JP2006153976A - Infra-red light transmission filter - Google Patents

Infra-red light transmission filter Download PDF

Info

Publication number
JP2006153976A
JP2006153976A JP2004340748A JP2004340748A JP2006153976A JP 2006153976 A JP2006153976 A JP 2006153976A JP 2004340748 A JP2004340748 A JP 2004340748A JP 2004340748 A JP2004340748 A JP 2004340748A JP 2006153976 A JP2006153976 A JP 2006153976A
Authority
JP
Japan
Prior art keywords
thin film
infrared light
refractive index
layer
light transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004340748A
Other languages
Japanese (ja)
Inventor
Tomonori Nobuyo
知紀 延与
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optical Coatings Japan
Original Assignee
Optical Coatings Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optical Coatings Japan filed Critical Optical Coatings Japan
Priority to JP2004340748A priority Critical patent/JP2006153976A/en
Publication of JP2006153976A publication Critical patent/JP2006153976A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an IR transmission filter which is simple in design and is excellent in surface mechanical strength and water resistance. <P>SOLUTION: The IR transmission filter is formed by alternately laminating zinc sulfide thin films having refractive index of 2.0 to 2.30 and high-refractive index thin films having refractive index of ≥3.00 on one side of a IR transmissive substrate in such a manner the high-refractive index thin film is arranged in the uppermost part, and laminating a diamond-like carbon thin film having refractive index of 2.01 to 2.30 further thereon. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、人体検知用センサに代表される赤外光センサに赤外光を選択的に伝えるために有利に用いることができる赤外光透過フィルタに関する。   The present invention relates to an infrared light transmission filter that can be advantageously used to selectively transmit infrared light to an infrared light sensor typified by a human body detection sensor.

従来より、人体検知用センサに代表される赤外光センサ、あるいは赤外光の吸収特性をもとに各種のガス(例、二酸化炭素)の濃度を測定する赤外線ガス分析計などの計測機器に赤外光を選択的に伝えるために、赤外光透過フィルタを用いることは知られている。例えば、人体検知用センサには、人体から放射される波長が約10μmの赤外光を選択的に透過する赤外光透過フィルタが用いられている。   Conventionally, it has been used in measuring instruments such as infrared light analyzers that measure the concentration of various gases (for example, carbon dioxide) based on infrared light absorption characteristics such as human body detection sensors, or absorption characteristics of infrared light. In order to selectively transmit infrared light, it is known to use an infrared light transmission filter. For example, a human body detection sensor uses an infrared light transmission filter that selectively transmits infrared light having a wavelength of about 10 μm emitted from the human body.

赤外光透過フィルタとしては、赤外光透過性基板の表面に高屈折率薄膜と低屈折率薄膜とを交互に積層した構成の薄膜干渉フィルタが広く用いられている。そして赤外光透過フィルタを構成するそれぞれの薄膜としては、赤外光の透過性に優れる薄膜が用いられる。例えば、赤外光透過フィルタの高屈折率薄膜としてゲルマニウム薄膜やケイ素薄膜を、そして低屈折率薄膜として硫化亜鉛薄膜を用いることは既に知られている。   As the infrared light transmitting filter, a thin film interference filter having a structure in which high refractive index thin films and low refractive index thin films are alternately laminated on the surface of an infrared light transmitting substrate is widely used. And as each thin film which comprises an infrared-light transmissive filter, the thin film which is excellent in the transmittance | permeability of infrared light is used. For example, it is already known to use a germanium thin film or a silicon thin film as a high refractive index thin film of an infrared light transmission filter and a zinc sulfide thin film as a low refractive index thin film.

特許文献1には、硫化亜鉛基板やセレン化亜鉛基板などの低屈折率基板の表面に、ゲルマニウム薄膜と硫化亜鉛薄膜とを最上部にゲルマニウム薄膜が配置されるように交互に積層し、さらに最上部のゲルマニウム薄膜の上にダイヤモンドライクカーボン薄膜を積層した構成の赤外光用の反射防止膜(赤外光透過フィルタ)が開示されている。この特許文献1においては、低屈折率基板上に形成されたフッ化鉛薄膜やフッ化バリウム薄膜などの単層膜から構成される従来の反射防止膜に代えて、上記のように最上部にダイヤモンドライクカーボン薄膜を備える多層膜を付設することにより、良好な光学特性を有し、さらに機械的強度、耐水性、そして耐薬品性に優れる反射防止膜が得られるとされている。そして、この文献によると、反射防止膜に用いるダイヤモンドライクカーボン薄膜は、屈折率が1.8〜2.0のものが用いられるとされている。   In Patent Document 1, a germanium thin film and a zinc sulfide thin film are alternately laminated on the surface of a low refractive index substrate such as a zinc sulfide substrate or a zinc selenide substrate so that the germanium thin film is disposed on the top, and further An antireflection film for infrared light (infrared light transmission filter) having a structure in which a diamond-like carbon thin film is laminated on an upper germanium thin film is disclosed. In Patent Document 1, instead of a conventional antireflection film composed of a single layer film such as a lead fluoride thin film or a barium fluoride thin film formed on a low refractive index substrate, as described above, It is said that an antireflection film having good optical properties and excellent mechanical strength, water resistance and chemical resistance can be obtained by providing a multilayer film including a diamond-like carbon thin film. According to this document, the diamond-like carbon thin film used for the antireflection film has a refractive index of 1.8 to 2.0.

特開昭63−294501号公報JP-A 63-294501

赤外光透過フィルタは、人体検知用センサなどの様々なセンサや計測機器に装着されて用いられる。これらのセンサや計測機器は屋外で使用されることもあることから、赤外光透過フィルタの機械的強度や耐水性などの改良が望まれている。ただし、これらの特性を改良する際には、改良前の赤外光透過フィルタと同様の光学特性を維持することが要求される。   The infrared light transmission filter is used by being attached to various sensors such as a human body detection sensor or a measurement device. Since these sensors and measuring instruments may be used outdoors, improvements in the mechanical strength and water resistance of infrared light transmission filters are desired. However, when improving these characteristics, it is required to maintain the same optical characteristics as the infrared light transmission filter before the improvement.

特許文献1に記載の反射防止膜(赤外光透過フィルタ)は優れた光学特性を示し、そして最上部にダイヤモンドライクカーボン薄膜が備えられているために優れた機械的強度や耐水性を示す。しかしながら、同公報に記載されているように最上部に屈折率が1.8〜2.0のダイヤモンドライクカーボン薄膜を備えた多層膜を用いた反射防止膜は、所望の光学特性を得るために、ダイヤモンドライクカーボン薄膜を含む多層膜の層構成や各層の厚みを改めて設計する必要がある。このように多層膜を改めて設計することにより、所望の光学特性にある程度は近い光学特性を示す反射防止膜を得ることはできる。しかしながら、多層膜の各々の層の厚みの変更により多層膜の内部応力が変化して、多層膜が剥離し易くなるなどの別の問題を生じ易い。このため特許文献1の反射防止膜の多層膜の設計には、所望の光学特性を示す多層膜を設計し、そして試作を繰り返すという手間のかかる作業が必要とされる。   The antireflection film (infrared light transmission filter) described in Patent Document 1 exhibits excellent optical characteristics, and since the diamond-like carbon thin film is provided on the uppermost portion, it exhibits excellent mechanical strength and water resistance. However, as described in the publication, an antireflection film using a multilayer film including a diamond-like carbon thin film having a refractive index of 1.8 to 2.0 at the top is used to obtain desired optical characteristics. Therefore, it is necessary to redesign the layer structure of the multilayer film including the diamond-like carbon thin film and the thickness of each layer. By redesigning the multilayer film in this way, it is possible to obtain an antireflection film exhibiting optical characteristics that are somewhat close to the desired optical characteristics. However, the internal stress of the multilayer film changes due to the change in the thickness of each layer of the multilayer film, and another problem such as easy peeling of the multilayer film is likely to occur. For this reason, the design of the multilayer film of the antireflection film of Patent Document 1 requires a laborious work of designing a multilayer film exhibiting desired optical characteristics and repeating the trial production.

本発明の課題は、設計が簡単であり、表面の機械的強度や耐水性に優れた赤外光透過フィルタを提供することにある。   An object of the present invention is to provide an infrared light transmission filter that is simple in design and excellent in surface mechanical strength and water resistance.

本発明者は、屈折率が2.10〜2.30の硫化亜鉛薄膜の代わりに、硫化亜鉛薄膜と屈折率が近似したダイヤモンドライクカーボン薄膜を用いることにより、赤外光透過フィルタが備える多層膜の層構成や厚みを改めて設計することなく、機械的強度や耐水性に優れる赤外光透過フィルタを提供できることを見出した。   The present inventor uses a diamond-like carbon thin film having a refractive index approximate to that of a zinc sulfide thin film instead of a zinc sulfide thin film having a refractive index of 2.10 to 2.30, thereby providing a multilayer film included in the infrared light transmission filter. The present inventors have found that an infrared light transmission filter having excellent mechanical strength and water resistance can be provided without redesigning the layer structure and thickness.

本発明は、赤外光透過性基板の一方の面に、屈折率が2.10〜2.30の硫化亜鉛薄膜と屈折率が3.00以上の高屈折率薄膜とを最上部に高屈折率薄膜が配置されるように交互に積層し、その上にさらに屈折率が2.01〜2.30のダイヤモンドライクカーボン薄膜を積層してなる赤外光透過フィルタにある。   In the present invention, a zinc sulfide thin film having a refractive index of 2.10 to 2.30 and a high refractive index thin film having a refractive index of 3.00 or more are highly refracted on one surface of an infrared light transmitting substrate. The infrared light transmission filter is formed by alternately laminating a thin film with a refractive index and further laminating a diamond-like carbon thin film having a refractive index of 2.01 to 2.30 on the thin film.

本発明の赤外光透過フィルタの好ましい態様は、下記の通りである。
(1)赤外光透過性基板の他方の面に、硫化亜鉛薄膜と高屈折率薄膜とが最上部に硫化亜鉛薄膜が配置されるように交互に積層されている。
(2)基板がゲルマニウムもしくはケイ素からなる。
(3)高屈折率薄膜がゲルマニウムもしくはケイ素からなる。
(4)ダイヤモンドライクカーボン薄膜がプラズマ化学蒸着法により最上部の高屈折率薄膜の上に形成された薄膜である。
Preferred embodiments of the infrared light transmission filter of the present invention are as follows.
(1) The zinc sulfide thin film and the high refractive index thin film are alternately laminated on the other surface of the infrared light transmissive substrate so that the zinc sulfide thin film is disposed on the top.
(2) The substrate is made of germanium or silicon.
(3) The high refractive index thin film is made of germanium or silicon.
(4) A diamond-like carbon thin film is formed on the uppermost high refractive index thin film by plasma chemical vapor deposition.

なお、本明細書において「赤外光透過性」とは、波長0.7〜25μmの赤外領域において光の透過率が40%以上の領域が存在することを意味する。また「屈折率」は、波長10μmの光に対する屈折率を意味する。   In the present specification, “infrared light transmission” means that a region having a light transmittance of 40% or more exists in an infrared region having a wavelength of 0.7 to 25 μm. “Refractive index” means the refractive index for light having a wavelength of 10 μm.

本発明によれば、低屈折率薄膜として硫化亜鉛薄膜を用いた従来の赤外光透過フィルタの層構成をそのまま有効に利用して、これと同様の光学特性を示し且つ機械的強度や耐水性に優れた赤外光透過フィルタを、従来の赤外光透過フィルタの最上部に備えられた硫化亜鉛薄膜に代えて屈折率が2.01〜2.30(好ましくは2.10〜2.30)のダイヤモンドライクカーボン薄膜を用いるという簡単な設計により得ることができる。特に、人体検知用センサに用いる赤外光透過フィルタは、基板の各々の面に多数の薄膜が積層された複雑な構成を有しており、その設計には非常に手間がかかる。本発明によれば、このように複雑な層構成のフィルタであっても、このフィルタと同様の光学特性を示し且つ機械的強度や耐水性に優れた赤外光透過フィルタを、上記と同様の簡単な設計により得ることができる。   According to the present invention, the layer structure of a conventional infrared light transmission filter using a zinc sulfide thin film as a low refractive index thin film is effectively used as it is, and exhibits the same optical characteristics and mechanical strength and water resistance. The refractive index is 2.01 to 2.30 (preferably 2.10 to 2.30) instead of the zinc sulfide thin film provided at the top of the conventional infrared light transmission filter. ) Can be obtained by a simple design using a diamond-like carbon thin film. In particular, an infrared light transmission filter used for a human body detection sensor has a complicated configuration in which a large number of thin films are laminated on each surface of a substrate, and its design is very laborious. According to the present invention, an infrared light transmission filter that exhibits the same optical characteristics as this filter and is excellent in mechanical strength and water resistance, even with such a complicated layer structure filter, is the same as described above. It can be obtained with a simple design.

このようにして得られる本発明の赤外光透過フィルタは、その最上部に機械的強度や耐水性に優れるダイヤモンドライクカーボン薄膜が備えられているため、例えば、屋外の砂埃や風雨に曝される環境において特に有利に用いることができる。   The infrared light transmitting filter of the present invention thus obtained is provided with a diamond-like carbon thin film having excellent mechanical strength and water resistance at the uppermost portion thereof, so that it is exposed to, for example, outdoor dust and wind and rain. It can be used particularly advantageously in the environment.

本発明の赤外光透過フィルタを、添付の図面を用いて説明する。図1は、本発明の赤外光透過フィルタの構成例を示す断面図である。   The infrared light transmission filter of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing a configuration example of an infrared light transmission filter of the present invention.

図1の赤外光透過フィルタ10は、赤外光透過性基板11の一方の面に、屈折率が2.10〜2.30の硫化亜鉛薄膜と屈折率が3.00以上の高屈折率薄膜とを最上部に高屈折率薄膜が配置されるように交互に積層し、その上にさらに屈折率が2.01〜2.30のダイヤモンドライクカーボン薄膜を積層した構成を有している。   The infrared light transmission filter 10 of FIG. 1 has a zinc sulfide thin film having a refractive index of 2.10 to 2.30 and a high refractive index of 3.00 or more on one surface of an infrared light transmitting substrate 11. The thin film and the thin film are alternately laminated so that the high refractive index thin film is disposed on the top, and the diamond-like carbon thin film having a refractive index of 2.01 to 2.30 is further laminated thereon.

赤外光透過性基板11の例としては、硫化亜鉛基板(屈折率:2.4)やセレン化亜鉛基板(屈折率:2.4)などの低屈折率基板、およびゲルマニウム基板(屈折率:4.0)やシリコン(ケイ素)基板(屈折率:3.4)などの高屈折率基板が挙げられる。赤外光透過性基板11としては、硫化亜鉛基板やセレン化亜鉛基板よりも低価格なゲルマニウム基板やシリコン基板を用いることが好ましい。   Examples of the infrared light transmissive substrate 11 include a low refractive index substrate such as a zinc sulfide substrate (refractive index: 2.4) and a zinc selenide substrate (refractive index: 2.4), and a germanium substrate (refractive index: 4.0) and silicon (silicon) substrates (refractive index: 3.4). As the infrared light transmissive substrate 11, it is preferable to use a germanium substrate or a silicon substrate which is less expensive than a zinc sulfide substrate or a zinc selenide substrate.

基板11の上に形成される硫化亜鉛薄膜12は、薄膜干渉フィルタの低屈折率薄膜として用いられる。   The zinc sulfide thin film 12 formed on the substrate 11 is used as a low refractive index thin film of a thin film interference filter.

高屈折率薄膜13としては、屈折率が3.00以上の薄膜が用いられる。高屈折率薄膜13の例としては、ゲルマニウム薄膜(屈折率:4.0)やシリコン薄膜(屈折率:3.4)が挙げられる。   As the high refractive index thin film 13, a thin film having a refractive index of 3.00 or more is used. Examples of the high refractive index thin film 13 include a germanium thin film (refractive index: 4.0) and a silicon thin film (refractive index: 3.4).

硫化亜鉛薄膜12及び高屈折率薄膜13のそれぞれは、例えば、電子ビーム蒸着法やスパッタ法などの公知の成膜方法により形成することができる。   Each of the zinc sulfide thin film 12 and the high refractive index thin film 13 can be formed by a known film forming method such as an electron beam evaporation method or a sputtering method.

最上部の高屈折率薄膜の上には、ダイヤモンドライクカーボン(DLC)薄膜14が積層される。一般に、DLC薄膜には、ダイヤモンド構造、グラファイト構造及び直鎖構造などの結晶構造が混在していることが知られている。そしてこのダイヤモンド構造の存在によって、DLC薄膜は、優れた機械的強度、耐水性、そして耐薬品性を示す。   A diamond-like carbon (DLC) thin film 14 is laminated on the uppermost high refractive index thin film. In general, it is known that a DLC thin film contains a crystal structure such as a diamond structure, a graphite structure, and a linear structure. Due to the presence of this diamond structure, the DLC thin film exhibits excellent mechanical strength, water resistance, and chemical resistance.

本発明の赤外光透過フィルタには、屈折率が2.01〜2.30(好ましくは2.10〜2.30)のDLC薄膜が用いられる。本発明の赤外光透過フィルタは、これまで作製されてきた硫化亜鉛薄膜と高屈折率薄膜とが交互に積層された構成の赤外光透過フィルタの最上部の硫化亜鉛薄膜の代わりに、硫化亜鉛薄膜と屈折率が近似したDLC薄膜を用いるという簡単な設計により得られる。このようにして得られる本発明の赤外光透過フィルタは、従来の赤外光透過フィルタと同様の光学特性を示し且つ優れた機械的強度、耐水性、そして耐薬品性を示す。   A DLC thin film having a refractive index of 2.01 to 2.30 (preferably 2.10 to 2.30) is used for the infrared light transmission filter of the present invention. The infrared light transmission filter of the present invention is a sulfide film instead of the zinc sulfide thin film at the top of the infrared light transmission filter having a structure in which the zinc sulfide thin film and the high refractive index thin film that have been produced are alternately laminated. It can be obtained by a simple design using a DLC thin film whose refractive index is close to that of a zinc thin film. The infrared light transmission filter of the present invention thus obtained exhibits the same optical properties as those of conventional infrared light transmission filters, and exhibits excellent mechanical strength, water resistance, and chemical resistance.

本発明の赤外光透過フィルタに用いるDLC薄膜は、プラズマ化学蒸着法(以下、プラズマCVD法という)によって形成することができる。プラズマCVD法は、薄膜の原料となるガス(DLC薄膜を形成する場合には、例えば、エチレンガス)をプラズマ化して化学的に活性なラジカルやイオンに励起し、これを基板表面において化学反応させて薄膜を形成する成膜方法である。プラズマ化により活性化した気体は反応性が高く、非熱平衡状態で化学反応が進行するため、特有の原子組成や結晶構造を持つ薄膜を形成することができる。プラズマCVD法を用いることにより、屈折率が2.01〜2.30のDLC薄膜を容易に形成することができる。   The DLC thin film used for the infrared light transmission filter of the present invention can be formed by a plasma chemical vapor deposition method (hereinafter referred to as a plasma CVD method). In the plasma CVD method, a gas used as a raw material for a thin film (for example, when forming a DLC thin film, for example, ethylene gas) is converted into plasma and excited to chemically active radicals and ions, which are chemically reacted on the substrate surface. A film forming method for forming a thin film. Since the gas activated by plasma is highly reactive and a chemical reaction proceeds in a non-thermal equilibrium state, a thin film having a specific atomic composition and crystal structure can be formed. By using the plasma CVD method, a DLC thin film having a refractive index of 2.01 to 2.30 can be easily formed.

図2は、本発明の赤外光透過フィルタのDLC薄膜の形成に用いるプラズマCVD装置の構成例を示す部分断面図である。以下、プラズマCVD装置の構成について簡単に説明する。図2のプラズマCVD装置20は、排気装置25が備えられたチャンバ21、チャンバ21の内部に対向配置された高周波供給電極22及び接地電極23、高周波供給電極22にマッチング回路27を介して電気的に接続された高周波電源28から構成されている。チャンバ21には、DLC薄膜の原料となるガスを供給するためのガス導入口26が備えられている。   FIG. 2 is a partial cross-sectional view showing a configuration example of a plasma CVD apparatus used for forming the DLC thin film of the infrared light transmission filter of the present invention. Hereinafter, the configuration of the plasma CVD apparatus will be briefly described. The plasma CVD apparatus 20 in FIG. 2 is electrically connected to a chamber 21 provided with an exhaust device 25, a high-frequency supply electrode 22 and a ground electrode 23 disposed opposite to each other inside the chamber 21, and a high-frequency supply electrode 22 through a matching circuit 27. It is comprised from the high frequency power supply 28 connected to. The chamber 21 is provided with a gas inlet 26 for supplying a gas as a raw material for the DLC thin film.

赤外光透過性基板上に硫化亜鉛薄膜と高屈折率薄膜とを最上部に高屈折率薄膜が配置されるように交互に積層した構成の多層膜付きの基板24は、例えば、図2に示すように高周波供給電極22の表面に取り付けられる。多層膜付きの基板は、これを保持する基板ホルダを用いて高周波供給電極に取り付けることもできる。多層膜付きの基板24の最上部の高屈折率薄膜の表面には、次のようにしてDLC薄膜が形成される。   A substrate 24 with a multilayer film having a structure in which a zinc sulfide thin film and a high refractive index thin film are alternately stacked on an infrared light transmissive substrate so that the high refractive index thin film is disposed on the uppermost portion is shown in FIG. As shown, it is attached to the surface of the high frequency supply electrode 22. The substrate with the multilayer film can be attached to the high-frequency supply electrode using a substrate holder that holds the substrate. A DLC thin film is formed on the surface of the uppermost high refractive index thin film of the substrate 24 with a multilayer film as follows.

まず、プラズマCVD装置20のチャンバ21の内部を、例えば、真空度が5×10-4Pa以下となるまで排気装置25により排気する。 First, the inside of the chamber 21 of the plasma CVD apparatus 20 is exhausted by the exhaust apparatus 25 until, for example, the degree of vacuum is 5 × 10 −4 Pa or less.

次に、チャンバ21の内部にガス導入口26からダイヤモンドライクカーボン(DLC)薄膜の原料ガスを導入する。原料ガスの例としては、エチレンガスが挙げられる。原料ガスとしては、エチレンガスを用いることが好ましい。エチレンガスは、例えば、113sccm(standard curbic centi-meter per minute)程度の流量でチャンバ21の内部に導入される。   Next, a raw material gas for a diamond-like carbon (DLC) thin film is introduced into the chamber 21 from the gas inlet 26. An example of the raw material gas is ethylene gas. As the raw material gas, ethylene gas is preferably used. For example, the ethylene gas is introduced into the chamber 21 at a flow rate of about 113 sccm (standard curbic centi-meter per minute).

そして高周波電源28により、例えば、周波数が13.56MHz、そして電力が1.35kWの高周波電圧を高周波供給電極22に印加することにより原料ガスのプラズマが発生する。そしてプラズマ化した原料ガスが、多層膜付き基板24の最上部の高屈折率薄膜の表面において化学反応してDLC薄膜が形成される。   The high-frequency power supply 28 applies a high-frequency voltage having a frequency of 13.56 MHz and a power of 1.35 kW to the high-frequency supply electrode 22, for example, to generate a raw material gas plasma. The plasma-formed source gas chemically reacts on the surface of the uppermost high refractive index thin film of the substrate 24 with a multilayer film to form a DLC thin film.

本発明の赤外光フィルタにおいて、赤外光透過性基板のDLC薄膜を備える面とは反対側の面には、上記とは別の薄膜干渉フィルタを付設することもできる。赤外光透過性基板のDLC薄膜を備える面とは反対側の面には、硫化亜鉛薄膜と高屈折率薄膜(例、ゲルマニウム薄膜及びケイ素薄膜)とが最上部に硫化亜鉛薄膜が配置されるように交互に積層された構成の薄膜干渉フィルタが付設されていることが好ましい。赤外光透過性基板の各々の面に薄膜干渉フィルタを付設することにより、より多様な赤外光透過特性を示す赤外光透過フィルタが得られる。   In the infrared light filter of the present invention, a thin film interference filter different from the above may be provided on the surface of the infrared light transmissive substrate opposite to the surface provided with the DLC thin film. A zinc sulfide thin film and a high refractive index thin film (eg, a germanium thin film and a silicon thin film) are disposed on the uppermost surface of the infrared light transmissive substrate opposite to the surface provided with the DLC thin film. It is preferable that thin film interference filters having a configuration in which the layers are alternately stacked are attached. By attaching a thin film interference filter to each surface of the infrared light transmissive substrate, infrared light transmissive filters exhibiting more various infrared light transmission characteristics can be obtained.

例えば、上記の人体検知用センサは、人体から放射される波長が約10μmの赤外光を、この赤外光に対して高い透過率を示す赤外光透過フィルタを介して検出する。この際に、太陽光や蛍光灯などに含まれる可視光〜波長5μm程度までの赤外光(測定対象の波長10μmの赤外光よりも高いエネルギーを持つ短波長の光)を遮光すると、人体から放射される赤外光の検出感度や検出精度を高くすることができる。特に、波長3〜5μmの赤外光を遮光するとセンサの検出感度や検出精度が良好となる。   For example, the human body detection sensor detects infrared light having a wavelength of about 10 μm emitted from the human body via an infrared light transmission filter that exhibits high transmittance with respect to the infrared light. At this time, if infrared light (short-wavelength light having higher energy than infrared light having a wavelength of 10 μm to be measured) contained in sunlight or fluorescent light is blocked from visible light to a wavelength of about 5 μm, the human body The detection sensitivity and detection accuracy of infrared light radiated from can be increased. In particular, when infrared light having a wavelength of 3 to 5 μm is shielded, the detection sensitivity and detection accuracy of the sensor are improved.

上記のように基板の一方の面にのみ薄膜干渉フィルタが付設された赤外光透過フィルタは、波長10μmの光を選択的にセンサに伝えることはできるものの、同時に波長3〜5μmの光もセンサに伝え易いためにセンサの検出感度や検出精度を有る程度以上に高くすることは難しい。一方、基板の各々の面に薄膜干渉フィルタが付設された赤外光透過フィルタは、その構成は複雑となるものの、一方の薄膜干渉フィルタにより波長が10μmの赤外光を高い透過率で透過させ、他方の薄膜干渉フィルタにより波長が3〜5μmの赤外光を遮光させることができるため、これを人体検知用センサに用いることによりセンサの検出感度や検出精度を高くすることができる。   As described above, the infrared light transmission filter provided with the thin film interference filter only on one surface of the substrate can selectively transmit light having a wavelength of 10 μm to the sensor, but at the same time, light having a wavelength of 3 to 5 μm is also detected by the sensor. Therefore, it is difficult to increase the detection sensitivity and detection accuracy of the sensor beyond a certain level. On the other hand, an infrared light transmission filter having a thin film interference filter attached to each surface of the substrate has a complicated structure, but one thin film interference filter transmits infrared light having a wavelength of 10 μm with high transmittance. Since the other thin-film interference filter can block infrared light having a wavelength of 3 to 5 μm, the detection sensitivity and detection accuracy of the sensor can be increased by using this for a human body sensor.

[参考例1]
直径が100mm、そして厚みが0.5mmの円盤状のシリコン基板(屈折率:3.4)を用意した。この基板の表面をジエチルエーテルを含ませた布で拭いて清浄にした。次いで、このシリコン基板の一方の表面に、電子ビーム蒸着法によりゲルマニウム薄膜(屈折率:4.0)と硫化亜鉛薄膜(屈折率:2.2)とを、最上部に硫化亜鉛薄膜が配置されるように交互に積層して多層膜を作製した。なお、各々の薄膜の厚みは、水晶振動子の表面に薄膜が形成された際の振動数の変化を予め換算式として求め、この換算式をもとに成膜中の薄膜の厚みをモニタしながら所定の厚みに設定した。作製した多層膜の構成を下記の第1表に示す。なお、第1表中、「1層目」とは、基板の表面に最初に積層される層を意味する。
[Reference Example 1]
A disk-shaped silicon substrate (refractive index: 3.4) having a diameter of 100 mm and a thickness of 0.5 mm was prepared. The surface of this substrate was cleaned with a cloth soaked in diethyl ether. Next, a germanium thin film (refractive index: 4.0) and a zinc sulfide thin film (refractive index: 2.2) are arranged on one surface of the silicon substrate by an electron beam evaporation method, and a zinc sulfide thin film is placed on the top. In this manner, a multilayer film was produced by alternately laminating. The thickness of each thin film is calculated in advance as a conversion formula when the thin film is formed on the surface of the crystal unit, and the thickness of the thin film being formed is monitored based on this conversion formula. However, it was set to a predetermined thickness. The structure of the produced multilayer film is shown in Table 1 below. In Table 1, “first layer” means a layer first laminated on the surface of the substrate.

[表1]
第1表
──────────────────────────────────────
多層膜の構成 厚み 多層膜の構成 厚み 多層膜の構成 厚み
(nm) (nm) (nm)
──────────────────────────────────────
1層目 Ge薄膜 22 17層目 Ge薄膜 111 33層目 Ge薄膜 68
2層目 ZnS薄膜 120 18層目 ZnS薄膜 278 34層目 ZnS薄膜 212
3層目 Ge薄膜 197 19層目 Ge薄膜 110 35層目 Ge薄膜 89
4層目 ZnS薄膜 267 20層目 ZnS薄膜 270 36層目 ZnS薄膜 216
5層目 Ge薄膜 189 21層目 Ge薄膜 112 37層目 Ge薄膜 80
6層目 ZnS薄膜 331 22層目 ZnS薄膜 256 38層目 ZnS薄膜 191
7層目 Ge薄膜 143 23層目 Ge薄膜 139 39層目 Ge薄膜 127
8層目 ZnS薄膜 330 24層目 ZnS薄膜 180 40層目 ZnS薄膜 56
9層目 Ge薄膜 155 25層目 Ge薄膜 161 41層目 Ge薄膜 163
10層目 ZnS薄膜 337 26層目 ZnS薄膜 195 42層目 ZnS薄膜 53
11層目 Ge薄膜 179 27層目 Ge薄膜 146 43層目 Ge薄膜 128
12層目 ZnS薄膜 262 28層目 ZnS薄膜 208 44層目 ZnS薄膜 144
13層目 Ge薄膜 185 29層目 Ge薄膜 141 45層目 Ge薄膜 131
14層目 ZnS薄膜 295 30層目 ZnS薄膜 258 46層目 ZnS薄膜 33
15層目 Ge薄膜 186 31層目 Ge薄膜 86 47層目 Ge薄膜 160
16層目 ZnS薄膜 308 32層目 ZnS薄膜 308 48層目 ZnS薄膜 979
──────────────────────────────────────
[Table 1]
Table 1 ──────────────────────────────────────
Multilayer structure Thickness Multilayer structure Thickness Multilayer structure Thickness
(Nm) (nm) (nm)
──────────────────────────────────────
1st layer Ge thin film 22 17th layer Ge thin film 111 33rd layer Ge thin film 68
2nd layer ZnS thin film 120 18th layer ZnS thin film 278 34th layer ZnS thin film 212
3rd layer Ge thin film 197 19th layer Ge thin film 110 35th layer Ge thin film 89
4th layer ZnS thin film 267 20th layer ZnS thin film 270 36th layer ZnS thin film 216
5th layer Ge thin film 189 21st layer Ge thin film 112 37th layer Ge thin film 80
6th layer ZnS thin film 331 22nd layer ZnS thin film 256 38th layer ZnS thin film 191
7th layer Ge thin film 143 23rd layer Ge thin film 139 39th layer Ge thin film 127
8th layer ZnS thin film 330 24th layer ZnS thin film 180 40th layer ZnS thin film 56
9th layer Ge thin film 155 25th layer Ge thin film 161 41st layer Ge thin film 163
10th layer ZnS thin film 337 26th layer ZnS thin film 195 42nd layer ZnS thin film 53
11th layer Ge thin film 179 27th layer Ge thin film 146 43rd layer Ge thin film 128
12th layer ZnS thin film 262 28th layer ZnS thin film 208 44th layer ZnS thin film 144
13th layer Ge thin film 185 29th layer Ge thin film 141 45th layer Ge thin film 131
14th layer ZnS thin film 295 30th layer ZnS thin film 258 46th layer ZnS thin film 33
15th layer Ge thin film 186 31st layer Ge thin film 86 47th layer Ge thin film 160
16th layer ZnS thin film 308 32nd layer ZnS thin film 308 48th layer ZnS thin film 979
──────────────────────────────────────

同様にして、基板の他方の表面に、ゲルマニウム薄膜と硫化亜鉛薄膜とを、最上部に硫化亜鉛薄膜が配置されるように交互に積層して多層膜を作製した。作製した多層膜の構成を下記の第2表に示す。   Similarly, a multilayer film was produced by alternately laminating a germanium thin film and a zinc sulfide thin film on the other surface of the substrate so that the zinc sulfide thin film was disposed on the top. The structure of the produced multilayer film is shown in Table 2 below.

[表2]
第2表
──────────────────────────────────────
多層膜の構成 厚み 多層膜の構成 厚み 多層膜の構成 厚み
(nm) (nm) (nm)
──────────────────────────────────────
1層目 Ge薄膜 43 12層目 ZnS薄膜 423 23層目 Ge薄膜 240
2層目 ZnS薄膜 127 13層目 Ge薄膜 173 24層目 ZnS薄膜 544
3層目 Ge薄膜 237 14層目 ZnS薄膜 379 25層目 Ge薄膜 267
4層目 ZnS薄膜 263 15層目 Ge薄膜 216 26層目 ZnS薄膜 487
5層目 Ge薄膜 239 16層目 ZnS薄膜 385 27層目 Ge薄膜 311
6層目 ZnS薄膜 327 17層目 Ge薄膜 300 28層目 ZnS薄膜 368
7層目 Ge薄膜 195 18層目 ZnS薄膜 391 29層目 Ge薄膜 397
8層目 ZnS薄膜 350 19層目 Ge薄膜 300 30層目 ZnS薄膜 333
9層目 Ge薄膜 183 20層目 ZnS薄膜 495 31層目 Ge薄膜 261
10層目 ZnS薄膜 414 21層目 Ge薄膜 244 32層目 ZnS薄膜 1153
11層目 Ge薄膜 187 22層目 ZnS薄膜 581
──────────────────────────────────────
[Table 2]
Table 2 ──────────────────────────────────────
Multilayer structure Thickness Multilayer structure Thickness Multilayer structure Thickness
(Nm) (nm) (nm)
──────────────────────────────────────
1st layer Ge thin film 43 12th layer ZnS thin film 423 23rd layer Ge thin film 240
2nd layer ZnS thin film 127 13th layer Ge thin film 173 24th layer ZnS thin film 544
3rd layer Ge thin film 237 14th layer ZnS thin film 379 25th layer Ge thin film 267
4th layer ZnS thin film 263 15th layer Ge thin film 216 26th layer ZnS thin film 487
5th layer Ge thin film 239 16th layer ZnS thin film 385 27th layer Ge thin film 311
6th layer ZnS thin film 327 17th layer Ge thin film 300 28th layer ZnS thin film 368
7th layer Ge thin film 195 18th layer ZnS thin film 391 29th layer Ge thin film 397
8th layer ZnS thin film 350 19th layer Ge thin film 300 30th layer ZnS thin film 333
9th layer Ge thin film 183 20th layer ZnS thin film 495 31st layer Ge thin film 261
10th layer ZnS thin film 414 21st layer Ge thin film 244 32nd layer ZnS thin film 1153
11th layer Ge thin film 187 22nd layer ZnS thin film 581
──────────────────────────────────────

このように基板のそれぞれの面に多層膜を形成して、人体検知用センサに用いる赤外光透過フィルタを作製した。図3に破線で記入した曲線Aは、作製した赤外光透過フィルタの赤外光透過特性を示している。図3に示すように、作製した赤外光透過フィルタの波長10μmの赤外光の透過率は約77%であり、そして波長3〜5μmにおける赤外光の透過率は0.5%以下であった。   Thus, the multilayer film was formed in each surface of the board | substrate, and the infrared-light transmissive filter used for a human body detection sensor was produced. A curve A indicated by a broken line in FIG. 3 indicates the infrared light transmission characteristics of the manufactured infrared light transmission filter. As shown in FIG. 3, the infrared light transmittance of the manufactured infrared light transmission filter is about 77%, and the infrared light transmittance at a wavelength of 3 to 5 μm is 0.5% or less. there were.

[実施例1]
シリコン基板の一方の表面に、48層目の硫化亜鉛薄膜を形成しないこと以外は参考例1と同様にしてゲルマニウム薄膜と硫化亜鉛薄膜とが交互に47層積層された構成の多層膜を作製した。
[Example 1]
A multilayer film having a structure in which 47 layers of germanium thin films and zinc sulfide thin films were alternately laminated was prepared in the same manner as in Reference Example 1 except that the 48th layer zinc sulfide thin film was not formed on one surface of the silicon substrate. .

次に、作製した多層膜付き基板を、その多層膜が形成された面をジエチルエーテルを含ませた布で拭いて清浄にしたのち、図2のプラズマ化学蒸着装置(以下、プラズマCVD装置という)20の高周波供給電極22の表面に取り付けた。そしてプラズマCVD装置のチャンバ21の内部を真空度が5×10-4Pa以下となるまで排気装置25により排気したのち、チャンバ21の内部にガス導入口26からダイヤモンドライクカーボン(DLC)薄膜の原料であるエチレンガスを113sccmの流量で導入した。そして高周波電源28により高周波供給電極22に周波数が13.56MHz、そして電力が1.35kWの高周波電圧を印加してエチレンガスのプラズマを発生させることにより、多層膜付き基板の最上部のゲルマニウム薄膜の表面に、上記の48層目の硫化亜鉛薄膜と同じ厚み(979nm)のDLC薄膜を形成した。DLC薄膜は、上記と同様に水晶振動子の振動数変化を利用して所定の厚みに設定した。 Next, the prepared substrate with the multilayer film is cleaned by wiping the surface on which the multilayer film is formed with a cloth containing diethyl ether, and then the plasma chemical vapor deposition apparatus of FIG. 2 (hereinafter referred to as a plasma CVD apparatus). Attached to the surface of 20 high-frequency supply electrodes 22. The inside of the chamber 21 of the plasma CVD apparatus is evacuated by the exhaust apparatus 25 until the degree of vacuum becomes 5 × 10 −4 Pa or less, and then the diamond-like carbon (DLC) thin film material is introduced into the chamber 21 from the gas inlet 26. The ethylene gas was introduced at a flow rate of 113 sccm. Then, by applying a high-frequency voltage having a frequency of 13.56 MHz and a power of 1.35 kW to the high-frequency supply electrode 22 from the high-frequency power supply 28 to generate an ethylene gas plasma, A DLC thin film having the same thickness (979 nm) as the 48th zinc sulfide thin film was formed on the surface. The DLC thin film was set to a predetermined thickness using the frequency change of the crystal resonator in the same manner as described above.

この赤外光透過フィルタのDLC薄膜を形成する際に、上記とは別のシリコン基板の表面にDLC薄膜を形成した。このサンプルの赤外光透過特性から得られたDLC薄膜の光学的厚みと、触針式膜厚計により得られたDLC薄膜の幾何的厚みとから算出されたDLC薄膜の屈折率は2.2であった。   When forming the DLC thin film of this infrared light transmission filter, the DLC thin film was formed on the surface of a silicon substrate different from the above. The refractive index of the DLC thin film calculated from the optical thickness of the DLC thin film obtained from the infrared light transmission characteristics of this sample and the geometric thickness of the DLC thin film obtained by the stylus thickness meter is 2.2. Met.

次に、基板の他方の面に、参考例1と同様にしてゲルマニウム薄膜と硫化亜鉛薄膜とを、最上部に硫化亜鉛薄膜が配置されるように交互に32層積層して多層膜を形成した。   Next, a multilayer film was formed by alternately stacking 32 layers of germanium thin films and zinc sulfide thin films on the other surface of the substrate in the same manner as in Reference Example 1 so that the zinc sulfide thin films were disposed on the top. .

このようにして、人体検知用センサに用いる本発明の赤外光透過フィルタを作製した。
図3に実線で記入した曲線Bは、作製した赤外光透過フィルタの赤外光透過特性を示している。図3に示すように、作製した赤外光透過フィルタは、その波長10μmの赤外光の透過率が73%であり、そして波長3〜5μmにおける赤外光の透過率が0.5%以下であり、参考例1の赤外光透過フィルタと同様の赤外光透過特性を示すことがわかる。また、作製された赤外光透過フィルタは、その最上部にDLC薄膜が備えられているために機械的強度や耐水性に優れたものである。
Thus, the infrared light transmission filter of the present invention used for the human body detection sensor was produced.
A curve B indicated by a solid line in FIG. 3 indicates the infrared light transmission characteristics of the manufactured infrared light transmission filter. As shown in FIG. 3, the produced infrared light transmission filter has an infrared light transmittance of 73% at a wavelength of 10 μm and an infrared light transmittance of 0.5% or less at a wavelength of 3 to 5 μm. It can be seen that the infrared light transmission characteristics similar to those of the infrared light transmission filter of Reference Example 1 are exhibited. In addition, the manufactured infrared light transmission filter is excellent in mechanical strength and water resistance because the DLC thin film is provided on the uppermost part thereof.

[参考例2]
直径が24mm、そして厚みが2.5mmの円盤状のゲルマニウム基板(屈折率:4.0)の表面に、参考例1と同様にして硫化亜鉛薄膜とゲルマニウム薄膜とを、最上部に硫化亜鉛薄膜が配置されるように交互に積層して多層膜を作製した。作製した多層膜の構成を下記の第3表に示す。
[Reference Example 2]
A zinc sulfide thin film and a germanium thin film are formed on the surface of a disk-shaped germanium substrate (refractive index: 4.0) having a diameter of 24 mm and a thickness of 2.5 mm in the same manner as in Reference Example 1, and a zinc sulfide thin film on the top. A multilayer film was produced by alternately laminating so as to be arranged. The structure of the produced multilayer film is shown in Table 3 below.

[表3]
第3表
──────────────────────────────────────
多層膜の構成 厚み 多層膜の構成 厚み 多層膜の構成 厚み
(nm) (nm) (nm)
──────────────────────────────────────
1層目 ZnS薄膜 201 4層目 Ge薄膜 286 7層目 ZnS薄膜 87
2層目 Ge薄膜 360 5層目 ZnS薄膜 451 8層目 Ge薄膜 570
3層目 ZnS薄膜 522 6層目 Ge薄膜 602 9層目 ZnS薄膜 1123
──────────────────────────────────────
[Table 3]
Table 3 ──────────────────────────────────────
Multilayer structure Thickness Multilayer structure Thickness Multilayer structure Thickness
(Nm) (nm) (nm)
──────────────────────────────────────
1st layer ZnS thin film 201 4th layer Ge thin film 286 7th layer ZnS thin film 87
2nd layer Ge thin film 360 5th layer ZnS thin film 451 8th layer Ge thin film 570
3rd layer ZnS thin film 522 6th layer Ge thin film 602 9th layer ZnS thin film 1123
──────────────────────────────────────

このように基板の表面に多層膜を形成して、反射防止膜として用いる赤外光透過フィルタを作製した。図4に破線で記入した曲線Cは、作製した赤外光透過フィルタの赤外光透過特性を示している。   In this way, a multilayer film was formed on the surface of the substrate to produce an infrared light transmission filter used as an antireflection film. A curve C indicated by a broken line in FIG. 4 indicates the infrared light transmission characteristics of the manufactured infrared light transmission filter.

[実施例2]
ゲルマニウム基板の表面に、9層目の硫化亜鉛薄膜を形成しないこと以外は参考例2と同様にして硫化亜鉛薄膜とゲルマニウム薄膜とが交互に8層積層された構成の多層膜を作製した。この多層膜付き基板の最上部のゲルマニウム薄膜の表面に、実施例1と同様にして上記の9層目の硫化亜鉛薄膜と同じ厚み(1123nm)のDLC薄膜(屈折率:2.2)を形成した。
[Example 2]
A multilayer film having a structure in which eight layers of zinc sulfide thin films and germanium thin films were alternately laminated was prepared in the same manner as in Reference Example 2 except that the ninth layer zinc sulfide thin film was not formed on the surface of the germanium substrate. A DLC thin film (refractive index: 2.2) having the same thickness (1123 nm) as the ninth layer zinc sulfide thin film is formed on the surface of the uppermost germanium thin film of this multilayer film-coated substrate in the same manner as in Example 1. did.

このようにして、反射防止膜として用いる本発明の赤外光透過フィルタを作製した。図4に実線で記入した曲線Dは、作製した赤外光透過フィルタの赤外光透過特性を示している。図4に示すように、作製した赤外光透過フィルタは、参考例2の赤外光透過フィルタと同様の赤外光透過特性を示すことがわかる。また、作製された赤外光透過フィルタは、その最上部にDLC薄膜が備えられているために機械的強度や耐水性に優れたものである。   Thus, the infrared light transmission filter of the present invention used as an antireflection film was produced. A curve D indicated by a solid line in FIG. 4 indicates the infrared light transmission characteristics of the manufactured infrared light transmission filter. As shown in FIG. 4, it can be seen that the produced infrared light transmission filter exhibits the same infrared light transmission characteristics as the infrared light transmission filter of Reference Example 2. In addition, the manufactured infrared light transmission filter is excellent in mechanical strength and water resistance because the DLC thin film is provided on the uppermost part thereof.

本発明の赤外光透過フィルタの構成例を示す断面図である。It is sectional drawing which shows the structural example of the infrared-light transmission filter of this invention. 本発明の赤外光透過フィルタのダイヤモンドライクカーボン薄膜の形成に用いるプラズマ化学蒸着装置の構成例を示す部分断面図である。It is a fragmentary sectional view which shows the structural example of the plasma chemical vapor deposition apparatus used for formation of the diamond-like carbon thin film of the infrared-light transmission filter of this invention. 参考例1及び実施例1で作製した赤外光透過フィルタの赤外光透過特性を示す図である。It is a figure which shows the infrared-light transmission characteristic of the infrared-light transmission filter produced in the reference example 1 and Example 1. FIG. 参考例2及び実施例2で作製した赤外光透過フィルタの赤外光透過特性を示す図である。It is a figure which shows the infrared-light transmission characteristic of the infrared-light transmission filter produced in the reference example 2 and Example 2. FIG.

符号の説明Explanation of symbols

10 赤外光透過フィルタ
11 赤外光透過性基板
12 硫化亜鉛薄膜
13 高屈折率薄膜
14 ダイヤモンドライクカーボン薄膜
20 プラズマ化学蒸着装置
21 チャンバ
22 高周波供給電極
23 接地電極
24 多層膜付きの基板
25 排気装置
26 ガス導入口
27 マッチング回路
28 高周波電源
DESCRIPTION OF SYMBOLS 10 Infrared light transmissive filter 11 Infrared light transmissive substrate 12 Zinc sulfide thin film 13 High refractive index thin film 14 Diamond-like carbon thin film 20 Plasma chemical vapor deposition apparatus 21 Chamber 22 High frequency supply electrode 23 Ground electrode 24 Substrate with multilayer film 25 Exhaust apparatus 26 Gas inlet 27 Matching circuit 28 High frequency power supply

Claims (5)

赤外光透過性基板の一方の面に、屈折率が2.10〜2.30の硫化亜鉛薄膜と屈折率が3.00以上の高屈折率薄膜とを最上部に高屈折率薄膜が配置されるように交互に積層し、その上にさらに屈折率が2.01〜2.30のダイヤモンドライクカーボン薄膜を積層してなる赤外光透過フィルタ。   A high refractive index thin film is arranged on the top of a zinc sulfide thin film having a refractive index of 2.10 to 2.30 and a high refractive index thin film having a refractive index of 3.00 or more on one surface of an infrared light transmitting substrate. Infrared light transmission filter obtained by alternately laminating a diamond-like carbon thin film having a refractive index of 2.01 to 2.30. 赤外光透過性基板の他方の面に、硫化亜鉛薄膜と高屈折率薄膜とが最上部に硫化亜鉛薄膜が配置されるように交互に積層されている請求項1に記載の赤外光透過フィルタ。   2. The infrared light transmitting device according to claim 1, wherein the zinc sulfide thin film and the high refractive index thin film are alternately laminated on the other surface of the infrared light transmitting substrate so that the zinc sulfide thin film is disposed on the uppermost portion. filter. 基板がゲルマニウムもしくはケイ素からなる請求項1もしくは2に記載の赤外光透過フィルタ。   The infrared light transmission filter according to claim 1 or 2, wherein the substrate is made of germanium or silicon. 高屈折率薄膜がゲルマニウムもしくはケイ素からなる請求項1乃至3のうちのいずれかの項に記載の赤外光透過フィルタ。   The infrared light transmission filter according to any one of claims 1 to 3, wherein the high refractive index thin film is made of germanium or silicon. ダイヤモンドライクカーボン薄膜がプラズマ化学蒸着法により最上部の高屈折率薄膜の上に形成された薄膜である請求項1乃至4のうちのいずれかの項に記載の赤外光透過フィルタ。
The infrared light transmission filter according to any one of claims 1 to 4, wherein the diamond-like carbon thin film is a thin film formed on the uppermost high refractive index thin film by a plasma chemical vapor deposition method.
JP2004340748A 2004-11-25 2004-11-25 Infra-red light transmission filter Withdrawn JP2006153976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004340748A JP2006153976A (en) 2004-11-25 2004-11-25 Infra-red light transmission filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004340748A JP2006153976A (en) 2004-11-25 2004-11-25 Infra-red light transmission filter

Publications (1)

Publication Number Publication Date
JP2006153976A true JP2006153976A (en) 2006-06-15

Family

ID=36632401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004340748A Withdrawn JP2006153976A (en) 2004-11-25 2004-11-25 Infra-red light transmission filter

Country Status (1)

Country Link
JP (1) JP2006153976A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100460895C (en) * 2007-07-04 2009-02-11 中国航空工业第一集团公司第六一三研究所 Infrared cut-off light filtering films on germanium-base parts surface and plating method thereof
JP2012042726A (en) * 2010-08-19 2012-03-01 Nippon Shinku Kogaku Kk Terahertz band optical element
CN103926642A (en) * 2014-04-17 2014-07-16 张家港康得新光电材料有限公司 Infrared cut-off filtering film
JP2015517686A (en) * 2012-05-18 2015-06-22 イエーノプティーク オプティカル システムズ ゲーエムベーハー Optical IR component with hybrid coating
WO2016203863A1 (en) * 2015-06-19 2016-12-22 三菱電機株式会社 Optical component and laser machining apparatus
US9570490B2 (en) 2010-12-10 2017-02-14 Asahi Glass Company, Limited Infrared transmission filter and imaging device
WO2017052134A1 (en) * 2015-09-23 2017-03-30 김훈래 Stacked body
KR20170035773A (en) * 2015-09-23 2017-03-31 김훈래 Laminates
JP2017128491A (en) * 2016-01-18 2017-07-27 住友電気工業株式会社 Optical component
WO2017126394A1 (en) * 2016-01-18 2017-07-27 住友電気工業株式会社 Optical component
JP2018022042A (en) * 2016-08-03 2018-02-08 三菱マテリアル株式会社 Infrared filter, Zn-Sn containing oxide film and Zn-Sn containing oxide sputtering target
JP2018115629A (en) * 2017-01-20 2018-07-26 株式会社デンソー Fuel injection valve and manufacturing method thereof
JPWO2017195603A1 (en) * 2016-05-13 2018-08-23 三菱電機株式会社 Optical components and laser processing machines
WO2018186621A1 (en) * 2017-04-07 2018-10-11 김병삼 Method for preparing radio wave transmitting sensor cover comprising microcracks and laser-bored holes and radio wave transmitting sensor cover prepared by means of same
WO2020153046A1 (en) * 2019-01-22 2020-07-30 三菱電機株式会社 Optical component and laser machining apparatus
CN111736249A (en) * 2020-08-17 2020-10-02 深圳市汇顶科技股份有限公司 Infrared bandpass filter and sensor system
WO2022036511A1 (en) * 2020-08-17 2022-02-24 深圳市汇顶科技股份有限公司 Infrared bandpass optical filter and sensor system

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100460895C (en) * 2007-07-04 2009-02-11 中国航空工业第一集团公司第六一三研究所 Infrared cut-off light filtering films on germanium-base parts surface and plating method thereof
JP2012042726A (en) * 2010-08-19 2012-03-01 Nippon Shinku Kogaku Kk Terahertz band optical element
US9570490B2 (en) 2010-12-10 2017-02-14 Asahi Glass Company, Limited Infrared transmission filter and imaging device
JP2015517686A (en) * 2012-05-18 2015-06-22 イエーノプティーク オプティカル システムズ ゲーエムベーハー Optical IR component with hybrid coating
CN103926642B (en) * 2014-04-17 2017-03-15 张家港康得新光电材料有限公司 Infrared cut-off light filtering films
CN103926642A (en) * 2014-04-17 2014-07-16 张家港康得新光电材料有限公司 Infrared cut-off filtering film
WO2016203863A1 (en) * 2015-06-19 2016-12-22 三菱電機株式会社 Optical component and laser machining apparatus
JPWO2016203863A1 (en) * 2015-06-19 2017-12-07 三菱電機株式会社 Optical components and laser processing machines
WO2017052134A1 (en) * 2015-09-23 2017-03-30 김훈래 Stacked body
KR20170035773A (en) * 2015-09-23 2017-03-31 김훈래 Laminates
US10570500B2 (en) 2015-09-23 2020-02-25 Hun Rae Kim Sensor cover laminates for vehicle adjusting color and penetrating electronic waves
CN108028461A (en) * 2015-09-23 2018-05-11 金勋来 Layered product
KR101869157B1 (en) * 2015-09-23 2018-06-19 김훈래 Sensor cover laminates for vehicle adjusting color and penetrating electronic waves
CN108028461B (en) * 2015-09-23 2021-10-26 金勋来 Laminated body
JP2017128491A (en) * 2016-01-18 2017-07-27 住友電気工業株式会社 Optical component
WO2017126394A1 (en) * 2016-01-18 2017-07-27 住友電気工業株式会社 Optical component
JPWO2017195603A1 (en) * 2016-05-13 2018-08-23 三菱電機株式会社 Optical components and laser processing machines
JP2018022042A (en) * 2016-08-03 2018-02-08 三菱マテリアル株式会社 Infrared filter, Zn-Sn containing oxide film and Zn-Sn containing oxide sputtering target
JP2018115629A (en) * 2017-01-20 2018-07-26 株式会社デンソー Fuel injection valve and manufacturing method thereof
CN109196138A (en) * 2017-04-07 2019-01-11 金炳三 The manufacturing method of Electromgnetically-transparent sender unit cap including micro-crack and laser punching and the Electromgnetically-transparent sender unit cap manufactured using it
WO2018186621A1 (en) * 2017-04-07 2018-10-11 김병삼 Method for preparing radio wave transmitting sensor cover comprising microcracks and laser-bored holes and radio wave transmitting sensor cover prepared by means of same
WO2020153046A1 (en) * 2019-01-22 2020-07-30 三菱電機株式会社 Optical component and laser machining apparatus
TWI732427B (en) * 2019-01-22 2021-07-01 日商三菱電機股份有限公司 Optical member and laser processing machine
JPWO2020153046A1 (en) * 2019-01-22 2021-11-04 三菱電機株式会社 Protective windows for laser machines and laser machines
CN111736249A (en) * 2020-08-17 2020-10-02 深圳市汇顶科技股份有限公司 Infrared bandpass filter and sensor system
WO2022036511A1 (en) * 2020-08-17 2022-02-24 深圳市汇顶科技股份有限公司 Infrared bandpass optical filter and sensor system

Similar Documents

Publication Publication Date Title
JP2006153976A (en) Infra-red light transmission filter
JP5093113B2 (en) Ethylene-tetrafluoroethylene copolymer molded product and method for producing the same
JP5285438B2 (en) Substrate with transparent conductive film and method for producing the same
Hegedüs et al. Silicon nitride and hydrogenated silicon nitride thin films: A review of fabrication methods and applications
KR20120103662A (en) Infrared flame detector
CN109655954A (en) Optical filter and preparation method thereof, fingerprint recognition mould group and electronic equipment
EP0115645A2 (en) Process for forming passivation film on photoelectric conversion device and the device produced thereby
JP5425351B1 (en) Light transmissive conductive film, method for producing the same, and use thereof
CN109932773B (en) Visible light cut-off film, preparation method and application thereof
JP2005035128A (en) Transparent gas barrier film and display device using it
CN112162343A (en) Medium-far infrared filter for sensor and preparation method thereof
CN103608485A (en) Laminated film and electronic device
JP3118339B2 (en) Gas barrier transparent conductive laminate and method for producing the same
CN209400726U (en) Optical filter, fingerprint recognition mould group and electronic equipment
JP2008051699A (en) Film thickness measuring device of organic thin film and organic thin film formation device
JP3128554B2 (en) Method for forming oxide optical thin film and apparatus for forming oxide optical thin film
CN1741970A (en) Transparent zirconium oxide - tantalum and/or tantalum oxide coating
CN101736313B (en) Method for preparing diamond-like film on germanium substrate
JP2012042726A (en) Terahertz band optical element
JP2000273619A (en) Production of thin film
JP2018170488A (en) ZnO-based piezoelectric film and piezoelectric element
CN203405408U (en) Detecting system based on Ge-Ga-Te-S halogen glass film
JP4807195B2 (en) Method for forming low refractive index film and article having low refractive index film
CN213581423U (en) Middle and far infrared optical filter for sensor
JPH11263860A (en) Water repellent silicon oxide film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080205