JPWO2011122152A1 - Electromagnetic wave shielding film and electromagnetic wave shielding member - Google Patents

Electromagnetic wave shielding film and electromagnetic wave shielding member Download PDF

Info

Publication number
JPWO2011122152A1
JPWO2011122152A1 JP2011507731A JP2011507731A JPWO2011122152A1 JP WO2011122152 A1 JPWO2011122152 A1 JP WO2011122152A1 JP 2011507731 A JP2011507731 A JP 2011507731A JP 2011507731 A JP2011507731 A JP 2011507731A JP WO2011122152 A1 JPWO2011122152 A1 JP WO2011122152A1
Authority
JP
Japan
Prior art keywords
electromagnetic wave
wave shielding
film
refractive index
shielding film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011507731A
Other languages
Japanese (ja)
Inventor
伊村 正明
正明 伊村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Publication of JPWO2011122152A1 publication Critical patent/JPWO2011122152A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0084Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single continuous metallic layer on an electrically insulating supporting structure, e.g. metal foil, film, plating coating, electro-deposition, vapour-deposition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/734Anti-reflective coatings with specific characteristics comprising an alternation of high and low refractive indexes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating
    • C03C2217/948Layers comprising indium tin oxide [ITO]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

可視波長域における光透過率が高いと共に、高い電磁波遮蔽能を有し、かつ膜応力の小さな電磁波遮蔽膜を提供する。電磁波遮蔽膜3は、相対的に屈折率が高い複数の高屈折率膜3Hと、相対的に屈折率が低い複数の低屈折率膜3Lとが交互に積層されてなる。複数の高屈折率膜3Hには、複数のITO膜が含まれている。電磁波遮蔽膜3は、金属膜を有さない。電磁波遮蔽膜3全体の厚みをt0とし、複数のITO膜の厚みの合計をt1としたときに、t1/t0が0.3以上である。Provided is an electromagnetic wave shielding film having high light transmittance in the visible wavelength region, high electromagnetic wave shielding ability, and low film stress. The electromagnetic wave shielding film 3 is formed by alternately laminating a plurality of high refractive index films 3H having a relatively high refractive index and a plurality of low refractive index films 3L having a relatively low refractive index. The plurality of high refractive index films 3H include a plurality of ITO films. The electromagnetic wave shielding film 3 does not have a metal film. When the total thickness of the electromagnetic wave shielding film 3 is t0 and the total thickness of the plurality of ITO films is t1, t1 / t0 is 0.3 or more.

Description

本発明は、電磁波遮蔽膜及び電磁波遮蔽部材に関する。特には、本発明は、ITO膜を備える電磁波遮蔽膜及びそれを備える電磁波遮蔽部材に関する。   The present invention relates to an electromagnetic wave shielding film and an electromagnetic wave shielding member. In particular, the present invention relates to an electromagnetic wave shielding film including an ITO film and an electromagnetic wave shielding member including the same.

近年、ディスプレイを通して機器内部または外部に漏洩する電磁波の電子機器や人体に対する影響が問題視されている。これに鑑み、例えば、下記の特許文献1や特許文献2には、電磁波遮蔽能を有する電磁波遮蔽膜が開示されている。   In recent years, the influence of electromagnetic waves leaking inside or outside of a device through a display on an electronic device or a human body has been regarded as a problem. In view of this, for example, the following Patent Document 1 and Patent Document 2 disclose an electromagnetic wave shielding film having an electromagnetic wave shielding ability.

具体的には、特許文献1には、Nb層、ITO層、Ag層、ITO層がこの順番で複数回繰り返して積層されてなる電磁波遮蔽膜が開示されている。Specifically, Patent Document 1 discloses an electromagnetic wave shielding film in which an Nb 2 O 5 layer, an ITO layer, an Ag layer, and an ITO layer are repeatedly laminated in this order.

一方、特許文献2には、メガネレンズ用の電磁波遮蔽膜として、光学膜厚46〜60nmのSiO膜と、光学膜厚65〜79nmのITO膜と、光学膜厚18〜22nmのSiO膜と、光学膜厚200〜254nmのTiO、ZrO、Taのうち少なくとも1つを含む材料からなる膜と、光学膜厚103〜126nmのSiO膜とがこの順番で積層されてなる電磁波遮蔽膜が開示されている。また、特許文献2には、電磁波遮蔽膜が反射防止機能も兼ね備えている旨が記載されている。On the other hand, Patent Document 2, as an electromagnetic wave shielding film for spectacle lens, and the SiO 2 film having an optical thickness of 46~60Nm, the ITO film having an optical thickness of 65~79Nm, SiO 2 film having an optical thickness of 18~22nm A film made of a material containing at least one of TiO 2 , ZrO 2 , and Ta 2 O 5 with an optical film thickness of 200 to 254 nm and an SiO 2 film with an optical film thickness of 103 to 126 nm are laminated in this order. An electromagnetic wave shielding film is disclosed. Patent Document 2 describes that the electromagnetic wave shielding film also has an antireflection function.

特開2006−121085号公報JP 2006-121085 A 特開平11−149063号公報Japanese Patent Laid-Open No. 11-149063

特許文献1に記載の電磁波遮蔽膜に用いられているAg層は、非常に高い電磁波遮蔽能を有する。このため、特許文献1に記載のように、Ag層を用いることにより、高い電磁波遮蔽能を有する電磁波遮蔽膜を実現し得る。しかしながら、Ag層は、可視波長域における光透過率が低い。従って、Ag層などの金属層を備える電磁波遮蔽膜では、可視波長域における光透過率を十分に高めることが困難である。   The Ag layer used in the electromagnetic wave shielding film described in Patent Document 1 has a very high electromagnetic wave shielding ability. For this reason, as described in Patent Document 1, an electromagnetic wave shielding film having high electromagnetic wave shielding ability can be realized by using an Ag layer. However, the Ag layer has a low light transmittance in the visible wavelength region. Therefore, it is difficult to sufficiently increase the light transmittance in the visible wavelength region with an electromagnetic wave shielding film including a metal layer such as an Ag layer.

それに対して、特許文献2に記載の電磁波遮蔽膜のように、電磁波遮蔽能を備える膜として、ITO膜のみを用いた場合は、金属膜を用いた場合よりも、可視波長域における光透過率を高くし得る。しかしながら、ITO膜の電磁波遮蔽能は、Ag膜の電磁波遮蔽能よりも低い。ITO膜を用いて高い電磁波遮蔽能を実現するためには、厚いITO膜を形成する必要がある。   On the other hand, as in the electromagnetic wave shielding film described in Patent Document 2, when only an ITO film is used as a film having an electromagnetic wave shielding ability, the light transmittance in the visible wavelength region is higher than when a metal film is used. Can be high. However, the electromagnetic wave shielding ability of the ITO film is lower than the electromagnetic wave shielding ability of the Ag film. In order to achieve high electromagnetic wave shielding ability using an ITO film, it is necessary to form a thick ITO film.

但し、ITO膜も、可視波長域において吸収を持っているため、ITO膜を厚くした場合は、可視波長域における光透過率が低くなる傾向にある。具体的には、可視波長域の短波長側部分の光透過率が低くなる。このため、特許文献2では、ITO膜の光学膜厚は、65〜79nm(物理膜厚で、約34nm〜41nm)と、非常に小さくされている。従って、特許文献2に記載の電磁波遮蔽膜では、十分に高い電磁波遮蔽能を得ることは困難である。   However, since the ITO film also has absorption in the visible wavelength range, when the ITO film is thickened, the light transmittance in the visible wavelength range tends to decrease. Specifically, the light transmittance of the short wavelength side portion in the visible wavelength region is lowered. For this reason, in Patent Document 2, the optical film thickness of the ITO film is very small, 65 to 79 nm (physical film thickness, about 34 nm to 41 nm). Therefore, it is difficult for the electromagnetic wave shielding film described in Patent Document 2 to obtain a sufficiently high electromagnetic wave shielding ability.

また、高い電磁波遮蔽能を実現するために、電磁波遮蔽膜の厚みを厚くした場合、電磁波遮蔽膜の膜応力が大きくなる傾向にある。このため、電磁波遮蔽膜が形成された基板からなる電磁波遮蔽部材に反りが発生したり、電磁波遮蔽膜の剥がれが発生したりする虞がある。   Further, when the thickness of the electromagnetic shielding film is increased in order to realize high electromagnetic shielding ability, the film stress of the electromagnetic shielding film tends to increase. For this reason, there exists a possibility that curvature may generate | occur | produce in the electromagnetic wave shielding member which consists of a board | substrate with which the electromagnetic wave shielding film was formed, or peeling of an electromagnetic wave shielding film may generate | occur | produce.

本発明は、かかる点に鑑みてなされたものであり、その目的は、可視波長域における光透過率が高いと共に、高い電磁波遮蔽能を有し、かつ膜応力の小さな電磁波遮蔽膜を提供することにある。   The present invention has been made in view of such a point, and an object thereof is to provide an electromagnetic wave shielding film having high light transmittance in the visible wavelength region, high electromagnetic wave shielding ability, and low film stress. It is in.

本発明に係る電磁波遮蔽膜は、相対的に屈折率が高い複数の高屈折率膜と、相対的に屈折率が低い複数の低屈折率膜とが交互に積層されてなる。複数の高屈折率膜には、複数のITO膜が含まれている。発明に係る電磁波遮蔽膜は、金属膜を有さない。本発明では、電磁波遮蔽膜全体の厚みをt0とし、複数のITO膜の厚みの合計をt1としたときに、t1/t0が0.3以上である。このため、電磁波遮蔽膜に占めるITO膜の割合が高く、電磁波遮蔽膜の厚みを大きくすることなく、高い電磁波遮蔽能を実現することができる。また、ITO膜の膜応力は低いため、電磁波遮蔽膜に占めるITO膜の割合を高くすることにより、電磁波遮蔽膜全体の膜応力を小さくすることができる。従って、本発明によれば、高い電磁波遮蔽能を有しつつ、かつ、膜応力が小さな電磁波遮蔽膜を実現することができる。   The electromagnetic wave shielding film according to the present invention is formed by alternately laminating a plurality of high refractive index films having a relatively high refractive index and a plurality of low refractive index films having a relatively low refractive index. The plurality of high refractive index films include a plurality of ITO films. The electromagnetic wave shielding film according to the invention does not have a metal film. In the present invention, when the total thickness of the electromagnetic wave shielding film is t0 and the total thickness of the plurality of ITO films is t1, t1 / t0 is 0.3 or more. For this reason, the ratio of the ITO film in the electromagnetic wave shielding film is high, and high electromagnetic wave shielding ability can be realized without increasing the thickness of the electromagnetic wave shielding film. Further, since the film stress of the ITO film is low, the film stress of the entire electromagnetic wave shielding film can be reduced by increasing the proportion of the ITO film in the electromagnetic wave shielding film. Therefore, according to the present invention, an electromagnetic wave shielding film having high electromagnetic wave shielding ability and low film stress can be realized.

また、上述のように、本発明では、高屈折率膜と低屈折率膜との積層膜により電磁波遮蔽膜が構成されているため、光反射を抑制し得る。従って、本発明によれば、可視波長域における光透過率が高い電磁波遮蔽膜を実現することができる。   Further, as described above, in the present invention, since the electromagnetic wave shielding film is configured by the laminated film of the high refractive index film and the low refractive index film, light reflection can be suppressed. Therefore, according to the present invention, an electromagnetic wave shielding film having a high light transmittance in the visible wavelength region can be realized.

以上より、本発明によれば、高い電磁波遮蔽能を有し、可視波長域における光透過率が高く、かつ膜応力が小さな電磁波遮蔽膜を実現することができる。   As described above, according to the present invention, an electromagnetic wave shielding film having a high electromagnetic wave shielding ability, a high light transmittance in the visible wavelength region, and a small film stress can be realized.

なお、本発明において、可視波長域とは、400nm〜650nmの波長域のことをいう。   In the present invention, the visible wavelength range refers to a wavelength range of 400 nm to 650 nm.

本発明では、t1/t0が0.4以上であることが好ましい。この場合、電磁波遮蔽膜に占めるITO膜の割合がより高くなる。このため、この構成によれば、より高い電磁波遮蔽能を有し、可視波長域における光透過率がより高く、かつ膜応力がより小さな電磁波遮蔽膜を実現することができる。   In the present invention, t1 / t0 is preferably 0.4 or more. In this case, the ratio of the ITO film to the electromagnetic wave shielding film becomes higher. Therefore, according to this configuration, it is possible to realize an electromagnetic wave shielding film having higher electromagnetic wave shielding ability, higher light transmittance in the visible wavelength region, and smaller film stress.

本発明において、電磁波遮蔽膜は、可視波長域における平均光反射率が1.5%以下となるように構成されていることが好ましい。   In the present invention, the electromagnetic wave shielding film is preferably configured such that the average light reflectance in the visible wavelength region is 1.5% or less.

本発明において、t0は、400nm〜2000nmの範囲内にあることが好ましい。t0が大きすぎると、電磁波遮蔽膜の膜応力が大きくなりすぎる場合がある。一方、t0が小さすぎると、可視波長域における光反射率が高くなりすぎる場合がある。   In the present invention, t0 is preferably in the range of 400 nm to 2000 nm. If t0 is too large, the film stress of the electromagnetic wave shielding film may become too large. On the other hand, if t0 is too small, the light reflectance in the visible wavelength region may be too high.

本発明において、t1は、120nm〜1000nmの範囲内にあることが好ましい。t1が大きすぎると、可視波長域における光透過率が低くなりすぎる場合がある。一方、t1が小さすぎると、十分に高い電磁波遮蔽能が得られなくなる場合がある。   In the present invention, t1 is preferably in the range of 120 nm to 1000 nm. If t1 is too large, the light transmittance in the visible wavelength region may be too low. On the other hand, if t1 is too small, a sufficiently high electromagnetic wave shielding ability may not be obtained.

本発明において、高屈折率膜と低屈折率膜との膜数の合計は、4〜25の範囲内にあることが好ましい。高屈折率膜及び低屈折率膜の膜数の合計が少なすぎると、可視波長域の全域にわたって光透過率を高めることが困難となる場合がある。一方、高屈折率膜及び低屈折率膜の膜数の合計が多すぎると、電磁波遮蔽膜の膜応力が大きくなりすぎる場合があり、また、電磁波遮蔽膜の形成に要する時間が長くなりすぎる場合がある。   In the present invention, the total number of high refractive index films and low refractive index films is preferably in the range of 4-25. If the total number of high refractive index films and low refractive index films is too small, it may be difficult to increase the light transmittance over the entire visible wavelength range. On the other hand, if the total number of high-refractive index films and low-refractive index films is too large, the film stress of the electromagnetic wave shielding film may become too large, and the time required for forming the electromagnetic wave shielding film becomes too long. There is.

本発明に係る電磁波遮蔽部材は、透明基板と、透明基板の上に形成された、上記本発明に係る電磁波遮蔽膜とを備えている。このため、本発明に係る電磁波遮蔽部材は、高い電磁波遮蔽能を有し、可視波長域における高い光透過率を有し、かつ、本発明に係る電磁波遮蔽部材では、反りが小さく、電磁波遮蔽膜が剥がれにくい。   The electromagnetic wave shielding member according to the present invention includes a transparent substrate and the electromagnetic wave shielding film according to the present invention formed on the transparent substrate. For this reason, the electromagnetic wave shielding member according to the present invention has a high electromagnetic wave shielding ability, a high light transmittance in the visible wavelength region, and the electromagnetic wave shielding member according to the present invention has a small warpage and an electromagnetic wave shielding film. Is difficult to peel off.

本発明において、「透明基板」とは、可視波長域における内部透過率の平均値が80%以上である基板をいう。ここで、透明基板の「内部透過率」とは、透明基板へ入射角0°で入射しようとする光のうち、透明基板の表面において反射せずに、透明基板に入射した光の強度(I)に対する、透明基板から出射した光の強度(I)の比(I/I)である。In the present invention, the “transparent substrate” refers to a substrate having an average internal transmittance of 80% or more in the visible wavelength region. Here, the “internal transmittance” of the transparent substrate refers to the intensity (I) of light incident on the transparent substrate without being reflected on the surface of the transparent substrate, out of the light entering the transparent substrate at an incident angle of 0 °. 0 )), the ratio (I 1 / I 0 ) of the intensity (I 1 ) of the light emitted from the transparent substrate.

透明基板の厚みが、0.2mm〜2.0mmの範囲内にある場合は、電磁波遮蔽膜の膜応力により電磁波遮蔽部材に反りが発生しやすくなるため、電磁波遮蔽膜の膜応力を小さくできる本発明がより好適に適用される。   When the thickness of the transparent substrate is in the range of 0.2 mm to 2.0 mm, the electromagnetic wave shielding member is likely to warp due to the film stress of the electromagnetic wave shielding film, so that the film stress of the electromagnetic wave shielding film can be reduced. The invention is more suitably applied.

本発明によれば、可視波長域における光透過率が高いと共に、高い電磁波遮蔽能を有し、かつ膜応力の小さな電磁波遮蔽膜を提供することができる。   According to the present invention, it is possible to provide an electromagnetic wave shielding film having high light transmittance in the visible wavelength region, high electromagnetic wave shielding ability, and small film stress.

図1は、本発明を実施した一実施形態に係る電磁波遮蔽部材の略図的断面図である。FIG. 1 is a schematic cross-sectional view of an electromagnetic wave shielding member according to an embodiment of the present invention. 図2は、実施例1〜3に係る電磁波遮蔽膜の光透過率及び光反射率を表すグラフである。FIG. 2 is a graph showing the light transmittance and light reflectance of the electromagnetic wave shielding films according to Examples 1 to 3. 図3は、実施例1及び比較例1における電磁波遮蔽膜の電磁波遮蔽能を表すグラフである。FIG. 3 is a graph showing the electromagnetic wave shielding ability of the electromagnetic wave shielding film in Example 1 and Comparative Example 1. 図4は、実施例2及び比較例2における電磁波遮蔽膜の電磁波遮蔽能を表すグラフである。FIG. 4 is a graph showing the electromagnetic wave shielding ability of the electromagnetic wave shielding film in Example 2 and Comparative Example 2. 図5は、実施例3及び比較例3における電磁波遮蔽膜の電磁波遮蔽能を表すグラフである。FIG. 5 is a graph showing the electromagnetic wave shielding ability of the electromagnetic wave shielding film in Example 3 and Comparative Example 3.

以下、本発明を実施した好ましい形態について、図1に示す電磁波遮蔽部材1を例に挙げて説明する。但し、電磁波遮蔽部材1は、単なる例示である。本発明に係る電磁波遮蔽部材は、電磁波遮蔽部材1に何ら限定されない。   Hereinafter, a preferred embodiment in which the present invention is implemented will be described taking the electromagnetic wave shielding member 1 shown in FIG. 1 as an example. However, the electromagnetic wave shielding member 1 is merely an example. The electromagnetic wave shielding member according to the present invention is not limited to the electromagnetic wave shielding member 1 at all.

図1に示すように、電磁波遮蔽部材1は、透明基板2を備えている。透明基板2の材質は、可視波長域における光を透過させるものである限りにおいて特に限定されない。透明基板2は、例えば、ガラス、樹脂、セラミックスなどにより形成することができる。透明基板2の厚みは、特に限定されないが、0.2mm〜2.0mm程度であることが好ましい。   As shown in FIG. 1, the electromagnetic wave shielding member 1 includes a transparent substrate 2. The material of the transparent substrate 2 is not particularly limited as long as it transmits light in the visible wavelength range. The transparent substrate 2 can be formed of glass, resin, ceramics, or the like, for example. The thickness of the transparent substrate 2 is not particularly limited, but is preferably about 0.2 mm to 2.0 mm.

透明基板2の上には、電磁波遮蔽膜3が形成されている。この電磁波遮蔽膜3は、電磁波遮蔽能と、可視波長域の光反射抑制機能とを兼ね備えている。   An electromagnetic wave shielding film 3 is formed on the transparent substrate 2. The electromagnetic wave shielding film 3 has both an electromagnetic wave shielding ability and a light reflection suppressing function in the visible wavelength region.

電磁波遮蔽膜3は、複数の高屈折率膜3Hと、複数の低屈折率膜3Lとが交互に積層された積層膜により構成されている。電磁波遮蔽膜3は、例えば、Ag膜などの金属膜を有していない。   The electromagnetic wave shielding film 3 is composed of a laminated film in which a plurality of high refractive index films 3H and a plurality of low refractive index films 3L are alternately laminated. The electromagnetic wave shielding film 3 does not have a metal film such as an Ag film, for example.

高屈折率膜3Hは、低屈折率膜3Lと比較して相対的に屈折率が高い膜である。低屈折率膜3Lは、高屈折率膜3Hと比較して相対的に屈折率が低い膜である。高屈折率膜3Hの可視波長域における屈折率は、特に限定されないが、例えば、1.8以上とすることができる。低屈折率膜3Lの可視波長域における屈折率は、特に限定されないが、例えば、1.6以下とすることができる。   The high refractive index film 3H is a film having a relatively high refractive index as compared with the low refractive index film 3L. The low refractive index film 3L is a film having a relatively low refractive index as compared with the high refractive index film 3H. The refractive index in the visible wavelength region of the high refractive index film 3H is not particularly limited, but can be, for example, 1.8 or more. The refractive index in the visible wavelength region of the low refractive index film 3L is not particularly limited, but may be 1.6 or less, for example.

低屈折率膜3Lは、例えば、シリコン、Ca、Ba、Srなどのアルカリ土類金属の酸化物や窒化物、フッ化物などからなる。   The low refractive index film 3L is made of, for example, an oxide, nitride, or fluoride of an alkaline earth metal such as silicon, Ca, Ba, or Sr.

高屈折率膜3Hは、複数のITO(インジウムスズ酸化物:Indium Tin Oxide)膜を含む。複数の高屈折率膜3Hのうちの全ての高屈折率膜3HがITO膜により構成されていてもよいし、複数の高屈折率膜3Hのうちの二つ以上がITO膜により構成されており、他の高屈折率膜3HがITO膜以外の高屈折率膜により構成されていてもよい。ITO膜以外の高屈折率膜の具体例としては、Nb膜、TiO膜、ZrO膜、Ta膜、La膜、Y膜などが挙げられる。The high refractive index film 3H includes a plurality of ITO (Indium Tin Oxide) films. All of the high refractive index films 3H among the plurality of high refractive index films 3H may be made of an ITO film, or two or more of the plurality of high refractive index films 3H are made of an ITO film. The other high refractive index film 3H may be composed of a high refractive index film other than the ITO film. Specific examples of the high refractive index film other than the ITO film include an Nb 2 O 5 film, a TiO 2 film, a ZrO 2 film, a Ta 2 O 5 film, a La 2 O 3 film, and a Y 2 O 3 film.

電磁波遮蔽能は、ITO膜の厚み及び数量によって実質的に決定されるため、複数の高屈折率膜3HのどれだけをITO膜により構成するかは、所望する電磁波遮蔽能に基づいて決定することができる。また、所望する、可視波長域における光反射抑制機能や、光透過率、光屈折率の波長依存性等に応じて、ITO膜以外の高屈折率膜3Hの構成を決定することができる。   Since the electromagnetic wave shielding ability is substantially determined by the thickness and quantity of the ITO film, how much of the plurality of high refractive index films 3H is constituted by the ITO film is determined based on the desired electromagnetic wave shielding ability. Can do. Moreover, the configuration of the high refractive index film 3H other than the ITO film can be determined according to the desired light reflection suppressing function in the visible wavelength range, the light transmittance, the wavelength dependency of the light refractive index, and the like.

高屈折率膜3H及び低屈折率膜3Lの厚み及び膜数は、所望する電磁波遮蔽能及び可視波長域における光反射抑制機能などに応じて適宜決定することができる。高屈折率膜3H及び低屈折率膜3Lの厚みは、それぞれ、例えば、5nm〜200nm程度とすることができる。高屈折率膜3H及び低屈折率膜3Lの膜数の合計は、例えば、4〜25程度とすることが好ましい。高屈折率膜3H及び低屈折率膜3Lの膜数の合計が少なすぎると、可視波長域の全域にわたって光透過率を高めることが困難となる場合がある。一方、高屈折率膜3H及び低屈折率膜3Lの膜数の合計が多すぎると、電磁波遮蔽膜3の膜応力が大きくなりすぎる場合があり、また、電磁波遮蔽膜3の形成に要する時間が長くなりすぎる場合がある。   The thickness and the number of films of the high-refractive index film 3H and the low-refractive index film 3L can be appropriately determined according to the desired electromagnetic wave shielding ability, the light reflection suppression function in the visible wavelength range, and the like. The thicknesses of the high refractive index film 3H and the low refractive index film 3L can be set to about 5 nm to 200 nm, for example. The total number of high refractive index films 3H and low refractive index films 3L is preferably about 4 to 25, for example. If the total number of high refractive index films 3H and low refractive index films 3L is too small, it may be difficult to increase the light transmittance over the entire visible wavelength range. On the other hand, if the total number of the high refractive index film 3H and the low refractive index film 3L is too large, the film stress of the electromagnetic wave shielding film 3 may become too large, and the time required for forming the electromagnetic wave shielding film 3 may be increased. May be too long.

本実施形態では、電磁波遮蔽膜3全体の厚みをt0とし、複数のITO膜の厚みの合計をt1としたときに、t1/t0が0.3以上である。このため、電磁波遮蔽膜3に占めるITO膜の割合が高い。従って、電磁波遮蔽膜3の厚みを大きくすることなく、高い電磁波遮蔽能を実現することができる。   In this embodiment, when the total thickness of the electromagnetic wave shielding film 3 is t0 and the total thickness of the plurality of ITO films is t1, t1 / t0 is 0.3 or more. For this reason, the ratio of the ITO film to the electromagnetic wave shielding film 3 is high. Therefore, high electromagnetic shielding ability can be realized without increasing the thickness of the electromagnetic shielding film 3.

また、ITO膜の膜応力は、例えば、TiO膜やNb膜などの他の高屈折率膜の膜応力よりも小さい。このため、電磁波遮蔽膜3に占めるITO膜の割合を高くすることにより、電磁波遮蔽膜3全体の膜応力を小さくすることができる。よって、透明基板2からの電磁波遮蔽膜3の剥がれや、電磁波遮蔽部材1の反りを抑制することができる。特に、透明基板2の厚みが、0.2mm〜2.0mmの範囲内にある場合は、電磁波遮蔽膜3の膜応力により電磁波遮蔽部材1に反りが発生しやすくなる。従って、電磁波遮蔽膜3の膜応力を小さくできる本実施形態の技術は、透明基板2の厚みが、0.2mm〜2.0mmの範囲内にあるときに、特に好適に適用される。Further, the film stress of the ITO film is smaller than the film stress of other high refractive index films such as a TiO 2 film and an Nb 2 O 5 film. For this reason, by increasing the proportion of the ITO film in the electromagnetic wave shielding film 3, the film stress of the entire electromagnetic wave shielding film 3 can be reduced. Therefore, peeling of the electromagnetic wave shielding film 3 from the transparent substrate 2 and warping of the electromagnetic wave shielding member 1 can be suppressed. In particular, when the thickness of the transparent substrate 2 is in the range of 0.2 mm to 2.0 mm, the electromagnetic wave shielding member 1 is likely to warp due to the film stress of the electromagnetic wave shielding film 3. Therefore, the technique of the present embodiment that can reduce the film stress of the electromagnetic wave shielding film 3 is particularly preferably applied when the thickness of the transparent substrate 2 is in the range of 0.2 mm to 2.0 mm.

さらに、本実施形態では、電磁波遮蔽膜3の厚みを薄くすることができるため、電磁波遮蔽膜3における光吸収率を低減することができる。また、電磁波遮蔽膜3は、高屈折率膜3Hと低屈折率膜3Lとの積層膜により構成されている。このため、電磁波遮蔽膜3への入射光の光反射を抑制することができる。従って、可視波長域における光透過率を高めることができる。   Furthermore, in this embodiment, since the thickness of the electromagnetic wave shielding film 3 can be reduced, the light absorption rate in the electromagnetic wave shielding film 3 can be reduced. The electromagnetic wave shielding film 3 is composed of a laminated film of a high refractive index film 3H and a low refractive index film 3L. For this reason, the light reflection of the incident light to the electromagnetic wave shielding film 3 can be suppressed. Therefore, the light transmittance in the visible wavelength region can be increased.

以上のように、t1/t0を0.3以上とすることにより、高い電磁波遮蔽能を有し、可視波長域における光透過率が高く、かつ膜応力が小さな電磁波遮蔽膜3を実現することができる。   As described above, by setting t1 / t0 to 0.3 or more, it is possible to realize the electromagnetic wave shielding film 3 having high electromagnetic wave shielding ability, high light transmittance in the visible wavelength region, and small film stress. it can.

より高い電磁波遮蔽能、光透過率、より小さな膜応力を実現する観点からは、t1/t0がさらに大きいことが好ましい。具体的には、t1/t0は、0.4以上であることが好ましい。但し、t1/t0が大きすぎると、電磁波遮蔽膜3を、可視波長域の全域における光反射率を低減できる構成のものとすることが困難となる。従って、t1/t0は、0.5以下であることが好ましく、0.45以下であることがより好ましい。   From the viewpoint of realizing higher electromagnetic shielding ability, light transmittance, and smaller film stress, t1 / t0 is preferably larger. Specifically, t1 / t0 is preferably 0.4 or more. However, if t1 / t0 is too large, it will be difficult for the electromagnetic wave shielding film 3 to have a configuration capable of reducing the light reflectance in the entire visible wavelength range. Therefore, t1 / t0 is preferably 0.5 or less, and more preferably 0.45 or less.

電磁波遮蔽膜3は、可視波長域における平均光反射率が1.5%以下となるように構成されていることが好ましい。   The electromagnetic wave shielding film 3 is preferably configured such that the average light reflectance in the visible wavelength region is 1.5% or less.

t0は、400nm〜2000nmの範囲内にあることが好ましい。t0が大きすぎると、電磁波遮蔽膜3の膜応力が大きくなりすぎる場合がある。一方、t0が小さすぎると、可視波長域における光反射率が高くなりすぎる場合がある。   t0 is preferably in the range of 400 nm to 2000 nm. If t0 is too large, the film stress of the electromagnetic wave shielding film 3 may become too large. On the other hand, if t0 is too small, the light reflectance in the visible wavelength region may be too high.

t1は、120nm〜1000nmの範囲内にあることが好ましい。t1が大きすぎると、可視波長域における光透過率が低くなりすぎる場合がある。一方、t1が小さすぎると、十分に高い電磁波遮蔽能が得られなくなる場合がある。   t1 is preferably in the range of 120 nm to 1000 nm. If t1 is too large, the light transmittance in the visible wavelength region may be too low. On the other hand, if t1 is too small, a sufficiently high electromagnetic wave shielding ability may not be obtained.

以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。   Hereinafter, the present invention will be described in more detail on the basis of specific examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented without departing from the scope of the present invention. Is possible.

(実施例1)
厚み0.4mm、200mm四方の大きさのガラス基板(日本電気硝子社製OA−10)からなる透明基板の上に、スパッタリング法により、下記の表1に示す膜構成の電磁波遮蔽膜を形成することにより電磁波遮蔽部材を作製した。
Example 1
An electromagnetic wave shielding film having a film configuration shown in Table 1 below is formed on a transparent substrate made of a glass substrate having a thickness of 0.4 mm and a size of 200 mm square (OA-10 manufactured by Nippon Electric Glass Co., Ltd.) by sputtering. Thus, an electromagnetic wave shielding member was produced.

作製した電磁波遮蔽部材の可視波長域における光透過率と光反射率を、分光光度計(日立製作所製 U−4000)により測定した。結果を、図2に示す。   The light transmittance and light reflectance in the visible wavelength region of the produced electromagnetic wave shielding member were measured with a spectrophotometer (U-4000 manufactured by Hitachi, Ltd.). The results are shown in FIG.

また、作製した電磁波遮蔽部材の最大反り量を測定した結果、1.3mmであった。   Moreover, as a result of measuring the maximum curvature amount of the produced electromagnetic wave shielding member, it was 1.3 mm.

(実施例2)
下記の表2に示す膜構成の電磁波遮蔽膜を形成したこと以外は、上記実施例1と同様にして電磁波遮蔽部材を作製し、光透過率及び光反射率を測定した。結果を、図2に示す。また、実施例1と同様にして本実施例において作製した電磁波遮蔽部材の最大反り量を測定した結果、1.5mmであった。
(Example 2)
Except that an electromagnetic wave shielding film having a film configuration shown in Table 2 below was formed, an electromagnetic wave shielding member was produced in the same manner as in Example 1, and the light transmittance and the light reflectance were measured. The results are shown in FIG. Moreover, as a result of measuring the maximum amount of warpage of the electromagnetic wave shielding member produced in this example in the same manner as in Example 1, it was 1.5 mm.

(実施例3)
下記の表3に示す膜構成の電磁波遮蔽膜を形成したこと以外は、上記実施例1と同様にして電磁波遮蔽部材を作製し、光透過率及び光反射率を測定した。結果を、図2に示す。実施例1と同様にして本実施例において作製した電磁波遮蔽部材の最大反り量を測定した結果、1.7mmであった。
(Example 3)
An electromagnetic wave shielding member was prepared in the same manner as in Example 1 except that an electromagnetic wave shielding film having a film configuration shown in Table 3 below was formed, and the light transmittance and the light reflectance were measured. The results are shown in FIG. It was 1.7 mm as a result of measuring the maximum curvature amount of the electromagnetic wave shielding member produced in the present example in the same manner as in Example 1.

(比較例1)
下記の表1に示す膜構成の電磁波遮蔽膜を形成したこと以外は、上記実施例1と同様にして電磁波遮蔽部材を作製した。実施例1と同様にして本比較例において作製した電磁波遮蔽部材の最大反り量を測定した結果、1.8mmであった。
(Comparative Example 1)
An electromagnetic wave shielding member was produced in the same manner as in Example 1 except that an electromagnetic wave shielding film having a film configuration shown in Table 1 below was formed. It was 1.8 mm as a result of measuring the maximum curvature amount of the electromagnetic wave shielding member produced in this comparative example like Example 1.

(比較例2)
下記の表2に示す膜構成の電磁波遮蔽膜を形成したこと以外は、上記実施例1と同様にして電磁波遮蔽部材を作製した。実施例1と同様にして本比較例において作製した電磁波遮蔽部材の最大反り量を測定した結果、2.0mmであった。
(Comparative Example 2)
An electromagnetic wave shielding member was produced in the same manner as in Example 1 except that an electromagnetic wave shielding film having a film configuration shown in Table 2 below was formed. It was 2.0 mm as a result of measuring the largest curvature amount of the electromagnetic wave shielding member produced in this comparative example like Example 1.

(比較例3)
下記の表3に示す膜構成の電磁波遮蔽膜を形成したこと以外は、上記実施例1と同様にして電磁波遮蔽部材を作製した。実施例1と同様にして本比較例において作製した電磁波遮蔽部材の最大反り量を測定した結果、2.3mmであった。
(Comparative Example 3)
An electromagnetic wave shielding member was produced in the same manner as in Example 1 except that an electromagnetic wave shielding film having a film configuration shown in Table 3 below was formed. It was 2.3 mm as a result of measuring the maximum curvature amount of the electromagnetic wave shielding member produced in this comparative example in the same manner as in Example 1.

Figure 2011122152
Figure 2011122152

Figure 2011122152
Figure 2011122152

Figure 2011122152
Figure 2011122152

なお、上記表1〜3に示す屈折率は、波長550nmにおける屈折率である。   In addition, the refractive index shown to the said Tables 1-3 is a refractive index in wavelength 550nm.

図2に示す結果から、本発明に従い、複数のITO膜を含む複数の高屈折率膜と、複数の低屈折率膜とを交互に積層した積層膜により電磁波遮蔽膜を構成することにより、可視波長域における光反射を抑制でき、可視波長域における高い光透過率を得ることができることが分かる。   From the results shown in FIG. 2, according to the present invention, an electromagnetic wave shielding film is formed by a laminated film in which a plurality of high refractive index films including a plurality of ITO films and a plurality of low refractive index films are alternately laminated. It can be seen that light reflection in the wavelength range can be suppressed and high light transmittance in the visible wavelength range can be obtained.

また、表1〜3に示すように、t1/t0が0.3未満である比較例1〜3では、いずれも最大反り量が大きかった。それに対して、t1/t0が0.3以上である実施例1〜3では、いずれも最大反り量が小さかった。これらの結果から、電磁波遮蔽膜におけるITO膜の占める割合を高め、複数のt1/t0を0.3以上とすることにより、電磁波遮蔽部材の反りを低減できることが分かる。この結果から、電磁波遮蔽膜におけるITO膜の占める割合を高め、t1/t0を0.3以上とすることにより、電磁波遮蔽膜の膜応力を低減できることが分かる。また、t1/t0を0.4以上とすることにより、電磁波遮蔽膜の膜応力をより効果的に低減できることが分かる。   As shown in Tables 1 to 3, in Comparative Examples 1 to 3 where t1 / t0 is less than 0.3, the maximum warpage amount was large. On the other hand, in Examples 1 to 3 in which t1 / t0 was 0.3 or more, the maximum warpage amount was small. From these results, it can be seen that the warpage of the electromagnetic wave shielding member can be reduced by increasing the proportion of the ITO film in the electromagnetic wave shielding film and setting a plurality of t1 / t0 to be 0.3 or more. From this result, it is understood that the film stress of the electromagnetic wave shielding film can be reduced by increasing the proportion of the ITO film in the electromagnetic wave shielding film and setting t1 / t0 to 0.3 or more. Moreover, it turns out that the film stress of an electromagnetic wave shielding film can be reduced more effectively by making t1 / t0 into 0.4 or more.

(電磁波遮蔽能の評価)
上記実施例1〜3及び比較例1〜3のそれぞれにおいて作製した電磁波遮蔽部材の電磁波遮蔽膜による電磁波遮蔽能を下記の要領で評価した。すなわち、電磁波を放射する放射部と受信部との間に、実施例1〜3,比較例1〜3の電磁波遮蔽部材を配置する。そして、放射部から放射した電磁波と、受信部において受信した電磁波とから、電磁波減衰量を測定した。同様に、放射部と受信部との間に、電磁波遮蔽部材に用いたガラス板(電磁波遮蔽膜が形成されていないもの)を配置した場合の電磁波減衰量を測定した。そして、電磁波遮蔽部材毎に測定された電磁波減衰量からガラス板単体での電磁波減衰量を減算し、実施例1〜3及び比較例1〜3のそれぞれの電磁波遮蔽部材の電磁波遮蔽膜による電磁波減衰量を得た。この電磁波減衰量によって電磁波遮蔽能を評価し、電磁波減衰量が大きいほど電磁波遮蔽能が高いことを示す。結果を、図3〜図5及び下記の表4〜6に示す。なお、電磁波減衰量の測定範囲は、100MHz〜1GHzとした。下記の表4〜表6には、500MHzにおける電磁波遮蔽膜による電磁波減衰量を示している。
(Evaluation of electromagnetic wave shielding ability)
The electromagnetic wave shielding ability of the electromagnetic wave shielding member produced in each of Examples 1 to 3 and Comparative Examples 1 to 3 was evaluated in the following manner. That is, the electromagnetic wave shielding members of Examples 1 to 3 and Comparative Examples 1 to 3 are arranged between the radiation unit that radiates electromagnetic waves and the reception unit. And the electromagnetic wave attenuation was measured from the electromagnetic wave radiated | emitted from the radiation | emission part and the electromagnetic wave received in the receiving part. Similarly, the amount of electromagnetic wave attenuation was measured when the glass plate used for the electromagnetic wave shielding member (without the electromagnetic wave shielding film) was disposed between the radiating part and the receiving part. And the electromagnetic wave attenuation amount in the glass plate single-piece | unit is subtracted from the electromagnetic wave attenuation amount measured for every electromagnetic wave shielding member, and the electromagnetic wave attenuation by the electromagnetic wave shielding film of each electromagnetic wave shielding member of Examples 1-3 and Comparative Examples 1-3 Got the amount. The electromagnetic wave shielding ability is evaluated by the electromagnetic wave attenuation amount, and the electromagnetic wave shielding ability is higher as the electromagnetic wave attenuation amount is larger. The results are shown in FIGS. 3 to 5 and Tables 4 to 6 below. Note that the measurement range of the electromagnetic wave attenuation was 100 MHz to 1 GHz. Tables 4 to 6 below show the amount of electromagnetic wave attenuation by the electromagnetic wave shielding film at 500 MHz.

Figure 2011122152
Figure 2011122152

Figure 2011122152
Figure 2011122152

Figure 2011122152
Figure 2011122152

図3〜図5及び表4〜表6に示す結果から、t1/t0を0.3以上とすることにより、高い電磁波遮蔽能が得られることが分かる。以上の結果から、t1/t0を0.3以上とすることにより、高い電磁波遮蔽能を有し、かつ、電磁波遮蔽膜の膜応力が小さな電磁波遮蔽部材を得ることができることが分かる。   From the results shown in FIGS. 3 to 5 and Tables 4 to 6, it is understood that high electromagnetic wave shielding ability can be obtained by setting t1 / t0 to 0.3 or more. From the above results, it can be seen that by setting t1 / t0 to 0.3 or more, an electromagnetic wave shielding member having a high electromagnetic wave shielding ability and a small film stress of the electromagnetic wave shielding film can be obtained.

1…電磁波遮蔽部材
2…透明基板
3…電磁波遮蔽膜
3H…高屈折率膜
3L…低屈折率膜
DESCRIPTION OF SYMBOLS 1 ... Electromagnetic shielding member 2 ... Transparent substrate 3 ... Electromagnetic shielding film 3H ... High refractive index film 3L ... Low refractive index film

Claims (8)

相対的に屈折率が高い複数の高屈折率膜と、相対的に屈折率が低い複数の低屈折率膜とが交互に積層されてなり、前記複数の高屈折率膜には、複数のITO膜が含まれており、かつ、金属膜を有さない電磁波遮蔽膜であって、
前記電磁波遮蔽膜全体の厚みをt0とし、前記複数のITO膜の厚みの合計をt1としたときに、t1/t0が0.3以上である、電磁波遮蔽膜。
A plurality of high refractive index films having a relatively high refractive index and a plurality of low refractive index films having a relatively low refractive index are alternately laminated, and the plurality of high refractive index films include a plurality of ITO. An electromagnetic wave shielding film that includes a film and does not have a metal film,
An electromagnetic wave shielding film in which t1 / t0 is 0.3 or more, where t0 is a total thickness of the plurality of ITO films, and t1 is a total thickness of the plurality of ITO films.
t1/t0が0.4以上である、請求項1に記載の電磁波遮蔽膜。   The electromagnetic wave shielding film according to claim 1, wherein t1 / t0 is 0.4 or more. 可視波長域における平均光反射率が1.5%以下となるように構成されている、請求項1または2に記載の電磁波遮蔽膜。   The electromagnetic wave shielding film according to claim 1 or 2, wherein an average light reflectance in a visible wavelength region is 1.5% or less. t0が、400nm〜2000nmの範囲内にある、請求項1〜3のいずれか一項に記載の電磁波遮蔽膜。   The electromagnetic wave shielding film according to any one of claims 1 to 3, wherein t0 is in a range of 400 nm to 2000 nm. t1が、120nm〜1000nmの範囲内にある、請求項1〜4のいずれか一項に記載の電磁波遮蔽膜。   The electromagnetic wave shielding film according to claim 1, wherein t1 is in a range of 120 nm to 1000 nm. 前記高屈折率膜と前記低屈折率膜との膜数の合計が、4〜25の範囲内にある、請求項1〜5のいずれか一項に記載の電磁波遮蔽膜。   The electromagnetic wave shielding film according to any one of claims 1 to 5, wherein the total number of the high refractive index film and the low refractive index film is in a range of 4 to 25. 透明基板と、
前記透明基板の上に形成された、請求項1〜6のいずれか一項に記載の電磁波遮蔽膜とを備える、電磁波遮蔽部材。
A transparent substrate;
An electromagnetic wave shielding member comprising the electromagnetic wave shielding film according to any one of claims 1 to 6 formed on the transparent substrate.
前記透明基板の厚みが、0.2mm〜2.0mmの範囲内にある、請求項7に記載の電磁波遮蔽部材。   The electromagnetic wave shielding member according to claim 7, wherein a thickness of the transparent substrate is in a range of 0.2 mm to 2.0 mm.
JP2011507731A 2010-03-30 2011-02-18 Electromagnetic wave shielding film and electromagnetic wave shielding member Pending JPWO2011122152A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010076775 2010-03-30
JP2010076775 2010-03-30
PCT/JP2011/053446 WO2011122152A1 (en) 2010-03-30 2011-02-18 Electromagnetic wave shielding film and electromagnetic wave shielding member

Publications (1)

Publication Number Publication Date
JPWO2011122152A1 true JPWO2011122152A1 (en) 2013-07-08

Family

ID=44711886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011507731A Pending JPWO2011122152A1 (en) 2010-03-30 2011-02-18 Electromagnetic wave shielding film and electromagnetic wave shielding member

Country Status (2)

Country Link
JP (1) JPWO2011122152A1 (en)
WO (1) WO2011122152A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104040384A (en) * 2011-12-28 2014-09-10 柯尼卡美能达株式会社 Infrared shielding film, heat reflective laminated glass using same, and method for producing heat reflective laminated glass
FR3002534B1 (en) * 2013-02-27 2018-04-13 Saint-Gobain Glass France SUBSTRATE COATED WITH A LOW EMISSIVE STACK.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719551B2 (en) * 1985-04-22 1995-03-06 東レ株式会社 Optical filter with electromagnetic wave shielding property
JPH0756004A (en) * 1993-08-17 1995-03-03 Fuji Photo Optical Co Ltd Conductive antireflection film
JPH1174681A (en) * 1997-06-24 1999-03-16 Bridgestone Corp Electromagnetic wave shielding optically transparent window material
JP3952603B2 (en) * 1998-07-23 2007-08-01 コニカミノルタホールディングス株式会社 Electromagnetic wave reducing antireflection film and optical member having the antireflection film

Also Published As

Publication number Publication date
WO2011122152A1 (en) 2011-10-06

Similar Documents

Publication Publication Date Title
JPWO2007007622A1 (en) Electromagnetic wave shielding film and protective plate for plasma display panel
US10591645B2 (en) Electronic devices having scratch-resistant antireflection coatings
TWI659936B (en) Scratch-resistant chemically tempered glass substrate and use thereof
KR101147416B1 (en) Display device
US20180224589A1 (en) Inorganic polarizing plate, method of manufacturing the same, and optical instrument
JP2009116218A (en) Antireflective film, method of forming antireflective film and light-transmissive member
US20230127573A1 (en) Optical laminate, article and method of manufacturing optical laminate
WO2017028200A1 (en) Light guide plate and display device
US20180081086A1 (en) Electronic Devices Having Scratch-Resistant Antireflection Coatings
JP2009204577A (en) Light-transmitting member and timepiece provided with same
JP2016218335A (en) Glass member with optical multi-layer film
JP2010027567A (en) Transparent conductive film and touch panel
CN210506093U (en) Antireflection film and antireflection glass
JP2011138135A (en) Transparent conductive film and display filter including the same
JP4895902B2 (en) Method for forming reflective film
JP6505736B2 (en) Optical element and method of manufacturing optical element
JPWO2011122152A1 (en) Electromagnetic wave shielding film and electromagnetic wave shielding member
US20230311448A1 (en) Method for manufacturing optical laminate
JP2012042665A (en) Optical function element and imaging device
KR101056438B1 (en) Display panel and optical filter
JP3965732B2 (en) Antireflection film
JP2006337770A (en) Surface mirror
TW201728548A (en) Ultraviolet light-resistant articles and methods for making the same
WO2014080742A1 (en) Optical member with transparent conductive layer
JP2021113936A (en) Polarizing plate, optical apparatus and method of manufacturing polarizing plate