JP2008268277A - Infrared ray transmitting structure and infrared ray sensor - Google Patents

Infrared ray transmitting structure and infrared ray sensor Download PDF

Info

Publication number
JP2008268277A
JP2008268277A JP2007107280A JP2007107280A JP2008268277A JP 2008268277 A JP2008268277 A JP 2008268277A JP 2007107280 A JP2007107280 A JP 2007107280A JP 2007107280 A JP2007107280 A JP 2007107280A JP 2008268277 A JP2008268277 A JP 2008268277A
Authority
JP
Japan
Prior art keywords
layer
infrared
transmission structure
infrared transmission
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007107280A
Other languages
Japanese (ja)
Inventor
Shigenori Kinoshita
茂則 木下
Shigeru Nakayama
茂 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEI Hybrid KK
Original Assignee
SEI Hybrid KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEI Hybrid KK filed Critical SEI Hybrid KK
Priority to JP2007107280A priority Critical patent/JP2008268277A/en
Publication of JP2008268277A publication Critical patent/JP2008268277A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an infrared-transparent structure excellent in shock resistance, peeling resistance and transmittance. <P>SOLUTION: The infrared-transparent structure is characterized in that a first Y<SB>2</SB>O<SB>3</SB>layer, a YF<SB>3</SB>layer, a second Y<SB>2</SB>O<SB>3</SB>layer and a diamond-like carbon layer are laminated in the order from a substrate surface on the surface side of a substrate made of ZnS. The infrared-transparent structure is characterized in that the first Y<SB>2</SB>O<SB>3</SB>layer has a thickness of 10 to 200 nm, the YF<SB>3</SB>layer has a thickness of 400 to 800 nm, the second Y<SB>2</SB>O<SB>3</SB>layer has a thickness of 10 to 200 nm and the diamond-like carbon layer has a thickness of 100 to 500 nm. The infrared-transparent structure is characterized in that a Ge layer is further laminated between the second Y<SB>2</SB>O<SB>3</SB>layer and the diamond-like carbon layer. The infrared-transparent structure is characterized in that a Y<SB>2</SB>O<SB>3</SB>layer, a YF<SB>3</SB>layer and an MgF<SB>2</SB>layer is laminated in the order from the surface on the back surface side of the substrate made of ZnS. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は赤外線透過構造体に関し、特に反射防止膜を有し、さらに最外層にダイヤモンド状炭素層が形成された赤外線透過構造体に関する。   The present invention relates to an infrared transmission structure, and more particularly to an infrared transmission structure having an antireflection film and further having a diamond-like carbon layer formed as an outermost layer.

近年、赤外線放射温度測定器、人侵入検知センサー等の、赤外線センサーの開発が盛んになされている。通常、赤外線センサーの光学窓に使用される赤外線透過構造体には、硫化亜鉛(以下、「ZnS」と記す)製基板が使用されているが、ZnSは屈折率が2.2と大きく、そのままでは表面の反射損失が大きく、例えば厚さ5mmのZnS製基板のままでは最大直線透過率は70%程度であり、赤外線センサーの感度を向上させる面から問題がある。
また、赤外線センサーは、車載の機器、家電等のみならず、防犯カメラ等屋外で使用されることも多いため、その赤外線透過構造体には、耐水性、耐環境性も必要とされる。
In recent years, infrared sensors such as infrared radiation temperature measuring devices and human intrusion detection sensors have been actively developed. Usually, a substrate made of zinc sulfide (hereinafter referred to as “ZnS”) is used for an infrared transmission structure used for an optical window of an infrared sensor, but ZnS has a large refractive index of 2.2, and remains as it is. Then, the reflection loss of the surface is large. For example, if the substrate is made of ZnS having a thickness of 5 mm, the maximum linear transmittance is about 70%, which is problematic in terms of improving the sensitivity of the infrared sensor.
In addition, since infrared sensors are often used not only in on-vehicle devices and home appliances but also outdoors such as security cameras, the infrared transmission structure is required to have water resistance and environmental resistance.

そこで、ZnS製の基板の表面に、最内層としてY層、中間層としてYF層、さらに最外層としてMgF層を形成して反射防止膜とすることにより、直線透過率のみならず、耐水性、耐環境性をも改善した赤外線透過構造体が開示されている(特許文献1)。 Therefore, if the surface of the substrate made of ZnS, Y 2 O 3 layer as the innermost layer, YF 3 layer as an intermediate layer, by the anti-reflection film to form a MgF 2 layer as the outermost layer further line transmittance only In addition, an infrared transmission structure having improved water resistance and environmental resistance is disclosed (Patent Document 1).

これは、最内層のY層にはZnS製基板とYF層との接着層の役割を担わせ、中間層のYF層と最外層のMgF層には測定対象とする波長の赤外線や可視光の反射防止膜としての役割を担わせ、さらには、最外層のMgF層にはMgFが水に強く高温でも安定であるため、耐水性、耐環境性を改善する役割をも担わせたものである。 This is because the innermost Y 2 O 3 layer plays the role of an adhesive layer between the ZnS substrate and the YF 3 layer, and the intermediate YF 3 layer and the outermost MgF 2 layer are the wavelengths to be measured. role not play a role as an anti-reflection film of infrared rays or visible light, and furthermore, since the MgF 2 layer of the outermost layer is stable even in strongly elevated temperatures MgF 2 is in the water, to improve water resistance, environmental resistance It is also something that bears.

また、これらの役割を担うため、最内層のY層は、測定対象とする赤外領域での透過率にあまり影響が出ない10〜200nm程度の厚さとされ、中間層のYF層は100〜2,200nm程度の厚さとされ、最外層のMgF層は20〜800nm程度の厚さとされている。 Further, in order to play these roles, the innermost Y 2 O 3 layer has a thickness of about 10 to 200 nm that does not significantly affect the transmittance in the infrared region to be measured, and the intermediate layer YF 3 The layer has a thickness of about 100 to 2,200 nm, and the outermost MgF 2 layer has a thickness of about 20 to 800 nm.

また、赤外線センサーは、最近では赤外線スキャナ(探知器)として、自動車や電車などにも装備されている。
自動車や電車などに使用される場合には、単に水分に晒されたり、また温度や気圧の変化に遭遇したりするだけでなく、空気中の塵や雨滴、および他の物体に衝突するようなことも少なからずある。このため、従来の赤外線透過構造体では、耐衝撃性、耐剥離性が不足し、その結果短時間で反射防止膜の表面に傷が発生したり、反射防止膜が剥離したりしかねず、ひいては赤外線センサーの寿命が短縮され、また信頼性が損なわれかねない。
Recently, infrared sensors are also installed in automobiles and trains as infrared scanners (detectors).
When used in automobiles, trains, etc., it is not only exposed to moisture and encounters changes in temperature and pressure, but also collides with dust and raindrops in the air and other objects. There are not a few things. For this reason, in the conventional infrared transmission structure, the impact resistance and the peel resistance are insufficient, and as a result, the surface of the antireflection film may be damaged or the antireflection film may be peeled off. As a result, the life of the infrared sensor is shortened and the reliability may be impaired.

このため、赤外線透過構造体として、一番外側に、耐水性、耐環境性が高いだけでなく、硬度と強度が極めて高く、即ち耐衝撃性に優れているため、表面に傷が付き難く、損傷し難いダイヤモンド状炭素(以下、原則として「DLC」と記す。「Diamond Like Carbon」の略称である)層を設けることがなされている。
特許3704739号公報
For this reason, as the infrared transmission structure, not only the outermost water resistance and environmental resistance are high, but also the hardness and strength are extremely high, that is, because it has excellent impact resistance, the surface is hardly scratched, A diamond-like carbon (hereinafter, referred to as “DLC” as a general rule, which is an abbreviation of “Diamond Like Carbon”) that is not easily damaged is provided.
Japanese Patent No. 3704393

しかしながら、一般的に、DLC層が厚くなると膜応力が大きくなり、剥離しやすい他、光を吸収し、透過率が低下する。逆に、薄くなると、耐衝撃性が低下する他、短期間でDLC層がすり減り、その直下の層が露出してしまう。
このため、優れた耐衝撃性と耐久性を有し、しかも耐剥離性と透過率が優れた赤外線透過構造体の開発が望まれていた。
However, generally, as the DLC layer becomes thicker, the film stress increases and the film tends to peel off, absorbs light, and decreases the transmittance. On the other hand, when the thickness is reduced, the impact resistance is reduced, and the DLC layer is worn away in a short period of time, and the layer immediately below it is exposed.
For this reason, it has been desired to develop an infrared transmitting structure having excellent impact resistance and durability, and having excellent peel resistance and transmittance.

本発明は、以上の課題を解決することを目的としてなされたものであり、赤外線透過構造体を構成する各層に用いる材料と、層の厚さに工夫を凝らしたものである。以下、各請求項の発明を説明する。   The present invention has been made for the purpose of solving the above-described problems, and has been devised for materials used for each layer constituting the infrared transmission structure and the thickness of the layer. The invention of each claim will be described below.

請求項1に記載の発明は、
ZnS製基板の表面側に、基板面から順に、第1のY層、YF層、第2のY層、ダイヤモンド状炭素層が積層されていることを特徴とする赤外線透過構造体である。
The invention described in claim 1
An infrared ray characterized in that a first Y 2 O 3 layer, a YF 3 layer, a second Y 2 O 3 layer, and a diamond-like carbon layer are laminated in this order from the substrate surface on the surface side of a ZnS substrate. A transmissive structure.

本請求項の発明においては、ZnS製基板の表面側に、基板面から順に、第1のY層、YF層、第2のY層、DLC層が積層されているため、優れた耐衝撃性を有し、しかも耐剥離性と透過率が優れた赤外線透過構造体となる。 In the present invention, the first Y 2 O 3 layer, the YF 3 layer, the second Y 2 O 3 layer, and the DLC layer are laminated in this order from the substrate surface on the surface side of the ZnS substrate. Therefore, an infrared transmission structure having excellent impact resistance and excellent peeling resistance and transmittance is obtained.

具体的には、最外層のDLC層は、赤外線透過構造体の表面として、優れた耐衝撃性を与える。そして、その直下(内側)に形成されている第2のY層とYF層とは、YとYFのいずれもが100GPa以上の弾性率を有するため、他の物体の衝撃時の緩和層として作用する。 Specifically, the outermost DLC layer provides excellent impact resistance as the surface of the infrared transmission structure. The second Y 2 O 3 layer and the YF 3 layer that are formed immediately below (inner side) have an elastic modulus of 100 GPa or more because both Y 2 O 3 and YF 3 have other objects. Acts as a relaxation layer at the time of impact.

また、2つのY層は、それらの上下に位置する層との良好な接着を行い、耐剥離性の向上に寄与する。
また特に、DLC層とYF層が、反射防止に大きく寄与し、その結果透過率が大きく向上する。
Also, two Y 2 O 3 layer performs good adhesion between the layer located on their upper and lower, which contributes to the improvement of peel resistance.
In particular, the DLC layer and the YF 3 layer greatly contribute to the prevention of reflection, and as a result, the transmittance is greatly improved.

なお、前記2つのY層、YF層、DLC層は、いずれも成膜(形成)の都合等で不可避的に侵入した不純物を含有していたり、僅かに組成比が相違していたりする場合があるが、その場合でも、本発明に含まれる。また、前記各層の間に他の層が積層されているような場合でも、本発明に含まれる。
また、「基板の表面側」とは、測定対象の赤外線が入射してくる側を指す。
The two Y 2 O 3 layers, the YF 3 layer, and the DLC layer all contain impurities that inevitably intrude due to film formation (formation), or have slightly different composition ratios. Even in such a case, it is included in the present invention. Moreover, even when another layer is laminated | stacked between each said layer, it is included in this invention.
In addition, the “surface side of the substrate” refers to the side on which the infrared light to be measured enters.

請求項2に記載の発明は、前記の赤外線透過構造体であって、
前記各層は、第1のY層が10〜200nm、YF層が400〜800nm、第2のY層が10〜200nm、ダイヤモンド状炭素層が100〜500nmの厚さであることを特徴とする赤外線透過構造体である。
The invention according to claim 2 is the infrared transmission structure,
Each of the layers has a thickness of 10 to 200 nm for the first Y 2 O 3 layer, 400 to 800 nm for the YF 3 layer, 10 to 200 nm for the second Y 2 O 3 layer, and 100 to 500 nm for the diamond-like carbon layer. It is an infrared transmission structure characterized by being.

本請求項の発明においては、各層の厚さが適切であるため、透過率、耐剥離性、耐衝撃性が優れた赤外線透過構造体となる。なお前記各層の厚さは、測定対象の赤外線の波長に応じて前記の範囲内で適宜適切な値が採用される。   In the invention of this claim, since the thickness of each layer is appropriate, an infrared transmission structure having excellent transmittance, peel resistance, and impact resistance is obtained. In addition, the thickness of each said layer employ | adopts a suitable value suitably in the said range according to the wavelength of the infrared rays of a measuring object.

DLC層は、100nm未満であると、耐衝撃性、および反射防止膜の構成要素としての機能を発揮するためには不充分となり、一方、500nmを越えると剥離し易くなる。測定対象の赤外線の波長にもよるが、より好ましい厚さは、300nm程度(±20%)である。   If the DLC layer is less than 100 nm, the DLC layer is insufficient for exhibiting the impact resistance and the function as a component of the antireflection film, whereas if it exceeds 500 nm, the DLC layer tends to peel off. Although it depends on the wavelength of the infrared ray to be measured, the more preferable thickness is about 300 nm (± 20%).

YF層は、衝撃緩和層としての機能や経済性及びDLC層との組合せによる反射防止機能を考慮し、600nm(±20%)程度とするのが好ましい。 The YF 3 layer is preferably set to about 600 nm (± 20%) in consideration of the function and economy as an impact relaxation layer and the antireflection function in combination with the DLC layer.

第1のY層と第2のY層は、それぞれの層の上下にある層を接着するための層であり、10nm未満であれば接着力が不足し、200nmを越えれば透過率に悪影響を与えるおそれがある。より好ましい厚さは、30nm程度(±20%)である。 The first Y 2 O 3 layer and the second Y 2 O 3 layer are layers for adhering the layers above and below each layer. If the thickness is less than 10 nm, the adhesive strength is insufficient, and the layer cannot exceed 200 nm. If so, the transmittance may be adversely affected. A more preferable thickness is about 30 nm (± 20%).

請求項3に記載の発明は、前記の赤外線透過構造体であって、
前記第2のY層とダイヤモンド状炭素層との間に、さらにGe層が積層されていることを特徴とする赤外線透過構造体である。
Invention of Claim 3 is the said infrared rays transmissive structure, Comprising:
The infrared transmission structure is characterized in that a Ge layer is further laminated between the second Y 2 O 3 layer and the diamond-like carbon layer.

本請求項の発明においては、第2のY層とDLC層との間に、特にDLCとの相性が良い(接着性がよい)Ge層があるため、DLC層の耐剥離性がさらに向上する。Ge層は、接着層として用いるため、10nm未満であれば、接着力が不足し、200nmを越えれば透過率に悪影響を与える。また、Ge層は、衝撃緩和層の役割も担っている。 In the invention of this claim, since there is a Ge layer that is particularly compatible (adhesive) with the DLC between the second Y 2 O 3 layer and the DLC layer, the DLC layer has excellent peeling resistance. Further improve. Since the Ge layer is used as an adhesive layer, if it is less than 10 nm, the adhesive force is insufficient, and if it exceeds 200 nm, the transmittance is adversely affected. Further, the Ge layer also serves as an impact relaxation layer.

請求項4に記載の発明は、前記の赤外線透過構造体であって、
前記ZnS製基板の裏面側に、基板面から順に、Y層、YF層、MgF層が積層されていることを特徴とする赤外線透過構造体である。
Invention of Claim 4 is the said infrared rays transmissive structure, Comprising:
An infrared transmission structure characterized in that a Y 2 O 3 layer, a YF 3 layer, and an MgF 2 layer are laminated in this order from the substrate surface on the back side of the ZnS substrate.

本請求項の発明においては、ZnS製基板の裏面側にも反射防止膜が形成されているため、ZnS製基板を透過し、その裏面側から出て受光素子の方に向かう赤外線のZnS製基板の裏面での反射が防止される。このため、赤外線透過構造体の透過率が一層向上する。   In the present invention, since an antireflection film is also formed on the back side of the ZnS substrate, an infrared ZnS substrate that passes through the ZnS substrate and exits from the back side toward the light receiving element. Reflection on the back side of is prevented. For this reason, the transmittance of the infrared transmission structure is further improved.

請求項5に記載の発明は、前記の赤外線透過構造体であって、
波長6,000〜10,700nmの赤外線に対する透過率が80%以上であることを特徴とする赤外線透過構造体である。
The invention according to claim 5 is the infrared transmission structure,
An infrared transmission structure having a transmittance of 80% or more for infrared rays having a wavelength of 6,000 to 10,700 nm.

本請求項の発明においては、波長6,000〜10,700nmの範囲で透過率が80%以上であり、4,900〜11,900nmの範囲で70%以上であるため、遠赤外線の低波長域を広くカバーできる優れた赤外線透過構造体となる。   In the invention of this claim, the transmittance is 80% or more in the wavelength range of 6,000 to 10,700 nm, and 70% or more in the range of 4,900 to 11,900 nm. It becomes an excellent infrared transmission structure that can cover a wide area.

本発明者は、さらに、以下の構成よりなる赤外線透過構造体においても、優れた耐衝撃性、耐磨耗性、耐久性を有する赤外線透過構造体となることを見出した。   The present inventor has further found out that an infrared transmission structure having the following structure is an infrared transmission structure having excellent impact resistance, wear resistance, and durability.

即ち、請求項6に記載の発明は、
ZnS製基板の表面側に、基板面から順に、10〜200nm厚さのZnS、Al、Yのいずれか1層、100〜750nm厚さのGe層、500〜2,000nm厚さのダイヤモンド状炭素層が積層されていることを特徴とする赤外線透過構造体である。
That is, the invention described in claim 6
On the surface side of the ZnS-made substrate, in order from the substrate surface, 10 to 200 nm thickness of ZnS, Al 2 O 3, any one layer of Y 2 O 3, 100~750nm thickness Ge layer, 500~2,000Nm An infrared transmission structure characterized in that a diamond-like carbon layer having a thickness is laminated.

本請求項の発明においては、ZnS製基板の表面側に、基板面から順に、10〜200nm厚さのZnS、Al、Yのいずれか1層、100〜750nm厚さのGe層、さらにその上に500〜2,000nm厚さのDLC層と、適切な厚さの各層が積層されているため、赤外線透過率が優れているだけでなく、優れた耐衝撃性、耐磨耗性、耐久性を有する赤外線透過構造体となる。 In the invention of this claim, on the surface side of the substrate made of ZnS, in order from the substrate surface, any one layer of ZnS, Al 2 O 3 , Y 2 O 3 having a thickness of 10 to 200 nm, having a thickness of 100 to 750 nm Since a Ge layer, a DLC layer having a thickness of 500 to 2,000 nm, and each layer having an appropriate thickness are laminated thereon, not only the infrared transmittance is excellent, but also excellent impact resistance, It becomes an infrared transmitting structure having wear and durability.

なお、DLC層の厚さは、十分な強度を得られ、かつ、経済的な厚さとして、500〜2,000nmとし、使用上必要とされる強度により、選定する。また、Ge層の厚さは、DLC層の必要厚さにより最適な透過率が得られる厚さを、100〜750nmから選定する。   In addition, the thickness of the DLC layer can be set to 500 to 2,000 nm as an economical thickness that can provide sufficient strength, and is selected according to the strength required for use. Further, the thickness of the Ge layer is selected from 100 to 750 nm so that the optimum transmittance can be obtained depending on the required thickness of the DLC layer.

請求項7に記載の発明は、前記の赤外線透過構造体であって、
前記ZnS製基板の裏面側に、基板面から順に、Y層、YF層、MgF層が積層されていることを特徴とする赤外線透過構造体である。
The invention according to claim 7 is the infrared transmission structure,
An infrared transmission structure characterized in that a Y 2 O 3 layer, a YF 3 layer, and an MgF 2 layer are laminated in this order from the substrate surface on the back side of the ZnS substrate.

本請求項の発明においては、ZnS製基板の裏面側にも反射防止膜が形成されているため、ZnS製基板を透過し、その裏面側から出て受光素子の方に向かう赤外線のZnS製基板の裏面での反射が防止される。このため、赤外線透過構造体の透過率が一層向上する。   In the present invention, since an antireflection film is also formed on the back side of the ZnS substrate, an infrared ZnS substrate that passes through the ZnS substrate and exits from the back side toward the light receiving element. Reflection on the back side of is prevented. For this reason, the transmittance of the infrared transmission structure is further improved.

請求項8に記載の発明は、前記の赤外線透過構造体であって、
波長7,600〜10,500nmの赤外線に対する透過率が80%以上であることを特徴とする赤外線透過構造体である。
The invention according to claim 8 is the infrared transmission structure,
An infrared transmission structure having a transmittance of 80% or more for infrared rays having wavelengths of 7,600 to 10,500 nm.

本請求項の発明においては、波長7,600〜10,500nmの範囲で透過率が80%以上であり、7,300〜10,900nmの範囲で70%以上であり、遠赤外線の低波長域を広くカバーできる優れた赤外線透過構造体となる。   In the present invention, the transmittance is 80% or more in the wavelength range of 7,600 to 10,500 nm, 70% or more in the range of 7,300 to 10,900 nm, and the far-infrared low wavelength region. It is an excellent infrared transmission structure that can cover a wide area.

請求項9に記載の発明は、
請求項1ないし請求項8のいずれかに記載の赤外線透過構造体を光学窓に使用していることを特徴とする赤外線センサーである。
The invention according to claim 9 is:
An infrared ray sensor comprising the infrared transmission structure according to any one of claims 1 to 8 as an optical window.

本請求項の発明においては、透過率、耐剥離性、耐衝撃性に優れた赤外線透過構造体を光学窓に使用しているため、感度が優れ、さらに自動車や電車等に使用しても、表面に傷が生じ難く、赤外線透過構造体の各層の剥離も生じ難く、ひいては寿命が長く、信頼性が高い赤外線センサーとなる。
なおここに、「赤外線センサー」とは、赤外線を検知するセンサーである限り、赤外線測定器、赤外線探知器等の用途は問わない。
In the invention of this claim, since the infrared transmission structure excellent in transmittance, peel resistance, and impact resistance is used for the optical window, the sensitivity is excellent, and even if it is used for an automobile or a train, It is difficult to cause scratches on the surface, and peeling of each layer of the infrared transmitting structure is unlikely to occur. As a result, the infrared sensor has a long life and high reliability.
Here, as long as the “infrared sensor” is a sensor that detects infrared rays, the use of an infrared measuring device, an infrared detector, or the like is not limited.

本発明により、優れた耐衝撃性を有し、しかも耐剥離性と透過率が優れた赤外線透過構造体、および、感度が優れ、さらに表面に傷が生じ難く、赤外線透過構造体の各層の剥離も生じ難く、ひいては寿命が長く、信頼性が高い赤外線センサーを提供することが可能となる。   According to the present invention, an infrared transmission structure having excellent impact resistance, excellent peel resistance and transmittance, and excellent sensitivity, and further, scratches on the surface are difficult to occur. Therefore, it is possible to provide an infrared sensor having a long life and high reliability.

以下、本発明をその最良の実施の形態に基づいて説明する。なお、本発明は、以下の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、以下の実施の形態に対して種々の変更を加えることが可能である。   Hereinafter, the present invention will be described based on the best mode. Note that the present invention is not limited to the following embodiments. Various modifications can be made to the following embodiments within the same and equivalent scope as the present invention.

(第1の実施の形態)
第1の実施の形態の赤外線透過構造体について、構造、各層の成膜方法、光学的性能、耐剥離性および耐衝撃性につき順に説明する。
(First embodiment)
The structure, the film forming method of each layer, the optical performance, the peel resistance, and the impact resistance of the infrared transmission structure according to the first embodiment will be described in order.

(構造)
第1の実施の形態の赤外線透過構造体の断面を、図1に概念的に示す。図1において、10はDLC層、31は第1のY層、32は第2のY層、33は基板の裏面側のY層、41は基板の表面側のYF層、42は基板の裏面側のYF層、50はZnS製基板、60はMgF層を示す。
図1に示す様に、この赤外線透過構造体は、ZnS製基板50の表裏両面に多層からなる反射防止膜が形成されており、さらに表側の最外層(最上部の層)にはDLC層10が形成されている。
(Construction)
FIG. 1 conceptually shows a cross section of the infrared transmission structure according to the first embodiment. In FIG. 1, 10 is a DLC layer, 31 is a first Y 2 O 3 layer, 32 is a second Y 2 O 3 layer, 33 is a Y 2 O 3 layer on the back side of the substrate, and 41 is a surface side of the substrate. YF 3 layer, 42 is a YF 3 layer on the back side of the substrate, 50 is a ZnS substrate, and 60 is a MgF 2 layer.
As shown in FIG. 1, this infrared transmission structure has a multilayer antireflection film formed on both front and back surfaces of a ZnS substrate 50, and a DLC layer 10 on the outermost layer (uppermost layer) on the front side. Is formed.

(各層の成膜方法)
DLC層は、スパッタリングにより成膜した。成膜温度は約100℃であり、成膜時圧力は1.3×10−1Pa以下である。
その他の各層は、いずれも真空蒸着により成膜した。成膜温度は約350〜380℃であり、成膜時圧力は、MgF層が6.7×10−3Pa以下であり、Y層とYF層は2.7×10−3Pa以下である。
(Deposition method for each layer)
The DLC layer was formed by sputtering. The film formation temperature is about 100 ° C., and the film formation pressure is 1.3 × 10 −1 Pa or less.
All other layers were formed by vacuum deposition. Deposition temperature is about 350 to 380 ° C., during film formation pressure, MgF 2 layers or less 6.7 × 10 -3 Pa, Y 2 O 3 layer and YF 3 layers 2.7 × 10 - 3 Pa or less.

成膜した各層の厚さは、DLC層10が300nm、第1のY層31および第2のY層32は30nm、基板の裏面側のY層33は80nm、基板の表面側のYF層41は600nm、基板の裏面側のYF層42は1,300nm、MgF層60は400nmである。 The thickness of each layer formed is 300 nm for the DLC layer 10, 30 nm for the first Y 2 O 3 layer 31 and the second Y 2 O 3 layer 32, and 80 nm for the Y 2 O 3 layer 33 on the back side of the substrate. The YF 3 layer 41 on the front side of the substrate is 600 nm, the YF 3 layer 42 on the back side of the substrate is 1,300 nm, and the MgF 2 layer 60 is 400 nm.

(光学的性能)
図2に、第1の実施の形態のDLC層を有する赤外線透過構造体の、分光計で計測した赤外線領域における透過率の実測値を示す。図2より、5,000〜12,000nmの幅広い波長の領域に渡って70%以上の透過率を有しており、波長6,000〜10,700nmの赤外線に対しては80%以上の透過率となり、特に6,500〜10,000nmの領域の赤外線に対しては90%以上の透過率となっており、非常に優れた透過性を有していることが判る。
(Optical performance)
FIG. 2 shows measured values of transmittance in the infrared region measured by the spectrometer of the infrared transmission structure having the DLC layer according to the first embodiment. From FIG. 2, it has a transmittance of 70% or more over a wide wavelength region of 5,000 to 12,000 nm, and a transmittance of 80% or more for infrared rays having a wavelength of 6,000 to 10,700 nm. In particular, the transmittance is 90% or more for infrared rays in the region of 6,500 to 10,000 nm, and it can be seen that the film has very excellent transmittance.

(耐剥離性および耐衝撃性)
第1の実施の形態のDLC層を有する赤外線透過構造体について、恒温恒湿槽を用いて60℃×95%RH(相対湿度)による湿度試験を行なったが、113時間以上経過した時点でも膜に異常は見られず、優れた密着力を有していることが判明した。
(Peeling resistance and impact resistance)
The infrared transmission structure having the DLC layer of the first embodiment was subjected to a humidity test at 60 ° C. × 95% RH (relative humidity) using a constant temperature and humidity chamber. No abnormalities were observed, and it was found that the film had excellent adhesion.

(第2の実施の形態)
図3に、第2の実施の形態の赤外線透過構造体の断面を、概念的に示す。第2の実施の形態の赤外線透過構造体は、図3において符号20を付したGe層を有する他は、図1に示す第1の実施の形態の赤外線透過構造体と同じ構造である。
(Second Embodiment)
FIG. 3 conceptually shows a cross section of the infrared transmitting structure according to the second embodiment. The infrared transmission structure of the second embodiment has the same structure as the infrared transmission structure of the first embodiment shown in FIG. 1 except that the infrared transmission structure of FIG.

Ge層20の成膜は、電子ビームを用いる真空蒸着で行なった。成膜温度は室温であり、成膜時圧力は0.2Paであり、成膜したGe層の厚さは、30nmである。また、他の層の成膜は、第1の実施の形態と同じである。   The Ge layer 20 was formed by vacuum deposition using an electron beam. The deposition temperature is room temperature, the deposition pressure is 0.2 Pa, and the thickness of the deposited Ge layer is 30 nm. The other layers are formed in the same manner as in the first embodiment.

(試験結果)
Ge層は接着性に優れ、また衝撃緩和層の役割も担っているため、第2の実施の形態の赤外線透過構造体は、特に優れた耐剥離性と耐衝撃性を示した。
また、光学的性能は、Ge層の厚さが適切であるため、第1の実施の形態の赤外線透過構造体と同様に良好であった。
(Test results)
Since the Ge layer is excellent in adhesiveness and also serves as an impact relaxation layer, the infrared transmitting structure of the second embodiment exhibits particularly excellent peel resistance and impact resistance.
Moreover, since the thickness of the Ge layer was appropriate, the optical performance was as good as that of the infrared transmission structure according to the first embodiment.

(第3の実施の形態)
本実施の形態は、ZnS製基板の表面に、第1層としてAl層を30nmに形成し、第2層としてGe層を厚さ240nmに形成し、第3層としてDLC層を厚さ1,300nmに形成したものである。なお、各層の形成方法は先の2つの実施の形態と同じである。
(Third embodiment)
In this embodiment, on the surface of a ZnS substrate, an Al 2 O 3 layer is formed as a first layer to a thickness of 30 nm, a Ge layer is formed as a second layer to a thickness of 240 nm, and a DLC layer is thick as a third layer. The thickness is 1300 nm. The formation method of each layer is the same as the previous two embodiments.

(試験結果)
紫外線および水による耐候性試験で300時間経過した時点でも膜に異常は見られず、優れた密着性を有していることが判明した。
また、DLC層が1,300nmと厚いため、耐衝撃性、耐磨耗性、耐久性は非常に優れていた。
(Test results)
No abnormalities were found in the film even after 300 hours passed in the weather resistance test with ultraviolet rays and water, and it was found that the film had excellent adhesion.
Further, since the DLC layer was as thick as 1,300 nm, the impact resistance, wear resistance, and durability were very excellent.

さらに、第3の実施の形態の赤外線透過構造体の光学的性能試験を行った。その試験結果を図4に示す。
図4より、本実施の形態の赤外線透過構造体は、各層の材料の組合せと厚さが適切であるため、Ge層、DLC層とも比較的厚いにもかかわらず、波長7,600〜10,500nmの範囲で透過率が80%以上であり、7,300〜10,900nmの範囲で70%以上であり、遠赤外線の低波長域を広くカバーできているのが判る。
Furthermore, the optical performance test of the infrared transmission structure of the third embodiment was performed. The test results are shown in FIG.
As shown in FIG. 4, since the infrared transmission structure according to the present embodiment has an appropriate combination of materials and thicknesses of the respective layers, although the Ge layer and the DLC layer are relatively thick, the wavelengths of 7,600 to 10, It can be seen that the transmittance is 80% or more in the range of 500 nm, 70% or more in the range of 7,300 to 10,900 nm, and covers the low wavelength region of far infrared rays widely.

(第4の実施の形態)
第1層としてZnS層を30nmに形成した以外は、第3の実施の形態と同様にして、赤外線透過構造体を得た。ZnS層は、真空蒸着で成膜し、成膜温度は約200℃であり、成膜時圧力は、2.0×10−2Pa以下である。
(Fourth embodiment)
An infrared transmission structure was obtained in the same manner as in the third embodiment except that the ZnS layer was formed to 30 nm as the first layer. The ZnS layer is deposited by vacuum deposition, the deposition temperature is about 200 ° C., and the deposition pressure is 2.0 × 10 −2 Pa or less.

本実施の形態で得られた赤外線透過構造体は、第3の実施の形態で得られた赤外線透過構造体と同様に、優れた密着性を有し、耐衝撃性、耐磨耗性、耐久性に優れていた。   The infrared transmission structure obtained in the present embodiment has excellent adhesion as in the infrared transmission structure obtained in the third embodiment, and has impact resistance, wear resistance, durability. It was excellent in nature.

(第5の実施の形態)
第1層としてY層を30nmに形成した以外は、第3の実施の形態と同様にして、赤外線透過構造体を得た。
(Fifth embodiment)
An infrared transmission structure was obtained in the same manner as in the third embodiment except that the Y 2 O 3 layer was formed to 30 nm as the first layer.

本実施の形態で得られた赤外線透過構造体は、第3の実施の形態で得られた赤外線透過構造体と同様に、優れた密着性を有し、耐衝撃性、耐磨耗性、耐久性に優れていた。   The infrared transmission structure obtained in the present embodiment has excellent adhesion as in the infrared transmission structure obtained in the third embodiment, and has impact resistance, wear resistance, durability. It was excellent in nature.

本発明の第1の実施の形態の、DLC層を有する赤外線透過構造体の断面を、概念的に示す図である。It is a figure which shows notionally the cross section of the infrared rays transmission structure which has a DLC layer of the 1st Embodiment of this invention. 本発明の第1の実施の形態のDLC層を有する赤外線透過構造体の、赤外線領域における透過率の実測値を示す図である。It is a figure which shows the measured value of the transmittance | permeability in an infrared region of the infrared rays transmission structure which has a DLC layer of the 1st Embodiment of this invention. 本発明の第2実施の形態の、DLC層の下方にGe層を有する赤外線透過構造体の断面を、概念的に示す図である。It is a figure which shows notionally the cross section of the infrared rays transparent structure which has Ge layer under the DLC layer of 2nd Embodiment of this invention. 本発明の第3の実施の形態のDLC層を有する赤外線透過構造体の、赤外線領域における透過率の実測値を示す図である。It is a figure which shows the measured value of the transmittance | permeability in an infrared region of the infrared transmission structure which has a DLC layer of the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

10 DLC層
20 Ge層
31 第1のY
32 第2のY
33 基板の裏面側のY
41 基板の表面側のYF
42 基板の裏面側のYF
50 ZnS製基板
60 MgF
10 DLC layer 20 Ge layer 31 1st Y 2 O 3 layer 32 2nd Y 2 O 3 layer 33 Y 2 O 3 layer 41 on the back side of the substrate 41 YF 3 layer 42 on the front side of the substrate 42 on the back side of the substrate YF 3 layer 50 ZnS substrate 60 MgF 2 layer

Claims (9)

ZnS製基板の表面側に、基板面から順に、第1のY層、YF層、第2のY層、ダイヤモンド状炭素層が積層されていることを特徴とする赤外線透過構造体。 An infrared ray characterized in that a first Y 2 O 3 layer, a YF 3 layer, a second Y 2 O 3 layer, and a diamond-like carbon layer are laminated in this order from the substrate surface on the surface side of a ZnS substrate. Transparent structure. 前記各層は、第1のY層が10〜200nm、YF層が400〜800nm、第2のY層が10〜200nm、ダイヤモンド状炭素層が100〜500nmの厚さであることを特徴とする請求項1に記載の赤外線透過構造体。 Each of the layers has a thickness of 10 to 200 nm for the first Y 2 O 3 layer, 400 to 800 nm for the YF 3 layer, 10 to 200 nm for the second Y 2 O 3 layer, and 100 to 500 nm for the diamond-like carbon layer. The infrared transmission structure according to claim 1, wherein the infrared transmission structure is provided. 前記第2のY層とダイヤモンド状炭素層との間に、さらにGe層が積層されていることを特徴とする請求項1または請求項2に記載の赤外線透過構造体。 The infrared transmission structure according to claim 1, wherein a Ge layer is further laminated between the second Y 2 O 3 layer and the diamond-like carbon layer. 前記ZnS製基板の裏面側に、基板面から順に、Y層、YF層、MgF層が積層されていることを特徴とする請求項1ないし請求項3のいずれかに記載の赤外線透過構造体。 4. The Y 2 O 3 layer, the YF 3 layer, and the MgF 2 layer are laminated on the back surface side of the ZnS substrate in order from the substrate surface. 5. Infrared transmission structure. 波長6,000〜10,700nmの赤外線に対する透過率が80%以上であることを特徴とする請求項1ないし請求項4のいずれかに記載の赤外線透過構造体。   The infrared transmission structure according to any one of claims 1 to 4, wherein a transmittance for infrared rays having a wavelength of 6,000 to 10,700 nm is 80% or more. ZnS製基板の表面側に、基板面から順に、10〜200nm厚さのZnS、Al、Yのいずれか1層、100〜750nm厚さのGe層、500〜2,000nm厚さのダイヤモンド状炭素層が積層されていることを特徴とする赤外線透過構造体。 On the surface side of the ZnS-made substrate, in order from the substrate surface, 10 to 200 nm thickness of ZnS, Al 2 O 3, any one layer of Y 2 O 3, 100~750nm thickness Ge layer, 500~2,000Nm An infrared transmitting structure characterized in that a diamond-like carbon layer having a thickness is laminated. 前記ZnS製基板の裏面側に、基板面から順に、Y層、YF層、MgF層が積層されていることを特徴とする請求項6に記載の赤外線透過構造体。 The infrared transmission structure according to claim 6, wherein a Y 2 O 3 layer, a YF 3 layer, and an MgF 2 layer are laminated in this order from the substrate surface on the back surface side of the ZnS substrate. 波長7,600〜10,500nmの赤外線に対する透過率が80%以上であることを特徴とする請求項6または請求項7に記載の赤外線透過構造体。   The infrared transmission structure according to claim 6 or 7, wherein the transmittance for infrared rays having a wavelength of 7,600 to 10,500 nm is 80% or more. 請求項1ないし請求項8のいずれかに記載の赤外線透過構造体を光学窓に使用していることを特徴とする赤外線センサー。   An infrared sensor, wherein the infrared transmission structure according to any one of claims 1 to 8 is used for an optical window.
JP2007107280A 2007-04-16 2007-04-16 Infrared ray transmitting structure and infrared ray sensor Pending JP2008268277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007107280A JP2008268277A (en) 2007-04-16 2007-04-16 Infrared ray transmitting structure and infrared ray sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007107280A JP2008268277A (en) 2007-04-16 2007-04-16 Infrared ray transmitting structure and infrared ray sensor

Publications (1)

Publication Number Publication Date
JP2008268277A true JP2008268277A (en) 2008-11-06

Family

ID=40047910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007107280A Pending JP2008268277A (en) 2007-04-16 2007-04-16 Infrared ray transmitting structure and infrared ray sensor

Country Status (1)

Country Link
JP (1) JP2008268277A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010181514A (en) * 2009-02-04 2010-08-19 Sumitomo Electric Hardmetal Corp Optical component and protective member for laser beam machining apparatus
WO2012073791A1 (en) * 2010-11-30 2012-06-07 富士フイルム株式会社 Optical functional film for infrared light
JP2013214355A (en) * 2012-03-30 2013-10-17 Equos Research Co Ltd Positive electrode for lithium ion battery
WO2016203863A1 (en) * 2015-06-19 2016-12-22 三菱電機株式会社 Optical component and laser machining apparatus
KR20180123157A (en) 2016-05-13 2018-11-14 미쓰비시덴키 가부시키가이샤 Optical components and laser processing machines
WO2019146500A1 (en) * 2018-01-25 2019-08-01 三菱電機株式会社 Optical component and laser processing machine
JP2019133153A (en) * 2018-01-30 2019-08-08 ヴァイアヴィ・ソリューションズ・インコーポレイテッドViavi Solutions Inc. Optical device having optical and mechanical properties
WO2023008123A1 (en) * 2021-07-30 2023-02-02 日本電気硝子株式会社 Film-equipped base material and manufacturing method for same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010181514A (en) * 2009-02-04 2010-08-19 Sumitomo Electric Hardmetal Corp Optical component and protective member for laser beam machining apparatus
WO2012073791A1 (en) * 2010-11-30 2012-06-07 富士フイルム株式会社 Optical functional film for infrared light
JP2013214355A (en) * 2012-03-30 2013-10-17 Equos Research Co Ltd Positive electrode for lithium ion battery
WO2016203863A1 (en) * 2015-06-19 2016-12-22 三菱電機株式会社 Optical component and laser machining apparatus
JPWO2016203863A1 (en) * 2015-06-19 2017-12-07 三菱電機株式会社 Optical components and laser processing machines
KR20180123157A (en) 2016-05-13 2018-11-14 미쓰비시덴키 가부시키가이샤 Optical components and laser processing machines
JPWO2019146500A1 (en) * 2018-01-25 2020-07-27 三菱電機株式会社 Optical parts and laser processing machine
WO2019146500A1 (en) * 2018-01-25 2019-08-01 三菱電機株式会社 Optical component and laser processing machine
KR20200098646A (en) 2018-01-25 2020-08-20 미쓰비시덴키 가부시키가이샤 Optical components and laser processing machines
CN111630415A (en) * 2018-01-25 2020-09-04 三菱电机株式会社 Optical component and laser processing machine
KR102438291B1 (en) * 2018-01-25 2022-08-30 미쓰비시덴키 가부시키가이샤 Optical Components and Laser Processing Machines
JP2019133153A (en) * 2018-01-30 2019-08-08 ヴァイアヴィ・ソリューションズ・インコーポレイテッドViavi Solutions Inc. Optical device having optical and mechanical properties
JP2021177240A (en) * 2018-01-30 2021-11-11 ヴァイアヴィ・ソリューションズ・インコーポレイテッドViavi Solutions Inc. Optical device having optical characteristics and mechanical characteristics
US11360242B2 (en) 2018-01-30 2022-06-14 Viavi Solutions Inc. Optical device having optical and mechanical properties
JP7268086B2 (en) 2018-01-30 2023-05-02 ヴァイアヴィ・ソリューションズ・インコーポレイテッド Optical device with optical and mechanical properties
WO2023008123A1 (en) * 2021-07-30 2023-02-02 日本電気硝子株式会社 Film-equipped base material and manufacturing method for same

Similar Documents

Publication Publication Date Title
JP2008268277A (en) Infrared ray transmitting structure and infrared ray sensor
TWI598225B (en) Composite film having superior optical and solar performance
EP2030051B1 (en) Multiple band reflector with metal and dielectric layers
JP5959746B2 (en) Light transmissive laminate
WO2012073791A1 (en) Optical functional film for infrared light
RU2011143908A (en) GLAZING WITH HIGH REFLECTIVE ABILITY
KR20120094041A (en) Infrared ray reflective substrate
US20220291423A1 (en) Optical device having optical and mechanical properties
WO2022244686A1 (en) Method for producing far-infrared transmission member, and far-infrared transmission member
TWI438166B (en) Separated functional layer stack and titanium nitride layer for achieving solar control
JP5413281B2 (en) Aluminum surface reflector
JPH08271701A (en) Environmental resistant infrared ray transmissive structural body suing zinc sulfide as substrate
US10578785B2 (en) Blocking coating with adhesion layer for ultraviolet optics
TWI238268B (en) Reflection mirror and optical equipment using the same
TW201341177A (en) Mirror with optional permanent protective film, and/or methods of making the same
AU2007297669B2 (en) Separated gray metal and titanium nitride solar control members
JP2005275434A (en) ENVIRONMENT-RESISTANCE INFRARED-RAY TRANSMISSIVE STRUCTURAL BODY USING ZnS AS SUBSTRATE
JP2011221207A (en) Aluminum surface reflection mirror
JPH07210085A (en) Seal
JP2020138325A (en) Laminate having heat shielding performance
KR101700246B1 (en) Multilayer coated substrate for rear surface reflection of photovoltaic module and method for manufacturing the same
JP2005275029A (en) Back reflection mirror and pentaprism equipped with same
JPWO2018105456A1 (en) Laminate
JP2020049757A (en) Light-transmitting laminate for optical use and method for manufacturing light-transmitting laminate for optical use
JP2016007703A (en) Laminated film and window pane using the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090623