JP2010181514A - Optical component and protective member for laser beam machining apparatus - Google Patents

Optical component and protective member for laser beam machining apparatus Download PDF

Info

Publication number
JP2010181514A
JP2010181514A JP2009023238A JP2009023238A JP2010181514A JP 2010181514 A JP2010181514 A JP 2010181514A JP 2009023238 A JP2009023238 A JP 2009023238A JP 2009023238 A JP2009023238 A JP 2009023238A JP 2010181514 A JP2010181514 A JP 2010181514A
Authority
JP
Japan
Prior art keywords
film
substrate
infrared
optical component
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009023238A
Other languages
Japanese (ja)
Other versions
JP5207471B2 (en
Inventor
Nozomi Tsukihara
望 月原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Hardmetal Corp
Original Assignee
Sumitomo Electric Hardmetal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Hardmetal Corp filed Critical Sumitomo Electric Hardmetal Corp
Priority to JP2009023238A priority Critical patent/JP5207471B2/en
Publication of JP2010181514A publication Critical patent/JP2010181514A/en
Application granted granted Critical
Publication of JP5207471B2 publication Critical patent/JP5207471B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical member for infrared whose transmittance is high and whose environmental resistance is excellent. <P>SOLUTION: The optical member 1 comprises a substrate 2 and an infrared antireflection film 3. The substrate 2 comprises one of ZnSe, ZnS and GaAs. The infrared antireflection film 3 is formed on at least one surface of the substrate 2 and formed of layered product by laminating an inner layer 4, an intermediate layer 5 and an outer layer 6 in this order from the substrate side. The inner layer 4 comprises a fluoride film, the intermediate layer 5 comprises one of a ZnSe film, a ZnS film and GaAs film and the outer layer 6 comprises a diamond like carbon (DLC) film. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は光学部品、及びレーザ加工機の保護部材に関する。   The present invention relates to an optical component and a protection member for a laser beam machine.

近年、赤外光を利用した光学機器の開発が盛んに行われ、特に8〜14μm領域の赤外光の利用が注目されている。これに伴い、この領域の赤外光に有効な赤外線用光学部品が種々提案されている。かかる赤外線用光学部品のうち赤外反射防止膜の機能を備えた光学部品として、赤外透過部材であるZnSe、ZnS、GaAs、Geなどを基材(基板)とし、この基材上にフッ化物やZnSe、ZnS、GaAs、Geなどの膜を形成した構造が知られている(例えば、特許文献1参照)。   In recent years, optical devices using infrared light have been actively developed, and in particular, the use of infrared light in the 8 to 14 μm region has attracted attention. Along with this, various infrared optical components effective for infrared light in this region have been proposed. Of such infrared optical components, as an optical component having the function of an infrared antireflection film, an infrared transmission member such as ZnSe, ZnS, GaAs, Ge, or the like is used as a base material (substrate), and fluoride is formed on the base material. A structure in which a film of ZnSe, ZnS, GaAs, Ge, or the like is formed is known (see, for example, Patent Document 1).

この特許文献1に記載されている光学部品は、赤外線の吸収率が低く、高い耐環境性を有するものとされているが、基材表面に形成された薄膜の強度が十分であるとはいえないので、屋外での使用や、加工物が飛散するなどの過酷な環境下にあるレーザ加工機への適用に向いていなかった。   The optical component described in Patent Document 1 has low infrared absorption and high environmental resistance, but the strength of the thin film formed on the substrate surface is sufficient. Therefore, it is not suitable for use outdoors or in laser processing machines that are in harsh environments such as scattered workpieces.

一方、レーザ加工機用の光学部品として、基材の表面(レーザ光の出射面であり被加工物に対向する面)上に直接ダイヤモンドライクカーボン膜(DLC膜)を形成したものが知られている(例えば、特許文献2参照)。   On the other hand, an optical component for a laser processing machine is known in which a diamond-like carbon film (DLC film) is directly formed on the surface of a base material (a surface on which a laser beam is emitted and faces a workpiece). (For example, refer to Patent Document 2).

特許第3355786号明細書Japanese Patent No. 3355786 特許第4074217号明細書Patent No. 4074217

特許文献2記載の光学部品で使用されているDLC膜は硬度が高く、前述した環境下での使用に適しているが、基材として用いられる一般的な赤外透過部材(ZnSe、ZnS、GaAsなど)と屈折率が同等であるので、赤外線の透過率を高めるためにはDLC膜の厚さを大きくする必要がある。この場合、DLC膜の圧縮残留応力が大きくなって密着性が低下するため、基材としては屈折率の高い材料を使用する必要があった。このような高屈折率の材料としてはGeがあるが、Geを使用した場合は高い透過率を得ることができない。また、Geは吸収率が高いので、ハイパワーレーザ用途には適さないという問題がある。   The DLC film used in the optical component described in Patent Document 2 has high hardness and is suitable for use in the environment described above, but a general infrared transmitting member (ZnSe, ZnS, GaAs) used as a base material. Etc.) and the refractive index is the same, it is necessary to increase the thickness of the DLC film in order to increase the infrared transmittance. In this case, since the compressive residual stress of the DLC film is increased and the adhesiveness is lowered, it is necessary to use a material having a high refractive index as the base material. Ge is an example of such a high refractive index material, but when Ge is used, high transmittance cannot be obtained. Moreover, since Ge has a high absorption rate, there is a problem that it is not suitable for high power laser applications.

本発明は、このような事情に鑑みてなされたものであり、透過率が高く、耐環境性に優れた赤外用の光学部品、及びレーザ加工機の保護部材を提供することを目的としている。   The present invention has been made in view of such circumstances, and an object thereof is to provide an infrared optical component having a high transmittance and excellent environmental resistance, and a protective member for a laser beam machine.

本発明の光学部品は、基板と赤外反射防止膜とからなる光学部品であって、
前記基板は、ZnSe、ZnS及びGaAsのいずれかからなり、
前記赤外反射防止膜は、前記基板の少なくとも一面に形成されているとともに、当該基板側から、内層、中間層及び外層がこの順に積層された積層体からなっており、
前記内層はフッ化物膜からなり、
前記中間層は、ZnSe膜、ZnS膜及びGaAs膜のいずれかからなり、且つ、
前記外層はDLC膜からなることを特徴としている。
The optical component of the present invention is an optical component comprising a substrate and an infrared antireflection film,
The substrate is made of any one of ZnSe, ZnS and GaAs,
The infrared antireflection film is formed on at least one surface of the substrate, and from the substrate side, is composed of a laminate in which an inner layer, an intermediate layer, and an outer layer are laminated in this order,
The inner layer is made of a fluoride film,
The intermediate layer is made of any one of a ZnSe film, a ZnS film, and a GaAs film, and
The outer layer is made of a DLC film.

本発明の光学部品では、外層であるDLC膜の下層として、ZnSe膜、ZnS膜及びGaAs膜のいずれかからなる中間層及びフッ化物膜からなる内層を設けているので、耐環境性能を向上させつつ、高い透過率を維持することができる。   In the optical component of the present invention, an intermediate layer made of any one of a ZnSe film, a ZnS film and a GaAs film and an inner layer made of a fluoride film are provided as a lower layer of the DLC film which is an outer layer. However, high transmittance can be maintained.

前記DLC膜の膜厚が150〜300nmであるのが好ましい。DLC膜は高い硬度を有し耐環境性に優れているが、一方において圧縮応力を有するので、引張応力を有するフッ化物膜との応力差をできるだけ緩和させる必要がある。耐環境性能を向上させためには150nmよりも厚いことが好ましく、応力差を緩和させるためには300nmより薄くすることが好ましい。また、DLC膜は厚くなるほど透過率を低下させるので、透過率を高く保つという観点からも、300nmより薄くすることが好ましい。   The DLC film preferably has a thickness of 150 to 300 nm. The DLC film has high hardness and excellent environmental resistance, but on the other hand, it has compressive stress, so that it is necessary to relax the stress difference from the fluoride film having tensile stress as much as possible. In order to improve the environmental resistance performance, it is preferably thicker than 150 nm, and in order to relax the stress difference, it is preferable to make it thinner than 300 nm. Moreover, since the transmittance decreases as the DLC film becomes thicker, it is preferable to make it thinner than 300 nm from the viewpoint of keeping the transmittance high.

前記フッ化物膜の膜厚が400〜600nmであるのが好ましい。フッ化物膜は膜厚が大きくなると吸収率が大きくなり、ハイパワーレーザ用途に要求される吸収率を満たすのが難しくなる。一方、膜厚が小さくなりすぎると他層と十分な反射防止層を形成できない。したがって、両者を満足させるためには400〜600nmの範囲の膜厚であるのが好ましい。   The thickness of the fluoride film is preferably 400 to 600 nm. As the film thickness of the fluoride film increases, the absorptance increases and it becomes difficult to satisfy the absorptivity required for high power laser applications. On the other hand, if the film thickness is too small, a sufficient antireflection layer cannot be formed with other layers. Therefore, in order to satisfy both, the film thickness is preferably in the range of 400 to 600 nm.

前記中間層の厚さが400〜600nmであるのが好ましい。中間層の場合も、前記フッ化物膜と同様の理由により400〜600nmの範囲の膜厚であるのが好ましい。   The intermediate layer preferably has a thickness of 400 to 600 nm. In the case of the intermediate layer, the film thickness is preferably in the range of 400 to 600 nm for the same reason as the fluoride film.

前記フッ化物膜がYF3又はYbF3からなるのが好ましい。YF3又はYbF3からなる膜は透過率が大きいので、膜全体の透過率を高めることができる。 The fluoride film is preferably made of YF 3 or YbF 3 . Since the film made of YF 3 or YbF 3 has a high transmittance, the transmittance of the entire film can be increased.

また、本発明のレーザ加工機の保護部材(以下、単に「保護部材」ともいう)は、基板と赤外反射防止膜とを有するレーザ加工機のレンズ保護部材であって、
前記基板は、ZnSe、ZnS及びGaAsのいずれかからなり、
前記赤外反射防止膜は、前記基板の少なくともレーザ加工機の出射側に形成されているとともに、当該基板側から、内層、中間層及び外層がこの順に積層された積層体からなっており、
前記内層はフッ化物膜からなり、
前記中間層は、ZnSe膜、ZnS膜及びGaAs膜のいずれかからなり、且つ、
前記外層はDLC膜からなることを特徴としている。
Further, the protective member of the laser beam machine of the present invention (hereinafter also simply referred to as “protective member”) is a lens protective member of a laser beam machine having a substrate and an infrared antireflection film,
The substrate is made of any one of ZnSe, ZnS and GaAs,
The infrared antireflection film is formed on at least the emission side of the laser processing machine of the substrate, and from the substrate side, is composed of a laminate in which an inner layer, an intermediate layer, and an outer layer are laminated in this order,
The inner layer is made of a fluoride film,
The intermediate layer is made of any one of a ZnSe film, a ZnS film, and a GaAs film, and
The outer layer is made of a DLC film.

本発明の保護部材では、外層であるDLC膜の下層として、ZnSe膜、ZnS膜及びGaAs膜のいずれかからなる中間層及びフッ化物膜からなる内層を設けているので、耐環境性能を向上させつつ、高い透過率を維持することができる。したがって、加工物が飛散するなどの過酷な環境下にあるレーザ加工機の保護部材に適している。   In the protective member of the present invention, as the lower layer of the DLC film which is the outer layer, an intermediate layer made of any of a ZnSe film, a ZnS film and a GaAs film and an inner layer made of a fluoride film are provided. However, high transmittance can be maintained. Therefore, it is suitable for a protective member of a laser beam machine in a harsh environment such as when a workpiece is scattered.

本発明の光学部品、及びレーザ加工機の保護部材によれば、透過率を高くするとともに、耐環境性能を向上させることができる。   According to the optical component of the present invention and the protection member for a laser beam machine, the transmittance can be increased and the environmental resistance can be improved.

本発明の光学部品の一実施の形態の断面説明図である。It is sectional explanatory drawing of one Embodiment of the optical component of this invention. 本発明の保護部材を用いた赤外レーザ加工機の断面説明図である。It is sectional explanatory drawing of the infrared laser processing machine using the protection member of this invention.

以下、添付図面を参照しつつ、本発明の光学部品及び保護部材の実施の形態を詳細に説明する。   Hereinafter, embodiments of an optical component and a protection member of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の一実施の形態に係る光学部品1の断面説明図であり、この光学部品1は、赤外光学用基板2の両面に赤外反射防止膜3が形成された構成を備えている。赤外光学用基板2は、厚さ1〜10mm程度のZnSe、ZnS及びGaAs(赤外透過部材)のいずれかからなっているが、このうちより高い赤外透過率を得る点より、ZnSeやZnSからなる基板を用いるのが好ましい。図1に示される実施の形態では、赤外光学用基板2の両面に赤外反射防止膜3が形成されているが、基板の片側の面だけに赤外反射防止膜3を形成することもできる。   FIG. 1 is a cross-sectional explanatory view of an optical component 1 according to an embodiment of the present invention. This optical component 1 has a configuration in which infrared antireflection films 3 are formed on both surfaces of an infrared optical substrate 2. I have. The infrared optical substrate 2 is made of any one of ZnSe, ZnS, and GaAs (infrared transmitting member) having a thickness of about 1 to 10 mm. Of these, from the viewpoint of obtaining a higher infrared transmittance, ZnSe and It is preferable to use a substrate made of ZnS. In the embodiment shown in FIG. 1, the infrared antireflection film 3 is formed on both surfaces of the infrared optical substrate 2, but the infrared antireflection film 3 may be formed only on one surface of the substrate. it can.

前記赤外防止反射膜3は、前記赤外光学用基板2側から、低屈折率の内層4、この内層4よりも屈折率の高い中間屈折率の中間層5、及びこの中間層5よりも屈折率の高い高屈折率の外層6がこの順で積層された積層体からなっている。   The infrared prevention reflective film 3 includes, from the infrared optical substrate 2 side, a lower refractive index inner layer 4, an intermediate refractive index intermediate layer 5 having a higher refractive index than the inner layer 4, and the intermediate layer 5. The outer layer 6 having a high refractive index and a high refractive index is composed of a laminated body laminated in this order.

前記内層4は、YF3膜、YbF3膜、MgF2膜などのフッ化物膜からなっているが、このうち透過率が大きく、膜全体の透過率を高めることができる点より、YF3膜又はYbF3膜からなるのが好ましい。内層4の膜厚は、基板厚さと他層厚さを考慮して選定されるが、概ね50〜1000nm程度であり、好ましくは400〜600nmである。フッ化物膜は膜厚が大きくなると吸収率が大きくなり、ハイパワーレーザ用途に要求される吸収率を満たすのが難しくなる。一方、膜厚が小さくなりすぎると赤外光の多層反射防止膜の効果が得られない。したがって、両者を満足させるためには400〜600nmの範囲の膜厚であるのが好ましい。 The inner layer 4 is made of a fluoride film such as a YF 3 film, a YbF 3 film, or an MgF 2 film. Among these, the YF 3 film is large in that the transmittance is large and the transmittance of the entire film can be increased. Alternatively, it is preferably made of a YbF 3 film. The thickness of the inner layer 4 is selected in consideration of the thickness of the substrate and the thickness of the other layers, but is generally about 50 to 1000 nm, and preferably 400 to 600 nm. As the film thickness of the fluoride film increases, the absorptance increases and it becomes difficult to satisfy the absorptivity required for high power laser applications. On the other hand, if the film thickness becomes too small, the effect of the multilayer antireflection film for infrared light cannot be obtained. Therefore, in order to satisfy both, the film thickness is preferably in the range of 400 to 600 nm.

前記中間層5は、ZnSe膜、ZnS膜及びGaAs膜のいずれかからなり、その厚さは基板厚さと他層厚さを考慮して選定されるが、概ね50〜1000nm程度であり、好ましくは前記内層4と同じく400〜600nmである。中間層5を構成するZnSe膜などは膜厚が大きくなると吸収率が大きくなり、ハイパワーレーザ用途に要求される吸収率を満たすのが難しくなる。一方、膜厚が小さくなりすぎると赤外光の多層反射防止膜の効果が得られない。したがって、両者を満足させるためには400〜600nmの範囲の膜厚であるのが好ましい。   The intermediate layer 5 is composed of any one of a ZnSe film, a ZnS film, and a GaAs film, and the thickness thereof is selected in consideration of the substrate thickness and the thickness of the other layers, and is approximately 50 to 1000 nm, preferably Similar to the inner layer 4, the thickness is 400 to 600 nm. As the film thickness of the ZnSe film constituting the intermediate layer 5 increases, the absorptance increases and it becomes difficult to satisfy the absorptivity required for high power laser applications. On the other hand, if the film thickness becomes too small, the effect of the multilayer antireflection film for infrared light cannot be obtained. Therefore, in order to satisfy both, the film thickness is preferably in the range of 400 to 600 nm.

前記外層6はDLC(ダイヤモンドライクカーボン)膜からなっており、その厚さは本発明において特に限定されるものではないが、概ね100〜1500nmが目安であり、このうち150〜300nmであるのが好ましい。DLC膜は高い硬度を有し耐環境性に優れているが、一方において圧縮応力を有するので、引張応力を有するフッ化物膜(内層4)との応力差をできるだけ緩和させる必要がある。耐環境性能を向上させためには150nmよりも厚いことが好ましく、応力差を緩和させるためには300nmより薄くすることが好ましい。また、DLC膜は厚くなるほど透過率を低下させるので、透過率を高く保つという観点からも、300nmより薄くすることが好ましい。   The outer layer 6 is made of a DLC (diamond-like carbon) film, and the thickness thereof is not particularly limited in the present invention, but is generally about 100 to 1500 nm, of which 150 to 300 nm. preferable. Although the DLC film has high hardness and excellent environmental resistance, on the other hand, it has compressive stress. Therefore, it is necessary to relax the stress difference with the fluoride film (inner layer 4) having tensile stress as much as possible. In order to improve the environmental resistance performance, it is preferably thicker than 150 nm, and in order to relax the stress difference, it is preferable to make it thinner than 300 nm. Moreover, since the transmittance decreases as the DLC film becomes thicker, it is preferable to make it thinner than 300 nm from the viewpoint of keeping the transmittance high.

赤外防止反射膜3を構成する各膜の形成方法としては、真空蒸着法、イオンプレーティング法などの、従来公知の真空薄膜堆積技術を用いることができる。また、各膜の厚さは、例えば市販されている膜設計ソフトを用いて決定することができる。   As a method of forming each film constituting the infrared preventing reflection film 3, a conventionally known vacuum thin film deposition technique such as a vacuum deposition method or an ion plating method can be used. The thickness of each film can be determined using, for example, commercially available film design software.

図2は、本発明の保護部材を用いた赤外レーザ加工機の断面説明図である。図2において、20はプリント配線板などの被加工物30に対向して配設されるレーザ発振器であり、このレーザ発振器20と被加工物30の間には集光レンズ40及び保護部材11が配置されている。レンズ発振器20から出射されるレーザ光50としては波長10.6μmの炭酸ガスレーザが用いられ、また、集光レンズ40としてはZnSeからなる単レンズが用いられている。   FIG. 2 is a cross-sectional explanatory view of an infrared laser beam machine using the protective member of the present invention. In FIG. 2, reference numeral 20 denotes a laser oscillator disposed to face a workpiece 30 such as a printed wiring board. Between the laser oscillator 20 and the workpiece 30, a condenser lens 40 and the protection member 11 are provided. Has been placed. A carbon dioxide laser with a wavelength of 10.6 μm is used as the laser beam 50 emitted from the lens oscillator 20, and a single lens made of ZnSe is used as the condenser lens 40.

保護部材11は、レーザ光50を透過させるとともに、レーザ加工時に発生する発塵やスパッタリングによる汚染、損傷から集光レンズ40を保護するものであり、赤外光学用基板12と、この赤外光学用基板12のレーザ加工機の出射側に形成された赤外反射防止膜13とから構成されている。また、赤外防止反射膜13は、前記赤外光学用基板12側から、低屈折率の内層14、この内層14よりも屈折率の高い中間屈折率の中間層15、及びこの中間層15よりも屈折率の高い高屈折率の外層16がこの順で積層された積層体からなっている。これら赤外光学用基板12、内層14、中間層15及び外層16の材質や厚さなどは、それぞれ前述した光学部品1における赤外光学用基板2、内層4、中間層5及び外層6と同様であるので、詳細な説明を省略する。   The protection member 11 transmits the laser beam 50 and protects the condenser lens 40 from dust generation, contamination caused by sputtering, and damage generated during laser processing. The infrared optical substrate 12 and the infrared optical substrate And an infrared antireflection film 13 formed on the emission side of the laser processing machine of the substrate 12 for use. Further, the infrared prevention reflective film 13 includes, from the infrared optical substrate 12 side, a low refractive index inner layer 14, an intermediate refractive index intermediate layer 15 having a higher refractive index than the inner layer 14, and the intermediate layer 15. Also, the outer layer 16 having a high refractive index and a high refractive index is composed of a laminated body in this order. The materials and thicknesses of the infrared optical substrate 12, inner layer 14, intermediate layer 15 and outer layer 16 are the same as those of the infrared optical substrate 2, inner layer 4, intermediate layer 5 and outer layer 6 in the optical component 1 described above. Therefore, detailed description is omitted.

つぎに実施例に基づいて、本発明の光学部品を説明するが、本発明はもとよりかかる実施例にのみ限定されるものではない。   Next, the optical component of the present invention will be described based on examples, but the present invention is not limited to such examples.

[実施例1]
赤外広域において高透過率及び耐環境性を必要とする光学部品を作製した。光学部品は、図1に示されるように、基板の両面にそれぞれ赤外反射防止膜を形成した構成である。
厚さ3mmのZnSe製の基板側から表1に示される低屈折率の第1層(内層)、中間屈折率の第2層(中間層)及び高屈折率の第3層(外層)を真空蒸着法により形成した。中心波長λは9.3μmであり、市販の膜設計ソフト(ソフトウェア スペクトラ社(Software Spectra,Inc.)のTFCalC)を用いて各層の厚さを決めた。
[Example 1]
Optical components that require high transmittance and environmental resistance in the infrared wide area were fabricated. As shown in FIG. 1, the optical component has a configuration in which an infrared antireflection film is formed on each side of the substrate.
The low refractive index first layer (inner layer), intermediate refractive index second layer (intermediate layer) and high refractive index third layer (outer layer) shown in Table 1 are vacuumed from the side of the 3 mm thick ZnSe substrate. It formed by the vapor deposition method. The center wavelength λ was 9.3 μm, and the thickness of each layer was determined by using a commercially available film design software (TFCalC of Software Spectra, Inc.).

Figure 2010181514
Figure 2010181514

[比較例1]
厚さ3mmのGe製の基板の両面に厚さ1μmのDLC膜を真空蒸着法により形成した。
[Comparative Example 1]
A DLC film having a thickness of 1 μm was formed on both sides of a Ge substrate having a thickness of 3 mm by vacuum deposition.

[比較例2]
第3層としてのDLC膜を形成しなかった以外は実施例1と同様にして光学部品を作製した。
[Comparative Example 2]
An optical component was manufactured in the same manner as in Example 1 except that the DLC film as the third layer was not formed.

実施例1及び比較例1〜2で得られた光学部品の赤外波長透過率及び耐環境性能を調べた。耐環境性能については、以下の方法と同等の方法で試験を行った。結果を表2に示す。
耐磨耗試験:30秒間の研磨装置による研磨で赤外防止反射膜が剥がれるかどうかを観察する。
引っ掻き試験:市販されているボールペンにより赤外防止反射膜を引っ掻き、当該赤外防止反射膜の剥離を観察する。
The infrared wavelength transmittance and environmental resistance performance of the optical parts obtained in Example 1 and Comparative Examples 1 and 2 were examined. The environmental resistance was tested by the same method as below. The results are shown in Table 2.
Abrasion resistance test: Observe whether the anti-reflection coating is peeled off by polishing with a polishing apparatus for 30 seconds.
Scratch test: Scratch the infrared reflective film with a commercially available ballpoint pen and observe the peeling of the infrared reflective film.

Figure 2010181514
Figure 2010181514

表2より分かるように、実施例1の光学部品は高い透過率を有しており、且つ、研磨による膜磨耗や引っ掻きによる膜剥離がなく、優れた耐環境性能を有している。一方、比較例1の光学部品は耐環境性能に優れているが、透過率が95%以下と低い。また、比較例2の光学部品は透過率が99%以上と高かったが、磨耗や剥離が生じ、耐環境性に劣っている。   As can be seen from Table 2, the optical component of Example 1 has a high transmittance, and there is no film abrasion due to polishing or film peeling due to scratching, and excellent environmental resistance performance. On the other hand, the optical component of Comparative Example 1 is excellent in environmental resistance, but has a low transmittance of 95% or less. Further, the optical component of Comparative Example 2 had a high transmittance of 99% or more, but was inferior in environmental resistance due to wear and peeling.

なお、今回開示された実施の形態はすべての点において単なる例示であって制限的なものではないと考えられるべきである。本発明の範囲は、前記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内のすべての変更が含まれることが意図される。   It should be noted that the embodiment disclosed this time is merely an example in all respects and is not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the meanings described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 光学部品
2 赤外光学用基板
3 赤外反射防止膜
4 内層
5 中間層
6 外層
11 保護部材
12 赤外光学用基板
13 赤外反射防止膜
14 内層
15 中間層
16 外層
20 レーザ発振器
30 被加工物
40 集光レンズ
50 レーザ光
DESCRIPTION OF SYMBOLS 1 Optical component 2 Infrared optical board | substrate 3 Infrared antireflection film 4 Inner layer 5 Intermediate layer 6 Outer layer 11 Protective member 12 Infrared optical substrate 13 Infrared antireflection film 14 Inner layer 15 Intermediate layer 16 Outer layer 20 Laser oscillator 30 Processed Object 40 Condenser lens 50 Laser light

Claims (6)

基板と赤外反射防止膜とからなる光学部品であって、
前記基板は、ZnSe、ZnS及びGaAsのいずれかからなり、
前記赤外反射防止膜は、前記基板の少なくとも一面に形成されているとともに、当該基板側から、内層、中間層及び外層がこの順に積層された積層体からなっており、
前記内層はフッ化物膜からなり、
前記中間層は、ZnSe膜、ZnS膜及びGaAs膜のいずれかからなり、且つ、
前記外層はDLC膜からなることを特徴とする光学部品。
An optical component comprising a substrate and an infrared antireflection film,
The substrate is made of any one of ZnSe, ZnS and GaAs,
The infrared antireflection film is formed on at least one surface of the substrate, and from the substrate side, is composed of a laminate in which an inner layer, an intermediate layer, and an outer layer are laminated in this order,
The inner layer is made of a fluoride film,
The intermediate layer is made of any one of a ZnSe film, a ZnS film, and a GaAs film, and
The optical component, wherein the outer layer is made of a DLC film.
前記DLC膜の膜厚が150〜300nmである請求項1に記載の光学部品。   The optical component according to claim 1, wherein the DLC film has a thickness of 150 to 300 nm. 前記フッ化物膜の膜厚が400〜600nmである請求項1又は2に記載の光学部品。   The optical component according to claim 1, wherein the fluoride film has a thickness of 400 to 600 nm. 前記中間層の厚さが400〜600nmである請求項1〜3のいずれかに記載の光学部品。   The optical component according to claim 1, wherein the intermediate layer has a thickness of 400 to 600 nm. 前記フッ化物膜がYF3又はYbF3からなる請求項1〜4のいずれかに記載の光学部品。 The optical component according to claim 1, wherein the fluoride film is made of YF 3 or YbF 3 . 基板と赤外反射防止膜とを有するレーザ加工機の保護部材であって、
前記基板は、ZnSe、ZnS及びGaAsのいずれかからなり、
前記赤外反射防止膜は、前記基板の少なくともレーザ加工機の出射側に形成されているとともに、当該基板側から、内層、中間層及び外層がこの順に積層された積層体からなっており、
前記内層はフッ化物膜からなり、
前記中間層は、ZnSe膜、ZnS膜及びGaAs膜のいずれかからなり、且つ、
前記外層はDLC膜からなることを特徴とするレーザ加工機の保護部材。
A protective member for a laser processing machine having a substrate and an infrared antireflection film,
The substrate is made of any one of ZnSe, ZnS and GaAs,
The infrared antireflection film is formed on at least the emission side of the laser processing machine of the substrate, and from the substrate side, is composed of a laminate in which an inner layer, an intermediate layer, and an outer layer are laminated in this order,
The inner layer is made of a fluoride film,
The intermediate layer is made of any one of a ZnSe film, a ZnS film, and a GaAs film, and
A protective member for a laser beam machine, wherein the outer layer is made of a DLC film.
JP2009023238A 2009-02-04 2009-02-04 Optical components Expired - Fee Related JP5207471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009023238A JP5207471B2 (en) 2009-02-04 2009-02-04 Optical components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009023238A JP5207471B2 (en) 2009-02-04 2009-02-04 Optical components

Publications (2)

Publication Number Publication Date
JP2010181514A true JP2010181514A (en) 2010-08-19
JP5207471B2 JP5207471B2 (en) 2013-06-12

Family

ID=42763110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009023238A Expired - Fee Related JP5207471B2 (en) 2009-02-04 2009-02-04 Optical components

Country Status (1)

Country Link
JP (1) JP5207471B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104035146A (en) * 2014-06-12 2014-09-10 中国科学院上海技术物理研究所 Medium-short-wave infrared antireflection film on tellurium dioxide substrate
WO2016203863A1 (en) * 2015-06-19 2016-12-22 三菱電機株式会社 Optical component and laser machining apparatus
US9841535B2 (en) 2014-09-30 2017-12-12 Fujifilm Corporation Antireflection film, lens, and imaging device
CN108330440A (en) * 2018-01-05 2018-07-27 昆明凯航光电科技有限公司 A kind of 3-12 μm of ZnS substrates optical infrared anti-reflection film and preparation method thereof
KR20180123157A (en) * 2016-05-13 2018-11-14 미쓰비시덴키 가부시키가이샤 Optical components and laser processing machines
CN115494565A (en) * 2022-09-15 2022-12-20 安徽光智科技有限公司 Infrared antireflection film for protecting laser, preparation method and application
WO2023162616A1 (en) * 2022-02-24 2023-08-31 三菱電機株式会社 Optical component and laser machining apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415703A (en) * 1987-07-09 1989-01-19 Nikon Corp Optical thin film for infra red ray
JPH065951A (en) * 1992-03-02 1994-01-14 L'air Liquide Power laser
JPH07331412A (en) * 1994-06-10 1995-12-19 Sumitomo Electric Ind Ltd Optical parts for infrared ray and their production
JPH08271701A (en) * 1995-04-03 1996-10-18 Sumitomo Electric Ind Ltd Environmental resistant infrared ray transmissive structural body suing zinc sulfide as substrate
JP2005275434A (en) * 2005-06-10 2005-10-06 Sumitomo Electric Ind Ltd ENVIRONMENT-RESISTANCE INFRARED-RAY TRANSMISSIVE STRUCTURAL BODY USING ZnS AS SUBSTRATE
JP2008268277A (en) * 2007-04-16 2008-11-06 Sei Hybrid Kk Infrared ray transmitting structure and infrared ray sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415703A (en) * 1987-07-09 1989-01-19 Nikon Corp Optical thin film for infra red ray
JPH065951A (en) * 1992-03-02 1994-01-14 L'air Liquide Power laser
JPH07331412A (en) * 1994-06-10 1995-12-19 Sumitomo Electric Ind Ltd Optical parts for infrared ray and their production
JPH08271701A (en) * 1995-04-03 1996-10-18 Sumitomo Electric Ind Ltd Environmental resistant infrared ray transmissive structural body suing zinc sulfide as substrate
JP2005275434A (en) * 2005-06-10 2005-10-06 Sumitomo Electric Ind Ltd ENVIRONMENT-RESISTANCE INFRARED-RAY TRANSMISSIVE STRUCTURAL BODY USING ZnS AS SUBSTRATE
JP2008268277A (en) * 2007-04-16 2008-11-06 Sei Hybrid Kk Infrared ray transmitting structure and infrared ray sensor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104035146A (en) * 2014-06-12 2014-09-10 中国科学院上海技术物理研究所 Medium-short-wave infrared antireflection film on tellurium dioxide substrate
CN104035146B (en) * 2014-06-12 2015-11-25 中国科学院上海技术物理研究所 The suprabasil a kind of medium short wave infrared anti-reflection film of tellurium dioxide
US9841535B2 (en) 2014-09-30 2017-12-12 Fujifilm Corporation Antireflection film, lens, and imaging device
WO2016203863A1 (en) * 2015-06-19 2016-12-22 三菱電機株式会社 Optical component and laser machining apparatus
JPWO2016203863A1 (en) * 2015-06-19 2017-12-07 三菱電機株式会社 Optical components and laser processing machines
KR20180123157A (en) * 2016-05-13 2018-11-14 미쓰비시덴키 가부시키가이샤 Optical components and laser processing machines
CN109154678A (en) * 2016-05-13 2019-01-04 三菱电机株式会社 Optical component and laser machine
KR102105306B1 (en) 2016-05-13 2020-04-28 미쓰비시덴키 가부시키가이샤 Optical components and laser processing machines
CN109154678B (en) * 2016-05-13 2021-03-26 三菱电机株式会社 Optical component and laser processing machine
CN108330440A (en) * 2018-01-05 2018-07-27 昆明凯航光电科技有限公司 A kind of 3-12 μm of ZnS substrates optical infrared anti-reflection film and preparation method thereof
WO2023162616A1 (en) * 2022-02-24 2023-08-31 三菱電機株式会社 Optical component and laser machining apparatus
CN115494565A (en) * 2022-09-15 2022-12-20 安徽光智科技有限公司 Infrared antireflection film for protecting laser, preparation method and application
CN115494565B (en) * 2022-09-15 2023-05-05 安徽光智科技有限公司 Laser-protected infrared antireflection film, preparation method and application

Also Published As

Publication number Publication date
JP5207471B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP5207471B2 (en) Optical components
JP6561823B2 (en) Glass laminate with protective film
JP2009086533A (en) Infrared multilayered film, infrared antireflection film, and infrared laser reflecting mirror
TWI732427B (en) Optical member and laser processing machine
TWI659936B (en) Scratch-resistant chemically tempered glass substrate and use thereof
KR102028786B1 (en) Lens blank having a temporary grip coating for a method for manufacturing spectacle lenses according to a prescription
TWI655453B (en) Optical member and laser processor
US10286489B2 (en) Apparatus and method for laser cutting using a support member having a gold facing layer
JP2009204577A (en) Light-transmitting member and timepiece provided with same
JP4895902B2 (en) Method for forming reflective film
JP5854347B2 (en) Optical components
WO2016203863A1 (en) Optical component and laser machining apparatus
JP5019243B1 (en) Antireflection film
JP6873283B2 (en) Optical parts and laser machining machine
JP5730147B2 (en) Optical element and antireflection film for transmitting carbon dioxide laser beam
JP6982951B2 (en) Silicon substrate with functional film for infrared rays
JP2019188822A (en) Glass laminate with protective film
JPWO2011122152A1 (en) Electromagnetic wave shielding film and electromagnetic wave shielding member
JP6939398B2 (en) Laminate
JP4074217B2 (en) Lens protection member for laser processing machine and method for manufacturing the same
TWI407137B (en) Optical element with anti-reflection unit
JP2024123914A (en) Anti-reflection film and image display device
JP2022096744A (en) Glass substrate with reflection film, glass laminate and optical imaging member
JP2019099637A (en) Pressure sensitive adhesive sheet
TWM546517U (en) Eye protection device

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20110922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5207471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees