4763318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250