JPH08271701A - Environmental resistant infrared ray transmissive structural body suing zinc sulfide as substrate - Google Patents

Environmental resistant infrared ray transmissive structural body suing zinc sulfide as substrate

Info

Publication number
JPH08271701A
JPH08271701A JP7077006A JP7700695A JPH08271701A JP H08271701 A JPH08271701 A JP H08271701A JP 7077006 A JP7077006 A JP 7077006A JP 7700695 A JP7700695 A JP 7700695A JP H08271701 A JPH08271701 A JP H08271701A
Authority
JP
Japan
Prior art keywords
infrared
substrate
layer
zns substrate
zns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7077006A
Other languages
Japanese (ja)
Other versions
JP3704739B2 (en
Inventor
Shigeru Nakayama
茂 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP07700695A priority Critical patent/JP3704739B2/en
Publication of JPH08271701A publication Critical patent/JPH08271701A/en
Application granted granted Critical
Publication of JP3704739B2 publication Critical patent/JP3704739B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE: To provide an infrared transmissive structural body having excellent infrared ray transmissivity, free from the generation of stripping or scratch of a reflection preventive film even in use under a severe environmental conditions and excellent in environmental resistance. CONSTITUTION: The infrared ray transmissive structural body is provided with an innermost layer of Y2 O3 formed directly on a ZnS substrate, an intermediate layer of YF3 thereon and an outermost layer of MgF2 thereon or a shock mitigating layer composed of a material >=100GPa in elastic module on the ZnS substrate and an outermost layer of diamond or diamondike carbon thereon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、赤外線センサー等の赤
外線検出器に光学窓等として用いられる赤外線の透過性
に優れた構造体、特に過酷な環境下で用いられる赤外線
透過構造体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure having an excellent infrared transparency used as an optical window or the like in an infrared detector such as an infrared sensor, and more particularly to an infrared transparent structure used in a harsh environment. is there.

【0002】[0002]

【従来の技術】近年、物体から放射又は放散される熱に
よる赤外線を検知する各種の赤外線検出機器の開発が進
められている。これらの赤外線検出機器の光学窓等を構
成する赤外線透過構造体は、必要な波長帯の赤外線を透
過する材料で作成することが要求される。
2. Description of the Related Art In recent years, various infrared detecting devices for detecting infrared rays due to heat radiated or radiated from an object have been developed. The infrared transmissive structure forming the optical windows of these infrared detection devices is required to be made of a material that transmits infrared rays in a necessary wavelength band.

【0003】かかる赤外線透過材料のひとつとして、硫
化亜鉛(ZnS)がある。硫化亜鉛は、屈折率が2.2
と高く、表面反射損失が大きいために直線透過率はそれ
ほど大きくなく、例えば厚み5mmの硫化亜鉛基板では
70%程度の直線透過率が最大である。従って、ZnS
を光学窓等として使用する場合には、表面にMgF2
の弗化物やTiO2等の酸化物をコーティングした反射
防止膜を設け、直線透過率を向上させる処理が一般的に
行われている。
Zinc sulfide (ZnS) is one of such infrared transmitting materials. Zinc sulfide has a refractive index of 2.2
The linear transmittance is not so large because the surface reflection loss is large. For example, the linear transmittance of about 70% is the maximum in a zinc sulfide substrate having a thickness of 5 mm. Therefore, ZnS
When used as an optical window or the like, a treatment for improving the linear transmittance is generally performed by providing an antireflection film coated with a fluoride such as MgF 2 or an oxide such as TiO 2 on the surface. .

【0004】[0004]

【発明が解決しようとする課題】従来の一般的な赤外線
検出機器は、赤外線放射温度測定器、入侵入検知センサ
ー等のように、屋内使用を前提にしているため、反射防
止膜も直線透過率の改善のみを目的として施されてお
り、耐環境性を考慮したものは少なかった。
Since the conventional general infrared detectors are intended for indoor use, such as infrared radiation thermometers and entrance / exit detection sensors, the antireflection film also has a linear transmittance. However, there were few things that considered the environment resistance.

【0005】しかし最近では、赤外線検出機器の屋外使
用が多くなり、航空機のような高速飛翔体にも装備され
ている。その結果、このような長時間の高温多湿環境下
及び急激な温度変化を受ける環境下での使用、更には高
速飛行時の雨滴衝突条件への暴露に対しては、短時間で
硫化亜鉛基板から反射防止膜が剥離したり、反射防止膜
に傷が発生するという問題があった。
Recently, however, infrared ray detecting devices have been used more and more outdoors, and have been installed in high speed flying objects such as aircraft. As a result, when used in a high temperature and high humidity environment for a long time or in an environment subject to a sudden temperature change, and even when exposed to raindrop collision conditions during high-speed flight, the zinc sulfide substrate should be used in a short time. There is a problem that the antireflection film is peeled off or the antireflection film is scratched.

【0006】本発明は、かかる従来の事情に鑑み、優れ
た赤外線透過率を有すると同時に、過酷な環境下での使
用に対しても反射防止膜の剥離や傷の発生のない、耐環
境性に優れた赤外線透過構造体を提供することを目的と
する。
In view of the above conventional circumstances, the present invention has an excellent infrared transmittance and, at the same time, does not cause peeling or scratches of the antireflection film even when used in a harsh environment. It is an object of the present invention to provide an infrared transmitting structure excellent in heat resistance.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明が提供する第1の赤外線透過構造体は、Zn
S基板と、該ZnS基板に直接接して形成したY23
最内層と、最内層の上に形成したYF3の中間層と、中
間層の上に形成したMgF2の最外層とを備えたことを
特徴とする。
In order to achieve the above object, the first infrared transmitting structure provided by the present invention is Zn
An S substrate, an innermost layer of Y 2 O 3 formed in direct contact with the ZnS substrate, an intermediate layer of YF 3 formed on the innermost layer, and an outermost layer of MgF 2 formed on the intermediate layer. It is characterized by having.

【0008】本発明が提供する第2の赤外線透過構造体
は、ZnS基板と、該ZnS基板上に形成した弾性率が
100GPa以上の材料からなる衝撃緩和層と、衝撃緩
和層上に形成したダイヤモンド又はダイヤモンド状炭素
からなる最外層とを備えたことを特徴とするものであ
る。
A second infrared transmitting structure provided by the present invention is a ZnS substrate, an impact relaxation layer formed on the ZnS substrate and made of a material having an elastic modulus of 100 GPa or more, and a diamond formed on the impact relaxation layer. Alternatively, the outermost layer made of diamond-like carbon is provided.

【0009】この赤外線透過構造体の衝撃緩和層を構成
する弾性率100GPa以上の材料としては、Ge、S
i、GaP、BP、Y23、Al23、TiO2、Y
3、LaF3、又はCeF3等を使用することができ
る。
As the material having an elastic modulus of 100 GPa or more, which constitutes the shock absorbing layer of the infrared transmitting structure, Ge, S
i, GaP, BP, Y 2 O 3 , Al 2 O 3 , TiO 2 , Y
F 3 , LaF 3 , CeF 3 or the like can be used.

【0010】又、これら第1又は第2の赤外線透過構造
体は、ZnS基板が透明化処理を施したZnS基板であ
ってよく、その場合には赤外線と共に可視光線の透過性
にも優れた赤外線透過構造体となる。
Further, the first or second infrared transmitting structure may be a ZnS substrate in which the ZnS substrate is subjected to a transparentizing treatment, and in that case, the infrared ray having excellent transparency to visible light as well as infrared light. It becomes a transparent structure.

【0011】[0011]

【作用】ZnS基板のみでは、赤外線透過率が70%前
後に過ぎない。そこで、ZnS基板の表面に反射防止膜
として、屈折率の低い材料をコーティングすると透過率
が向上することは良く知られている。しかしながら、耐
環境性を考慮した場合には、反射防止膜とZnS基板の
接着性や反射防止膜自体の耐摩耗性等が必要となる。Z
nSと付着性の良い材料としてPbF2があるが、水を
吸収して白く変質するため多湿な環境化では役に立たな
い。
The ZnS substrate alone has an infrared transmittance of only about 70%. Therefore, it is well known that coating the surface of a ZnS substrate with a material having a low refractive index as an antireflection film improves the transmittance. However, in consideration of the environment resistance, the adhesion between the antireflection film and the ZnS substrate, the abrasion resistance of the antireflection film itself, etc. are required. Z
PbF 2 is a material having good adhesion to nS, but it is not useful in a humid environment because it absorbs water and turns white.

【0012】そこで、本発明の第1の赤外線透過構造体
では、水に強く高温でも安定なMgF2を最外層に用
い、中間層には赤外域でも透過性がありMgF2との接
着性に優れたYF3を用いる。この2層が対象波長での
反射防止膜として作用し、そのためにはMgF2の最外
層の膜厚は0.02〜0.80μm、及びYF3の中間層
の膜厚は0.1〜2.2μmの範囲が好ましく、この範囲
で対象とする赤外線波長に対し透過率が向上する膜厚を
適宜選択する。
Therefore, in the first infrared transmitting structure of the present invention, MgF 2 that is resistant to water and stable at high temperature is used for the outermost layer, and the intermediate layer is transparent in the infrared region and has good adhesiveness with MgF 2. Uses excellent YF 3 . These two layers act as an antireflection film at the target wavelength, for which the outermost layer of MgF 2 has a thickness of 0.02 to 0.80 μm, and the intermediate layer of YF 3 has a thickness of 0.1 to 2 A range of 0.2 μm is preferable, and a film thickness that improves the transmittance with respect to a target infrared wavelength in this range is appropriately selected.

【0013】しかし、中間層を構成するYF3はZnS
基板との接着力が余り優れておらず、高温多湿や急激な
温度変化等の過酷な環境下では、YF3膜がZnS基板
の界面で剥離しやすい。そこで、第1の赤外線透過構造
体では、YF3及びZnSとの接着力が非常に高く、水
及び温度変化に対して安定なY23を、ZnS基板と直
接接する最内層として用いる。
However, YF 3 which constitutes the intermediate layer is ZnS.
The adhesive strength to the substrate is not so excellent, and the YF 3 film is easily peeled off at the interface of the ZnS substrate under a severe environment such as high temperature and high humidity or rapid temperature change. Therefore, in the first infrared transmissive structure, Y 2 O 3 which has a very high adhesive force with YF 3 and ZnS and is stable against water and temperature change is used as the innermost layer in direct contact with the ZnS substrate.

【0014】最内層としてY23層を介在させることに
より、過酷な環境下に長時間さらしても、ZnS基板と
の界面での剥離を防止できることが確認された。但し、
最内層のY23層は、接着力を向上させる為に用いるの
で、膜厚は対象赤外線波長での透過率にあまり影響ので
ない0.02〜0.20μm程度の薄さとする。
It has been confirmed that by interposing the Y 2 O 3 layer as the innermost layer, peeling at the interface with the ZnS substrate can be prevented even when exposed to a harsh environment for a long time. However,
The Y 2 O 3 layer, which is the innermost layer, is used to improve the adhesive force, so the film thickness is made as thin as about 0.02 to 0.20 μm that does not significantly affect the transmittance at the target infrared wavelength.

【0015】更に、上記第1の赤外線透過構造体におい
て、ZnS基板として透明化処理(HIP処理)が施さ
れたZnS基板を使用すれば、このZnS基板は可視か
ら赤外域まで60〜75%程度の透過率を有するので、
可視光線の透過性にも優れた赤外線透過構造体を得るこ
とができる。又、中間層の屈折率を1.4以上及び最外
層の屈折率を1.4以下とすることで、可視と赤外域の
2波長帯で透過率が向上する。
Furthermore, in the above-mentioned first infrared transmitting structure, if a ZnS substrate subjected to a transparency treatment (HIP treatment) is used as the ZnS substrate, the ZnS substrate is about 60 to 75% from visible to infrared region. Since it has a transmittance of
It is possible to obtain an infrared transmissive structure having excellent visible light transmittance. Further, by setting the refractive index of the intermediate layer to be 1.4 or more and the refractive index of the outermost layer to be 1.4 or less, the transmittance is improved in two wavelength bands of visible and infrared regions.

【0016】この場合、MgF2の最外層の膜厚は0.0
3〜1.50μm、及びYF3の中間層の膜厚は0.03
〜1.50μmが好ましく、これらの膜厚を最適値にす
ることにより、可視と赤外域の2波長帯で透過率が向上
する。又、最内層のY23層は、接着力を向上させる為
に用いるので、膜厚は対象赤外線波長での透過率にあま
り影響のでない0.02〜0.20μmが好ましい。
In this case, the film thickness of the outermost layer of MgF 2 is 0.0.
3 to 1.50 μm, and the film thickness of the YF 3 intermediate layer is 0.03.
.About.1.50 .mu.m is preferable, and by adjusting these film thicknesses to the optimum values, the transmittance is improved in the two wavelength bands of visible and infrared regions. Since the innermost Y 2 O 3 layer is used to improve the adhesive strength, the film thickness is preferably 0.02 to 0.20 μm, which does not significantly affect the transmittance at the target infrared wavelength.

【0017】従来から可視光線と赤外線の両波長にわた
って透過率を向上させるには3層以上の多層構造の反射
防止膜が必要とされてきたが、透明化処理したZnS基
板を用いた上記第1の赤外線透過構造体により、3層の
みの反射防止膜で両波長で優れた透過率が得られ、同時
に高温多湿及び急激な温度変化でも膜剥離が発生しない
構造体が得られたものである。
Conventionally, an antireflection film having a multi-layer structure of three layers or more has been required to improve the transmittance over both visible and infrared wavelengths. With the infrared-transmissive structure of (3), an excellent transmittance was obtained at both wavelengths with an antireflection film having only three layers, and at the same time, a structure was obtained in which film peeling did not occur even under high temperature and high humidity and rapid temperature changes.

【0018】上記の第1の赤外線透過構造体の製造にお
いて、全ての層の形成は、公知のスパッタリング法、真
空蒸着法、又はイオンプレーティング法等によって行う
ことができる。
In the manufacture of the first infrared transmitting structure, all layers can be formed by a known sputtering method, vacuum vapor deposition method, ion plating method or the like.

【0019】次に、本発明の第2の赤外線透過構造体
は、優れた赤外線透過率を持つと同時に、特に雨滴等の
衝突に対して優れた耐久性を有するものである。即ち、
ZnS基板及び透明化処理を施されたZnS基板は、表
面硬度がヌープ硬度で150〜350と低く、弾性率も
70〜90GPaと低いため、雨滴の衝突を受けた場
合、ZnS基板表面に小さな傷が多数発生し、透過率が
急激に低下する。
Next, the second infrared ray transmitting structure of the present invention has an excellent infrared ray transmittance, and at the same time, has an excellent durability especially against the collision of raindrops and the like. That is,
The surface hardness of the ZnS substrate and the ZnS substrate subjected to the clarification treatment are as low as Knoop hardness of 150 to 350, and the elastic modulus is also low of 70 to 90 GPa. Occurs, and the transmittance sharply decreases.

【0020】その改善のため、第2の赤外線透過構造体
では、ZnS基板上に雨滴衝突時の衝撃を緩和する目的
で、弾性率が100GPa以上の材料、例えばGe、S
i、GaP、BP、Y23、Al23、TiO2等の酸
化物、YF3、LaF3、CeF3等の弗化物からなる、
衝撃緩和層を設けている。ここで、弾性率を100GP
a以上とする理由は、雨滴衝突時の衝撃をはね返して緩
和する固さが必要なためである。
To improve this, in the second infrared transmitting structure, a material having an elastic modulus of 100 GPa or more, such as Ge or S, is used for the purpose of mitigating the impact of raindrop collision on the ZnS substrate.
i, GaP, BP, Y 2 O 3 , Al 2 O 3 , oxides such as TiO 2 and fluorides such as YF 3 , LaF 3 and CeF 3 .
A shock absorbing layer is provided. Here, the elastic modulus is 100 GP
The reason why it is set to a or more is that it is necessary to have a hardness that rebounds and relaxes the impact at the time of raindrop collision.

【0021】加えて、耐雨滴摩耗性を持たせるため、こ
の衝撃緩和層の上の最外層にダイヤモンド状炭素(Di
amondo−like−carbon)又はダイヤモ
ンドの層を設ける。ダイヤモンド状炭素及びダイヤモン
ドは、表面硬度がヌープ硬度で2000以上であり、化
学的に安定で、可視から赤外域まで優れた透過性を有し
ており、上記衝撃緩和層を構成する材料との密着性にも
すぐれている。
In addition, in order to provide rain drop abrasion resistance, diamond-like carbon (Di
A layer of amond-like carbon) or diamond is provided. The surface hardness of diamond-like carbon and diamond is 2000 or more in Knoop hardness, it is chemically stable, and has excellent transparency from the visible to the infrared region, and it adheres well to the material forming the impact relaxation layer. It is also excellent in sex.

【0022】上記衝撃緩和層の膜厚は0.02〜25.0
μm、及びダイヤモンド状炭素又はダイヤモンド層の膜
厚は0.20〜20.0μmの範囲が好ましい。これらの
層の膜厚を上記の範囲内にすることにより、可視から赤
外の使用波長帯に合わせて、最適の膜厚を選択すること
ができる。
The thickness of the shock absorbing layer is 0.02 to 25.0.
μm, and the film thickness of the diamond-like carbon or diamond layer is preferably in the range of 0.20 to 20.0 μm. By setting the film thickness of these layers within the above range, the optimum film thickness can be selected according to the visible to infrared wavelength band used.

【0023】又、ZnS基板と衝撃緩和層との間に、Y
23やMgF2等からなる中間層を設けることもでき
る。雨滴の衝突による基板への衝撃を抑えるためには、
この中間層の膜厚を出来るだけ厚くすることが好ましい
が、0.2μm以上になると赤外透過率に影響するので
避けるべきである。
Further, between the ZnS substrate and the shock absorbing layer, Y
It is also possible to provide an intermediate layer made of 2 O 3 or MgF 2 . In order to suppress the impact on the substrate due to the collision of raindrops,
It is preferable to make the thickness of this intermediate layer as thick as possible, but if it is 0.2 μm or more, it affects the infrared transmittance and should be avoided.

【0024】上記第2の赤外線透過構造体においても、
ZnS基板として透明化処理が施されたZnS基板を使
用すれば、可視光線の透過性にも優れた赤外線透過構造
体を得ることができることは、第1の赤外線透過構造体
の場合と同様である。
Also in the second infrared transmitting structure,
As in the case of the first infrared transmissive structure, it is possible to obtain an infrared transmissive structure having excellent transparency to visible light by using a transparent ZnS substrate as the ZnS substrate. .

【0025】尚、かかる第2の赤外線透過構造体におけ
る全ての層の形成は、公知のスパッタリング法、真空蒸
着法、イオンプレーティング法、CVD法及びプラズマ
CVD法等によって形成する。
All the layers in the second infrared transmitting structure are formed by a known sputtering method, vacuum vapor deposition method, ion plating method, CVD method, plasma CVD method or the like.

【0026】[0026]

【実施例】実施例1 厚み5mmのZnS基板の片面に、基板と直接接せしめ
て膜厚0.05μmのY23からなる最内層、その上に
膜厚1.30μmのYF3からなる中間層、及びその上に
膜厚0.50μmのMgF2からなる最外層をそれぞれ形
成した。これら各層は、いずれも電子ビームを用いる真
空蒸着法により、基板温度400℃で形成した。
Example 1 On one side of a ZnS substrate having a thickness of 5 mm, the innermost layer made of Y 2 O 3 having a thickness of 0.05 μm is in direct contact with the substrate, and YF 3 having a thickness of 1.30 μm is formed thereon. An intermediate layer and an outermost layer of MgF 2 having a film thickness of 0.50 μm were formed thereon. Each of these layers was formed at a substrate temperature of 400 ° C. by a vacuum vapor deposition method using an electron beam.

【0027】得られた赤外線透過構造体は、対象とする
赤外波長での反射率が7%以下となった。耐環境性につ
いては、Y23の最内層を用いない場合は、温度60℃
及び湿度95%の環境下にさらすと100時間で膜が剥
離したが、Y23の最内層を用いた本発明の構造体で
は、同環境下に1000時間さらしてもテープ試験では
剥離しなかった。又、−60℃〜450℃の温度サイク
ルを繰り返した後も、剥離は発生しなかった。
The infrared transmissive structure thus obtained had a reflectance of 7% or less at the intended infrared wavelength. Regarding the environment resistance, if the innermost layer of Y 2 O 3 is not used, the temperature is 60 ° C.
The film peeled off in 100 hours when exposed to an environment with a humidity of 95%, and the structure of the present invention using the innermost layer of Y 2 O 3 peeled off in the tape test even when exposed to the same environment for 1000 hours. There wasn't. Further, peeling did not occur even after repeating the temperature cycle of -60 ° C to 450 ° C.

【0028】実施例2 厚み5mmの透明ZnS基板の片面に、基板と直接接せ
しめて膜厚0.075μmのY23からなる最内層、そ
の上に膜厚0.030μmのYF3からなる中間層、その
上に膜厚0.49〜0.610μmのMgF2からなる最
外層をそれぞれ形成した。これらの各層、いずれも電子
ビームを用いる真空蒸着法により、基板温度400℃で
形成した。
Example 2 On one side of a transparent ZnS substrate having a thickness of 5 mm, the innermost layer made of Y 2 O 3 having a film thickness of 0.075 μm was formed in direct contact with the substrate, and YF 3 having a film thickness of 0.030 μm was formed thereon. An intermediate layer and an outermost layer of MgF 2 having a film thickness of 0.49 to 0.610 μm were formed on the intermediate layer. Each of these layers was formed at a substrate temperature of 400 ° C. by a vacuum vapor deposition method using an electron beam.

【0029】その結果、得られた構造体は、対象とする
可視域及び赤外域で反射率が8%以下となった。耐環境
性については、温度60℃及び湿度95%の環境下にさ
らすと、最内層にY23を用いなかった場合は80時間
で膜剥離が発生したが、最内層にY23を用いると10
00時間さらしてもテープ試験では剥離しなかった。
又、−60℃〜450℃の温度サイクルに繰り返しさら
しても、膜の剥離は発生しなかった。
As a result, the obtained structure had a reflectance of 8% or less in the intended visible region and infrared region. Regarding the environmental resistance, when exposed to an environment of a temperature of 60 ° C. and a humidity of 95%, film peeling occurred in 80 hours when Y 2 O 3 was not used in the innermost layer, but Y 2 O 3 was formed in the innermost layer. With 10
The tape test did not peel off even after exposure for 00 hours.
Further, even when repeatedly exposed to a temperature cycle of -60 ° C to 450 ° C, peeling of the film did not occur.

【0030】実施例3 厚み5mmのZnS基板の片面に、基板と直接接せしめ
て膜厚10.0μmのGeからなる衝撃緩和層を形成
し、その上に膜厚は0.85μmのダイヤモンド状炭素
からなる最外層を形成した。Geの衝撃緩和層は電子ビ
ームを用いる真空蒸着法により基板温度150℃で形成
し、ダイヤモンド状炭素の最外層はプラズマCVD法に
より基板温度180℃で形成した。
Example 3 On one surface of a ZnS substrate having a thickness of 5 mm, a shock absorbing layer made of Ge having a thickness of 10.0 μm was formed by directly contacting the substrate, and a diamond-like carbon having a thickness of 0.85 μm was formed thereon. The outermost layer consisting of The Ge impact relaxation layer was formed at a substrate temperature of 150 ° C. by a vacuum evaporation method using an electron beam, and the outermost layer of diamond-like carbon was formed at a substrate temperature of 180 ° C. by a plasma CVD method.

【0031】得られた赤外線透過構造体は、対象波長の
赤外線での反射率が15%以下であった。又、この構造
体を高速飛翔体に取り付け、雨滴衝突に関して試験した
ところ、25mm/hの雨量において、飛翔体の速度2
83m/sまで膜剥離が生じず、膜に傷が付くこともな
かった。
The infrared transmissive structure thus obtained had a reflectance of 15% or less with respect to infrared rays having a target wavelength. Also, when this structure was attached to a high-speed flying object and tested for raindrop collision, at a rainfall of 25 mm / h, the speed of the flying object was 2%.
No peeling of the film occurred up to 83 m / s, and the film was not scratched.

【0032】[0032]

【発明の効果】本発明によれば、優れた赤外線透過性を
有すると同時に、高温多湿や急激な温度変化、更には雨
滴の衝突等の過酷な環境下での使用に対しても、反射防
止膜の剥離や反射防止膜に傷の発生することがない、耐
環境性に優れた赤外線透過構造体を提供することができ
る。
EFFECTS OF THE INVENTION According to the present invention, while having an excellent infrared ray transmission property, it can prevent reflection even when used in a harsh environment such as high temperature and high humidity, rapid temperature change, and raindrop collision. It is possible to provide an infrared transmitting structure having excellent environment resistance, which does not cause peeling of the film or scratches on the antireflection film.

【0033】従って、本発明の赤外線透過構造体は、屋
内用はもちろん屋外用の赤外線検出機器の光学窓とし
て、あるいは高速飛翔体に用いる赤外線検出機器の光学
窓として特に有効である。
Therefore, the infrared transmitting structure of the present invention is particularly effective as an optical window for an infrared detecting device for indoor use as well as for an outdoor use, or as an optical window for an infrared detecting device used for a high-speed flying object.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ZnS基板と、該ZnS基板に直接接し
て形成したY23の最内層と、最内層の上に形成したY
3の中間層と、中間層の上に形成したMgF2の最外層
とを備えたことを特徴とする赤外線透過構造体。
1. A ZnS substrate, an innermost layer of Y 2 O 3 formed in direct contact with the ZnS substrate, and a Y formed on the innermost layer.
Infrared transmission structure that an intermediate layer of F 3, characterized in that a top layer of MgF 2 formed on the intermediate layer.
【請求項2】 ZnS基板が透明化処理を施したZnS
基板であり、赤外線と共に可視光線の透過性に優れてい
ることを特徴とする、請求項1に記載の赤外線透過構造
体。
2. A ZnS substrate having a transparentized ZnS substrate
The infrared transmissive structure according to claim 1, which is a substrate and is excellent in the transparency of visible light together with infrared light.
【請求項3】 ZnS基板と、該ZnS基板上に形成し
た弾性率が100GPa以上の材料からなる衝撃緩和層
と、衝撃緩和層上に形成したダイヤモンド又はダイヤモ
ンド状炭素からなる最外層とを備えたことを特徴とする
赤外線透過構造体。
3. A ZnS substrate, an impact relaxation layer formed on the ZnS substrate and having an elastic modulus of 100 GPa or more, and an outermost layer formed on the impact relaxation layer and formed of diamond or diamond-like carbon. An infrared transmitting structure characterized by the above.
【請求項4】 前記衝撃緩和層を構成する弾性率100
GPa以上の材料が、Ge、Si、GaP、BP、Y2
3、Al23、TiO2、YF3、LaF3、又はCeF
3であることを特徴とする、請求項3に記載の赤外線透
過構造体。
4. An elastic modulus of 100 which constitutes the impact absorbing layer.
Materials of GPa or higher are Ge, Si, GaP, BP, Y 2
O 3 , Al 2 O 3 , TiO 2 , YF 3 , LaF 3 , or CeF
Characterized in that it is a 3, infrared transmission structure according to claim 3.
【請求項5】 ZnS基板が透明化処理を施したZnS
基板であり、赤外線と共に可視光線の透過性に優れてい
ることを特徴とする、請求項3又は4に記載の赤外線透
過構造体。
5. A ZnS substrate having a transparentized ZnS substrate
The infrared transparent structure according to claim 3 or 4, wherein the infrared transparent structure is a substrate and has excellent transparency to visible light as well as infrared light.
JP07700695A 1995-04-03 1995-04-03 Environment-resistant infrared transmission structure using ZnS as substrate Expired - Fee Related JP3704739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07700695A JP3704739B2 (en) 1995-04-03 1995-04-03 Environment-resistant infrared transmission structure using ZnS as substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07700695A JP3704739B2 (en) 1995-04-03 1995-04-03 Environment-resistant infrared transmission structure using ZnS as substrate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005170524A Division JP2005275434A (en) 2005-06-10 2005-06-10 ENVIRONMENT-RESISTANCE INFRARED-RAY TRANSMISSIVE STRUCTURAL BODY USING ZnS AS SUBSTRATE

Publications (2)

Publication Number Publication Date
JPH08271701A true JPH08271701A (en) 1996-10-18
JP3704739B2 JP3704739B2 (en) 2005-10-12

Family

ID=13621685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07700695A Expired - Fee Related JP3704739B2 (en) 1995-04-03 1995-04-03 Environment-resistant infrared transmission structure using ZnS as substrate

Country Status (1)

Country Link
JP (1) JP3704739B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042278A (en) * 2007-08-06 2009-02-26 Hoya Corp Anti-reflection film, and optical member using the same
JP2010112787A (en) * 2008-11-05 2010-05-20 Sumitomo Electric Ind Ltd Flame detector
JP2010181514A (en) * 2009-02-04 2010-08-19 Sumitomo Electric Hardmetal Corp Optical component and protective member for laser beam machining apparatus
CN102368097A (en) * 2011-09-29 2012-03-07 中国航空工业集团公司洛阳电光设备研究所 Dim light and laser transmission and medium-infrared reflection film and prism, preparation method of prism
JP2015517686A (en) * 2012-05-18 2015-06-22 イエーノプティーク オプティカル システムズ ゲーエムベーハー Optical IR component with hybrid coating
JP2015520719A (en) * 2012-04-16 2015-07-23 ショット コーポレーションSchott Corporation Polycrystalline chalcogenide ceramic material
WO2016203863A1 (en) * 2015-06-19 2016-12-22 三菱電機株式会社 Optical component and laser machining apparatus
JP2017122729A (en) * 2012-08-23 2017-07-13 レイセオン カンパニー Method of stress relief in cap wafer to be anti-reflectively coated for infrared focal plane array to be wafer level packaged
CN112698430A (en) * 2020-12-11 2021-04-23 中材人工晶体研究院有限公司 ZnS substrate long-wave infrared anti-reflection protective film and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022045011A1 (en) 2020-08-27 2022-03-03 Agc株式会社 Far-infrared transmitting member, and method for manufacturing far-infrared transmitting member

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042278A (en) * 2007-08-06 2009-02-26 Hoya Corp Anti-reflection film, and optical member using the same
JP2010112787A (en) * 2008-11-05 2010-05-20 Sumitomo Electric Ind Ltd Flame detector
JP2010181514A (en) * 2009-02-04 2010-08-19 Sumitomo Electric Hardmetal Corp Optical component and protective member for laser beam machining apparatus
CN102368097A (en) * 2011-09-29 2012-03-07 中国航空工业集团公司洛阳电光设备研究所 Dim light and laser transmission and medium-infrared reflection film and prism, preparation method of prism
US10246377B2 (en) 2012-04-16 2019-04-02 Schott Corporation Polycrystalline chalcogenide ceramic material
JP2015520719A (en) * 2012-04-16 2015-07-23 ショット コーポレーションSchott Corporation Polycrystalline chalcogenide ceramic material
US11667579B2 (en) 2012-04-16 2023-06-06 Schott Corporation Polycrystalline chalcogenide ceramic material
JP2015517686A (en) * 2012-05-18 2015-06-22 イエーノプティーク オプティカル システムズ ゲーエムベーハー Optical IR component with hybrid coating
JP2017122729A (en) * 2012-08-23 2017-07-13 レイセオン カンパニー Method of stress relief in cap wafer to be anti-reflectively coated for infrared focal plane array to be wafer level packaged
WO2016203863A1 (en) * 2015-06-19 2016-12-22 三菱電機株式会社 Optical component and laser machining apparatus
JPWO2016203863A1 (en) * 2015-06-19 2017-12-07 三菱電機株式会社 Optical components and laser processing machines
CN112698430A (en) * 2020-12-11 2021-04-23 中材人工晶体研究院有限公司 ZnS substrate long-wave infrared anti-reflection protective film and preparation method thereof
CN112698430B (en) * 2020-12-11 2022-05-13 中材人工晶体研究院有限公司 ZnS substrate long-wave infrared anti-reflection protective film and preparation method thereof
US12032122B2 (en) 2020-12-11 2024-07-09 Sinoma Synthetic Crystals Co., Ltd. Long-wave infrared anti-reflection protective film on ZnS substrate and preparation method thereof

Also Published As

Publication number Publication date
JP3704739B2 (en) 2005-10-12

Similar Documents

Publication Publication Date Title
EP0317264B1 (en) Thick, impact resistant antireflection coatings for ir transparent optical elements
US6078425A (en) Durable silver coating for mirrors
US5019458A (en) Protected silvered substrates and mirrors containing the same
EP0039125B1 (en) Optical article and method
AU624753B2 (en) Solar screening assembly
US2668478A (en) Heat protection filter
JP2020527532A (en) Laminated glazing
JPH08271701A (en) Environmental resistant infrared ray transmissive structural body suing zinc sulfide as substrate
JP3249992B2 (en) Anti-reflection coating for silicon or germanium substrates
EP0919069B1 (en) Environmentally resistant, infrared-transparent window structure
JP2008268277A (en) Infrared ray transmitting structure and infrared ray sensor
EP4343392A1 (en) Method for producing far-infrared transmission member, and far-infrared transmission member
AU2019205016B2 (en) Optical component with scratch resistant anti-reflection coating and method for producing same
US5851631A (en) Composite infrared windows using silicon and plastic
US4057316A (en) Reflection reducing multilayer system on a highly refractive infrared transmitting substrate
GB2225449A (en) Bonding hard carbon to a base
JPH10503146A (en) Durable composite window for transmitting visible light, laser and mid-wave infrared
US20170052293A1 (en) Coating with adhesion layer for uv optics
AU2007297669B2 (en) Separated gray metal and titanium nitride solar control members
JP3361621B2 (en) Anti-reflection coating for infrared region
US4264140A (en) Low reflection coatings for windows
JP2005275434A (en) ENVIRONMENT-RESISTANCE INFRARED-RAY TRANSMISSIVE STRUCTURAL BODY USING ZnS AS SUBSTRATE
JPH07168008A (en) Ag surface mirror
JPH11149063A (en) Spectacle lens with antireflection film
JPH04217201A (en) Infrared optical parts

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050718

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080805

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090805

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100805

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees